Gould MPX-32TM
Release 1.5E
Reference Manual

Volume 11

April 1985

Publication Order Number: 323-003662-000

TMppx-32 is a trademark of Gould Inc.

GOoULD

Electronics

HISTORY

The MPX-32 Release 1.0 Reference Manual, Publication Order Number 323-001012-000,
was printed June, 1979.

Publication Order Number 323-001012-100 (Revision 1, Release 1.3) was printed
February, 1980.

Publication Order Number 323-001012-200 (Revision 2, Release 1.4) was printed July,
1980.

Publication Order Number 323-003662-000 (Revision 3, Release 1.5B) was printed
September, 1982,

Publication Order Number 323-003662-001 (Change 1 to Revision 3, Release 1.5D) was
printed February, 1984.

Publication Order Number 323-003662-002 (Change 2 to Revision 3, Release 1.5E) was
printed April, 1985. The updated manual contains the following pages:

* Change * Change
Number : Number
Titlepage «.ccceveeeceenenecae? 5-8 through 5-58....cc0cececces 0
Copyrightpageecceeeeescaceeal 6-1through 6-4cccvveeeens 0
iliandivChange 2cc0e00s2 6-5through 6-7ccceeeeeenl
jfliandivChange !cc0000al 6-8through 6-30......cccceceenn 0
HI/IV coveneennnns P ¢ 6-31 ... e Cesecssaesnnne 1
vthrough viil ccceceeceeenncas0 6-32 through 6-33/6-340
S | 7-1 through 7-7/7-8 vcvceoene e..0
x through xvii/xviiieeeeeeceecs.0 8-1 through 8-9/8-10..... creeessD
S | 2 0
1-2 through 1-10....... .0 «..0 9-2 tiiicetnnnnn Ceestescnces 1
2-1 through 2-15........ coeessl 9-3 through 9-14......... ceeess0
7 S | 10-1 through 10-24 eee.0
2-17 through 2-27c0evevee . 0 11-1 through 11-3......... ceess0
2 P | 11-4 . ..ovvnee Ceetecreceanne |
2-29 through 2-56 «e.0 11-5 through 11-29/11-30 0
3-1 through 3-13...... ceenscssl A-] through A-7/A-8ccc0c...0
3-14and 3-15...cccciiececncanl B-1 through B-21/B-22c.....0
3-16 through 3-18.....cccc0e..0 C-l1andC-2...cccceeececesoes0
4-1 through 4-63/4-64 . cccce0ve.0 C-3iceenencenns PP |
b 4 C-4throughC-6...cccccccecosc0
5-2 through 5-6cccce0...0 C-7andC-8....cc00cce ceccoe .1
57 cevevcecnnnnes P | C-9through C-2] . ..cccceceeeesl
Continued

* Zero in this column indicates an original page.

Change 2
iii

*Change

Number
C-22 ... B |
C-23 throughC-26 «ccvveveees. 0
C-27 throughC-30 ...ccvcveneel
C-31 through C-350
C-36 through C-38cvuuanel
L P ¢
L |

*Change

Number

G-3/G-8..iiiiiiinesenenanasa0
GL-1 through GL-6....cc0c00e..0
) B e |
GL-8 through GL-11/GL-12.......0
IN-1 through IN-15.............0
IN-16.eveeeeeneeenenennaaesal
IN-17/IN-18 .t e v veeveenneeesss0

* Zero in this column indicates an original page.

On a change page, the portion of the page affected by the latest change is indicated by a
vertical bar in the outer margin of the page. However, a completely changed page will

not have a full length bar, but will have the change notation by the page number.

Change 2
iv

-
A

\;3\»/

CONTENTS

Page
i. THE ASSEMBLER (ASSEMBLE)

1.1 General DesCription ¢ .. cececoosoesssscecscocscessccocssscooassses
1.2 Files and File Assignmentsccecieccceceeccsssocsccscsccsssoncs
1.2.1 Source Code (PREand SI) v v v cevnecraccocccasasscaconsanse
2.2 Macro Libraries (MAC, MA2). . c e vt cvnevcencoscscnsnsasans
2.3 Listing (LO) vt eseeevecsssoosossessscssssosssasssssnnss
2.4
2.5

Object Code (BOaANd GO) v v vvvevecesscsossnsassasssnaoas
Compressedsource(CS)‘.................'.............
1.2.6 Temporary Files (UTI,UT2) covieieneeeroecncnnnnnonncons

Options ®© © © 2 0 0 @ 9 0 065 5 00 0 00 0000000 00000000 000000000000 sO0 S

3

4 Accessingthe Assembler......ccieieeeeieecrececcecccnnccnnncns
5 Assembler DireCtives ¢ ceeceveceecceeesscssccssscscsscsossssnncns
.6 Listings..‘.‘.0.....‘.......-...‘...l.c‘.....l..l.l....o...
7

8

Errors and AbOrtS c «c c e c e et e e v ececocesccsccscssosecccccssoeans
107.1 Aborts....l.l.'.l..‘..."Ol.ll.l.........I.‘.......
Examples.. ® © ® & © ® © © & & O 0 O 5 O O P O T S S S O S S OO PO O " ST O " O ST O S O P SO T O 0 0 l-

ONVWVVWOONWWWNNNN—

o §

2. THE CATALOGER (CATALOG)

2.] General DesCription ¢ c.cecoecesesssscsccscsacccsscosccccsscssscsss 2-1
2.1.1 Load Module Informationcccteccesecesssssscosccoces 2=3
Resource Requirementscco00ccceecosscccccsccccces 2=5
Absolute Load Modules « .« e v v et teteeestencecnccncsanees 2-6
Sectioned versus Nonsectioned Tasks ¢ e et ceeceeencecceneeees 2-6
Segmented versus Nonsegmented Tasks «.ecceeeeeeeecscn ceees 2-7
Object Modules and Load Modules .. .ccceccesvcvocsccsccess 2=7
Password Protected Load Modules . .« e e v e ceeecciovceccocees 2-8
The Cataloging Process. . ccvceveeeeeceeeenecennens cevecs 2-8
2.1.8.1 First Pass ccocoeeoeocesscocacesssssscasascce 2=8
2 Second Pass e coscceccsscosscocssssconssconssces 2=9
3 Common References.....ceeeeeesesecccassscses 2-9
A Included or Excluded Object Modules . v e v ccveecesees 2-9
5 Selective Retrieval from SGO ... e vt evveeeveeeeees 2-9
2.1.8.6 Symbol Tables (SYMTAB'S) cvcceceecceccncacasoans 2-10

2.1.9 Allocation and Use of Global Common and DATAPOOL
Partitions «cccceoeoccocococcsssscscsooscccsacessoscsess 2-10
2.2 Files and File Assignments ..cccoceccocceccsoscossccosscsssossssses 2=11
2.2.1 File Assignments Chart.....ccccecececcos ceeccscecccesses 2-13
2.3 OPptionS ccceeococosccoccccssssssocssscsosscscsscscccssssses 2=-18
2.4 UsingtheCataloger «ccccccececcescccccoscoscscoccsoscssnsssnssss 2-18
2.4.1 Cataloging a Nonsegmented Taske e cccecocccecceceocaccocss 2-18
2.4.1.1 Job Organization «ce.eececoccocscescocsccoccsses 2-18
2.4.1.2 Recataloging the Load Module.ccvcceceeeeeess 2-21
2.4.2 Cataloging a Segmented Task ¢ eceeceesscccssencoccssconsss 2-21
2.4.2.1 JobOrganization ...iceeeeecscacoocncsonnsssces 2=21
2.4.2.2 Overlay Levels ... ccceeccoccococcaees ceecocoees 2=23

NNN:\)NNN
ot et o0t ot ot et
°
CONOY N T WN

.3 The Overlay Transient Ar€a ...ceeeececescnnsons
4 Resolution of External References in Segmented
TaskSeeoeeeeeeseaesseeosssncescnonnsocnns
4.2.5 Cataloging a Segmented Task in Stages
4.2.6 Recataloging withOverlays....cccceeveeeieneenn.
Accessing the Cataloger .. .cvvvvevtieeieereecscocessososocensons
Cataloger DireCtives ... ceeeeececcessesssnoscscossossosonccsnas
2.6.1 ABSOLUTE Directive ¢ e e ceceeeeeeeecsosossssosssnssnecns
2 ALLOCATE Directive.eeccieeeeeeeseesscccososssscsncns
3 ASSIGN] Directive e e e et eveeeesessescccccscssscoccsnnas
4 ASSIGNZ2 Directive cc e v e et eeeeeecoccscscscssoccssosnss
5 ASSIGN3 Directive ¢ o e e e vveevseeeesesscsccnscssoncsnes
6 ASSIGNY Directive c o e v e vt veeeeccescsessosscsscssncosees
7 BUFFERS Directive «vcciieeeteeeeeesoescecsssconcnsssns
8 CATALOG DireCtive v.ceeeeesnsscsescccecsoosscssossscs
9 ENVIRONMENT Directive. . coecceeecesecescccccscaoscss
1

1

1

1

1

1

1

1

1

1

2

2

°

EXCLUDE Directive. « e ccecosecesscsocssssocsssscscsacss
EXIT Directive..cccoeeeeeeeecocscsssccssssssssccossccs
FILES DireCtive v e e vevoveossnnccsscccosscs
INCLUDEDirective ¢ ceceveeeerecescccscscsesscsscncns
LINKBACK Directive « e v vt eveveeevcccnsocsscssocnssnssns
LORIGIN Directive. . ccveeeeceeececocsccncooccansscnscs
OPTION Directive «.cecveerecscocsecsssccssccsssssscs
ORIGIN Directive . e« ¢t cecceeeeccesocssoccssssocssscsns
PASSWORD Directive ... cceeeeeccessesssscsssscsossasns
PROGRAM Directive « .o evvevvcectennecnns
PROGRAMX DireCtive « st eoveesecsscscossosssssscsaans
SYMTAB Directive c e « et cveessecocsocssssoscsosssocnsace
2,6.22 USERNAMEDirectivevceeeerececsccscosssosssossss
ErrorS oo ceeeeetenceecaacaneeasssccosassscnssossssssssnsnss
Examples ..cceeeeeeeeceeneecoscenccesconnannanns
LiStiNgS o c e coveoeecenscecesecccscecssossosssncsncssssssnsencs
Creating RTM Tasks on the MPX-32 System ..ccceceeeeceocssessnnsns
2.10.1 Assembling RTM Object Modulesot enccnnnnns
.l Running RTMCATL ...ttt eeeccecccsccssocncsccancscs
1 Semantic Differences ... c ittt et i iiiei et ccsocesanne
Transporting the Cataloged Task to an RTM System . .cccccesse
RTMCATL Load Modules Cannot by Used on MPX-32

Systems.o.cuoooooooo-o‘-'00-noo-too.ooooolooooo.-

N R R N R N R - R - Y

NNNNNNNNNNNNNNNNNNNNN

—OWOONAWVMETWN=-O

Bl L]
.10.

NNNN

0
0.
0
0

W HSWN

3. TASK STRUCTURE AND OPERATION

3.1

3.2

3.3

vi

General Description « v v vveeeeeecreeccacnecns
3.1.1 Multiple Dictionariescceeeececossccsocssossccsssscsse
2 Static versus Dynamic DATAPOOL .. .ccccteceesscesaccsce
3 DPEDIT DirectiveS s e s e o e e oo veossnsssessoccssosssosossocss
4 Input DataFormat «cceeeveeeeeececccnsecoscscssononssscs
5

S

Dictionary Records. e e e e eeeeesscssscsosseocnsosscsosancacass

3.2.1 The Input File (SYC) it vttt inierneeonesocascocnancsnns
3.2.2 The DATAPOOL Dictionary (DPD). vt vvevevacnococoecocoons
3.2.3 Audit Trail and Error Listings (LOand ER) . cvvevvveeeennnnnn
3.2.4 Save and Remap Files (OT and IN) ¢ c e v evvevnnnesesnnannnes
3.2.5 Scratch Files (Ul and XUD ..o v teveeenesnsosnnsocsanssons

Opions © © 0 0 200 0 0 6 0 0 6 0 0 0 00 08 0O 0L S OSSO 0 0SS0 O SN OO S OO 00O OSE

2-28

2-29
2-31
2-32
2-34
2-35
2-38
2-38
2-39
2-40
2-42
2-43
2-43
2-44
2-45
2-46
2-46
2-46
2-47
2-47
2-47
2-48
2-48
2-49
2-49
2-50
2-50
2-50
2-51
2-53
2-55
2-55
2-55
2-56
2-56
2-56

2-56

3-1
3-1
3-2
3-2
3-3
3-6
3-7
3-7
3-7
3-7
3-8
3-8
3-11

Using DPEDIT s
Accessing DPEDIT ...t veeiensesssssonscsccsssssccossssssssss 3-11
DPEDIT Directives ¢ « « ¢ o s s e eeeoesaseosscssssscsasssosssssssscsce 3=12
3.6.1 /DPD Dir€CtiVe «oeeeeececccccsossscocssssscccsssascss 3=12
3.6.2 JENTER Dir€Ctive «ecceeeecsscscsscossosscsossscscseses 3=12
3.6.3 JLOG Directive «cceeeceeecoooccsocosossssscososassss 3=l
3.6.4
3.6.5

b
[)WV B~

/REMAP Directive « « e covveenn Ceecceccscccscscoeses ee. 3-14
JSAVE DireCtive. . coeeeeeececocssesscsasosasssocsssccsas 3-15
3.6.6 JVERIFY Dir€Ctive « « « e ccoeesoccsccossoscssccossssnscss . 3-15
LiStingS ¢ c e coceccococcscesscsscsssosscsossssssssccccnccssss 3=16
Errors o e oo cescecssccone scoecesccescocesesences ceoossec e 3-17
Examples ceecsescesann ceeeas cesenssascenues ceesseeces 3-17

u}uu
\O 00 N

4. THE DEBUGGER (DEBUG)
4.1 General Description ¢ . cceeeerteossescsscccccccscsceccsss ceesesas U-1
.l Attaching DEBUG toa User Task c.ccceeee cocsoces ceeeces U5
2 /O teveeennncnnnns cecssessasacnas cececscnscne ceeses b7
4.1.2.1 Terminal I/O tivevvvenreencnscscascsccaceses U7
4,1.2.2 CommandFiles .c.cceveeecees cessssnecsss ees 49
4.1.2.3 SLOFileSeevoeeeeesosssenssonsscncssncancnces U9
4.1.3 Control Transfers e ceeveeeecercesessccccnnccocs ceesoess 49
4.1.4 Break Handling. .« c e e v eeceeccsoncscscsccecoscsconcccns 4-11

4.2 Files and File Assignments «...cceceeececsesccccccsccscscsnsasss U=ll
4.2.1 File Assignments Chart....cceeeceeecececcncenccas

4.3 UsingtheDebugger ...ccccceeeeecscececssccccsscossssscsssscs 4=13
4.3.1 EXPressions «.eeececsesecessscsscscccsocssocssocssnccees U=13
4.3.1.1 Constants cvceececoccssescocnccccssscsccses 4=15

2 Register Content References ...cccecceeceeeeees U-16
3 Memory Content (Indirect) References. «...vco .. eee U-16
4 BaseS.ceeeecececcecssccccccncnncace ceveees U-17
5 COUNT cevvenencenns cecesessvssse B 2 &
4,3.1.6 Operatorscccocceccecccoccccccess cesess 4-19

2 Relative versus Absolute Expression Evaluation ...ccceeeceee 4-21
.3 Address Displays and References .« cecceocoecccccsssossscscs 4-21
4 Address Restrictions..... tessscssereranesaae cecoesseees 421
5 Traps and Trap Lists..... cessesae ccsssecseccnsccceccess W4=23
4.3.5.1 Setting @ Trap cceeeeeececececssscncsccsocsnns 4-23
4.3.5.2 Nesting Trap Lists «ccceceeeccnenssesceccconns 4-24
Accessing the Debuggerccveeciecccccccecsccsscnccccsnsnss 427
Commands . .ccseesoeseccsocsoscossasssssnssccsascess sevenes 4-29
4.5.1 ABSOLUTE Command. . . coeeecccocscecocococcssscsoccsssscsss 4-34
.2 BASECommand ccvveeene P 4-35
-3 BREAK Command ...cecevccosse csecssesvese vecvesss e 4-36
N CCCommand...ccceveocoocs sessesssssensenssannsscans 4-36
5 CLEAR Command ...ccoceeccoceccscscsosccscosococsocosses 4-37
.6 CMCommand .cccoosccsscoe cesccas ceesccscesacotaean 4-38
ol CR Command..ccsooe ©ceecesssscecossscceccsccscossses 4=39
.8
9
.1
.1
.1
.1
.1

FF
e

DELETE Command .. .cecoocococcososssccososocssonncossaes 4-40
DETACH Command «.cccecoococsccssscscossoscsncocss G=ll
DUMP Command . c.cccoccococccosccsoscoococcsoscososss 4-42
END Command...... cecesssene cseesosecccoocecanecss e 4-42
EXITCommand «ccceeececees cececcsoseccceces s coees U4=43
EXITCommand ceccessscecoccceseesaacaces o 4-44
FILECommandcceeecacesccccncocs coeccense ceosoo oo 4-45

°

##P####P#####
\n\.nu:\nu-\n\.nu.uun\n\nun

FWN=-O

vii

o e e o o o o
e o o o o o o

L] L] ° ° . e
° L] L] . L) Ld
WWEANNNNNDNNNNN - —

##F####PF#PP#####
\n\n\n\n\n\n\n\a}n\n\nu\n\nu\n\n

°
°

4.5.32

Examples.oo-ot'u-oo-oooootoo.oonn-‘loctoe.ooo'o

= ONVOONAUMEWN=OWVOONON W

FORMAT Command ¢ v ceeeeesseascssscscsossscosoccssocsess
GO CommMAand. e ceeeeeescseosscscscssssossossscssoscscssocs
IFCommand coeeeeececsoscscscscscsossssosososocsocsssscoss
LISTCommand. e e cocceveeeeeserescccscscesascncscsscs
LOG Command. e e et ccoeveesoscecssssoscsosssscsccssscess
MSGCommand..cceeeeceeososcecsssnsososcnnccsnssos
RELATIVECOmMmMANd ¢ cceeecececcscccscoccosccccsssesaes
REVIEW Command « ¢ e cocovececsossoscscccscscccescsseaes
RUNCOMMANd tccceeeeccceccscsoscscccocssoncssscssoes
SET Command v vceeeesceeocoscoscsessscscssossocnsscsosss
SHOW Command ...ceeceeeecceccssasossosccosscnsonscsoss

SNAPCommand...o.ocooooolou'coo.o..oo.too

® 0o 00 0 6 00

STATUS CommandQ.‘Q..‘...‘....!.......C.l.......l.
STEPCommand ¢ ccoveeooecsooosascsescscocasooconsscosos
TlMECommandC......O'...l‘....'.'Il'...l..'l...l.

TRACECommand ..cccvecececcoccccooss
TRACKCommand....l.l....ﬂ..ﬂ.l.

© © 02 o e e 00 00 %00 00

WATCH Command «.ccceeeceoocescescscaccocsoncscssss
Batch Considerationsccecoceoosce
Listings and Reports .. coceeeeeeeoeecccoscoaoccaccccnosacasos
Errors ceceeeeeocecssoscooocnncnas

5. INTERACTIVE PROCESSING

viii

General Description .. cccveeeeceensn
Files and File Assignmentsccceceeeetccccsscccoscscssoconnas

OPtiOnS ®© 0 06 06 0 0606 © ¢ 0005 00 6 %0 60 OC 0 O 00 008 60 OG0 0O O 0 06 © 6 O 0 O

Using the Editor o « e v ceceeeencenenss

5.4.1

5.4.2

\llUl}ll\ll\ll
-DP;P-&‘-‘#

L] L] >
00
) L]
NMEWN~ - NOVU & W

\n\n.\n\n\n
O\O’\?’\O\G\

Addressing Techniques .. .ccceeceseecsrsnaosss

© © © 0 © © 9 06 00 06 & & 8 06006 00 ® C O

®© 0606 006 0© 06606 06060 0© 0060 © 0 0 ¢ 6 ©

® 6 0 e o 006 ¢c 006 00 0©0 0000060 OO0 ° o 0

5.4.1.1 Special Characters .. cccevcvevcocosocccnans

o o
)
°

\ll\ll\ll.\h\IlUI
P-P#F-P-P

D)
) °

[N SRS Y
e o o

)
3

C
5
M

.

o
e

o
N NN -
W N=gpNouFwN

5.4,

© e 6 o0 0 0 o

Line and Range Addressing . .. cecveevvcconccsss
GrOUPS.cecosoesssosscocccososscososcssscassscs
Content Identifiers .« c e c v v e eveenns
Defaults «cccceeeeeeeececocecsoconccccsonnss
Special Command Defaults v vcvveeooccces

© 06 90 00 © 0 0 9 @

Descrition in Syntax Sections <.ccccececccoceccss
ndLine Numbersccccvececcccosccccesacsccsncs
Line Numbers Generated by the Editor. ..
Line Numbers at the Beginning and End of the
Workfile eceeceecececceccccococssncscosnns
Physical Position of Line Numbers.........

© 0 60 8 60 0 0

© e 0 0 e o

5.4.2.4 Text Output without Line Numbers ...ccceceeecss
Accessing Files Created Outside the Editorc.cccveeeeens

Accessing Password Protected Files. .« v cveveeeevcnnens

e o o o

Accessing System Files .o o v e i vttt ittt ittt
Entering and Editing Upper/Lower Case Text « ccoveeoonnccss
Usingthe Break Key . e c e vttt eeeeeeinneeecnnscccnnns

APPEND Command

SSING EDIT . ..iveiieencecenonnsencnnns
CommandS.eeeeececscooocacss

© o o 0 000 00

BATCH or RUN Command
CHANGE Command ¢ .o cceeeeceeecesccscscsnsosocsssses

CLEAR Command .
COLLECT Command

® ® 0 00 006 0 0 00000000 80 060 0

e 000 0 0 0 0 o e e 0 0000 00000

® © 09 © 00 09 000 85 e 000 e 0

© 6 o 00 0060000 009 00

e ¢ o o o e o o e o

4-46
4-47
4-49
4-50
4-50
4-51
4-51
4-52
4-52
4-53
4-54
4-55
4-55
4-56
4-56
4-57
4-60
4-61
4-62
4-63
4-63
4-63

5-1
5-1
5-1
5-2
5-2
5-2
5-3

Y
w

5-4

= &

\V RV RV RV RV |
8 1 b8
N \n

[«)

O \D 000000 N NN

5-10
5-11
5-13
5-14
5-15
5-17
5-18

i,

COMMAND Command . cceceeecocescocscsscsssssnssssces =21
COPYCommand ...ceeesecsossscsascscscsssscsscnsssces =22
DEBUG Command «.coeeecescscccossssscsssscsnsocssces =26
DELETE Command .. coeecececsosccossscscsosssssnsscsnses =26
EXITCommand ..ccceeeececccccosscscesscsscccsansascas 9=27
INSERTCommand «:ceeececoocsecosscsccscsscssascsscos =28
LISTCommand. ..cceceosecocoosscscscsoscocscscsccccesss =30
MODIFY Command. « c e s o esseccccccscccosscscsccascascsos =32
MOVECOmMMANd ...ceoeeeceocscescsscscscancscscesssces =33
NUMBER Command «.cceeeeecocccccocsoscescscssccascsscos D=3
PREFACECommand ..ccccecoceccocsococcosconcasse P B 4
PRINT Command «.ccocecosocoscccsscoscscssssasscsccos =39
PUNCHCommand «occeecccccecoscososssscscosscssscass oo =40
REPLACECommMAand ...ccceeccesoasscccscsssascsconssece =l
SAVE Command ¢ v v coeeeeeeecocsscoooscscoassossscsseoe =42
SCRATCHCommand .cccocececcsocsascccsccsscsacaaass D=l
SETCommand «..ccceceeescccecscscscscscssocssscssse I=U5
SHOW Command . ..cceeeeeeccsssoscscsosscccsssccscsses 9=50
STORE Command. cccceeeeeccsssccoscccsccacsscssscsscsess =52
USE Command e L
VERIFY Command . ccceeeocececscscsccccs ceecescssccss =96
WORKFILECommand. e c e e cecoeeeoccenccscocasonas eoes 9=57
5.7 Edit ErrorS. e c e c e e e eeeeoescccososcssscscosscscscoccccscss eeeee 9=58

o e o o o o o o
e e o o o o o o

°
°

NNNNRNDNNN == e s o o e \O 00 N OV
NAOAWUMEWN=OWVWOONAATMWMETWN~O

°
°

6. THE FILE MANAGER (FILEMGR)

6.1 General Description . c..ccceessscooccccosccccscocccoscsscsscsssses 6-1
6.1.1 The System Master Directory (SMD) +ccceeccccccoscnocsses 6=l
6.1.2 System Files versus User Files. oo eceecoeee tececccecoscess 6=2
6.1.3 The Save/Restore Process « « e ccceescccecscssscsssscsases 6=3
Files and File Assignments ...cccecceeceeccocoscscsccsssassases 6-3
6.2.1 File Assignments Chart...coveeeecececccaceccsscsnsnses 6=3
Options ccvcccveeesscsscoscssossoscscosascse ceccescscsccssesesse 6-5
Usingthe File Manager . .« cceceeeeeceecsccocensnnnns ceceesnees 6-5
6.4.1 Computing the Sizeof aFile..cceevcececerercencecasaees 625
Using Wild Card Characters in File Names « ¢« vecveeeeecccees 6-6
Password-Protected Files .« cvcveevceeeeertecececcsensens 6-6
Special CharactersinFileNamescccceiieeeeenneeees 6-7
Notes on File-to-Tape Transfers .. .cceecceccocssccccccecnss 6-7
Device Specifications « « c e c e e cscesecsceccssascccccccccs 6-9
ssing the File Manager....ccceceeeeeececcccccccacccconconss 69
MGR Directives,cc.... Ceeeccccscssesesccssssssesras . 6-10
CREATE and CREATEU Directives « c c c c e cccocoscccossssss 6-12
CREATEM Directive ..cccocecscscsscccscsconcconsecos 6=l
DELETE and DELETEU Directives. ccceccocoecsoe ceecoossss 6-17
DELETEW Directive e c e cococssssscesccccscsocscsscccccs 6=17
EXIT Directive. . coeovcosccccccescs csccceccecsssssnccss 6=19
EXPAND and EXPANDU Directives. . e ccccscecosssssccsses 6-19
LOG, LOGU, LOGC, and LOGS Directives cccccceccecocscseoos 6-20
MEMO Directive .cccccosocccecccccoccososccossosssssss 6-21
PAGE Directive ¢« c c cooeeoeescscccocosocasccccoscssscoss 6-22

°
N

°
= W
o o
.

0\0\9\0\0\
FFEFFF

o o
RV

>

0
Mp OdLEWN

o}
o

1

bt s b pe \D OO NN\ = W N) —

.6.10 RESTORE and RESTOREU Dir€Ctives « osvsunensenness 6-22

o-l REWINDDi!‘eCﬂVe.-.........o................--..... 6"25

..2 SAVEandSAVEUDiI'eCﬁVES....................--...... 6"26
3

.

SAVELOGDil‘eCﬂVE..............o.-........-...o...a 6-30

ix

6.6014 DSTDirectiveo.t.o...ooo.colooo--!ol'

6.6.15 SKIPFILE Directive . .owooumos s oo R

6.6-16 USERNAME Directive ® ® ¢ 0 00000000000 000
Exa mples ® 0 00 060 000 00 0000000 e ® © 0 00 00 00 00000000
Erl’OrS ® 6 0 0 0 0 00 0 06 © 50 00000 0000000000000 e0O e 00

Listings..conooo-..oo'o-onoo--oo.oo.oonooolo

oo
\D 00 N

7. M.KEY EDITOR (KEY)

7.! General Description ® 5 & 0 5 0 0 0 000 60 00 S5 L OO P e S e e
7.2 File and File Assignments seesensssssese
7.3 UsingKey ® ® @ 0 00 ® 0 O 00 0 0 e 0 b o ® ® 0 & 0 % 0 © % 0 O 0 0 0O 00

7.3.1 Input Record Syntax . .« e« ceecene cece
7'3.2 Samp]e Input File ® ® ¢ 0 © 0 © © 9 & 5 & 0 00 O O O O e 6 0
7.4 Accessing the MLKEY Editor « o ccccceoccccces oo

7.5 Example ® © ¢ 0 0 & 0 & © 60 0 © 0 O O 06 ©° O O O OO0 O O 6 O O O O O O © 0o ©
8. THE SUBROUTINE LIBRARY EDITOR (LIBED)

8.1 General Description ¢ cvcceeeceecosossccccccccnns

8.1.1 LIBED Directives Summary c s e e e cocoscosese
8.2 Files and File Assignmentscccceeecocccoccons
The Object Module File (LGO) ..o vveveeeens

2
2. The Subroutine Library File (LIB). v e e v ecaenen
'2. TheDirectory(DIR)...'...'.........."

802-5 LiStedOUtpUt(LLO).‘-..-.-.--o-oo-....

00 00 00 00
FWN -

o 0 00

. ()

° e e o
. e 0o e
© 0 0 0 o
© o8 © 0
© e 00 0
© o 00 0

o o0 LI

o o 0 000 e s 0
cccccc LR)

© 0o 0 000 0900

ThEDiI"ECtiveFile(CTL)...........-.... ooooooo ©© 009000

8.3 OptionS ¢ v ccccoocesssceosssscssscccncososoccess ceocscecn e e
84 UsingLIBED
85 AccessiNGLIBED ..ccoeeecvonessoosscssoosnsnscas covessasenee
8.6 Subroutine Library Editor Directives «cccccooecessessccccccsns oo
8.6.1 DELETE Directive «..ccoececessscccsnncsacs cotrens
8.6.2 EXIT Directive...ccc0eos . s e s sessseevesocsocoen e e
8.6.3 LOG Directive « v v cvooeecesssecosssscesssoocncsssscessass
87 ListingS.ceeevceecons Ceeccesecessesst s sossoss0s s n e e
8.8 Errors e eocececcssce Sesesssacssssssescses et s ese
89 ExampleS....ceeoeeecsssocsccsssossossossacsossssascsssocs
9. THE MACRO LIBRARY EDITOR (MACLIBR)
9.1 General Description ccceeeeccocccrscscossccsscssscscososssccoss .o
9.1.1 MACLIBR Command SUMMAry c.ceeceoccoossssoscscse

9.2 Files and File Assignments «..ccoeeeccccecccnnnns

9.2.1 MaCrOLibrarY(MAC)..-o-.oo.-.-....-o-...-::..----..

9.2.2
9.2.3 Directives (DIR) ® © 060 006000 0000 060000000 00
9 2 4 AUdit Tl’ail (LO) © ® 00 00606 0600000 0060600600000

902.5 scratchFile‘lo.oot.'c.'.c'oo.o-o;ooo..

OptionS ¢ e ceveeeccccoscscesosscoscsnccsnscss
Using the Macro Library Editor « cccceccveeveeseenns
Accessing the Macro Library Editor « e e e e e v e e v v vnenn
Macro Library Editor Directives .. .ccoveeveeeeene .
9.6.1 /APPEND Directive «cveseesvssasns
9.6.2 J/CREATE Directive «vvveseseeeecconnnns
9.6.3 /DELETE Directivecosveeeesssonens

\D\D:O\D
AwnmE W

o o o 0
® o0 0 0
LY
o o 0 o

MacroInput File (S e e e v e everonencennnncnnnnasse ceeees

® o 00000

o0 0 0 00 0
° o0 e o
ooooo o

. . ® o
0 060 00 0 00
e 0o 00 0 0 0 °

[U R N
QOO OO NNNNAUNUVNNNDNNN - —

000000000000000000?00000000000000000

\D \O \O \0 O 0O
UEUEUSUSURL

PY Yy
NDOWOOWOONAANANWWWWNNN -—

\O\D\'D\O\D

=

—

6.4 /DISPLAY Dir€Ctive « « « e o e et eesevsesscoscnsisooscnscaes
6.5 JEND Dir€Ctive «eeeeeeeeeecsososesscconsssssssscasss
6.6 JEXIT DireCtive « c oo v oo veveeosscsossoccnsssoscncanses
6.7 JINSERT Dir€CtiVe « e e oo v evevossoscsccsocscososscsscses
6.8 JLOG DireCtive v veeeeeeeeeeeeeseesoocenssessssnocsses
6.9 /MACLIST Dir€Ctive . e e e c ccooeececscsocscoscconccscsaes
9.6.10 /REPLACE Dir€Ctive v eeceeeeececsccoccccsoscacsosssese

9 7 LiStingS @ © 2 0 6 ° 0000 00 900 S 0 00O OO 00 00O 800 00O D00 008 OO0 00O 06 00 S O
9.8 El’rOl‘S © 8 6 ® 00 80 0 80 95 S0 0" SO0 0O SO S S S0 OO0 000 80O OO OO0 0O OO S S OO0 O S0
9.9

ExampleSQanosoooonuuo.ovooco-n--ooo-..'...tocoo.u.iooocoo

10. MEDIA CONVERSION UTILITY (MEDIA)

10.1 MEDIA Directives SUMMArY «eceeoeceesssccsssosssocnsssssssssense
10.2 Files and File Assignmentsceeeccececcccssccssssccccososccses
JO.3 OPptionS ¢ oo eeeeeoecoscossssasssssscsecosscsssssssessssssssssas
104 UsingMEDIA .. oveeeteeresesececsososooscsosscscsssssnsossns
10.4.1 Labels c e vecvcevceecccccsssscnssccsccccacscccnas

5 Accessing MEDIAcitieeeeeeeececcaosccocossososncnsosans
10.6 MEDIA Directives .. .ecsoecocencs
10.6.1 General e vveveveeecocnns
10.6.2 BACKFILE Directive «vcveeeececeseccccccsccccnncsans
10.6.3 BACKREC Directive ...vcesvocecsocsocscccsccnsscsecns

9-9

9-9

9-9
9-10
9-10
9-10
9-11
9-11
9-12
9-13

10-1
10-2
10-4
10-4
10-4
10-4
10-5
10-5
10-6
10-6

10.6.4 BUFFER Directive ¢« « ¢ e cccoccoseccscoscscsscascsascssce 10-7
10.6.5 CONVERT Directive. . cceceeeececscocssscsscssssssssee 10-7
10.6.6 COPY Directive c e e ccccecoevsocoscosccosscossscssasesees 10-8
10.6.7 DUMP Directive. ccccoocceocccesccsosccosscssscsssecs 10-8
10.6.8 END Directive c c ¢ cccce o coocecsoscecscsscscsssscscss 10-9
10.6.9 EXIT Directive..ceccocoececoscoocccesscsosssscsscescs 10-9
10.6.10 GOTODirective « « c e ccvoesvocecccsscsssscssasssssesdl0=10
10.6.11 INCRDirective cecceeecocsscccosscosscscassscsscesssll=ll

10.6.17
10.6.18
10.6.19
10.6.20
10.6.21
10.6.22

MESSAGE Directive v o e cceeceoeescesccccssssoscacsnsssslO=1l
MOVE Directive c o ¢ c e e cocsececcoonsccscscs cesseneseesll=12
OPTION Directive . ..cececocccscecccocscscscccsecsscsessslO=13
READ Directive c o c e ccoceeevecoccocscsscccscsssccasssslO=15
REWIND Directive c « e e cceeececccocccosscsscsscssesocesll=15
SETC Directive «cceeeeeeecaes cecessscocessesssssssseell=15
SKIPFILE Directive «cccecececoosesescaccssccsccssscsesll=16
SKIPREC DireCtive «eceeeeeeccssesoccesccsscasncsssesll-16
VERIFY DireCtive «.ccceceeccscscsccsososcccsonscccsssll=16
WEOF Directive « « e e ccveeceossosssccsccsscsossscocssssl0=17
WRITE Directive «c.... et eseerecses e T (23 ¥4

1007 Listings ® ® © & & & 6 & O © O 0 0 0 0 0 OO O ® O O P L OO O OO O O O O O " O O O 0 S O 0 0 e 0O O O O 10-18
l 0.8 Errors ® ®© &6 9 ® 0 © © ® 06 0 ® © O 6 O 0 O 0 O O & O O O D 6 O O 0 O O O O © O 6 O © 0 00 O O O 0 & 0 o lo— l 9
109 Examples.cceeeeeceoscocossoscsssosssssnssocscscs ceosessssesssll0=21

11. SOURCE UPDATE UTILITY (UPDATE)

11.1 General Descriptionccoecsvocsscocsoosesssccssscoososscosonnscas
11.1.1 UPDATEDirectives ccccoceceeecocssossoccscccocossocsscss
11.2 Files and File Assignments .. .ccccecccsccosocccoscscoscscocssscscoccss
11.3 OPptions e e eeveercceeceosseecsosssosssosonseosscsocnssscsscassscs
114 Using UPDATE. . tcieeeeeeescscsocccacscsssnesssnassossossscoss
11.4.1 Compressed Source Formatting « e e e e et ceveseseocnsoccococs
11.4.2 Library Mode of Operation ...c..ccceeesccsencccococcoccos

11-1
11-1
11-3
11-6
11-7
11-7
11-7

xi

1105 ACCGSSing UPDATE ®© ® 2 0 0060 0 00 00 00 ® © 5 0 00 00 020000 0000000000 Il-ll

11.6 UPDATE DireCtives ¢ v ceesoscessssccsscss ceseesssesecennn eeeol1-12
11.6.1 General e cevveencncsecscnecsacs e seeesese 11-12
11.6.2 /ADD DireCtive «veeeeeecossscsosansss cesssesseanee J11-12
11.6.3 /AS1 Directive (Reassign LFC to Disc Fxle) Ceeesssenee 11-13
11.6.4 /AS3 Directive (Reassign LFC to Device) ..o eveevnennnn eeeo11-13
11.6.5 /BKSP (Backspace) DireCtive. . cveeeeecesccenoscecaes oo ll-18
11.6.6 /BLK (Blank Sequence Field) Directive....cceveeeenn e 11-14
11.6.7 J/COPY Directive v vcvereeesnnnasnns cecevesavasnssas 11-15
11.6.8 /DELETE DireCtive «.cveeeeceeesssoncsocssosnssnns «.11-15
11.6.9 JEND Directive vvceveevesncanns ceeeessace e s essesas 11-15
11,610 /EXIT DireCtive ¢ e e vveeessosossoosossesssssossnsanna 11-16
11.6.11 J/INSERT Directive « e v veeecesesccocnns ceeecssss e ..o 11-16
11.6.12 /LISTDirective «.veeeececencans cececceaes ceseeeneas 11-17
11.6.13 /MOUNT DireCtive e e e s coveeocececcsssscossosacsascnssns 11-18
11.6.14 /NBL (No Blank Sequence Field) Dxrectwe cesesssscseesasesll-18
11.6.15 /NOLIST DireCtive « c e eecersecsccsosncoscsscacsssossas 11-19
11.6.16 /NOSEQN DirecCtive ¢ e eeeveeeosscscscas ceceecne cenesall=19
11.6.17 /REPLACE DireCtive «.cvoveecescecescscossscsconnsocs 11-19
11.6.18 /REWIND Directive «coceeecess sesesssan sesessaes eoea11-20
11.6.19 /SCAN Directive «cvceeeese csesecesscsssesssnseasses 11-20
11.6.20 /SELECT Directive. ccceccoescess ceceossserescsssacas 11-20
11.6.21 /SEQUENCE DireCtive «v.eeecoeecoccocacasces ceeesnannn 11-21
11.6.22 /SKIP Directive «ccoecevs cececcessssescassssseesas e 11-21
11.6.23 /USRDIirectiveeeecvesccsasccsscsnssos ceeeeaasnll-22
11.6.26 /WEOF Directive «vcoeuees ceceae cecesenen ceceessnecae 11-22

11.7 ListingS eeeceecccceccocnncs e e 11-23

11.8 Errors coeeecescsns cesececessseeesccence e ceeeseccsesanns 11-24

11.9 Examples....cc.c. ceesces e 11-26

Appendix A MPX-32Device ACCeSS . ¢ e ccovossoscssscsscssssesonnsos A-1

Appendix B System Services Cross Reference Charts creeas cseess B-l

Appendix C MPX-32 Abort and Crash Codes. . . c « e s v ccsvnvsososcoasoscs C-1

Appendix D NumericalInformationc.ccccceteccsscccocacos eess D-1

Appendix E Powersof Integerscccecveeen cecsecscacscesasen E-1

Appendix F ASCI Interchange Code Set ceecesssescssensnne F-1

Appendix G IOPPanelCommandscccveeceene ceeessssecssans eoo G-l

GloSSary . cceeecescnccssssonsssses ceseesececsescsseesses o e eoo GL-1

INdeX .o oo vccccoesaooocsscesscscoosescsocsssssocoscssconsssscossss eoes IN-1

xii

Figure -

]
NN EFEWN -

W N -

#f##
£ WN -

ILLUSTRATIONS

Title Page

CatalogingaLoad Module . .. ccceeeeeveeeccecccsccscessanss 2=2
/O OVerview . et v vceeeeecoscconascssnssssoscssnsosacscoaocs 2=11
Simple Overlay Structure ..c...cceeeceocecoscsscccossccccess 2-23
More Complex Overlay Structure. .. eceeeeessosecccscacssssse 2=24
Default Memory Allocation for Overlays «cecceeeecececsccecensss 2-25
Modified Memory Allocation for Overlays .cecceeeeccccccsscces 2=27
Recataloging Illustration. c e e e et ceveeseeesccecscccecsscsees 2-33

DatBPOOlEditOl‘InpUtDataFormat ® ® 0 0600 00 00 0000000 00800000 3"5
Datapool Dictionary Entry Format...ccceccecccococcccscncess 3-6
Datapool Editor Audit Trail Format.....cceeeeescecccceccecss 3-16

DEBUG Memory Map cceeeecececscscossccssassssssnsssssssssos U=6
DEBUG Base Names « e cccceceeccccscscscscsosscssnscscssssnso 4=-18
DEBUG Command Address Restrictions « c e cceoeeceecccceccceess 4=22
Nested Trap ListS e e e cesoseccscoccosscsoscsccscnnssssssesss 425

File-tO-TapeTl‘anSferS..-................................ 6-8
Compressed Record Card Format «.cccceseceescssocssscccess 11-8
LibraryFormat (MagneticTape) ® 65 & © & © 0 2 8 O O 0O © 0 & O P O s e 0 0 e 00 11-9

HeaderRecordFormat.'..O....QI.I........'.l.....'.....ll-lo
Library End-of-Tape Format .. c v ceecevevcocssoncnsss ceecseasll-10

xiii

Table

xiv

TABLES

Title Page
Assembler File Assignmentscccceeeeereececcecsscsceness l-b
Cataloger File Assignments. .. ccceececcocccsscsscocscccssnses 2=-14
DPEDIT File Assignments . .« c e cecveteteeseecccssonssesssss 3-9
DEBUGPrOmPtsandLabels © © 6 060 © 0 % © 0 000 o0 00 OO PC OO O 00 C S O 0 O O 14-8
Debugger File Assignments . c e e cveceeccoscsccoscscssconsssancss U-12
Valid Use of EXpressions ¢« c e o s soeesosessssssssccoccsscsnsss 4=29
Instructions that Break @ Trace .. cceeeeeeceecccoscccnnsseses 459
File Manager File Assignmentscccceeeecencsnossncsocss b4
LIBED File Assignments .. cccceceececcsssscccosscncsnscocssss 83
MACLIBRFi[eASSigﬂmentS ® © 6 0606 06060 00 000 000000000000 0000 0 0 9"4

MED[AFileASSignmentS..--....‘.......................-.. 10-3
MEDIA Option DefinitionS. e e cveeeeescescccossssosecesncsesslO-14

UPDATE File Assignments .. .ccceeceetocscocsscasscssessess ll-4

~

Documentation Conventions

Notation conventions used in command syntax and message examples throughout this
manual are described below.
lowercase letters

In command syntax, lowercase letters identify a generic element that must be replaced
with a value. For example,

'ACTIVATE taskname

means replace taskname with the name of a task, e.g.,
'ACTIVATE DOCCONYV

In messages, lowercase letters identify a variable element. For example,
#**BREAK** ON:taskname

means a break occurred on the specified task.

UPPERCASE LETTERS

In command syntax, uppercase letters specify a keyword must be entered as shown for
input, and will be printed as shown in output. For example,

SAVE filename

means enter SAVE followed by a filename, e.g.,
SAVE DOCCONYV

In messages, uppercase letters specify status or information. For example,
taskname, taskno ABORTF_D

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT

Braces { }

Elements placed one under the other inside-braces specify a required choice. You must
enter one of the arguments from the specified group. For example,

counter
startbyte

means enter the value for either counter or startbyte.

Xv

-

Brackets [

-

An element inside brackets is optional. For example,

[CURR

means the term CURR is optional.

Items placed one under the other within brackets specify you may optionally enter one of
the group of options or none at all. For example,

base name |
progname
means enter the base name or the program name or neither.

Items in brackets within encompassing brackets specify one item is required only when
the other item is used. For example,

TRACE [lower address [upper address]]
means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address must also be
used.
Commas between multiple brackets within an encompassing set of brackets are semi-

optional; that is, they are not required unless subsequent elements are selected. For
example,

M.DFCB feb,lfc, 2], b] » [¢], (4], [e]]
could be coded as
M.DFCB FCBI2,IN
or
M.DFCB FCB12,IN,,ERRAD
or

M.DFCB FCB13,0UT,,ERAD,,PCK

Horizontal Ellipsis ...
The horizontal ellipsis indicates the previous element may be repeated. For example,
name ,...,name

means you may enter one or more name values separated by commas.

xvi

Vertical Ellipsis :

The vertical ellipsis specifies commands, parameters, or instructions have been
omitted. For example,

COLLECT 1

LIST
means one or more commands have been omitted between the COLLECT and LIST
commands. -
Numbers and Special Characters

In a syntax statement, any number, symbol, or special character must be entered as
shown. For example,

(value)

means enter the proper value enclosed in parentheses; e.g., (234).

Underscore

In syntax statements, underscoring specifies the letters, numbers or characters that may
be typed by the user as an abbreviation. For example,

ACTIVATE taskname

means spell out the command verb ACTIVATE or abbreviate it to ACTL
RESET

means type either RESET or RST.

In examples, all terminal input is underscored; terminal output is not. For example,
TSM > EDIT

means TSM was written to the terminal; EDIT is typed by the user.

Subscript Delta
scrip A

A subscript delta specifies a required space. For example,

EDT >STO ITSSPGM

means a space is required between O and T.

xvii/xviii

1. THE ASSEMBLER (ASSEMBLE)

The Macro Assembler (or Assembler) translates source code mnemonics into binary-
equivalent machine instructions for the 32/7x CPU and interprets Assembler directives.
Assembler directives provide the ability to use symbolic addresses and storage areas,
equate symbols, define references to external object modules, control listed output
characteristics, etc.

Within source provided to the Assembler, the user can access system services. This is
done either by setting up appropriate registers and using SVC or CALM instructions,
and/or using macro calls which are expanded into assembly-level code by the Assembler.

The Assembler uses the MPX-32 System Macro Library (M.MPXMAC) for MPX-32 SVC-
related services by default. The RTM System Macro Library (M.MACLIB) can also be
assigned for assembly to access RTM CALM equivalent services.

On a CONCEPT/32 computer, a new SVC type 15 replaces CALM instructions. During
reassembly of a program, the Assembler automatically converts CALM instructions to
their equivalent SVC 15,X'nn' number if OPTION 20 is set.

Also, an address exception trap will be generated when a doubleword operation code is
used with an incorrectly bounded operand; therefore coding changes will be required
when a trap occurs.

1.1 General Description

In developing Assembly language source code, four separate, non-MPX-32 documents are
key:

o The Macro Assembler Reference Manual, publication number 323-001220,
which documents Assembler directives.

o The SYSTEMS 32/70 Computer Reference Manual, publication number
301-000140, which documents the SYSTEMS 32/70 CPU instruction set
and mnemonics.

o The SYSTEMS 32/27 Single Slot Central Processing Unit, publication
number 301-000400, which documents the SYSTEMS 32/27 CPU
instruction set and mnemonics.

o The CONCEPT 32/87 Reference Manual, publication number 301-000810,
which documents the SYSTEMS 32/87 CPU instruction set and mnemonics.

After a successful assembly, the user has an object module which can be output to a
subroutine library file, output to a permanent file or device medium, or cataloged
immediately into a task suitable for execution on MPX-32. Object modules can be linked
together into a single task by assembling and cataloging them in the same job (an SGO
file is the default output for assembly and default input for the Cataloger), by accessing
the Subroutine Library during a separate Cataloger run, or by using $SELECT job control
statements prior to cataloging (batch only).

1-1

The Assembler dynamically establishes both a macro storage table and a symbol table in
memory before it starts assembly. As a default option, all available memory is allocated
for the symbol table and zero for the macro storage table. The ratio of available space
allocated for macro storage can be changed. From 0 to 80 percent of available memory
can be allocated to macro storage. The percentage is specified with an OPTION
statement as described in Section 1.3,

1.2 Files and File Assignments

This section describes the input and output files used by the Assembler.
1.2.1 Source Code (PRE and SI)

Source code is assigned to logical file codes (Ifc's) PRE and SI. Source is input first from
PRE and then from SI. User program source should be assigned to SI while source
consisting of non-executable assembler directives (such as SET directives) can be
assigned to PRE. The user can input source code from any device or file. The default
assignment for Sl is to SYC and for PRE is to NU (the null device).

1.2.2 Macro Libraries (MAC, MA2)

The System Macro Library provides a collection of macro definitions which can be used
by source programs. The user can add macros to the system library or create his own
macro library using the macro library Editor (MACLIBR) as described in Chapter 9 of this
volume. Rules and conventions for using macros residing in a macro library are the same
as for macros defined and used only within one program, and are described in the Macro
Assembler Reference Manual. In general, a macro is accessed in a source program by
using its name in the opcode/instruction field of a source statement and supplying any
required or optional parameters in the operand field.

The System Macro Library, M\(MPXMAC, is assigned by default for assembly to lfc
MAC. A different macro library (e.g., M\MACLIB for RTM-compatible macros) can be
assigned to MAC if desired.

The Assembler also supports another macro library, MA2. This library is searched by the
Assembler for every name found in the opcode/instruction field. It is searched before
the permanent symbol table and may be useful to override an existing opcode or
Assembler directive.

1.2.3 Listing (LO)

The Assembler produces a listing that pairs hexadecimal representation of object code
with the corresponding source statements. The listing lfc is LO. An SLO file is assigned
to LO by default. Listings are further described in the Macro Assembler Reference
Manual.

1-2

1.2.4 Object Code (BO and GO)

Object code is output on the file or device assigned to lfc BO as well as to lfc GO. The
default assignment for BO is to a system SBO file which is output to the system device
defined as POD at SYSGEN or via the OPCOM SYSASSIGN command. The default
assignment for lfc GO is to an SGO file. Other utilities such as LIBED and CATALOG
will access an SGO file for the job automatically; however, SGO is temporary and will be
lost if not used in the same job.

1.2.5 Compressed Source (CS)

The Assembler will optionally accept source program input or produce source output in
compressed format. To output compressed source, assign a file or device to lfc CS.
Compressed source as input is specified by assigning the name of the file or device to lfc
SI.

If both BO and CS are assigned to SBO files, the binary output is output prior to the
compressed source output.

1.2.6 Temporary Files (UT1, UT2)

UT! is a temporary file used to hold the source text for processing on pass 2 of the
Assembler. On pass 1, the Assembler writes the source text, along with the expanded
macro text, to UT] and on pass 2 reads UTI.

UT2 is a temporary file used for the cross reference and symbol table during the
assembly.

1-3

t-1

Table 1-1
Assembler File Assignments

Previous
Ihput/Output Logical Assignments Processor How Specified
Description File Code for Assembly Assignment for Assembly Comment
Source Code FRE Default: Permanent file bulit ASSIGN statements If the user specifies
ASSIGN1 using EDIT or MEDIA an assignment to PRE,
PRE=MPXPRE source is read from PRE
until an EOF Is reached,
Optionss then source is read from SI.
ASSIGNn
_ [ilename
PRE- devmnc
S1 Default: Work file built using EDT>BATCH
ASSIGN2 EDIT.
Si=SYC Permanent flie buiilt EDT > BATCH jobfile For further description
using EDIT or MEDIA or see "Accessing the
Assembler”
” ,<devmnc
Cards 77"BATCH {F),)obﬂle }
Other device medium Same route shown for The file or device can
e.g., magnetic tape, cards. contain compressed source.
where file was copied
from cards of a file
via MEDIA, ®
interactively. See
*Accessing the Assembler”
Options: ’ SSELECT can only be used
ASSIGNn In batch.
filename
St= devmnc }
or
$SELECT
Macro Library MAC Defaults Macro libraries are Accessed automatically MACLIB contains
ASSIGNI maintained or created for macro calls RTM - compatible macros.
MAC = M.MPXMAC,,U via the MACLIBR included in the source RTMMAC contains RTM macros
utllity, code. for use with the RTM
Options: Catologer (see Section 2.10).
ASSIGNI
.MACLIB,,U
MAC={userlib,,U
.RTMMAC,,U
- MA2 'None .
o f{ N

s-1

Table 1-1 (Cont'd)
Assembler File Assignments

Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Assembly Assignment for Assembly Comment
Binary Object BO and GO Defaults: If a user file is ASSIGN statements, if an SBO file fills up,
Code ASSIGN2 .assigned to BO or the Assembler automatically
BO = SBO GO, it must be allocates an additional 8%
GO = SGO pre-established via sectors (500 cards). If
the FILEMGR utility. other than SBO, the utility
aborts, SBO output (the
Options: default assignment for lfc
ASSIGNn BO) is routed to the
BO= ({ﬁlename} device specified as the
~ ldevnmc Punched Output Device
(POD) during SYSGEN (see
ASSIGNn Volume 3) or reassigned
Go-[filename via the OPCOM SYSASSIGN
devhmc command. (See Volume 1,

Section 4.)

SGO output is routed to

a temp file accumulated fog
a job so that the object
code can be accessed by
utilities such as LIBED

and the Cataloger.

Thus, to enter the object
module(s) directly in a
library, run LIBED. To
catalog the object
module(s), immediately
run the Cataloger.

Note that if you want to
retain output and you are
not going to catalog or
enter the object module(s)
into a library during the
same job, make a permanent
copy on the file or device
assigned either to BO or
GO.

Table 1- {(Cont'd)
Assembler File Assignments

Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Assembly Assignment for Assembly Comment
Compressed Cs No default. Output is generated in
Output ASSIGNn compressed form. See
CS- [filename the Macro Assembler
devamc Reference Manual.
Listed Output- Lo Default: N/A It an SLO file fills up
Source, Object, LO = SLO (comes to EOF) the
errors, if any. Assembler allocates an
Options: extra 2000 lines. i the
allocation fails or if
LO: {filename LO is assigned to other
vamc than SLO, the Assembler
aborts in this situation.
Temporary uTl ASSIGN) Temporary file for
Source UTI=DC,100 source text on pass 2.
Temporary uT2 ASSIGN)
Source Table UT2:=DC,200,U

1.3 Options

The options used by the Assembler include control options and macro percentage
options. The default output control options are a listing, an object file, and a cross-
reference. The additional options are the compressed source output and the object
output to an SGO file. The macro percentage option is defaulted to 0 percent. Options
10-18 inclusive indicate a percentage of from 0-80. If more than one percentage is
specified, the lowest percentage is used.

Option Description

1 No listed Output (Source Listing)

2 No Punched Output (Binary Object)

3 List Internally Generated Symbols with Cross Reference

4 No Symbol Cross-Reference

5 Binary Output Directed to SGO File

7 Compressed Source Output

8 SI Not Blocked

9 LO, BO, and CS Not Blocked

10 Allot 0 Percent to Macro Storage

Il Allot 10 Percent to Macro Storage

12 Allot 20 Percent to Macro Storage

13 Allot 30 Percent to Macro Storage

14 Allot 40 Percent to Macro Storage

15 Allot 50 Percent to Macro Storage

16 Allot 60 Percent to Macro Storage

17 Allot 70 Percent to Macro Storage

18 Allot 80 Percent to Macro Storage

19 Outputs Symbolic Information to the Cataloger for use by the
Symbolic Debugger

20 Generates Replacement 15,X'nn' Instructions for Call Monitor
Instructions

1.4 Accessing the Assembler

To access the Assembler as part of a batch job, create a job file using the EDITOR,
punch cards, or other media. The job file can be read to SYC and the job activated in
several ways: '
from the OPCOM console:

" <Attention>"

??BATCH F,jobfile
D,devmnc

from the OPCOM program:
TSM>OPCOM

??BATCH | F,jobfile
D,devmnc

from the EDITOR:
TSM>EDIT

3

EDT>BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate the Assembler and run online, use the TSM ASSIGN commands to make
Assembler assignments equivalent to those preceding the EXECUTE ASSEMBLE
command on a jobfile, then proceed to issue Assembler directives. (SELECT and
OBJECT statements are not available when running the Assembler online.)

TSM>ASSEMBLE
ASS>
At the Assembler prompt, enter Assembler directives and source code.

1.5 Assembler Directives

See the Macro Assembler Reference Manual.

1-8

=

1.6 Listings

The Assembler produces a listing of source code, object code equivalents, symbol cross
references, and error diagnostics.

Typical Assembler output is shown and described in Chapter 7 of the Macro Assembler
Reference Manual.

1.7 Errors and Aborts

Errors are detected during both passes of Assembler processing. They are described in
Appendix H of the Macro Assembler Reference Manual. Abort codes are described in
Appendix C of this volume.

1.7.1 Aborts

When LO is assigned to an SLO file and end-of-file is detected, an additional allocation
of 2000 lines will be attempted. If the attempt is unsuccessful or if LO is not assigned to
an SLO file, the assembly will be aborted with abort code AS03.

When BO is assigned to an SBO file and end-of-file is detected, an additional allocation
of 500 cards (84 sectors) will be attempted. If the attempt is unsuccessful or BO is not
assigned to an SBO file, the assembly will be aborted with abort code AS02.

A macro library is not required by the Assembler, but if one is provided, it must be in the
proper format if an attempt is made to read it. If the format is invalid, the assembly is
aborted. If a macro prototype from a macro library exceeds the remaining size of the
macro storage table, the following message is printed on the listing just preceding the
macro call, and the macro call is flagged by the Assembler:

THE FOLLOWING MACRO CAUSED A TABLE OVERFLOW
In some cases, a cross-reference is not generated because there is not enough memory
available to sort the cross-reference information. If this occurs, the following message
will be printed on LO:

XREF COULD NOT BE PERFORMED

There is not enough memory to store required macros and the symbol table. See Sections
1.1 and 1.3.

If the number of symbols in a program exceeds the maximum number of symbols that the
symbol table can hold, the following message is printed on the file or device assigned to
LO:

SYMBOL TABLE OVERFLOW

1-9

If the macro table size is exceeded due to too many bytes of in-line macros, in-line
FORM skeletons, repeated code, or macro-call argument data, the following message is

printed on the file or device assigned to LO:

MACRO TABLE OVERFLOW

1.3 Examples

Example | - In the sequence, the user assembles source code from a file name SJ.MEDIA,
outputs object code to a file name OJ.MEDIA, then catalogs the object into a load
module file named MEDIA. SLO output for the job is directed to a file named MOUT.

$JOB SJ.MEDIA OWNER SLOF=MOUT

SOPTION 17
SALLOCATE 16000

$ASSIGN3 UT1=DC,400
$ASSIGN3 UT2=DC,800,U
$ASSIGN! MAC=M.MACLIB,,U
$A1 BO=OI.MEDIA

$Al SI=SJ.MEDIA

SEXECUTE ASSEMBLE

$§Al SGO=0O1.MEDIA

SEXECUTE CATALOG
-FILES 64

BUFFERS 16
ENVIRONMENT MULTICOPY
ASSIGN2 *IN=SYC

ASSIGN2 *OT=SL0,500
OPTION PROMPT

CATALOG MEDIA
$EQI
$$

(Allocates 70% of Assembler address
space for macros)

(Allocates 16,000 bytes beyond minimum
Assembler requirement)

(Temporary file for Assembly)

(Temporary file for Assembly)

(Uses RTM-compatible macro library)

(Object code is now assigned for
cataloging)

(Up to 64 files can be allocated
dynamically)

(Up to 16 buffers can be allocated
dynamically)

(More than one copy of MEDIA can be
active at the same time)

(Default assignment for MEDIA)

(Default assignment for MEDIA)

(Provides MED prompt automatically in
interactive environment. User does not
have to use the TSM OPTION PROMPT
command)

N

2. THE CATALOGER (CATALOG)

The Cataloger produces load modules that are ready to activate in one of three task
operating environments: real time, interactive, or batch.

2.1 General Description)
To produce the desired load module, the user creates a job stream of job control
commands and Cataloger directives. A careful distinction must be made between job
control commands for the job that executes the Cataloger, and directives which will
reside in the cataloged load module.

The Cataloger creates a load module which contains the transfer address of the task, a
Resource Requirement Summary Table, and relocation matrices, in addition to the
program code.

The load module resides in a permanent system file of the same name specified in the
CATALOG directive.

Assignment statements occurring between the SEXECUTE CATALOG command and the
CATALOG directive cause the Cataloger to create entries in the Resource Requirement
Summary Table (see the MPX-32 Technical Manual, Chapter 2) located in the load
module file (see the MPX-32 Technical Manual, Chapter 6). Directives and assignment
statements to the Cataloger are coded without the dollar sign ($). All directives must
begin in column one of their respective line.

A sample job stream follows:

$JOB TESTCAT DALE

SALLOCATE 28000 } Job Control Commands
SEXECUTE CATALOG

A2 INP=SYC

A2 OUT=SLO,100

ALLOCATE 18000 Directives which will be cataloged
OPTION PROMPT in load module TESTI!.

CATALOG TESTI

$EO7J

38

A simple load module is illustrated in Figure 2-1.

[AA

LOAD MODULE
INFORMATION
DEFINED
L
oQ
[=
)
o
N ASSEMBLER
= OR
COMPILER OBJECT
RUN MODULE
(EXECUTE
ASSEMBLE)

— CODE

s[npoy peo- ® 8uidojeie)

£v9028

11T/
- i
1111171117117111/3
111111111111/
/11111111111177//7

OBJECT

LOAD MODULE ON
DISC READY TO
ACTIVATE ON MPX-32

DEFAULT RESOURCE
REQUIREMENTS
DEFINED

RELOCATION
MATRIX

VR \

R

2.1.1 Load Module Information

The Cataloger ENVIRONMENT and CATALOG directives establish the following special
characteristics for a task:

Residency - a task defined as resident either remains in physical memory
unless it aborts (RTM-compatible) or remains resident until it exits or aborts
(MPX). In either case, it is not a candidate for swap to disc. Default is
nonresident, i.e., a task is swappable.

The task needs to execute in a special class of physical memory. E=requires
Class E memory; must execute within the first 128KW of memory. H=requires
high-speed memory; must execute in H or E. S=the task can execute in slow
memory or in any other class of memory_that is available; this is the default
definition.

Multicopying - the task can be active concurrently in several logical address
spaces. The entire task is copied to physical memory each time it is
activated.

Sectioned Sharing - the task can be active concurrently in several logical
address spaces. The CSECT area of the task is copled into physical memory
once and a new DSECT area is established in physical memory each time the
task is activated. DSECT areas are deallocated as sharers exit. CSECT
remains allocated until all sharers exit.

No Sharing - the task is unique. Only one copy of the load module can be
active in one logical address space at a time (the default).

Privilege - any task which accesses a privileged system service must be
cataloged as privileged in order for the service to be executed. A privileged
task is allowed to write into any area of memory in its logical address space,
including the system area, and to execute the 32/75 privileged instruction
set. Default is unprivileged.

Base Priority - the priority (1-64) at which the task is executed if activated in
a real time environment (by the OPCOM ACTIVATE or ESTABLISH command,

another task, a timer, or an interrupt). If activated via TSM or in the
batchstream, this priority will be overridden.

Unless defined otherwise with the ENVIRONMENT directive, a task is:
nonresident,
unique,

executable in any memory class available (S, H, or E).

2-3

If not specified with the CATALOG directive, the base priority of a task is 60 and its
status is unprivileged.

(For further description of multicopying and sharing, see Section 2.1.3.)
The information on residency, priority, etc., is output by the Cataloger at the beginning

of the main load module for a task so that it is available for the MPX-32 allocator and
execution scheduler immediately upon activation.

2-4

I

i

2.1.2 Resource Requirements

The resource requirements for a task include all files and devices used by the task:
default assignments
runtime assignments that override the defaults

runtime assxgnments for required or optlonal files or devices that do not have
default assignments

dynamic assignments

A task's default resource requirements, if any, are established by ASSIGN directives used
when the main load module is cataloged. Runtime resources (required, optlonal or
overriding) are established by the user with ASSIGN directives when the task is activated
(at runtime).

Another type of resource requirement is for files or devices that are allocated
dynamically by the task via M.ALOC service calls. See Volume 1, Chapter 7.

A prerequisite for any blocked 1/O used by a task is a blocking buffer, which the allocator
establishes in the Task Service Area (TSA). (Files on disc and magnetic tape are assumed
to be blocked unless you spec1fy otherwise when using an ASSIGN directive or M.ALOC
service call.) Files also require table entries in the TSA.

The Cataloger preserves resource information on the default files and devices used by a
task, including the number of blocking buffers and table entries that are required. At
activation, runtime-assigned files and devices are allocated as specified (overriding file
and device assignments are merged into the defaults), so that the appropriate memory is
allocated for table space and buffers. However, if files and/or devices are allocated
dynamically by the task, you must indicate the number of additional file table entries and
buffers required.

Cataloger FILES and BUFFERS directives are used to account for dynamic assignments.
The FILES directive specifies the number of files and devices allocated dynamically (and
thus the number of table entries to leave room for) and the BUFFERS directive specifies
the number of blocking buffers required for blocked files or device media accessed
dynamically.

Resource requirements for shared tasks require special treatment because several
concurrent sharers of the task can use varying runtime assignments that imply varying
allocation of blocking buffers and file space. FILES and BUFFERS directives for
cataloging shared tasks must reflect the maximum number of files and devices that can
be assigned: default (or override), required, optional, and dynamic. This information is
required by the Cataloger in order to ensure that the TSA (Task Service Area) for each
sharer is the same size and that the DSECT section of the shared task begins at the same
location in each sharer's logical address space.

2.1.3 Absolute Load Modules

The Cataloger provides the capability for a user to build an absolute load module. An
absolute load module requires no relocation by the loader thereby reducing the allocation
time for the task.

The ABSOLUTE directive instructs the Cataloger to resolve all relocatable addresses
relative to the base address supplied by the user in the directive. The user is responsible
for selecting a base address large enough to be beyond the TSA (task service area) for the
task. The TSA is allocated after the end of MPX-32 and varies in size based on the
number of files and buffers required in the task.

Tasks that are cataloged as absolute may require recataloging if the size of MPX-32
changes. If there is an overlap between MPX-32 or the task's TSA and the absolute task
itself, the task will be aborted during the loading phase.

2.1.4 Sectioned versus Nonsectioned Tasks

The Cataloger supports both sectioned and nonsectioned tasks. Nonsectioned tasks are
allocated in a contiguous area in a user's logical address space (in effect, they are
comprised of one large DSECT). You can catalog nonsectioned tasks as multicopied, and
they will be copied into physical memory to support multiple concurrent activations; or
nonsectioned tasks can be cataloged unique, so that only one activation - exit can occur
at a time. Nonsectioned tasks cannot, however, be shared in the sense that sectioned
tasks can be.

Sectioned tasks use Assembler CSECT and DSECT directives to define pure code and
data (CSECT) and impure data (user dependent) sections of the task. The Cataloger
merges all CSECT's into a write-protected allocation in upper memory and all DSECT's
into a writable allocation in lower memory just above the task's TSA (Task Service
Area). Sectioned tasks can take advantage of the CSECT/DSECT sectioning to write-
protect pure code and data, but the primary purpose of CSECT/DSECT is to support
sharing. If shared, the CSECT of the task is copied into memory once and only the
DSECT is recopied with subsequent activations.

A sectioned task can be defined as shared, multicopied, or unique via an ENVIRONMENT
directive. A nonsectioned task can be defined as multicopied or unique only. The default
for any task is unique as described previously.

Footnote: A task can be developed with CSECT and DSECT directives that are NOP'd
for assembly, so that if use or size increases to a point where it is more efficient to use
the 8KW or 2KW CSECT than to multicopy, the user can remove the NOP's from the task
and recatalog to have the Cataloger build the CSECT and DSECT areas. If using
CSECT/DSECT to protect pure code and data, the same memory allocation described for
sharing is made by the Cataloger.

2-6

B

There are facets of memory allocation that should be considered in implementing
CSECT/DSECT. The minimum allocation for a CSECT area is 8KW on a 32/7x and 2KW
on a CONCEPT/32; DSECT is allocated in a separate map block along with the TSA. This
means that the minimum space used for the task's DSECT is 8KW or 2KW, including TSA
size. This allocation is required by the 8KW map block granularity of the 32/7x or the
2KW map block granularity of the CONCEPT/32. If a task is less than 8KW or 2KW
total, and would thus require only one 8KW or 2KW DSECT, multicopying and
nonsectioning may allow more efficient use of memory.

2.1.5 Segmented versus Nonsegmented Tasks

Two types of load module can be part of one task. There is one main load module. The
name supplied with the CATALOG directive for this module is the name used to activate
the task, determine its status, etc. There can be any number of overlay load modules
associated with a task, each constructed with a separate CATALOG directive. The main
and overlay load modules reside in separate disc files and are linked to each other via
system service calls within the object code.

If a task is comprised of a main load module and overlay modules, it is segmented, or
overlayed. If it does not use overlays, it is "nonsegmented".

2.1.6 Object Modules and Load Modules

Each load module is composed of one or more assembled or compiled 'modules' of object
code. For purpose of this discussion, an object module is the product of assembling or
compiling 'n' lines of source code terminated by an END directive or equivalent, and the
source module is the source code that forms the object module.

Object modules are normally named. The object module that contains a starting address
for the task is defined as such by providing a transfer address that indicates where to
begin execution.

It is generated in the Assembler by providing the transfer address with an END
directive. If more than one object module has a transfer address, the Cataloger takes

the transfer address for the last object module cataloged as the transfer address for the
module,

Since an object module produced by an assembly or compilation is identical in format to
any other object module, source modules for a task can be written in different
languages. The object modules produced by assembly or compilation can be interspersed
when they are cataloged into a task.

Object modules are normally output to SGO by the Assembler or compiler. They can be
accessed automatically for cataloging or they can be routed to a file and incorporated in
a subroutine library. Object modules are retrieved by the Cataloger as described in
Section 2.1.7.

Note: The load module files created by CATALOG are the proper size and are file type
CA.

2-7

2.1.7 Password-Protected Load Modules

Read only (RO) password protection can be supplied for a load module file via the
Cataloger PASSWORD directive. Or RO password protection may be supplied for a load
module file by using the FILEMGR utility. If a load module file is RO protected, you
must use a Cataloger PASSWORD directive when you catalog or recatalog the load
module.

If a task uses overlay load modules, each module may have a unique password.

Password only (PO) protection should not be supplied for a load module file. The task
will not activate.

2.1.8 The Cataloging Process

The Cataloger makes two passes through SGO, the user library (if assigned), and the
system subroutine library. ,

2.1.8.1 First Pass

On the first pass, the Cataloger searches through the file or device assigned to SGO -
normally the temporary system file SGO. (See File Assignments.) It builds a table that
includes all REF's and DEF's found in SGO object modules. A REF is output by the
assembler or compiler when it encounters an EXT directive in the source. A DEF is
output by the assembler or compiler when it encounters a DEF directive in the source.

If the Cataloger finds a REF on SGO with no corresponding DEF, it goes to the user
library. It adds DEF's it finds that match the REF's on SGO. It also adds any REF's it
finds within the object modules that contain the DEF's it was looking for, to the REF's in
the table. If it finds a REF in the user library with no corresponding DEF, or cannot find
a SGO REF on the user library, it searches the system subroutine library. It adds DEF's
it finds there that match the list of REF's it has built. It adds any REF's it finds within
the object modules that contain the DEF's it was looking for, to the REF's in the table.

The Cataloger now has a table that contains the names of all DEF's and REF's that were
found in the order they were found (SGO, user library, system subroutine library).

2-8

2.1.8.2 Second Pass

The Cataloger retrieves an object module for the first occurrance of each DEF. (SGO,
user library, or system subroutine library.) It resolves all matching REF's to these
DEF's. If it has found two DEF's with the same name, it takes the first object module
that contains the DEF. (It notes duplicate DEF's on the listing output at the end of the
Cataloger run.) If any REF's cannot be resolved to DEF's, they are also noted on the
listing. Object modules are retrieved from the SGO in the order they are found.

2.1.8.3 Common References

The Cataloger follows the same procedure in the first pass for common block definitions
and references.

In the second pass, uninitialized common is allocated based on the largest area defined
for a given block. Initialized common is allocated based on the size required by the first
function code that initializes the block.

Note that this 'common' is not Global (GLOBALO0O-GLOBAL99) or DATAPOOL. Global
and DATAPOOL areas are allocated separately in memory. This is common allocated
within the task itself, e.g., within a FORTRAN BLOCKDATA subprogram and/or by
COMMON op codes in the source.

2.1.8.4 Included or Excluded Object Modules

The INCLUDE directive can be used to specify object modules from a library to include
in a load module, even though they are not referenced on SGO. These are added to the
first pass REF's in the table built by the Cataloger. There is also an EXCLUDE
directive, which specifies DEF's in a library to exclude, even though they are referenced
on SGO. These are kept on the table and honored by not adding references to them in the
first pass.

2.1.8.5 Selective Retrieval from SGO

The PROGRAM directive can be used to specify names of object modules to include from
SGO. Since if no PROGRAM (or PROGRAMX) directive is used, all object modules are
taken, this is a means of retrieving SGO object modules selectively for a load module.
PROGRAMX excludes all object modules on SGO from a load module.

2.1.8.6 Symbol Tables (SYMTAB's)

A symbol table is built for each load module that is cataloged. It is the table described
previously with all references as resolved from the second pass. The symbol table is used
if a segmented task is being cataloged. Any external references not resolved for one
load module can be resolved when all SYMTAB's are present. SYMTAB's must be saved
and restored when a segmented task is cataloged in stages.

Symbols in the symbol table include all external references, all global symbols, and all
program names.

2.1.9 Allocation and Use of Global Common and DATAPOOL Partitions

Global common partitions (GLOBAL00-GLOBAL99) named in the object modules are
resolved directly to memory locations in system common defined via SYSGEN or the
FILEMGR. How DATAPOOL is structured and resolved depends upon a DATAPOOL
dictionary that the user creates with the Datapool Editor utility (DPEDIT).

Labeled common blocks are identified as Global by the name "Global" and "Globaldd"
where dd is two decimal digits from 00 through 99. When a common block with one of
these names is encountered by the Cataloger, space is not allocated for it in the module's
area. Instead, all references to the common block are linked to the core partition of the
same name. Therefore, a Global common memory partition must be created before a
program that references it can be cataloged. If the definition of the partition changes,
the programs that reference it must be recataloged.

DATAPOOL references in an object module are included in the table of external
references built by the Cataloger and they are resolved to locations in the DATAPOOL
area of system common according to the DATAPOOL dictionary supplied by the user (see
File Assignments).

The memory allocation unit on the 32/7x is 8KW and on the CONCEPT/32 is 2KW (one
mapblock). Global and DATAPOOL are memory partitions which can be defined at
SYSGEN or dynamically via the File Manager. In the latter case (dynamically), partitions
must be allocated in 16 page (8KW or 2KW) increments. In SYSGEN, protection granule
allocation is possible, providing the means to define multiple partitions within a
mapblock; however the allocation unit for the task remains | mapblock. The unused
partitions in a mapblock are write protected and are not included in the task's logical
address space.

For further description of Global common and DATAPOOL, see Volume 1. See also the
DATAPOOL editor, Volume 2, Chapter 3.

2-10

‘,x

/4;.’;.7 @

2.2 Files and File Assignments

Figure 2-2 provides an overview of Cataloger input sources and output routes. The path
taken by default if no special assignments are made for cataloging is shown with
arrows. It should be noted that the assignments covered in this section are external to
the task being cataloged and apply only to the cataloging process itself. Default
assignments used by the task which is being cataloged (internal assignments) are made
via Cataloger ASSIGN directives within the task as described in Section 2.6.

JjoB OBJECT OBJECT SYSTEM USER DATAPOOL
FILE CODE CODE ON SUBROUTINE SUBROUTINE] | DICTIONARY]

ON SGO FILE/ LIBRARY L IBRARY
SYC DEVICE (MPXLIB)

|
CATALO{G

LOAD DUPLICATE/ PRINTER SYMBOL

MODULE SUBSTITUTE LISTING TABLE

ON DISC LOAD MODULE MAP AND FILE

ON CARDS ERRORS
820644

Figure 2-2. 1/O Overview

Job File - Contains Job Control Commands, including ASSIGN's, SELECT's, etc., and
Cataloger directives for the job. Cataloging can be one of several parts of a job
(including for example, compilation or assembly), or a single job using code stored on a
file, device, or library. For the required sequence of Cataloger directives, see USING
THE CATALOGER, Section 2.4. For sample job files used in cataloging, see Section 2.8.

The alternative routes for reading the file to SYC (interactive and batch) are described
in the File Assignment Table, Section 2.2.1, and Activation, Section 2.5.

Object Modules - The result of a compilation or assembly. Object modules can come
from SGO (same job as a compilation or assembly), from a permanent file or device
medium produced during a compilation or assembly, from a system library file (MPXLIB),
or from one or two user-built subroutine library file(s).

System Subroutine Library - A file named MPXLIB. If the SYSTEMS Scientific Runtime
Library has been purchased, it is delivered on magnetic tape and output to disc in the file
named MPXLIB. MPXLIB contains FORTRAN math subroutines and 1/O formatting
routines. These 'external' object modules can be accessed by object modules written in
various languages, including Assembler.

The user can add object modules (subroutines) to the Scientific Runtime Library or

modify the library via the LIBED utility program. The Cataloger searches MPXLIB by -

default (LIS=MPXLIB). (The directory for MPXLIB is on a file named MPXDIR.) The
user can develop a library of user object modules via LIBED and assign it instead of
MPXLIB. (See next description.)

User Subroutine Library - A library of subroutines or programs (object modules) built by
the user after compilation or assembly by using the LIBED utility. The user can create
as many subroutine libraries and associated directories as he needs. The number of these
libraries and directories that can be assigned and accessed during a particular CATALOG
session is controlled by a variable set when the CATALOG program was assembled. The
maximum number of user libraries available is six, therefore, the maximum number of
subroutine libraries and associated directories that can be accessed is seven, (six user
libraries and the system library). If assigned to Ifc LIS (and LID), a seventh user library
is searched instead of the library named MPXLIB. The lfcs for the user libraries are Lnn
(and Dnn), starting with LOl, etc. The subroutine libraries are searched in the Ifc order
LIB, LOl, LO2,...,,L05, and LIS. The library associated with lfc LIB (and DIR) has the
distinct characteristic of always being searched before the other user libraries (Lnn) and
the system subroutine libraries. This provides the capability of establishing an
installation-wide subroutine library as an extension to the system subroutine library.

Note: Users who have acquired the source for the CATALOG
program may wish to adjust the maximum number of user
libraries for their particular requirements. The equated
variable MAXULIB located at the beginning of the program
contains the specified number. The CATALOG program is
nominally distributed with a maximum of six user libraries.

Users who have a universal subroutine library may wish to
recatalog the CATALOG program to set the lfc LIB (and
DIR) to default to their subroutine library.

DATAPOOL Dictionary - A file built via the DPEDIT utility that contains names and
locations of DATAPOOL variables. Allows the Cataloger to find DATAPOOL locations
in common memory when DATAPOOL variable names are used in the task being
cataloged. More than one dictionary can be built with DPEDIT. It is up to the user to
assign the appropriate dictionary for his task when it is cataloged.

Load Module - A cataloged task that is ready for execution. The load module is normally
output to disc as a system file; however, output can be suppressed or directed to cards or
to a non-system file or device via Cataloger options. (See OPTIONS, Section 2.3.)

Printer Listing; Load Module Map and Errors - These are described in the LISTINGS
section. Can be suppressed. See OPTIONS.

Symbol Table (SYMTAB) - This is the mechanism for resolving external references. Used
when cataloging a task with overlays in separate Cataloger runs.

2-12

A N

2.2.1 File Assignments Chart

Table 2-1, columns 1-3, describes input files used by the Cataloger, their associated file
codes, if any, and default assignments, if any. Columns 4-6 relate the Cataloger input
files to previous use of other processors as applicable. Where it is feasible to override a
default assignment, or to supply more files than the defaults accommodate, columns 3-6
describe options. Output files are also included.

2-13

"1-¢

Table 2-1

Cataloger File Assignments

Default and How Built
Cataloger Optional (Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Cataloging Assignment) for Cataloging Comment
Input
Object SGO Default: In assembly or compilation, Cataloger uses the SGO Compilation or
modules from SGO=SGO default assignments for file associated with the Assembly:
compilation object modules are: job for object code by SGO output is temporary.
.or assembly ' default, See “device” If you want to retain
GO=SGO (temp file for job) for SBO. output and you are not
going to catalog or enter the
BO=SBO (temp file output to object module(s) into a
card punch) library during the same
job, make a permanent copy.
See options next.
To enter the object
module(s) directly in
a library, run LIBED.
Default input assignment is
from SGO (LGO=5GO).
Option: In assembly or compilation, Change SGO assignment,
SGO=filename change GO or BO assignment eg.
disc to a file, e.g., $ASSIGN] SGO=MYFILE
$ASSIGNI GO=MYFILE or
Use SSELECTF and $OBJECT, The object module(s)
e.g., from the file are read
SOBJECT onto the SYC file
SSELECTF MYFILE with the job (via
$SELECTF) and
automatically
transferred by job
control to SGO because
of the SOBIECT directive.
Option: Change Go assignment, e.g., Change or add assignment, The Cataloger accesses
SGO:=device ASSIGN3 GO:=MT €e.g.y the specified device
or $ASSIGN3 SGO=MT for object modules
Use default BO assignment to or
card punch. Use $SELECTD and SOBJECT,
° e.g., The object module(s)
SOBIECT from the device are
SSELECTD MT read onto the SYC file
and transferred to SGO
as in SELECTF above.
?i\ /f'/) \
H)

A

s1-¢

Table 2-1 (Cont'd)

Cataloger File Assignments

Default and How Built
Cataloger Optional (Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Cataloging Assignment) for Cataloging Comment
Obiject LIS LIS=MPXLIB @assword],U Via LIBED utility, where MPXLIB/MPXDIR is Object modules
modules from default output assign- searched automatically (subroutines) for MPXLIB
System ments for library object during Catalog, whether can come from
Subroutine modules are: another assignment to Math Subroutine
Library and LiB and DIR is made or Library, optionally
Library LID LID=MPXDIR {)assword],U LIB=MPXLIB not. (See below.) with added user
Directory : DIR=MPXDIR object modules; or a
or user can create and

Option: user library as Original SUBLIB is option- name his own library
User Library described below. tionally contained on of object modules when
and related FORTRAN installation tape he used LIBED and assign
directory as Math Subroutine Library it.
Object Option: Via LIBED utility, where The specified user library
modules from Lon Lnn=user library, user supplies his own LIB and directory will be
user library LIB @assword],U and DIR output assign- searched during Cataloging
and related LIB:zuser library, ments. in addition to the library
directory. Dnn password],U and directory assigned to

DIR LIS and LID.
Dnn=user directory,
assword),U
DIR =user directory,
password],u

DATAPOOL DPD No default. If The DATAPOOL dictionary ASSIGNI1 DPD-=dictionary The name of the
variables DATAPOOL variables is built via the DPEDIT dictionary that
used in used in object utility, where the DPD when the main load module corresponds to
object modules, use: directive is used to is cataloged. variables referenced
modules assign a file for the in the cataloged task

DPD-=dictionary dictionary. A device is must be supplied in

not acceptable, the main load module
of the task.

Global N/A N/A Global common memory N/A The Cataloger

Common Areas

partitions are defined

via SYSGEN or the
FILEMGR, with internal
structure (position of

data within a common area)
defined entirely by the
user.

determines the
location of a GLOBAL
name and resolves
references to its
location in common
memory.

Table 2-1 (Cont'd)

N
)
o Cataloger File Assignments
Default and How Built
Cataloger Optional (Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Cataloging Assignment) for Cataloging Comment
Symbol Table N/A N/A Previous run of the Use the SYMTAB directive
as Input Cataloger. See below. and specify the symbol
table file with SELECT,
e.g.
SYMTAB
SSELECTF SYMFILE
Symbol Table SYM No default. By Cataloger. SYM assign- Use the SYM option of the
as Output ment must be made before CATALOG directive and
SYM = }filename using SYM option to build assign a file or device
devmnc table. to SYM, e.g.,
ASSIGNI SYM=SYMFILE
Job File SYC SYC:SYC Work file built using EDITOR>BATCH
EDITOR, —
EDITOR>BATCH jobfile For further
Permanent file built description see
using EDIT or MEDIA. or "Accessing the
Cataloger”.
Cards. 2 D,devmnc
'w {F.ioblile }
Other device medium e.g.,
magnetic tape, where job- Same route shown for
file was copied from cards.
cards or a file via
MEDIA.
Interactively. See
"Accessing the Cataloger”.
Temporary #5Y ASSIGN3 #5Y=DC,200 Internal tile for ASSIGN) #5Y=DC,200 Used to generate Symbolic
Symbolic . Cataloger Debug information during
Debug File load module construction
A £ E

L1-¢C

S

Table 2-1 (Cont'd)

Cataloger File Assignments

Default and How Built
Cataloger Optional (Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for Cataloging Assignment) for Cataloging Comment
Output
Load Module N/A N/A By Cataloger. Can be main In CATALOG directive, Output to a file can
File load module, or in seg- user specifies name of be suppressed by the
mented task, an overlay the load module. This is NOP option on the
load module. also the name of the file CATALOG directive.
on which the Cataloger
builds the load module.
Duplicate or SBM Default of SBM=CP is By Cataloger. By using the CAR option For duplicate or
Substitute specified via the on the CATALOG command. substitute output,
Load Module CAR option on the Card output can be CAR option must be
1 cala CATALOG directive. redirected to a file or used.
Format device other than the
Option: card punch by assigning
a different device to
Assign a file or the lfc SBM, e.g.,
device to SBM, e.g.,
SBM-=filename ASSIGN1 SBM-=filename
Listing: SLO SLO=SLO, 100 By Cataloger. Outputs a Default output is to 100
Module Map map which outlines struc- record SLO file, which is
and Errors ture of load module and output to the device

Option:

ASSIGN1 SLO-=filename
ASSIGN3 SLO=devmnc

defines number of records
and errors, if any. For
further description, see
Listings and Errors
sections,

assigned as system LOD.
Output can be redirected
to a file or device via
ASSIGNI or ASSIGN3
SLO-=statement.

Output of the module map
can be suppressed by
using the NOP option on
The CATALOG directive.

2.3 Options

OPTION 1 is used by the Cataloger to suppress the automatic subroutine library
search for external references. Therefore, all necessary object
modules must be explicitly specified via INCLUDE directives.

OPTION 19 is used by the Cataloger to include symbolic debug information which
is placed at the end of the load module (Note - this does not affect
memory requirements, it only increases disc usage).

Other options for cataloging a load module are specified as parameters of the CATALOG
directive. Their directives are:

NOM suppress printing the load module map.

NOP suppress load module output to the permanent system file
named in the CATALOG command.

CAR output the load module in punch card format to the file or
device specified by the logical file code SBM. The file will
be blocked. No EOF's are written until the end of the load
module.

Options for the task being cataloged can be specified with the OPTION directive (see
Section 2.6.16).

2.4 Using the Cataloger

This discussion is broken into two major areas, one which describes cataloging concerns
pertaining to a nonsegmented task (one load module, no overlays) and a second major
area that describes the more complex concerns when a task is segmented.

2.4.1 Cataloging a Nonsegmented Task

For a description of how the Cataloger resolves external references and allocates
common blocks, see Section 2.1.8.

2.4.1.1 Job Organization

The following organization of Cataloger and job control directives reflects all possible
directives pertaining to a nonsegmented task. It flags directives that are optional by
enclosing them in brackets. For detail descriptions, see individual commands in Section

e Ve

2-18

The only Cataloger directive that is not optional is CATALOG. Directives shown
between SEXECUTE CATALOG and CATALOG can be in any order, but they must
precede the CATALOG directive for the main load module. EXCLUDE and/or INCLUDE
should precede a PROGRAM or PROGRAMX directive.

Directives in

Appropriate
Order Function
[SASSIGNn] Supply override, optional, or additional assignments for
cataloging. (See File Assignments Chart.)
SOBJECT Can be used to get SOBJECT modules from a permanent.file

$SELECTF filename
SSELECTD devmnc

SEXECUTE CATALOG

ALLOCATE
ABSOLUTE

PASSWORD

USERNAME

FILES
BUFFERS

ASSIGNn

ENVIRONMENT

OPTION

or from a device medium. Use only if creating a job file to
run in batch. If interactive, use INCLUDE for this function.

Activates the Cataloger. Required.

Allocates additional memory for task at run time.

Specifies an absolute origin for the DSECT.

Required to establish or confirm password protection for the
load module file to be cataloged.

Required to establish that files used in default and dynamic
assignments for the task being cataloged are located in a
particular user directory, i.e., that they are not system
files.

Specifies number of dynamically assigned files and blocked
files or devices used by the task. (See Section 2.1.2.)

Supplies default assignments for task being cataloged.

Defines task residency, sharability, multicopy, map size, or
special memory class for task.

Specifies default options for task (0-31).

2-19

CATALOG loadmod ([privilege] [priority] [options]

[(EXCLUDE]
[INCLUDE]

PROGRAM]
ROGRAMX

2-20

Supplies load module name. This is the name of both the
task and the file on which the load module is output by the
cataloger. Specifies if the task is privileged or not, and
establishes its base priority (1-64). Can also establish
output options.

Used for special treatment of object modules on user library
and system Subroutine library. INCLUDE must be used if
PROGRAMX is used. See command descriptions.

Used for selective retrieval of object modules from SGO or
to bypass SGO completely.

2.4.1.2 Recataloging the Load Module

When a load module is recataloged and the cataloging process is successful, the old file is
deleted, and a new file is created with the same name, on the same disc as the old file.

2.4.2 Cataloging a Segmented Task

Overlays provide a means of segmenting tasks for more efficient memory utilization.
When it is impractical to have a large task in memory in its entirety, the task can be
divided into a main load module and one or more overlay load modules. A segmented (or
overlayed) task is brought into execution by activating the main load module.

The programmer must allocate sufficient space for the worst case memory utilization of
the overlays in his program when cataloging the main load module. This is done by
summing the memory requirements for the largest overlay at each level and issuing an
ALLOCATE directive for the proper amount.

2.4.2.1 Job Organization

The main load module in a segmented task is organized similarly to a nonsegmented task,
with the exception that if a symbol table (SYMTAB) is required, a SYMTAB directive
followed by SSELECT is used to retrieve it. A CATALOG directive is used for each
overlay load module that is cataloged. The order of the CATALOG directives is
significant. The CATALOG directive for the main load module must appear first. Low
level overlay load modules are cataloged immediately after the main load module and all
overiay load modules of a particular level are cataloged sequentially. The association of
an overlay load module at one level with an overlay load module at a lower level is
established by using the LINKBACK directive. These technicalities are described in
more detail in subsequent sections.

2-21

Directives in

Appropriate
Order Function
SOBJECT Can be used to get object modules from a permanent file or

{$SELECT filename }
$SELECTD devmnc

[SEXECUTE CATALOG]

(PASSWORD]
(ORIGIN]

[LORIGIN]
CATALOG loadmod O

[LINKBACK]

[FXCLUDE]
(INCLUDE]

[PROGRAM
PROGRAMX

2-22

from a device medium to SGO. Use only if creating a job
file to run in batch. If interactive, use INCLUDE for this
function. Use here only if cataloging an overlay load
module in a separate Cataloger job.

Activates the Cataloger. Required only if cataloging an
overlay load module in a separate Cataloger job.

Required to establish or confirm password protection for the
overlay load module file named with the following
CATALOG directive.

Establishes a new overlay origin for all load modules which
follow up to next ORIGIN or LORIGIN directive. Does not
establish new overlay level.

Establishes new overlay level for all load modules which
follow up to the next LORIGIN directive. Not required for
lowest overlay level.

Supplies load module name. This is the name of the file on
which the overlay load module is output by the Cataloger.
If it follows main module;, it is taken as a low level
overlay. All subsequent modules up to LORIGIN directive
are at same level.

Specifies associated overlay load module at lower level.

Used for special treatment of object modules on user library
and system subroutine library. INCLUDE must be used if
PROGRAMX is used. See command descriptions.

Used for selective retrieval of object modules from SGO or
to bypass SGO completely.

o

2.4.2.2 Overlay Levels

Overlay load modules are accessed by the main load module and access each other via
system service calls. An overlay level consists of one or more overlay load modules that
do not reference each other internally and can thus be loaded into the same logical
memory locations within the task.

Low level overlays usually represent the overlays a main load module calls in after it is
loaded. Higher level overlays which follow are associated with one of the lower level
overlays.

The simplest overlay structure consists of a single overlay level. In this case, the overlay
modules share a single transient area. Each overlay, as it is accessed via a system
service such as M.OLAY replaces the previous overlay in memory.

Al A2 A3

820645

Figure 2-3. Simple Overlay Structure

2-23

An example of the logical structure of a task with more overlays and overlay levels is
presented in Figure 2-4. This task consists of a main load module and seven overlay load
modules. The overlay load modules are grouped into two levels: A and B. Level A
overlays are low level. Level B overlays are higher level.

MAIN.

B3 B4 B5

Bl 32

820646

Figure 2-4. More Complex Overlay Structure

2-24

A

HIGH

Low

A
1, VI
VI,
Bg B, | B3 | B 8,
LY,
F;////////////////////////A
A2 A1

MAIN LOAD MODULE

TSA

(L

UPPER BOUND

LEVEL B ORIGIN

LEVEL A ORIGIN

UPPER BOUND

UNUSED SPACE

820650

Figure 2-5. Default Memory Allocation for Overlays

2-25

The Cataloger ORIGIN (or LORIGIN) directives can bhe used to modify the overlay
structure described previously. For example, a different origin can be set up for higher
level load modules associated with A2 (R3, R4, and BR5), so that space not being used when
A2 is in memory can be used. The total program memory requirements are thus reduced
and the programmer can lower the allocation amount in cataloging the main module.
Figure 2-6 illustrates how the overlay area is modified.

2-26

N
)
/

L2

"9-2 34nbiy

SAR|43A(Q 404 UOLIRIO| Y AJOW3 PaLsLpoW

LG90Z8

A’
HIGH MEMORY 1111177777] Y////7 /
A }e—UPPER BOUND
I Y/////1 I IS NOW MOVED DOWN
Bg B | 85| 8 B,
LEVEL B ORIGIN
:;)D;;':S FOR LEVEL B DEFAULT ORIGIN
USING ORIGIN ESTABLISHED BY USE OF
LORIGIN DIRECTIVE, FOR
DIRECTIVE LORIG
A2 Ay
«— LEVEL A ORIGIN
MAIN LOAD
MODULE
TSA
LOW MEMORY

2.4.23 The Overlay Transient Area W

If the programmer wants his overlays to be in low memory, he can use the overlay
transient area by specifying TRA=xxx on the BUILD or CATALOG directive. He must
then use the ORIGIN and LORIGIN directives to set the origins for his overlays.

/'.;;{Q;\

2-28

2.4.2.4 Resolution of External References in Segmented Tasks

This section is based on the description of the cataloging process in Section 2.1.8. The
resolution of DEF's, REF's, and COMMON definitions and references in a task with
overlays is basically the same as described in that section, with several additions to the
order in which the table is constructed in the first pass. The order of search for external
references in segmented tasks is described below. For the main load module:

restored SYMTAB's, if any

other object modules in the main load module, if any

user library, if any (unless suppressed via SOPTION 1)

the system subroutine library (unless suppressed via SOPTION 1)

overlay load modules, beginning at the lowest level
If the external reference is contained in an overlay load module:

restored SYMTAB's

main load module

lower level overlay load modules associated with the current overlay, via a
LINKBACK directive, beginning at the lowest level

other object modules within the current overlay load module

user library, if any (unless suppressed via SOPTION 1)

system subroutine library (unless suppressed via SOPTION 1)

object modules in higher level overlay load modules associated with the

current overlay load module

Space for common blocks defined in the main load module is allocated with the main load
module. The amount of space for each uninitialized block is the largest amount required
in any load module that references it (main or overlay).

If a common block is defined outside the main load module, space for it is allocated with
the lowest level overlay load module that defines it.

2-29

If a common block is defined in two overlay modules at the same level, space for it is
allocated in both overlay load modules and references to it in higher level overlays are
resolved to one load module or the other, as applicable.

If a common block is initialized with data, the size of the block is determined by the first
occurrance of a definition that initializes the data, regardless of whether the same block
is initialized with a larger value in any subsequent object modules or load modules. An
overlay load module cannot initialize a common block that is defined in the main load
module or an associated overlay load module. The overlay load module is only allowed to
initialize common blocks it defines.

2-30

i,

2.4.2.5 Cataloging a Segmented Task in Stages

The main load module can be cataloged in one session, with or without overlay load
modules. Overlay modules can be cataloged in subsequent sessions. If the transient area
size is not declared on the CATALOG directive for the main load module, a transient
area is reserved by the Cataloger that is large enough to accommodate any overlay
modules that are cataloged in the same run as the main load module. If overlay modules
cataloged separately from the main load module require more space, an adequate
transient area size must be specified when the main load module is cataloged.

The mechanism used to resolve external references when load modules are cataloged in
separate stages is the SYMTAB. The SYMTAB contains the definitions of all common
blocks and all DEF's from the previous cataloging session. All REF's must be resolved
when the SYMTAB is built. SYMTARB's created during the current session can be added to
the SYMTAB file, if desired, so that SYMTAB's can be restored in subsequent runs.

SYMTAB's are saved by assigning a file or device to lfc SYM and specifying the SYM
option on the first load module being cataloged in the current session. They are restored
by using the SYMTAB directive followed by $SELECT, to retrieve the above file or
device.

Common blocks which are defined in cataloged load modules are not reallocated when
new load modules are cataloged. Common block sizes are not expanded as a result of
definitions contained in new load modules being cataloged.

References to Global Common and DATAPOOL are not affected, as these areas are
allocated in a separate area of memory from the task.

2-31

2.4.2.6 Recataloging with Overlays

Care is required in recataloging some load modules and not others. Load modules whose
sizes increase will end up with allocations that overlap the address spaces of load
modules that are not being recataloged. In addition, resolution of external references
and common blocks within the task can be affected.

Overlap can be detected by examining the addresses of each load module, which are
printed in the module's map (see Listings, Section 2.9). Overlap is indicated when an
overlay's end address is greater than the beginning address of a higher level overlay or is
greater than the beginning address of the main load module.

Changing the size of the transient area changes the location of the main module in
relation to the overlay modules. If the size of the transient area is changed, all
previously cataloged overlay modules that reference the main load module must be
recataloged.

When a load module is recataloged, the resolution of addresses for DEF's in object
modules and common blocks defined within the task may also change. As a result,
references to the object modules and common blocks by other load modules are incorrect
unless they are recataloged. Assume inter-module referencing for the task as illustrated
in Figure 2-7.

In the table at the bottom of Figure 2-7, if any load module(s) are recataloged, all other
load modules which correspond to X's in the vertical column beneath the load module
must also be recataloged, i.e., if the main load module is recataloged, Al and A2 must be
recataloged. If Al and A2 are recataloged, all load modules must be recataloged.

2-32

ﬁggi;:

MAIN

pE——
| |
A1 A2
CE——

B2 83 B4 BS

Hy
a

Load Moduie Referenced

Main Al [A2[B1]B2| B3] B4 | B5
Main X X

Al X x| x

A2 X x| x| x
81 X

82 X

B3 X

B4 X

8s X

820652

Figure 2-7. Recataloging Illustration

2-33

2.5 Accessing the Cataloger

To access the Cataloger as part of a batch job, create a job file using the EDITOR, punch
cards, or other media as described in Table 2-1. The job file can be read to SYC and the
job activated in several ways:

from the OPCOM console:

" < Attention>"

??BATCH |F,jobfile
'D,dev mnc)

from the OPCOM program:
TSM> OPCOM

??7BATCH | F,jobfile |
| Dydevmnc)

from the EDITOR:
TSM>EDIT

EDT >BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate the Cataloger and run on-line, use the TSM ASSIGN commands to make
Cataloger assignments equivalent to those preceding the EXECUTE CATALOG command
on a jobfile, then proceed to issue Cataloger directives. (SELECT and OBJECT
statements are not available when running the Cataloger on-line.)

TSM >CATALOG
CAT> CATALOG loadmod privilege priority options
CAT > etc.

If there are no Cataloger commands involved in the cataloging task other than
CATALOG, the command line and parameters shown entered above at the CAT prompt
can be issued directly at the TSM prompt.

2-34

2.6 Cataloger Directives

Cataloger directives are summarized below and described in detail on subsequent pages.

For recommended organization of Cataloger directives and job control statements see
Section 2.4.1.1 for a nonsegmented task and Section 2.4.2.1 for a segmented task.

Most Cataloger directives can be abbreviated to four characters. ASSIGN statements
following the CATALOG directive may be abbreviated to Al, A2, A3, or A4. PROGRAM
and PROGRAMX must be completely spelled out.

If a directive or parameter can be abbreviated, the abbreviation is indicated in syntax
statements by underlining.

Legal delimiters are commas and blanks. Commas need be used only where shown.

2-35

Directive

ABSOLUTE
ALLOCATE
ASSIGNL

ASSIGN2

ASSIGN3
ASSIGN4
BUFFERS

CATALOG
ENVIRONMENT

EXCLUDE

EXIT
FILES

2-36

~ assignments in non-shared tasks.

Function

Specifies an absolute origin for the DSECT.
Allocates additional memory for main load module.

Equates permanent disc files (optionally unblocked) with lfc's used
in task to be cataloged.

Equates system SBO, SLO, SYC, or SGO with Ifc used in task to
be cataloged.

Equates device (optionally unblocked) with lfc used in task to be
cataloged. Default for tapes and discs is blocked. Assigns a
temporary disc file and its size (see Appendix A). Option for
unblocking applies only to these units.

Equates lfc in task to be cataloged with existing lfc. Equates the
assignment for this lfc to existing lfc's device assignment.

Establishes number of blocking buffers required for dynamic
In a shared task, establishes
total number of blocking buffers required.

Identifies and describes the load module(s) to be cataloged.

Describes memory class, residency, map size, and sharing or
multicopying requirements of task.

Specifies global names in library object modules not to include in
load module even though referenced in object modules being
cataloged.

Terminates Cataloger directive input.

Establishes number of dynamic disc file assignments in non-shared
task. In a shared task, establishes total disc file assignments.

INCLUDE

LINKBACK

LORIGIN
OPTION
ORIGIN
PASSWORD
PROGRAM

PROGRAMX

SYMTAB

USERNAME

Specifies global names in library object modules to include in load
module being cataloged even though they are not referenced in
the object modules being cataloged on SGO.

Specifies overlay load modules at lower levels to link to the
current overlay load module.

Establishes new overlay origin and new overlay level.

Specifies default options for the cataloged load module.
Establishes new overlay load module origin.

Provides Cataloger with WRITE access to previously protected
disc file containing load module or supplies or changes password

protection.

Specifies which object modules from SGO to include in a load
module.

Specifies that no object modules from SGO can be included in a
load module.

When a load module for a task is cataloged separately, specifies
that symbol table references saved previously via CATALOG SYM
options be used.

Specifies user name associated with all default and dynamic files

associated with task. (May be overridden by JCL USERNAME
statement.)

2-37

2.6.1 The ABSOLUTE Directive f;

The ABSOLUTE directive allows the user to build an absolute load module (one that
requires no relocation by MPX-32 at load time). The user is responsible for insuring the
base address specified is higher than MPX-32 and the TSA. If the base address results in
an overlap between the task and MPX-32 or the task's TSA, the task will not load.
Memory between the end of the TSA and the start of the task is still allocated to the
task and is available for use by the task.

Syntax: -
ABSOLUTE [base]
where:
base is a hexadecimal logical address that is to be the base address of the task.
This address is rounded up to the nearest 512 word boundary. If no base is
supplied, a value of 40000(¢) is used.
Note: The CSECT origin is not effected by this directive. The transient area option on

the CATALOG directive (TRA=X) has no effect when the ABSOLUTE directive is used.
Multiple ABSOLUTE directives are not allowed.

2.6.2 The ALLOCATE Directive A

A task is always allocated enough memory to accommodate a cataloged load module.
ALLOCATE is used to increase the memory allocation for a task at execution time.
Other means of allocating more memory are the SALLOCATE or TSM ALLOCATE
commands, which are runtime-specific for a particular task and the M.GE service, used
within a task, to obtain memory dynamically.

The ALLOCATE directive used when cataloging a task gets additional memory every
time the task is run, i.e., it is static. The allocation cannot be reduced at runtime or by
dynamic service calls.

For further description of memory allocation in the logical address space of a task, see
Volume 1.

Syntax:
ALLOCATE bytes
where:
bytes specifies the number of additional bytes (in hex) to allocate to the task.

Note: If the size of the operating system plus the size of the task plus the size of the

allocate equals more than 128KW, the task cannot be loaded and an abort condition will
occur.

2-38

2.6.3

The ASSIGNI1 Directive

The ASSIGNI1 directive is used to supply default file assignments for logical file codes
used by the task being cataloged. Assignments for a task must be cataloged with the
main load module. For a description of techniques used to set up logical file codes see
Volume 1, Chapter 7.

Syntax:

where:

lfc

filename

password

U

Examples:

,password

ASSIGN1 lfc:filename[,password,U] (lfc=...]

”U

is a logical file code used in the task to denote a generic input or output
source. '

is an 8-character maximum name of a permanent disc file to assign to the
lfc.

Any one of the optional parameters following the file name may be entered
in the order shown in the syntax statement. Commas separate options. If an
option is missing, the comma must be supplied, as in:

filename,,U

is an 8-character maximum password for the disc file if it has been
password-protected.

If RO protected, the password is required to write to the file. If PO, the
password is required to read or write to the file.

the file is optionally unblocked. Default: blocked.

ASSIGN! LIB=LIBRARY,,U DIR=DIRECTORY,,U

ASSIGN1 OT=OUTFILE IN=INFILE,MYPASS

2-39

2.6.6

The ASSIGN2 Directive

The ASSIGN2 directive is used to supply default system file assignments to logical file
codes. At runtime, an lfc assignment to a system file results in IOCS creating one of the
types of files described below for use by the task:

SBO

SLO

SYC

SGO

System Binary Output. A type of temporary file created and used by IOCS
for buffering output to the device defined at SYSGEN or via the OPCOM
SYSASSIGN command as POD (Punched Output Device). Output from the
user task directed to the lfc associated with SBO will be buffered and routed
by IOCS to the POD.

System Listed Output. A type of temporary file created and used by IOCS
for buffering output to the device defined at SYSGEN or via the OPCOM
SYSASSIGN command as LOD (Listed Output Device). Output from the user
task directed to the lfc associated with SLO will be buffered and routed by
IOCS to the LOD.

System Control. A temporary system file associated only with jobs
processed in the batchstream. (One SYC per job.) SYC is used for buffering
input from the device defined at SYSGEN or via the OPCOM SYSASSIGN
command as SIO (System Input Device). Tasks that are not designed to run
solely in the batchstream should not make assignments to SYC. Batch tasks
can use SYC to input data records.

System General Object. A system file associated only with jobs processed in
the batchstream. SGO is a permanent file used by Job Control to accumulate
object code. The SGO file exists until a job is complete, at which time it is
deleted. User tasks designed to run only in batch can do I/O to the SGO file
as described in Section 2.1.8.

For further description of all the above system files, see Volume 1.

2-40

Syntax:
ASSIGN2 lfc= | SBO,cards (lfec=...]
SLO,printlines
SYC
SGO
where:
lfc is a logical file code used in the task
SBO System Binary Output file
cards is the number of cards you expect to output as an object deck.
Determines size of SBO temporary file required.
SLO System Listed Output file
printlines number of printlines required for listed output.. Determines size of SLO
temporary file required.
SYC System Control file. Use only if task runs solely in the batchstream.
SGO System General Object file. Use only if task runs solely in the

batchstream.

2-41

2.6.5

The ASSIGN3 Directive

The ASSIGN3 directive is used to supply default device assignments for logical file codes
used by the task being cataloged. It also assigns a temporary disc file (see Appendix A).

Syntax:

where:
lfc
devmnc
blocks

reel

vol

Note:

Examples:

Tape:

Discs

2-42

ASSIGN3 lfc=devmnc),blocks
,reel [,vol]

% (U] [ifc=...)

is a logical file code used in the task

is a device mnemonic of a configured peripheral device. See Appendix A.
number of disc blocks (192 words) to be allocated for this file.

specifies a 1-4 éharacter identifier for the reel. This parameter is required
in batch. This parameter is not required in TSM and if not specified, the
default is SCRA (scratch).

if multivolume tape, indicates volume number. Default: 0 (not multivolume)
specifies the tape or disc is optionally unblocked. Default: Blocked

There must be no embedded blanks within an lfc assignment. Commas must

be inserted for all nonspecified options (see Examples). One or more blanks
are the legal separator between one lfc assignment and the next.

A3 IN=M91000,SRCE,,U OT=PT
A3 IN=DC,20

o,

2.6.6 The ASSIGN&4 Directive

The ASSIGN#4 directive is used to associate one or more logical file codes used by the
task being cataloged with an existing lfc assignment. This assignment will remain for the
associated file or device even if the original assignment is deallocated.

Syntax:
ASSIGNY Ifc=lfc [lfc=lfc]

where:

lic=lfc is a pair of logical file codes, where the first lfc is the new assignment and
the second is the lfc already associated with a file or device in any previous
ASSIGN directive (including ASSIGN®&).
Any number of lfc to lfc associations can be established.

2.6.7 The BUFFERS Directive

The BUFFERS directive is used to specify the number of blocking buffers required for
dynamic assignments (with M.ALOC) used in a task.

If the task is shared, specify the total number of blocking buffers it requires. (See
Section 2.1.2.)

Syntax:
BUFFERS buffers
where:
buffers is the number of dynamic assignments requiring blocking buffers, or if a

shared task, total blocking buffers required.

If OPTION 19 is set, the number of buffers supplied is added to the 3 buffers
required by the Debugger.

2-43

2.6.83 The CATALOG Directive

The CATALOG directive is used to supply a load module file name. When cataloging the
main module of a task, specifies the task's privilege, priority, and optionally, selects
various output alternatives for the Cataloger. The name supplied for the main module is
the name used to activate the task, determine its status, etc. There can be any number
of overlay load modules associated with a task, each constructed with a CATALOG
directive. The modules reside on separate disc files. The optional parameters can be
specified in any order within the syntax statement.

Syntax:

sU

CATALOG loadmod [P] [,TRA=size] [,priority]l [(NOMI[,NOP][,CARI[,SYM]
)

)

where:

loadmod is the name of a permanent disc file where the main or overlay load module
is to be stored.

P,U,0O for the main module only, specifies P for a privileged task, U for an
unprivileged task. If an overlay module, specifies O. Overlays assume the
privileged or unprivileged status of the main load module. Default:
unprivileged, main module.

TRA=size used with main load module to specify number of bytes (in hex) to allocate
for overlay transient area. Default is an area large enough to accommodate
all overlay load modules cataloged in the same run as the main load module.

priority for main load module only, specifies base priority (1-64). Default: 60.
- Overlay load modules assume the priority of the related main load module.
If an overlay module, do not specify priority.

The priority at which the task is executed depends on how the task is
activated (online, batch, or real time). If in real time, the task maintains its
base priority as cataloged. If activated via TSM or in the batchstream, its
priority changes to the SYSGENed priorities of either TSM or Batch.

NOM optionally inhibits printing a main or overlay load module map.

NOP optionally inhibits output of a main or overlay load module to the file
specified as the load module file.

CAR optionally outputs the main or overlay load module on punch cards. Card
output can be redirected to a different medium by assigning the file code
SBM to the desired medium. (See Table 2-1.)

SYM saves the symbol table for a main or overlay load module on a device or

file. This option is used if cataloging load modules of a segmented task in
different runs of the CATALOG program.

2-44

®,

Note:

RTM parameters RT and BP are ignored, without reporting an error, thus RTM
CATALOG directives will still work.

Files whose names begin with the letters SYSG are loaded with a TSA address of
X'38000'. This facilitates SYSGEN's remapping between host and target systems.

2.6.9

The ENVIRONMENT Directive

The ENVIRONMENT directive is used to establish residency, execution in a special class
of physical memory (E or H) and/or sharing characteristics for a task. As described in
Section 2.1.3, the entries with this directive supply information for the load module
information area in the main load module.

Unless defined otherwise with this directive, a task is:

nonresident

unique, i.e., not sharable, not multicopied

executable in any memory class available (S, H, or E)

Syntax:

JH| LMULTI J [,MAP8192

ENVIRONMENT RESIDENT [,E] (,SHARED] [,MAonus]

where:

»S

RESIDENT makes the task resident in memory (locked in core); it cannot be swapped.

E

H

S
SHARED

MULTI

execute in Class E memory only. If unavailable, delay execution until
available.

execute in Class H or faster memory. If both Class H and F memory are
unavailable, delay execution until one or the other is available.

Note: if a 32/75 has no memory installed of the class requested, the first
lower speed memory available is allocated to the task.

Default: task is executed in any class memory available (H, S, or E).

copies the CSECT area of a sectioned task into physical memory once and
copies DSECT as needed for sharing. Use only with a sectioned task.

multicopies the entire load module into physical memory as needed for
concurrent activations. Can be a sectioned or nonsectioned task.

Default: the task is not available for multiple concurrent activations. One
copy of the load module can be active at one time in the system.

2-45

MAP2048 indicates map size of target system is 2KW.

MAP8192 indicates map size of target system is 8KW. Default.

2.6.10 The EXCLUDE Directive

The EXCLUDE directive is used to exclude object modules in a library (system or user)
from the load module being cataloged even though they are referenced in the object
modules coming from SGO.

Object modules included from a library during cataloging may also reference the
excluded object modules. The references will be ignored and the object modules will
remain excluded.

All global symbols in an object module that are referenced by the program must be
excluded for the object module to be excluded.

For further description of object modules and the cataloging process, see Section 2.1.

Syntax:
EXCLUDE name [name] ...
~ wheres
name is the name of a global symbol in the object module,
2.6.11 The EXIT Directive

The EXIT directive is used to terminate Cataloger directive input.
Syntax:

EXIT
2.6.12 The FILES Directive

The FILES directive is used to specify the number of files required for dynamic
assignments (with M.ALOC) used in a task.
If the task is shared, specify the total number of files required. (See Section 2.1.2.)
Syntax: .

FILES number

where:

2-46

£

':\tk“ P

((aﬂ..g\

number is an ASCII number of dynamic assignments or if a shared task, total logical
file codes assigned.

If OPTION 19 is set, the number of files supplied is added to the 5 files
required by the Debugger.

2.6.13 The INCLUDE Directive

The INCLUDE directive is used to include object modules from a library (system or user)
in a load module being cataloged even though they are not referenced in the object
modules on SGO. If PROGRAMX is used to ignore SGO as an input source, INCLUDE
must be used to retrieve object modules from a library.

Syntax:)
INCLUDE name [name] ...

where:

name is the name of a global symbol in the object module.

2.6.14 The LINKBACK Directive

The LINKBACK directive specifies overlay load module(s) at lower level(s) for backward
links when cataloging an overlay load module. (Forward links from lower to higher level
overlay load modules are established automatically by the Cataloger.) Resolves
references to object modules and common in the current load module with references to

object modules and common blocks in the lower level overlay. (For further description,
see Section 2.4.2.4.)

Syntax:
LINKBACK loadmod [loadmod]
where:

loadmod is the name of an overlay load module at a lower level. User can supply
more than one name.

2.6.15 The LORIGIN Directive

The LORIGIN directive is used to establish a new overlay level. Can also establish an
origin for this level. Default origin is above the largest overlay load module at the

preceding level. LORIGIN need not be used for the lowest level of overlays, but must be
used for all higher levels.

2-47

Syntax:
LORIGIN {x bytes }
loadmod
where:
X bytes overrides the default origin of the modules at this level with specific offset

from beginning of overlay transient area. Specified by 'X', one or more
blanks, and the number of bytes in hexadecimal.

loadmod specifies the override origin at the end of a specific overlay load module at
the previous level. Does not have to be largest overlay at that level.

2.6.16 The OPTION Directive

The OPTION directive specifies up to 32 default options for the task being cataloged.
Options 1-32 set corresponding bits (0-31) in the option word in the Task Service Area
(TSA) of the task.

When the task is activated, the task can use the M.PGOW service to return the contents
of the TSA option word, check the bit settings, and take action as required.

Options 1-32 can also be specified before a task is run interactively or in batch. The
TSM or Job Control OPTION commands will override cataloged options 1-20.

Syntax:
OPTION n [,n] ,...
where:
n is a number from 1-32 which sets the corresponding bit in the TSA status
word.
or
can be any of the following keywords:
PROMPT Set prompt option
DUMP Set dump option
LOWER Set lower case input option
IPUBIAS Set IPU bias option
CPUONLY Set CPU only option
- 2.6.17 The ORIGIN Directive

The ORIGIN directive establishes a new origin for overlay load modules which follow.
Can be used to override the default origin for a set of overlays. (Default origin is above
the largest overlay load module at the preceding level.)

2-48

A

{
\i

Syntax:

ORIGIN {X bytes }
loadmod

where:
X bytes overrides the default origin of the modules at this level with specific offset
from beginning of overlay transient area. Specified by 'X', one or more

blanks, and the number of bytes in hexadecimal.

loadmod specifies the override origin at the end of a specific overlay load module at
the previous level. Does not have to be largest overlay at that level.

2.6.18 The PASSWORD Directive

The PASSWORD directive supplies the password required to write to a load module file
that already exists and is password protected. (See Section 2.1.7.)

If a load module file is being created for the first time, can be used to supply a password
for it. The file will be RO protected.

The PASSWORD directive remains in effect only for the current load module.

Syntax:
PASSWORD password
where:

password is the one to eight character password associated with the load module file
(if any); if not password protected, can be used to supply a password.

If no password is supplied, cancels the password previously associated with
the load module file.

2.6.19 The PROGRAM Directive

The PROGRAM directive is used to specify object modules to include from SGO in a
main or overlay load module. If omitted, all object modules on the file or device
assigned to SGO are cataloged. (See also PROGRAMX, which is used to exclude all object
modules on SGO from a load module.)

Syntax:

PROGRAM objmod [objmod]

2-49

where:] 1

»
objmod is the name of the object module to include. More than one name can be
specified.
2.6.20 The PROGRAMX Directive
The PROGRAMX directive is used to ignore the contents of the file or device assigned to
lfc SGO in cataloging a load module. An INCLUDE directive is required to get object
modules from a library if PROGRAMX is used. (See INCLUDE.)
Syntax:
PROGRAMX
2.6.21 The SYMTAB Directive
The SYMTAB directive is used when cataloging a segmented task in phases or when
recataloging a segmented task. Following SYMTAB, a SSELECT job control statement is
used to specify the name of a file or device assigned to lfc SYM in a previous run. (The
SYM option must also have been used with the CATALOG directive at the previous
session.) On the SYMTAB, the Cataloger has collected the names of all common blocks,
DEF's, and REF's used previously. g
N
For further description of SYMTAB use, see Section 2.4.2.5.
Syntax:
SYMTAB
SSELECTF filename
SSELECTD devmnc
2.6.22 The USERNAME Directive
The USERNAME directive establishes usernames for default files or dynamically assigned
files used by the task being cataloged. If not used, files are expected to be system files.
Syntax:
USERNAME username [key]
where:
username is the one to eight character username establishing the directory in which
files are located. Username is normally the same as the owner name used to
logon to MPX, or can be any other owner name/user name from the M.KEY
file. ‘{/ -
‘aiw/

2-50

wL

key

27
CTOl

CTO02

CTO3

CTo4

CTO5
CTo06

if a user key is required to logon, it is also established in M.KEY. Supply the
valid key for the above user name/owner name.

Errors

Physical end-of-file encountered on subroutine library. The lfc of the library
in question is displayed. This results from the library being updated by
another user while it is allocated by the Cataloger.

Load module file specified with CATALOG cannot be allocated.

Unrecoverable I/O error encountered on the DATAPOOL dictionary file
assigned to DPD.

Listed output space is depleted and additional SLO space cannot be
allocated.

Unrecoverable I/O error on file or device assigned to SBM for symtab output.

An error occurred during the cataloging process and the reason is described
in the SLO output.

Below are the error messages output to SLO prior to the CT06 abort.
UNABLE TO DELETE LOAD MODULE, M.DELETE ERROR STATUS IS xx.

See the MPX-32 Reference Manual Volume | M.DELETE section for
further details.

UNABLE TO CREATE LOAD MODULE, M.CREATE ERROR STATUS IS xx.

See the MPX-32 Reference Manual Volume 1 M.CREATE section for
further details.

SYMBOL TABLE OVERFLOW
Allocate more memory for CATALOG to execute in,

UNDEFINED EXTERNAL "exname" REFERENCED IN "modname"
The program element (modname) references an external symbol
(exname) that cannot be found in the SGO file or any of the subroutine
libraries.

NO DATAPOOL CORE PARTITION DEFINED
A datapool partition must be defined in order to use datapool.

VALID DATAPOOL DICTIONARY FILE NOT ASSIGNED

Assign the datapool dictionary to lfc DPD.

2-51

2-52

UNDEFINED DATAPOOL "8-char name"
Datapool item could not be found in the datapool dictionary.

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - OUT OF SEOUENCE
Absolute origins are not supported in MPX-32,

PROGR;\M "8-char name", OBJECT RECORD X'xxxx' - CHECKSUM ERROR
Absolute origins are not supported in MPX-32,

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - ABSOLUTE ORIGIN
Absolute origins are not supported in MPX-32.

PROGRAM "8-char name", OBJECT RECORD X'xxxx" - BOUND ERROR
Bounding value must be between 0 and 32.

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - UNASSIGNED
FUNCTION CODE

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - ILLEGAL COMMON
ORIGIN

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - REFERENCE TO
UNDEFINED COMMON BLOCK

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - GLOBAL COMMON
INITIALIZE

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - PREMATURE END-
OF-FILE

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - DATAPOOL
REFERENCE OUT OF RANGE

MULTIPLE TRANSFER ADDRESS IN MODULE "8-char name"
MULTIPLY DEFINED EXTERNAL "8-char name"

ERROR IN FIELD x: ILL.EGAL DIRECTIVE

ERROR IN FIELD x: ILLEGAL BLANK FIELD

ERROﬁ IN FIELD x: ILLEGAL ENTRY

ERROR IN FIELD x: EXCESSIVE ASSIGNMENTS

ERROR IN FIELD x: MISSING DIRECTIVE

ERROR IN FIELD x: ILLEGAL FILE NAME

PN

N ";
7

2.3 Examples

Example 1 - Cataloging a nonsegmented task. Note that although the CATALOG
directive BP parameter from RTM is kept, it will be ignored by MPX-32, The ability of a
task to run in a particular environment is not a function of cataloging. See Volume 1.

$JOB CATI FADEN

SOBJECT

(Object) (Object modules to be cataloged.)

SEXECUTE CATALOG

CATALOG MODULE BP U (Task is unprivileged; entire contents of the -
SGO file are cataloged.)

$EOJ

Example 2 - Cataloging a segmented (overlaid) task. This sample produces the load
modules in Figure 2-6.

$JOB CAT2 JAN

SOBJECT

(Object) (Object modules to be cataloged.)

SEXECUTE CATALOG

ASSIGN2 A=SLO,250

ASSIGN2 B=SYC

ASSIGN3 C=DC,500

CATALOG MAIN

PROGRAM PROGA

CATALOG Al OV

PROGRAM PROGB

CATALOG A20

PROGRAM PROGC

LORIGIN Al (Establishes new overlay level and an origin at
the end of overlay Al)

CATALOG B1 O

LINKBACK Al (Links overlay Bl to lower level overlay Al)

PROGRAM PROGD

CATALOG B2 O

LINKBACK Al

PROGRAM PROGE

ORIGIN A2 (Establishes overlay origin at the end of
Overlay A2; does not change overlay level)

CATALOG B3 O

LINKBACK A2

PROGRAM PROGF

CATALOG B4 O

LINKBACK A2

PROGRAM PROGG

CATALOG B5 O

LINKBACK A2

PROGRAM PROGH

SEOJ

2-53

Example 3 - Cataloging a main load module with no linkage to overlay load modules.

$JOB CAT3 TERI

§OPTION 5 (Routes load module to an SGO file)
EXECUTE FORTRAN
(Source) (Programs to be cataloged)

SEXECUTE CATALOG

ASSIGN2 AB=SLO,100 CD=SBO,50

ALLOCATE 1000 (Allocates 1000 additional hexadecimal bytes
of memory for task)

ASSIGN1 XY=AFILE

CATALOG MODULE2 TRA=500 P 61
(Overlay transient area is 500 hexadecimal
bytes)

SEOJ]

Example 4 - Cataloging overlay load modules with no link to main load module

$JOB CAT4 BATMAN

SOBJECT

(Object) (Object modules to be cataloged)

SOPTION 5 (Routes output to SGO File)

SEXECUTE ASSEMBLE

(Source) (Produces object modules to be cataloged on

SGO)
SEXECUTE CATALOG
CATALOG OVERLAY!1 O
PROGRAM PROGA
CATALOG OVERLAY2 O
PROGRAM PROGB
SEOJ

Example 5 - Cataloging with a user library

2-54

$3JOB CAT6 ROBIN
SOBJECT
(Object)
$ASSIGN1 DIR=ULIBDIR,,U LIB=ULIB,,U
$ASSIGN! SYM=SYMFILE (File for SYMTAB output)
SEXECUTE CATALOG
ASSIGN2 1=SYC 2=SLO,1000
(Default assignment for MAINSEG)
CATA MAINSEG TRA=1520 ,,,,,SYM
(Note that commas are used to get default
parameters for priority, NOM etc.)

EXCLUDE OviSsuB (OV2SUB is referenced by object modules in
MAINSEG but is to be included in OV1.)
INCLUDE MAINSUB (MAINSUB, referenced by object modules in

OV1 but not by object modules in MAINSEG; is
to be included in MAINSEG.)

CATALOG OV1 O

INCLUDE OVISUB

PROGRAMX (OV1 consists only of OVISUR)

$EO]

Example 6 - Cataloging overlay load modules linked to main segment

$JOB CAT7 OWNER

SOBJECT

(Object)

SEXECUTE CATALOG

SYMTAB (Restores SYMTAB Saved in Example 5 for
Linkage to MAINSEG to OV2 and OV3.)

$SELECTF SYMFILE ,

CATALOG OV2 O

PROGRAM OV2MAIN OV2SUB

CATALOG OV3 O

PROGRAM OV3MAIN

$EQ3J

29 Listings

Sample load module map. Not supplied.

210 Creating RTM Tasks on the MPX-32 System

The RTM Cataloger is available on MPX-32 systems for users who want to .take
advantage of the program development capabilities of MPX-32 to produce programs for
systems running under an RTM system.

The name of the alternate Cataloger is RTMCATL.

2.10.1 Assembling RTM Object Modules

MPX-32 will accept most Call Monitor (CALM) instructions in a form that is
syntactically and functionally equivalent to RTM CALM'. Thus, source code that uses
CALM's can be built to run on RTM or MPX-32, If the code is to run on MPX-32, several
CALM's require modification. If the code is to run on RTM systems, make no
modification. See the RTM Reference Manual for RTM CALM descriptions and the
MPX-32 Reference Manual, Volume 1, Chapter 8 for exceptions related to MPX-32,

Also note that although much of the source code for RTM is compatible with MPX-32,
the Communications Region (C.'s) and Task Service Area (T.'s) are constructed
differently in the two systems. Thus, some coding sequences will not work on both
systems correctly and others will. Two different versions of the source code may be
required, one to run on each system. In some cases, the same source assembled against
the RTM macro library (M.RTMMAC) for RTM systems and against the RTM-MPX
compatible library (M.MACLIB) for MPX-32 systems will however, work.

The MPX-32 Assembler allows users to expand RTM macro calls by using the RTM Macro
Library as follows:

$ASSIGNI MAC = M.RTMMAC,,U

This is the same file called M.(MACLIB on an RTM system.

2-55

2.10.2 Running RTMCATL

See the RTM Cataloger description in the RTM Reference Manual, for logical file codes
and assignments which apply to using RTMCATL.

FORTRAN programs require an appropriate runtime library for cataloging. Subroutine
libraries and directories normally used on an RTM system for cataloging (SUBLIB and
SUBLIBD) must be available to run RTMCATL successfully. They are dynamically
assigned to logical file codes LIS and LID by the RTM Cataloger.

RTMCATL is accessed just like CATALOG (see Section 2.5). Where the CATALOG
directive is shown with MPX-32 parameters, use the CATALOG directive and the RTM
syntax shown in the RTM Reference Manual.

2.10.3 Semantic Differences

Note that in RTM documentation, the term program applies to both the separate object
modules produced in an assembly or compilation and the output of the Cataloger (an
accumulation of one or more object modules).

In MPX-32 documentation, the word program seldom appears, and is replaced by the
terms object module, load module, and task. For clarification of how MPX-32
documentation uses these terms, see Section 2.1.5.

MPX-32 also uses the terms segmented and nonsegmented to differentiate between tasks
with overlays (segmented) and tasks without overlays (nonsegmented). See Section 2.1.4
for clarification of these terms.

2.10.% Transporting the Cataloged Task to an RTM System

The MPX-32 File Manager (see Section 6 of this volume) can be used to copy the
cataloged load module file to magnetic tape and the RTM File Manager (see the RTM

"N cad =~

Reference Manuai) can be used to copy the load module file to an RTM system.

2.10.5 RTMCATL Load Modules Cannot be Used on MPX-32 Systems

Tasks produced with the special Cataloger will not run correctly on the MPX-32 system.
They do not have the same load format as MPX-32 tasks.

2-56

o
\

3. THE DATAPOOL EDITOR (DPEDIT)

DATAPOOL is a memory partition defined either at SYSGEN or via the File Manager
utility (FILEMGR). The DATAPOOL partition is structured via DATAPOOL dictionaries
that are built and maintained via the DATAPOOL Editor (DPEDIT). DPEDIT provides the
ability to add, change, delete, and equate variables in an existing dictionary or build a
new dictionary.

3.1 General Description

With most common partitions (Global Common 00-99, for example) a task must define all
locations of the common partition to use any one location. The size defined for each
location must also be consistent across tasks which access the memory partition. Thus to
change any location in a common partition (other than DATAPOOL), the source for all
tasks which access the partition must be modified to reflect the new sequence and/or
size of all variables when one changes. (Such tasks must then be reassembled and
recataloged.)

DATAPOOL and DATAPOOL dictionaries provide the ability to reference memory
locations symbolically by name and to define only the locations actually used by task.

With DATAPOOL, if a variable is changed, it is changed once in a dictionary and all tasks
which reference the partition are simply recataloged with the modified dictionary. (If
multiple dictionaries are used, their modification depends on whether they reference
DATAPOOL locations whose offset would be affected by the change. The user can, if
desired, group variables into different offsets from the beginning of the DATAPOOL
parfition)so that tasks which are not related need not be concerned with a redefined
location.

3.1.1 Multiple Dictionaries

Having multiple DATAPOOL dictionaries for a single DATAPOOL partition provides the
ability to let the DATAPOOL dictionary act as a translator. For example, if one
dictionary defines the variable A as a | word offset from the beginning of DATAPOOL
partition and a second dictionary defines the variable D as the same offset, A and D
become equivalent values for the tasks which use the dictionaries. Multiple dictionaries
also allow the user to selectively access locations by communicating tasks. For example,
Task A provides 1 byte of status, Task B provides a second byte, Task C provides two
more bytes, and Task D's dictionary allows it to pick up all four bytes of status. By
providing a separate dictionary for each task, the user ensures that a task cannot modify
a location not defined in it's dictionary.

In summary, via DATAPOOL dictionaries, the user has the ability to structure and access
DATAPOOL in a number of ways, depending on the needs of tasks which communicate
with each other. The reader is also referred to Volume 1, Chapter 2 for a description of
various intertask communication features available with MPX-32, including run requests
and messages.

3-1

3.1.2 Static versus Dynamic DATAPOOL

SYSGEN can be used to permanently allocate memory specified for the DATAPOOL
partition in protection granule increments. SYSGEN marks the allocated protection
granules as unavailable for outswap and creates an entry defining the partition in the
System Master Directory (SMD). '

Alternatively, the File Manager CREATEM directive can be used to create a DATAPOOL
memory partition. A DATAPOOL partition defined via CREATEM is allocated
dynamically when required by a task. Whereas a DATAPOOL partition created via
SYSGEN is defined in protection granules, a DATAPOOL partition created via the
FILEMGR is 8KW minimum on a 32/7x and 2KW on a CONCEPT/32. DATAPOOL cannot
be created via both utilities. If SYSGEN is used, CREATEM cannot be used for
DATAPOOQL, and vice versa.

For dynamic allocation and deallocation, MPX-32 has the ability to generate multiple
DATAPOOL map block(s) into more than one logical address space. If created in the
FILEMGR, there can be more than one physical copy of DATAPOOL in memory at a
time, depending on the association of tasks that access it simultaneously. Physical space
is not taken up permanently (as it is with a SYSGEN-created DATAPOOL partition), thus
it is reasonable to have multiple DATAPOOL partitions. Each task structures and shares
a given DATAPOOL partition via a DATAPOOL dictionary. All tasks which access the
same 'DATAPOOL' do so by specifying the same dictionary during cataloging and by using
M.SHARE and M.INCL.

For further description of the use of system common areas such as DATAPOOL, see
Volume 1, Chapter 2.

3.1.3 DPEDIT Directives

Directive Function
/DPD Assigns the DATAPOOL directory a new permanent file name.
/ENTER Precedes data records. Data records are the mechanism for

adding, deleting, or changing symbols in the DATAPOOL.

/LOG Provides audit trail listing of all elements in the DATAPOOL
directory.

/REMAP Reuses the DATAPOOL partition by rebuilding from the /SAVE
directory entries and hashing them into the DATAPOOL
directory.

/SAVE Preserves binary contents of each active entry in the

DATAPOOL directory.

/VERIFY Verifies DATAPOOL elements in the directory. Assures proper

bounding, checks for duplicate entries, corrects improper

relative addresses, and provides error flags.

A

3.1.4 Input Data Format

Data records are the means of structuring a DATAPOOL dictionary. They are built in
80-byte card image format and are used to add, delete, or change DATAPOOL symbols.

The structure of a data record is shown in Figure 3-1 and described in this section.

All fields of the data record except the SOURCE and DESCRIPTION fields must be left-
justified and contain no embedded blanks. The VARIABLE SYMBOL field is used to
contain the one- to eight-character (ASCII) name of the symbol to be added, deleted, or
changed. The function to be performed is specified by the U field.

The U field specifies add by a blank, delete by a minus sign, or change by an asterisk.

The add function must include the fields up to and including the BASE SYMBOL field.
The remaining fields are optional. A symbol can be added to the dictionary if it has not
been previously defined in the dictionary and if its address is within the range of the
DATAPOOL memory partition. If the PRECISION option is specified, address bounding is
verified before adding the symbol to the dictionary.

The delete function utilizes only the VARIABLE SYMBOL and U fields. The remaining
fields are ignored. A symbol can be deleted only if it is not used as a base. If the symbol
to be deleted references a base, the responsibility count for the base symbol is
decremented. Responsibility count is the number of times the symbol is used as a base
for other symbols.

The change function must include the VARIABLE SYMBOL and U fields. The remaining
fields are optional. All fields of a symbol can be changed if the symbol is not being used

as a base. If the symbol being changed is used as a base, no changes can be made in the
BASE SYMBOL or DISPLACEMENT fields.

Each column on the data record which is blank results in no change to the corresponding
column of the original specification; a column which contains a number sign (#) causes
the corresponding column of the original specification to be blanked; and a column which
contains any other character results in a replacement of the corresponding column of the
original specification.

Note that the change function is column oriented. When an entire field is to be replaced,
the high-order columns of the field should be padded with number signs (#) in order to
blank out unwanted characters from the original specification. For example, the BASE
SYMBOL field should be padded with number signs (#) when it is to be entirely replaced
by a new symbol which has fewer characters than in the original BASE SYMBOL field.

The E field, which equates symbols with base symbols, must contain an 'EQU'. Any other
character string is invalid.

The BASE SYMBOL field is used in conjunction with the VARIABRLE SYMBOL field and
the E field. The base symbo!l referenced must have been previously defined by the
DATAPOOL dictionary. This field may optionally contain a dollar sign (8) which
indicates location 0 of the dictionary.

The DISPLACEMENT field modifies the base symbol location if a plus sign (+) is inserted
in column 22, Absence of the plus sign (+) in column 22 causes the displacement to be
ignored.

The purpose of the T field is for user documentation of symbol type, but if used, must
contain either E, F, I, or L.

If the P field contains L, B, H, W, or D, the specified boundary will be verified against
the actual symbol address to ensure proper bounding.

The purpose of the D field is for user documentation of array dimensions, but if used,
must contain decimal integer(s).

The SOURCE and DESCRIPTION fields provide for user documentation. The SOURCE
field provides a User Descriptor Area to identify the originator of the symbol. An
asterisk in the first column of the DESCRIPTION field will cause a page eject during a
LOG ALPHA. An asterisk in the second column of the DESCRIPTION field causes a page
eject during a LOG relative function. The remaining columns of the DESCRIPTION field
can be used for comments.

’;;;a\

o

vamass sase '
SVMBOL 3 SVMBOL OISPLACEMENT »| o Jlisouncsfliaini oesCAeTION l
1| 23] e13.6]2{s|s]winirrigminheinimingw nrin S0 e n
N}
I
11l
R T N N N— —— —"'"'
E:].-—-—-J. L—-—-—-—-—D[:]
sLANK * Agomen *For Pog Eiom Owring LOG REL
* Detens
o
*For Page Einst Dwring LOG ALPHA

E

o
. o

X 'nennn’ = Hemmssimeé Bvess

L] © Oeninwl Bvem

mnnand = Demmn! Byes

L] = Ossiosl Worda
-0 O

NOTE: 1t the DIPLACEMENT enwry is spenifiad, o phus sigh (+) must e present i esiums 22).

W - Were

0 = Ooublonere
H o Nathware
8= bves
Le@in

| = imeger
€ = Flos
F < Finte
L= Lopen

820647

Figure 3-1. Datapool Editor Input Data Format

3.1.5 Dictionary Records

Figure 3-2 shows the format for a DATAPOOL dictionary entry built by the DATAPOOL
Editor. The dictionary entries are used by the Cataloger and loader to resolve
references to DATAPOOL symbols within a tasks logical address space. When a task is
cataloged, the user specifies which DATAPOOL dictionary to use by assigning the
dictionary file to the logical file code DPD.

WORD
120 DATAPOOL EDITOR INPUT DATA IMAGE (80 BYTES)
E4) ZERO RELATIVE ADORESS °
T W N NS WA NS SN N WO NS NS N T N N O N N S T Y TN Y T RN I O TS S N 1

0 Vv 2 3 45 6 7 8 9 1011 121314151617 18 19 20 21 22 23 24252627 28 20 o

RESPONSIBILITY COUNT

2 TO LOCATE THIS ENTRY
) W S N W T O L S VA T N U N N BN SN R S N NN SN UN N TN N S R e e
0 ' 2 3 4 5 6 7 8 9 1011 121314151617 1819 2021 222324252627 2828 %0 1
23 RESEAVED STATUS
L1 4t 10 0 1 1 ¢ 1 1 f t { ¢ ! ¢ | !t {1 ¢t J ¢ ¢ | 4 ¢ | |
0 1t 2 3 45 6 7 8 9 1011 1213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3
DICTIONARY ENTRY ACTIVE (SET)
COLLISION ENTRY OCCURRED AT THIS ENTRYISET)
2¢ RESERVED

‘0 1 2 3 45 617 8 9 0N |213l4|516'71519202‘22232425267728291111}

Figure 3-2. Datapool Dictionary Entry Format

820648

Figure 3-2. Datapool Dictionary Entry Format

3-6

3.2 Files and File Assignments

Files required by DPEDIT are described in this section.

3.2.1 The Input File (SYC)

The input file includes both DPEDIT directives and the data cards described in the
previous section. Data cards follow the DPEDIT ENTER directive. The logical file code
for input is SYC. The default assignment is ASSIGN2 SYC = SYC.

3.2.2 The DATAPOOL Dictionary (DPD)

The user must create a permanent file space for the DATAPOOL dictionary via the
FILEMGR before running DPEDIT. When the dictionary file is created by the user, its
contents are initialized to zeros. The size of the file created should be sufficient to
contain twice the number of symbols which will be defined in the dictionary. The blocks
are constructed with eight records per block. To determine the size of the file to be
created, double the number of entries and divide by eight. The minimum allowable size
is five blocks.

The dictionary file for output is associated with the logical file code DPD with an
ASSIGN! unless you need to produce more than one version of the dictionary, in which
case, the DPD directive is used to switch from the assigned file to subsequent files. See
Section 3.2.4.

3.2.3 Audit Trail and Error Listings (LO and ER)

As DPEDIT processes directives, it produces one line of listed output for each operation
it performs. Any operations that produce errors are listed to a separate file or device.
The lfc for the audit trail is LO. The lfc for the error lines is ER.

Defaults:

LO=SLO
ER=SLO

All listed output can be produced on one file or device by using an ASSIGN#4 to equate the
two file codes.

3-7

3.2.4 Save and Remap Files (OT and IN)

The REMAP directive can be used to restructure an existing DATAPOOL dictionary that
has been saved (via the /SAVE directive) from a previous DPEDIT run or in the current
DPEDIT run.

The file or device to use for /SAVE is assigned to lfc OT. The file or device to use when
this file is remapped is assigned to lfc IN. Before a remap, use the DPD directive to
assign a different file or device for DATAPOOL dictionary output. Or, the name of the
file can be specified with /REMAP. If the assignment is not changed, the existing
dictionary is ovgrwritten.

3.2.5 Scratch Files (Ul and XUI)

A temporary file for sort resulting from a LOG directive (lfc's Ul and XU is assigned by
DPEDIT by default to a disc file, 100 blocks. The temporary file is unblocked.

=

S

L

6-¢

/1’ s,
_ /
Table 3- 1
DPEDIT File Assignments Page | of 2
Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for DPEDIT Assignment for DPEDIT Comment
Directives and SYC Default: Work file built using EDT > BATCH
Data Records ASSIGN2 EDIT.
SYC = SYC Permanment file built EDT > BATCH jobfile For further description
using EDIT or MEDIA. or see "Accessing DPEDIT."
77BATCH { D, devnmc
Cards. F, jobtile
Other device medium Same route shown for
e.g., magnetic tape, cards.
where jobfile was
copied from cards or a
file via MEDIA.
Interactively. See
"Accessing DPEDIT."
Source data records Source data records
following an /JENTER may be accessed by a
directive are the $SELECT Statement
primary means of in batch.
input to DPEDIT. See
Section 3.1 for
detailed description.
Existing IN No default. File space must be By assignment and
Dictionary for ASSIGNn pre-established via use of the /REMAP
REMAP Input the FILEMGR utility. or /DPD directive.
IN = ﬁlename}
devnmc
Output orT No default. Same as above. By assignment and
Dictionary to fi use of the /SAVE
use in oT = d’:‘“‘““} directive.
Subsequent Remap vnmc

01-¢

Table 3 - | (Cont'd)

DPEDIT File Assignments Page 2 of 2
Previous

Input/Output Logical Assignments Processor How Specified
Description File Code for DPEDIT Assignment for DPEDIT Comment
DATAPOOL DPD No detault. Same as above. By assignment. A dif- Unblocked
Dictionary ferent file or device

ASSIGNn can be accessed by using

the DPD directive.
DPD = {!ilename l.
devmnc)

Audit Trail Lo Default: N/A, unless using a An ASSIGN# can be used to

ASSIGN2 disc file (see above) equate LO to ER so that

LO = 5LO listings are provided on

the same SLO file,
Options:
- filename

LO - {devmnc }
Separate Error ER Default: See above,
Listing ASSIGN2

ER = SLO

Options:

ASSIGN2

ER = { filename }

devmnc

Temporary disc ul Default:
file ASSIGN3 Ui:=DC,100,U
Temporary disc XUt Default:
file ASSIGN4 XUI=UIL

3.3 Options
None.
3.8 Using DPEDIT

For further description of the use and allocation of DATAPOOL (and GLOBAL) system
common areas, particularly in context of a task's logical address space, see Volume 1,
Chapter 2.

3.5 Accessing DPEDIT
To access DPEDIT as part of a batch job, create a job file using the EDITOR, punch
cards, or other media as described in Table 3-1. The job file contains DPEDIT directives
and data records preceded by Job Control ASSIGN's, etc. A job file can be read to SYC
and the job activated in several ways:
from the OPCOM console:
" <Attention>"
?7BATCH {F,iobfile }
D,devmnc
from the OPCOM program:
TSM > OPCOM
?7BATCH {F,jobﬁle }
D,devmnc
from the EDITOR:
TSM > EDIT

EDT >BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate DPEDIT and run online, use the TSM ASSIGN commands to make DPEDIT
assignments equivalent to those preceding the EXECUTE DPEDIT command on a jobfile,
then proceed to issue DPEDIT directives.

TSM > ASSIGN1 DPD=filename,,U
TSM >DPEDIT
DPE >/directive

3-11

3.6 DPEDIT Directives

DPEDIT directives are summarized in Section 3.1.3. They are described in detail in
subsequent pages.

A comma between parameters is the legal delimiter. Blanks embedded after the
directive in a DPEDIT command line are ignored.

3.6.1 /DPD Directive

The /DPD directive assigns a different permanent file to the DPD logical file code. It is
used to maintain multiple dictionary files during a single edit run.

Syntax:
/DPD filename
where:

filename is the name of a permanent file containing the dictionary to assign to DPD.
The file is dynamically allocated using RTM services and is thus
automatically unblocked. Only one blank is allowed between the "/DPD"
portion of the directive and the filename. '

3.6.2 JENTER Directive

The /ENTER directive indicates that data cards are to be processed by the Datapool
Editor. These data cards are used to add symbols to the datapoo! dictionary, delete
symbols from the dictionary, and change parameters defining a symbol in the dictionary.

The data cards that are to be processed as a result of the /ENTER directive must follow
the directive. Processing of data cards continues until a directive or an end-of-file
indicator is encountered. Multiple /ENTER directives may be used.

A symbol can be added to the dictionary if it has not been previously defined in the
dictionary and if its address is within the range of the datapool memory partition. If the
Precision option is specified, address bounding will be verified before adding the symbol
to the dictionary.

A symbol can be deleted only if it is not used as a base. If the variable symbol to be
deleted references a base, the responsibility count for the base symbol is decremented.
The responsibility count is the number of times the symbol is used as a base for other
symbols.

All fields of a variable symbol can be changed if the variable symbol is not being used as

a base. If the variable symbol being changed is used as a base, changes cannot be made
in the Base Symbol or Displacement fields.

Syntax
| /ENTER

3-12

Example(s)

/ENTER

LIMA EQU S

A EQUS + 100W F W 10

B EOUA + lOW **

In this example, the data cards containing the data cards to be processed follow the
Enter directive.

3-13

3.6.3 /LOG Directive

The /LOG directive provides a listed output audit trail of all symbols defined in the
DATAPOOL dictionary, the total number of entries in the dictionary, and the number of
active entries.

Syntax:
/LOG [type]
where:
type specifies the type of output desired. ALPHA specifies that the listed output

will be ordered alphabetically. REL specifies that listed output will be

produced in the sequence in which the DATAPOOL items reside in the

DATAPOOL memory partition. If no type is specified, both types of output
) will be generated.

Example(s)

/LOG ALPHA
/LOG
/LOG REL

3.6.4 /REMAP Directive

The /REMAP directive is used to expand or rebuild a DATAPOOL dictionary without
having to recreate dictionary entries through the /ENTER directive data record
sequence.

/REMAP rebuilds a dictionary from the dictionary specified with a /SAVE directive or
built during a previous run and assigned to lfc IN. Each entry is remapped through the
‘hash coding scheme and written to the dictionary assigned to lfc DPD via the /DPD
directive. Or the dictionary to be used for output can be ‘assigned' to DPD via the
optional file parameter on the /REMAP directive.

Note that the dictionary output file is initially destroyed by the /REMAP function, i.e., if
you have built one dictionary and do not make a reassignment through /DPD or the file
parameter, the dictionary you built will be lost.

Syntax:
/REMAP (file] , [R]

where:

file is an optional field which contains the name of a permanent file to assign to
DPD. Or the /DPD directive can be used for the same function.

R if specified in this field, the file assigned to the logical file code IN will be

rewound before processing the dictionary entry records.

3-14

3.6.5 /SAVE Directive

The /SAVE directive preserves the contents of each active entry in the DATAPOOL
dictionary in dictionary entry records on the file assigned to the logical file code OT. An
end-of-file is written to OT when the function is complete. The dictionary entry record
is a binary record containing the entire dictionary entry. (See Figure 3-2.) A checksum
and a sequence number are included in the record.

When a directive is issued, 'DPD' and 'OT' should not be assigned to the same file.
Syntax:

/SAVE

3.6.6 /VERIFY Directive

The /VERIFY directive checks each active entry in the datapool dictionary for proper
placement in the dictionary, for precision to assure proper bounding, and for relative
address within the range of the DATAPOOL to ensure that the computed value at entry
time is correct. Any discrepancies detected in the dictionary are noted on a listed
output file.

Improperly mapped entries are corrected and no error flags are generated. If an
improperly mapped entry is encountered, and an entry of the same name is already in the
dictionary, the current entry being verified is deleted and an error flag is generated.

Incorrect relative addresses are corrected and an error flag is generated. Invalid entries,
that is, entries with no base symbol in the dictionary, or entries whose data record is
invalid, are deleted and error flags are generated.

Range and precision errors generate flags.

Syntax:

/VERIFY

Example(s)
$ASSIGN1 DPD=DPDI

$EXECUTE DPEDIT
JREMAP ,R
JVERIFY

In this example, Datapool Editor will verify DPD1 after remapping it.

3-15

3.7 Listings

The DATAPOOL Editor has two listed output files, the audit trail (accessed through the
logical file code LO) and the error audit trail (accessed through the logical file code
ER). If either of these files overflows and is assigned to a System Listed Output (SLO)
file, the old SLO is dynamically deallocated (released for system output on job
termination) and a new SLO file is allocated with the same size requirements as the
original. Figure 3-3 describes audit trail format.

The audit trail contains a definition of the operations performed, the source records
(Figure 3-1), the relative address within the DATAPOOL of the symbol defined by the
dictionary entry, the number of disc accesses required to get the entry, the number of
times this symbol is used as a base, and when applicable, an error code defining why the
requested operation was not performed.

AUDIT TRAIL FORMAT

PAGE MEADING:

CURRENT DATA FILE: Name (1)

ERROR RELATIVE RESPONSIBILITY COLLISION
* CODE FUNCTION DATA CARD ADDRESS COUNT MAPP ING

(EC) (RA) (RC) (M)

FORMAT EXPLANATION

PRINT COLUMNS - HEADING DESCRIPTION
1-4 ERROR CODE REFER TO ERROR CODES DESCRIPTION
9-14 FUNCTION ADD, DELETE, LOG, OR CHANGE
17-96 DATA CARD
101-108 RELATIVE ADDRES Hexadecimal address assigned to this

variable symdbol relative to the
beginning of the datapoo! core partition.

112-11§ RESPONSIBILITY COUNT Decimal number of times that symdol is
used as a base.

117-119 COLLISION MAPPING Decimal number of disc accesses required
to locate this entry.

(1) name= °'MAIN’ {f specified by SASSIGN1; otherwise, namesFile specified by DPD or
REMAP directive.

820649

Figure 3-3. DATAPOOL Editor Audit Trail Format

3-16

N

3.8 Errors
The following console messages are issued by the DATAPOOL Editor.
DPEDIT devmnc CKSM

The DATAPOOL Editor has encountered a checksum error on the input (IN) file to the
REMAP function.

DPEDIT devmnc SQER

The DATAPOOL Editor has encountered a sequence error on the input (IN) file to the
REMAP function.

These messages are only output if IN is assigned to a card device. The "devmnc"
specification gives the device mnemonic, including the device address of the device to
which IN is currently assigned. After the message is issued, the editor enters a program
hold. To retry the read, reposition the deck in the reader and enter the operator
command CONTINUE DPEDIT. If no retry is desired, enter the operator command
ABORT DPEDIT.

For a description of abort codes, see Appendix C. Error messages EC11 through EC25
and ERnn are described in Appendix C. They report diagnostic error conditions which
could cause an abort.

3.9 Examples

Example 1 - Saving Several Dictionaries

$JOB DPEDIT1 MEYERS
$ASSIGN! DPD=DPD1,,U
$ASSIGN3 OT=MT,DPDS
SEXECUTE DPEDIT

/SAVE Save Dictionary DPD!

/DPD DPD2 Assign DPD to Dictionary DPD2
/SAVE Save DPD2

/DPD DPD3 Assign DPD to DPD3

[SAVE Save DPD3

$SEQJ

$$

3-17

Example 2 - Remapping a Dictionary

$JOB DPEDIT2 MEYERS
SASSIGN1 DPD=DPD1,,U
$ASSIGN3 IN=MT,DPDS
SEXECUTE DPEDIT
/REMAP ,R

/VERIFY

/REMAP DPD2

/REMAP DPD3

J/ENTER

A EQU $

$SEQJ

33

Example 3 - Expanding, Saving, and Remapping a Dictionary

$JOB DPEDIT3 MEYERS
SEXECUTE FILEMGR
EXPAND DPD1,100
$ASSIGN3 OT=MT,DPDT
SASSIGN4 IN=OT
SEXECUTE DPEDIT
/SAVE

/REMAP DPDI,R

$EO]

$$

Example 4 - Saving a Dictionary on Cards

$JOB DPEDIT4 MEYERS
SASSIGN! DPD=DPD1,,U
$SASSIGN3 OT=CP
SEXECUTE DPEDIT
[SAVE

SEOJ

$$

3-18

N
Rewind IN and Remap NDPDI
Verify DPD!
(See Figure 3-1 for column placement)
Expand Dictionary Size
Save DPD1 .
Rewind IN and Remap DPD1 el
ra
3
A

4. THE DEBUGGER (DEBUG)

The MPX-32 Debugger is used to debug a single, cataloged user task. It can be accessed
with a DEBUG command in TSM, with a SDEBUG statement in batch, by coding a
M.DEBUG service call within the cataloged task, or by using the Break key after a task
has been activated via TSM, in which case TSM provides the option of calling M.DEBUG.

If a command or job control statement is used, the user's task is activated and DEBUG
gains control just before the system would transfer control to the user task's transfer
address. In cases where the user task is already running, the context of the task (general
purpose registers and PSD) just prior to the M.DEBUG call is retained and control is
transferred to DEBUG to start debugging at that point in the user's task.

When DEBUG gains control, it prompts the user for a DEBUG command. DEBUG
commands allow the user to:

trace task execution
set debugging traps within the task

display and/or alter contents of the task's logical address space, general
purpose registers, etc.

watch for privileged task entry into the operating system or other areas of
memory not usually accessed even by a privileged task

perform other operations that facilitate task debugging
This chapter concentrates on interactive (online) functioning of DEBUG. Batch functions

are described in terms of differences between batch and online operation in Section 4.6,
Batch Considerations.

4.1 General Description
DEBUG terms are summarized below.

Absolute Expression An input expression whose value is determined solely by the
terms and operators specified; i.e., an expression which is not
relative. See "Relative Expression".

Base A type of expression term representing any 32-bit number,
usually a memory address.

Base Table Internal DEBUG storage containing the definitions of all
special bases and user bases. Maintained by the BASE and
CLEAR commands. Displayed by the SHOW command.

Count

Deferred Command

Immediate Command

Log File

Relative Expression

Special Base

Status Report

Trap or
Trap Instruction

Trap Address

Trap List

A special expression term equal to the number of occurrences
of the most recently-occurring trap since that trap was set by
the SET command.

A command whose execution is deferred until the occurrence
of a trap. Deferred commands are added to the trap list
currently being built rather than being executed
immediately. See "Immediate Command".

A command which is executed immediately rather than being
added to a trap list; not a deferred command.

A circular (wrap-around) temporary disc file on which DEBUG
maintains a record of the last 100 (approximate) screens of
terminal 1/O.

An input expression assumed by DEBUG to represent a
displacement from a base address. The base is automatically
added to the value of the expression. See "Absolute
Expression".

Any of the following bases, which are automatically defined
by DEBUG:

3 - Current Program Counter
SPSD - Program Status Doubleword
$TSA - Task Service Area

SDSS - DSECT Start
SDSE - DSECT End
SPCH - Patch Area
SCss - CSECT Start
S$CSE - CSECT end

An analysis of the user task's context, showing the user PSD
and registers for each currently active task interrupt level
(e.g., I/O end action receiver active).

An SVC 1,X'66' (H.MONS,29 call) instruction used by
DEBUG to replace a user instruction in setting a trap in the

user task; the control transfer caused by the execution of this
instruction (to DEBUG's Entry Point 3).

The address in the user task where a trap instruction has been
placed by the SET command.

The sequence of DEBUG commands which is executed upon
the occurrence of a trap.

./

'

Trap List Terminator

Trap Table

User Base

User Context

User PSD

Any command which directs control away from a trap list.
A trap list terminator must be the last command of a trap
list. The following commands are trap list terminators:

BREAK
END
EXIT
FILE
GO
TRACE
TRACK
WATCH

Internal DEBUG storage containing the definitions of all
currently set traps, including their trap addresses, COUNT's,
and trap lists. Maintained by the SET, DELETE, and CLEAR
commands. Displayed by the LIST command.

Any base other than the special bases; defined by the BASE
command.

The user Program Status Doubleword (PSD) and user
registers, collectively.

The PSD maintained by DEBUG to indicate the PSD in
effect for the user task. On entry to DEBUG, the user PSD
is the last PSD in effect for the user task as of the moment
of the control transfer; on entry to the user task, it is the
PSD to be in effect as the user task gains control; while
DEBUG has control, the user PSD may be modified by the
following commands:

BREAK
CC
GO
TRACE
TRACK
WATCH

User Registers

User Task

4-4

The eight words of memory used by DEBUG to contain the
user registers in effect for the user task. When DEBUG
gains control, the user registers are as reported in the Task
Service Area (TSA) in T.CONTXT; on entry to the user task,
the user registers contain the register contents to be in
effect as the user task gains control; while DEBUG has
control, the user registers may be changed by the CR
command.

The task being debugged.

Vi :

s

4.1.1 Attaching DEBUG to a User Task

DEBUG functions essentially as an unsolicited overlay of the user task being debugged;
i.e., the user neither catalogs DEBUG as an overlay nor identifies any overlay transient
area for DEBUG when the user task is cataloged.

The DEBUG overlay receives special handling by MPX-32, The M.DEBUG system service
(H.MONS,29, SVC 1,X'63") attaches DEBUG to the calling task as follows:

l'

3.

DEBUG is loaded at the beginning of the map block below the user task's
pure code and data section (CSECT) and/or common areas. The lower
address of the user's CSECT, if any, is thus decreased by the size of
DEBUG (8KW). (Refer to the DEBUG memory map in Figure 4-1.)

The area "T.CONTXT" is initialized in the calling task's TSA. T.CONTXT
contains eight words for the user's register contents at the point of call
and two words for the user's PSD at the point of call. It is used by
DEBUG to determine the last known context of the user task upon entry
to any DEBUG entry point.

Control is passed to DEBUG's Entry Point 1 (startup entry point). Any
task interrupt levels active at this point remain in effect. They are
analyzed by DEBUG and displayed in a status report.

EXTENDED ADDRESS SPACE

-— om ev o @
- o - -G

GLOBAL COMMON/DATAPOOL

CSECT

P—————————————————

DEBUG PATCH AREA

DEBUG

i i
i

DSECT

TSA

OPERATING SYSTEM

128KW

820653

4-6

Figure 4-1. Debug Memory Map

N

In response to the TSM 'DEBUG' command, MPX-32 calls M.DEBUG on behalf of the user
task as the last stage of task activation. In this situation, T.CONTXT is initialized with
all registers zeroed and the user PSD indicates the user task's cataloged transfer
addresses. Control is passed to DEBUG's Entry Point | instead of the user task's
cataloged transfer address. The combination of DEBUG and the user task is still a single
task, with a single TSA and a single dispatch queue entry.

Also, if a task is activated from TSM (TSM > RUN loadmod) and the user depresses the
Break key while the task is processing, TSM provides the alternative of attaching
DEBUG. In this case, the task context is saved as described previously in step 2.

4.1.2 /o

4.1.2.1 Terminal I/O

When DEBUG is attached to a task, it obtains the screen size from the Unit Definition
Table (UDT) for the terminal device assigned to the logical file code UT (User
Terminal). (This is the screen size defined at SYSGEN.)

The number of lines per screen (any non-negative 32-bit number) is used by DEBUG. If
the user has defined a value of 0 lines per screen, DEBUG disables the full-screen logic
(described below). The minimum allowable screen width (number of characters per line)
for debugging is 72 characters, and the maximum is 132 characters, the width of a
System Listed Output (SLO) file.

The screen size detected by DEBUG is used to allocate a log file (a temporary disc file)
large enough to contain approximately 100 full screens. The log file is manipulated by
the LOG and REVIEW commands. It contains a record of the most recent screens of 1/0
to the user's terminal, providing a complete audit trail of the debugging session. The
user is warned 10 screens before the end of the log file space is reached and the oldest
records begin to be overwritten by the most recent (a circular file).

The screen width detected by DEBUG is also used to calculate how many words per line
will fit into displays such as SNAP's. The format of a screen record is illustrated in
Section 4.9.

The screen height is used to enable DEBUG to pause when a full screen of lines has been
written to the terminal (terminal write operations by the user task are counted) with no
intervening terminal input. This prevents long displays (e.g., SNAP's) from running off
the top of the screen before they can be read by the user. A SYSGEN'd height of zero
lines signifies that the terminal is a hard-copy device and disables the full-screen logic.
A consequence of this disabling is that long SNAP's, for example, cannot be terminated
prematurely.

4-7

When at the end of a full screen of consecutive output, DEBUG displays the message "CR
FOR MORE:", the possible responses and their effects are as follows.

Response Effect
Carriage Return The display continues.
Anything Else Terminates the current command; the next command is read

from the terminal.

Terminal input and output are labelled with prefix characters (prompts) that indicate,
both on the terminal and on the log file, who said what and when. The prompt for an
input command from the terminal is one or two periods: "." or "..". A single prompt
signifies that the command is an immediate command; a double prompt signifies a
request for a deferred command. In all other cases, the prefix characters are pseudo-
prompts in that they are only labels for terminal output lines. Table 4-1 identifies the
various combinations of prompt characters which may arise and the significance of each.

Prompt Significance
. The user must input an immediate command on logical file

code (1fc) #IN.

o The user must input a deferred command on logical file code
(1fc) #IN.

DEBUG Pseudo-prompts (used to label DEBUG output on lfc

#fOT):
> Immediate command from lfc #03 (FILE command)
> Deferred command from lfc #03 (FILE command)
! Immediate command from a trap list.
1 Deferred command from a trap list.

Follows any of the above prompts and pseudo-prompts;
labels output resulting from a command.

Table 4-1. DEBUG Prompts and Labels

4-8

/4-':2; g\

/
—

4.1.2.2 Command Files

A command file is any permanent disc file which contains DEBUG commands. The
commands are in the form of 80-byte card images. The MPX-32 Text Editor can be used
to create a DEBUG command file. The STORE (not SAVE) command should be used to
write a command file. A command file is accessed via the FILE command.

4.1.2.3 SLO Files
DEBUG automatically creates SLO files when the LOG and DUMP commands are used.
4.1.3 Control Transfers

During a debugging session, control can pass back and forth between DEBUG and the user
task any number of times. Since, in fact, DEBUG and the user task are parts of a single
task, and since it is important for the scheduler to know which part is executing at any
given time, all such control transfers take place through scheduler (H.EXEC) service
calls.

Each time DEBUG gains control, T.CONTXT in the TSA contains the user task's context
as of its last executed instruction, and T.REGS and T.REGP indicate the current task
interrupt push-down level in effect for the user task (i.e., the stack is not pushed an
additional level upon entry to DEBUG). DEBUG analyzes the TSA and DOE of the task in
a status report on the terminal, detailing the user context (PSD and registers) for each
active task interrupt level.

When DEBUG gains control, it runs privileged regardless of the privilege state of the user
task. When DEBUG passes control to the user task, the scheduler restores the user task's
privilege state.

The following is a summary of the control transfers which take place between DERUG
and the user task. DEBUG always gains control as a result of M.DEBUG, whether it is

called by the task activation service, by the task itself, or by TSM at the request of the
terminal user after the task is running.

The user task gains controls

L.
2,
3.

4.

when DEBUG executes a GO command;
when DEBUG executes a BREAK command;

for the execution of a user instruction during a TRACE, TRACK, or

. WATCH command;

when DEBUG executes a DETACH command.

DEBUG regains control from the user task:

L.
2.
3.

a.

5.
6.

when the user task executes a DEBUG trap instruction;
when IOCS recognizes a break from the user's terminal;

when the user task calls the M.BRKXIT service, after DEBUG executes a
BREAK command;

after the execution of a user instruction during TRACE, TRACK, and
WATCH;

when the user task would normally be aborted by MPX-32;

when the user task executes an Exit system service.

Note that if DEBUG gains control upon a trap instruction (SVC!,X'66" which was coded
by the user (as opposed to one which was planted by the SET command), DEBUG will
interpret it as a break from the terminal instead of a trap. (See Section 4.1.4.)

If for any reason during a debugging session it is useful to clear all active user task
interrupt levels, the RESTART command may be used for this purpose.

(ﬁn‘r

4.1.4 Break Handling

A break occurs when:
the terminal user depresses the Break key

any task uses the M.INT service to simulate an interrupt and enter a break
receiver

DEBUG acknowledges breaks by analyzing the user context in a status report when it
receives control at its break-handling entry point. It prompts the terminal user for the
next immediate command. If a command file is being used, command file processing
terminates.

While DEBUG is attached to a user task, that task's break receiver (if any) can be
accessed only by using the BREAK command.

DEBUG recognizes breaks only when:

it has executed a GO command and has not yet prompted for the next
command, i.e., when the user task has control;

it is executing a WATCH command.
At all other times, breaks for the task are ignored.

If executing GO or WATCH as described above, the execution of a trap instruction that
was not set by the SET command appears to DEBUG as a break which occurred between
the execution of the trap instruction and the next user instruction.

4.2 Files and File Assignments

DEBUG has no static file allocations. When it gains control at its startup entry point, it
dynamically allocates terminal input and terminal output file codes to the terminal and
provides a log file with enough blocks for approximately 100 screens of terminal 1/0.

During the debugging session DEBUG allocates SLO files for LOG and DUMP commands
(enough for the log or dump being printed) and assigns command input from a file
specified in the FILE command.

4.2.1 File Assignments Chart

Table 4-2, columns 1-3, describes input and output files used by the Debugger, their
associated logical file codes, and default assignments. Column 4 is not applicable to the
Debugger. The only file assignments feasible to override for debugging are the input and
output assignments for batch processing as described in column 3.

4-11

Zi-n

Table 4-2

Debugger File Assignments

How Built
Default and (Previous
Input/Output Logical Optional Processor
Description File Code Assignments Assignment) How Specified Comment
Terminal Input #IN ASSIGNG #IN=UT N/A N/A - Do not specify.
Batch Input ASSIGN2 #IN=SYC N/A BATCH command in EDITOR See Section 4.4
(Job File) User can override or OPCOM.
with Job Control
ASSIGN's.)
Terminal #OT ASSIGN4 #OT=UT N/A N/A - Do not specify.
Output
Batch Output ASSIGN2 #OT=SL0, 1000 N/A N/A unless you want to
(User can override override.
with Job Control
ASSIGN's.)
Log File #01 ASSIGN3 #01=DC,n N/A N/A. DEBUG allocates #01 The log file is large
(temporary as a temporary file, enough to hold
disc file) approximately 100
screens of terminal 1/O
or batch equivalent.
Output Files #02 ASSIGN2 #02-=SLO,n N/A N/A. Do not specify. In batch, file assigned
to #OT is used for DUMP
output. A LOG command
is treated as a comment.
Command File #03 ASSIGN1 #03=filename N/A N/A. DEBUG makes this
assignment automatically
when the FILE command is
used.

4.3 Using the Debugger

This section describes the use of expressions, how to set traps and trap lists, and the use
of relative and absolute addressing within the Debugger.

4.3.1 Expressions

An expression is an input character string which is composed of a term or a sequence of
terms separated by operators. Each term represents a 32-bit, signed, binary number.
Expressions are used to specify memory addresses, memory contents, logical masks,
character strings, or numbers.

Terms that are legal for use in expressions are defined and described in the following
paragraphs, as are operators that specify arithmetic and logical operations to be
performed on two terms or expressions. All operators are binary (requiring two
arguments) and have no hierarchy of precedence. They are executed left-to-right, one at
a time, except where the user defines precedence by parentheses (exactly as in
FORTRAN expressions containing operators of equal precedence).

4-13

The following general rules apply: N

1.

2,

3.

l‘.

5.

=

Any term is an expression.
If e and f are expressions and * is any operator,
e*f

is an expression whose value is the result of performing the "*" operation
on the values of e and f{.

If e, f, and g are expressions and * and # are any operators,

e*fiig
is evaluated as

(e*f)itg;
i.e., the value of e*f is calculated first.
Parentheses may be used to override the normal left-to-right execution
of operators during the evaluation of an expression. During evaluation
the subexpressions in innermost parentheses are each evaluated left-to-

right and their values replace the parenthetical subexpressions. This
process is continued through any number of levels of nested parentheses

until no parentheses remain. Then the resulting expression is evaluated e

in the normal left-to-right manner.

All operators act on and result in 32-bit values.

DEBUG recognizes five types of terms in expressions: constants, register content
references, memory content references, bases, and COUNT.

4-14

/‘s»:i;‘

=

4.3.1.1

Constants

There are five types of constants, as follows:

- Hexadecimal Constant - A string of 1 to 8 hexadecimal digits enclosed in

apostrophes and preceded by the letter X (e.g., X'IEC"). If a "FORMAT N"
command (which assumes decimal format) is not in effect, the letter X and
the apostrophes may be omitted.

Decimal Constant - A string of 1 to 10 decimal digits enclosed in apostrophes
and preceded by the letter N (e.g., N'193"). If a "FORMAT N" command is in
effect, the letter N and the apostrophes may be omitted. The resulting value
is truncated on the left to produce a 32-bit value.

C Constant - A string of 1 to 4 ASCII characters enclosed in apostrophes and
preceded by the letter C (e.g.,, C'Al?"). If fewer than 4 characters are
entered, trailing blanks are added to produce a 32-bit value.

G Constant - A string of 1 to 4 ASCII characters enclosed in apostrophes and
preceded by the letter G (e.g., G'Al?"). If fewer than 4 characters are
entered, leading binary zeroes are added to produce a 32-bit value.

Binary Constant - A string of 1 to 32 ASCII 1's and O's enclosed in apostrophes

and preceded by the letter B (e.g., B'101011Y). If fewer than 32 bits are
entered, leading binary zeroes are added to produce a 32-bit value.

4-15

4.3.1.2 Register Content References

These are references to general purpose registers in the form Rn, where n is 0-7.
DEBUG uses 32-bit contents of the specified user register.

4.3.1.3 Memory Content (Indirect) References

Valid references are:

C(base)
C(base+hex)
C(base-hex)
C(base+dec)
C(base-dec)
C(hex)
C(dec)

where:

base is a base (see next section)

hex is a hexadecimal number

dec is a decimal number

These expressions specify the contents of the 32-bit word whose address is the expression

inside the parentheses. Bits 30 and 31 of the expression value are zeroed to determine
the word address.

4-16

A :

r:.\'

#.3- l.a m

Bases are symbolic terms whose names begin with $. The special bases automatically
defined by DEBUG are as follows:

Name Specifies

$ Bits 13-31 of user PSD

$PSD Bits 0-31 of user PSD

$TSA Address of TSA

$DSS Address of first word of DSECT after the TSA

SDSE Address of first word following the end of DSECT

$PCH Address of first word of 256 W DEBUG patch area

$Css Address of first word of user CSECT (=$CSE if no user CSECT)

$CSE Address of first GLOBAL/DATAPOOL (=128KW if no GLOBAL or
DATAPOOL)

Figure 4-2 shows the relative positions of the last six bases named above on a memory
map of a user task which uses all possible memory areas (CSECT, DSECT, Global
Common, and extended address space).

User bases can be defined by the BASE command. Their names consist of $ followed by

one to eight alphanumeric characters, the first of which must be alphabetic. User base
names must not match any of the special base names used by DEBUG.

4-17

$CSS
$PCH

SDSE

$0SS

$TSA

$0

f]
|
: EXTENDED ADDRESS SPACE |
|
']
— R
GLOBAL COMMON/DATAPOOL
-

CSECT

DEBUG PATCH AREA

DEBUG

I LT 11
uiiidiida
i

DSECT

TSA

OPERATING SYSTEM

128KW

820654

4-18

Pigure 4-2.

Debug Base Names

g
N

TN
-

4.3.1.5 COUNT

The value of the special term COUNT is always the number of occurrences of the most
recently-occurring trap since that trap was last set by the SET command. If no trap has
occurred since DEBUG initialization, the value of COUNT is 0.

4.3.1.6 Operators

-

If a and b are expressions, then a#fb is an expression where # is any of the DEBUG
operators defined below.

Arithmetic Operators

X+Y the sum of x and y; overflow ignored.
X-y y subtracted from x; overflow ignored.
x*y x multiplied by y; overflow ignored.
x/y x divided by y; remainder ignored.

Logical Operators

XAY x is logically shifted by y bits. The shift is to the left if y is
positive and is to the right if y is negative.

x&y x logically anded with y.

xly x inclusively ored with y.

x@y x exclusively ored with y.

4-19

Relational Operators

" The six relational operators yield a value of 1 if the specified relation is true, and a value
of 0 if the relation is false. Comparisons are arithmetic; i.e., the 32-bit values being
compared are assumed to be signed numbers.

X=y x equals y

X>y x is greater thany

X<y x is less than y

X<>y x is not equal to y

X >=y x is greater than or equal to y
X< =y X is léss than or equal to y

4-20

4.3.2 Relative versus Absolute Expression Evaluation

An input expression in a DEBUG command can be used to represent an address as
indicated in the command syntax. In these cases, an expression is evaluated as relative
(i.e., the value of $DSS, the first word of DSECT, is automatically added to its value)

unless it contains any base name outside of a memory content reference. (See Sections
4.3.1.3 and 4.3.1.4.)

All other input expressions are evaluated as absolute (i.e., no bias is added).

The same logic also applies to the expression within parentheses inside a memory content
reference (i.e., such expressions represent addresses by virtue of their context).

Examples:
SET 1C00 1C00 evaluated as $DSS+1C00
N 1C00 1C00 evaluated as 7168

SET $B+1CO00 $B+1C00 evaluated as $B+1C00

RELATIVE and ABSOLUTE commands may be used to override this expression evaluation
logic. For example, if you use ABSOLUTE before SET 1C00, 1C00 would be the address
1C00, not $DSS+1C00.

4.3.3 Address Displays and References

When DEBUG displays a value which, by virtue of its context, represents a memory
address (e.g., the address portion of the user PSD in a status report) it displays the value
either as a five-digit hexadecimal memory address or as a five-digit hexadecimal
displacement from some base address value, depending on the most recent ABSOLUTE or
RELATIVE command.

4.3.4 Address Restrictions

When DEBUG encounters a value which, by virtue of its context, represents a memory
address (e.g., the first argument of a DUMP command) it subjects the address to certain
restrictions, as described in Figure 4-3. Any address violating the criteria of Figure 4-3
causes the current command to be terminated and a self-explanatory description of the
violation to be displayed.

4-21

ACCESS TYPE
READ WRITE BRANCH MEMOARY AREA 258KW
x X x EXTENDED DATA MAP HOLES
X EXTENDED DATA
- 128KW
X X PROTECTED GLOBAL/DATAPOOL
X UNPROTECTED GLOBAL/DATAPOOY
USER CSECT
DEBUG PATCH AREA (256W1
X X DEBUG
T
i,
X X X (i,
DSECT
X X TSA
X X MPX-32 0
NOTATION:

MPX.1018

X « PROMIBITED

ACCESS TYPES

READ:

WRITE :

BRANCH:

Cl) IN ANY COMMAND
oumP
SCAN
SNAP

c™

GO (BOTH ARGUMENTS)

KiLL

SET

TRACE BOTH ARGUMENTS AND ALL
TRACK INSTRUCTION ADDRESSES
WATCH

DEBUG BASE NAMES

SCSE

SPCH

$DSE

SOSs

$TSA

820655

4-22

Figure 4-3. DEBUG Command Address Restrictions

4.3.5 Traps and Trap Lists

The user sets traps in a task with the SET command. The user instruction at each trap
address is replaced by DEBUG with an SVC 1,X'66' (trap) instruction, and the replaced
instruction is saved by DEBUG. When the trap instruction is executed, DEBUG gains
control and executes a trap list.

DEBUG locates the trap table entry which defines the trap and increments the trap's
COUNT variable by 1. Then the stored commands comprising the trap list are executed
(refer to the IF command description for a discussion of conditional execution of trap list
commands). Any number of commands can be in the trap list. The commands are
executed in the order they were added to the trap list. Any DEBUG commands can be
used in a trap list, except LOG and REVIEW,

4.3.5.1 Setting a Trap

When the user issues an immediate SET command, DEBUG defers the execution of
subsequent commands, storing them in the trap list for the trap that is being set.

Each deferred command is checked for validity before it is stored. A diagnostic message
informs the user of any error in the command; the user can re-enter the command at his
option. Note that expressions in deferred commands can contain references to user bases
which have not yet been defined. This is the only ‘error' allowed in a deferred command.

When the user enters a trap list terminator command which corresponds to the
immediate SET command, DEBUG adds it to the trap list and stops building the trap list.
Subsequent commands are immediate (not deferred).

Valid trap list terminators are BREAK, END, EXIT, FILE, GO, TRACE, TRACK and
WATCH.

Sample Trap Lists:

. SET 100
«+SNAP
.DUMP
.GO3

. SET 200
-SNAP
LDELETE §
.GO S

. GO 16

]

4-23

The user sets two traps, one at location 100 and the second at location 200, then uses GO
to start execution at location 16. If the trap at location 100 is encountered in execution,
control is returned to DEBUG. DEBUG displays a status report on the terminal and
performs a snap and a dump. It executes the instruction replaced by the trap instruction
and continues execution,

If the trap at location 200 is encountered, DEBUG displays a status report, performs a
snap, and is terminated. The task continues to execute.

4.3.5.2 Nesting Trap Lists
Trap lists can be nested within a trap list. The user can set a second trap if the first trap

is encountered, and so on, for as many trap lists as the user wants to nest.

DEBUG matches SET commands and trap list terminators as shown in Figure 4-4 to allow
the nesting.

4-24

k/'/

-

(YA

*p-p @anbta

Bed

s3s17 dexl pe3SeN

959028

IN LIST

SET
®
®
SET
°

®
TERMINATOR

SET
[]
e

SET
®
(

TERMINATOR
TERMINATOR

TERMINATOR

+1

+1

+1

L e e—

-1

DEBUG

E

+1

+2

+1

+2

+3

+2

+1

.

COMMENT

TERMINATOR FOR MOST RECENT SET

TERMINATOR FOR MOST RECENT
UNMATCHED SET
ENDS NESTED TRAP LIST ATO

DEBUG increments a counter for each SET. Each terminator encountered matches the
most recent unmatched SET and decrements the counter. When all SET's are matched,
the trap list ends.

In the example which follows, the last trap list terminator command (TRACF)
corresponds to the first trap set in the nested list, the second-to-last terminator (END)
corresponds to the second trap set. An immediate prompt (.) is not issued until the user
has supplied a terminator for each trap in the list.

Sample Nested Trap List:

. SET 100
«SNAP
-DUMP
«SET 200
-SNAP
.DUMP
ND

ACE

w/

m

~
~

()
0]

If DEBUG encounters the trap at location 100, it displays a status report, performs a
snap, a dump, sets the trap at location 200, and starts a trace. If it encounters the trap
at location 200, it displays a status report, performs a snap, a dump, and transfers
control back to the user at the terminal.

4-26

\

4.4 Accessing the Debugger

To access the Debugger from TSM, use:

TSM> DEBUG loadmod

The task is activated with DEBUG attached as an overlay. Control is passed to the
Debugger instead of to the task's transfer address when activation is complete.

The Debugger prints the current date and time and a status report:

MPX-32 DEBUG date:time
(Status Report)

The DEBUG prompt for an immediate command (.) is then displayed:

.command
Enter a DEBUG command.
The Debugger can also be activated by coding a service call, M.DEBUG, in the task
itself. The call causes DEBUG to be loaded into the address space of the task. Control
is passed to DEBUG and DEBUG displays a message at the terminal as described above.

To access the Debugger for a task that has been activated via a TSM RUN command,
depress the Break key. TSM responds: :

*** BREAK ***¥ ON taskname AT location
CONTINUE, ABORT, OR DEBUG? D

If you enter D (for DEBUG), the Debugger is loaded into the address space of the task,
control is passed to DEBUG, and DEBUG displays a message at the terminal as described
above.
To access the Debugger as part of a batch job, create a job file using the EDITOR, punch
cards, or other media. Use SDEBUG loadmod instead of SEXECUTE. The job file can be
submitted:
from the OPCOM console:

"< Attention>"

?7BATCH {F,jobfile }
D,devmnc

4-27

from the OPCOM program:
TSM >OPCOM

??BATCH {F,iobﬁle }
D,devmnc

from the EDITOR:

TSM> EDITOR

L]

EDT >BATCH [jobfile]

If the job file is the current EDITOR work file, issue just the BATCH command.
Section 4.6 for considerations when running the Debugger in batch.

4-28

See

N
it

{

g

|

4.5 Commands

The following rules apply to DEBUG commands, whether they are input from the
terminal or a job file (file code #IN) or from a file specified in a FILE command (file
code #03).

Each command is contained entirely in a single 80-byte record. If #IN is assigned to a
device or file with a smaller or larger record size, input commands are respectively
blank-filled or truncated on the right hand end. There are no provisions for the
continuation of commands or for compound commands.

The command verb starts in the first position of the line or record. All commands have a
command verb except for the default form of the Expression command, in which a blank
in the first column indicates the absence of a command verb. If a command can be
abbreviated, the acceptable abbreviation is indicated in the syntax statement by
underlining.

The command verb is followed by a terminator (any non-alpha character) and the
argument list, if any. Multiple arguments are separated by commas (,). Extra blanks in
the command line are ignored unless they are used inside a C or G character string.

Any of the command arguments in Table 4-3 can be specified by the user in the form of
an expression, as long as the expression is valid and conforms to any further restrictions
mentioned in the description of the command being used:

Arg Command

reg CR

value CM, CR

addr BASE, CM, GO, LIST
low DUMP, SNAP

high DUMP, SNAP
screens REVIEW

start TRACE, TRACK
stop TRACE, TRACK
trap DELETE, GO, SET
expr ' expression

cond IF

Table 4-3 Valid Use of Expressions

4-29

Only diagnostic messages originating from the command logic are mentioned in the
command descriptions. Diagnostics arising from expression errors are covered in Section
4.8. Note that any diagnostic message incurred by a command signals the termination,
possibly premature, of the command.

The RESPONSE section of each command description outlines DEBUG's response to the
command when it is executed (i.e., immediate). For possible responses to deferred
commands see Section 4.3.5, Traps and Trap Lists.

Even if no mention is made of batch differences in a command description any reference

to the terminal is understood in batch to refer to the lfc #IN fof input and #OT for
output. See Section 4.2.! for a description of I/O assignments in batch.

4-30

Command

ABSOLUTE

BASE
BREAK
CC

CLEAR

CR

(DELETE

DETACH

DUMP

END

EXIT

Function
Evaluates all input expressions as absolute and displays all output
addresses as absolute until a RELATIVE command is issued.
Creates, deletes, or modifies the definition of a user base.
Transfers control to user task's break receiver.
Displays or modifies condition codes in user task's PSD.

Clears symbolic bases, or deletes all traps set in user task.

Changes contents of memory beginning at specified address to new 32-
bit value(s).

Changes contents of user register(s) beginning at specified register to
new 32-bit value(s).

Deletes specified traps.

Detaches DEBUG from the user task. DEBUG transfers control to the
task at specified address or last address executed in the task.

Dumps a snapshot of specified area of task's memory, including task's
PSD and general purpose registers to dynamically created SLO file
(interactive) or existing SLO file (batch).

Terminates a trap list and returns control to the terminal.

Terminates both DEBUG and user task and returns control to TSM.

4-31

expression

FILE

FORMAT

LIST

LOG

MSG

RELATIVE
REVIEW

RUN

SET

SHow

4-32

Specifies an expression. NDEBUG evaluates it and outputs its value on
screen (interactive) or SLO (batch). No command word is used.

Reads records from specified command file. Reverts to terminal at
end of file.

Sets default format for untyped numeric constants in input expressions
to decimal or hex.

Resumes execution of user's task at specified address or last known
user program counter value. Optionally sets a one-shot trap at
specified address. The trap is deleted automatically by DEBUG after it
occurs,

Used for conditional execution of trap lists.

Lists on UT (interactive) or SLO (batch); trap(s) set in task, with trap
list(s).

Copies the log file of screen /O to a dynamically allocated SLO file.
Interactive use only. In batch, entire session already recorded on SLO.

(Specif%es a comment to output on terminal (interactive) or SLO file
batch).'

Displays and interprets logical addresses relative to a base.

Displays log file screens one at a time. Interactive use only.

Restarts run (as opposed to single-step) operation for TRACE or
TRACK.

Sets word address of an instruction to be trapped. User then creates
trap list.

Lists addresses of all traps, bases, or option settings.

SNAP

STATUS

STEP
TIME

TRACE

TRACK

WATCH

Dumps a snapshot of specified area of task's memory, including task's
PSD and general purpose registers to terminal screen (interactive) or
existing SLO (batch).

Displays a status report of user PSD and registers for each currently
active task interrupt level.

Single-steps subsequent TRACK or TRACE.

Displays current date and time.

Transfers control to user task and displays each instruction after it is
executed.

Transfers control to user's task and displays each branch instruction
after it is executed.

Like TRACE, but does not display instructions. Detects erroneous
branches into areas such as the MPX-32 operating system.

4-33

4.5.1 The ABSOLUTE Command

The ABSOLUTE command is used to:

evaluate all input expressions as absolute until a RELATIVE command is
executed

display all addresses as absolute hexadecimal logical addresses until a
RELATIVE command is executed

See Section 4.3.2.
Syntax:

ABSOLUTE
Response:
The command is always valid.
No output.

DEBUG prompts for the next command.

4-34

i,

4.5.2 The BASE Command

The BASE command is used to:
define a user base (add its name to the internal base definition tablé)
delete a user base name from the base table
redefine a user base (change the value specified in the base name's definition)

Up to 16 user bases are allowed. See Section 4.3.1.4.

Syntax:
BASE base[,addr]

where:

base is a user base name. Must begin with the character $ and an alphabetic
character. Can be up to eight alphanumeric characters maximum.

addr supplies a logical address for a base. If no address is used, deletes specified
base name. If "addr" is specified and "base" is already defined, "base" is
redefined to represent "addr".

Response: |

No output except diagnostics. Diagnostic messages inform the user if:
the user tries to define a new base and the base table is full (16 user bases)
"base" is not specified
"base" is a DEBUG base name

the user attempts to delete an undefined base

4-35

4.5.3 The BREAK Command
The BREAK command is used to transfer control from the Debugger to the user task's
break receiver.
Syntax:
BREAK
Response:

The user break receiver gets control. DEBUG regains control upon the occurrance of the
next break, trap, user abort, or break receiver exit.

No output except diagnostics. A diagnostic message informs the user if the user task has
no break receiver.

The BREAK command is a trap list terminator.
4.5.4 The CC (Condition Code) Command

The CC command is used to display the four condition code bits in the DEBUG base $PSD

(bits 0-31 of the user PSD) or to display the old condition code of $PSD and insert a new
value.

Syntax:
CC [cc]

where:

cc is a string of four binary digits. If used, replaces the existing condition code
in $PSD.
If no value is specified, DEBUG displays the present condition code.

Response:

A diagnostic message informs the user if the condition code is specified incorrectly.

DEBUG prompts for the next command.

4-36

(‘;:se‘sa\

8.5.5 The CLEAR Command

The CLEAR command is used to delete all user base definitions or delete all traps.
Syntax:

CLEAR BASES }
{ TRAPS

where:

BASES indicates that all user base definitions are to be deleted.

TRAPS indicates that all traps are to be deleted.

Response:

A diagnostic message informs the user of any argument specification errors.

No output except for diagnostics; DEBUG prompts for the next command.

4-37

4.5.6

The CM (Change Memory) Command

The CM command is used to alter the contents of one or more consecutive words in the
task’s logical address space.

Syntax:

where:

addr

value

Response:

CM addr=valuel,valuel,...

specifies the address of the first or only word to be changed (bits 30 and 31 of
addr are ignored and assumed to be 00).

is the 32-bit value to be stored at the specified address. Successive values are
stored in consecutive words beginning at "addr". Two consecutive commas
with no intervening value can be used to skip the memory address
corresponding to the missing value, leaving its contents unchanged.

Diagnostic messages inform the user if:

"addr" and "value" are not both present and valid

memory changes must be stopped because "addr" or an address derived from it
(multiple values) violates a DEBUG address restriction, or because an error
occurs in evaluating one of the "value" expressions.

Note that in the second case, the diagnostic message will make clear which memory
words, if any, were successfully changed.

A SNAP is performed for the modified range and the new contents are displayed.

DEBUG prompts for the next command.

4-38

&

4.5.7 The CR (Change Register) Command

The CR command is used to alter the contents of one or more user registers.

Syntax:
CR Rn=valuel,valuel....

where:

Rn is a number in the range 0-7, specifying one of the user registers R0-R7.

value is the 32-bit value to be stored-in the specified register. Succeeding value’s,
if any, are stored in consecutive user registers. Two consecutive commas
with no intervening value can be used to skip the user register corresponding
to the missing value, leaving its contents unchanged. If user register R7 has
been altered or skipped and one or more unused value's remain, they are
ignored.

Response:

A diagnostic message informs the user if: (1) a register specification is absent or not in
the range 0-7; or (2) the first value is not specified.

DEBUG prompts for the next command.

4-39

4.5.8 The DELETE Command

The DELETE command is used to delete specified traps and restore replaced user
instructions to their original locations.

Syntax:

DELETE trap
where:
trap is a trap address.
Response:

A diagnostic message informs the user if:

no "trap" is specified

"trap" is not an address at which a trap has been set by the SET command
Note that in the second case, the diagnostic. message clarifies which address is not a trap
address by displaying an exclamation point below the incorrect expression; any traps

specified to the left of the incorrect expression will have been deleted.

As each trap is deleted, the user instruction.replaced by the trap instruction is restored
to its original location.

DEBUG prompts for the next command.

4-40

~,

4.5.9 The DETACH Command

The DETACH command is used to detach DEBUG from the user task and transfer control
to the task at the specified address or at § (bits 13-31 of user PSD).

Syntax:
DETACH [addr]

where:

addr is the address within the user task to which control is transferred. If not
specified, defaults to $.

Response:

All traps are deleted (there is no need to enter CLEAR TRAPS to restore user
instructions replaced by trap instructions).

DEBUG files and memory are deallocated.
DEBUG transfers control to the specified address.

A diagnostic message informs the user if the specified address violates a DEBUG address
restriction.

DETACH is a trap list terminator.

4-41

4.5.10 The DUMP Command

The DUMP command is used to output a range of memory on an SLO file.
ASCII format is used for the right hand side of the memory display.
On line: the dump is output to a dynamically created SLO file, using file code #02.
Batch: the dump is output to file code #0T.
Syntax:
DUMP [lowGhighl]
where:

low and are expressions representing memory addresses. If "high" is not specified
high or is not greater than "low", only the single word at "low" is displayed.

If no addresses are specified the entire user task area is displayed. Bits 30
and 31 of the values of "low" and "high" are zeroed to produce word addresses.

Response:

The memory range between the addresses "low" and "high" is output. The user PSD and !
registers are also shown. .

A diagnostic is displayed if any address in the range violates an address restriction.
4.5.11 The END Command

The END command is used to terminate a trap list. Using just a carriage return performs
the same function.
Syntax:

END or <CR>

Response:

END is a trap list terminator.

-~

442

4.5.12 The EXIT Command
The EXIT command is used to terminate debugging and return to the TSM > prompt. Both
the user task and DEBUG exit.
Syntax:
EXIT
Response:

DEBUG calls the M.EXIT service after verifying that the user desires to exit the system
(return to TSM) and determining whether a hard copy of the log file is desired.

EXIT is a trap list terminator.

In batch, if EXIT is used and/or end-of-file is encountered on #IN, DEBUG processing
terminates.

4-43

4.5.13 Expression Command

The Expression command is used to display the value of an input expression.

Syntax:
A
B (expr
N
(X)

where:

A displays the low order 19 bits of "expr" as an address. The data are displayed
as absolute or relative, based on the most recent ABSOLUTE or RELATIVE
command. .

B displays "expr" in binary

N displays "expr" as a signed decimal number

X displays "expr" in hexadecimal

expr is any expression

Response:

A diagnostic message informs the user of any error encountered in evaluating the
expression and displays an exclamation point under the invalid term or operator.

After displaying the value of the expression, DEBUG prompts for the next command.

4-4y

4.5.14 The FILE Command
The FILE command is used to input subsequent DEBUG commands from a command file
instead of from the terminal.
Syntax:
FILE filename([,password] -
where:
filename is the name of a command file on disc.
password is the password, if any, associated with the file.
Response:
A diagnostic message informs the user if:
"filename" is absent or invalid, or the file does not exist
the password is invalid

the user is not allowed access to the file, e.g., a password is associated with
the file and has not been supplied

the command is read from a command file
If there are no errors, DEBUG assigns lfc #03 to the specified file and reads subsequent
commands from #03 instead of #IN. When DEBUG reaches EOF on #03 or a break is
recognized, command input reverts to #IN. The user name, if any, stored in T.USER in
the task's TSA is used to access the command file.

Use of the FILE command terminates a trap list.

4-45

4,515 The FORMAT Command g

The FORMAT command is used to set the default (assumed) format for untyped numeric
constants in expressions to hexadecimal or decimal.

Syntax:
FORMAT {x}
N
where:
X sets the input radix to hexadecimal, which is the original default when
DEBUG is attached.
N sets the input radix to decimal.
Response:

A diagnostic message informs the user if the format specification is absent or invalid.

DEBUG prompts for the next command (no output).

4-46

.{.

(.

4.5.16 The GO Command

The GO command is used to transfer control to the user task, optionally setting a one-
shot trap.

Syntax:
GO [addr)itrap]

where:

addr is the address within the user task to which DEBUG transfers control. If
"addr" is not specified, the DEBUG base $ (bits 13-31 of the user PSD) is
used.

trap is the address within the user task at which DEBUG sets a one-shot trap.
The trap is defined by the following trap list:
MSG**ONE-SHOT SET BY GO COMMAND#**
DELETE trap
where "trap" is the address of the one-shot trap, displayed by DEBUG as a
hexadecimal number. If a trap address is not specified by the user in the GO
command, DEBUG does not set a trap before transferring control to the user
task.

Response:

A diagnostic message informs the user if:

either the transfer address or trap address violate DEBUG address
restrictions

a trap address is specified and a trap is already set there

no trap table space remains and a trap address is specified

the specified transfer address is two bytes greater than any trap address
"addr" is an odd number

"trap" is not on a word boundary

Y47

In any of these cases, the GO command is not executed.

If GO is successful, DEBUG transfers control to the user task at the specified address. If
the last control transfer into DEBUG was caused by a trap and control is passed to the
trap address for that trap, the user instruction replaced by the trap instruction is
executed first. Control is then passed to the trap address plus one word unless the
replaced user instruction is any instruction which terminates the TRACE, TRACK, or
WATCH commands--such a replaced instruction may not be executed without first
deleting the trap set on it.

Control remains with the user task until a trap, break, or user abort occurs, whereupon
DEBUG regains control and reads the next immediate command from the terminal or a
trap list as appropriate.

GO is a trap list terminator.

4-48

==y

p—

4.5.17 The IF Command

The IF command is used to make a trap list conditional, i.e., the trap list is executed only
if specified conditions are met.

Syntax:
IF cond
where:
cond is any expression.
Response:

If the value of "cond" is 0, the trap list which follows the IF is not executed; otherwise it
is executed. When "cond" is 0, the COUNT for the trap is incremented, the user
instruction replaced by the trap instruction is executed, and control is passed back to the
user task as in a "GO $" command.

When "cond" is nonzero, the occurrence of the trap is reported, the trap's COUNT is
incremented, and DEBUG executes the remaining commands in the trap list.

A diagnostic message informs the user when IF is entered as an immediate command or
when "cond" is absent or invalid.

The expression "cond" is evaluated. If the value is nonzero, the trap is reported and
remaining commands in the trap list are executed. The relational operators listed in
Section 4.3.1.6 produce a value of 1 if the relation is true, and a value of 0 if false.

The trap's COUNT is incremented whether the trap is reported or not.

A trap list may contain at most one immediate IF command. When IF is present, it must
be the first command of the trap list.

If the value of "cond" is zero no trap is reported and the program continues executing as
if the user issued a GO § command.

4-49

4.5.18 The LIST Command

The LIST command is used to display the trap list for a specific trap. '

Syntax:
LIST trap
where:
trap specifies a trap address.
Response:

A diagnostic message informs the user if "trap" is not a trap address.
4.5.19 The LOG Command

The LOG command is used to print the log file. For log file description, see Section
4.1.2.1.
Syntax:

LOG
Response:
All log file records which have not already been printed are copied to an SLO file. The
SLO file is then closed and deallocated. All log file records thus copied are no longer
accessible (their space is released). The LOG command is ignored in batch.

A diagnostic message informs the user if LOG is entered as a deferred command.

4-50

¢

4.5.20 The MSG Command

The MSG command is used to display a message.

Syntax:

MSG message
*

where:

message is any character string.

Response:

The character string is displayed. MSG can be used, for example, on a command file or
in a trap list.

4.5.21 The RELATIVE Command

The RELATIVE command is used to input and display adresses as they are relative to a
base.

Syntax:
RELATIVE (base]

where:

base is a base name. If a base is not specified, the base specified in the last
RELATIVE command is used. If no base has been specified in a RELATIVE
command, the special base $DSS (DSECT start) is used.

Response:

Each address that is displayed is represented as a displacement from the nearest base
which is not greater than the address.

Each relative input address is biased with the value of the the specified base.

A diagnostic informs the user if the specified base has not been defined.

4-51

4.5.22 The REVIEW Command

The REVIEW command is used to display the log file at the terminal.

Syntax:
REVIEW (screens]

where:

screens is the number of screens from the current position in the log file for DEBUG
to backspace before beginning the log file display. If the number of screens
is not specified or is greater than the number of screens currently contained
in the log file, the display begins at the first record in the log file.

Response:

DEBUG displays the log file one screen at a time.

When DEBUG reaches the end of the log file, the display is terminated and DEBUG
prompts for the next command. None of the above terminal I/O is copied to the log file.

REVIEW is treated as a comment in batch.
A diagnostic message informs the user if:
REVIEVW is entered as a deferred command

REVIEW is read from a command file
4.5.23 The RUN Command

The RUN command is used to trace or track until DEBUG reaches a full screen of output
instead of single-stepping.

Syntax:

Response:

Until a STEP command is executed, the TRACE and TRACK commands run to a full
screen of output before pausing.

4-52

(4;; u&;\\

4.5.24 The SET Command

The SET command is used to set a trap in the user task.

Syntax:
SET trap
where:
trap is the address at which DEBUG sets a trap.
Response:

The us<)ar instruction at the specified trap address is replaced by a trap instruction (SVC
1,X'66").

DEBUG stores subsequent commands in the trap list (i.e., subsequent commands are
deferred) until a trap list terminator is read which corresponds to this SET. Trap list

terminators and their interaction with the SET command are discussed in Section 4.3.5,
Traps and Trap Lists.

A diagnostic message informs the user if:

The trap address is absent, is already a trap address, or violates an address
restriction.

DEBUG's trap table is full and thus no more traps can be set until a trap is
deleted.

"trap" is not on a word boundary.

4-53

4.5.25 The SHOW Command

The SHOW command is used to display current base definitions, trap addresses, or option
settings.

Syntax:
SHOW (BASES
TRAPS
| SPTIONS|
where:

If no argument is specified, all displays are produced.
BASES displays the current definitions of all special bases and user bases.
TRAPS displays all trap addresses.
OPTIONS displays the settings of the options controlled by the following commands:
ABSOLUTE/RELATIVE
RUN/STEP
FORMAT

Response:

A diagnostic message informs the user if any argument but BASES, TRAPS, or OPTIONS
is used.

4-54

4.5.26 The SNAP Command

The SNAP command is used to output the contents of a range of logical addresses on the
file or device assigned to #OT. The output format is side-by-side hexadecimal and
ASCIL.

Syntax:
(sNAPIllowl,high]]

where:
If a range of addresses is not supplied, DEBUG snaps the logical address
space of the task from $DSS to SDSE.

low specifies the first address to snap. If no address is specified, the snap begins
at $DSS. Bits 30 and 31 are ignored and assumed to be 00.

high specifies the last address to snap. If not specified, only the single word at
the low address is snapped. Bits 30 and 31 are ignored and assumed to be 00.

Response:

The specified memory contents are output to #OT.

4.5.27 The STATUS Command

The STATUS command is used to display a status report indicating the user PSD and user
registers for each currently active task interrupt level.
Syntax:

STATUS

Response:

DEBUG displays a status report on the terminal.

4-55

4.5.28 The STEP Command
The STEP command is used before TRACE or TRACK to single-step through the
execution of each instruction in the user task.
Syntax:
STEP
Response:
Until a RUN command is issued, all TRACE and TRACK commands will pause after each
instruction display so the user can inspect each instruction and its results before the next

instruction is executed.

STEP is ignored in batch.
4.5.29 The TIME Command

The TIME command is used to display the date and time of day.
Syntax:

TIME
Response:

DEBUG displays the calendar date as stored in the Communication Region (C.DATE) and
the time of day as returned by the M.TDAY service.

4-56

4.5.30 The TRACE Command

The TRACE command is used to execute and display each user instruction and its
results. To trace only branching instructions, use the TRACK command.

Syntax:
TRACE ([start][,stop)

where:

start is the address of the first user instruction to be executed. If starting address
is not specified, the special base $ (bits 13-31 of the user PSD) is used.

stop is the address of the last user instruction to be traced. If a stop address is
not specified, the trace continues as described below.

Response:

DEBUG fetches user instructions beginning at the specified start address and executes
them, displaying each instruction and some of its results and/or operands in a basic
Assembler-like format.

Unless a RUN command is in effect, DEBUG pauses after each instruction is executed or
simulated, if possible, and waits for a 1-character response from the user. To proceed to
the next user instruction, enter only a carriage return. Any other response terminates
TRACE. If a RUN command is in effect, TRACE does not pause after each instruction
but proceeds immediately to the next instruction; thus the only opportunity to stop the
display is at the end of each screen. Note that in batch, TRACE functions as if a RUN
command were in effect.

4-57

This process continues until one of the following occurs:

An instruction has been fetched, executed, and displayed from the specified
stop address. The user context indicates that the instruction has been
executed, as shown in the status report announcing trace termination.

A user instruction is aborted, e.g., by a privilege violation or a map fault.
TRACE executes most user instructions by transferring control to the user
task for one instruction at a time. When these instructions execute, it is as
if the user had entered "GO a,b" where "a" is the address of an instruction
and "b" is the address of the next instruction (logically next, not necessarily
"a"+1W). Any abort condition caused by such instructions is reported as it
would be after a GO command and the trace is terminated. The user context
is reported in a status report.

DEBUG fetches an instruction that breaks the trace (see Table 4-4). The
instruction is displayed and TRACE is terminated. The user context still
points to the untraceable instruction, as shown in the status report
announcing trace termination.

The address of the next instruction to be fetched would violate an address
restriction. No instruction is displayed, the trace is terminated, and the user

context points to the bad address as shown in the status report announcing
trace termination.

If the last control transfer to DEBUG is caused by a trap, and the starting address is $§
(the user PSD), the user instruction replaced by the trap instruction at $ is traced as if it
were at $, and the trace continued.

A diagnostic message informs the user if the starting address violates an address
restriction or is two bytes greater than any trap address or "start" or "stop" is an odd

address.

TRACE is a trap list terminator.

4-58

Table 4-4 Instructions that Break a Trace

All undefined opcodes

4-59

4.5.31 The TRACK Command

The TRACK command functions exactly like TRACE, except that it displays only
branching instructions.

Syntax:
TRACK [start](,stop]

where:

start is the address of the first user instruction to be executed. If the starting
address is not specified, the special base $ (bits 13-31 of the user PSD) is
used.

stop is the address of the last user instruction to be executed. If a stop address is
not specified, the track is continued as described for TRACE.

Response:

TRACK functions exactly like TRACE with the following exception:
Only instructions which can cause branching are displayed (BCT, TRSW,

LPSD, etc.), and they are listed with an indicator, where appropriate,
showing whether a conditional branch is being taken.

4-60

o
)

4.5.32 The WATCH Command

The WATCH command functions like TRACE, but does not display instructions. It is used
to detect erroneous branches into areas such as Global Common or MPX-32,

Syntax:
WATCH (start] [,stop]

where:

start is the address of the first user instruction to be executed. If a starting
address is not specified, the special base $ (bits 13-31 of the user PSD) is
used.

stop is the address of the last user instruction to watch. If a stop address is not
specified, the watch continues as described below.

Response:

DEBUG performs a TRACE but inhibits the usual instruction display. When, as often
happens in a new program, an erroneous branch is taken, it is often into an area
completely out of the program (e.g., a branch to location 0). Especially in the case of a
privileged task, many instructions may precede the inevitable disaster. While the system
crumbles, many of the most useful hints as to the cause (e.g., register contents) are
destroyed. WATCH provides a convenient means of detecting such branches when they
happen without all the terminal output caused by TRACE or TRACK.

4-61

4.6

Batch Considerations

This section parallels the other sections in this chapter, outlining the major differences
which arise when DEBUG is attached to a batch task. The differences between
interactive and batch functions for specific commands are discussed in the individual
command descriptions in Section 4.5. File assignments are covered in Section 4.2,

Section

#.4

4.1.2.1

4.1.2.3

u.l.a

4-62

Batch Considerations

DEBUG may be attached at activation time to a batch task by using
the Job Control command $SDEBUG where SEXECUTE would normally
be used.

Terminal I/O: Screen size is meaningless. There is no log file; input
commands are read without prompts, and pseudo-prompts are added as
for commands from a command file.

SLO files: The DUMP command does not produce a separate SLO file,
but places its output on the SLO file allocated for the file code #OT;
the LOG command is treated as a comment in batch since there is no
log file.

DEBUG recognizes breaks during batch processing, but since there is no
terminal, the only possible sources are the OPCOM BREAK command
or an SVC 1,X'66' instruction coded by the user as part of his task (i.e.,
not planted by the SET command). Since in batch, the command
stream is not interactive, but must be composed before execution, the
user abort and break interception provided by DEBUG must be used
with care.

~

4.7 Listings and Reports

See individual command descriptions.

.3 Errors

See individual command descriptions and Appendix C.

4.9 Examples

Not supplied.

4-63/4-64

-
A

5. THE TEXT EDITOR (EDIT)

The MPX-32 Text Editor (EDIT) provides a comprehensive set of commands for building
and editing text files, merging files or parts of files into one file space, copying existing
text from one location to another, and in general for performing editing functions
familiar to users of interactive systems. "

EDIT is typically used to create source files and to build job control files"and general
text files. A job file built in the Editor can be copied directly into the batchstream using
the Editor BATCH command.

5.1 General Description

Edit structure is based on the concept of a work file upon which the user operates with
editing commands. Source text may be transferred between permanent disc files and the
work file. Access to source text is based on line numbers contained within text lines.

The Text Editor only recognizes file names with 1-8 characters. Valid characters for file
names are A-Z, 0-9, dot (.) and underscore (). Although other characters will generally
be accepted, their use is not recommended. Filenames should not begin with a dot or
s;ring of digits followed by a dot. Filenames must contain at least one alphabetic
character.

5.2 Files and File Assignments

The Text Editor uses two logical file codes. Logical file code TER is used for input and
logical file code RET is used for output. Normally both are assigned to LFC = UT.
However, if the file codes are dynamically altered, reassigning RET to a permanent file
allows the results of an edit search to be written to that file. Dynamic assignment will
also enable the use of TSM macro parameter substitution logic to edit files. Commands
that require handler interface are not supported when the logical file code assignments
are dynamically altered.

5.3 Options

The TSM command OPTION LOWER can be used to accommodate a terminal that is
entering upper and lower case text. See Section 5.4.6, Entering Lower Case Text. There
are no other options that affect the use of EDIT.

Change 2
5-1

5.4 Using the Editor
5.4.1 Addressing Techniques

There are several ways of specifying what lines to work on with an EDIT command,
ranging from supplying a specific line number to specifying a group of lines and ranges of
lines. The following sections describe various addressing techniques.

5.4.1.1 Special Characters

Several characters are available to use in place of a line number (these apply to workfile
line numbers only):

F or FIRST the first line in the file
L or LAST the last line in the file
E or END the last line in the file (L) plus the current increment set for adding

lines at the end of the file (DELTA, normally 1.)
A or ALL all lines in the file
C or CURRENT the last line currently displayed on the terminal
N or NEXT the line following the current line

When referring to external files, specific line numbers should be stated to avoid
erroneous results, i.e., 200/300 not 200/E.

Because these characters and words are EDIT keywords, they cannot be used as file
names.

5-2

5.4.1.2 Line and Range Addressing

To access a specific line, type the line number. To access a contiguous set of lines
grange), type the first line number, a forward slash, and the last line number in the range,
1.e"

lineno

or

lineno/lineno
The characters "F", "L", or "E" can be used in place of a specific line number. The range
implied by ALL is F/L. Usage of "C" and "N" as part of a range is not permitted and will
cause incorrect results. These special characters are intended to be used only to display
a single line.

When only part of a range is specified with an EDIT command, the rest of the range is
implied. If you use a beginning line number followed only by a forward slash:

lineno/
the last line in the range defaults to the end of the last range speciﬁéd in the previous
command. Likewise, if you use just a forward slash and the last line number for a range
specification:

/lineno
the first line number defaults to the first line number from the last range specified with
the previous command. See also Section 5.4.1.5.
5.4.1.3 Groups
A group is any combination of line numbers and ranges, where each specification is
separated from the next by a comma, e.g.,

lineno/lineno, lineno, lineno/lineno

There can be up to 24 specifications in a group. The above illustration shows three.

5.6.1.4 Content Identifiers

To limit access within a group to lines containing a specific string, type the string
enclosed in backslashes, i.e.,

string

Only the lines containing the specified string are then accessed. A content identifier
used with a group applies to the entire group, e.g.,

1/60, TRAP ,75, 209/L

specifies that all lines within the group that contain the content identifier TRAP are to
be accessed. This applies to lines 1-60, line 75, and line 209 through the last line of the
file.

5.4.1.5 Defaults

When no lines are specified with an EDIT command, the lines specified with the previous
EDIT command are used by default, with the following exceptions:

o If a group was specified previously, only the last line or range in the group
(the specification to the right of the last comma) is taken for the current
command.

o Content identifiers do not carry over. If you have selected lines within a
range in the previous command by using a content identifier, you will
access the entire last range in the group without regard to the content
identifier when you specify nothing.

5.4.1.6 Special Command Defaults

Several EDIT commands have special defaults:

o Initially the default for COLLECT and INSERT is the line following the last
line of the file (E). After that point, COLLECT and INSERT default to the
line following the last line collected or inserted as the point to begin
collecting or inserting lines. (When LIST follows one of these commands
and no group is supplied, it defaults to the lines that have just been
collected, or inserted.)

A

o COPY and MOVE also have special defaults. If nothing is specified, they
default to the first through last lines specified or implied in the last range
of the previous command as source text and the line following the last line
in the file (E) as the point where source should be copied or moved.

LIST, CHANGE, APPEND, REPLACE, PREFACE, and DELETE initially default to the

first line of the file. After that, defaults are geared to the specification for the previous
command as described previously in Section 5.4.1.5.

5.4.1.7 Description in Syntax Sections

The syntax description for each command in Section 5.6 uses the term 'group' as a means
of flagging any of the addressing techniques described in Sections 5.4.1.1 through 5.4.1.4.
Defaults are reiterated with each command description.

In general the various arguments associated with any command may be entered in any
order.

5-5

5.4.2 Lines and Line Numbers

Line numbers take the form of decimal numbers in the range zero (0) to 9999.999, with at
most three digits after the decimal point. When creating new text, it is usually
convenient to use only integer line numbers, reserving fractional line numbers for
subsequent insertions.

The user work file is limited to 10,000,000 lihes. This is the actual limit if the user
sequentially numbers lines 0.000, 0.001,...,9999.999, inclusive. Otherwise, the work file
is limited by the highest line number.

5.5.2.1 Line Numbers Generated by the Editor

When the Editor generates line numbers, e.g., with the COLLECT, MOVE, COPY, or
INSERT command, it does so according to what the user specifies for a beginning line
number (base) and optional increment. The following rules apply:

o The least significant decimal position used in the base (or increment)
applies to line numbers that are generated by the Editor. A specification in
tenths implies lines 1 to .9 or some subset thereof. A specification in
hundreths implies lines .01 to .99 or some subset thereof. A specification
in thousandths implies lines .001 to .999 or some subset thereof.

o The Editor stops the current operation if it encounters an existing line
number. As long as no existing lines are encountered, the Editor rolls over
line numbers until it reaches an existing line number.

o An increment is an absolute number to add to the previous line number to
obtain the next line number. It is not automatically relative to the base,
i.e., if you specify a base (or beginning) line number in tenths, and want to
increment in tenths, the increment must reflect the base decimal
position. For example, if you specify line 2.2 as the starting line and
specify .2 as an increment, the Editor generates lines 2.2, 2.4, 2.6, and
2.8. If instead, you specify 2 as an increment, the next line number
generated after 2.2 will be 4.2, The default increment used in generating
line numbers is 1, .1, .01, or .001 depending on the least significant position
of the specified base number.

o DELTA increments apply to lines following the last line of the workfile.
o a special DELTA increment (1/10 of DELTA value) is used by the Editor to

- generate line numbers for COLLECT and INSERT commands-when the line
number supplied (or implied) by the user already exists.

¢ %

5.4.2.2 Line Numbers at the Beginning and End of the Workfile

Unless otherwise specified, when you begin building a workfile, the Editor defaults to line
1 for beginning of file. Lines 0 - 0.999 are, however, valid line numbers and can be used
subsequently to insert lines before line 1.

The special character 'E' provides access to the end of the workfile, as it specifies the
last line in the file plus an increment. The line number for E depends on the setting of
DELTA. DELTA is normally an increment of 1 over the last line in the file. It can be
overridden to a different significant digit and increment (e.g., .02) by using the SET
DELTA command.

5.4.2.3 Physical Position of Line Numbers

The Editor displays line numbers at the beginning of the line, but it does not store, save,
or output them there. The line numbers are physically output in columns 73-80 of each
line of text, so that when another program reads the file, it can ignore the line numbers.

For example, when any processor is run, it requires that a directive, a label, or some
other significant command 'verb' begin in position | of a line. (In some cases, a symbol
such as a slash precedes the verb; in this description and throughout the documentation,
the symbol is considered an integral part of the verb.)

Because the Editor moves the line number to the end of each line, the verb falls in the
correct position (column 1) for processing in the batch environment.

5.4.2.4 Text Output Without Line Numbers

The workfile can be listed or output without line numbers if desired for readability or

required for subsequent processing by a user-developed task. No SYSTEMS processors
require removing line numbers.

Physically, using UNN as an option on a command replaces the Editor line number in
columns 73-80 with blanks.

5-7

5.4.3 Accessing Files Created Outside the Editor

The USE command is normally used before performing any other editing functions on
these files. If a disc file being copied into the workfile via USE has records longer than
80 characters, the records are truncated to 80 characters. In addition, editing requires
valid line numbers in positions 73-80 on files coming in from disc. If the line numbers do
not exist, data in positions 73-80 are replaced by Editor line numbers. The line numbers
generated for the records reflect the current value of DELTA, i.e., if DELTA is set at
the default, numbers are provided starting at 1.0 and incrementing by 1.

If an unnumbered file is accessed that has not previously been edited, and it has more
than 9999 records, records 10,000 and subsequent are ignored. DELTA can be reset so
that up to 10,000,000 records are copied into the workfile. See the SET DELTA
command.

To get a file from media other than disc into the Editor, use another utility, e.g., MEDIA,
to copy it to disc prior to issuing the Editor USE command. (See Volume 2, Chapter 8.)

5.4.% Accessing Password-Protected Files

Any file that is defined as RO (Read Only) protected can be read without supplying the
password. Commands that read files include LIST, PRINT, PUNCH, USE, COPY, and
BATCH. Read only files cannot, however, be written to without supplying a valid
password. Commands that 'write' files include SAVE, SCRATCH, and STORE. A file that
is PO (Password Only) protected cannot be read or written without supplying a valid
password.

The Editor honors these rules by prompting for a password in any of the cases where it is
required:

ENTER PASSWORD password

If the user does not type a valid password and the command (e.g., LIST, PRINT, etc.)
involves a read, the command terminates. If the command (e.g., SAVE) involves a write,
the prompt is returned until the user enters the valid password or types justa CR ,in
which case, the command terminates.

Password protection can be achieved via the Editor when performing a SAVE or STORE
command and specifying the RO or PO option. See SAVE and STORE command
descriptions. If the RO or PO option is not used, the password is retained when Editor
STORE or SAVE commands are used.

5.4.5 Accessing System Files

A system file (one without a username) can be edited by any user who knows the
password associated with the file, if any. Any user can create a system file by using the
SYS keyword on a STORE or SAVE command. Password protection is described in the
previous section.

5.4.6 Entering and Editing Upper/Lower Case Text

The Editor normally translates lower case input to upper case. TSM provides a command
that inhibits the translation:

TSM >OPTION LOWER

This allows the user to enter and edit lower case characters.

When entering upper/lower case text, depress the shift key for upper case characters.
Commands and keywords as well as text can be entered in any combination of upper and
lower case; however, the names of files must be all upper case.

Files that are built with upper/lower case text must be edited with the same character
conventions in effect. For example, a content identifier in all upper case will not match
text with the same characters if any of the text characters are lower case.

5.4.7 Using the Break Key

The Editor responds to the Break key, which provides a convenient means of terminating
a long display once you have the information you need, or stopping a global change or
large set of deletions in process. Response to the break is not guaranteed in a specific
timeframe. When the break interrupt is received, the command in process is terminated
at the earliest safe termination point.

5-9

5.5 Accessing EDIT

To access the Editor use:

TSM> EDIT
The Editor prompts for a work file code:
ENTER WORK FILE CODE OR CR TO TERMINATE: filecode
The file code is a two-character prefix for the work file. Each character must be
printable, If the code you supply has been used previously in accessing EDIT, the existing
workfile with that prefix is retrieved with a message indicating whether it was cleared,

saved, or changed (without a save) at the end of the last EDIT session. The EDT
prompt is then displayed.

If the code you supply has not been used before, ENDIT assumes that you want to create a
new work file. It creates the file for you.

To exit the Editor, type a carriage return.

You can bypass the prompt for a work file code by entering the code when you access the
Editor. A blank or comma is the legal delimiter, i.e.,:

- TSM > EDIT filecode

Note: The special characters, the commands, and the keywords within commands cannot
be used as a file name. Also, numeric names are not permitted.

5-10

-,

5.6 EDIT Commands

EDIT commands are summarized in the following chart and described individually in

sections which follow.
or completely spelled out.

EDIT commands must either be abbreviated to three characters

To delete one or more character(s) on a command line or on a line of text being edited,
use a Backspace or a CTRL H key sequence. Type the right character(s).

To delete an entire command or text line, use the RUB or DELETE key, then re-enter the

line.

The Break key can be used to interrupt operations in process.

Command
APPEND
BATCH
CHANGE
CLEAR
COLLECT
COMMAND
COPY
DEBUG

DELETE
EXIT
INSERT
LIST
MODIFY

MOVE
NUMBER
PREFACE
PRINT

Function
Appends text to end of a line or group of lines.
Copies work file or specified file into batchstream.
Replaces a character string with a different one.
Clears work file.
Accumulates lines of text.
Displays the last four commands the user performed.
Copies existing text to work file.

Causes the user to exit the Editor and enter the Task
Debugger.

Deletes lines.

Terminates current session in the Editor.
Inserts lines of text.

Lists text on terminal screen.

Changes an existing line by allowing the user to space past
good characters and replace bad characters.

Moves lines of text within the workfile.
Renumbers lines in work file.
Inserts characters at beginning of line.

Copies work file or specified permanent file to SLO file.

5-11

PUNCH
REPLACE
RUN

SAVE
SCRATCH
SET

SHOW
STORE
USE
VERIFY

WORKFILE

5-12

Copies work file or specified permanent file to SBO file.
Deletes lines and enters new ones.

Copies work file or specified file into batch stream. (Same as
the BATCH command, see BATCH).

Saves work file compressed on permanent file.

Deletes a permanent file.

Sets delta, tabs, verification, or show files status length.
Shows current line increment, files, or tab settings.
Stores work file uncompressed on permanent disc file.
Copies another permanent file into a cleared work file.
Checks validity of the current work file.

Accesses a different work file.

~~

5.6.1 APPEND Command

The APPEND command is used to append characters at the end of an existing line. More
than one line can be accessed with the command. Additions are then made line by line.

Syntax:
APPEND [group]

where:

group is a line number, a range of lines, or a group of ranges and/or lines on which to
append text. Lines to be modified can be further identified by content. (See
Section 5.4.1.)
If not specified, the last range specified in the previous command is accessed
by default. '

Response:

The first line in the specified group is displayed, with the cursor positioned at the end of
the line. Type the additional character(s) followed by a carriage return. The new
characters are added to the line.

If a group has been specified, the next line in the group is displayed for modification, and
so on, continuing to the last line in the group.

To terminate the APPEND command, enter a carriage return instead of appending a
character to a line. To bypass modifying a line and go to the next specified line in a
group, type a blank followed by a carriage return. The line remains unchanged, but the
APPEND command is not terminated. For tabs, use the Editor tab character instead of
CTRLI. (See the SET TABS command.)

Example:

EDT > APPEND 35

35. DEBUG COMMON DBC(441) \NO. WORDS FOR COMMON.
EDT > <CR>

35. DEBUG COMVON DBC(441) NO. WORDS FOR COMMON.
EDT >

Errors:

If the characters you attempt to append to a line cause it to exceed 72 characters, the
additional characters are not displayed and the following message appears:

TOO LONG, GO =Y

Type Y (Yes) or enter a carriage return to keep the truncated, modified line. Type N
(No) to leave the line as it was before you attempted to append characters.

5-13

5.6.2 The BATCH or RUN Command

The BATCH command (the RUN command is equivalent) is used to copy a job file into
the batchstream. The file can be the current workfile or another job file in the user's
directory. In either case, the file must contain job control statements for a complete
job. (See Batch Processing, Volume 1, Chapter 6.)

An alternative to this command is the OPCOM BATCH command as described in Volume
1, Chapter 4.

Syntax:

BATCH (jobfile][UNN]

where:

jobfile is any one-to-eight character name of a file in the user's directory. If no file
is specified, defaults to the current workfile. (To copy another workfile in
your directory into the batchstream, use the WORKFILE command, then
BATCH.)

UNN changes the line numbers in physical line positions 73-80 to blanks. This is not
required for batch processing with any of the SYSTEMS utilities. (See Section
5.4.2.3.)

Response:

The file is entered in the batchstream and the ENT > prompt is returned. (The OPCOM
LIST command can be used to check on the status of the job.)

Errors:

If a job file specified for BATCH is PO (Password Only) protected, the password is
required to read it. The prompt:

ENTER PASSWORD

is displayed. Enter the valid password followed by a carriage return. If the password is
not valid, the BATCH command terminates.

Errors encountered during batch processing are shown on the listing produced for the
job. (See BATCH PROCESSING, Volume 1, Chapter 6.)

5-14

-~

5.6.3 The CHANGE Command

The CHANGE command is used to replace an existing string with another string.
Existing characters following the replacement string are adjusted left or right to
compensate for replacing a string of one length with a longer or shorter string. (It is not
uncommon to exceed the 72-character line limit with this command. See Errors.)

Text in tabbed lines will be shifted left or right to adjust for a replacement string just
like any other line. To compensate for the shift, you can type extra blanks in the existing
string (if it is shorter than the replacement) or type extra blanks in the replacement

string (if it is shorter than the existing string). This will maintain the original alignment
of tabbed values.

Syntax:
CHANGE [group] \string\\ [newstring]\ (NOLIST]

where:

group is a line number, a range of lines, or a group of ranges and/or lines to be
modified. (See Section 5.4.1.) A content identifier cannot be used with the
CHANGE command.
If a group is not specified, the last range specified in the previous command
is used by default.

string identifies the existing string to replace. It must be enclosed in backslashes.

newstring is the string to replace the existing string. It must also be enclosed in
backslashes. To delete the existing string, replace it with nothing by using
two consecutive backslashes.

NOLIST inhibits the automatic display of lines as they are changed. Not
recommended on large groups.

Response:

As each line is changed, the resulting line is displayed. Changed lines scroll up on the
screen, and no intervention except the Break key is possible until a full screen of changes
is displayed. At that point, the Editor pauses, waiting for a signal from the terminal.
Use a carriage return to continue the specified changes. Or, use any other character to
terminate the command. (A No response to an error prompt also terminates the
command. See Errors.)

5-15

Example:

EDT>CHA EXPR. EXPRESSION ALL

14, * OUTPUTS: R6=0 GOOD EXPRESSION
15. * R7=VALUE OF EXPRESSION

674, * FOUND END OF EXPRESSION

EDT>

Comment:

In this example, the Editor searches the workfile for every occurrence of the term
"EXPR." and changes each one to "EXPRESSION",

Errors:

If a change in a line results in a line longer than 72 characters, the modified line is
displayed with the characters beyond 72 truncated. The following message appears:

TOO LONG, GO = Y

Type Y (Yes) or enter a carriage return to keep the truncated, modified line. Type N
(No) to leave the line as it was before you attempted to make the change.

Typing N terminates the CHANGE command.

5-16

5.6.4 The CLEAR Command

The CLEAR command is used to clear the current contents of the workfile. It is used in
conjunction with the USE command to access a different disc file or before building text
into a new file interactively via a COLLECT command.

To preserve the contents of the workfile before clearing it (e.g., to retain editing
changes made since you accessed the Editor), use the SAVE or STORE commands before
using CLEAR. (See the SAVE and STORE command descriptions.)

CLEAR is also an option on the USE command. If you have not specifically cleared the
workfile already with the CLEAR command or the CLEAR option, USE prompts
CLEAR=N, to discourage clearing the workfile, knowing that it must be cleared before
you can use another file and assuming that you want to take action to SAVE or STORE
the current workfile if you have not done so already.

Note that a file does not have to be read into the workfile with a CLEAR/USE sequence
in order to be listed, copied, or printed.

Syntax:
CLEAR
Response:
The workfile is cleared and its status is updated as reflected in the SHOW command.
Example:
1 EDT>CLEAR
2 EDT>USE XXX CLEAR

Comment:

1 The current contents of the workfile are cleared and the workfile is now 'empty’.
2 The current contents of the workfile are replaced by the contents of file XXX.
Errors:

To be supplied.

5-17

5.6.5

The COLLECT Command

The COLLECT command is used to enter new lines of text into the workfile.

Syntax:

where:

lineno

/lineno

COLLECT [lineno [/lineno] 1[BY increment]

is the line number in the workfile at which collection is to begin. The least
significant digit in the specified line number determines the line numbers
the Editor generates for the collected text. (See Section 5.4.2.1.) If the
line number you specify currently exists, the Editor adds 1/10 of DELTA,
and provides that line number for you.

If a beginning line number is not specified, EDIT defaults to the line
following the last line entered with the previous COLLECT or INSERT
command or to E, if neither command has been issued. The line number
which prompts for collected text reflects the least significant digit of line
numbers used in the previous collection or insertion. (It does not reflect
the increment used in the previous command, but defaults back to 1., .1,
.01, or .001 as applicable, unless overridden with BY.)

Note that 0., .0, .00, or .000 up to 0.999 are acceptable line numbers. This
is useful when inserting lines at the beginning of an existing workfile.

To collect lines at the end of the workfile, use 'E' to signify the last line in
the file plus 1, e.g., COLLECT E. When E is used, line numbers for
collected text will reflect the least significant position and increment of
the DELTA ‘value for line numbers. See the SET DELTA command.

is the line number in the workfile at which collection is to end. This
line number must not currently exist. If not specified, collection ends
when the Editor reaches a line number that does already exist.

Line numbers used to prompt for collected text reflect the decimal
position of the line number specified for beginning or ending the
collection, whichever is least significant.

BY increment is an absolute number to add to each line number to generate the next

5-18

line number. The increment value can be any number starting at .001
up to 9999.999.

Example: If 0. is specified as a beginning line for collection and .05 is
specified with BY, line numbers generated for collection are .00, .05,
.10, .15, .20, etc.

The default increment is DELTA or 1/10 of DELTA depending on the
least significant digit used in the line number specification(s).

For further description of increments, see Section 5.4.2.

Response:

The beginning line number is displayed as a prompt. Enter the text of the line followed
by a carriage return. From this point on, line numbers are generated automatically. The
next sequential line number is displayed. Continue entering lines. A blank followed by a
carriage return creates a blank line.

To terminate the command, use a carriage return after the line number is displayed, or
depress the Break key. The EDT > prompt is returned.

The command terminates automatically if the next line number in a collection sequence

already exists or if you have specified a line at which to end collection and have entered
that line.

Examples:

EDT>COL 22.01

22.01 text
22.02 text
22.03 text
22.04 <CR>
EDT> 22/23

22. text

22.01 new text
22.02 new text
22.03 new text

23. text
EDT>
i
EDT>LISTL
374, text
EDT>COL E
375. text
376. text
377. <CR>
EDT>
Comment:

1. 1If you were to answer the EDT > with another COL command at this time, the Editor
would default to the last command and start its collect with line number 22.04.
Therefore, it is necessary to set the Editor up with a new command sequence to start
the next collect. In this example we chose the E command.

Errors:

If more lines are to be collected than there are available lines, EDIT collects as many
lines as it can. It then displays the line number where collection stopped with the
message:

lineno NOT PROCESSED.

5-19

Use COLLECT again with a beginning line number specification and/or TO increment
that generates enough new lines to accommodate the text that still must be collected.
Start collecting again. (See Section 5.4.2.1 and the lineno descriptions under Syntax.)

The NUMBER command can be used if you have gotten to a .nnn position with no line
numbers left for insertion. See the NUMBER command.

If you type more than 72 characters in a line, the additional characters are not displayed
and the following message appears:

TOO LONG, GO = Y

Type Y (Yes) or enter a carriage return to keep the truncated line as displayed on the
screen. Type N (No) to re-enter the line.

5-20

N\

a.

5.6.6 The COMMAND Command

The COMMAND command is used to display the user's last four Edit commands as they
were seen by the Editor. ‘

Syntax:
COMMAND
Response:

The last four commands entered into the Editor are displayed. This could be useful in
determining a problem with a file. Possibly what you typed in as an instruction wasn't
what you really wanted done.

Example:

EDT> COM
F,L

DEL 3/7
APP 9
COM
EDT>

If less than four commands were issued to the Editor, only those issued are displayed.

5-21

5.6.7 The COPY Command

The COPY command is used to copy existing lines of text to the work file, beginning at
the specified line number. The lines to copy can be on the work file already or they can
come from a file saved or stored previously.

To select specific lines from a file, the file must be saved or stored with line numbers. If
the whole file is to be copied, a lack of line numbers makes no difference.

The lines from which text are copied are not deleted. To delete lines in one part of a
workfile and copy them to a different part, use the MOVE command.

Files that have not been built in the Editor or accessed and saved previously via Editor
USE and SAVE or STORE commands cannot be copied directly into a workfile.

To do so, save the current contents of the workfile, then access the desired file with the
USE command. USE attaches line numbers in a form acceptable to the EDT. (See Section
5.4.2.3.)

Save or store the file back on disc, then copy the original file back into the workfile.
The file can now be copied into the workfile.

Syntax:
COPY (group] [FROM][filename] [TO lineno] [BY increment] [LIST]
where:
group is a line number, a range of lines, or a group of ranges and/or lines to

copy into the workfile from another file or from within the workfile
itself. Lines to be copied can be further identified by content. (See
Section 5.4.1.) If copying from a file other than the current workfile,
the name of the file must be supplied with FROM.

If nothing is specified for group, ali iines in the file are copied.

FROM filename specifies the name of a file from which lines are to be copied. This
file must belong to the same user who issues the command.

If a file name is not specified, the current workfile is the default.

TO lineno is the line number in the workfile at which copying is to begin. The
least significant digit in the specified line number determines the line
numbers the Editor generates for the text being copied. (See Section
5.4.2.1.) The line number you specify must not currently exist (must
not have been used before or must have been previously deleted).

Copying stops if the Editor generates a line number that already
exists.

5-22

-
'\j‘ /

BY increment

LIST

Response:

If a beginning line number is not specified, EDIT defaults to E, the
line following the last line in the workfile. If collecting at end of file,
line numbers for copied text will reflect the least significant position
and increment of the DELTA value for line numbers. See the SET
DELTA command.

Note that 0., .0, .00, or .000 up to 0.999 are acceptable line
numbers. This is useful when copying lines to the beginning of an
existing workfile,

is an absolute number to add to each line number to generate the next
line number. The increment value can be any number starting at .001.

Example: If 0. is specified as a beginning line for copying and .05 is
specified with BY, line numbers generated for copied text are .00,

The default increment is 1., .1, .01, or .00l, depending on the least
significant digit used in the line number specification.

For further description of increments, see Section 5.4.2.1.

specifies that lines be displayed as they are copied. It is helpful if
you have to break out of a copy operation.

Lines are copied into the workfile as specified.

If lines are coming from a file other than the workfile, the name of the file and the

message *FILE* are displayed.

Example:

1. EDT > COP 93/95 TO 90.1
EDT > 90/96
90. text
90.1 copied text
90.2 copied text
90.3 copied text
9l1. text
92. text
93. text (same as 90.1)
9%, text (same as 90.2)
95. text (same as 90.3)
96. text

5-23

2. EDT >COP 1/5 FROM BAT TO 1.01
EDT> 1/2
1. text
1.01 BAT text
1.02 BAT text
1.03 BAT text
1.04 BAT text
1.05 BAT text
2. text
EDT>

3. EDT> COP TO 30.1 5,12/14,20
EDT> 30/31
30. text
30.1 Copied text (same as line 5)
30.2 Copied text (same as line 12)
30.3 Copied text (same as line 13)
30.4 Copied text (same as line 14)
30.5 Copied text (same as line 20)
31. text
EDT>

Comments:

I. In this example text was copied from one position in the workfile to another
position, therefore only the line numbers to be copied needed to be specified.

2. In this example, text from an existing file was copied to the workfile so both
the file name (BAT) and the line numbers to be copied had to be specified.

3. In this example, text was copied from several positions in the workfile to one
position. To do this, the 'TO' parameter must be specified before the group
parameters. If you attempt this in the standard manner (i.e., format shown
under the Syntax), lines 5 and 12 through 14 would be copied to the end of
the fii)e and only line 20 would be copied to 30.1 (see Defaults, Section
5.4.1.5).

Errors:

If more lines are to be copied than there are available lines, EDIT copies as many lines as
it can. It then displays the line number on the file being accessed where copying stopped
with the message: ‘

lineno NOT PROCESSED.
Use COPY again with a TO specification that has a beginning line number (and/or TO
increment) that generates enough new lines to accommodate the text that still must be

copied. (See Section 5.4.2.1 and the TO and BY descriptions under Syntax.) Start
copying again at the line number displayed above.

5-24

If a file is specified for COPY and it is PO (Password Only) protected, the password is
required to read it. The prompt:

ENTER PASSWORD

is displayed. Enter the valid password followed by a carriage return. If the password is
not valid, the COPY command terminates.

5-25

5.6.83 The DEBUG Command
The DEBUG command is used to exit from the Editor and generate memory dumps. This
command was introduced for internal use only to aid in development and debugging of the

Editor.

As a result, the keyword DEBUG is reserved and cannot be used as a file name.

Syntax:
DEBUG
5.6.9 The DELETE Command

The DELETE command is used to delete lines of text from the work file.

Syntax:
DELETE [group] [LIST]

where:

group is a line number, a range of lines, or a group of ranges and/or lines to be
deleted. Lines to be deleted can be further identified by content. (See ~
Section 5.4.1.) 2

L

If not used, the last range specified in the previous command is deleted by
default.

LIST specifies that lines be displayed as they are deleted.

Response:

The specified lines are deleted from the workfile. The Break key can be used to stop
deletions. (See Section 5.4.7.)

Example:
EDT>DEL 15/20
EDT >13/22
13. text
14. text
21. text
22. text
EDT>
Errors:

If an invalid group is specified, the Editor responds:

VOID RANGE - LINE RANGE NOT SPECIFIED OR ILLEGAL
EDT>

o

5-26

5.6.10 The EXIT Command

The EXIT command terminates the current EDIT session and returns you to the TSM>
prompt. The current workfile is maintained as is for future editing.

Syntax:
EXIT or X

Example: .
EDT > EXIT
TSM >

5-27

5.6.11 The INSERT Command

The INSERT command is used to add one or more new lines of text to a file. 1t is
essentially the same as COLLECT except that INSERT assumes the addition one line at a
time and COLLECT assumes the addition of more than one line.

Syntax:

INSERT [group] { BY increment]

where:

group

BY increment

5-28

»

is a line number, a range of lines, or a group of ranges and/or lines
you want to insert.

The least significant digit in the line number or range, specified in
the group, determines the line numbers the Editor generates for the
inserted text. (See Sections 5.4.1 and 5.4.2.) If the line number you
specify currently exists, EDIT adds 1/10 DELTA to the existing line
and uses it as the line number.

If no line numbers are specified, EDIT normally defaults to the line
following the last line entered with the previous COLLECT or
INSERT command. The line number which prompts for inserted text
reflects the least significant digit of line numbers used in the
previous collection or insertion. (It does not reflect the increment
used in the previous command, but defaults back to 1., .1, .01, or
.001 as applicable.)

Note that 0., .0, .00, or .000 up to 0.999 are acceptable line
numbers. This is useful when inserting one or more Lines at the
beginning of an existing workfile.

To insert a line at the end of the workfile; use 'E' to signify the last
line in the file plus 1, i.e.,, INSERT E. When E is used, the line
number for inserted text will reflect the least significant position
and increment of the DELTA value for line numbers. See the SET
DELTA command. This is the default if no previous INSERT or

COLLECT command has been used and a group is not specified.

is an absolute number to add to each line number to generate the
next line number. The increment value can be any number, starting
with .001.

Example: If 0./0.99 is specified as a range of lines to insert and .05
is specified with BY, line numbers generated for insertion are .00,
.05, .10, .15, .20, etc.

The default increment is 1., .1, .01, or .001, depending on the least
significant digit used in the range specification(s).

For further description of increments, see Section 5.4.2.1.

»

Response:

The beginning line number is displayed as a prompt. Enter the text of the line followed by
a carriage return. From this point on, line numbers are generated automatically. The
next sequential line number is displayed. Continue entering lines. A blank followed by a
carriage return creates a blank line.

To terminate the command, use a carriage return after the line number is displayed or
depress the Break key. The EDT > prompt is returned.

The command terminates automatically if the next line number in an insertion sequence
already exists or when it reaches the line number you have specified for ending insertions
and have entered that line.

Example:
EDT>INS 14.01
14.01 text
EDT> 13715
13. text
14. text
14.01 text
15. text
EDT>

Errors:

If more lines are to be inserted than there are available lines, EDIT takes as many lines
as it can. It then displays the line number where insertion stopped with the message:

lineno NOT PROCESSED.
Use INSERT again with a BY specification that has a beginning line number (and/or BY
increment) that generates enough new lines to accommodate the text that still must be
inserted. (See Section 5.4.2.1 and The group description under Syntax.) Start inserting
again before the line number displayed above.

The NUMBER command can be used if you have gotten to a .nnn position with no line
numbers left for insertion. See the NUMBER command.

If you type more than 72 characters in a line, the additional characters are not displayed
and the following message appears:

TOO LONG, GO =Y

Type Y (Yes) or enter a carriage return to keep the truncated line as displayed on the
screen. Type N (No) to re-enter the line.

5-29

5.6.12 The LIST Command

The LIST command is used to display lines from the current workfile or from any other
file in the user's directory. The LIST command is implied when no command is supplied
in response to the EDT> prompt.

Syntax:
(LIST] [group] [[FROM] filename] [UNN]
where:
group is a line number, a range of lines, or a group of ranges and/or lines
;oalis§ Lines can be further identified by content. (See Section

If not specified, LIST normally defaults to the last range specified or
implied in the previous command. Exception: Initially, LIST or a
carriage return to the EDT > prompt lists the first line of the file.
To list the entire file, use LIST ALL (or just ALL).

FROM filename specifies the one-to-eight character name of a file in the user's
directory. Using the keyword FROM is optional.

If FROM filename is not specified, listing defaults to the current
workfile.

UNN lists lines without displaying line numbers.

Response:

The specified or default group is scrolled onto the screen. If the screen is full, EDIT
pauses. Enter a carriage return to continue the listing or any other character to
terminate the listing. To interrupt the listing mid-screen, use the Break key.

If a file is specified for LIST and it is PO (Password Only) protected, the password is
required to read it. The prompt:

ENTER PASSWORD

is displayed. Enter the valid password followed by a carriage return. If the password is
not valid, the LIST command terminates.

5-30

Example:

Errors:

To be supplied.

EDT>COL
12. text
13. text
14, text
15. <CR>
EDT> LIST
12. text
13. text
14. text

EDT> LIST ALL

1. text
2. text
3. text

e

12. text
13, text
14. text
EDT >

5-31

5.6.13 The MODIFY Command

The MODIFY command is used to change an existing line by spacing past good
characters and replacing bad characters. An up arrow (A) can be used to replace a
character with a blank. MODIFY is used one line at a time. It cannot be applied to all
lines in the file.

Replacement strings must be equal to or less than the number of characters being
changed. If not less than or equal to the original string, or for global modifications, use
the CHANGE command.

Syntax:
MODIFY (group]

where:

group is a line number, a range of lines, or a group of ranges and/or lines to be
modified. Lines to be modified can be further identified by content. (See
Section 5.4.1.4.)
If not used, the last range specified in the previous command is accessed by
default.

Response:

The first line in the specified group is displayed. The Editor reissues the line number as a
prompt. Use the space bar to keep characters, type in new characters where needed, or
use the uparrow key to replace characters with a blank. Using a carriage return before
the end of the line keeps remaining characters 'as is'.

If a group has been specified, the next line in the group is displayed for modification, and
so on, continuing to the last line in the group.

For tabs, use a CTRLI key sequence rather than the Editor tab character.
Example:

EDT>MOD /3
{. THERE WILL BE A SHORT‘/I\'MEETING ON TUESDAY.
1. A
1. THERE WILL BE A SHORT MEETING ON TUESDAY.
2. PLEASE PLAN OT ATTEND.
2. Io
2. PLEASE PLAN TO ATTEND.
3. ATTENDANCE WILL NOT BE NOTED.
3. <CR>
EDT>

1. Space past good characters, enter an up arrow to replace T with a space.
2. Space past good characters, enter correction.

3. Immediate carriage return leaves line 'as is' and returns the EDT>

prompt.

5-32

=
\ J

5.6.14 The MOVE Command

The MOVE command is used to move one or more existing lines of text from one part of
the work file to another. Each line is deleted from its original position after it has been
moved successfully to the new position.

Syntax:

wheres

group

TO lineno

BY increment

MOVE [group] (TO lineno) [BY increment] [LIST]

is a line number, a range of lines, or a group of ranges and/or lines
to move. Lines to move can be further identified by content. (See
Section 5.4.1.)

If not specified, EDIT defaults to the last line or range in the group
specified (or implied) in the previous command.

is the line number given to the first line of text being moved. The
least significant digit in the specified line number determines the
line numbers the Editor generates for the rest of the text. (See
Section 5.4.2.1.) The line number you specify must not currently
exist (must not have been used before or must have been previously
deleted).

If a beginning line number is not specified, EDIT defaults to E, the
line following the last line on the workfile. Line numbers for text
that is moved will reflect the least significant position and
increment of the DELTA value for line numbers. See the SET
DELTA command.

Note that 0., .0, .00, or .000 up to 0.999 are acceptable line
numbers. This is useful when moving lines to the beginning of a
workfile.

is an absolute number to add to each line number to generate the
next line number. The increment value can be any number, starting
at .001.

Example: If 0. is specified as a beginning line for moved text and
.05 is specified with BY, line numbers generated for the text are .00,
.05, .10, .15, .20, etc.

The default increment is 1., .1, .01, or .001, depending on the least
significant digit used in the line number specification(s).

For further description of increments, see Section 5.4.2.1.

5-33

Response:

The Editor simultaneously moves text to its new position and deletes the text from its
old position.

Example:

1. EDT> MOV 60/62 TO 58.1
EDT > 58/63
58. text
58.1 moved text (formerly line 60)
58.2 moved text (formerly line 61)
58.3 moved text (formerly line 62)
59. text
63, text
EDT>

2. EDT> MOV TO 53.1 46,48/50,52
EDT> 45/54
45, text
47. text
51. text
53. text
53.1 moved text (formerly line 46)
53.2 moved text (formerly line 48)
53.3 moved text (formerly line 49)
53.4 moved text (formerly line 50)
53.5 moved text (formerly line 52)
54 text

Comment:

1. Lines 60/62 are deleted from their current position and moved to the specified

position within the workfile.

2. In this example, text was moved from several positions in the workfile to one
position. To do this, the TO' parameter must be specified before the group
parameters. If you attempt this in the standard manner (i.e., format shown
under the Syntax), lines 46 and 48 through 50 would be moved to the end of

the fil)e and only line 52 would be moved to 53.1 (see Defaults, Section
5'4'1.5 L]

Errors:

If more lines are to be moved than there are available lines, EDIT moves as many lines as
it can. It then displays the original line number where copying stopped with the message:

lineno NOT PROCESSED.

Use MOVE again with a TO specification that has a beginning line number (and/or TO
increment) that generates enough new lines to accommodate the text that still must be
moved. (See Section 5.4.2.1 and the TO and BY descriptions under Syntax.) Start
moving again at the line number displayed above.

5-34

5.6.15 The NUMBER Command

The NUMBER command is used to renumber all lines in the workfile, using the specified
decimal position and increment. The default number for the first line in the file is 15 the
default increment is also 1 (i.e., lines are numbered 1, 2, 3, etc.).

If the line number and increment do not provide sufficient line numbers for the entire
workfile, a diagnostic is displayed; the workfile is unchanged.

Syntax:

NUMBER [lineno][BY increment]

where:

lineno

BY increment

Response:

is the line number for the first line in the workfile. If a beginning
line number is not specified, EDIT defaults to line 1.

Line numbers for the file will reflect the increment of the DELTA
value for line numbers unless overridden with BY. See the SET
DELTA command, and BY, next.

is an absolute number to add to each line number to generate the
next line number. The increment value can be any number, starting
at .001.

Example: If | is specified as a beginning line number and .05 is
specified with BY, line numbers generated are 1.00, 1.05, 1.10, 1.15,
1.20, etc.

For NUMBER the default increment is not dependent on the least
significant digit used in the line number specification. It is
dependent only upon DELTA. (See the SET DELTA command.)

A diagnostic is displayed if the line number and increment do not provide sufficient line

numbers.

5-35

Example:

5-36

EDT>LIS 3/4

3. text

3.01 text

3.02 text

3.03 text

4, text

EDT>NUM

EDT> LIS 3/L

3. text

4, oldline 3.01 text
5. old line 3.02 text
6. old line 3.03 text

. 7. oldlinetd

<break>
EDT>

5.6.16 The PREFACE Command

The PREFACE command is used to insert one or more characters at the beginning of an
existing line. Additions are made character-by-character, resulting in a right shift in the
existing line.

More than one line can be accessed with the command. Additions are then made line by
line.

Syntax:
PREFACE [group]

where:

group is a line number, a range of lines, or a group of ranges and/or lines to be
modified. Lines to be modified can be further identified by content. (See
Section 5.4.1.)
If not used, the last range specified in the previous command is accessed by
default.

Response:

The {first line in the specified group is displayed. The Editor reissues the line number as a
prompt. Type the new string, followed by a carriage return. Existing characters in the
line are right shifted with the new string at the beginning of the line. The rest of the
line remains unchanged. If a group has been specified, the next line in the group is
displayed for modification, and so on, continuing to the last line in the group.

To terminate the PREFACE command, enter a carriage return in lieu of a new string.

For tabs, use a CTRLI key sequence rather than the Editor tab character.

5-37

Example: p;

EDT>PRE 1,15,20

1. ON MODIFYING A LINE

L. UP <CR>

l. UPON MODIFYING A LINE

15. MODIFIED LINE SHIFTS

15. A <CR>

15. A MODIFIED LINE SHIFTS
20. TO BYPASS MODIFICATION
20. <CR>
VOID RANGE
EDT>
Comments:

1. Note that b indicates typing blank spaces.
2, A carriage return terminates the PRE command and the line remains 'as is'.
Errors:
If you type more than 72 characters as a new string, the additional characters are not
displayed and the following message appears: : o

TOO LONG, GO =Y
Type Y (Yes) or enter a carriage return to keep the truncated, modified line. Type N
(No) to leave the line as it was before the replacement was attempted.
L

5-38

5.6.17 The PRINT Command
The PRINT command is used to print the current workfile or another file in the user's
directory on the device assigned for system SLO files (usually a printer).
Syntax:
PRINT [filename] [UNN]
where:
filename is a one- to eight-character name of a file in the user's directory. If no file

is specified, defaults to the current workfile. (Note that other workfiles in
your directory can be output by accessing them with the WORKFILE

command.)
UNN outputs the file without line numbers.
Response:
To be supplied.
Example:

To be supplied.
Errors:

If a file is specified for PRINT and it is PO (Password Only) protected, the password is
required to read it. The prompt:

ENTER PASSWORD

is displayed. Enter the valid password followed by a carriage return. If the password is
not valid, the PRINT command terminates.

5-39

5.6.18 The PUNCH Command

The PUNCH command is used to output the current workfile or another file in the user's
directory on the device assigned for system SBO files (usually a card punch).

Syntax:
PUNCH (filename] [UNN]

where:

filename is a one- to eight-character name of a file in the user's directory. If no file
is specified, defaults to the current workfile. (Note that other workfiles in
your directory can be output by accessing them with the WORKFILE
command.)

UNN outputs the file without line numbers. See Section 5.4.2.4.

Response:

To be supplied.

Example:

To be supplied.

Errors:

If a file is specified for PUNCH and it is PO (Password Only) protected, the password is
required to read it. The prompt:

ENTER PASSWORD

is displayed. Enter the valid password followed by a carriage return. If the password is
not valid, the PUNCH command terminates.

5-40

kz«k,,/

P

5.6.19 The REPLACE Command

The REPLACE command is used to replace existing lines in the workfile with different
lines of text. Replacements are made line by line.

Syntax:
REPLACE [group]

where: X

group is a line number, a range of lines, or a group of ranges and/or lines to be
replaced. Lines to be replaced can be further identified by content. (See
Section 5.4.1.)
If not specified, the last range specified in the previous command is accessed
by default.

Response:

The first line in the specified group is displayed. The Editor reissues the line number as a
prompt. Type the replacement line, followed by a carriage return. If a group has been
specified, the next line in the group is displayed for replacement, and so on, continuing to
the last line in the group.

To replace an existing line with all blanks, type a blank space followed by a carriage
return in lieu of a replacement line. The REPLACE command will not terminate.

To terminate the REPLACE command, enter a carriage return in lieu of a replacement
line or use the Break key.

Example:
EDT> REP 24
24, The replace commands are used to REPLACE
24, The REPLACE command is used to replace
EDT>

Errors:

If you type more than 72 characters as a replacement string, the additional characters
are not displayed and the following message appears:

TOO LONG, GO =Y

Type Y (Yes) or enter a carriage return to keep the truncated, modified line. Type N
(No) to leave the line as it was before the replacement was attempted.

5-41

5.6.20 The SAVE Command

The SAVE command is used to put a copy of the current workfile on disc as a permanent
file in the user's directory. With SAVE, the text is compressed, i.e., consecutive blanks
are replaced with a special string indicating the number of blanks compressed. The
workfile remains in tact. The STORE command is identical to SAVE except that the file
is not compressed and with STORE, you can specify unnumbered.

If you attempt to save onto a file name that already exists in your directory, you must
explicitly scratch (delete) the existing contents of the file. This requirement curbs
inadvertant writes over existing files.)

The SAVE command is order dependent, therefore, the syntax must be entered in the
order shown below:

Syntax:

SAVE (filename] [%% (SYS](SCRATCH]

where:

filename is the one- to .eight-character name of the file to create. Filename is
optional.

If a name is not specified, the workfile is copied to the file name used in the
most recent SAVE, STORE, or USE command, unless it was a system file. If
the last file used with one of the ahove commands was a system file, the
workfile is copied to a file of the same name in the user's directory unless
you use SYS. See below.

PO creates the file with password only access restrictions.
RO creates the file with read ony access restrictions.

Both the PO and RO options permit creating a restricted file, changing a
nonrestricted file to a restricted file, or changing the password of a
restricted file.

1f a file has restricted access and the PO or RO option is specified, the
message "ENTER PASSWORD:" is displayed. The valid password must be
given before the file can be scratched. Upon entering the valid password,
the message "ENTER NEW PASSWORD:" is displayed. Upon entering the
same password or a new password, the file will be SAVED.

SYS creates the file named above as a system file.
SCRATCH explicitly clears the contents of the file named or implied with the SAVE

command before the workfile is copied to that file space. If not specified,
you are prompted for the scratch function. (See Response.)

5-42

Response:

The current contents of the workfile are copied into the file space specified with SAVE.
If SCRATCH is not specified and a file of the same name already exists in the user's
directory, the following message is displayed:

filename, SCRATCH = N

Type N (No) or enter a carriage return to terminate the save operation. Type Y (Yes) to
scratch the existing contents of the file and store the workfile in their place.

If a file is password protected, the following prompt is displayed:

ENTER PASSWORD:

The valid password for the file must be entered. If what you type is not the valid
password, the prompt is repeated. See Errors.

When the save is complete, the following message is displayed:

filename nnnnnn size type username speed device restriction

ii*WRKFL nnnnnn size type username speed device
ii*WRKFL SAVED xx lines ,

where filename is the name of the file saved, ii is the workfile code, nnnnnn is the
starting address, size is the file size, type is the file type, username is the user name
associated with the file, speed designates FAST or SLOW access, device is disc address,
restrictions note any restrictions placed on access to the file, and xx lines is the number
of lines of text in the workfile.

Example:
EDT > SAVE SSS
SSS 334400 4ED MEYERS S 0800 RO
MM#*WRKFL 289296 80FE MEYERS S 0800
MM*WRKFL SAVED 120 LINES
EDT>

Errors:

If a file is password protected, you must supply the valid password to update the file. If
you do not, the Editor keeps prompting for a valid password. Enter a carriage return to
get out of the loop. The SAVE command will terminate and the workfile will not be
saved.

5-43

5.6.21 The SCRATCH Command
The SCRATCH command is used to delete a user file or a system file from the
directory. Both the filename and its contents are removed from the disc and disc
directory. Space is thus freed for new files. If the file is password protected, the
password must be supplied.
Syntax:
SCRATCH filename [SYS]
where:
filename is the one- to eight-character name of the file to be scratched.
SYS designates the name file is a system file.
Response:
If a file is password protected, the following prompt is displayed:

ENTER PASSWORD:

The valid password for the file must be entered. If what you type is not the valid
password, the prompt is repeated. See Errors.

If a system file is found with the file name specified and SYS was not specified, the
following message is displayed:

SYSTEM FILE FOUND BY THAT NAME. CORRECT FILE (Y OR N)?

A Y (Yes) response will scratch the file. N (No) response will not scratch the file and
terminate the scratch operation.

Note: If there is a user file and a system file with the same file name and SYS is not
specified, the user file is the file which will be scratched.

Example:
EDT>SCR AAA

EDT> SCR BAR SYS
EDT>

User file AAA is scratched and system file BAR is scratched.

Errors:

If a file is password protected, you must supply the valid password to scratch (delete) it.
If you do not, the Editor keeps prompting for a valid password. Enter a carriage return

to get out of the loop. The SCRATCH command will terminate, and the file will not be
scratched.

5-44

S

5.6.22 The SET Commands

There are four SET commands in the Editor: SET DELTA, SET TABS, SET
VERIFICATION and SET SHOW FILES. They are described separately in this section.

SET DELTA
The SET DELTA command is used to specify a default increment and significant digit
other than 1.0 for line numbers which follow the last line of the workfile. The reset
DELTA value remains in effect only for the current editing session. When you exit the
Editor, DELTA is returned to 1.0.
Syntax:
SET DEL [increment]

where:
increment is an absolute number to add to each line number to generate the next line

number. The increment value can be any number, starting at .00l (up to

9999.999). Zero is an invalid increment.
Example: If .05 is specified as DELTA and line 15 is the last line on the workfile, lines
generated at the end of file (when E is specified or implied) will be 15.05, 15.10, 15.15,
15.20, etc.
The default DELTA increment is l., i.e., in the example above, the next line numbers
generated would be 16, 17, 18 and so on. If an increment is not specified, the default
value of DELTA is reset.
Response:
DELTA is modified. After the current session is complete, it will be reset to 1.
Example:
To be supplied.
Errors:

If 0 is entered as the increment value, the following message is displayed:

ERROR—=0.
EDT>

5-45

SET TABS

The SET TABS command is used to modify tab positions. In MPX-32, the M.KEY file can
contain tab settings for each logon ownername as described in the KEY utility (Section
7). TSM defaults to these tabs if they exist. Or, if no tabs are set in M.LKEY, TSM sets
system tabs when you access the Editor.

Default tabs set by the Editor are in columns 10, 20, 36, 41, 46, 51, 61, and 72, which
correspond to label, op code, and other fields defined on SYSTEMS Assembler coding
sheets.

The most recent tabs set with SET TABS will remain in effect as long as you remain on
the system (until you exit TSM), i.e., they will remain in effect as you access various
processors, move from one system environment to another, etc. When you exit from
TSM, the SET TABS are not saved. When you log on again, either the M.KEY tabs (or
system tabs if none exist in M.LKEY) are set.

When typing text with tabs, the tab character produced by a Control I (<CTRLI >) key
sequence is interpreted by the TSM device handlers and replaced by the appropriate
number of blanks. The cursor is adjusted by echoing the spaces to the terminal. This
allows you to see tabbed spacing on the screen as you are entering the text.

The tab character used to define tab positions in the SET TABS command is either a
backslash (\) or the character you define when you enter tab settings. The most recent
tab character defined in SET TABS is the one used when entering a tabbed record (unless
you want to use <CTRLI> . Like tab settings, the tab character remains in effect until
you exit TSM. When you log on again, the tab character is a backslash.

The tab character is removed from the text when it is interpreted, so that no special
treatement of tab characters is required from subsequent processors such as the
Assembler.

Syntax:

w
m
-
-
>
o
w

Response:

The Editor displays the current tab settings. Assuming tabs have not been reset
previously during the current session, numbers 1-9 indicate column groupings (10's, 20,
etc.) with the default tab character (\) for columns 10, 20, and 70, enclosed in blanks.
Beginning in column 29, the most significant digit of the column number is also enclosed
in blanks, e.g., b3b indicates the beginning of columns 30- 39 with blanks falling in
columns 29 and 31 as shown in the example.

The Editor prompts for new tab positions by locating the cursor in column 2. Type blanks
for non-tab positions and any character desired in tab positions (a maximum of 8 tab
positions can be set at one time). The character(s) you supply will override the
backslash. If you use different characters for tab specifications, the last one typed is
taken as the tab character. Any tab that is not specified explicitly is not set.

5-46

/ﬂ;;: -f‘

Example:
EDT> SET TABS

TABS =12345678 23456738 2345678 3 2345 78 4 2345 78 5 234 ...
.SET =bbbbbbbbbAbbbbbbBbbbbCbbbbbbbbbbbCbbbbbbBbbbbbbbbbbbbC ...

TABS =123456789C123456C8921C34567893123C567894C234567895123C ...

If a user has changed the tabs and wants to return to the Editor default settings, rather

than perform a SET TABS command and reenter the settings, he can perform one of the
following commands:

SET (OLD
OLDTAB
OLDTABS
Response:

The tab settings are returned to the Editor default tab positions and the tab delimiter is
returned to the default delimiter, i.e., backslash (\).

If the user wishes to change the tab delimiter but keep tab settings in their current
positions, he can perform the following command:

SET TC
The Editor responds:
CHAR=

Enter the character you want to be the tab delimiter. To return to the default tab
delimiter, perform the following command:

SET OTC

Errors:

If when using tabs, you exceed 72 characters in a line, the tabbed line is displayed with
extra characters truncated followed by the message:

TOO LONG, GO =Y

Type Y (Yes) or enter a carriage return to keep the truncated line as displayed. Type N
(No) to re-enter the line.

If more than 8 tab positions are entered, only the first 8 are recognized and set.

5-47

SET VERIFICATION

The SET VERIFICATION command is used to set or inhibit the automatic verification of
a file before a Number, Save or Store command is performed (see VERIFY command).

Syntax:

SET {VFA}
VFN

where:

VFA enables the automatic verification of a file before any Number, Save or
Store command is performed and remains in effect until a SET VFN is
performed or the Editor is exited.

VFN inhibits the automatic verification of a file before any Number, Save or
Store command is performed. Default.

Response:

When a SET VFA command is used, the following message is displayed upon issuing a
Number, Save or Store command:

VERIFYING BEFORE NUM/SAV/STO. PLEASE WAIT.

There is no response to the SET VFN command other than the Number, Save or Store
operation being performed.

Errors:

The following error messages can be generated by the validation (VFA) routine:
LINE COUNT ERROR - INTEGRITY UNCERTAIN
POINTER INVALID - INTEGRITY UNCERTAIN
HEADER SEQ INVALID - INTEGRITY UNCERTAIN
SEQ ERR - BAD SECTOR LINKAGE - INTEGRITY UNCERTAIN
INVALID SECTOR NUMBER - INTEGRITY UNCERTAIN

If any of these messages is displayed, the following message is also displayed:'

CONTINUING MAY RESULT IN LOST DATA

5-48

o
)

SET SHOW FILES

The SET SHOW FILES command is used to obtain a shortened version of file status output
from a Show or Show Files command.

Syntax:

SET {SFS }
SFN

where:

SFS causes a shortened version of file status output to be displayed when a
Show or Show Files command is performed and remains in effect until a
SET SFN is performed or the Editor is exited.

SFN causes the normal version of file status output to be displayed when a Show
or Show Files command is performed. Default.

Response:

The file status displayed in response to a SET SFS command is as'follows:

EDT> SET SFS
EDT> SHO FILES

UTILPC 303828 20ED
STATUS 345328 8ED
SH*WRKFL 295552 SOFE
<break>

EDT > SHO

IJM*WRKFL 298380 80FE
IM*WRKFL SAVED 5 LINES

The file status displayed in response to a SET SFN command is the same as the SHOW
command SHOW FILES example shown in this chapter.

Errors:

None

5-49

5.6.23 The SHOW Command

The SHOW command is used to display the status of one particular file, current
increment setting of DELTA, current tab settings, or names of current files in the user's
directory. For further description of DELTA and tabs, see the SET command.

If just SHOW is used, the Editor displays the name of any file accessed (SAVED,
STORED, or USED) in the current session plus the status of the current workfile.

Syntax:
filename
SHOW | DELTA
I
TABS
where:
filename is a 1-8 character file name whose status will be displayed.
DELTA is an option which displays DELTA.
FILES is an option: which displays names of permanent disc files belonging to the
user.
TABS is an option which displays the current tab settings.
Response:

For SHOW, the following message is displayed:

ii*WRKFL nnnnnn size FE username speed device
ii*WRKFL status xx lines

where ii is the workfile code, nnnnnn is the starting address, size is the file size, FE
designates a workfile, username is the username associated with the file, speed
designates FAST or SLOW access, device is the disc address, the status message for the
workf{ile is one of the followings CHANGED, CLEAR, SAVED, and xx lines is the number
of lines of text in the workfile. CHANGED means the file has been edited but the edited
version has not been saved. CLEAR means the file has been cleared and another disc file
has not been copied into it SAVED means that a SAVE or STORE command has been
issued with no intervening editing.

If a default file name exists for SAVE and STORE, its name is also displayed.

5-50

For SHOW FILES, the Editor lists each file in the user's directory. For each file the
following is displayed:

filename, starting disc address (beginning block number), number of blocks,
type, as defined via the FILEMGR utility (files created in the Editor are
automatically type ED or EE), user name associated with the file, speed of
the file, device address, and restrictions, if any

Display of file names can be terminated with the Break key. Or, you can wait until a full
screen is displayed. EDIT will pause. Enter a carriage return to continue the listing or
any other key to terminate the command.

For SHOW TABS, positions 1-72 of the line are displayed with the current tab character
displayed in positions corresponding to current tab stops.

For DELTA, the DELTA increment value used to generate lined numbers at the end of
file is displayed.

Example:
EDT > SHOW FILES
UI*WRKFL 219775 118FE MEYERS F 0800
MMSUL5 277536 59ED MEYERS F 0800 RO
MMSUL7 275471 59EE MEYERS F 0800
1 <break>
EDT> SHOW
MM*WRKFL 254720 80FE MEYERS F 0800
2 MM#*WRKFL CHANGED 3 LINES
EDT >SHO DELTA
3 1. (DELTA)
EDT>
Comments:
1 The Break key is used to terminate the listing of files in the user's directory

mid-screen. FE designates a work file, ED designates a SAVED file, and EE
designates a STORED file.

2 No files have been saved, stored, or used in the current section. Only the
status of the workf{ile is displayed.

3 The increment that will be used when adding text at the end of the workf{ile in
1, the default value of DELTA.

5-51

5.6.24 The STORE Command

The STORE command is used to put a copy of the current workfile on disc as a
permanent file in the user's directory. The text is output as is and the workfile remains
intact. The SAVE command is identical to STORE except that the saved file is
compressed and cannot be stored unnumbered. (See the SAVE command.)

If you attempt to store onto a file name that already exists in your directory, you must
explicitly scratch (delete) the existing contents of the file. This requirement curbs
inadvertent writes over existing files.

The STORE command is order dependent, therefore the syntax must be entered in the
order shown below:

Syntax:

R
PO

STORE [filename] {_9][5‘(5] (UNN] [SCRATCH]

where:

filename is the one- to eight-character name of the file to create. Filename is
optional.

If a name is not specified, the workfile is copied to the file name used in the
most recent SAVE, STORE, or USE command, unless that file was a system
file. If the last file used with one of the above commands was a system file,
the workfile is copied to a file of the same name in the user's directory.

PO creates the file with password only access restrictions.

RO creates the file with read only access restrictions.

Both PO and RO options permit creating a restricted file, changing a
nonrestricted file to a restricted file, or changing the password of a
restricted file.

If a file has restricted access and the PO or RO option is specified, the
message "ENTER PASSWORD:" is displayed. The valid password must be
given before the file can be scratched. Upon entering the valid password,
the message "ENTER NEW PASSWORD:" is displayed. Upon entering the
same password or a new password, the file will be STORED.

SYS creates the file named above as a system file.

UNN The file can optionally be stored without line numbers. See Section 5.4.2.4.

SCRATCH explicitly clears the contents of the file named or implied with the STORE
command before the workfile is copied to that file space.

If not specified, you are prompted for the scratch function. (See Response.)

5-52

Response:

The current contents of the workfile are copied into the file space specified with
STORE. If SCRATCH is not specified and a file of the same name already exists in the
applicable directory, the following message is displayed:

filename, SCRATCH =N

Type N (No) or enter a carriage return to terminate the command. Type Y (Yes) to
scratch the existing contents of the file and store the workfile in their place.

If a file is password protected, the following prompt is displayed:
ENTER PASSWORD:

The valid password for the file must be entered. If what you type is not the valid
password, the prompt is repeated. See Errors.

When the store is c\omplete, the following message is displayed:

filename nnnnnn size type username speed device restrictions
ii*WRKFL nnnnnn size type username speed device
ii*WRKFL SAVED xx lines

where filename is the name of the file stored, ii is the workfile code, nnnnnn is the
starting address of the file, size is the size of the file, type is the file type, username is
the user name associated with the file, speed designates FAST or SLOW access, device is
the disc address, restrictions note any restrictions placed on access to the file, and xx
lines is the number of lines of text in the workfile.

Example:
EDT> STO RRR
RRR 333124 4LEE HALE F 0800
BB*WRKFL 326568 80FE HALE F 0800
BB*WRKFL SAVED 120 LINES
EDT>

Errors:

If a file is password protected, you must supply the valid password to store on it. If you
do not, the Editor keeps prompting for a valid password. Enter a carriage return to get
out of the loop and terminate the command.

5-53

5.6.25The USE Command
The USE command is used to copy a permanent disc file into the current workfile.

The file can be one created or edited previously using the Editor, or the user can access a
file that has not been edited previously in the interactive environment. (See Section
5.4.3.) If you attempt to use a file that was not edited previously and has more than 9999
physical records, DELTA should be reset to an increment less than 1.0 or the subsequent
records (10,000 and up) will not be brought into the work file. (See the SET DELTA
command.)

®

Syntax:
USE filename [CLEAR](SCRATCH][SYS]

where:

filename is the one- to eight-character name of a permanent file. The records on the
file must be blocked. Since the Editor's default assignment for incoming
files is a temporary system file which is always blocked, this presents no
problem to the user.

CLEAR is an option which clears the current workfile before copying the contents of
the specified file into the workfile. (It performs an identical function to the
CLEM)! command or a positive response to the CLEAR prompt described
below.

SCRATCH is the equivalent of CLEAR.

SYS indicates the file name specified is a system file. If there is a user file and a
system file-with the same filename and SYS is not specified, the user file is
the one brought into the workfile. If SYS is not specified and a system file is
found with the file name specified, the following message is displayed:

SYSTEM FILE FOUND BY THAT NAME. CORRECT FILE (Y OR N)?
For further discussion of system files, see Section 5.4.5.
Response:

The workfile is cleared and the contents of the specified disc file are brought in. If
CLEAR has not been specified, the Editor prompts:

CLEAR =N

Type N (No) or enter a carriage return to terminate the command or Y (Yes) to
continue. The prompt defaults to No to protect the user from inadvertently clearing out
edited text that he may want to save. If there is any question of whether or not to clear
the workfile, terminate the command. The SHOW command can be used to check the
current status of the workfile (CLEAR, SAVED, or CHANGED). CHANGED indicates
that edits have been made since the workfile was last saved.

A new or different workfile can be accessed. (See the WORKFILE command.)

5-54

S

-s'-:,\

If the specified disc file is PO (Password Only) protected, its password is required to
access it.

Example:
EDT > USE RRR

EDT> USE XXX SYS CLE
EDT>

User file RRR is brought into the workfile then system file XXX is brought into the
workfile.

If a file specified for USE is PO (Password Only) protected, the password is required to
read it. The prompt:

ENTER PASSWORD

is displayed. Enter the valid password followed by a carriage return. If the password is
not valid, the USE command terminates.

If the specified file is not a normal source/text file, that is, it does not have a file code
type of EE, ED, or CO0, the following message is displayed:

FILE TYPE NOT ED, EE, OR C0, PROCESS IT (Y OR N)?

If the user knows the file is indeed source or text, he may try to use it.

5-55

5.6.26 The VERIFY Command

The VERIFY command checks the validity of the current workfile.

Syntax: |
VERIFY

Response:

The following error messages can be generated by the validation routine:
LINE COUNT ERROR - INTEGRITY UNCERTAIN
POINTER INVALID - INTEGRITY UNCERTAIN
HEADER SEQ INVALID - INTEGRITY UNCERTAIN
SEQ ERR - BAD SECTOR LINKAGE - INTEGRITY UNCERTAIN
INVALID SECTOR NUMBER - INTEGRITY UNCERTAIN

If any of these messages is displayed, the following message is also displayed:
CONTINUING MAY RESULT IN LOST DATA

A short verify is performed before each command and can generate two additional error
messages:

NEXT FREE SECTOR IN HEADER AND FREEPAGE DO NOT MATCH
FREEPAGE IS IN HEADER AS AN ACTIVE SECTOR

5-56

N

5.6.27 The WORKFILE Command
The WORKFILE command is used to access a different workfile than the one currently in
use. The current workfile is stored back on disc as is (the message describing its status is
also retained). The new workfile is created or retrieved. Workfiles are named:
ii*WRKFL
where ii is the workfile code you specify after you activate the Editor or via a
WORKFILE command. The file code must be two printable upper case characters
uniquely identifying each workfile in the user's directory. The first character cannot be
a number, however the second character can, i.e., A9*WRKFL is acceptable.
Syntax:
WORKFILE filecode

where:

filecode specifies the work file code identifying the workf{ile to be used.

Response:

When you use the WORKFILE command, you can enter the code for the new workfile. If
you do not enter the file code, the Editor prompts for it:

ENTER WORK FILE CODE OR CR TO TERMINATE
Either enter a valid two-character workfile code or terminate the command.
If the filecode entered identifies an existing workfile for your user name, EDIT stores the
current workfile back on disc and retrieves the specified workfile. The message

indicating the current state of the workfile is displayed (SAVED, CLEARED, or
CHANGED).

If the code entered does not identify an existing workfile, EDIT assumes that you want to
create a new one.

To terminate the WORKFILE command, use a carriage return in response to the prompt
for channel and subaddress. The Editor will keep the current workfile.

Example:

To be supplied.

5-57

5.7 EDIT Errors N
See individual command descriptions. Possible error messages are as follows:

EDITOR FOUND UNPRINTABLE CHARS???

ILLEGAL USE OF AN EDIT RESERVED KEY WORD

ILLEGAL PARAMETER

CANNOT SCRATCH YOUR CURRENT WORKFILE

??? NOTING IN WORKFILE TO BE SAVED!

DISC FILE SPACE UNAVAILABLE

INCORRECT POINTERS IN WORKING FILE

COMMAND IGNORED - JOB QUEUE FULL

NOT A VALID SOURCE FILE

LAST LINE OVERFLOW TRY SMALLER DELTA

FILE IS IN USE BY ANOTHER

ZERO NUMBER DETECTED ON BY COMMAND

INVALID FILENAME OR WORKFILE NAME CANNOT BE SPECIFIEND HERE

READ ERROR

FILE IS TOO BIG FOR EDITOR TO HANDLE

WRITE ERROR | N

BAD COMPRESSED RECORD DETECTED

UNABLE TO ALLOCATE FILE

SEQUENCE ERROR

NO CURRENT DEFAULT FILENAME - PLEASE SPECIFY A FILENAME

NO DISC SPACE AVAILABLE FOR WORKFILE

SYSTEM FILE FOUND BY THAT NAME. CORRECT FILE (Y,N)?

BAD LINE IN WORKFILE - AM RECOUNTING

COULD NOT SCRATCH FILE SPECIFIED

UNEXPLAINED EOM/EOF. DATA LOST. PROCESS AS EOF.

FILE TYPE NOT ED, EE, OR C0. PROCESS IT (Y,N)?

AM EXPANDING WORKFILE. PLEASE WAIT.

NEXT FREE SECTOR IN HEADER AND FREEPAGE DO NOT MATCH

FREEPAGE IS IN HEADER AS AN ACTIVE SECTOR

DETECTED EOM ON WRITE - LOGIC ERROR
(In the event this occurs, generate a SPR detailing events leading up to the generation
of this error.)

CREATION FAILED - REASON 7 means directory is full. ‘b/

5-58

6. THE FILE MANAGER (FILEMGR)

The MPX-32 File Manager (FILEMGR) is used to create or delete permanent disc file
space, create or delete special Global partitions and/or a DATAPOOL partition (one that
can be dynamically allocated in memory when required by tasks), or to provide system
and user permanent file backup.

Temporary versus permanent files, types (system and user), allocation, and other basic
concepts and supporting constructs for disc files are described in Volume 1, Chapter 7,
with the File System Executive (FISE).

Note that files built in the MPX-32 Text Editor are created and expanded without
running the FILEMGR utility. Any permanent files can also be deleted (scratched) via
the Text Editor.

Note also that files cannot be copied from one user directory to another with the
FILEMGR. The MEDIA utility is used for that purpose (see Volume 2, Chapter 10).

6.1 General Description

This section describes the System Master Directory (SMD), compares system files to user
files, and describes how the FILEMGR saves and restores files.

6.1.1 The System Master Directory (SMD)

The SMD is located on disc and contains entries for all permanent files and Global
Common/DATAPOOL partitions located on all discs configured in a user's system. Each
entry in the SMD shows:

file name/partition name

user name, if any

beginning address for the file (block number)

password, if any

number of 192-word blocks in the file or protection granules in the partition

other information used by the system when the file or partition is accessed,
e.g., access speed (FAST/SLOW), disc type, channel, subaddress, etc.

Temporary files can be created and used by the system and by user tasks. They are not
logged in the SMD although they are tracked by the system. The temporary files are
allocated in free space on a disc only for the duration of a task. The FILEMGR does not
attempt to allocate permanent files in space concurrently being used by temporary files.

Temporary files cannot be created, deleted, saved, or restored via the FILEMGR.
System services are available that enable a task to create temporary files, or to turn a
temporary file into a permanent file.

6.1.2 System Files versus User Files

The FILEMGR allows the user to create, delete, save, or restore either system files or
files in a specific user directory.

System files can be accessed for reads by any user on the MPX-32 system and are
normally load modules, (including SYSTEMS processors, user tasks, etc.) operating syster:
files and library files, or files that the user needs to share among several user names.
They have no associated user name.

User files are private and cannot be shared. They are associated with a particular user,
whose name is matched against the M.KEY file at logon or after logon. For further
description of M.KEY, see the KEY utility, Volume 2, Chapter 7.

User files can be read or written only by the user who logs on or who declares
himself/herself as the user via a USERNAME statement (batch, TSM, or FILEMGR). A
task can use the M.USER system service to access a particular set of user files or before
creating a permanent file in a specific user directory.

When using the FILEMGR, user files are denoted specifically by a U as part of a
directive, e.g., SAVEU, RESTOREU, CREATEU, etc. If U is specified, the FILEMGR
searches first in the directory of the user last specified in a USERNAME statement, i.e.,

SUSERNAME name (batch)
TSM USERNAME name (interactive)
USERNAME name (FILEMGR directive)

If creating a file space with CREATEU, the search for the name stops in the user
directory and a new file is created if the name does not already exist.

If saving files, when a file cannot be found in the user's directory, the FILEMGR searches
the system directory for the name.

System files (no username) are specifically denoted by a FILEMGR or other USERNAME
directive with no user name supplied. The system directory is also assumed for the
OPCOM console unless overridden by a USERNAME statement. System files are assumed
by default when a command verb does not contain a U. .

The directory entry of a file is maintained when it is restored, i.e., the user name used to
save the file is the user's directory to which the file is restored.

Global Common/DATAPOOL partitions defined either at SYSGEN or via the FILEMGR
bevlong to the system file catagory.

N

A

6.1.3 The Save/Restore Process

When files are saved, the FILEMGR builds a directory containing directory entries for all
files saved in a group, where a group is one or more files specified with one SAVE or
SAVEU directive. The FILEMGR uses the SMD and copies files in the group to an output
medium preceded by the directory.

When files are restored, a directory entry is created for each file to be restored. The
FILEMGR locates the file on the input medium and reads it to temporary space on disc.
It matches the name against the SMD, and deletes the existing file, if any, that matches
the name. The FILEMGR then creates a new permanent file in the SMD for the file that
is being restored. The existing user name, if any, is retained from the saved version.

Reading first to temporary space ensures that an I/O error in the restoration process
does not result in the loss of existing disc files. The user can opt to bypass this function
as described in Section 6.3.

6.2 Files and File Assignments

Default assignments for the FILEMGR cover all needs for running the utility except for
saves and restores.

The IN/OUT File or Device - Normally magnetic tape is used to save files for subsequent
restoration to disc. Characteristics of disc-to-tape transfer are described in Section
6.4.5.

Job File - Contains Job Control Commands, including ASSIGN's, OPTION's, etc., and
FILEMGR directives for the job. For sample job files used in the FILEMGR, see Section
6.9.

The alternative methods for reading the file to SYC (interactive and batch) are described
in the File Assignment Table, Section 6.2.1, and Activation, Section 6.5.

6.2.1 File Assignments Chart

Table 6-1, columns 1-3, describes input files used by the File Manager, their associated
file codes, if any, and the default assignments, if any. Columns 4-6 relate the File
Manager input files to previous use of other processors as applicable. Where it is feasible
to override a default assignment or supply more files than the defaults accommodate,
columns 3-6 describe options. Output files are also included.

6-3

-9

Tabie 6-1

File Manager File Assigninents

Default and How Built
FILEMGR Optional (Previous
Input/Output Logical Assignments Processor How Specilied
Description File Code for Cataloging Assigninent) for FILEMGR Comment
Job File SYC Default: Work file built using the EDNI>RATCH For further
SYC=SYC EDITOR. description, see
Accessing the File
Permanent file built using EDI>DBATCH jobfile Manager.
EDITOR or MEDIA,
or
Cards or other device media, For further
e.g., magnetic tape, where 27BATCH (D.devmnc’ description of device
the job file was copied from ——— \F,joblile mnemonics, see
cards or a file via MEDIA, Appendix A.
Supply the device mnemonic.
Interactively. Sece Accessing
the File Manager.
Listing/Logs SLO Default: By FILEMGR. Outputs an To change the number of
and Audit SLO=SLO, 6000 audit trail of files saved printlines to use on SLO,
Trail (or restored). use ASSIGN?, e.g.,
Option: ASSIGN2 SLO=SLO,600
Change number of
printlines
anticipated on
SLO.
Input (for IN No default Previous run of FILEMGR. ASSIGN) for device
RESTORE's) This is the file or device assignments, e.g.,
IN= devmnc , defined as lfc OUT when the ASSIGN1 IN=-MTO0100,
filename files were saved, or
ASSIGNI for file
assipnment
Output (for ouTr No default Ry FILEMGR, as files are ASSIGN) for device
SAVE's) saved. assignments, e.g.,
0ut:(devmnc ’ ASSIGNI Ot ’T:MTO'OO,'
filename or
ASSIGNI for file
assipnment
= / £

6.3 Options

FILEMGR options can be specified with the SOPTION batch statement or the OPTION
command in TSM. Options apply to SAVE, RESTORE, and SAVELOG directives as
follows.

Option 1 - The tape assigned to lfc IN is pre-MPX-32. All files restored are
assumed to have eight-word, RTM-formatted SMD entries. Eight-word MPX-
formatted entries are written to the SMD. The primary change in the SMD
entry is in the structure of the space definition. Also, the second half word of
Word 6 is now used. (See Volume 1, Chapter 7.)

Option 2 - Normally, when restoring files, the media copies (Ifc IN) are written
first to temporary file space on disc as described in Section 6.1.3. This option
causes the FILEMGR to delete the existing disc file specified for the restore
before copying the saved file back onto disc from lfc IN. For further
description, see section 6.1.3.

Option 3 - The user can specify that a file not be saved when it is created. This
option overrides that specification and allows NOSAVE files to be saved.

Option 4 - The user can override the username specified when the file was
saved. This allows all files on the same tape to be restored to the current
username in effect in File Manager. If a single or limited number of file names
rather than all the files under a given user name are to be restored, it is
sometimes necessary to use the "RESTOREU" to locate the file, rather than
"RESTORE".

Option 5 - The user can override the username specified when the file was
saved. This allows all files on the save tape to be restored as system files.

Option 6 - The user can override the default to any moving head disc during a
restore to be any disc (moving head or fixed head).

6.4 Using the File Manager

6.4.1 Computing the Size of a File

When you use the CREATE or CREATEU directive to establish a file space, you define
file size in blocks. A block consists of 192 words (768 bytes). On unblocked files, records
are stored one per block, i.e., a 200 block file, unblocked, will contain 200 records.

The maximum record size for a blocked file is 254 bytes. A guide for approximating
space required for a blocked file is:

records between 4 and 254 bytes long (1 and 63 words) are packed together up
to a block boundary
records cannot span block boundaries

a new file always begins on a block boundary

two header and two trailer bytes are inserted on each packed record
automatically for identification and tracking

Thus, in computing the space needed for blocked files, you allow for the extra four bytes
in each packed record and for the number of records that can be packed into a block.

Fixed length records under 254 bytes long take up blocks on the file as follows:

768 (Bytes per Block) _ Number of
Record Length (bytes) + 4 Records per Block

Number of Records

Numb f Block
Number of Records per Block umber of Blocks

For example, if each record is 80 bytes long, each block will hold 9 records (768/84). To
hold 2000 records, the file must be 223 blocks long (2000/9, rounded).

The number of blocks required to accommodate variable-length records can be estimated
by getting an average byte/record value and using that value as the record length in the
setup shown above. For example, if you anticipate having approximately 150 variable-
length records in a file, none exceed 254 bytes, and the average is about 50 bytes long:

768 150
50+4 =14 14 = 11 blocks (rounded)

Output to all disc files is assumed to be in blocked form unless specified otherwise when
a file is assigned or allocated.

6.4.2 Using Wild Card Characters in File Names

When saving or restoring files, a question mark can be used in place of a character in a
file name to match any character that falls in its position.

From one to eight question marks can be used.

The total number of characters specified in a filename is the upper limit of characters
allowed in matching file names.

For example, using just five question marks as a 'file name' saves all files with five or
fewer than five characters in the file names.

6.4.3 Password-Protected Files

Files can be password-protected via the FILEMGR CREATE or CREATEU directive. Any

file defined as Read Only (RO) protected can be read without supplying the password; the .

password is required to write to it.

Any file defined as Password Only (PO) requires that the password be supplied to access
it for any operation.

6-6

C

6.4.4 Special Characters in File Names

If any file specified with SAVE or RESTORE has any of the following characters in the
name, the name must be enclosed in single quotes:

NN AN e e

For example:

SAVEU FILE="EM:02'

6.4.5 Notes on File-to-Tape Transfers

All SAVE's in a given session apply to the magnetic tape or set of tapes assigned to lfc
OUT prior to the EXECUTE FILEMGR directive. (A set of tapes is implied by indicating
multivolume on the device mnemonic, e.g., MTO100,SAVE,1, where ,1 implies Volume 1
of n physical tapes.)

When the FILEMGR is ready to execute, it issues a MOUNT message on the OPCOM
console prompting the operator to mount an appropriate tape. When the tape is mounted,
the operator responds on the OPCOM console and the FILEMGR proceeds.

SAVE's and RESTORE's must be coordinated by the user.

Any SAVE or SAVEU directive, including SAVE FILE=filename, or SAVE
FILE=prototype, prototype ,...n, puts out a group of one or more files on tape
with one EOF mark at the end of the group.

If a RESTORE directive in a subsequent session selects files or a group of files
from a tape that contains several groups, the FILEMGR must know where that
group is located physically on the tape.

The FILEMGR assumes a sequential restoration in the order that files were
saved. If files are restored outside the order in which they were saved, the user
must use special FILEMGR directives.

Figure 6-1 illustrates the physical result of multiple SAVE/RESTORE operations.

The left side of the figure illustrates SAVE's used to output disc files to a magnetic

tape. The right side illustrates how RESTORE's could be used to retrieve the files back
to disc.

6-7

SAVE'S RESTORE'S
BEGINNING OF TAPE
DIRECTORY
::S:SAMEA ——— T T T e USERNAME A
FILE(S) RESTOREU FILE=ONEFILE

EOF
USERNAME 8 - DIRECTORY
SAVEU FILE*BERRY

8ERRY
EOF
- DIRECTORY

SAVEU FILE=(HENRY) 1,
LONN) 3 FILEIS)

EOF

- -.D‘:E.CT—OR.V-- e ————— SKIPFILE IN.2
. USERNAME -
RESTOREU DEVICE=DM0800
USERNAME
SAVEU DEVICE=DMO800
SYSTEM
FILES
\ EOF
USERNAME C —t DIRECTORY
SAVEU FILE=CC??27? -—————-—-- USERNAME C
. RESTOREU
FILES
END OF TAPE

820657

Figure 6-1.

File - to - Tape Transfers

N

%;\

o

7

One tape contains five groups of files, each with a separate set of directory entries. All
files are saved for User A. One file is saved for User B, followed by files from two other
users. USERNAME and blank specifies system files. All system files on the moving head
disc configured on channel 8, subaddress 00 are saved, then all User C files that begin
with CC are saved.

When restoring files from the tape, one file is selected from User A. The FILEMGR goes
past the EOF marking the end of User A's files. To restore the system files back to
DMO0800, the SKIPFILE directive tells the FILEMGR to move past two EOF's to the
beginning of the group of system files.

Restoring User C's files requires no special directive, because the FILEMGR is already
positioned at the beginning of that group.

The REWIND directive is used if you do not restore files in the same order they were
saved, for example, if you were moving back to restore another User A file after User C
restoration. Do not use REWIND in the middle of a multivolume restoration.

6.4.6 Device Specifications

Device mnemonics used with the FILEMGR must include the device code and channel. A
subaddress is optional. The default subaddress is 00. For further description, see
Appendix A.

6.5 - Accessing the File Manager

To access the File Manager as part of a batch job, create a job file using the EDITOR,
punch cards, or other media as described in Table 6-1. The job file can be read to SYC
and the job activated in several ways:

from the OPCOM console:

"<Attention>"

27BATCH | F,jobfile |
? D,devmnc

from the OPCOM program:
TSM>OPCOM

??BATCH | F,jobfile |
D,devmnc (

from the EDITOR:
TSM>EDIT

EDT>BATCH jobfile

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate the FILEMGR and run on-line, use the TSM ASSIGN and OPTION commands
for FILEMGR assignments and options equivalent to those preceding the EXECUTE
FILEMGR command on a jobfile, then proceed to issue FILEMGR directives.

TSM>FILEMGR
FIL>CREATEU MYFILE,DC,25,,FAST

FIL>DELETEU GEO.1
FIL>

6.6 FILEMGR Directives

File Manager directives are summarized below and described in detail on pages which
follow. FILEMGR directives cannot be abbreviated. A directive must begin in column 1
of a record or command line. Commas are legal separators. Blanks are ignored.

Directive

CREATE
or CREATEU

CREATEM

DELETE
or DELETEU

DELETEW

6-10

Function

Creates a permanent system file or
user file on specified disc.

Defines a dynamic area of memory with
a Global Common variable name
(GLOBAL 00-99) or the name
DATAPOOL. This area can be accessed
by M.SHARE (first task activated) and
M.INCL (any task thereafter). Can also
define a memory partition in the user's
extended address space.

Deletes specified system or user file
from SMD and deallocates disc space.

Deletes specified system or user file
from SMD and deallocates disc space.

\
N

=

B

EXIT

EXPAND
or EXPANDU
LOG or LOGU

LOGC
LOGS

MEMO

PAGE

RESTORE DEVICE
or
RESTOREU DEVICE

RESTORE FILE
or
RESTOREU FILE

REWIND

SAVE DEVICE
or
SAVEU DEVICE

In interactive mode, exits the File
Manager and returns to TSM >. In
batch, designates the end of File
Manager directives in a job stream.

Expands or contracts space of a per-
manent system or user file to n 192-
word blocks.

Lists all permanent files or user files
defined in the SMD.

Indicates collision mapping.

Lists all system and user files or a
subset of files defined in SMD.

Creates a tape from which the dynamic
task activation can be performed on a
memory-only MPX-32 system.

Puts page eject and header on audit
trail.

Restores all permanent system or user
files to specified disc from device
assigned to lfc IN. (This was the device
assigned to lfc OUT when the SAVE
command was used.) If a file being
restored does not already exist in the
SMD, it is added; else it is replaced.

Restores specified permanent system or
user file(s) to disc from the device
assig) ed to lfc IN (usually magnetic
tape). (This was the device assigned to
lfc OUT when the SAVE command was
used.) If the file(s) being restored
already exist in the SMD, existing
contents are replaced by the IN
contents. If a file does not as yet exist,
it is added.

Positions input file or device (lfc IN) or
output file or device (lfc OUT) at
beginning.

Saves all permanent system or user
files from specified disc (except those
created by SYSGEN) on device assigned
to lfc OUT.

6-11

SAVE FILE Saves specified system or user file(s)

or on device assigned to lfc OUT,

SAVEU FILE

SAVELOG Lists files in directory on Ilfc IN;
beginning at current location.

SDT Specifies key load modules.

SKIPFILE ' Advances past specified number of

EOF's on the file or device assigned to
Ifc IN or lfc OUT.

USERNAME Associates new username with
FILEMGR operations.

6.6.1 The CREATE and CREATEU Directives

The CREATE directive is used to allocate file space for a system file. The CREATEU
directive is used to allocate file space for a user file. For CREATEU, the file will be
created in the directory of the user whose name was most recently supplied in a
USERNAME statement (batch, TSM, or FILEMGR). If no username is associated for
FILEMGR operations (e.g., if creating a file from the OPCOM console) with no
intervening USERNAME directive or if USERNAME b has been specified a system file is
created with CREATEU just as if a CREATE directive had been issued.

Syntax:

CREATE [U] filename , devmnc , blocks , [type], [FAST], [NZRO]J, [NSAV]
SLOW

, PO(, password
RO\

{

where:

filename specifies the name of the file, eight characters maximum.
File names must not contain blanks. Any printable ASCII
characters are acceptable. Required.

devmnc allocates the file on a specific disc by supplying the
appropriate disc device code, channel, and subaddress as
described in Appendix A. To let the FILEMGR allocate the

file on any disc, use just DC as the device mnemonic.

blocks the size of the file. Specifies the number of 192-word
blocks required for it. See Computing the Size of a File,
Section 6.4.1.

type optionally specifies a two-character code to display or print
with the file name (e.g., files created in the EDITOR carry
the code ED). The code is entered here in hexadecimal, but
is output in ASCIl. Default is 00.

6-12

FAST

SLOW

NZRO

NSAV

RO

PO

password

the file's directory entry must be retrieved from the SMD in
one disc access.

the file's directory entry can be retrieved from the SMD in
one or more accesses. SLOW is the default.

optionally suppresses initializing the disc file space to 0O's.
Default: the file space is initialized to all 0O's.

optionally suppresses output of this file when all files on the
disc it is contained on are saved via a SAVE DEVICE
directive. Default: the file is saved.

the file space is read-only protected. A password must be
supplied to write to it.

the file space is read-write protected. A password must be

~supplied to access it. Default: the file space is not

protected.

if RO or PO, specifies an eight-character maximum
password.

6-13

6.6.2 The CREATEM Directive

The CREATEM directive is used to define a Global Common partition, a DATAPOOL
partition, or a partition in the user's extended address space (above the 128KW logical
address space mapped for each task). Memory partitions defined via the FILEMGR are
allocated dynamically when required by a task, i.e., they do not remain allocated in
physical memory regardless of use as do SYSGEN-defined Global Common partitions or a
SYSGEN-defined DATAPOOL partition. To use a memory partition defined V1a the
FILEMGR, tasks must use M.SHARE or M.INCL system services.

A partition defined via the FILEMGR is 8KW minimum on a 32/7x and 2KW on a
CONCEPT/32, whereas a SYSGEN-defined partition is structured in protection granule
increments (512 words per protection granule).

A particular Global Common name, e.g., GLOBALO2, can be created only once. If
created via SYSGEN, GLOBALO2 cannot be created again with the FILEMGR.

DATAPOOL is a good candidate for dynamic allocation and deallocatzon. MPX-32 has
the ability to multicopy DATAPOOL map block(s) into more than one logical address
space. If created in the FILEMGR, there can be more than one physical copy of
DATAPOOL in memory at a time, depending on the association of tasks that access it
simultaneously. Physical space is not taken up permanently (as it is with a SYSGEN-
created DATAPOOL partition), thus it is reasonable to have multiple DATAPOOL
partitions. Each task structures and shares a given DATAPOOL partition via a
DATAPOOL dictionary. All tasks which access the same 'DATAPOOL' do so by
specifying the same dictionary during cataloging and by using M.SHARE or M.INCL.

Syntax:
GLOBALnNn E
CREATEM (DATAPOOL, ,protgran ,firstpage|, H , password
extname S
* LL JJ
where:

GLOBALnNn creates a Global common partition (00-99) which can be
located physically in any class of memory (E, H, or S) and is
mapped into the address space of each task that accesses it
via an M.INCL system service. One task must use M.SHARE
to define the partition as sharable.

DATAPOOL creates a DATAPOOL partition whose structure is defined

via one or more DATAPOOL dictionaries. Like Global
Common, the DATAPOOL area can be located physically in
any class of memory (E, H, or S) and mapped into the logical
address space of each task that accesses it via the M.INCL
system service. One task must use M.SHARE to define the
partition as sharable. (The same dictionary must be used in
cataloging each task associated with M.SHARE or M.INCL.)

6-14

extname

protgran

firstpage

is any one-to-eight character name to use for a memory
partition in a task's extended address space. This partition
may be mapped into memory above the first 128KW logical
address space available to a task. Since the partition will be
in extended memory, certain restrictions will apply. Refer
to the MPX-32 Reference Manual Volume |, Section 2.9.4.4
for programming restrictions that affect the use of
extended address space.

Partitions in a task's extended address space can be located
in any class of physical memory (E, H, or S).

The name used for a partition that is allocated in extended
address space must not be GLOBALnn or DATAPOOL.

specifies the number of 512-word protection granules to
include in the partition. (Sixteen protection granules equal
one map block on a 32/7x and four protection granules equal
one map block on a CONCEPT/32). Unused physical
protection granules within the last 8KW map block on a
32/7x or 2KW on a CONCEPT/32 allocated to the partition
will be write-protected from all sharing tasks. However,
only one dynamic partition may be defined in any one map
block.

specifies the starting protection granule in the nonextended
logical address space (pages 0-255) or in the extended
address space (pages 256-479 on a 32/7x and 256-1019 on a
CONCEPT/32) where the partition is to be mapped.
Protection granules in the first several map blocks should
not be specified, as they are used for the MPX-32 operating
system.

Protection granules for GLOBAL and DATAPOOL partitions
are normally allocated from top down in a task's logical
address space, or below any SYSGEN-created common
partitions. In a 32/7X, the last map block of extended
address space is reserved for MPX-32 use. In a
CONCEPT/32, the last two map blocks of extended address
space are reserved for MPX-32 use. See Volume | for
further description of the various structures of logical
address spaces available to the user.

allocate the partition physically in Class E memory (first
128KW). If Class E not available, wait.

6-15

RO

PO

password

high speed. Allocate the partition in Class H memory. If H
or E not available, wait.

slow. Allocate the partition physically in any class memory
(E, S, or H). If no memory available, wait. Default: S.

the partition is read-only protected. Tasks are not allowed
to write to it without supplying a password.

the partition is read and write protected. A password must
be supplied to access it.

supplies the password, eight-characters maximum.

6.6.3 The DELETE and DELETEU Directives
The DELETE directive is used to scratch a system file from disc and free the disc
space. The directive also removes the directory entry for the file from the SMD.

The DELETEU directive is used to delete a file from the directory of the user whose
name was supplied in the most recent USERNAME statement (batch, TSM, or FILEMGR).

Syntax:
DELETE (U] filename [,password]
where:
filename is the name of the file to delete.
password is the password associated with the file, if any.

6.6.4 The DELETEW Directive

The DELETEW directive enables the user to scratch more than one file per directive
from the disc, free disc space, and remove the directory entry for each file from the
SMD. Up to 20 file prototypes can be specified per directive, continued on several lines
or cards with each line or card containing a comma as the last non-blank character.

This directive can be used to delete system files and user files. However, user files with
the user name SYSTEM must be deleted with the DELETE U directive because the
DELETEW directive interprets the word SYSTEM as meaning a system file.

There are no defaults with the DELETEW directive. For each file set to be deleted, the
word SYSTEM or a user name and the respective file name must be specified in the
directive (see examples).

Syntax:
DELETEW [FILE=] prototype [;prototype]...
where prototype identifies a file set as follows:

(userna me(:,key])[']ﬁlena me['] [;pass word]
where:

username can be changed for each file set in a directive. The user
name and optional key must be enclosed in parentheses. The
pseudo user name SYSTEM is used to specifically indicate
system files and must be enclosed in parentheses.

filename name of file to delete. A question mark (?) can be used in

place of any character(s) of the file name to match any
character in that position.

6-17

If a filename contains any of the following characters, the
file name must be enclosed in single quotes:

:35()or/

spassword supplies the password required to access a file if it is either
PO (Password Only) or RO (Read Only) protected.

Examples:

Example 1 - This example demonstrates how to delete all non-password protected system
files that begin with GS. and WD/.

TSM>A4 SLO UT
TSM>FILEMGR

FIL>X
TSM>

Example 2 - This example demonstrates how to delete all files belonging to user name
FADEN with user key F and password SECRET.

TSM>A4 SLO UT
TSM>FILEMGR

FIL>X
TSM>

Example 3 - This example demonstrates how to delete the file RISK belonging to user
name HOLLY and all non-password protected system files that begin with GC..

$J0B
SEXECUTE FILEMGR

EXIT
SEOJ

A.”f‘;s\
(7

6.6.5 The EXIT Directive

The EXIT directive is used to exit the File Manager and return to the TSM prompt
when running in interactive mode.

When running in batch mode, the EXIT directive signifies the end of File Manager
directives in a job stream.

Syntax:

EXIT

6.6.6 The EXPAND and EXPANDU Directives

The EXPAND directive is used to increase or decrease the size of an existing system
file. The FILEMGR allocates a new file space on the disc that already contains the file,
copies the existing contents of the file to the new space, deallocates the original file
space, and updates the SMD. If the file space is increased in size, additional space is
zeroed. If decreased in size, any contents that exceed the new space are truncated.

The EXPANDU directive expands a file from a specific user directory. The user name is
the name supplied in the most recent USERNAME statement (batch, TSM, or FILEMGR).

Syntax:
EXPAND[U] filename, blocks [,password]
where:
filename is the name of the file to expand or contract.
blocks the size of the file. Specifies the number of 192-word

blocks to allocate for the file. (For further description of
file size, see Section 6.4.)

password is the password associated with the file, if any.

6.6.7 The LOG, LOGU, LOGC, and LOGS Directives

The LOG and LOGU directives are used to obtain a list of all permanent files defined in
the System Master Directory (SMD) or all user files, respectively. The data output
includes the file name, the device on which the file resides, FAST/SLOW file access, file
size, and starting address of the file.

Syntax:

LoG [u][c]([FILE] prototype][,prototype]...

where:

If no pérameters are specified, the resulting list contains
data on all permanent files defined in the SMD.

U indicates active user files of the username currently
associated with the File Manager.

C indicates collision mapping by printing a 'C' in the rightmost
position on the audit trail.

FILE= limits the list to a specific file or set of files. Up to 20 file
prototypes can be specified with a single LOG directive.
Note: prototypes can be continued on several lines (or
cards). Each line or card must have a comma as the last
non-blank character.

prototype identifies a subset of files are described in the RESTORE
and RESTOREU directives syntax.

The LOGS directive lists all system and user files or a subset of files that currently exist
in the System Master Directory (SMD). For each file, LOGS indicates the device and

sector number. It flags overlapping files. It can be used before and/or after other
FILEMGR directives,

LS L =) L[S S

Syntax:

LOGS

6-20

C

6.6.3 The MEMO Directive

The MEMO Directive is used to create a tape or floppy disc from which dynamic task
activation can be performed on a memory-only MPX-32 system.

During dynamic task activation, the system allocator reads the preamble (first 192-word
block) of the first load module on the input medium. If the load module name in the
preamble is the same as the load module name specified in this directive, the remainder
of the load module is loaded. If the names do not match, the allocator advances down
the input medium to the preamble of the next load module. This process continues until
either the appropriate load module name is found or an end-of-file (written by the File
Manager) is encountered. In either case, the input medium will be rewound and
deallocated when task loading has completed.

Syntax:
MEMO loadmod [,loac‘:lmod] yore
where:
loadmod is the load module name of the task to be activated. A

maximum of 20 load module names can be specified per tape
or floppy disc.

6-21

6.6.9 The PAGE Directive

N
The PAGE directive is used to force a page eject and output a header on the audit trail.
(A header is output automatically for the first page of the audit trail.)
Syntax:
PAGE
6.6.10 The RESTORE and RESTOREU Directives
The RESTORE directive copies system files saved via the SAVE directive back to disc. A
tape or other media assigned to lIfc OUT with SAVE is assigned to lfc IN to restore the
files. For further description, see Section 6.4 The RESTORE directive can be used to
restore:
all system and user files on IN to any available moving head disc
all system and user files on IN to a specific disc or type of disc
an arbitrary list of system (and user) files from IN to a specific disc or type of
disc
The RESTOREU directive restores files from IN belonging to a particular user back onto) R
disc (under the same user name). The user name used to retrieve the files is the name '
supplied in the most recent job control USERNAME statement (batch, TSM, or
FILEMGR). With RESTOREU, you can restore:
all files belonging to a particular user or all system files (no user name
associated) from IN to any available moving head disc
all files belonging to a particular user or all system files (no user name
associated) from IN to a specific disc or type of disc
an arbitrary list of user and/or system files from IN to a specific disc or type of
disc
With a list, files from other user names can also be restored.
Syntax:
RESTORE[U] [[DEVICE:devmnc],][[FILE:prototype) [,prototype] ,]
where:
If nothing is specified, files are restored to the dis¢ from
which they were saved. If that disc is not available, files
are restored to any available disc as if the DC device
mnemonic had been used.
L

6-22

DEVICE

devmnc

FILE=

prototype

where:

username

filename

spassword

used to restore the files on lfc IN to a specific disc or type
of disc.

the device, channel, and subaddress of the disc(s) as
described in Appendix A.

Files can be restored to any available disc by using the
device mnemonic DC.

limits the restoration to a specific file or set of files. Up to
20 file prototypes can be specified with a single RESTORE
directive. Note: prototypes can be continued on several
lines (or cards). Each line or card must have a comma a
the last non-blank character. '

identifies a file or file set as follows:

[(username)] ['] filename ['] [;password]

can be changed for each file or file set in a list. The
username must be enclosed in parentheses. Default: if
RESTORE, no user name; if RESTOREU, will save specified
file or files from directory of user last specified in TSM,
batch, or FILEMGR USERNAME statement.

name of file to restore. A question mark (?) can be used in
place of any character(s) of the file name to match any
character in that position. See Section 6.4.

if a file name contains any of the following characters, the
file name must be enclosed in single quotes:

: 3 () or |/

if the file is either PO (Password Only) or RO (Read Only)
protected, supplies the password required to access it.

6-23

Examples: {
RESTORE
Comment:

Restores all files from lfc IN back to disc. If a file on IN does not currently exist, it is
created and added to the SMD. Files are restored to the disc from which they were
saved.

If a file already exists, it is replaced by the version on the device assigned to lfc IN.

USERNAME MOORE
RESTOREU FILE = DEBUG.?
USERNAME JOHNSON
RESTOREU

Comment:

Restores all files belonging to Moore named DEBUG.n to disc, where n can be any
character or no character.

Restores all files on IN belonging to Johnson.

RESTORE DMO0!00

Comment:

Restores all system and user files on IN to disc DMO1. If some of the files exist on other
discs, they are deleted from those discs after they are safely restored on DMOI.

6-24

wu

6.6.11 The REWIND Directive

The REWIND directive is used to rewind a magnetic tape. It is used primarily when
restoring files from a tape in an order different than the order they were saved as
described in Section 6.4.

The FILEMGR does not rewind a tape automatically at the end of either a set of SAVE's

or RESTORE's. If the tape has not been rewound offline, it can be rewound via this
directive.

Syntax:
EWIND ; ouU Ts
where:
IN specifies the device assigned to lfc IN.
ouT specifies the device assigned to lfc OUT.

6-25

6.6.12 The SAVE and SAVEU Directives

The SAVE directive is used to back up permanent disc files on the medium associated
with lfc OUT. Normally files are saved on, and restored from, magnetic tape.

The SAVE directive can be used to back up:
all files on all discs configured in the system'
all files on a particular device

an arbitrary list of system and user files, where no user name supplied defaults
to a system file

Or with SAVEU, you can back up:
all files for a particular user (all discs or a specific disc)
all system files (all discs or a specific disc)

an arbitrary list of user and system files, where no username supplied defaults
to the most recent USERNAME statement (batch, TSM, or FILEMGR)

The SAVEU directive saves files taken from the directory of the user whose name was
supplied in the most recent USERNAME statement (batch, TSM, or FILEMGR). To save
just system files, use USERNAME without any name supplied.

As files are saved, the FILEMGR builds a directory containing essentially the same
information contained on the SMD. It outputs this directory at the beginning of each
group of files saved on the medium assigned to lfc OUT. An error message and a zero-
filled block on OUT indicating end-of-file (EOF) is produced if a save directive is
specified and no files are saved, i.e., SAVE DEVICE=DMO0801.

An ‘audit trail' of ali files saved in a particular FILEMGR session is provided
automatically on SLO. This list should be kept and used in restoring the files, because
the sequence in which files are saved is important when they are restored. For further
description, see Sections 6.4 and 6.7.

To increase or decrease the number of blocks in the saved version of a file, its new size
(number of blocks) can be specified when it is saved. The file space will be recreated
when the file is restored and will be the size you specify in the save. The ability to
modify the size of a file is available only when saving a specific file.

Syntax:

DEVICE=devmnc
SAV
A E[U] [3F[LE:prototype ,prototype ""é]

where:

if no parameters are supplied, all system and user files (SAVE)
or all user files (SAVEU) without password protection are saved
on lfc OUT.

6-26

~

(DEVICE=

devmnc

FILE=

prototype

where:

username

filename

spassword

/S1Z:blocks

limits the saved files to a particular disc.

the device code, channel, and subaddress of the disc as
described in Appendix A.

limits the SAVE to a specific file or set of files. Up to 20 file
prototypes can be specified. Note: prototypes can be
continued on several lines (or cards). Each line or card must
have a comma (,) as the last non-blank character.

identifies the file or file set as follows:

[(username)] ['] filename ['] [;password][/SIZ:blocks]

can be changed for each prototype.
The username must be enclosed in parentheses.
Default: SAVE, no username, i.e., will look for system files.

Default: SAVEU, the username supplied in the most recent
USERNAME statement (batch, TSM, or FILEMGR). If cannot
match the file in the user directory, will search for a system
file.

Or the pseudo username: SYSTEM can be used specifically to
indicate system file(s).

name of file to save. A question mark (?) can be used in
place of any character(s) of the file name to match any
character in that position. See Section 6.4.

if a file name contains any of the following characters, the
file name must be enclosed in single quotes:

s () or /

if the file is password protected, supplies the password
required to read it.

specifies the desired size of the file in number of 192-word
blocks. If existing file is larger, truncates the saved version;
if existing file is smaller, add blocks on the saved version and
initializes them to O's.

Default: the size of the existing file is the size of the saved
version. ‘

For further description of file size, see Section 6.4.

6-27

Examples:
SAVE
Commgnt:

Saves all files (system and user) on all discs configured in the system.

SAVE DEVICE=DM0100
Comment:

Saves all system and user files from the moving head disc on channel 01, subaddress 00.

USERNAME B
SAVEU

Comment:

Saves all files belonging to User B on all discs configured in the system.
USERNAME
SAVEU

Comment:

Saves all system files from all discs configured in the system.

USERNAME BROWN
USERNAME BROWN
SAVEU FILE=P3577222,(MOORE)DEBUG.?,EXPR

Comment:

Saves all the files in Brown's directory that start with PJS$, plus the file named EXPR.
Also saves all files named DEBUG. from the directory of a user named MOORE. All
DEBUG. files are saved, regardless of the character following the dot. If a DEBUG. file
in Mo;:re's directory contains an eighth character, the file will not be saved. (See Section
6.4.2.

6-28

o

<
ke

USERNAME MILLER
SAVEU FILE=??7?7?,'FTN:SRC'

Comment:

Saves all files from the Miller directory that have five or less characters in the file
name. Also saves the Miller file named FTN:SRC, which is enclosed in single quotes
because of the embedded colon in the file name.

USERNAME SMITH
SAVEU

USERNAME MOORE
SAVEU

Comment:

Saves all files in Smith's directory, then saves all files in Moore's directory.

6-29

6.6.13 The SAVELOG Directive

The SAVELOG directive can be used when restoring files from magnetic tape or before
restoring files, simply to check the contents of a tape. It displays (or lists) the files
grouped in the current directory on the tape assigned to lfc IN. After listing those files,
it returns the tape to the beginning of the current directory.

This directive is useful during restoration because it allows you to match restore
directives against the actual saved files on a tape, or it can be used simply to check the
contents of a tape, e.g., to ensure that the right tape is mounted for the files you want to
restore. :

If a tape contains several directories, the SKIPFILE directive can be used to get to and
list the next directory, e.g., if a tape had three directories,

SAVELOG
SKIPFILE IN
SAVELOG
SKIPFILE IN
SAVELOG
REWIND IN

would output all directory entries to SLO. Or if SAVELOG is inserted between RESTORE
directives, each directory list would precede the RESTORE operations shown on SLO.

Syntax:
SAVELOG
Example:

To be supplied

14 The SDT Directive

The SDT directive is used to specify key load modules. It also checks to ensure that each
file specified is a valid load module.

Syntax:
SDT sysfile,BOOTxx, [loadmod],...
where:

sysfile specify the load module that contains the resident operating
system. You will have run SYSGEN to create a tailored
version of the operating system and will specify the name of
the output file generated with SYSGEN as the first load
module. (Supply the file name used with the SYSGEN
SYSTEM directive.)

6-30

g\‘

BOOTxx

loadmod

specify the SYSTEMS-supplied load module, BOOT7X or
BOOT27, which loads the resident system onto disc. BOOTxx
also provides restart logic on disc for reloading from disc. It
is required for all configurations of the SDT.

specify key load modules required to get a system that the
user can communicate with.

For MPX-32, absolute minimum load modules are: FILEMGR,
OPCOM, J.INIT, 3.SOUT, and J.TSM. Additional load
modules should be included with the key modules or the SDT
to maximize convenience for the user: J.JOBC, J.SSIN,
JSSIN2, J.TINIT. These are followed by an EOF written by
the FILEMGR after the last load module specified with SDT.

For memory-only MPX-32 systems, the SDT is built as follows:

SDT sysfile,BOOTMEMO[,0PCMM] [,loadmod] ,...

where:

sysfile

BOOTMEMO

OPCMM

loadmod

specifies the name of the load module that contains the
resident operating system created by running SYSGEN. This
is the file named used wit the SYSGEN SYSTEM directive.

specifies the SYSTEMS-supplied load module 'BOOTMEMO'
which performs the necessary system initialization and
creation of the task SYSBUILD which in turn performs the
loading and activation of user tasks supplied on the SDT.

specifies the memory-only operator communications task.
This module is created by assembling the source module
SJ.OPCOM into the object module OJ.OPCOM under the user
name MEMONLY, with the memory-only conditional assembly
flag (C.MEMO) set with the MPX-32 macro library. The
resulting object module is then cataloged as the load module
OPCMM so as not to erase the MPX-32 operator
communications task (OPCOM). This module is optional, but
if desired, it must be the first task name on the SDT after
BOOTMEMO. ‘

specifies the load module names of user tasks to be loaded
from the SDT and activated after system initialization. Up

‘to 18 tasks (17 if OPCMM is specified) can be included in the

SDT directive for immediate loading and activation.

Note: The SDT cannot be multi-volume. The boot loader is not capable of processing the

header record.

6-31

6.6.15 The SKIPFILE Directive

The SKIPFILE directive is used to advance past one or more end-of-files (EOF's) on the
file or device assigned to lfc IN or lIfc OUT.

Syntax:
N)
KIPF) \
S ILE { OUT| [,n]
where:
n number of EOF's to skip. Default: one.
Example:

For sample use, see Figure 6-1 and accompanying text and the SAVELOG description.
6.6.16 The USERNAME Directive

The USERNAME directive is used to establish a directory to associate with subsequent
FILEMGR directives.

Initially, if running from a terminal via TSM, the user name is defaulted to the owner
name established at logon. . If running from the OPCOM console, no user name is N
established (implying the user name 'SYSTEM'). The initial user name can be changed by

supplying a different username in any USERNAME statement (batch, TSM, or FILEMGR).

The USERNAME directive without any name supplied associates system files with
subsequent FILEMGR directives.

Syntax:
USERNAME [username] [key]
where:

username is the name of a valid user on the M.KEY file. Default if no
name supplied is no user name, i.e., system files.

key specifies a valid key if required to use this user name.

6-32

6.7 Examples
Example 1 - This example saves all user files beginning with XY onto a tape.
TSM >ASSIGN3 OUT=MT

TSM > ASSIGN4 SLO=UT
TSM >FILEMGR

FIL> EXIT
TSM>

Example 2 - This example creates a fast file named TEST of 100 sectors.

TSM> ASSIGN4 SLO=UT

TSM> FILEMGR

FIL> CREATEU TEST,DM,100,,FAST
FIL> EXIT
TSM>

Example 3 - This example restores the tape files in Example 1 back to disc.

EDT> COL

$J0B ~

SASSIGN3 IN=MT
SEXECUTE FILEMGR

EXIT
SEO3
S

EDT>RUN

6.3 Errors

See Appendix C.

6.9 Listings

The FILEMGR automatically outputs an audit trail of all directives issued, resulting
operations, and errors on SLO. In addition, if you use a FILEMGR LOG, LOGU, and/or
SAVELOG directive, those results are output to SLO.

On SAVE's it is a good idea to retain the audit trail listing so that you have the right
order of saved files on the tape to use in restoration.

6-33/6-34

.’/ .

\\‘;/

S
4) //”

7. M.KEY EDITOR (KEY)

KEY is a utility used to build an M.KEY file for the MPX-32 system. The M.KEY file
specifies valid owner names/usernames* on the system and optionally sets, for each
owner name/username:

a key to restrict access to the owner name during logon and to restrict access
to the user name when accessing files

OPCOM indicators restricting the owner's use of OPCOM commands

an indicator that prevents the owner from cataloging 'privileged' tasks (tasks
that use privileged system services or privileged variations of unprivileged
system services)

an indicator that prevents the owner from activating tasks cataloged as
privileged

default tab settings
default alphanumeric project names/numbers for accouting purposes

After KEY has been run, only those owners/users established in the M.KEY file are
allowed to log on to the system and access files. The owner name CONSOLE cannot be
restricted in any way. CONSOLE is also the one exception to an owner name being
identical to a user name. There is no user name associated with the CONSOLE owner.

7.1 General Description

KEY processes an input file containing ownernames/usernames, keys, and other
information described previously and outputs the data to the M.KEY file referenced by
the system at logon.

*Owner names are associated with tasks in the System Dispatch Queue and, except for
jobs, cannot be changed from logon through logoff. Usernames are associated with file
names in the System Master Directory (SMD) and can be changed via USERNAME
commands/directives in Job Control, TSM, and various utilities (as documented).

7.2 Files and File Assignments

The primary file required to use KEY is an input file containing M.KEY information for
each owner.

The structure of the input file is described in Section 7.4

The input file is prepared using the EDITOR STORE UNNUMBERED command. It is
assigned to the logical file code INP, as in:

ASSIGN1 INP=filename
A system file named M.KEY is also required. It can be password-protected. This is the
output file used by the KEY utility and accessed by the system. The file code used by
KEY for this file is OUT, as in:

ASSIGN] OUT=M.KEY,pass,U
Output to M.KEY must be unblocked.

M.KEY file space can, for example, be created and password-protected via the
FILEMGR.)

7-2

‘%VJ

7.3 Using KEY

This section describes how to build the input file for KEY. For ease of use, the input file
should be built as a system file, as in:

EDT>COLLECT

EDT>STORE INFILE UNN SYS

7.3.1 Input Record Syntax
ownername,key,opcommands,opcommands,tabs,tabs,projno
where:

ownername one-to-eight character name used to log on the MPX-32 system. Also
provides the user name for file access.

key one-to-eight character key to associate with the owner name/user name.

opcommands hex characters representing the bit pattern of OPCOM commands and
privileges available to this owner name. Two words are used, and are
separated by a comma or blanks. The bit settings in a word can optionally
be left unchanged by entering a zero for the word; however, if you set one
bit in a word, all bit settings in that word must be specified.

If a bit is set, a function or privilege is denied to tasks with this
ownername.

The module number of each command verb corresponds to its bit position. For example,
the command verb "MODIFY" (module OC18), is represented by bit 18. Module numbers
are indicated below.

With the exception of EXIT (see Volume 1, Section 4.1.4), if a command verb bit is set,

the command is not available to an owner name and generates an "INVALID COMMAND
VERB" message.

7-3

7-4

42

43
b4-63

Command

EXIT
ABORT
ACTIVATE
BATCH
BREAK
CONNECT
CONTINUE
DEPRINT
DEPUNCH
DISABLE
DISCONNECT
DUMP
ENABLE
ENTER
HOLD
KILL

LIST

MODE
MODIFY
OFFLINE
ONLINE
PURGEAC
REDIRECT
REMOVE
REPRINT
REPUNCH
REQUEST
DELETETIMER
SAVEAC
SEARCH
SEND
SETTIMER
SNAP
START
STATUS
SYSASSIGN
TIME
URGENT
RESUME
ESTABLISH

Privilege

Disables access to tasks with a different owner

name.

Disables activation of privileged tasks other than
OPCOM (Note: With this bit set File Manager
cannot be activated).

Disables cataloging of load modules as privileged.
To use the privileged option will be considered
illegal and the cataloger will abort the job.
Disables use of the TSM RESTART command.

Reserved.

tabs

projno

hex characters representing the tab positions for this owner name. Eight
tabs can be set. Each word defines four tab positions. The words are
separated by a comma or blank. The first byte of 00 indicates end of

tabs. Tabs must be entered in ascending order and not exceed the width
of a terminal line.

one-to-eight character alphanumeric project name/number to associate
with the owner name.

Tab Stop 1 2 3 4 5 6 7 8

Setting
(Hex)

7.3.2

Notes:

lﬁ

20

3‘

i 1 ¥ ' ' ' ' \ \J '] 1 1) '] ' '

1 ' |] '] v] \J '

Sample Input File

1. GIPSON,DG

HAWK,RH,0,0,151 A2640

BEVIER, JB,0,0,0A 142430,36400000,ALLFILES
FADEN,GF,0,0,1A152640

MYERG

MEYERS,M, 40002000,10000000
PARIS,C
HALE,C
MOORE

Owners/users with only name and key and no other specifications have access

to all OPCOM commands, have no default tabs (until they enter the Editor),
and no privilege restrictions.

This owner has access to all OPCOM commands, default tab settings for tabs

in positions 10, 20, 36, 48, 54, and 64, and a default project name established
as ALLFILES.

This owner cannot use the following OPCOM commands:

ABORT, MODIFY,
and SYSASSIGN.

7-5

7.4 Accessing the M.KEY Editor

- To access KEY, assign appropriate files to IN and OUT as described in Section 7.2. Then
activate KEY. To do so as part of a batch job, create a job file using the the EDITOR,
punch cards, or other media. The job file can be read to SYC and the job activated in
several ways:

from the OPCOM console:

" <Attention>"

??BATCH \F,jobfile
D,devmnc
from the OPCOM program:
TSM>OPCOM

??BATCH)F,jobfile
D,devmnc

from the EDITOR:
TSM > EDIT

EDT> BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate KEY and run on line, use the TSM ASSIGN command for KEY assignments,
then activate KEY.

TSM> KEY
TSM>

7-6

7.5 Example

How to build the input file is described in Section 7.3. A sample input file (INFILE) is
described in Section 7.3.2.

TSM > ASSIGN1 INP=INFILE
TSM > ASSIGNI OUT=M.KEY,KEYPASS,UNBLOCKED
TSM >KEY

TSM >

7-7/7-8

. THE SUBROUTINE LIBRARY EDITOR (LIBED)

The System Subroutine Library (LIBED) is a set of assembled object modules available
from SYSTEMS. It is called MPXLIB and contains FORTRAN math subroutines and 1/O
formatting routines. The corresponding directory for MPXLIB is named MPXDIR. The
library object modules can be accessed as externals by tasks written in various languages,
including Assembly language. The Subroutine Library Editor (LIBED) is used to add
object modules to the library.

The user can also use LIBED to create his own library of object modules and a
directory. He can then access modules within the library as externals. LIBED is also
used to delete existing modules from a library.

References to subroutines (object modules) in the library (MPXLIB and/or user) are

resolved when a task that accesses them is cataloged. (See the Cataloger, Volume 2,
Chapter 2.)

8.1 General Description

With LIBED, the object modules to include on a library or to replace on an existing
library are assigned to the logical file code Library General Object (LGO), where the
default assignment is to SGO. This allows the user to assemble or compile one or more
object modules with output to SGO and use SGO as input to LIBED in the same job, if
desired.

LIBED has three directives: LOG is used to specify if a list of all module names and
external definitions is desired, DELETE is used to specify modules to be deleted, and
EXIT is used to terminate directive input and cause previous directives to be processed.

Existing modules are replaced with new modules automatically whenever the
replacement module exists on the file assigned to LGO.

Use of the SOPTION statement determines whether a library is being created or not, as
described in Section 8.3. If creating a library, LIBED does not process directives.

The subroutine library directory is used by the Cataloger to locate modules on a given
library.

8.1.1 LIBED Directives Summary
Directive Function
DELETE Deletes a module from the library.
EXIT Terminates directive input.
LOG Provides a log of all modules and their external definition.

8-1

8.2 Files and File Assignments

The following logical file codes are used for LIBED assignments. Note that a file or
device assigned to LIB or DIR must be assigned as unblocked. All other file or device
assignments are blocked (the MPX-32 default).

8.2.1 The Object Module File (LGO)

LIBED takes input from the file or device assigned to LGO. This file contains assembled
or compiled object modules. The default assignment is LGO = SGO.

8.2.2 The Directive File (CTL)

The LOG or DELETE directives are supplied on the file or device assigned to CTL. The
default assignment is CTL = SYC.

8.2.3 The Subroutine Library File (LIB)

Object modules are output to the file or device assigned to LIB. If object modules are
being deleted, the file or device assigned to LIB is both the input and output source.
Object modules are automatically replaced if they exist on the file or device assigned to
LGO as well as on the file or device assigned to LIB.

8.2.4 The Directory (DIR)

The file or device assigned to DIR is used for the library directory. The directory is
created or maintained by LIBED., The user must be certain that the proper directory is
paired with the corresponding library when making assignments for LIBED or the
Cataloger. :

8.2.5 Listed Output (LLO)

The file or device assigned to LLO is used for LIBED listings. (See Section 8.7.) The
default assignment is LLO = SLO,1000.

f] _
Table 8 - 1
LIBED File Assignments Page 1 of 2
Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for LIBED Assignment for LIBED Comment
Object Module LGO Default: The Assembler defaults
Input File ASSIGN2 output to an SGO file.
LGO = SGO It is used automatically
if assembling code in the
Options: same job, or output from
ASSIGNn the Assembler can be
‘ . L directed to a device
LGO - Jfilename or permanent file and
lde‘"““c , accessed by assignment
to LGO.
Directives CTL Default: Work file built using EDT>BATCH
CTL = SYC EDIT. For further description
. Permanent file built EDT>BATCH jobfile see "Accessing LIBED"
using EDIT or MEDIA. or
29 D,devmnc
P7BATCH ’F,iobﬁle i
Cards.
Other device medium Same route shown for
e.g., magnetic tape, cards.
where jobfile was
copied from cards or
a file via MEDIA.
Interactively. See
"Accessing LIBED."
Subroutine LIB Default: If disc file is used The Subroutine Library
Library LIB=MPXLIB for the library it and directory created
must be pre-established via LIBED are used when
Options: via the FILEMGR utility. a task is cataloged that
ASSIGNn If the size of a file accesses object modules
is increased, it must on the library. Both
LB = MPXLIB(,U also be handled via files must be unblocked.
userlib the FILEMGR.

-8

Table 8 - 1 (Cont'd)

LIBED File Assignments Page 2 of 2
Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for LIBED Assignment for LIBED Comment
Library Directory DIR DIR=MPXDIR,,U A directory is produced See above.
Options: for each subroutine
ASSIGNn :ibrary. The directory
e.g., MPXDIR) already
DIR = 3MPXD|R(nU exist’s or is to be
i created via this run of
wserdir | LIBED.
Listed Output LLO ASSIGN2 N/A
LLO = SLO,1000
Options:
ASSIGNn
LLO = ﬁlename(
devmnc ‘
= / N T
f) « . ()

N

8.3 Options

If no options are specified, LIBED processes directives from the file or device assigned to
CTL. If an object module on the file or device assigned to LGO has the same name as an
existing module on the library (LIB assignment), it is replaced. If not, it is added to the
library. LIBED updates the directory. '

LIBED options are specified through the job control statement, SOPTION or the TSM
OPTION command.

OPTION 1 or $SOPTION 1 is used to create a new library and directory from the object
modules in the file assigned to LGO. Processing under this option ignores the current
contents of the library and directory (if any) and ignores the file assigned through the
CTL file code. When this option is specified, a . LOG of all module names and external
definitions is produced automatically.

OPTION 2 or SOPTION 2 is used to make only a statistics run. It produces an analysis of
allocated and remaining disc space in the library and directory assigned to file codes LIB
and DIR.

3.4 Using LIBED

Subroutine libraries are a convenient mechanism for accessing code (object modules) used
by different tasks. Up to seven libraries can be accessed when a task is cataloged.

To be used most efficiently in a subroutine library, an object module should be given a
specific, unique name when it is assembled or compiled (PROG = uniquename), so that is
can be accessed with a Cataloger PROGRAM directive. Also, cataloger INCLUDE and
EXCLUDE directives access object modules by the name supplied in Assembler DEF
statements. These names should be unique to avoid problems.

Note that the name 'subroutine' library is really a misnomer, as both main segments
(programs) and subroutines (definitions) can be included and edited on the library, i.e.,
they are all discrete 'object modules'.

8.5 Accessing LIBED

To access the Subroutine Library Editor as part of a batch job, create a job file using the
EDITOR, punch cards, or other media as -described in Table 8-1. The job file can be read
to SYC and the job activated in several ways:

from the OPCOM console:

" <Attention> "

??BATCH)F,jobfile
D,devmnc

from the OPCOM program:
TSM > OPCOM

?27BATCH |F,jobfile
)D,devmnc

from the EDITOR:
TSM> EDIT

EDT> BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate the Subroutine Library Editor and run online, use the TSM ASSIGN and
OPTION commands to make the Subroutine Library Editor assignments and chose options
equivalent to those preceding the EXECUTE LIBED command on a jobfile, then proceed
to issue Subroutine Library Editor directives, if applicable. (SELECT and OBJECT
statements are not available when running the Subroutine Library Editor online.)

TSM> LIBED
LIR>

8.6 Subroutine Library Editor Directives

All directives are read from the device assigned through logical file code CTL. All
directives begin in column 1 and fields are terminated by blanks.

8.6.1 DELETE Directive

The DELETE directive causes the specified program (object module) to be deleted from
the library assigned to lfc LIB, and its external definitions to be removed from the
directory assigned to Ifc DIR. '

Syntax:
DELETE name comments
where:
name is the one- to eight-character (ASCII) program name to be deleted. This

entry must be left-justified with no leading blanks.

comments any desired comments.

8.6.2 EXIT Directive

The EXIT directive terminates directive input and causes the previous directives to be
processed.

Syntax:

EXIT

8.6.3 LOG Directive

The LOG directive causes a log of all module names and their external definitions to be
output to the device or file assigned to Ifc LLO.

Syntax:

LOG

8-7

8.7 Listings
The Subroutine Library Editor generates the following listed output:
" o Adirective list
o An optional log of module names and external definitions
o An optional analysis of available library and directory disc space

o A list of modules specified for deletion that were not located in the
specified library

3.3 Errors

Not supplied.

3.9 Examples

Example |

This example creates a subroutine library on the file USERLIB and directory on the file
USERDIR. The library contains all modules following the SOBJECT Job Control
statement. A log of the module names and external definitions are produced on the LLO
device. The files USERLIB and USERDIR must be created via the File Manager.

$JOB CREATE MEYERS

SNOTE CREATE NEW USER LIBRARY
SOBJECT

(User Object Modules)

$ASSIGN! LIB=USERLIB,,U

$ASSIGN! DIR=USERDIR,,U

SOPTION 1

SEXECUTE LIBED

SEOJ

$$

Example 2

This example produces a log of all library module names and external definitions, on the
SLO device. In addition, statistics on available space in the library and directory are
printed.

$JOB LOG MEYERS
§ASSIGN1 LIB=USERLIB,,U
$ASSIGN! DIR=USERDIR,,U
SEXECUTE LIBED

LOG

$EO3

SN

N

Example 3

This example updates the standard MPX-32 System Subroutine Library and directory
MPXLIB and MPXDIR. All modules following the SOBJECT statement either replace an
old module of the same name or are added as a new module. The module name UMODI is
deleted. A log of all module names and external definitions and an analysis of remaining
disc space in MPXLIB and MPXDIR is produced.

$JOB UPDATE MEYERS
SOBJECT

(User Object Modules)
SEXECUTE LIBED

LOG

DELETE UMODI

SEOJ

8

Example 4

In this example, the binary output from a compilation is taken directly from the SGO file
and used as input to the Subroutine Library Editor. Modules replace modules of the same
names; modules that do not match existing names are inserted.

$JOB UPDATE MEYERS

SNOTE UPDATE OWNER LIB FROM COMPILATION
SOPTION 5

SEXECUTE FORTRAN

(Source Program)

$Al LIB=ULIB,,U

$A1 DIR=UDIR,,U

SEXECUTE LIBED

SEOJ

$$

Example 5

This example produces a log (using Control C as the EOF character) and returns the
user to the TSM prompt automatically when execution is complete.

TSM>ASSIGN1 LIB=USERLIB,,U

TSM>ASSIGN1 DIR=USERDIR,,U
(If these ASSIGN1 statements are not specified, the resulting log details
contents of the System Subroutine Library to the terminal.)

TSM>ASSIGN4 LLO=UT

TSM>EXECUTE LIBED

LIB > LOG

LIB><Control C>

TSM>

8-9/8-10

N

'S

9. THE MACRO LIBRARY EDITOR (MACLIBR)

The Macro Library Editor (MACLIBR) is used to create and maintain system or user
macro libraries.

MACLIBR allows the user to:

o delete or replace macros by name
o insert macros
o build a macro library from scratch

9.1 General Description

Macros are sequences of Assembly language instructions that are given unique names
(e.g., M.ALOC). When a macro name is used in source code, the macro is retrieved from
the macro library by the Assembler and expanded into the associated instructions. In a
macro, the user can also define up to 256 variable parameters to pass to the macro. In a
task that uses the macro, the task supplies appropriate parameters and instructions are
expanded as defined in the macro. For further description, see the Macro Assembler
Reference Manual, particularly Section 6.

The system macro library for MPX-32 is named M.MPXMAC. Supplied with the
operating system, MMMPXMAC contains all macros required to expand system services
(Volume 1, Chapters 5, 7, and 8) into Assembler level code with service calls (SVC's),
The system macro library for RTM is also provided with MPX-32, and is called
M.MACLIB. It can be used with RTM-based source code that uses Call Monitor (CALM)
services.

Macros begin with a DEFM statement, which can be proceeded by a header record
further describing the macro. The user can list the DEFM statements for a library via
the /MACLIST directive. The first line of each macro (header or DEFM) is shown on the
normal MACLIBR audit trail.

Within the macro, the user can optionally define parameters to pass to the macro
(dummy symbols preceded by percent signs). Other dummy symbols are labels used for
conditional processing. The /MACLIST directive allows the user to output all dummy
symbols used in a macro.

For further description of macros, see the Macro Assembler Reference Manual,
publication number 323-001220.

9.1.1 MACLIBR Command Summary

Directive Function

/APPEND Adds macro(s) at end of a library file.

/CREATE Generates a macro library.

/DELETE Deletes a macro from a library.

/DISPLAY Lists a macro.

J/END Defines end of INSERT, REPLACE, APPEND, and/or CREATE
sequence. After APPEND or CREATE, has same effect as
EXIT.

[EXIT Last update directive. Performs update and returns control to
calling task.

[/INSERT Inserts macro(s) ahead of specified macro.

/LOG Lists names and numbers of all macros after all updates
complete.

/REPLACE Replaces an existing macro with a new one of the same name.

9.2 Files and File Assignments

Input and outpﬁt files for MACLIBR are described in this section and the accompanying
files assignments chart, Table 9-1.

9.2.1 Macro Library (MAC)
A macro library can reside on either a permanent disc file or a magnetic tape file. If the
macro library file is a disc file, the File Manager utility (see Chapter 6) must be used to

create the macro library file prior to generating the macro library.

The file assigned to MAC must be unblocked.

Both the Macro Assembler and the Macro Library Editor default the assignment of the
macro library to the M(MPXMAC permanent file. During assembly, the macro library is
searched each time a macro that is not coded in-line is encountered.

The user has the capability to create multiple macro libraries. When generating a macro
library other than M.AMPXMAC, the user must reassign the file code, MAC, to the desired
macro library file via Job Control or TSM S$ASSIGN1 or $ASSIGN3 statements.
(Similarly, the Macro Assembler can access a macro library other than M.(MPXMAC by
reassignment of the file code, MAC.)

AN

N/

9.2.2 Macro Input File (SI)

Macro source is supplied on the file or device assigned to Si. Macros must not be
compressed format. Each macro may have a maximum of 256 parameters. The
maximum number of macros is 65,535.

9.2.3 Directives (DIR)

MACLIBR directives are supplied on the file or device assigned to lfc DIR. The defaul:
assignment is to an SYC file. See Table 9-1.

9.2.4 Audit Trail (LO)

The file or device for an audit trail is assigned to lfc LO. The default assignment is to
SLO. For further description of the audit trail, see Section 9.7.

9.2.5 Scratch File

A scratch file the same size as the library file assigned to MAC is allocated dynamically

by MACLIBR. The scratch file is used to build and edit macros from the source into an
existing or new library.

h=6

Table 9 -1

MACLIBR Files and File Assignments Page | of 2
Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for MACLIBR Assignment for MACLIBR Comment
Source Code S1 Default: Source files can be By default, MACLIBR
ASSIGN4 created via EDIT, equates the source code
SI=DIR MEDIA, etc., as and directives files so
described in alternative that all come from SYC.
Options: routes to SYC with the Note: if you use a
ASSIGNn DIR file code. separate file for the SI
assignment, specify
st = ; filename| U UNBLOCKED (,,U).
devmnc
Directives DIR Default: Work file built using EDT >BATCH For further description
DIR=SYC EDIT. see "Accessing MACLIBR."

Permanent file built
using EDIT or MEDIA.

Cards.

Other device medium
e.g., magnetic tape,
where jobfile was copied
from cards or a file

via MEDIA,

Interactively. See
"Accessing MACLIBR"

EDT >BATCH jobfile
or
278ATCH | Didevmnc|

= |F,jobfile |

Same route shown
for cards.

$=6

Table 9 - 1
MACLIBR Files and File Assignments Page 2 of 2
Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for MACLIBR Assignment for MACLIRR Comment
Macro Library MAC Nefault: If an existing library The macro library file
ASSIGNI file is not being used, must be unblocked.)
MAC = M\(MPXMAC , U the file for the library M.MPXMAC is used for MPX-32
must be pre-established compatible macros (SVC
Options: via the FILMGR: utility. service calls) and MACLIB
ASSIGN! provides RTM-compatible
: i Ils.
MAC = {M.mAcLB! U CALM service calls
Juserlib \
Listed Output LO Default:
ASSIGN2
LO = SLO,2000
Options:
ASSIGNn
LO = ifilenamel
\devmnc |

9.3 Options

Applicable MACLIBR options are specified through the Job Control or TSM OPTION
command as follows:

SOPTION 7The file assigned to lfc DIR is unblocked.
SOPTION 8The input file assigned to lfc SI is unblocked.

If either optior{ is specified, it must also be specified in the ASSIGN statement.

9.4 Using the Macro Library Editor

MACLIBR processes files sequentially, i.e., the macro specified with any directive must
be located further 'down' on the library file than the macro specified with the previous
directive. For example, you cannot add a macro in the middle of a library then replace a
macro at the beginning. Care is required in preparing the directives file and the file
assigned to SI so that both follow the sequence of the library being updated.

The user is cautioned against allowing duplicate names for macros. If two macros have
the same name and you want, for example, to delete one of them, there is no guarantee
that the right one will be deleted. MACLIBR makes no checks for duplicate names.
Listed output from the previous edit can be used to make a name check.

-

‘‘‘‘‘

9.5 Accessing the Macro Library Editor

To access MACLIBR as part of a batch job, create a job file using the EDITOR, punch
cards, or other media as described in Table 9-1. The job file can be read to SYC and the
job activated in several ways:

from the OPCOM console:
" <Attention>"

2?BATCH 3F, jobfile g
D, devmnc

from the OPCOM program:
TSM>OPCOM

?7BATCH \F, jobfile |
D, devmncg

from the EDITOR:
TSM >EDIT

.

EDT> BATCH [jobfile]
If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate the Cataloger and run online, use the TSM ASSIGN commands to make
Cataloger assignments equivalent to those preceding the EXECUTE MACLIBR command
on a jobfile, then proceed to issue Cataloger directives. (SELECT and OBJECT
statements are not available when running MACLIBR online.)

TSM> MACLIBR
MAC> MACLIBR
MAC>

9.6 Macro Library Editor Directives
Macro Library Editor directives are described in detail on subsequent pages.

Most Macro Library Editor directives can either be abbreviated to the first four
characters or completely spelled out. If a directive or parameter can be abbreviated, the
acceptable abbreviation is indicated in syntax statements by underlining.

Both a comma and blanks between parameters are legal delimiters. Commas need be
used only where shown.

Directives are processed serially until an /EXIT directive or an end-of-file is
encountered. At least one blank column or space must separate the end of the directive
verb and required parameter. A required parameter must not be placed beyond column
20 nor exceed 8 characters. Directives which reference a macro by name must be in the
same order as they appear on the macro library file. The only exception is in the case of
the /DISPLAY and /LOG directives, which may occur anywhere.

MACLIBR writes the updated macro library to a dynamically allocated scratch file.
When the updating sequence is complete, the /EXIT directive will cause the scratch file
to be copied to the file assigned to MAC. For /APPEND and /CREATE directives, an
/END directive or an end-of-file will serve as an /EXIT directive and cause the scratch
file to be copied to the file assigned to MAC. The /INSERT, /DELETE, and /REPLACE
directives will cause the remainder of the macro library to be retained if the name
specified cannot be found. All modifications to that point will be placed on the macro
library file.

9.6.1 /APPEND Directive

The /APPEND directive is used to add macros to the end of the macro library. All
macros from the current file position to the end of the macro library will remain the
same. Macros are read from the SI file until an /END directive or an end-of-file is
encountered. Because no further updating is possible, this will act as an EXIT directive
to terminate MACLIBR.

Syntax:

/APPEND

9.6.2 /CREATE Directive

The /CREATE directive is used to generate a macro library. Macros are read from the
file assigned to SI until an /END directive or an end-of-file is encountered. MACLIBR
then terminates.

Syntax:

[CREATE

9.6.3 /DELETE Directive

The /DELETE directive is used to delete the named macro from the macro library. All
macros from the current file position to the name macro remain the same. The next
directive is processed after the macro has been found and deleted.

Syntax:
/DELETE macro
where:
macro is the 1- to 8-character ASCII name of the macro to be deleted.
9.6.4 /DISPLAY Directive

The /DISPLAY directive is used to list the statements of the named macro or of all
macros if a name is not specified. This directive may be placed anywhere. After the
macro has been displayed or found to be nonexistent, the macro library is repositioned to
where it was before the display. The next directive is then processed.

Syntax:
/DISPLAY [macrd]
where:
macro is the 1- to 8-character (ASCII) name of the macro to be displayed.
9.6.5 /END Directive

The /END directive is used to define the end of an /INSERT, /REPLACE, /APPEND, or
/CREATE sequence. After an /INSERT or /REPLACE sequence, the next directive is
processed. For /APPEND or /CREATE, processing is the same as for an /EXIT directive.
Syntax:

{END

9.6.6 JEXIT Directive

The /EXIT directive defines the last directive. If any updates have been performed, the
scratch file is copied to the file assigned to MAC. If no updates have been performed,
MACLIBR terminates. If a /LOG END directive has been included, the updated library is
logged.

Syntax:

JEXIT

9.6.7 /INSERT Directive

The /INSERT directive is used to insert macro(s) ahead of the macro specified by the
directive. All macros from the current file position to the specified macro remain the
same. Macros are read from the file assigned to SI until the /END directive or an end-
of-file is encountered. The next directive is then processed.

Syntax:
/INSERT macro
where:
macro is the 1- to 8-character (ASCII) name of the macro before which the new

macro will be inserted.

9.6.8 /LOG Directive

The /LOG directive is used to output the name and number of all macros to the file or
device assigned to LO. This directive may be placed anywhere in a Macro Library Editor
directive stream. If the END option is specified, the logging operation is performed
after all updates are complete. If the END option is not specified, the macro library is
logged exclusive of any updates. When the logging operation is complete the macro
library is repositioned to the point prior to logging. The next directive is then processed.

Syntax:
/LOG [END]
where:
END The log is output after all updates are complete. If not used, the log does not

reflect updates.

9.6.9 /MACLIST Directive
The /MACLIST directive is used to entirely or partially suppress the listing of each
source macro. This directive does not affect listed output of macros that have already
been formatted via /DISPLAY or /LOG. When dummy symbols are output, their
corresponding hexadecimal assignments are included.
Syntax:

/MACLIST [option]

where:

9-10

option is one of the following parameters:
ON = Complete listing
OFF = Suppress listing 4
ID = List each macro DEFM statement
BODY = List each macro and exclude output of
dummy symbols
SYMS = List each macro DEFM statement and include output

of dummy symbols

If no option is specified, MACLIBR defaults to ON and provides a complete listing.

9.6.10 /REPLACE Directive

The /REPLACE directive is used to replace the named macro with a new macro from the
file assigned to SI. All macros from the current file position to that of the specified
macro remain the same. Macros are read from the file assigned to SI until an END
directive or and end-of-file is encountered. The next directive is then processed.

Syntax:
/REPLACE macro
where:
macro is the 1- to 8-character (ASCII) name of the macro to be replaced.
9.7 Listings

The Macro Library Editor outputs an audit trail that includes directives, a list of all
macros, each macro, and a series of MACLIBR operation counters as follows:

CODE DESCRIPTION

BR Number of 192-word blocks read from the file assigned to MAC

BW Number of 192-word blocks written to the scratch file

MD Number of macros deleted

MR Number of macros replaced

MI Number of macros inserted and appended

BU Number of 192-word blocks used on file assigned to MAC, after
updating

NM Macro number of next macro

The MACLIBR counter values appear at the end of the audit trail.

9-11

9.8 Errors A

-
Unless the message, MAC UPDATE COMPLETE, has been printed, the following error
diagnostic messages will cause any editing operation to be inhibited.

ARGUMENT 'N1' MATCHES ARGUMENT 'N2":

This is a warning that macro parameters in the N1 and N2 positions of the parameter list
are equal.

CURRENT MAC POSITION:

This message is issued, followed by the current position of the Macro Library file, when a
/LOG directive is encountered.

DIRECTIVE FILE READ ERROR:

Error condition detected while reading the directive file.

DUMMY PARAMETERS OVERFLOW:

A macro has exceeded the maximum of 256 parameters.

DYNAMIC ALLOCATION OF UTI SCRATCH FILE FAILED:

A scratch file the same size as the MAC file could not be allocated. This error is most
likely the result of insufficient disc space.

EOF/EOM ON DIRECTIVE FILE:

An end-of-file on the directive file was encountered before normal termination by an
[EXIT or /END directive.

ILLEGAL DIRECTIVE:

The directive is not a legal directive.

MAC FILE SIZE INCREASE REQUIRED:

The updated macro library is larger than the Macro Library file.

NAME NOT FOUND:

A macro specified on a /REPLACE, /INSERT, /DELETE, or /DISPLAY directive was not
found on the library file assigned to MAC. The macro may not exist or the file may be
already positioned beyond that macro. /INSERT, /REPLACE, and /DELETE directives
must occur in the sequence in which the named macros are found on the macro library
file.

REPOSITIONED TO:

On the completion of a /DISPLAY or /LOG directive, this message is printed preceding
the present position on the Macro Library file.

&

9-12

9.9 Examples

Example 1- This sequence generates a new macro library with directive and source input

from the card reader.

$JOB CREATE MEYERS

$ASSIGN3 SI=CR Assign Source File to Card Reader
SASSIGN4 DIR=SI Assign Directive File to Card Reader
SEXECUTE MACLIBR

$SEO3J

$$

Cards

/CREATE
(Macro Source)
JEND

Example 2- This sequence logs all macros by number and name.

$JOB LOG OWNER
SEXECUTE MACLIBR
/LOG

JEXIT

$EO3J

Example 3- This sequence displays the macro named M.EQUS.

$JOB DISPLAY OWNER
SEXECUTE MACLIBR
/DIS M.EQUS

JEXIT

$EOJ

Example 4-This sequence appends the macro named M.TEST.

$JOB APPEND OWNER

SEXECUTE MACLIBR

/MAC BODY List with No Dummy Symbol Output
/[APPEND

(M.TEST Source)

/END

$EOJ

9-13

Example 5- This sequence updates the macro library using /REPLACE, /DELETE and

/INSERT directories.

$JOB UPDATE OWNER
SEXECUTE MACLIBR

/LOG List Current Macros

/LOG END List Updated Macro Library
/REP M.EQUS Replace M.EQUS
(Replacement Macro Source)

/END

/DELETE M.EXIT Delete M.EXIT

/INS M.FADD Insert macro before M.FADD
(Macro Source to be Inserted)

/END

[EXIT

$EOJ Copy from Scratch to MAC

N

10. MEDIA CONVERSION UTILITY (MEDIA)

The Media Conversion Utility (MEDIA) enables a user to manipulate data and/or files.
With MEDIA, the user can copy one file to another file, copy a file from one type of
medium to another (e.g., copy a magnetic tape file to a disc file), or dump (really a

special type of copy) a file from one type of medium to another (e.g., from magnetic
tape to a line printer).

MEDIA can also be used to manipulate data. For example, the user can rearrange data
from one group of columns on an input deck to another group of columns on an output

deck. Another feature allows the user to convert data from one type of code to another,
e.g., from EBCDIC to ASCIIL

10.1 MEDIA Directives Summary

A summary of MEDIA directives follows. For further details, see Section 10.6.

Directive Function

BACKFILE Positions file backward n files.

BACKREC Positions file back n records.

BUFFER Names buffer (B03-B09) and specifies size or
resets buffer's current read address to start
address.

CONVERT Converts contents of buffer from ASCII to BCD,
BCD to ASCIl, ASCII to EBCDIC, EBCDIC to
ASCII, or 026 to 029.

COPY Copies input records from file or device to
output file or device.

DUMP Copies a file by converting to ASCII coded hex
and outputting to the line printer or SLO.

END At end of statements, transfers control to
specified previous statement.

EXIT Leaves MEDIA.

GOTO Conditional transfer to another directive based
on counter value, error, or EOF. Or, transfer can
be unconditional.

INCR Adds specified value to counter (K1-K20).

MESSAGE Sends message to OPCOM console.

MOVE Moves bytes in one buffer to another buffer.

10-1

OPTION

READ

REWIND

SETC

SKIPFILE

SKIPREC
VERIFY

WEOF

WRITE

10.2 Files and File Assignments

Modifies default output characteristics for
devices.

Copies to buffer. Provides count by bytes,
half words, or words.

Rewinds a device or file (returns MEDIA to first
record following last EOF or file pointer to first
record in file).

Sets counter (K 1-K20) to specified value.
Positions file forward n files.

Positions a file n records forward.

Compares records on one file or device to
records on another file or device.

Writes an EOF on the file.

Copies from buffer. Provides count by bytes,
half words, or words.

~ All device and file assignments are made to logical file codes via job control $ASSIGNn
statement(s) which precede the SEXECUTE MEDIA statement or by equivalent TSM

ASSIGN statements.

Table 10-1 describes MEDIA file assignments. Up to 64 static

assignments may be specified for MEDIA.

10-2

"

£-01

o . i .
. r
Table 10-1.
‘MEDIA Flle Assignments
Previous
Input/Output Logical Assignments Processor How Specified
Description File Code for MEDIA Assignment for MEDIA Comment
Directive File “IN Default: Work file bullt ENT> BATCH For further description -
SSIGN2 using EDIT. sce "Accessing MEDIA",
IN = SYC Permanent file bullt EDT> BATCH jobfile
using EDIT or MEDIA. or
77BATCH (D'*"'""C
Cards, —— \F,|obfile
Other device medium Same route shown
e.g., magnetic tape, for cards.
where jobflle was
copled from cards or
a file via MEDIA.
Interactively. See
*"Accessing MEDIA",
Input Filel(s) User-defined No default. User Input files can be Input files are
ASSIGNs filels) cards, permanent manipulated by referring
or devicels) to files, bullt via . to the logical file
user-specified EDIT or MEDIA, or - code (ifc) specified
Hcls), e.g., other device media in an ASSIGN statement.
ASSIGN) such as magnetic MEDIA recognizes a
INP = CROOOI. tape. hexadecimal ‘OF record
on card reader or card
reader/punch devices
only. Whether a flle or
tape Is blocked or
unblocked should be
specified with ASSIGN.
Listed Output ‘or Defaults N/A
File SSIGN2
OT = SLO,500
Output Fllels) User-defined. No default. Disc files must be Output (lles are
User ASSIGN's created (via the manipulated by referring
filels) or FILEMGR or equivalent to the logical file code
devicels) to utility) before they (ltc) specified in an
user-specified can be assigned for ASSIGN statement, See
Hcl's), e.g., MEDIA. notes on ‘OF and
ASSIGNI blocking for input files.
OUT = MYFRLE.

10.3 Options
The SOPTION statement is not applicable to MEDIA.

10.4 Using MEDIA

Directive and processing errors result in diagnostic messages, but an abort (MD01/MD02)
is generated at the end of the run instead of a normal termination so that conditional
batch processing directives may be used.

If an I/O error occurs, the status for the device is printed.

If a loop was being executed where record/file information is accumulated, this
information will be printed even if an error (and now an abort) occurs.

10.4.1 Labels

Any MEDIA directive can be preceded by a label (up to 8 digits long) that will allow the
user to branch to it via a GOTO directive. If used, the label must be numeric and it must
start in column 1. If a label is not used, the directive can start in column 1. The label
number need have no relationship to the physical sequence of directives on the control
file, i.e., it is a label and not an absolute sequence number. If a label is used, it must be
terminated with a comma.

10.5 Accessing MEDIA

To access MEDIA as part of a batch job, create a job file using the EDITOR, punch cards,
or other media as described in Table 10-1. The job file can be read to SYC and the job
activated in several ways:

from the OPCOM console:

¥ <Attention> "

»mBATCH | Fyjobtile
-_—) D,devmnc

from the OPCOM program:
TSM > OPCOM

27BATCH ;g,ixfgzcg
’

10-4

/;;f* A
N

from the EDITOR:
TSM>EDIT

EDT>BATCH [jobfile]

If the jobfile is the current EDITOR work file, issue just the BATCH command.

To activate MEDIA and run online, use the TSM ASSIGN commands to make MEDIA
assignments equivalent to those preceding the EXECUTE MEDIA command on a jobfile,
then proceed to access MEDIA and enter MEDIA directives. (SELECT and OBJECT
statements are not available when running MEDIA online.) The logical file *OT (MEDIA
diagnostic output) can be redirected to the terminal for online use.

TSM>MEDIA
MED>

10.6 MEDIA Directives

10.6.1 General

MEDIA directives establish the logical flow of the MEDIA utility. Each directive has a
label field, a directive field, and a parameter field. If used the label field must start in
column one and be terminated with a comma. The directive field may start in any
column, including column one. Fields and parameters within a field are separated by
commas. Blank columns are ignored. All numeric parameters are specified in decimal
and are limited to seven digits.

MEDIA contains two types of predefined areas which the user may reference within the
MEDIA directives. They are predefined buffer areas and counters.

Two predefined buffers exist within MEDIA. These buffers are referenced by the names
B0l and B02, and each buffer is defined as 2048 words in length. The user also has the
option of defining additional buffer areas (B03-B09) by using the BUFFER statement (up
to 3K bytes total for B03-B09). Buffer names other than BO1-B09 are illegal.

Twenty predefined counter cells exist within MEDIA. These counters are referenced by
the names K1 through K20. Counters may be used as program flags, record counters, file
counters, etc., and may contain any positive decimal value within the range of 0 to
99,999,999.

A maximum of 256 directives may be specified by the user for MEDIA.

10-5

10.6.2 BACKFILE Directive

The BACKFILE directive causes the specified file to be positioned backwards by the
number of files specified in the count field.

Syntax:
BACKFILE, lfc, count
where:
lfc is the 1- to 3-character logical file code.

is the 1- to 8-digit field specifying the number of files

count
to be skipped over.

10.6.3 BACKREC Directive

The BACKREC directive causes the specified file to be positioned backwards by the
number of records specified in the count field. .

Syntax:
BACKREC, lfc, count
where:
lfc is the 1- to 3-character logical file code.

is the 1- to 8-digit field specifying the number of

count
records to be skipped over.

10-6

10.6.4 BUFFER Directive

The BUFFER directive defines the specified buffer according to the specified size or
resets the current buffer read address to the buffer starting address. The space
allocated to the specified buffer is allocated from a 3000-byte buffer pool, which is the
maximum allowable additional buffer.

BUFFER, buffer,

Syntax:

where:
buffer
R
nbytes

10.6.5 CONVERT Directive

nbytes
R

is the 3-character name of the buffer, B03-B09. Buffer
names must be defined via the BUFFER directive
before being used.

specifies reset buffer pointer.

is the size of the buffer, in decimal bytes.

The CONVERT directive results in the conversion of the specified buffer to the specified

CONVERT, buffer, code [,nbytes]

code.

Syntax:

where:
buffer
code
nbytes

is the 3-character name of the buffer, B01-B09. Buffer
names must be defined via the BUFFER directive before
being used.

is the U&4-character code specifying the type of
conversion:

2629 026 to 029

ASBC ASCII to BCD
BCAS BCD to ASCII
ASEB ASCII to EBCDIC
EBAS EBCDIC to ASCII

the number of bytes to be converted. If this parameter
is absent, the count is obtained from the total number
of bytes read and/or moved into the buffer.

10-7

10.6.6 COPY Directive

The COPY directive causes the specified input file to be copied, record by record, to the
specified output file until an EOF is encountered on either file. The end-of-file is not
copied to the output file,

Syntax:
COPY, lfcl, lfc2
where:
lfcl is the 1- to 3-character lfc identifying the input file to
be copied.
1fc2 is the 1- to 3-character lfc identifying the file to which

the copy is made.

10.6.7 DUMP Directive

The DUMP directive causes the file specified by file code | to be input record by record,

converted to ASCIl-coded hexdecimal with side-by-side ASCII translation, and output to
the file specified by file code 2. The dump is terminated when an end-of-file is
encountered on either file or when the optionally specified number of records have been
dumped.

Syntax:
DUMP, lfcl, lfc2 [,recordcount]
where: |
licl is the 1- to 3-character identifier of the file to be
dumped.
1fc2 is the 1- to 3-character identifier of either the line

printer or SLO. Normally, *OT is the lfc assignment
which is referenced.

recordcount is the number of records in the file to be dumped. If not
specified, the dump terminates at EOF on lfc 1.

10-8

-~

10.6.8 END Directive

The END directive indicates the end of the MEDIA directives and control is transferred
to the specified directive. If no directive number is specified, control will go to the first
MEDIA directive.
Syntax:

END [,label]

where:

label is a numeric label associated with a directive.
Transfers control to that directive.

10.6.9 EXIT Directive

The EXIT directive indicates that a normal program exit is to be taken.
Syntax:

EXIT

10-9

10.6.10 GOTO Directive

S
The GOTO directive transfers control to the specified directive unconditionally when no
" optional arguments are specified. Conditional control transfer occurs when the specified
counter is equal to the specified value, whenever an input/output error occurs on the
specified file, or whenever an end-of-file is encountered on the specified file. If none of
the conditional specifications are satisfied, control proceeds to the next MEDIA
directive. When the ERR parameter is specified, the GOTO directive must directly
follow an input/output directive such as READ or WRITE.
Syntax:
counter, value
GOTO, label, EOF, lfc
ERR, lfc
where: ‘
label is the numeric label, if any, associated with a
directive. Transfers control to that directive.
counter is a user-controlled indicator of the state of the
program. Valid counter names are K01-K20. (See the
INCR and SETC directives.)
value is a countervalue that specifies when control is to be
transferred. N
EOF specifies that conditional transfer should occur at end
of file.
Ifc is the 1- to 3-character logical file code indicating
which file to apply EOF or ERR conditions to.
ERR specifies that conditional transfer should occur upon an
1/O error.
'
o

10-10

10.6.11 INCR Directive

The INCR directive causes the specified value to be added to the specified counter.

Syntax:

INCR, counter, value
where:
counter is the 3-character name of the counter: KOI! through
K20.
value is the 1- to 8-digit decimal number to be used as an
increment.

10.6.12 MESSAGE Directive

The MESSAGE directive results in the output of the specified alphanumeric string to the
OPCOM console. A maximum of 256 bytes of message information can be stored.

Syntax:
MESSAGE, 'message’
where:
'message’ is a 3- to 72-character alphanumeric message to be
displayed on the OPCOM console; the single quotes are
required.

10-11

10.6.13 MOVE Directive

The MOVE directive causes the specified number of bytes to be written into the specified
position of buffer 2 from the specified position of buffer 1 (zero origin). The starting
byte position for buffer 1 and buffer 2 may be specified as an absolute byte number or as

a counter.
Syntax:
MOVE, nbytes, bufferl, counter l , buffer2 scounter]
startbyte) ,startbyte
where:
nbytes is the number of bytes to be moved.
bufferl is the buffer 3-character name of the buffer containing
the data to be moved, B0!1-B09. Buffer names must be
defined via the BUFFER directive before being used.
counter is the name of a counter indicating the starting byte
position. Valid counter names are K1-K20. If neither
counter or byte number is specified, the current read
address for buffer name 2 is used.
startbyte is an absolute indicator of the starting byte position.
buffer2 is the 3-character name of the buffer to which data are

10-12

to be moved, B03-B09. Buffer names must be defined
via the BUFFER directive before being used. If neither
counter nor starting byte number is specified, the
current read address for buffername?2 is used.

.

10.6.14 OPTION Directive

The OPTION directive allows the specification of nonstandard options for the specified
file. Options which are assumed by default are defined according to Table 10-2.

Syntax:
OPTION, lfc [,BLOCKED] ,BZOF] [,BSOF]EE] [,H]
‘ B20ON] |,B8ONJ|,O] L,L
where:
lfc is the 1- to 3-character logical file code specified by

the user in a job control or TSM ASSIGN statement.

BLOCKED is the blocked option. This option is permitted, but does
not affect processing. The ASSIGNs are the only way to
control blocked/unblocked.

B20OF indicates the bit 2 option is either on or off (refer
B20ON to Table 10-2).

B8OF indicates the bit 8 option is either on or off (refer to
BSON Table 10-2).

E indicates the even/odd parity option (refer to Table

o 10-2).

H indicates the density option (refer to Table 10-2).

L

10-13

Table 10-2 .

Media Option Definitions

DEVICE BLOCKED OPTION BIT 2 OPTION B8IT 8 OPTION PARITY DENSITY
CARD READEK *B20F-Automatic N/A
READER/PUNCH N/A Mode Select
BZON-1nterpret BaOF -rorced N/A N/A
Bit 8 ASCII
B8ON-Forced
Binary
PAPER TAPE *820F-Read N/A
READER Formatted
Skipping Leader
N/A ﬂaﬁoﬁeaa B80F-Do Not N/A N/A
Unformatted Skip Leader
B8BON-Skip
Leader
PAPER TAPE *820F-Punch in N/A
PUNCH N/A ‘ Fom;&gg Mode N/A N/A
ON-Punch N/A
Unformatted
LINE PRINTER, *B20F-First N/A
TELETYPE N/A Character is N/A N/A
§arrﬁage Control
N-No Carriage
Control
9-TRACK Blocked [/0
MAG TAPE N/A N/A N/A N/A
7-TRACK Blocked 1/0 *820F-Read/Write N/A H(800
MAG TAPE Packed (Binary) (Even bpi
Mode Parity) | L(556
B20N-Interpret B8OF-Inter- 0(0dd bpi
Bit 8 change (BCD Parity)
3880N-Packed
{Binary)
MOVING-AEAD, | Blocked /0
FIXED~-HEAD N/A N/A N/A N/A
DISC

*Standard Qptions
N/A - Not Applicable

10-14

N
A

{
N

-

~y

10.6.15 READ Directive

The READ directive causes one record to be read from the specified file into buffer BO1
or into the optionally specified buffer, starting at the current buffer address. The current
buffer address is advanced after read and is reset only by a write from the specified
buffer or by a buffer reset via the BUFFER directive.

Syntax:
READ, lfc ,[buffer] [,count]
where: A
Ifc is the 1- to 3-character logical file code.
buffer is the 3-character name of the buffer, BO1-B09. Buffer

names must be defined via the BUFFER directive before
being used.

count is the number of bytes (B), halfwords (H), or words (W)
to be read (e.g., B22, H10, H2048, W192).

10.6.16 REWIND Directive

The REWIND directive causes the specified file to be rewound. If the file is being sent
to the line printer, a top-of-form is performed.

Syntax:
REWIND, lfc

where:

Ifc is the 1- to 3-character logical file code.

10.6.17 SETC Directive

The SETC directive sets the specified counter to the value specified in the value field.

Syntax:
SETC, counter, value

where:
counter is the 3-character name of the counter: K1 through 20.
value up to 8 decimal digits specifying the value to which

counter is to be set.

10-15

10.6.13 SKIPFILE Directive

The SKIPFILE directive causes the specified file to be positioned forward by the number
of files specified in the count field.

Syntax:
SKIPFILE, lfc, count

where:
lfc is the 1- to 3-character logical file code.
count is the decimal number of files to be skipped.

10.6.19 SKIPREC Directive

The SKIPREC directive causes the specified file to be positioned forward by the number
of records specified in the count field.

Syntax:
SKIPREC, Ifc, count
where:
lfc is the 1- to 3-character logical file code.
count is the decimal number of records to be skipped.

10.6.20 VERIFY Directive
The VERIFY directive causes the file specified by lfc | to be compared, record by
record, with the file specified by lfc 2. The verification is terminated when an end-of-
file is encountered on either file. Records which do not compare result in output
indicating the record numbers which do not compare.
Syntax:

VERIFY, Ifcl, lfc2

where:

lfcl is the 1- to 3-character logical file codes identifying the
file to compare to lfc 2,

1fc2 If records of unequal length are to be verified, the file
specified by lfc | must contain the shorter record size.

10-16

;/{7 -

N

10.6.21 WEOF Directive

The WEOF directive causes an end-of-file to be written on the specified file.

Syntax:

where:

10.6.22

WEOF, lfc
Ifc °
WRITE Directive

is the 1- to 3-character logical file code.

The WRITE directive causes one record to be written from buffer BOl or from the
optionally specified buffer to the specified file. The WRITE statement resets the current
buffer address and byte count for the output buffer.

Syntax:

where:

WRITE, lic , [butfer [,count]]

lfc

buffer

count

is the 1- to 3-character logical filecode.

is the 3-character name of the buffer: BOl through
B09. If buffer name is not supplied, BOl is used by
default. Buffer names must be defined via the BUFFER
directive before being used.

is the number of bytes (B), half words (H), or words (W)
to be written (e.g., B22, H10, H2048, W192). If count is
not specified, the total number of bytes, halfwords, or
words read and/or moved into the buffer will be used as
the output count.

10-17

10.7 Listings

Not supplied; they are dependent on the assignments and processing that were requested.

10-18

o
L

10.8 Errors

During the compilation or execution of any MEDIA conversion program, all detected
errors are flagged with two digit codes. A complete list of the diagnostic codes follows:

Code Definition
01 Control specification invalid
02 File code unassigned
03 Illegal conversion code specified
04 Illegal count specification
05 No available FCB, excessive file assignments
06 No. available blocking buffers, excessive system file
assignments
07 Illegal buffer name
08 / Buffer already defined
09 Insufficient buffer space available
10 Undefined buffer
11 Illegal device assignment
12 Illegal counter name specified
13 Insufficient message storage space available
14 Illegal byte number or number of bytes specifications
15 Illegal optional parameter
16 Missing parameter
17 Incorrect message format
18 Illegal decimal or hexadecimal character
20 No end statement
2] Excessive number of control statements specified
22 Fatal control statement error(s)
23 Undefined statement number encountered
24 Execution of ENDV statement attempted

10-19

A

Code Definition “
~=900e 2eiinition w

25 Length of READ/MOVE exceeds buffer size

26 WRITE statement which is not preceded by READ

statement must specify count

27 End-of-medium encountered in input file

28 End-of-medium encountered on output file

29 Convert statement specified zero byte count

30 Duplicate statement number

-

10-20

10.9 Examples

Example | is used to copy tape "MAST" to the output tape "COPY", and write an end-of-
file to "COPY"; both tapes are rewound and then verified.

$JOB EXAMPLE]1 MEYERS
$ASSIGN3 IN=MT,MAST, 1,U
$ASSIGN3 OT=MT,COPY, 1,U
$EXECUTE MEDIA
COPY,IN,OT

WEOF,OT

REWIND,IN

REWIND,OT

VERIFY,IN,OT

EXIT

END

$EOJ

$$

Example 2 is used to read a card deck punched in 026 code, convert the data to 029 code,
and then punch the data in 029 code.

$JOB EXAMPLE2 MEYERS
$ASSIGN3 01=CR
SASSIGN3 02=CP
SEXECUTE MEDIA
MESSAGE,'PLACE 026 DECK IN CARD READER'
5,READ,01
GOTO,6,EOF,01
CONVERT, B01,2629
WRITE,02

GOTO,5

6,EXIT

END

$EO3J

$$

026 Card Deck

EOF (Card with holes 2,3,4, and 5 punched in Column 1.)

10-21

Example 3 is used to dump the first 50 records of the second file on tape "T132" to an

SLO file. A maximum of 5000 lines will be output.

Example &4 is used to directly output the first 40 columns of a maximum of 100 cards in

$JOB EXAMPLE3 MEYERS
$SASSIGN3 AB=MT, T132
$ASSIGN2 DP=SLO,5000
SEXECUTE MEDIA
REWIND, AB

SKIPFILE, AB, |
DUMP, AB, DP, 50
EXIT

END

SEOJ

$$

the batchstream to the line printer.

10-22

$JOB EXAMPLE4 MEYERS
$ASSIGN2 IN=SYC
$ASSIGN3 OT=LP
SEXECUTE MEDIA
OPTION, OT,,B20N
SETC, K1, 0
3,READ, IN,,B40
GOTO,5,EOF,IN
WRITE,OT
INCR,K1,1
GOTO,5,K 1,100
GOTO,3

5,EXIT

END

CARD DECK

$EO3

$$

~

Example 5 is used to read two source program card decks, one through the card reader
and one through the card reader/punch. Columns 20-40 of Deck 1 will be moved to
columns 10-30 of the output image. Columns 65-80 of Deck 2 will be moved to columns
31-46 of the output image. The output image will be written to a tape in 120-byte
records.

$JOB EXAMPLES MEYERS
SASSIGN3 IN1=CR
$ASSIGN3 IN2=CD
$ASSIGN3 OT=MT,SAVE
SEXECUTE MEDIA
BUFFER,B04,120
4,READ,IN1,B01,B40
GOTO,5,EOF,IN1
READ, IN2, B02,B80
MOVE, 21,B01, 19, BO4, 9
MOVE, 16, B02, 64, BO4
WRITE, OT, B0O4, B120
BUFFER, BOl, R
BUFFER, B02, R

GOTO, 4

5, WEOF, OT

REWIND, OT

EXIT

END

$EOJ

38

Deck 1 in Card Reader with EOF Card

Deck 2 in Card Reader/Punch

10-23

Example 6 shows online usage (underlined text is input).

10-24

" TSM > A4 *OT=UT

TSM > Al IN=FILEl OUT=FILE2

TSM > MEDIA

MED > COPY, IN,OUT
COPY,IN,C!J%

MED > EXIT

EXIT

MED> END or <CTRLC>
END

MEDIA COMPILATION COOMPLETE: EXECUTION STARTED EXECUTION

COMPLETE 0001 FILE COPIED
TSM>

AN

C

11. SOURCE UPDATE UTILITY (UPDATE)

The UPDATE utility is used to add, replace, or delete lines of source code within a
particular file. It can also be used to maintain sets of source files by adding or deleting
complete files.

UPDATE was designed to use in building and editing tapes containing multiple source
files for software libraries. It can be used to edit or build any set of source files onto a
single tape or disc file. Files can be positioned to end of file marks (EOF) by UPDATE
directives such as /BKSP or they can be positioned symbolically by referring to a header
record that identifies a particular file (library format). Library format is a simple
structure where source code is preceded by a header record and terminated with a single
EOF record. Any group of source files that has been built in 'library' format can be
positioned symbolically.

No matter how a file is built (e.g., via MEDIA) if it is structured in library format, it can
be positioned symbolically with UPDATE. (UPDATE also provides the ability to insert
header records during processing.)

11.1 General Description

Updating is a two-pass process. In the first pass, UPDATE reads control directives and
dating statements that may be interspersed from the SYC file. All of the directives
detected within this control stream are scanned for errors. The control stream (with
error diagnostics, if any) is copied to a work file (normally an SLO file) for the actual
update processing.

If directive errors have occurred, UPDATE exits after it encounters an /EXIT directive
in the first pass. The user receives a listing of the control stream plus error
diagnostics. When an /EXIT directive is encountered and directive errors have not been
detected, the updating sequence is entered. Updating continues until all of the stored
directives have been sequentially processed. At this point, UPDATE exits.

11.1.1 UPDATE Directives

A summary of UPDATE directives follows. For further details, see Section 11.6.

Directive Function

/ADD Adds source lines which follow (up to next directive) after the
specified line of source. “

/AS1 Reassigns input or output file codes to another permanent disc file.

/AS3 Reassigns input or output files to another configured peripheral
device.

/BKSP Backspaces n files on current input medium.

/BLK Causes sequence field (bytes 73 through 80) of each record to be

filled with blanks.

/COPY

/DELETE
/END

JEXIT

/INSERT
JLIST
/MOUNT

INBL
/NOLIST
/NOSEQN
/REPLACE

/REWIND

/SCAN

~

SELECT

/SEQUENCE
/SKIP

J/USR
/WEOF

11-2

Copies all files up to Specified header record. If header is a numeric
string, copies number of files in string. Files in library format can
be copied in their entirety to end of source by specifying /COPY
END.

Omits the specified input source lines from the output file.

Indicates end of additions, deletions, and replaceménts. Remaining
source lines from input media file are copied as is through EOF.

Signals end of UPDATE process. If no errors, UPDATE processes
directives sequentially. For library formatting operations, UPDATE
puts a unique mark on output file and rewinds it. If errors are
detected, UPDATE exit without processing the directives.

Copies one file (56 bytes maximum) from current input medium.
Provides an audit trail of UPDATE operations.

Allows operator to mount a new magnetic tape. UPDATE goes into
hold (indefinite suspension) until the OPCOM CONTINUE command
is issued.

Terminates a /BLK directive.

Resets /LIST options or terminates the complete /LIST audit trail.

Stops sequencing source statements numerically.

Replaces source lines on output file with source lines which follow
(up to next directive).

Rewinds specified input or output file. If creating a library file
(specified by using SOPTION2 batch statement), do not rewind the
output file (1fc SO).

Sets the number of characters to scan on the remaining directives.

The lfc for primary source input is SIl. This statement selects the
media assigned to lfc SI2 or SI3 for input.

Numbers source statements of current file or all files in sequential
order.

Skips files up to specified header record. If header is a numeric
string, skips number of files in string.

Permits the username to be changed.

Writes an EOF on output media. Not allowed when formatting a
library file.

e,

11.2 Files and File Assignments

All files that do not have cataloged assignments can be assigned via the job control
SASSIGNn statement. Cataloged file assignments may be overridden by the $ASSIGNn
statement. Table 11-1 provides details of UPDATE file usage.

Note that upon entry, UPDATE marks all unassigned file codes as unavailable to the user.
Input files can be presented in either a compressed or standard source format. The
output file can be produced in either format at the user's option. Also, an optional listing
can be printed as the output file is generated.

The output file (SO) and primary input file (SI1) are assumed blocked unless otherwise
specified via the SOPTION job control statement.

=11

Table 11-1
UPDATE File Assignments

Previous .
Input/Output Logical Assignments Processor How Specitied
Description File Code for Update Assignment for Update Comment
Directives syc . Default; Work file built EDT BATCH
and Corrections using EDITOR.

SYC = SYC Permanent file EDT BATCH jobfile Fot further description
built using EDIT see "Accessing Update®
or MEDIA or
Cards. 7?7 BATCH l ,devmnc

F.jobfile |
Other device medium Same route shown for
e.g., magnetic tape, cards.
where jobfile was
copied (rom cards or
a file via MEDIA.
Interactively, See
"Accessing Update®
Primary Input si No default. N/A A hexadecimal OF record
File is taken as an EOF on any
$SASSIGNn input source.
fite Source can be compressed
Sz | omme) or noncompressed. (See
vmnc Section 11.4.1 and
Option 1.) Input is sssumed
blocked
(MPX-32 and UPDATE
default) unless
UNBLOCKED is
specified on assignment.
it unblocked, SOPTION 8
must also be set.
Second and SI12 and No defaults, N/A With /SELECT See comment on blocking
Third Input si3 ASSIGNn directives, as in:above.
Files filename Si12

SI2 - '¢mnc /SELECT 'SIJ'

siy - (lilename) Note that additional

devmnc

f""’*\

input files can be
assigned dynamically
via /A1 and /AS)
UPDATE directives.

=11

Table 11-1

UPDATE File Assignments (Continued)

Previous
Input/Output Logical Assignments Processor How Specified
Description File Code . for Update Assignment for Update Comment
Output File SO No default N/A - Via an ASSIGN it a disc l‘le. must be
for Updated ASSIGNn statement created via the FILEMGR
Source R - or other means before
so - [lilename running UPDATE. UPDAT!
devmnc cah generate compressed
output. (See OPTION 1).
Other options can be
used if merging files.
An output file can be
produced in library format
(see Section 11.4.2.)
See comment on blocking
for SIi. Option 9 is
not recommended. Note:
additional output files
can be assigned
dynamically via /ASI and
/AS3 UPDATE directives.
Work File for uTY . Default; N/A Default output
intermediate ASSIGN? is to 1000 record
Storage, and UTY = SLO, 1000 SLO file.
Directive and
Error Listings.
History, History Lo Default: By UPDATE. Default output is When LO is assigned to
Summary, and ASSIGN2 Image outlines to 2000 record SLO SLO and UPDATE reaches
Output Image LO= SLO,2000 structure of file, which is output EOM, it attempts to
Listing for updated output to the first device allocate 2000 additional
Update Process Options: file, available for auto lines. If unsuccessful
ASSIGNn selection. Output or if an SLO file is
] can be redirected to not assigned, listed
LO-= filename a file or device via output terminates.
devmnc ASSIGNI or ASSIGN3

LO = statement.

11.3 Options

NS
The set or reset state of an option is declared by the following methods:
o Job control SOPTION statement
o UPDATE directives such as /LIST and /NOLIST
o UPDATE utility defaults
Once declared, the state of an option remains in effect until it is changed by a directive.
Job control ‘options are controlled via the SOPTION statement (batch) or by a TSM
OPTION command. The SOPTION statement is specified in the following general format,
where n represents the numeric value of the option to be set:
SOPTIONnnn
The user is allowed to specify multiple options for each UPDATE execution, as follows:
SOPTION 1 - Creates the output file (SO) in compressed source format.
SOPTION 2 - Creates the output file (SO) in library format.
SOPTION 3 - Prints the control stream (i.e., statements input from the SYC
file). The control stream will always be printed when directive errors have been
detected.
SOPTION 4 - Inhibits writing end-of-file marks detected on the input file to the /
output file. The option could be used to strip off multiple files that are to be
assembled or compiled. This option cannot be used in conjunction with
SOPTION 2.
SOPTION 8 - Indicates that the primary input file (SI1) is not blocked. If SII file
is unblocked, the user must specify SOPTION 8 and U (unblocked) on the
Assignment statement for SII.
SOPTION 9 - Indicates that the output file (SO) is not blocked. If SO file is
unblocked, the user must specify SOPTION 9 and U (unblocked) on the
Assignment statement for 5O. If this option is not present, the file is assumed
blocked.
'a
N

11-6

1.4 Using UPDATE

UPDATE processes files sequentially, i.e., the line number specified with any directive
must be equal to or greater than the line specified with the previous directive. For
example, you cannot add lines after line 100 then go back and delete line 52. (The equal
to specification applies only in the case where you delete a line; delete can be followed
by an ADD specifying the same line.)

Care is required in preparing a directives file so that it follows the sequence of the file
being updated.

11.4.1 Compressed Source Formatting

UPDATE is capable of accepting compressed source input. The outpu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>