
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 29

1966
FALL JOINT
COMPUTER

CONFERENCE
NOVEMBER 7-10

SAN FRANCISCO, CALIFORNIA

SCIENTIFIC DRTR SYSTEMS

SIClS
SCIENTIFIC DRTR SYSTEMS

01966 by The American Federation of Information Processing Societies.
Reprinted by Scientific Data Systems with permission from
the American Federation of Information Processing Societies.

THE SOS SIGMA 7: A REAL-TIME
TIME-SHARING COMPUTER

Myron J. Mendelson and A. W. England

Scientific Data Systems, Santa Monica, California

INTRODUCTION

The SDS SIGMA 7 Computer system (Fig. 1) is
unique among new computer designs in that it is the
only system which has seriously considered and
solved the problem of achieving true real-time re­
sponse hardware and software capability while oper­
ating in a multiprogramming, multiprocessing,
space-sharing, and time-sharing environment. This
paper presents an overview of the system's architec­
ture and describes in some detail those of its fea­
tures which provide its unique capabilities.

Real-Time Operation. A true real-time operation
is one in which the response time requirements of
the system are imposed by the time sensitive de-

The paper is divided into two major portions. The
first part presents a succinct description of the archi­
tecture of the system. Its purpose is to acquaint the
reader with the fundamental characteristics of
SIGMA 7 and to provide a meaningful framework
for the second section. The second section delineates
seven major problems which were considered ,critical
in the design of SIGMA 7 and presents the details of
their solution.

DEFINITIONS

Multiusage

We will use the generic term "multiusage" to
cover the spectrum of multiprogramming, multipro­
cessing, space-sharing, and time-sharing operations.
These, together with the term "real time," will have
the following meanings: Figure 1. SIGMA 7 computer system.

1

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

mands of events external to the computer and its
conventional peripheral equipment. Failure to meet
this response time requirement results in true failure
of the real-time system, not just degraded perform­
ance. The responsiveness of such a system is meas­
ured by the time interval between the arrival of an
interrupt trigger signal and the execution of the first
useful instruction in response to it. In the extreme
case the maximum acceptable length for this interval
may be measured in microseconds.

Multiprogramming. Multiprogramming is the con­
current operation of two or more independent pro­
grams in a single computing system, control being
switched among programs through the actions of
some central control program.

Multiprocessing. Multiprocessing is the simultane­
ous execution of one or more programs in a single
computing system containing two or more proces­
sors, preferably sharing a common memory pool.

Space Sharing. Space sharing is the simultaneous
residency in a common central memory of a number
of independent (and perhaps concurrently operat­
ing) programs.

Time Sharing. Time sharing is a special case of
multiprogramming in which a multiplicity of sepa­
rate users have on-line, interactive use of a common
system. It should be noted that neither multipro­
gramming nor time sharing imply space sharing but
that space sharing is an essential ingredient in
achieving true efficiency in these operations.

SYSTEM ORGANIZATION

Introduction

The following brief description of the SIGMA 7
system is presented in order to provide a meaningful
framework within which to describe the specialized
features which provide the system with a unique ca­
pability to meet its design goals. The SIGMA 7 is a
modularly organized system which is configured out
of a combination of Central Processing Units
(CPU) (which contain Priority Interrupt Systems),
Memory Modules, Fast Memory Units, Multiplexing
Input/Output Processors (MIOP), Selector
Input/Output Processors (SlOP), peripheral equip­
ment Device Controllers (DC), peripheral Devices
(D), and specialized real-time interfaces such as
Analog-to-Digital Converters, Digital-to-Analog
Converters, and Multiplexers (Fig. 2). This paper

2

will concentrate on the characteristics and structures
of the CPU, lOP's and memory systems and their
organization to meet the requirements of a broad
range of operating environments.

Memory Organization

Core Memory Modules. The SIGMA 7 core
memory is a 32 bit plus parity bit, word organized,
850 nanosecond cycle time unit which is available in
module sizes of 4K, 8K, 12K, and 16K words
(K = 1024). The system architecture permits the in­
clusion and direct addressing of any size memory
which can be configured within eight memory mod­
ules. This permits the structuring of 32 different
memory sizes ranging from 4 K words (16K bytes)
to 128K words (512K bytes). Although the memo­
ry is word organized and word parity checked it is
capable of altering less than a full word on a write
operation. From 1 to 3 bytes may be written with­
out altering the remaining bytes.

Multiple Ports. The processor/memory system
complex is a bus-organized asynchronously operat­
ing system with each processor having its own pri­
vate bus. The standard memory module is equipped
with two independent access paths (called ports)
and an optional third port may be added. Subse­
quent to the addition of a third port a memory port
expander provides for the four way expansion of
any single port so that a maximum of six independ­
ent buses may be connected to any memory module.
The ports have a fixed priority relationship with re­
spect to each other so that access request conflicts
are automatically resolved.

Asynchronous, Overlapped Operation and Memo­
ry Interleaving. Memory operations may be initiated
at any time and are not synchronized to any central
clocking source. Memory operations are self-sustain­
ing so that processor release occurs upon data ac­
ceptance (by the memory) on a write operation,
and processor "go-ahead" occurs upon data availa­
bility on a read operation. This permits maximum
utilization of CPU time and the overlapping of
memory cycles with respect to a single processor or
multiple processors in multiple-module memory
configurations. To insure memory overlapping under
any circumstances, address interleaving among sev­
eral memory modules is provided on a two-way or
four-way basis.

Fast Memory Units. An integrated circuit, non­
destructively read fast memory unit with a read cy-

SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER

Core Memory
Module

t

Core Memory
Module

t 1

Core Memory
Module

J

Core Memory
Module

SIGMA 7
Central Processing Unit

Multiplexo/
I/O Processor

...---_--'f t"","-----,
t •

:::-:':-:6:':':-:;:':-:-:':':':::::1 >····"6"~~i·~·~·····\~: I/·····b~~·i·~·~··:-:·::~:

:'::":~: ... ~ ... o ... ne .. tv .. ~.ol .. C .. l.e.I .. ~ .. ~.:::.::'·::': .'. :-:..' :.:.S?,;:~:r9:!:I:~r}: ::.S:?:~.tr.?~ .. I .. ~.~ .. r

H I/o gevice

~ I/o Device
15

I/o DeviceJ I I/o Device

'----- Standard-Speed Peripheral Devices -------

t Multiplexor lOP allows up to 32 devices (one per device
controller) to operate simultaneously with a combined
transfer rate of sao, 000 bytes per second.

Selector
tt

I/O Processor

~------~~~----------~
J Jl

~~~;;~~ter I'~~;t~~~f:: 

I I/o Device 
I/o Device 

a 

I/o Device 
15 

I I/o Device 

High-Speed Peripheral Devices 

tt Selector lOP allows one device at a time to operate at 
a transfer rate of up to 3 mi II ion bytes per second. A 
selector lOP may service up to 32 high-speed devices, 
and two selector lOPs may share a single memory bus. 

Figure 2. A typical SIGMA 7 system. 

cle time of 60 nanoseconds and a write cycle time of 
90 nanoseconds is used to implement a number of 
special functions within the SIGMA 7 system. The 
basic building block fast memory module provides 
16 bytes of operating storage. Four such modules 
are combined to provide 16 words of scratchpad 
memory which serves as register storage for the 
CPU. Other combinations of this single module type 
are used for the implementation of memory protec­
tion systems, fragmentation and dynamic program 
relocation techniques, lOP channel control func­
tions, and device buffering systems. 

Every instruction makes one or more references 
to a set of sixteen registers. These registers are 

stored in a sixteen word fast memory unit which is 
designated as a "register block." 

In general, the SIGMA 7 register block can be 
used to provide: 

1. 16 separate single precision arithmetic 
registers for fixed point word opera­
tions or short floating point operations. 

2. 16 separate double precision arith­
metic registers for fixed point haIf­
word operations. 

3. 8 separate double precision arithmetic 
registers for fixed point double preci­
sion operations or long floating point 
operations. 

3 



PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1966 

4. 7 separate index registers. 
5. A decimal accumulator with a maxi­

mum capacity of 31 digits plus sign. 
6. A significance position marking register 

for the EDIT instruction. 
7. Control registers for byte string in­

struction implementation. 

A unique design feature of the SIGMA 7 is that it 
may contain up to 32 blocks of registers. A 5-bit 
register pointer designates which of the 32 is cur­
rently active. The provision of multiple blocks 
makes it possible to preserve one register set and 
establish a new one within the 6 microsecond execu­
tion period of a single environment preserving and 
switching instruction. 

Central Processing Unit 

The CPU (Fig. 3) is a 32-bit, word-oriented, 
parallel-operating unit employing mUltiple registers 
in its instruction implementation. Its extensive in­
struction set provides for operations on 8 bit-bytes, 
16-bit halfwords, 20-bit immediate operands, 32-bit 
words, and 64-bit doublewords. 

Instruction Format. SIGMA 7 provides 106 ma­
jor instructions, many of which have mUltiple modes 
of operation, all contained within a single instruction 
format. The Basic instruction is 32 bits in length 
and has the structure shown in Fig. 4. For a special 
class of immediate operand instructions the X and 
M fields are combined into a single 20-bit value 
which is sign extended and used immediately for 
computation with no further reference to memory 
for an operand. 

Direct Memory Word Addressing. The 17-bit 
word address field in the primary instruction word 
permits the direct addressing of the maximum sized 
128K word memory system. A memory address in 
the range 0-15 is used to designate the corre­
spondingly numbered register and does not result in 
access to core memory. Hence, the full power of the 
instruction set may be applied to register-to-register 
operations as well as to register-and-memory opera­
tions. 

Indirect Addressing. Indirect addressing is includ­
ed for all instructions except those of the immediate 
operand class. If both indirect addressing and index­
ing are invoked, . the indirect address operation is 
executed prior to the indexing operation. 

Indexing. The indexing operation employed in 

4 

SIGMA 7 is unique. The indexing operation as­
sumes that a list of either bytes, halfwords, words, or 
doublewords is stored beginning at the word address 
contained in the primary instruction word. If the 
designated index register is considered to contain the 
value K, the indexing operation, under control of 
the operation code (which establishes the operand 
length), produces the address of the byte, halfword, 
word, or doubleword displaced K units from this 
word location. Thus, the same index register may be 
used to locate the Kth operand of a list independent 
of the operand length (Fig. 5). 

Instruction Set. The SIGMA 7 instruction set is 
comprehensive. It includes fixed point load, store, 
arithmetic, logical, and comparison operations for 
bytes, halfwords, 20-bit immediate operands, words, 
and doublewords. Optional floating point instructions 
provide full floating point arithmetic capability for 
both short (3 2-bit) and long (64-bit) formats. An 
optional set of decimal instructions includes full dec­
imal arithmetic capability, plus Pack, Unpack, and 
Edit. Standard instructions are provided for manipu­
lating byte strings up to 255 bytes in length. Single 
instructions are provided for moving a string, for 
comparing two strings, for the translation of a string 
from one character code to another, and for the 
scanning of a string for a specified set of characteris­
tics. Push-down stack instructions provide for the 
efficient manipulation (including automatic stack 
limit checking) of arbitrary size stacks in core mem­
ory. Two generalized conversion instructions pro­
vide for the high speed conversion between any 
weighted binary information representation used ex­
ternal to the computer and its equivalent internal 
binary representation. Read Direct and Write Direct 
instructions provide for the direct communication 
between the CPU and external equipment without 
the use of an I/O channel. A comprehensive set of 
branch and system control instructions complete the 
instruction repertoire. 

Typical instruction execution times (including in­
dexing and mapping and excluding any memory 
overlap) are: 

Fixed Point 
Add/Subtract 

Fixed Point 
Multiply 

Fixed Point Divide 
Floating Point 

Add/Subtract 
(short) 

2.26 microseconds 

4.9 microseconds 
12.5 microseconds 

3.9 microseconds 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 

Floating Point 

Add/Subtract 
(long) 

Floating Point 
Multiply (short) 

4.5 microseconds 

5.4 microseconds 

CPU PRIVATE MEMORY 

o 

GEN ERAL REGISTER BLOCK (TYPICAL) 

I.....,»~: .... :···=·····: ====(::~:?/~)r~::/(""""J] 
.., 

Index 
Registers 

Floating Point 
Multiply (long) 

Floating Point 
Divide (short) 

Floating Point 
Divide (long) 

8.0 microseconds 

12.3 microseconds 

24.5 microseconds 

ARITHMETIC AND CONTRO L UNIT 

INSTRUCTION REGISTER 

o Indirect Address Flag 
o 

I I I I II I I Operation Code Field 
1 7 

DJIJ General Register Designator 
8 11 

[IJ Index Register Designator 
12 14 

Reference Address Field 

I1111111111111111111 

2 r>::: '.' :··:···:::::«::/\):)·:::':U:::::::?:U)Ud 

3 I' ''':::::;::r:':::U:(::-::::''':}:rm 

4 1·::.::t:::::t:::\:?::::H:\::."::f:l 

5 I .......:::(.:····.: .. :::·:::::·:·:.··::··:;.-:::1 

6 1·.::::::;::::::::://::\):·:: .. ·.-::·:] 

7 E:/::::·:::«::::::::::"·:..:·:::· .. :.I 

15 31 .• To/From ..... ~----t~ Core Memory I 
• To/From 

• 
• 

... 

8 I~ ______________ ~ 
I/O Processors I 

• Read/Write _1IIIIj.~ 
Direct 

9 

10 

11 

12 

13 

14 

15 

~--------------------~ .., 

~--------------------~31 J 

MEMORY CONTROL STORAGE 

Memory Map 

t--- 256 8-bit page addresses -i 
Memory Access Protection 

11I111I111111)~"'-+I"""""""II--r-'t11 
I--- 256 2-bit access codes -t 
Memory Write Protection 

I I I I I I I I I I I i I~~~I I~I 1 I 

l--- 256 2-bit write locks -1 

31-digit 
Decimal 
Accumu­
lator 

I 

Interrupts 

Priority Interrupt System 
Write Direct 

PROGRAM STATUS DOUBLEWORD 

[ill Condition Code 
o 3 

ITO Floating-point Mode Control 
5 7 o Master/Slave Mode Control 
8 

o Memory Map Control 
9 rn Arithmetic Trap Masks 

10 11 

Instruction Address 

111111111111111111 
15 31 rn Write Key 
34 35 

[]]] Interrupt Inhibits 
37 39 

'"I : I II Register Block Pointer 
55 59 

Figure 3. SIGMA 7 central processing unit. 

5 



PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

III 

I 
0 I R I x I M I 

16 GENERAL-PURPOSE 
REGISTERS 

I: Indirect Acldr ... Bit (1 bit) 
0: Operation Code (7 bits) 
R: Register Designator Field (4 bits) 
X: Index Register Deoignator Field (3 bits) 
M: Memory Word Address (17 bit,) 

REGISTER 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

+-

"EDIT MARK" 
REGISTER 

7 INDEX 
REGISTERS 

JOCI ACCU 
MAL 

MUtATOR 

Figure 4. Register and instruction format. 

Priority Interrupt System. The SIGMA 7 is 
equipped with the most powerful and flexible prior­
ity interrupt system currently available. Since this 
system constitutes one of the major elements con­
tributing to the real-time responsiveness of the SIG­
MA 7 its description will be deferred to a later point 
in this paper. 

Instruction in memory: 

Instruction in instruction register: 

Byte' operation indexing alignment: 

Halfword operation indexing alignment: 

Word operation indexing alignment: 

Shift operation indexing alignment: 

Doubleword operation 
indexing al ignment: 

Effective virtual address: 

Input/Output Organization 

Multiplexing and Selector Type Input/Output 
Processors. The Multiplexer Input/Output proces­
sor (MIOP) is designed to service a large number 
of slow to meJium speed peripheral devices simulta­
neously. A single MIOP can provide concurrent 
service to as many as 32 devices having a total 
bandwidth of approximately 500,000 8-bit bytes per 
second. A single Selector Input/Output Processor 
(SlOP), with the capability of operating at rates up 
to 3 million bytes per second is designed to service 
anyone of as many as 128 high speed devices which 
may be attached to it. SlOPs may have private buses 
or two may share a common bus. As many as eight 
lOP's may be attached to a single CPU. Each oper­
ates independently of the CPU under control of a 
stored program which is held in core memory. The 
CPU activates and monitors the I/O operations 
through the use of a set of five I/O instructions. 
Once activated the sequencing of the stored I/O 

Figure 5. Index displacement alignment. 

6 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 

program is under control of the appropriate lOP 
with no further operations required by the CPU. 
CPU-I/O interaction is accomplished through I/O 
interrupts, the conditions for which are specified by 
the CPU in the I/O command list. 

The lOP system operation is structured so that 
low cost, mUltiple channel, concurrent I/O opera­
tions which demand little CPU time for their execu­
tion are readily incorporated in the SIGMA 7 sys­
tem. 

Device Controllers and Devices. A wide range 
of 8-bit oriented peripheral equipment is avail­
able for attachment to lOPs. These include 
keyboard/printers high and low-speed paper tape 
input and output, punched card input and output, 
IBM compatible 7-channel multiple density magnet­
ic tape units and single density 9-channel magnetic 
tape units, high speed line printers, fixed head rapid 
access disc storage units, communications equip­
ment, and keyboard/ display equipment. All such 
units are controlled by individualized Device Con­
trollers which communicate with the lOPs through a 
common, simplified, electrical interface using a com­
mon method for control and information exchange. 

Real-Time Interface Units. A full range of special 
systems equipment including such devices as Ana­
log-to-Digital Converters, Digital-to-Analog Con­
verters, and Multiplexers together with Device Con­
trollers which interface them either with the direct 
input/output system of the CPU or with tile stand­
ard lOP interface are also available. 

SEVEN CRITICAL DESIGN PROBLEMS AND 
THEIR SOLUTION 

General 

This brief exposition of the SIGMA 7 system pro­
vides an over-all view of its principal features as a 
computing system, but it gives little insight into the 
special characteristics which uniquely permit it to 
carry out real-time tasks embedded in a multi-usage 
environment. Such an environment must be con­
trolled by an executive program which allocates sys­
tem resources; schedules operating intervals; pro­
vides services such as trap and interrupt response 
control, editing, compiling, assembling, and debug­
ging; controls and executes I/O operations; swaps 
active programs between core and rapid access mass 
storage units; and guarantees the integrity, privacy, 

and non-interference of all active programs and 
their associated data bases. 

If a real-time operation is to be maintained in a 
multi-usage environment, it must have guaranteed 
dedication and protection of the system resources 
which it requires. Core and disk space must be as­
signed to it and protected from access by other pro­
grams. I/O channels, peripheral devices, and inter­
rupt levels must be assigned, dedicated, and 
protected from outside interference. The establish­
ment of a real-time operation and the dedication of 
resources to it should be dynamically available 
through the operating system. These tasks must be 
accomplished in such a way as to permit full free­
dom and capability to the non-real .... time operations 
while in no way degrading the responsiveness of the 
system to the time-sensitive demands of the real­
time program. In the following section we will de­
scribe the design problems which were faced in 
meeting these requirements and present the SIGMA 
7 structures which provide for their solution. 

The Problem of Priority Interrupts 

The system must be equipped with a true priority 
interrupt system which is flexibly structured and 
controlled and whose operation in establishing 
priorities and recording and sequencing interrupt re­
quests is essentially instantaneous and independent 
of CPU action. Interrupts of higher priority must be 
permitted to interrupt partially completed responses 
to those of lower priority. To maintain fast re .... 
sponse, interrupt requests should require no decod­
ing action on the part of the CPU to determine their 
source or nature. Capability for dynamically varying 
the priority sequence to meet the demands of a 
changing environment must be available. No other 
system element may be designed such that its proper 
operation requires the inhibition of the priority in­
terrupt system for any period of time. 

The SIGMA 7 Priority Interrupt System. The 
SIGMA 7 interrupt system is best described from 
the ground up. The basic interrupt level has four 
mutually exclusive states which are designated as 
Disarmed, Armed, Waiting, and Active. A separate 
flip-flop is used to disable or enable the level (Fig. 
6). 

In the Disarmed state the interrupt level rejects 
all incoming interrupt trigger signals. In the Armed 
state the interrupt level will accept a trigger signal 
from an outside source, or from the CPU, and will 

7 



PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

INTERRUPT 
STATE FF CONFIGURATION 

LEVEL 
ENABLE 

SOURCE OF 
CHANGE SIGNAL 

DISARMED 

ARMED 

WAlTlNG 

ACTNE 

[E~ 
1 ..... o__------ CPU 

~rn 
dJQJ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I rn 

CB 

CPU or 

Externol Signal 

~CPU 

INTERRUPT 
1----- TIMING 

1----- GROUP INHIBIT 
OFF 

NO HIGHER-PRIORITY 
LEVEL ACTIVE, OR 
WAITING AND ENABLED 

Figure 6. Interrupt level operations. 

move to the Waiting state, where it will remain until 
the level is acknowledged by the CPU. If the level is 
disabled any Waiting condition is held in abeyance, 
preventing it from entering the priority chain of re­
quests for CPU action. All Enabled and Waiting in­
terrupt levels are permitted to enter the priority 
chain of requests awaiting computer interrupt re­
sponse action. 

Interrupt levels are organized into four classes 
which are designated as the Over-ride Class, the 
Counter Class, the I/O Class, and the External 
Class. The Over-ride class can never be Inhibited, 
Disarmed, or Disabled. A separate inhibit flip-flop is 
provided in the CPU for each of the other three 
classes, so that the CPU can prevent an entire class 
from entering the priority request queue. In effect 
this inhibit flip-flop disables the class regardless of 
the Enable-Disable states of the individual levels 
within it. The External Class is further divided into 
14 groups each containing 16 interrupt levels. The 
priority request queue starts at the Over-ride Qass 
and then may be threaded through the remaining 
Classes (and Groups of the External Class) in any 
order which the customer may desire. Thus, external 

. interrupts may be given priority positions above, be­
low, or in between those allocated to the Counter 
Class and the I/O Class (Fig. 7). 

8 

Each interrupt level has a unique location in low 
order memory dedicated to it. Control of the CPU is 
automatically forced to this location when the inter­
rupt is acknowledged and permitted to move to the 
Active state. This action occurs whenever the high­
est priority Waiting, Enabled, and Uninhibited inter­
rupt level is of higher priority than the highest 
priority currently Active interrupt level. 

The CPU can control the states of the interrupt 
system. A group of sixteen interrupt levels are oper­
ated upon simultaneously under control of a sixteen 
bit mask which selects the subset of the sixteen to be 
modified. Operations which may be performed upon 
the mask -selected levels include Disarm, Arm and 
Enable, Arm and Disable, Enable, Disable, Load 
Enables, and Trigger. The Trigger function permits 
the CPU to apply an interrupt signal to its own in­
terrupt system. This feature can be used to simulate 
an external interrupt environment for purpose of 
system checkout. It also permits the CPU to carry 
out the highly time sensitive portion of an interrupt 
response and then to create for itself a low priority 
interrupt to call for the deferred servicing of the less 
time sensitive portion at a less pressing time. 

1st Priority 2nd Priority 

Override 
Interrupts 

Counter 
Interrupts 

3rd Priority 

Externa I Interrupts Group 2 

4th Priority 

I nput/ Output 
L..-______ ~ Interrupts t----------. 

5th Priority 

External Interrupts Group 3 

6th Priority 

Externa I Interrupts Group 4 

7th Priority 

Externa I Interrupts Group 5 

Figure 7. Typical interrupt priority chain. 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 

The Problem of the Duration of Uninterruptible In­
tervals 

Such an interrupt system is of little value if the 
CPU can remain for any significant period of time 
in an uninterruptible state. Under normal operating 
conditions, the longest uninterruptible interval must 
be kept short, and under abnormal conditions no 
malfunctioning peripheral hardware or software may 
be allowed to "hang up" the CPU in a noninterrupt­
ible state. 

SIGMA 7 Interruptible Instructions and the 
Watchdog Timer. To insure that the longest uninter­
ruptible interval which the CPU may experience in 
normal operation is short, all long instructions have 
been designed so that they may be interrupted dur­
ing the course of their execution. Registers are held 
in fast memory, but instruction execution occurs in 
hardware elements. Since the original operands are 
retained in fast storage until instruction execution is 
completed, instruction aborting occurs without loss 
of information. Instructions whose duration is less 
than 10 microseconds are never aborted. Instruc­
tions in the 10-30 microsecond range are designed 
so that they may be aborted and subsequently re­
started upon return from the interrupt. Instructions 
whose execution time exceeds 30 microseconds are 
designed so that they may be aborted and subse­
quently have their execution resumed from their 
point of interruption upon return from an interrupt 
process. 

An instruction "watchdog timer," included in the 
standard SIGMA 7 configuration, guarantees against 
hardware hang-up by insuring that the time interval 
between interruptible points never exceeds 40 mi­
croseconds. 

The Problem of Red Tape Time 

Mere capability to initiate action in response to 
an interrupt is of little use to a real-time situation if 
it requires an inordinate amount of time to preserve 
the operating environment which exists at the time 
of the interrupt and to establish the new environ­
ment required for the processing of the interrupt. 
Hence, an extremely rapid context preservation and 
switching system must be provided in order to as­
sure that minimum time lapse exists from the initia­
tion of interrupt response to the execution of opera­
tions which are truly pertinent to the demands of the 
interrupt situation. Such a switching system must be 
repeatable to any number of levels in order to ac­
commodate interrupts of interrupts. 

SIGMA 7 Context Switching. A single in­
struction, Exchange Program Status Doubleword 
(XPSD) results in the collection of all of the active 
control states of the CPU and their storage in an 
arbitrarily designated doubleword location in core 
memory. This instruction execution then proceeds 
by loading the active control states with corre­
spondingly structured information contained in the 
following two words in memory. Thus, the entire 
control environment of the CPU is stored and re­
loaded in six microseconds with the execution of a 
single instruction. A return to a prior control state is 
accomplished through the execution of another sin­
gle instruction, Load Program Status Doubleword 
(LPSD), which also provides for clearing and arm­
ing or disarming the highest level active interrupt. 
An XPSD at the interrupt location saves the old 
environment and establishes the new one for the in­
terrupt response. An LPSD at the conclusion of the 
interrupt process returns the CPU to its state prior 
to the interrupt. Since the storage and access loca­
tions designated by the XPSD and LPSD instruc­
tions are arbitrarily located in memory, nested 
chains of interrupted interrupt routines may occur to 
any level without loss of control and with automatic 
denesting as interrupt processes complete. 

A second major element of context saving is the 
preservation of register states. Registers may be pre­
served in memory and restored through the use of 
multiple register load and store instructions or may 
be preserved in core implemented stacks through the 
use of multiple register push and pull instructions. 
Even the high speeds of these operations may result 
in too great an overhead time for some real-time 
processes; hence, a register storing and loading tech­
nique which is accomplished during the execution 
time of an XPSD instruction is provided, This tech­
nique is available whenever the CPU is equipped 
with one or more of the optional additional register 
blocks. The 5-bit Register Pointer is a portion of the 
contents of the Program Status Doubleword which is 
stored and loaded with the XPSD instruction. 
Hence, if a register block is available and dedicated 
to a real-time process the execution of the XPSD 
instruction which initiates the process automatically 
preserves the control context and the register con­
text of the interrupted routine and automatically es­
tablishes the corresponding contexts for the inter­
rupt process. Under these circumstances, the 
equivalents of register preservation, loading, and re­
storing are all accomplished within the execution 

9 



PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

times of the XPSD and LPSD instructions which 
initiate and terminate the interrupt routine (Fig. 8). 

The Problem of System Integrity 

Some means must be provided to guarantee the 
integrity of the executive system and for it, in turn, 
to establish and guarantee the integrity of all other 
programs. 

Master/Slave States and Privileged Operations. 
The SIGMA 7 CPU can operate in either a Master 
or Slave state. In the Master state all instructions 
can be executed normally. In the Slave state instruc­
tions whose execution are critical to the integrity of 
system resources are illegal. Such instructions are 
designated as Privileged Operations and are reserved 
to programs operating in the Master state. Privileged 
operations include all instructions which affect 
Input/Output operations through the Input/Output 
system, Input/Output operations direct to memory, 
the memory protection systems, the interrupt sys­
tem, the operating state of the CPU (e.g. a Slave 
state program cannot switch itself to the Master 
state), or the continuation of system operation. 

Memory protection, the other aspect of guaran­
teeing system integrity, is presented in the following 
section. 

The Problem of Space Sharing 

Efficiency in multiusage implies the simultaneous 
residency of many programs, or portions of pro­
grams, so that when conditions require that control 
be given to a new program it is resident and such 
action can occur immediately. Thus, under control 
of the executive system, partially executed programs 
must be permitted either to space share or to be 
swapped out of memory and later returned, prefera­
bly to whatever space is available. When a program 
is held up for I/O operations, only its I/O buffer 
region should be retained in core with the remainder 
of the program dumped to disk so that its space in 
core may be available for other usage. As such ac­
tions take place, the available memory space rapidly 
becomes fragmented into discontiguous regions 
which should be directly usable without having to 
repack the memory in order to achieve contiguity. 
Thus, a system should be provided for the execution 
of programs which have been dynamically relocated 
into discontiguous memory regions. 

10 

REGISTER BlOCK 10 ~ ___ -, 
(STANDARD) 

REGISTER BLOCK II 
(OPTIONAL) 

• 
• 
• 

REGISTER BLOCK '31 ~ ___ -' 
(OPTIONAL) 

SIGMA 7 
CENTRAL 

PROCESSOR 

(AUTOMA TICALL Y, THE BlOCK POINTER 
LOGICALLY CONNECTS ONE OF THE 32 
POSSIBlE BlOCKS TO THE CPU) 

Figure 8. Block pointer and register selection shown with a 
block pointer value of 1 (00001). 

The SIGMA 7 Memory Map. Dynamic program 
relocation into discontiguous fragments of memory 
is provided through the incorporation of an optional 
feature, the memory map. If the map option is in­
stalled, any program may be broken into 512-word 
pages and distributed throughout the implemented 
core memory in whatever 512-word pages of space 
are available. The memory map then permits the 
program to be executed as though it were located in 
the contiguous region of memory for which its ad­
dresses have been established. Clearly, the map pro­
vides the transformation of Virtual Addresses (i.e., 
addresses generated within a program such as in­
struction addresses, operand addresses, and indirect 
addresses) into Real Addresses (i.e., the physical 
core addresses where program-designated values are 
actually located) . 

The memory map employs a 256-byte, integrated 
circuit memory in its implementation, and thus pro­
vides for the mapping of a full 128K Virtual Ad­
dress space. A mode flip-flop designates whether a 
program is to operate in a mapping or non-mapping 
mode. When mapping is invoked, the following 
events occur every time an actual reference to mem­
ory is to be made (Fig. 9): 

1. The 17 -bit address generated by the 
program is broken down into a 9-bit 
word address and an 8-bit page ad­
dress. 

2. The 8-bit page address is used to 
access one of the 256-byte map mem­
ory locations. 

3. The 8-bit page address stored at that 
location replaces the 8-bit page address 
portion of the Virtual Address to form 
a Real Address. 

4. The Real Address is used to access the 
memory. 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 

Because of the speed of the integrated circuit memo­
ry, these actions add only 60 nanoseconds to each 
memory access. 

A special instruction, Move to Memory Control, 
provides for rapid changing of the memory map. 

With the map option, a program can be brought 
in and distributed to any set of 512-word pages 
which may be available in memory. The Move to 
Memory Control instruction is then used to write 
the map so that the proper address transformation 
will be made. The mapping mode is then entered 
and control is turned over to the program, which 

Instruction in memory: 
a 1 2 

Instruction in instruction register: 

The 8 high-order bi ts of the reference address are 
rep laced wi th page address Z from memory map: 

Actual address of memory location 
that contains the direct address: 

Direct address in memory: 

LH 

Ind i rect addressi ng rep I aces reference 
address wi th d i rec t address: 

LH 
a 1 2 

Halfword operation indexing alignment: 

Effective virtual address: 

The 8 high-order bits of the effective address are 
replaced with page address N from memory map: 

3 I 4 5 

Final memory address, which is the actual address of 
halfword location containing the effective halfword: 

then operates as though it were located in the con­
tiguous region of memory for which it was designed. 
The operation of such a program may be halted at 
any time, the program subsequently relocated to any 
other set of 512-word pages, the map rewritten, and 
the program operation resumed with no adverse 
effects. 

Programs whose addresses range over the 128K 
Virtual Address space may be executed on a ma­
chine with far less than 128K words of implemented 
core. The map permits portions of such programs to 
be resident and operate in available core space, Pro-

J 

19-bit virtual alfword address 
kkkkkkkk mmmmmmmmm m 0 

Figure 9. Example of generation of actual memory addresses; indirectly addressed, halfword operation. 

11 



PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

gram references to blocks which are not resident are 
automatically trapped so that a page-turning system 
may be readily implemented. 

A number of design compromises were made in 
the incorporation of the map in SIGMA. The most 
important of these was the decision not to incorpo­
rate a two-level (segment and page) 'mapping struc­
ture. Consequently, all programs which must direct­
ly communicate with each other, without the 
intervention of the executive system, must share a 
common Virtual Address space since they must 
share a common map. Thi~ includes the executive 
system itself which must provide services' to user 
programs. When doing so, the executive system 
must operate in the mapping mode since no unique 
bit was available in each instruction word to desig­
nate whether or not to employ mapping on an indi­
vidual instruction execution basis. Thus, in the inter­
ests of simplicity and limitation of costs, the map 
system has· been deliberately incorporated in such a 
way.that a user's Virtual Address space is curtailed 
by the size of the executive system and the public 
routines and services to which the user's program 
desires to have access. Further, these latter pro­
grams must have dedicated space in the Virtual Ad­
dress space of all users who desire to use them so 
that they may maintain constant residency in all 
users' maps. While these limitations were recognized 
it was felt that it was worth far more to achieve the 
powers of the mapping operation at a price which 
would bring them to a large segment of the market, 
than it was to achieve full segmentation for a much 
smaller portion of the market. 

The Problem of Memory Protection 

An additional aspect of guaranteeing the integrity, 
privacy and non-interference of all active programs 
is that of memory protection. Early implementations 
of memory protection were aimed almost exclusively 
at providing the write protection function which is 
essential for guaranteeing that one program cannot 
destroy another. The multi-usage environment adds 
further dimensions to memory protection require­
ments. Privacy considerations of privileged informa­
tion (such as payroll data) require that portions of 
memory be protected from unauthorized reading as 
well as writing. The complexity of the operating en­
vironment makes it highly desirable to catch errant 
programs at the earliest possible time. This desire 
leads to the concept of instruction protection which 
prevents a program from executing an instruction 

12 

taken from an instruction-protected region of memo­
ry. 

Access Protection. An additional 512 bits of fast 
memory are supplied with the map option. These 
provide storage for two Access Protection bits 
which are associated with each of the 256 Virtual 
Address pages. These bits are accessed during the 
mapping operation whenever the CPU is in the 
Slave state. They are used to impose inhibitions on a 
slave program's use of the information in the page 
which it is attempting to access. These inhibitions 
are designated in the following table: 

Access 
Protection 

Value 

00 

01 

10 

11 

Inhibition/Permission 
Control 

Permit slave access to this 
page for any purpose 
Inhibit slave access for writ­
ing, but permit instruction or 
operand read access 
Inhibit slave access for writing 
and instruction execution, but 
permit operand read access 
Inhibit slave access for any 
purpose 

Note that these inhibitions are imposed on slave 
Virtual Addresses and are in effect no matter where 
the slave program may be located physically in core. 

The Access Protection bits are used to restrict the 
operation of a slave program to its allocated ad­
dressing domain, and within that domain to permit 
the establishment of read-only or read-and-execute 
only pages of information. Thus, provision is made 
to guarantee secrecy and preservation of sensitive 
information, for common use of non-destructible da­
ta bases and public subroutines, and for the trapping 
of run-away program attempts to execute data. 

The 64-byte Access Protection fast storage area is 
loaded with a Move to Memory Control instruction. 
Because of the existence of this form of program 
inhibition, the memory map need only be loaded 
for the address domain over which a slave program 
is expected to operate. The Access Protection bits 
are loaded for the full 128K Virtual Address do­
main and thus are guaranteed to protect against 
slave program operations in pages outside their pre­
scribed domain. This fact reduces overhead time in­
volved in map loading for slave programs with re­
stricted addressing ranges. 



SDS SIGMA 7: A REAL-TIME, TIME-SHARING COMPUTER 

Memory Write Protection. The Access Protection 
bits operate over the Virtual Address domain, are 
effective only for slave programs, and are not availa­
ble unless the Memory Map option is installed. 
Consequently, an optional memory write protection 
feature which operates independent of the Access 
Protection bits is also available. The memory write 
protection feature operates in both the Master and 
Slave states. This feature is implemented with a 
512-bit fast memory unit which stores a 2-bit write 
protection "lock" for each 512-word page. Every 
operating program is given a 2-bit "key" which, in 
conjunction with the locks, controls its write access 
to a page in the memory according to the following 
rules: 

1. If the lock value for the page is 00, 
writing is unconditionally permitted. 
That is, the page is "unlocked." 

2. If the key value for the, program is 
00, writing is unconditionally permitted. 
That is, the program has been given a 
"skeleton key." 

3. If the lock and key values are both 
non-zero, then writing is permitted if, 
and only if, the lock and key values 
are identical. 

Note that this feature is associated with the use of 
Real Addresses and, therefore, supplies write pro­
tection for physical memory. If the map option is 
installed, both forms of memory protection are 
operative, the Access Protection bits operating on 
the Virtual Address space of the program and the 
locks and keys on the physical memory space, after 
mapping. Locks are installed through the use of the 
Move to Memory Control instruction. Tne memory 
write protection system makes it possible to provide 
memory protection in the absence of the Memory 
Map. It also provides memory protection for simul­
taneously resident Master mode programs, thereby 
guaranteeing their integrity and the integrity of pub­
licly available, reentrant, pure procedures which 
service users of both classes. This form of memory 
protection also provides a powerful tool for the de­
velopment or revision of portions of the executive 
system. Such a development can occur on-line, while 
the system is operating, since the unchecked portion 
can operate under a write protection constraint 
which guarantees the memory integrity of the sys­
tem. 

The Problem of Recursive and Reentrant Routines 

Efficient operation in a multi-usage environment 
requires efficient utilization of memory and minimi­
zation of program swapping time. The provision of 
single, public copies of routines which are used in 
common by many concurrently operating programs 
is an essential ingredient in optimizing both of these 
functions. Public routines avoid multiple copies, one 
for each user, and eliminate the swapping time asso­
ciated with their transmission between core and rap­
id access disk. (Indeed, swapping out time is always 
avoided for all pure procedures.) Public routines 
must be pure procedures which operate on a desig­
nated context. When the context and working space 
are provided by the calling program and several 
such programs may be concurrently using the rou­
tine it is said to be reentrant. When such a routine 
may repeatedly call itself, and, therefore, be re­
quired to provide its own nested context and work­
ing space, it is said to be recursive. A single routine 
may be both recursive, i.e., capable of calling itself, 
and reentrant, i.e., capable of being called by many 
different programs prior to its completion of opera­
tions for any single one of them: Of primary impor­
tance is the requirement that public routines must 
operate in an interrupting environment in which 
they may be invoked by one or more programs be­
fore completing their operations for another. The 
primary SIGMA 7 design constraint that no soft­
ware may be designed so that it must turn off the 
interrupt system in order to be guaranteed to oper­
ate properly is particularly difficult to meet in this 
environment. These requirements place demands on 
the hardware to provide entry and context establish­
ing methods which provide for efficient and dynamic 
utilization of space and guard against loss of infor­
mation or control under all operating conditions. 

SIGMA 7 Hardware Features for Reentrance and 
Recursion. Both reentrance and recursion require an 
efficient means for guaranteed preservation of the 
context of a partially completed process, including 
the 16 general registers and the link address, and for 
the institution of the corresponding context for a 
new user. A Branch and Link instruction which pre­
serves the program address in a designated register 
provides a simple and effective linking mechanism 
for both reentrant and recursive routines. The indi­
rect addressing and indexing mechanisms provide one 
of the means for context designation in the reentrant 
case. Multiple register blocks provide a rapid means 

13 



64 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

for context switching. The memory map provides 
the most direct and effective method for both con­
text designation and context switching since it per­
mits the reentrant routine to directly address its des­
ignated context. Switching from context to context 
then merely requires a map change. 

Both types of programs require register preserva­
tion. The Load Multiple and Store Multiple instruc­
tions provide a ready solution for the reentrant case 
since the calling programs must provide storage 
space within their context regions. The recursive 
case is more complex since the recursive program 
must provide its own storage. In this case, however, 
such storage is always used in a nested fashion on a 
last-in-first-out basis. The SIGMA 7 pushdown 
stack manipulating instructions provide the ideal so­
lution for this situation. There are five instructions 
in this set, PUSH, PULL, PUSH MULTIPLE, 
PULL MULTIPLE, and MODIFY STACK 
POINTER. These stack manipulating instructions 
provide an efficient means for moving information 
between single or multiple registers and core loca­
tions which are contained within a pushdown stack 
which is under control of a doubleword stack 
pointer (Fig. 10). 

The stack pointer contains the address of the top 
of the stack, a count of the words in the stack, a 
count of the number of spaces currently available in 
the stack, and stack underflow and overflow trap 
mask bits. With such a mechanism, recursive entry 
to a routine merely requires the execution of a single 
PUSH -MULTIPLE instruction to preserve the cur­
rent context in a ,stack for which space is provided 
within the routine itself. A routine which is both 
reentrant and recursive merely uses pushdown 
stacks which are stored within the context regions of 
the various calling programs. 

In general, the pushdown stack mechanism pro­
vides a powerful tool for any dynamic space alloca­
tion situation in which a last-in-first-out nesting of 
information is guaranteed. 

Other Multiusage Features. The limitations of 
space do not permit the description of many of the 
details of the SIGMA 7 which make for efficiency of 
operation in a multiusage environment. A few addi­
tional features are worthy of mention, however. A 

14 

EI Space count I~I Word count 

3233 474849 63 

Figure 10. Stack pointer. 

set of four Call instructions, each providing sixteen 
independent branches, generate a total of 64 gener­
alized operator or subsystem entrances. The Call, 
operating through the Sigma Trap system and the 
use of XPSD instructions, provides a mechanism for 
accessing generalized, re-entrant service routines. 
The Call mechanism provides the proper control 
states for these routines and establishes the means 
for returning to the control state of the calling rou­
tine, without going through the executive program 
and without using the address portion of the Call 
instruction itself. Consequently, the address portion 
of the Call instruction is available for the designa­
tion of operand (s) to the called routine. Calls thus 
can be considered a generalization of the SDS Pro­
grammed Operator concept. 

The SIGMA 7 CPU is equipped with two real­
time counters, and 60 cycle, IKC, 2KC, 4KC, and 
8KC clock sources, any of which may serve as in­
puts to the counters. Optionally, it may be equipped 
with two additional counters. Clock pulse counting 
is handled by single instruction interrupts which 
cause counts to be accumulated ih arbitrarily desig­
nated memory cells. Overflows from these locations 
cause a second interrupt, unique to each counter, to 
occur. Hence, real-time synchronization may be 
maintained, elapsed time intervals may be measured, 
and arbitrary length count down timers may be es­
tablished, all without recourse to elaborate, soft­
ware-derived timing routines. 

An extensive error-trapping system provides for 
automatic error detection and recovery from situa­
tions which would otherwise eliminate all possibility 
of interrupt responsiveness. 

An optional power fail-safe system provides for 
the detection of incipient power failure and the or­
derly shut-down of the system so as to preserve its 
operating state. An automatic start-up procedure is 
initiated upon restoration of power. 

67-03-14A 


	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14

