
MPM SOFTWARE ARCHITECTURE

By

Irwin Greenwald & Wendell Shultz

PREFACE

MfM is a Multi-Pr<?c.essor Monitor for Sigma 9. It is also a multi-programming monitor

. designed to serve interactive time"':sharing, batch, remote batch, and remote data collection

,in a single, integrate~ system. It could also be described as a file-based, communications­

. :oriented, high-availabil.ity system for multi-programming batch'and time-sharing nee~s'~

It is assumed that the reader is generally fami I iar with the concepts described above and is

also familiar with the needs, justification, and the advantages of multi-programming

operating systems and of time-'sharing. Therefore, the question of interest is: how does

MPM differ from other systems designed for some (or all) of the above?

This is not an easy question. One way to answer it is to examine all of the external commands

and service calls available to users of the system, and to study the internal design and imple­

mentation of the system. But this is a full time job for systems programmers, and may often

leave' questions about efficiency, expandability, modularity, reliability, and ease of use

sti II unanswered.

Another approach is to sel ect some of the key design ideas for the system and describe them

in coordinated, general terms. This could be called describing the "structure" ~nd the

"style ll of the system -- or the system "architecture". This is the approach taken here.

A word of caution is required, however. This is viewing the system from only one angle.

Details still make or break a system,. but since architecture is the ulimiting" factor for the system,

and is much less easi Iy changed than detai Is, it is the place to 'start. Another danger i,s. ~'"

that in describing the, architecture in a static document, some of the interdependencies or

_, .. reasons will be lost or unclea'r. As much motivation as possible is included in this document,

regarding "why" some things are dane in a particular way; in fact this is really a diScrssion of

"whatfl and "whyu rather than "how" things are done in MPM. Since motivational reasons are

very important and often undocumented, this should be of value to anyone studying MrM
Many of the features of MPM software architecture parallel Sigma 9 hardware architeqture,

I

and. the parall els wi" be shown. '\
\

-M2- .

MEMORY MANAGEMENT

Perhaps the most fundamental key to understanding MPM is to understand memory management.

Since all users and all of MPMbut a very small percentage of the resident monitor execute-­

mapped, in virtual memory, this discussion on memory management will be co~cerned' ex­

clusively with virtual memory management. Forthcoming sections on the resident monitor

wi II discuss real memory and real extended memory.

It is~ assumed that the rea~er is f~miliar with Sigma 7 hardware memory mapping (which is'

the same, to the mapped p'rograms, as Sigma 9 mapping). The Sigma 7/9 hardware memory

mapping is very fundamental to the whole design of MPM. If the virtual memory were a

different size, or if there were two-level mapping, or if there were variable sized pages or

a differentsized page, or if there were no mapping at all, MPM would be designed very

di fferently. The mapping hard~Nare is used for a lot more than simply rerocation. MPM is

designed around a total concept of virtual memory programming, which would be impossible

without special hardware (including access protection) similar to that on Sigma 7/9. This

will become more and more clear as the document proceeds, but its significance cannot be

over emphasized. ;;)

Virtual Memory Allocation

The first thing' to note is what we can call configuration Independence: every task has

128K words of contiguous virtual memory avail·able, regardless of the size of the machine

or of other users in the system. This elimin~tes a lot of relocation problems for all users

and simplifies system generation for the system itself and for standard language processors

and system utilities. Some of this memory is availab!e directly to the task, and some is

used for services which the task needs. This latter cannot be modified and used directly
,

by the, task. However, regardless of other users or the size of a configuration, this remains

constant e Figure ~ shows the fundamental allocation of virtual memory,.

o
II
Task

Control
Task

64K 8DK 96
1
K

I I .
Phantom System
Pages Library

MPM Service
Routines

Block. ..",-=~~~~~~~~~ ~:>J:::ao:

128K
I

~~~~~ ....... 
Task Virtual Memory (TVM System Virtual Memory (SVM) 

FIGURE 1: Virtual Memory Allocation 



, jhe reB .(Tosk-.cont,roJ ,Bloc~, ·or .con.trol .inJ.o.r:mot.ion .su·ch as .regi.s.ter$ aqqstatu.s and map , 
. -

.pointers) is the first page of.virtual memory. _This must occupy virtu~'1 page zero in order to 

pe'~mit users to take some traps directly. ,.(See the section on Event Control. fQr mored.~.tpih.J, . 

. The:.remalnaer ,oJ :the ~Iower .64K 1:s .avarlahle Jar ;the user/l lnony way :he choo.ses. The ll-ower 

64K was ~hosen instead of.the ·upper to permit better u?e of}he .L.,terpret instructionJor ~'. 
- ' , , ;~ '. 

~la.n9uage ;ProCe5.S0,}"511 ;o.rothe.r addreSSIng :cons:ide.raHons involvIng] 6-bjjaddress fie:tds" .and 

. :slnCe :use.r:s !Ilke ;tID begIn at :tow imemo,ry. 

'The ~rea from 64K -to 8DK is available for system use on behalf of the user, and is called 

phantom pages (PP). This is a fairly large amount of virtual space, but is used for such 

things as I/O blocking/deblocking, file directory pages, data control blocks, temp stacks, 

loader tables, debug tablesJ symbol tablesJ and other system information on an as-needed 

basis.' By requii-ing users to give up part of their virtual memory for these things only when 

neededl more spaceY/ould be directly aV9i1able for l}sel?! __ ljoy~ever, with the fast ov~rlay 

techniques descdbed 'below.,. 64K seems ,more thanenoughfo.r almost all users. An8 fixed 

anocation is easier.. If MPM 'were ,designed pr:imarily for assembly :language progr.ammel$, 

:f.he who'le concept of :phanTom page:s 'woulld 'be :unnece:ssary. But ;MP,'f>:/:.. 1s .:de:slgned ptii,mani!~r 

fo.r users of ,FORTRANq COBOLq BASTCq and .other higher-leve.1 .Ianguages. Forthes~ usersl 

, it 1.sdIfficult if not 1 ~possIble *0 -specIfy . .l/O blockJng :bu.f.fer s;poce ,and lIltS .dlreclo.1}' .spa.ce,..~ 

oynamlcdl!ly.. 'By 'u:sln,g IPhantotn ;po,gesal ,ex.eou:trioIil tlm~11 ·as :~ee~.eriJ., itlhe l.tJSer":s ;p.~~.9rammrrm]J 

15 :,gredfly'slm,pH:fiea -- :he .does inO! :even ineed lto know :about t'he fpbanlo.m ;pages 'and a{hes~ 

,directory. ffihl:ngs;. :FurIT:her.mor.el1 ffihe lJIhi:nrun])ill itITme ass (dell ay.ed !.Illnfriin ex<ectfu1nm 1hlme irdfbar 

:fhan ffiixeo :~citaS5emb:ly ,o.r 'com,pilLe ;nme ror ·extern ,tit lIfirlk ;e:O:ilt :tlm~;; itlbii:s mecns B!Les fOam !be 

:merB~:dJ (or ,reassi.gneCJ (Of:gFOW HarBer ~or .:smdHl.er (am:! lfh.us ,.chanEe lli)todkIT.n.a .:anrlJ iJitredkug' ;nee:dffi» , 

·w.ir.hotit ,changES :to lus.er :pro,gratT15 (Qf luser ~pace (Co.osj.oerationB. lI1biu; aJllsm rmeor:u; llihdt If.Jn,e $Oml!f' 

:5lze ;pro,gram Icam ~be ;exectitea 'w;i:ib 'or 'wTf.hotit !:CJeb~.91n.g. l;ldlsm means ffiha:t enror :meso.gf$ 

to :0 :usar ,can ~pecj~ ,alTar :Iocunar;} ITr.l lterms 'of :SOl1rce'program !ldbeH:s Ion (nJ :subroUt1:ne lha:s~1$ 

rather :than ius1~g the :hexadecIT,mal :Ioca:tiions co.f :The ,relocaJea pro.gr.am:, sj;nce fhe1nleTInc!l­

~ymbdl d1ctionary can :befk~pt 1n fhe .phantom page:s dudng execlit1on.7 JI :.de:sired.. It ,all:B1D 

. meansfhat. fhe~e 75 no ,such :thing as .1/0 Ibuffer ,pool.or ~ymhoJ.tdble o){cSrlloYV:7 since ;MRM 

can (andwTI'Ouse overlays in :fhese"phan'tom ,page:s to grow or shridka:s execution tlme .needs 

:changeT depending ,on .the 5Iz.e.oJ ,Q .task.. 



-M4-

On~ of the best parts of the concept of phantom pages is efficiencYt in addition to 

flexibility and ease of use. It is very importqnt to remember that with virtual memoryt 

6ri':unused.virtual page is free, -- it takes no real memory and no swap time. This .is part 

of tbe concept of virtual memory programming. Furthermoret using the standard segmentation 

management (described below)t symbol tables and directory pages are "deactivated" when 

n~t actually neededt and so most of the time take swapping RAD space but no real memory 

. arid no swap time. (Virtual memory programming without swapping is much less powerful.) 

The ~egion from 80K to 96Kis 'reserved for the system library (SL). The system 'Iibrary is 

IJread and execute ll to the user task, and is sharable among several users. However, all 

or part of this library can be different for different users, and can be fixed dynamically or 

at sys'tem loading (later than system generation). GenerallYt the File Management blocking 
./. 

and deblocking routines are in this spacet and so is Debug and the Line Editor. However, 

users can include a math librarY, a FORTRAN run-timet or a data management system her~ 

if desired -- and each task can select which segments to use. It is also possible to}ubstitute 

a different editor or debugt very easilYt by changing this system library. Again, if not usedt 

this space is reserved in virtual memory but unused in real memorYt for this user. 

The entire region from 0 to 96K is called Task Virtual Memory (TVM) and is lIswitch'ed" each 

,time one task i~ suspended (or terminates) and a new task dispatched. Of courset if a page 

is not usedt it can be flagged "n9 access" and no map address "is needed. 

The region from 96K to 128K is called System Virtual Memory (SVM) and is independent of 

the particular task in progress. This region does not change when tasks are switched, and 

normally changes only during a ~ardware reconfiguration or system loading operation. This 

minimizes system overhead for dispatching and schedulingtand also provides a guaranteed area 

for use by system interrupt and trap routines, independent of the particular user task executing. 

(That is, MPM does not change .any of the map on most interrupts, including I/O and 

communications interrupts.) 



-M5-

Also i:ncluded in SVM, in addition to I/O in'terrupt routines, are all of theimmediat~ service 

routines that the user can call (by CALx instructions) from his program. In addition, a large 

body'~f ;s~stem s~broutines that are ~art of the resident monitor operate in SVM (such as 

schedul ing and swapping routines and the I/O Control System). No variable length or user­

dependent 'tabl esare in SVM,but are located elsewhere.' 

Software Segmentation 
. I 

The precise method of controlling-the location of data or instructions in virtual memory 

(either TVM or SYM) is by means of a software segmentation scheme, as follows: The active 

memory at any time is composed of a series of segments, under software control. Each seg­

ment consists of an integral number of pages, from one to a maximum of 127. These pages 

within a segment 'are. contiguous and dense, but there may be JJgapsll in virtual memory' 

between segments. Each segment is built by the linkage editor from one or more relocatable 

object modules (ROMl s) or library routines or IIreservesll. Each segment is given a name and 

a virtual memory starting location at I inkage edit time, as well as a length.. This name, 

virtual location, and length remain with the segment permanently. Each segment must, of 

course, begin on a page boundary. Segments' may contain data, instructions, or reserved 

space -- or a combi.nation. The segment is the smal'lest IIsharable ll unit of memory (sharable 

between tasks). Several segments may begin at the same virtual memory address, if desired, 

and if so will in effect be "overlayll segments for each other; only one of these may be active' 
, . 

at anyone time, obviously, and this "active ll one will be represented in the actual hardware 

map at execution time. Because each segment is independent of other segments, any sort of 

overlay structure may be bui It -- the user is not I imited to a conventional tree stru~ture. A 

maximum of 64 segments may be active for a task, and up to 255 segments may be defined for 

a task at one time. 

-.- The reasons for defining these variable length software segments a're many. First, the, hardware' 
• I 

page size of512 words is very good for memory alJocation and relocation purposes, brt is too 

large for some protected control blocks and too small for most sharing and program definition 

needs. Therefore, the overhead for program definition, for sharing, and for overlays lis reduced 

by controll ing these on a segment basis, rather than on an individual page basis. It iJ, ve~ easy 
I 

to "name" segments, and then activate them or overlay them as required. 



. : 

-M6-

T0:;itl.'I'LlSItlf-Ot,~' .t.be~J..!se of segme~ts, a simple, non~ovedaId FORTRAN user program would appear 

as follows: 

··lrCB I *M 

Main Program 
.and Subro'utines 

. Memory tay()ut 

10"'& /1/ /II~I 
,-_Unused Space . 

"FIGURE 2: Simple Use ~fSegments 

BC 

Blank Common' 

This consists of two segments, I*MI and I Bel, plus phantom page segments and system library' 

(not sh,~~~),. This, is bUi It auto~ati cally by the I inkage editor" and the user never needs to be 

, aware.'of segments 0nles~ he'wants to perform some ~verl,ays:Qr,tha,~e something. One of the. 

obvi~u~ advantages 'of segments in the "total scheme of virtuafme~ory programming is for 

defining only necess.ary pages; the unused pages in the middle of task virtual memory do not 

cost anything, are conveni ent to allocate, (as for the I inkage editor to relocate,common and 

'user program sEparately), and would not he possible without a map. 

<t._ . 

A shared .FO.RTRAN IV compiler might appear as in Figure 3: 

" 

0 P1 
64K 

:1 n S1 I 
~ ______________ ~ ______ ~I------~--------~-------------J-If<OB IRO 

P2 
I 

P3 t 

) 

FIGURE 3: Complex Use of Segments 

In FiB.l.:.l're 3
8 

RO ,is the root segment, P1 is pass 1 code, P2 is pass 2 code, P3 is pass 3 code, 

uTI is!t~ ~el ~~nd S 1 is symbol tabl e space. Segments RO, Pl, P2, and P3 are " read and 

£x~tll <mm~w __ ~'~<!_<?~~ shared by, all, users of FORTRAN, and Pl, P2, qnd P3 overl ay each other 

~:m \)/jirrtt1!d1 rrrerru:>ry., Segments T1 and S 1 are writable segments and are private for each user 

,pr-iDBfa:rrn reirIDE-a:ompiled.(Note that Pl, P2, and P3 probably all exist in real memory, non­

i>N'EriIn.imn ' jjif iifhe compil er is heavily used. ) 
. ;:-__ ...... w._. _____ ----;_" __ _ 



-M7-

There are a number of distinct ,activity states and transitions possible for a segment. The 

activity states for a segment are: 

ACTIVE-HIGH 

ACTIVE-LOW 

SEMI-ACTIVE-HIGH 

SEMI-ACTIVE-LOW 

INACTIVE 

DEFINED 

The segment exists in real high speed m'emory, on 

the swapping RAD, and in the map if the task is 

active. 

Same as ACTIVE-HIGH, except uses LCS instead of 

high speed memory •. 

Same as ACTIVE-HIGH except. not in map. 

Same as ACTIVE-LOW except not in map. 

Segment exists on the swapping RAD only, and is not 

brought into real memory with the task, and hence, 

cannot be in the map. 

Segment contents do not exist in real memory or on 

the swapping RAD, but the segment name and descri ptors 

exist; for example, used for Blank Common. 

It is possible for pages of a segment to be in different states, but generally they are all the 

same. (Page calls are ~sed f9r th is, anytime ,aft~r the segmen't is defined.) 

The transition operations for segments are: 

ACTIVATE-HIG H (Segment name) 

ACTIVATE-LOW (Segment name· 

SEMI-ACTIVATE-HIGH (Segment name) 

SEMI-ACTIVATE-LOW (Segment name) 

DEACTIVATE (Segment name 

ERASE (Segment name) 

DEFINE (Segment name) 

AUTO-ACTIVATE-HIGH (Segment name) 

. AUTO-ACTIVATE-LOW (Segment name) 



-M8-

These c~n also apply to pages, where the virtual page number and the segment name are 

both given. (Monitor calls provide informatign on unused page numbers, at execution 

time, if needed •. This activation information can be used to better manage use of LCS
t 

also.) 

. Auto-Activate is·a type of demand allocation; that is,. when a segment is marked as auto­

<?ctivate, nothing is brought into memory. and no real pages are assigned. However~, if the 

. task begins to ·write into a page in the segment, a protection trap takes place, a page of 

::eros is given to that task, a~d subsequent swaps wi II always swap th is page. Therefore, 

unlike dem~rl,::r~aging, only the first reference to a page causes anything speci·al. This 
- ...... ,.".,:1' . ' 

is particularly useful for dynamic tables -- the user need not request more pages than needed, 

but. I ets the system acqui re pages as needed. 

On an over:~y~"'op.~ration, one segment is explicitly deactivated and another activated, by 

the user •. Or if the first is never to be used again, it can be erased; and if it may be used 

. again in a few milliseconds, it can be explicitly semi-activated so that another "overlay" 

is really only a map change. (This is, in effect, an adherence factor.) 

Anytime a segment or page is needed that is not in memory, the task wi I i be dismissed (and 

may be swapped out, if the system is very busy). When the segment. (or task) is swapped in, 

the task is again eligible for scheduling. Thus, a large overlay can take place in less than 

34 milliseconds as part of the normal swapping operations, wi.th no special effort,:; And by 

semi-activating segments to LCS, very very large programs can be !loverlaid" in virtual memory 

by means of map changes. T~e MPM system makes extensive use of deacfivate and auto-activate to . 

minimize the normal swapping operations. By use of these techniques, the loader "disappearsu _ 

out of the space of the program it is loading -- always a problem on non-mapped computers. 

Access Protection 

On a time-sharing or multi-programming system, the system or other users must be completely 

protected from any single user. This is accomplished with special hardware. Hardware access· 

protection is available on a poge basis, in the following four types: 

No access 

Read only 

Read and execute 

Write, read, or execute 



-M9-

The "noaccess ll code is used for pages that are undefined or not yet referenced in .an auto­

activated segment. All writable pages are--initially set I1read and execute ll
, on each swap­

in, so that on the first write after each swap-in a protection trap informs the swapper that 

this page has been modified and must be swapped out; otherwise, it is merely lIthrown away" 

on swap-out, to minimize- swap-out activity • 

. -The" no access" or Jlread onlyll or "read and -execute" access codes are used to keep the 
- ' . 

user out of his TCB, so~e of his phantom pages, and SVM. Thus, the user can control the 

access codes in the TVM below.64K (except the TCB in page 0) but cannot change or often 

, even read the system. On dispatch ing every task, the access co'des for all 128K ~re changed, 

to i~sure that all memory is properly protected and to permit some system tasks to -have greater 
I 

privileges into system virtual memory than user tasks have. (On Sigma 9, unlike Sigma 7, 

there is a master-protected mode; MPM will use this extensively for sy~tem reliability.) 

Summary 

- In summary then, virtual memory programming and the hardware map are used for: 

Configuration independence 

Relocation 

Software segmentation 

Demand allocation 

Sharing of memory 

Reentrancy 

Eliminating real memory fragmentation problems 

Minimizing swapping 

Providing secure, selective access protection 

Efficient use of re?1 memory space 

Fast, explicit overlays 

They are not used for: 

Demand pag i ng 

Automatic overlays 

Use of virtual memory larger than real memory 



TASK MANAGEMENT 

Definition 'of a Task 

In MPM, we define a task as the basic un it of work for control purposes; tasks are the 

, entities which are scheduled. From the viewpoint of the system, all tasks ar~ indepe~dent 

in the sense that they may be performed concurre~tly. But in tasks that stem from one job, 

dependency relationships may be inherent due to program logic. 

Since it is the combination of pr~gram (code, procedure) and data - together with oth~r 

'resources - wh ich enables work to be done, tasks may also be described as such a combination'~ 

Thus, for e~ample, the FORTRAN translator is a program which, when combined with source 

statements as data and resources such as workspace and files for output, is capable of being' 

schedul ed to do work. In MPM, we speak of the request for such a combination of program, 

,data, and resources as the invo.cation of a task. Hence, a user who requests FORTRAN com­

pilation of a source file onto some object file is invoking a FORTRAN task. Several FORTRAN 

tasks may exist concurrently in the system; since the translator is pure procedure, only one 

II copy U of the program need exist to satisfy these invocations. 

In MPM, any program which is reentrant and has a unique name may be incorporated as, a 

shared subsystem a la FORTRAN. The process requires two steps: 

The program must be I ink-edited to prepare it as a subsystem. 

The program~s name must be entered in a shared-subsystem name table. This step 

does not .require a, SYSGEN. 

Design Considerations 

Many MPM system functions are themselves performed as tasks. For example, I/O 'interrupt 

handlers perform error detection functions. " If an error is found, the handlers invoke a task 

to do error analysis and recovery. Since tasks run in task virtual memory (see Memory 

Management) this' technique offers considerable savings in system virtual memory requirements .­

in addition to sol ving some' asynchronous schedul ing problems. 



-T2-

Th is last point leads us into the rationale for designing MPM as a "task oriented II system. 

The following list is unordered with respect to importance: 

• Tasks provide a mechanism for incorporating programs as subsystems. ' In a 

system oriented towards user built application packages/ this is crucial. 

• ,Tasks are one means whereby the shortcomings of I imited (virtual memory) 

addressing space can be overcome. Not only can the user avail himself 

of this technique/ the system can (and does) also so do; many system services 

run as "normal" tasks in user virtual memory. ,(Segment overlay capability/ 

discussed elsewhere in this report/ provide another way of increasing 

addressing space.) ') 

• Tasking allows for structuring complex problems in a more natura; , 

, manner: concurrent processes can be expressed as concurrent tasks; 

dependency relationships are established via several mechanisms, 

(described under "Event Control II) for inter-task communication. 
o 

• Hierarchical processors/ such as SIMSCRIPT which translates from SIMSCRI?T 

source statements to FORTRAN source statements which must then be compiled/ 

are facilitated by the abi lity to invoke a task during execution of another task. 

• Total system organization is simpl ified by the uniformity of treatment that 

a task structure allows. 

• In I combinati on with memory management segment techniques/ the task structure 

allows library elements (such as the FORTRAN run-time package) to be 

shared among all the tasks which require them. 

T ask Invocation 

We have alluded to the ways in which tasks are invoked in MPM in the foregoing discussion; 

invocati on requests may emanate from: 

• A user at a terminal. 

o A program 'in execution. 

• Job control statements in a batch iob. 

• A user created stored command file. 



-T3-

The invocations will almost always be explicit, that is the terminal user or programmer will 

usually be aware that he has invoked a task. There are two cases in which invocation will 

be impl icit: 

. A terminal connect signal (ring,detect, attention, ••• ) will normally invoke an 

executive task. 

A terminal which connects via a dedicated line* will, in addition to invoking 

the executive task, be lIattached" to a filed procedure associated with that line. 

In general, it is assumed that the procedure wi II eventually invoke the task 

associated ~ith that line. Thus, for example, the user could be automatically 

connected to an appl ication package fo; stock market quotations. 

Definition of,a Job 

In MPM, we define a job as the basic independent organizational unit for a collection of tasks. 

Its essential characteristic is its independence from other jobs; one job cannot affect qnother job 

other than as syste~ load affects all jobs. Within MPM, the only functions of a job are: 

To accrue accounting information as each of its tasks terminates. 

To provide a mechanism for sharing resources among its tasks that assures 

indepe'ndence from tasks in other jobs. (The task mechanism itsel fallows 

independent sh~ring of system resources.) 

To provide a mechanism for attaching multiple-~erminals to one application package. 
. . 

The ·only expl icit manifestation of the concept of job are the .various control blocks that 

accommodate these functions. This will become more clear as the description proceeds~ 

A conventional batch II job ll is also a job under MPM, and the batch job steps are tasks. How­

ever, an additional executive task also exists. 

Resources that are shared can be broadly classified as segments (of program, data, or work-space) 

and files. Sharing is accompl ished by always referring to these elements indirectly (through 

pointers). Thus, a given resource used by a task may come from :itsel f, from its job, from a 
.. . i ' 

shared subsystem, or from a shared library. On task invocation, its access to shared; resources 

may be controlled by its invoker· (I imited to a level no greater than its invoker1s). 

*A dedicated line is defined as one on which the user always wishes to be connected Ito the 
, \ 

same program. ' 



-T4':' 

Structure and Examples 

Figure T1 is a conceptualization of how jobs 9nd tasks-are organized and resources are shared. 

Each of three tasks is represented by a control block whic~ has associated local resources 

'(workspace, data, program). Since terminals and files are usually job resources in MPM 

(though not necessarily availabl e to every task), the tasks are shown as attached to ~hared­

j~b resources. Task 1 is the only task in job 1 i tasks 2 and 3 ,are both in job 2 and could be 

, snaring segments. From the MPM point of view, tasks 2 and 3 are independently sharing 
. ' 

r.eso~rces of iob2i any dependency relationships are inherent i~ the tasks themselves (e. g., 

they may interlock on a shared data item). Tasks 1 and 2, which are sharing a subsystem, 

are totally independent since the subsystem is a pure procedure a-nd there is no other way 

for these tasks to communicate. Thus, Figure T2 is a better logical representation of the 

same structure. 

Shared 
Local Job 

Resources Resources 

Control Block 
Task Task 1 

,-

1 

Shared 
Subsystem 

Control Bloc~ 
Task 

2 
Local Shared 

Resources Job I--

Resources Task 2 

Control Block 
Task 

3 
Local 

Resources El 
FIGURE TI . FIGURE T2 



-T5-

Flg~re'T3 ill ustrates the steps involved in connecting a user to BASIC. In A, the user impl ic itly 

Invoked an EXECUTIVE task. In B, he has re~uested BASIC, and the EXEC invokes a BASIC 

task for him. Finally, the user is conversing with BASIC as shown in C, with the EXEC task 

inactive. 

\9 J 
EXECUTIVE 

TASK 

:) 

FIGURE T3-A 

~ 
EXECUTIVE 

TASK 

J 
BASIC 

TASK 

FIGU~E T3-B 

- - --- --I 
I 

EXECUTIVE 

TASK 

BASIC 

TASK 

FIGURE T3-C 



-T6- . 

Figure T4 is the hierarchical SIMSCRIPT use of FORTRAN mentioned earlier. The user has 

requested SIMSCRIPT and the EXEC task has i!]voked a SIMSCRIPT task for him. In the course 

of executi<?n, the SIMSCRIPT task has invoked a F9RTRAN task {which the user need not be 

awar.e of}. Presumably, upon completion of compilation, the FORTRAN task terminates and 

a signal is sent to the SIMSCR!PT task; thus we. may think of FORTRAN as a serial sub-task 

to .the SIMSCRIPT task. oOn the other hand, the FORTRAN task could be processing data in 

.ptlrallel with the SIMSeRIPT task, in which case they could be called concurrent tasks. It 

is. important to recognize that such distinctions are strictly a function of how programs ~re . 

written and inter task communicatJon facilities are usedi MPM recognizes no differences in 

task types. 

I 

I EXE~ TASK 1 
I 
I 
I 

SIMSCRIPT FORTRAN 
..... ... , -' 

TASK TASK 

FIGURE T 4 



-T7-

Figure T5 represents the programmer1s view of the kind of complex structure that MPM task 

management perm its. 

User 

Exec 
Task 

-. 

~ Sub-Task 11 
User Invokeq Concurrent 

Task Task 1 
I--

-==...::J 
~ Sub-Task 12 

~ 
Concurrent 

Task 2 
Sub-Task 

-

FIGURE T5-



-T8-

MPM's command language processor imposes the restriction that the user (whether at a 

terminal or through a filed procedure) may inyoke only one task at a time; programs have 

no such restriction. Our rationale is that the requirement for this capabil ity is low and 

protocols involving "invoke and wait" and "invoke and continue" (even if the former is 

default) together with attendant ambiguities in interpreting the meaning of an l1attention ll 

or. II BREAK II signal are unduly compl ex for most terminal users. Note that an appl ication 

. p~ckage programmer may overcome t~is restriction by having a suitabl e command language 

withjn the appl ication. In addition, an upper I imit on the number of active ta~ks that a· 

job may have is imposed to protect the system from l1run awayl1 programs. This I imit is a 

job parameter rather than a system parameter in order to provide flexibil ity for installation 
) 

managers. 

Multi-Terminal Application Packages 

Thus far, we have described Task Management from the point of. view of terminal users 

working independently to solve their individual problems. There' are ca'ses in whicn groups 

of terminal users may wish or need to work together to solve a common problem. MPM offers 

facil iti es to build appl ication packages to meet such requirements. Figure T6 illustrates the 

structure that accommodates two HgroupsJl of users (as represented by JOB 1 and JOB 2) 

independently using the same application package. It is important to recognize that the 

boxes represent the control blocks for the tasks; the programs (code, constants) are shared 

between the jobs; workspace and files are job dependent., 

Note that the executiv~ task - whose main function for single terminal users is to provide a 

"fall back base" with which the user can communicate when all else fails - has been eliminated; 

this function is more logically performed within the multi-terminal application package control 

program •. Attendant reductions in space on the swapping RAD' and 'in internal control tables also 

influenced this decision,. 

Since any sharable subsystem is, by definition, capabl e of handl ing multipl e terminals 

Hsimultaneously", the question arises as to why we support multiple terminal applications in a 

l1special ized" way. The question is even more relevant when MPM's ground rul es for interfaces 

are I isted, since they impose burdens' upon the appl ication package programmer: 



" " , 

-T9-

,-
" , 

/ 
/ 

/ 

,/ 

/ 
/ 

Shared 

Code 

---------, 

~-----

I 

Shared 

Code 

. ------ .....;J 
,- - - II _____ ~ 
I , 

// / / [IOt~erl .: 
Applic. Pkg. '-______ ~ . . • 

Control Tosk B--: _____ ! 

FIGURE T6· 



-T10-

The application package (AP) will perform time sharing functions for terminals 

within a group. MPM will time share among the groups. 

AP will do accounting (as it requires) for individual terminals in a group. MPM 

will do accounting for the group as a whole. 

AP will accept If log-offlJ from a terminal and inform MPM. (MPM wi II inform 

AP of Jldisconnects lJ
). Once a terminal lIioinslt a ~roup, it will be unable to 

get back to MPM without a disconnect and a new log-in. 

MPM will provide AP with internal identification numbers for the terminals.' 

Any privileges which are a function of a terminal's external identification will 

be establ ished via protocols between AP and the user. 

We have already indicated one of our rationales for multi-terminal application package 

support: more effective space utilization by elimination of the executive t9sk for each user •. 

Over and above the strong arguments for efficiency that this implies, there are two crucial 

points: 

• We don't know how to provide .inter-terminal communications facilities in a 

"general purposeJi environment. An AP is in a much better position to handle~ 

its specific requirements. 

We donlt know how to provide generalized l1file sharingU capabilities with 

"automatic" lock-out on write at several levels (e. ~., log ical record, page, 

••• , entire file) and accounting for potential deadlock problems. Again, AP 

is in a much better position to handle its specific requirements. 

Thus, we feel that by facil itating multi-terminal appl ications, we enable MPM to support 

a broader range of applications than would otherwise be possible, albeit at some cost iA 

complexity in programming of the Apls. Note that AP's which donlt require these facilities 

can be programmed I ike any standard sub~ystem (e. g., FORTRAN). 



-Tll-

Summary 

The general subject of inter-task communication facil ities in MPM is discussed in another 

section of this document {Event Control}. It should be remarked, however, that powerful 

fac i I iti es are afforded asa by-product of the abi I ity to 'share resources, in particular, data 

segments • 

. MPM's Task Management provides: 

Interjob independence coupled with interiob sharing of system resources. 

Intra iob sharing of job resources with controlled access privil eges. 

Natural expression of complex problem structures • 
. J 

Capability for hierarchical building upon existing sub-systems. 

Uniformity in dealing with jobs whether they be batch, single terminal, or 

multiple terminal and independent of whether or not the terminals ar.e on 

dedicated lines. 



EVENT CONTROL 

Preface 

In precedil]gsections, as well as in those which will follow, diverse requirements for 

comr.nunication among }'erititiesJl are noted: 

Inter-task communication 

System-task Communication (e. g., signalling completion of asynchronous services) 

Intra system communication 

Since flevent control" was a proven technique (e. g. ~ 05/360) for handling most of our needs 

we decided to pursue this approach. We found that, in conjunction with pseudo-interrupt 

capabil ities, we could not only, satisfy all of our needs, but that we also had what we in­

tuitively felt was a very flexible and powerful capability, albeit one ~hose potential we 

hadn It fu Ily investigated. Thus, this section is in two parts: event control as it satisfi·es 

system needs, and a IIfeel ll for event control as it might ultimately be utilized. 

Fundamental Concepts 

The dictionary defines an event ·as "anything that happens"., MPMI S definition is the same 

except that the "things" that can happen are finite in number and must, eventually, be 'listable. 

Since our design is incomplete, and the intent of th~ following list is to be indicative, it is 

incomplete: ' 

A request for I/O is an event. 

An I/O start is an event. 

An I/O completion is an event. 

An interrupt is an event. 

A trap is an event. 

Expiration of a pre-set time isan event. 
) 

Requesting and receiving the directory for a file are events. 
'.} 

Internal {software} signals are events. 

Errors are events. 

Task completion is an event. 



-E2-· 

As can be deduced from the a~ove I ist, the system itsel f makes heavy use of events and event 

posting techniques as well as making these available to tasks it is monitoring. In what follows, 

the word '!task Jl implies a user task or an MPM system task; they are treated in the same manner, 
. , 

. although the latter may have special privileges. 

Event Types and Event Control Blocks 

. f:~ent control 'is used, in general, to synchronize asynchronous activity, whether that be as 

mun9ane as "waiting for I/O completion" or complex inter task coordination. Events may be 

expected - e. g., an I/O completion, in which case we term them solicited; or unexpected -

such as an attention signal from a terminal, in which case we use the term unsolicited. 

With the exception of hardware traps (see below), those happenings which are defined as 

lIevents" in MPM result in the c·reation of an event control block (ECB), examination of an 

ECB, posting to an ECB, or destruction of an ECB. For example, an I/O request results in 

ECB creation, a request for status prior to completion results in ECB examination, I/O com­

pletion results in ECB posting, and a request for status (after completion) results in ECB ' 

destruction. In addition to thus serving as the sequencing agent for asynchronous activ!ty, 

ECB's a~so serve as t~e repository for information which must be conveyed from step to step 

in the activity. In particular, ECB's (which are resident) contain infor~ation related to a 

request from a task (which is swappable); such information, fO.r example, as the pages involved 

in an I/O transaction.) 

In most cases, ECB's are on threaded I istsc~ained both to the requestor for an action (e. g., 

a task) and the requestee for that action (~. g., a system handler). Hence, a task's request 

for I/O results in creation of an ECB which is chained to the task as a solicited event and 

to the I/O handler as an unsolicited event: 



-E3-

FIGURE El 

Task" I/O Handler· 

Solie ited Solicited 
,~ Events Events 

t I Unsol icited \1 Unsol icited 
Events K ECB 

Events 

Sol icited .Link 

" Unsql \Zite-a-" 
Lin .~ 

The same threaded I ist structure is used to handl e inter-task, system-task, and intra-system 

communication needs in a unifor~ manner. Thus, in t"he figure: the 111/0 Handleru could 

have been another task or another system element, and/or the IITask IJ could have be~n a 

system element. 

Waiting on Events 

Since MPM permits certain kinds of parallelism (e. g., concurrent tasks, asynchronous I/O), 

it is necessary to provide mechanisms for waiting upon and sign~lIing confluence oK separate 

activities. Sol icited events may be handled in two ways {separately or in combination}: by 

waiting upon event completion and/or by requesting a pseudo-interrupt (see below) upon 

completion. Unsolicited events may be handled "only via pseudo interrupt • 

. In MPMwe permit a task to wait upon:, 

A single specified event 

All of a set of specified events 

Any event 

More complex logic is, of course, possible. Since the requirement for it is small and such 

capability would entail additional overhead for all users, we deemed it inappropriate. The. 

primitives supplied allow programmers to build as complex a set of facilities as they require 

for a given application. 



-E4-

Pseudo-Interrupts 

The MPM pseudo interrupt system consists of: 

A single interrupt level with 31 separately armable request lines, somewhat analogous 

to the Sigm~ s~ries hardware I/O interrupt. 

A level inhibit capability for use by the task. 
o 

Sysrem protection against reentry until reentrancy requi rements have been met. 

• Flexibility in "pseudo l1 interrupt programming equivalent to that in I1hardware" 

interrupt programming.-

A brief expansion of the last tw~ points is appropriate: FI exibil ity is afforded the interrupt 

level programmer partially by making the context (registers, PSD) of the point at which his 

program was interrup!ed available to him'at the time of interrupt. Since he may wish to save 

this context (as well as to perform other functions) before allowing another interrupt to occur, 

the system automatically inhibits interrupts until he says UOKJJ. In hardware terms, the system 

performs an XPSD that inhibits interrupts, the interrupt program performs the LPSD to allow !hem. 
. , 

MPM reserves some request lines for system use (e. g., an attention signal from the terminal). 

The remainder are available for the task to use in two ways: 

As part of the request for some action (i. e., a sol i~ited event) a request I ine to 

activate upon compl etion may be specifi ed. 

In inter-task communication (see below), the sending task must specify Q request 

line to be activated in the receiving task. 

Inter-Task Commun ication . 

Tasks can communicate with each other in one of two ways: 

Through their sha~ed resources (e. g. ~ common segments of data). 

Through signals, together with small amounts of data, which MPM handle1 via 

event control. 



-ES-

The mechani~m is simple; the sE7nding task makes a system call specifying: 

The ID of the receiving task. 

The number of a pseudo interrupt request I ine to be triggered in the receiving task. 

Optionally, several words of data (the maximum has not been set as yet). 

This information, together with the ID of the sending task is placed in an ECB and treated as 

"a:~ unsol icited "event for the receiving task. 

Note that this technique does not allow a receiving task to directly wait upon a signal from 

'another task as a solicited event. However, by suitable communication between a task's 

interrupt handler and its main line program, the equivalent can be accomplished by waiting 

on any event. 

Hardware Traps 

Hardware traps are a special class of unsol icited events for which MPM takes default action 

that usually results in aborting the task th~t caused the trap or, in the case of hardware mal­

functions the tasks that have been affected by the trap. Tasks may elect to have some tr_aps 

(e. g., floating point, some CAL's) routed directly to their own handlers (which are constrained 

to be in slave mode). By keeping the old and new PSD pairs for these traps in the task's control 

block (which is read only to the task), MPM is made totally transparent to the traps for tasks 

that exercise this option, Furthermore, by adopting the philosophy that context for traps which 

a task can cause should be kept with that task, trap routine reentrancy probl ems are greatly 

alleviated. Other traps (e. g., non-allowed operation), which - for reliability reasons - must 

be handled by system fault management routines, may optionally be routed indirectly (i. e. l , 

after system processing) to a task's own handlers. Thus, the debu"gger can field traps such as" 

privil eged instruction violations and construct error messages with contextual data (e. g., 

statement labels) meaningful to the user. 

Potential 

The examples that we have used to describe Event Control in MPM have been rather "standard": 

Input/Output and inter-task signall ing. The potential of the power and fl exibi lity of the system 

are something we haven't fully explored as yet. However, some possibilities are worth mentioning: 



Summary 

-E6-

There is no reason why the mechanisms described for inter-task communication 

cannot be used for intra-task communication. That is, the lOis for the sending 

-and receiving tasks can be the same. Hence a task can IItrigger" its own pseudo 

interrupt programs and present them with data •. This has obvious values for' . 

debugging individual tasks which will late~ be incorporated in larger iobs. 

It is also roughly akin to t,he capabil ity for invoking serial sub-tasks described 

in the section on Task Management. 

By noting that a task may be invoked from an interrupt level in another task, 

we realize that asynchronous solicited events and/or unsolicited events may 

very easily be used to cause task invocation. Thus, for example, statements 

of the form: 

ON event INVOKE task-name 

seem to be natural to handle. 

Deferred executions - tasks which are to be run at some selected clock t1ime 

or time intervals can be handled either by waiting for the time event or 
. , 

interrupting on the· time event ·and then invoking the task to be run. (It would 

be preferable if the system, rather than tasks within the system, handled deferred 
, , 

executions, since the latter require space. However, we bel ieve this is a 

satisfactory mechanism for providing a desirable capability and, considering 

that itls a by-product of other mechanisms, itls free.) 

This section has described MPM Event Control primarily as it satisfies internal commun i~atjon ' 

needs. We have also indicated how, in combination with other system facilities such as Task 

Management, Ev~nt Control offers powerful tools for sophisticated programmers (such as those 

who must impl ement a subsystem I ike PL/l). At the same time, we satisfy casual users (e. g. I 

a user of BASIC) who need not be aware of any of the system mechanisms. 



SCHEDULING 

There are really two distinct kinds of schedul ing in MPM -- swap schedul ing and CPU 

schedul ing. Swap schedul ing is concerned with the decisions and techniques of moving 

task in and out of real ,memory; CPU schedul ing is responsible for regulating the priority . / 

queues from which a task is dispatched. It is important to understand that these are logically 

separate operations, altbough they do interact and they do use some of the same interval 

'!.ueues and tabl es. 

Swap Schedul ing 

All tasks in MPM are swapped out of memory onto the high-speed swapping RAD when they 

are not needed for long periods of time. This includes interactive user tasks, batch user 
I 

tasks, MPM tasks, and shared subsystem tasks. Only tasks are swapped. (That is, all of 

MPM in System Virtual Memory is permanently' resident in real memory.) Thus, there .is 

only one mechanism for swapping. Before a task can be a candidate for CPU dispatching, 

all active pages of active segments must be in real memory; there is no I1demand paging" as 

used in some systems. (Semi-active segments are IIbeingll swapped in also, although may not 

have yet arrived in real memory.) The swapping logic employs angular queuing techniques on 

the high-speed RAD, and does not use file management but goes directly to 10CS. Thus, space 

on the swapping RAD is managed by the swap scheduler, not file management. 

There are two main decision paths in swap scheduling: deciding what to swap in, and deciding 

what to swap out. Tasks which are not waiting on some event (some ECB)are el igible for swap . 

in. The decisions for swap in or swap out are based on whether the system is currently memory 
, 

limited, CPU limited, or I/O limited. For example, if the system is memory limited, tasks.' 
.. 

may be swapped in that tend to minim.ize memory requirements -- through subsystem queuing or. 

analysis of shared memory resources as well as on the basis of task size. And if the syste~ is 

memory I imited, all tasks are swapped out as soon as they go into a WAIT state. If it is not 
~ 

_memory limited (as when running mostly multi-programming batch), tasks are nof swapped ~ut ex,,:" 
i 

cept for very long blockages. The exact rules require a detailed, technical understa'lding of the 

system and will be described in the MPM Project Design File. The important point is\hat 

analysis is made continually to determine the limiting resource -- memory, CPU, or I~O -..:. 



~ 

-S2-

and .adjustments are taken in sm~11 steps, rather than large jumps, to damp out sudden fl uctuations. 

However, the system is able to adjust automatically to everything from pure multi-programming 

batch with 1/0 bound jobs to heavy conversational loads. These can occur at different times 

of the day or at different instal lations.: In all cases, good conversational response is considered 

more important than highest CPU util ization, and swap selection is designed to support this rule • 

. E9ch time tasks are swapped in, all "writablel1 pages are marked uread and execute l1 initially, 

so the system only has to swap out, pages that have been modified. All swap-in and swap-out 

is performed on a page basis, rather than a segment or a task basis. That is, if there is I/O 

in progress on a single page for a task, this page is flagged as having I/O in progress and is 

held in memory, and all other pages for the task are swapped out. Pages or segments that the 

user has deactivated are never swapped in, and hence real memory requi rements are kept as 

modest as possible. Of course, shared subsystem segments need only one copy in real memory 

and are not swapped out -- since they have not been modified. (Hardware protection guarantees 

this.) 

Dispatch i ng 

Each CPU, as it completes its current activity (usually signalled by the expiration of a short 

quantum) goes to a set of central ized routines from which all currently ready tasks are dis­

patched. Through these routines the CPU selects the work of highest priority (as determined 

from the system priority queues) to execute. With the exception of interrupt level subroutines, 

everything is scheduled onto the queues and dispatched from them: MPM tasks, interactive 

tasks, compute tasks, and batch tasks. It should also be noted that - in contradistinction to 

the JI Kernel Schedul ingJl of TSU - neither schedul ing nor dispatching is done from an interrupt 

level. The WAIT operations and ECB's, described under Event Control, are the only means 

qf changing from WAITING to ready and then to active (that is executing) status for individual 

tasks. Posting to an ECB can cause a task waiting on an event associated with that ECB to move 

to a CPU dispatch~r queue for schedul ing. 

All task execution 'is time-sliced, whether batch or conversational. Generally, short quantums 

are used, unless the task has requested a long quantum or unless MPM has already identified 



-S3-

the task as compute bound. This is designed to give good response to conversational requests 

(which are typically shorter even than the sho~ quantum) and to keep file I/O activity high even 

when only lJlulti-programming batch is running. 

Priority of tasks is considered in the CPU dispatching, with some MPM tasks highest and 

conversational tasks in the middle and compute-bound batch iobs generally low. SO'}1e MPM 

.h~usekeeping tasks may be even lower than batch tasks o Applications tasks can select their 

priority level queue. 

Mul ti -Processor Cons iderations 

When two, three, or four Sigma 9 CPUls are operating, they can all' be executing one copy 

of MPM routines and even some system tasks. Multiple CPUls are considered equal for all 

purposes (except initial system load). Thus, each CPU does its own CPU dispatching, but inter­

processor interlocks on data permit on ly one CPU at a time to do swap .s~hedul ing. Two user 

tasks can, if the user so permits, be operating on different CPUls at the same time for the 
o 

same iob, to permit faster turn-around •. But the user, not MPM, is responsible for providing 

interlocks on files or shared data segments -- with the aid of standard MPM facil ities. 

The philosophy of lockout in MPM routines is to place interlocks on small data tables or 

table entries, and to use a large number of these locks, as required, to keep other CP~IS 

out of data that is currently being modified. This is used instead of placing interl.ocks on 

code or on a few maior tables. This takes a little more initial design effort, but results in 

a much lower probabil ity of CPU confl ict when operating as a multi -processor. 

Although the CPUls operate as equals, this is not the same as anonymous CPUls. That is, 

some one CPU may be processing certain interrupts exclusively, due to having its interrupt 

level armed and enabled. But all other CPUls possess' these .s~.r:ne interrupts and can take 

over the processing if the other CPU fails. Thus, one CPU may do a little more work than 

others. But all CPUls can schedule themselves, and this is not true in a master-slave CPU 

relationship. Having equal CPUls is generally more efficient and also permits faster're­

configuration in case of CPU errors or failures than using a m~ster-slave relationship. 



FILE MANAGEMENT 

I/O Management 

The I/O operations for MPM are organized into four separate levels, in a distinct 

hierarchy. Only one of these four levels is properly called file management.* The 

four levels are: 

• 

• 

Information Management - the highest level, dealing with external 
v 

(user) interfaces and the total flow of data and control. 

Data Manasement - the next highest level, dealing with the logical 

manipulation of data and the organization of data within files, the 

content of this data, and the accessing methods used to store/retrieve 

this data. 

File Management - the level dealing with the physical organization 

of dota into files, the allocation of secondary storage, a.nd the naming, 

extent, and I ocati on of fi les. 

Device Management (IOCS) - the level dealing with device and channel 

routines and the physi cal transfer of data to and from external devices. 

There are a number of reasons for this hierarchy. For one thing, modularity is forced 

in .this way, and modularity is always a goo~ design feature. Also, system rei iabil ity 

is improved. The Devi ce Management routines (IOCS) are· part of the resident monitor, \ 

. in System Virtual /v\emory. Thus, they operate in master mode, protected and unprotected. 

The File Management also operates as immediate service routines in System Virtual Memory, . 

or as MPM tas.ks in Task Virtual Memory. Both of these operate mostly in master mode 

protected. File Management is e~tered from the user by way of CAL's; laCS is not 

directly available from user tasks. By contrast, all of Data Management runs in user 

mode, mapped, protected, ei ther in the system I ibrary as shared routines or as private 

copies in task me~ory. Data Management is entered by BAL i"nstructions. And the 

Information Management routines will run as user tasks, with normal user protecti~m. 

(No specific Information Management tasks are currently designed for MPM.) Infbrmation 
. \. 

Management is built on Data Management which uses File Management which cal1s on 
. I 

* This is a change from previous TSU or MPM documents. 



-F2-

Device Management. Thus, maximum freedom for growth in Information Management 

and Data Management, with full sharing and efficiency features, is possible. And 

yet the r-esident monitor and the protected parts of MPM are absolutely unaffected. 

And users who need only file page operations do not pay for inverted or indexed 

sequential file operati ons. 

Jhe remaind~r of this section deals only with File Management, in the limited 

sense of the deHnition. What has been described under structured (sequential) 

or indexed sequential operations is now part of Data Management, and is discussed 

in the next section. 

File Organization 

A file is defined as a named collection of data, known to the system only by name, 

absolute location, and extent; and known to the user by name, a set of ordered (I ogi cal) 

pages, and internal structure and content. Every fi Ie is treated by MPM as a set of 

N pages (from 1 through N, I ogi cally contiguous) with unknown contents. (A page 

in a file is 2048 bytes, the same as memory pages.) Effectively, the user sees each of 

his files as a "virtual ll set of pages, numbered from 1 to N, and the system "maps II them 

into the actual pages of secondary storage as part of its fil~ management responsibility. 

(The IImap " is the file directory, described below.) Furthermore, every file is a random 

access file to MPM--on a p~ge basis; that is, the virtual page number is the index of 

each random file page. This is true for files on RAD, disc pack, CRAM, and even magnetic 

tape--although tape motion should be sequential by pages for any reasonable sort of . 

efficiency. (All file default assignments are to disc pack.) Figure FM-l shows this effect 

for a file on a disc pack. 



File as 
viewed 
by user 

~ tasks 

Virtual 
Pages 

1 
2 

3 

N-l 

N 

i' 

~ 

/ 

/ 

" " " ..... 
" ..... 

" ...... 
...... "-

....... ..... " - ....... .:: 

f 
/1 

/1 

/j 
. / / 
/j 

I 
j 

-F3-

/ 

/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

File ./ -
Directory " 
(File Map) 

'\. 

" 
" '\. 

'\. 

" 
"-

" "-
File 
Packets 

on Disc 

FIGURE FM-l: File Virtual Pages 

As the figure shows, a contiguous set of pages is presented to the user, but the fj I~­

is actually broken into fragments called packets on secondary storage, wh~re the 

packet size is a function of the storage device. (See more on "file allocationll,-below.) 

This techr:iqu~ has s~me of the same advantages as virtual memory programming, for 

avoiding fragmentation problems in the oreal storage device, for permitting files to 

grow or shrink efficiently, for permitting easy and device independent referencing, 

and for sharing of devices with other files. Furthermore, on this flexible file organization' 

any number of data management techniques can be buil t, since the pages of a fi Ie can 

be accessed in any order desired--including sequential or random. It should be 

emphasized that only file management knows the translation from virtual file page 

address to secondary storage address; IOCS knows nothing of files but only of cylinders,. 

tracks, sectors and devices; and user tasks can only refer to file pages by virtual page 

number. This permits rnaximum freedom for device independence, for reconfiguration, 

for reliability, and for ease oF"allocation. Also, since a page is the physical block 

size for all de vi ces, and since every physical transfer involves one or more file pages 



-F4-

onto page boundaries in virtual memory the fi I e management is truly an extension of 

virtual memory programming. This fact is useg to Jllock n pages in memory where I/O 

is in progress, and swap out the remainder of a task -- when necessary. Also, when a 

page of memory is written to a file page, the page in memory can be removed from the. 

user's memory map (and the use~ gets a fresh, cl ean page) and the fi rst real memory page 

is ~urned over to file ma:1agement (and IOCS) while it waits being written to disc. The 

'rrf~mory map is 'thus used to quickly I1move lt pages -- no core to core move is ever needed. 

This results in very efficient memory utilization and low overhead in file management. The 

requirement that all file operatiorTs use a physical bl~ck size of exactly 2048 by·tes simpl ifies 

all file management operations, results in good memory utilization, corresponds well to the 

fixed sector sizes on XDS disc packsr CRAM, and RAD'sr and results in efficient transfer 

for logical records in most cases. 

System C Ii ent Inventory 

The name of each file known to MPM is kept in a special system filer called the System 

Client Inventory. Each file name is located in a user account entry (a catalog) in this 

fil er and thus each file request must specify the complete account name as well as the 

file name. (This may be done implicitly for the user. The account name can be arranged 

in a hierarchy of up to six levels -- for company account, department account, project 

account, and individual account -- for example.) Also included in this System Client 

Inventory with each file name is a file type -- eighter source file or relocatable object 

module file or absolute (loadable) filer or checkpoint file, and so on. Thus, user's can 

refer to a program -- i.n all its forms -- by a single name and the system will inform file 

management (from the context of the request) which type of the fil e to actually use. This 

results in a vast simplification for the user in naming his files. 

Also included in the System Client Inventory is information on file size limitations, special 
, 

device privileges, and the pointer to the System File Inventory for the file (and file type) I 
., I 

being referenced. 



-F5-

System File Inventory 

The System File Inventory (SFI) is another special system file which contains 

an entry for each file known to MPM. Each entry containsthe r~el number{s) 

{or .pack number or deck number; never the physical device number} wher'e 

this file is located, and the location of the directories or packets for this file-in terms 

of cylinder and track numbers, as appropriate. If the file is smaller than 12 packets, 

there is no directory required and the System File Inventory points directly to the actual 

fiJe packets. OtherwJse, the SA points to up to 6 directory pages. Therefore, a file 

reference, given a file name and account name, would proceed as shown in Figure FM-2: 

File 
Larqe Directory 

Complete System System File 
7' 

File Client File 
Name 

, File Inventory Inventory 
Smalr File Packets 

,. 

I 
I 

! t 
! 

FIGURE FM-2: File Referencing 

Actually, only when the file is first assigned is this entire procedure required. Once the 

SFI is validated, the information is copied into a File Control Block (FCB) and this is kept 

in protected memory with the user job for all future references. 

File Security. 

The SFI also contains information on the user's access rights to the file. By comparing the 

user's active account number with the account number of the file and checking the rules 

(saved at file creation) that govern this file use, the file use is verified. If account 

number is not sufficient, a key is requested (a password type of philosophy). The user 

must specify his intended use of the file at ASSIGN time. This wou Id be either: 



.. 

Modify access rules or keys 

Read 

. Execute 

Write {add-on only} 

Update (read and write) 

-F6-

. Different access rules and keys are (can be) required for each type of file use. Permission 

to share the file is also checked at this time, from other information retained in the SF!. 
- . 

If the fil e has been accidentally destroyed or purged from secondary storage to tertiary 

storage (that is, tape archives) this backup file information is also in the SFI, and mount 
'") 

instructions are issued to the operator. 

Volumes 

A volume is defined as a single unit of secondary storage; for example, a reel of tape, 

a disc pack, a RAD unit, and a CRAM deck are all volumes. There are two types .nf 

volumes under MPM: public and private. Public volumes are always mounted when 

the system is in normal operation, and contain files for any number of users. Private 

volumes are only mounted onspecial request, and may contain files for only one account 

per volume. RAD's are always public volumes, disc packs may be either public or ·private, 

ond CRAM's and tapes are always private. MPM supports bot~ multi-volume files,; and multi-. 

file volumes. Each volume has a volume label at the beginning of the volume, and each file 

on tape has a header label and a trai ler label. Non-standard tapes (without labels and other 

than 512 word page blocks) are permitted, but only through special calls to IOCS -- not 

through file management. Foreign disc packs are not permitted. A special command (an 

ATTACH) is provided to permit either on-I ine or batch users to work with private vol urnes, 

but use of private volumes must be granted from information in the account. 

File Allocation 

There are two methods of physical file organization--casual and formal •. They differ in 

methods of allocation, as described below. 



-F7-

. The unit of blocking and transfer is a page. The unit of fi Ie allocation is a packet, where 

a packet is: 

3 pages for the RAD (hal f a track) 
) . 

3 pages for IIcasual" disc pack files (one track) 

60 pages for IIformal li disc pack fj les (one cylinder) 
o 

140 pages forCRAM (one strip) (CRAM is always "formal II) 

1 reel for magneti c tape 

. I 

This results in considerable etTtciencies in terms of directory sizes, allocation overhead, 

and reduction in seek time for multi-page transfers or for use with private volumes, as 

opposed to using the allocation unit <:>f a page. It does mean the user is charged for a 

few more pages than he is actually using, sometimes, but the improved performance is 

·worth it. Since reliability information is kept only on a track basis, this is also the 

smallest reasonable unit to deal with for allocatfon. The RAD is allocated on the basis 

of half a track to make it look like the disc packs.) Formal files on private volumes 

can reside on up to 7 separate volumes, if necessary. Thus, files of up to about 150 

million bytes can be accommodated on disc packs, and up to 700 million bytes on CRAM. 

All allocati on for "casual" files is done on "den:and II, as the .file grows. Allocation for 

"formal ll fj les is done when the fi Ie is defined, and the us~r can control allocation to some 

extent, for better effi ciency of operation. However, compacting is not done except as a . 

housekeeping function or by direct user· request. 

MPM accounting operations collect information on the number of pages allocated, per 

day per account. 

Fi Ie Control Blocks 

File Control Blocks (FCBrs) are built and maintained in job memory that is read-pr9tected 
. , I 

to the user task. Therefore, the user cannot modify their contents, and they need be 

verified only when set up the first time. FeB's contain only information on the lolation 
. \ 

and extent of the fjle in question--not on its content or current logical position. 7he 



-F8-

blocking information for logical record operations is contained in a Data Control 

Block (DCB) and is located in "writable" IJser memory. This means that for files 

requiriQg only page operati-ons, no DCB or blocking buffers are required, and FeB's 

qre very small (about] 2. words per .Ii Ie). The FCB points' to the System Device 

Inventory enhy that cont~ins the particular fi)eor portion of a filer by, means· 

of a logical device pointer (not a physical device number). If FCB"s refer 

to multi-volume files, pointers to all volumes are contained in the FCB. If 

t~e volume is a public volume, FeB's from ma!1y tasks point to it. (See the section 

on 10CS for more on the System Devi ce Inventory.) 

Logical File Number 

The Logical File Number (LFN) is an internal number, used in all file calls, to identify 

the particular FCB being used. The LFN is really the same· as. the.LogicaLUnit Number 

in FORTRAN I/O statements, and so is very easy to use for FORTRAN programmers •. The 

LFN must be set equal to some fi Ie name (and hence, to some FCB) by a command language 

ASSIGN statement. There are a set of 32 LFN's in each task TCB, and this table of 32 

LFN's is really another map--this time of the internal file number to FCB equivalence. 

Logi cal System 
File Number Device 

Table Invento 

LON 
FCB-i 

) ~'----1~------~1~ __________ ~ 

FCB-i 

FIGURE FM-3: Internal File Naming 



-F9-

_ If it is meaningful for the file operations, several LFN's can point to the same FCB. 

Or there can be up "to 32 unique FCB's .for. a task. Thus the IIbinding II of fi Ie names 

is on q symbolic basis and is postponed until execution time, permitting as much flexibility 

,as possible for device and file assignments. 

Bu ffer Pool Management 

A criti cal part of any file management or data management operation is buffer pool, 

~haring and allocation. Since File Management does not do any blocking or need any 

buffers for data operations on logical records, it could simply ignore the problem of 

buffer pool management. However, doing data management with reentrant routines would 
) 

result in difficulties communicating space needs to the requesting programs if those programs 

were in FORTRAN or COBOL .. Therefore, some of the phantom pages or avai lable task space 

is used for an I/O buffer pool, and special calls to file management are provided to acquire and 

release space in this buffer pool. 

File Page Operations 

As mentioned above, all requests to read or write a physical block of information from 

a fi Ie must speci fy the virtual page number of memory, the virtual page number of the fj Ie, 

and the number of pages. Only full page operations are permitted. All operations permit 
\ 

I/O-compute overlap; that is, all operations permit a no-:wait operation, requiring a later 

"check ll operation before the transfer is considered complete. Thus users or a data management 

routine can exercise full control of I/O buffering. By use of specific WAIT requests 

specifying which FCB1s to/wait on, or by use of pseudo interrupts for end action or unusuaJ 

end notification, very close synchronization of task and I/O is possible with little effort. 

All file page operations take place by way of CAL's to immediate service routines in 

System Virtual Memory. 

File Integrity 

File integrity is considered the single most important part of system reliability. Consequently," 

a great deal of effort is spent in guaranteeing file integrity. All write operations to the 

System Client Inventory, the System File Inventory, and file directory are write-checked. 



-FI0-

. Further, all entries are individually checksummed in software, to further minimize 

possibility of error. All file allocation techniques are designed to minimize the number 

of fi les affected. when tracks or surfaces are lost. All user fi les, at the user option, 

-can be check-written, at direct cost to the user. In some system modes, all transfers to 

selected devices are automaticai Iy check-written at no extra cost to the user. Backup 

copies of all files ti:at have been modified are saved (on tape) at periodic intervals 

or at the request of the user. All posting operations are done as "cleanly" as possible 

to minimize extent of damage in case of error or failure and to minimize the amount of 

"transition ll time when a file 1s being IIchanged ll • For most editing operations, a temporary 

file is used for editing, and only on the successful completion of the operation is the 

IIname ll changed to reflect this fact, so that the unmodified old version is available in 

. case of error or fai lure. 

Device preventive maintenance and reconfiguration routines keep a complete history of 

all hardware problems, by track number, and save this part of the volume label, on each 

volume.-

tv\ore' details on file integrity are included in the section on High Availability. 



DATA MANAGEMENT· 

Data Management can, and probably will, grow to be larger thanFiI e Management. As 

noted under File Management, Data Management will be implemented as library subroutines, 

link-edited to user programs and entered with a BAL. All of Data Management will be in user 

"mode, therefore. Initially however, only structured files, byte operations to unstructured files, 

and indexed sequential files will be supported. Only a brief overview of structured files is 

described here. 

Structured Files 

Structured files are sequential files consisting of variable length records, with EBCDIC blanks 

compressed out, trail ing blanks removed, and format bytes and sequence numbers added. 

Structured files are completely device independent, and operate with tape, disc, CRAM, RAD, 

remote term i na Is, and (through ~ymbionts) to un it record equ i pment. Structured fil es rea lly are 

designed for source input fi I es and I isting output fi I es, but 'can be used for any other sequential 

byte string operations desired, if a logical record format is convenient. 

A set of Data Management routines are provided in the system I ibrary to read, write, and 

position logical records within a structured (sequential) file. A decision is made in these 

routines to acquire buffer space if necessary, to block to File Management page operations. 

Or if the current file assignment is to a remote conversational terminal, these Data Manage­

ment routines will call the Terminal Control System to read or. write a record through the 

communications system. Whenever a physical I/O transfer is involved (as when a blocking 

buffer is full or empty) an explicit WAIT is' issued by these routines on behalf of the task on the 

fil e being used. 



DEVICE MANAGEMENT 

·AIII/O operations and all I/O interrupts go through the I/O Control System, or laCS. 

laCS consists of routines and tables necessary'to allocate I/O devices, to issue Start I/O 

operations '(510 IS), and to answer I/O interrupts. laCS resides in System Virtual Memory 

as part of the Resident Monitor. A primary design concept for laCS is uniformity -- all 

calls on lacs look the same, regardless of the caller; and only laCS is responsible for 
'j 

manipulating the tables under its control. User tasks cannot call laCS directly but always 

. call File Management, IOEX, or a Symbiont 0 (IOEX is an MPM immediate service rou,tine 

that -handles device dependent I/O requests and performs argument consistency checks.) 

File Management is used for all device independent I/O operations. Symbionts are used to 

drive unit record equipment. Then FiLe Management, 10E~, or the Symbiontswill prepare 

an I/O Event Control Block (ECB) and call laCS. 

All calls to laCS refer to devi<:=es by a Logical Device Number (LON). No one in the 

system except laCS actually knows the physical device numbers for devices, and these 

are kept in a fixed table in laCS called the System Device Inventory. This permits de,vice 

reassignment in case of hardware error. It also makes all I/O operations very configuration 

independen't and easy to use. A user merely asks for a magnetic tape, for example, and 

never knows which tape drive he is using. Thus, the computer operators never need to 

change tape unit numbers, and the system can maintain counters and statistics on tape units 

or disc drives. All file catalogs and file directories refer to 11.reelJ1 number or "pqckll number, 

and only laCS knows which reel is on which physical drive. Thus1 a reconfiguration does 

not affect removable disc pack assignments' or catalogs. 

The tables for laCS are shown in Figure 01. The System Device Inventory is the central 

table. It is indexed, as described above, by Logical Device Number. This System Device 

Inventory is created at system load time (not system generation) from information supplied on 

configuration cards or from previous history. It can be modified by system control commands 

later, if necessary, or by reconfiguration routines. 'It contains one entry per I/O device in 

the system. Each entry contains the actual (physical) device number, 'an alternate device 

number (for reconfiguration), and pointers to the Device Controller Table and to the Device 

Type Table. 



-D2-

The Device Type Table is mostly fixed at assembly time and can be modified at sysgen, 

system IOdd, or during execution. There is one entry in this table for each device type 

in fhe system. Each ~ntry contains device type name, standard I/O Order Bytes, standard 

retry counts, standard failure thresholds, and ID's for error and failure tasks for this type of 

device. 

The" Device Controller Table contains one entry per logical I/O subchannel in the system. 
I 

(That is, a dual-access controlle-r is one logical channel, and one entry.) The Device 

Controller Table contains physical subchannel activity status for single or multi-unit device 

controllers, and for both subch'annels if a dual-access controller. This table is allocated at 

system load time and is the most dynamic of the laCS tables. All I/O requests are queued 

from the appropriate entry in the Device Controller Table. Actually, the queue entr{es ~ 

the ECB's that were given to laCS on the I/O request. These ECB's are in a doubly I inked 

list, with one I ink from the proper I/O subchannel and the other (not shown) from the re­

questing task entry in the System Task Inventory (which controls tasks). Thus, laCS uses 

the general ECB facil ity to handle queues for all requests. This makes it easy for laCS to 

Jlpost" completion of an I/O operation to the requesting task -- it uses the normal ECB 

posting routine •. If there is an I/O error, the ECB "is given to the proper MPM error analysis 

task, and all request and status information is carried along in the ECB. Eventually, if the 

user task had requested pseudo interrupt control at I/O completion, this same ECB is attached 

to the task unsol icited event I ist (and thus is doubly linked to its requesting task). This scheme 

means that laCS does not need to provide within its own tables for variable length I/O queue -

entri es, as in most systems -- the E<:;B's and a doubly I inked (threaded) I ist approach removes'. 

th is necessity. Also, if a task wants status on any of its I/O requestsor if a task must be aborted 

for any reason, the latest status on a'lI ECB's for this task can be found by· following the chain 

__ from the task in question. ·Then queued. ECB's can be removed fr,om the subchannel queue, if 

necessary. Furthermore, all of the user task can be swapped out of mem<?ry, before 11/ 0 com-

pI et es, exe ept the E C B's and the actua I pages wh ere I/o is still in prog ress. (W i th~ut swapping, 



-D3-

the ECB1s would not be as large. But larger ECB's mean smaller memory requirements for 

task resid~nce during I/O operations.) 

The .I/O Processor Table, o.rIOPT, contains status, error; and configuration information 

on an I/O processor. There is one entry in th is tabl e per I/O processor in the system.; . 

T.his is normally used only for errors and reconfiguration. 

System 
Device 

Inventory 

Device 
Controller 

Table 

lOP 
Table 

,- - - - -- - . --
I ! 

Device Type 
Table 

FIGURE D1: 10CS Tables 

ECB I 

(

: _______ J 

~--------: , , 
I I 

I ECB I 
I I 
J . 
-- --- ____ I 



HIG H AVAILABILITY 

Goals 

High availabil ity is defined for MPM as providing II nea rly l1 continuous access to computing 

services for users. This means that only very short and very infrequent interruptions are 
~ 

permitted when users are attempting to access the system. It is nota goal of the system to 

avoid all breaks in service, or to never require user restarts. However, part of the goal . 

~;f high availability does imply absolute protection for data files; that is, once a user has 

entrusted his fil es to th e system, the system wi II take whatever steps are necessary to insure 

that these files are never lost or destroyed -- beyond a IIbackupu point under the user's control. 

This goal of high availability is accomplished by adherence to four basic principles: 

All error and fa iI ure detection and recovery is on-I ine and uses all the power of 

the conversational time-sharing services of MPM. 

A compl ete and prec ise audit trai I is provided for system programmers or customer 

engineers of all errors, failures, and reconfigurations of the system. () 

AI ternate paths are provided to all peripherals through a combination of Sigma 9 . 

hardware and MPM software techniques to permit automatic or semi-automatic 

reconfiguration after fai lures. 

All references to hardware -- whether memory or peripherals -- are logical rather 
~ <. 

than absol ute, so that user and system programs can still 'continue after hardware 

fail ures or reconfigurations. 

On-Line Detection' 

Much of the error and failure detection is imbedded in File Management or in 10CS, but 

some parts are separate; and all parts are on-line. There are really the following disfinct 

parts to MPM error and failure detection: 

I/O interrupt general error analysis· routines 

Swapping RAD error analysis routines 

Fi I e Management error ana lysis routines 

Specific device-dependent error and failure analysis tasks 

Examiner Symbiont Process (ESP) 



-H2-

System On-line Diagnostic (SOLD) 

Watchdog timer trap. 

Parity fault trap . 

Non-allowed operation trap 

Sequence fault trap 

Power On/()ff interrupt. 

Memory faul t interrupt 

Processor fault interrupt 

Software detected fauol ts 

Software ti meout routines 

The tasks, referenced above, are non-resident. (This includes ESP and SOLD.) All I/O 
/' 

general error analysis routines and all trap and interrupt routines are resident and reayt 

immediately to hardware detected errors or failures. (An error is defined as an invalid 

condition that has not resulted in loss of data; that is, an error is recoverable. A failure 

is unrecoverabl e and is al ways much more serious.) MPM, un I ike many systems, operates 

on the premise that hardware fail ures are imminent but are ~ever a cause for affecting more 

than one (or a few) of the operations in progress; that is, they are del iberately localized. 

Most of the above routines do the "obvious" thing when traps or interrupts occur. The 

Examiner Symbiont Process is in effect a software preventativ"e maintenance task that runs 

at a low priority under MPM arid checks all possible hardware registers and software tables 

for consistency, and forces reconfiguration before fail ures occur. The System On-Line 

Diagnostic runs as a conversational job, with customer engineers as users, to exercise, 

diagnose, or repair peripherals or m~mory banks that are marginal or that have failed. 

Thus, the system can continue to operate; and tapes, discs, or unit record equipment can 

be repaired on-line. The on-line detection and repair tends to significantly reduce MTTR 

_." (mean time to repair) which means higher availability of the syst,em to users. 

Audit Trail 
1 

Since a large configuration has many possible configuration alternatives and many pdssible 

sources of errors or failures, MPM provides a means of leaving a visible audit trail fdr chtmges. 



-H3-

All changes to the configuration and all errors and failures, as they occur, result in log 

entri es to the MPM error log. The error log is printed on-I ine on ? dedicated keyboard/ 

printer for all erro,rs above a preset severity threshold, in a short format. A longer format 

of the error log, with simple English messages, for all errors or failures, is pri~ted (on ~emand) 

by a special logging symbiont. All error and failure analysis routines in MPM call this central. 

logging routine with message codes and severity level indicafors. Thus, in the event of a crash, 

. a summary history is immediately ,available and a more detailed history is available on request. 

Since this error file uses normal file management services, the logging symbiont can print this 

file on either a local or a remote conversational terminal or a local or remote line printer. 

Reconfiguration 

In every configuration that has the proper high rei iabil ity options, an alternate data path is 

provided to every device. This takes the form of dual access controllers on separate IOpis 

or peripheral switches to switch devices automatically, if an lOP fails. The software can 

select this alternate path automatically if there is a failure in the primary path to the device. 

If the device itself fails, there are two possible reconfiguration options: 

Software partitioning - the device is unavailable for normal allocation but can be 

accessed by ESP or SOLD or other privileged diagnostics. 

Hardware partitioning - th,e device is switched out of the system altogether, possibly 

to an off-I ine maintenance configuration if one is available. 

Logi cal References 

One of the design impl ications for all of MPM that results from the requirement for high 

avai labi! ity is the need to make all hardware references on a logical rather than a phys'ical' 

basis. Then, in the event of a hardware fail ure, the user program can be directed to use an 

alternate device by merely changing an entry inside MPM, without the user being aware of 

the change. Some of the techniques to accompl ish this are described under Memory Managgment, 

File Management, and Device Management (as with the Logical Device Numbers). Many of 

these techniques are also useful in a multi-programming system, for ease of allocation. But 

the requirements for allocation fl exibil ity extend to all of MPM itself as well as user programs. 



-H4-

Thus, without the Sigma 9 hardware features such as the MPCU, the relocatable CPU 

homespace, the hardware map, and flexibleJTlemory bank and device assignments, this 

would be .an impossible goal. For this reason, the MPCU is required even in a single 

CPU configuration. For this reason all of MPM itself runs mapped or undera single 

extension field in real-extended memory. Thus, loss of any CPU or memory bank or 

any peripheral, as long as minimum system capacity remains, will not result in stopping 

:."thesystem (after at most a sl ight pause for reconfiguration if the device or memory was 

.critJcal). For this reason also all of MPM uses File Management for all data ~i1es, to 

permit full fil e reassignment (through central ized facil ities in fil e management) in case 

of failures. (Thus, symbionts under MPM always use normal File Management, even for 
OJ 

error logs.) 


