MPM SOFTWARE ARCHITECTURE

By ,
Irwin Greenwald & Wendell Shultz

PREFACE

MPM is a Multi-Processor Monitor for Sigma 9. It is also a multi-programming monitor

designed to serve interactive time-sharing, batch, remote batch, and remote data collection
- in asingle, integrated system. It could also be described as a file-based, communications-
. :6rienfed, high-availability system for multi~programming batch and ﬁme-—shqring needs,
It is assumed that the reader is generally familiar with the concepts described above and is
also familiar with the needs, justification, and the advantages of multi-programming
operating systems and of time-sharing. ‘Therefore, the question of interest is: how does

MPM differ from other systems designed for some (or all) of the above?

This is not an easy question. One way to answer it is to examine all of the external commands
and service calls available to users of the system, and to study the internal design and imple-
mentation of the system. But this is a full time job for systems programmers, and may often
leave questions about efficiency, expandability, modularity, reliability, and ease of use

still unanswered. -

Another approach is to select some of the key design ideas for the system and describe them
in coordinated, general terms. This could be called describing the "structure” and the -

"style" of the system -~ or the system "architecture". This is the approach taken here.

A word of caution is required, however. This is viewing the sysfemifrom only one angle.
Details still make or break a system, but since architecture is the "limiting” factor for the sySfem, ‘
and is much less easily changed than details, it is the place to start, Another danger is '
that in describing the architecture in a static document, some of the interdependencies or
reasons will be lost or unclear. As much motivation as possible is included in this dc;;t;menf,
regarding "why" some things are done in a particular way; in fact this is really a disclussion of
"what" and "why" rather than "how" things are done in MPM. Since motivational reasons are
very impc:rfc:r'ﬂL and often undocumented, this should be of value to anyone studying MPM.
Many of the features of MPM software architecture parallel Sigma ¢ hardware archifecﬁifure,

and. the parallels will be shown. ‘ ‘ - \
S |

- -M2-
MEMORY MANAGEMENT

Perhaps the most fundamental key to understanding MPM is to understand memory management.
Since all users and all of MPM but a Qery‘small percentage of the resident monitor execute-
.rhcpped, in virtual merhory, this discussion on memory management will be concerned ex- -
clusivelyt with virtual memory management. Forthcoming sections on fhe. residen:f monitor’

will discuss real memory and real extended memory.

- -

It is assumed that the feuder is familiar with Sigma 7 hardWcre memory mapping (_whi'ch' is
the same, to the mapped programs, asVSigma 9 mapping). The Sigma 7/9 hardware memory
mapping is very fundamental to the whole design of MPM, If the virtual memory were a’
dffferenf size, or if there were two-level mapping, or if there were variable sized pages or
a different sized page, or if there were no mapping at all, MPM would be designed very

- differently. The mapping hard.v./are is used for a lot more than simply relocation.. MPM is
designed around a total concept of virtual memory programming, which would be impossible
without special hardware (including access protection) similar to that on Sigma 7/9. This
will become more and more clear as the document proceeds, but its significance cannot be

over emphasized. - U

Virtual Memory Allocation

The first thing to note is what we can call configuration independe’nce: every task has
128K words of contiguous virtual memory available, regardless of the size of the machine
or of other users in the system. This eliminates a lot of relocation problems for all users
and simplifies system generation for the system itself and for standard langucgé processors
and system utilities. Some of this memory is available directly to the task, and some is .
used for services which the task needs. This latter cannot be modified and used di‘fécfly
by the task, However, regardless of other users or the sizé of d cénﬁgurcﬁon, this remains

constant. Figure 1 shows the fundamental allocation of virtual memory.

o S 64K 80K 96K | 126K
'Tcsk ' Task 'Phantom Sysi‘emI MPM Service '
Control o o Pages Library Routines _
, ' -
Block - s~ : w” S ~"

Task Virtual Memory (TVM | ~ System Virtual Memory (SVM)

FIGURE 1: Virtual Memory Allocation

-M3-

The TCBb(?Fa'sk-C‘ontml .Bl.oék,. ar cantrol information such as registers and status cm‘d»,mdg‘_
"_p‘dihfers') is the first page of:‘\f’lrt’ual memory. _This must occupy virtual page zero in order to
_};Sefmif users fo take some traps directly. . (See the section on Event. Control. for more axe_tgi.l{s.).,,
AT'hsls remdinder of fhe 'Ibwer”64K is available For the user, in any way he chooses, The lower
84K was chosen instead of the upper to permit beuer use of the Inferpref instruction for
language processors,, or m‘her addressing considerations mvolvmg 16-bit address Felds, und

-since wsers like to begin at low memory. -

.1:!.16 -ar,eq' ffom 64K to 80K is available ‘for system use on behalf of the user, and is called
phantom pages (PP). This is a fairly large amount of virtual space, but is used for such |
thngs as I/O blocking/deblécking, file directory pages, data control blocks, ‘temp stacks,
loadér tables, debug tables, symbol tables, and other system infor_rhaﬁon on an as-needed
basis. By requiring users to give L-Jp'parf of their virtual memory for these things only when -
needed, more space would be ci‘lrecfl){_ay\kqilable for pséljs_,_“vljoy._/ever, with the fast overlay
techniques described 'be’lpw; 64K seems more than enough 'fo.f almost all users. And fixed
allocation is ecsier. If MPM were designed primarily for assembly language programmers,
the \Mho“e concept of phantom ‘pcxges"wofufld be :unnecessdry. But MPM is ﬂes’ighed primarilly
for'users of FORTRAN, COBOL, BASIC, and other highér-leve- languages. For ’rhesé users;
“it ds difficult iF not lmp0551ble to specufly 1/0 blocking buffer space and file directory space,;
dynamicdlly. B,y usmg phantom pages at executian ‘hme,, s neeﬂed the wser's programming

is grectfly -s”nmpllf" ed —- he does not even need fo know about ﬂme xp'bantom pages and these

than fixed at ussembly or cc:mphle fime or even ot ’lmk edit fime; this means files can be
‘merged or)reass:gneél ar grow larger or smcller {and fhus change 'block»mg and directory needs))
f-w.ld'.hguf changes to wser ;programs @r wser spuce mz‘onswdamtmns. Thits allso means fheit the some
size program cun be executed with or ‘without debugging, Tt dlso means that anror messuges
‘o ‘a ‘user can specify errar location fin terms of source program ldbels on @ subroutine bosis
rafher than wsing the "hexadecimadl flocclﬁo’nﬁ of the relocated program, since the intemd!-
symbol dicfionary can be kept in the phantom pages during execution, if desired. '1‘1‘ allso
‘means that there 1 is no such ’rhmg as 1/O buffer pool-or symbol table overflow, since MPM
“can (and W|||) use overlays in fhese phantom pages to grow or shrink as execution time needs

_change, dependmg on the size of a task.

~M4-

One of the best parts of fi\e concept of phantom pages is efficiency, in addition to

Flexxblllfy and ease of use, It is very important fo remember that with virtual memory,
“an’ unused virtual page is free -- it takes no real memory and no swap time. This is part

of the concept of virtual memory programming. - Furthermore, usmg the standard segmenfchon
management (descrlbed below), symbol tables and directory pages are "decchvm‘ed" when -
not actually needed, and so most of the time take swapping RAD space buf no real memory

-dnd no swap time, (Virtual memory programming without swapping is much less powerful.)

The region from 80K to 96K s reserved for the sysfem library (SL). The system Alibrar.y is
"read and execute” to the user task, and is shar&ble among several users. However, all

or part of this library can be different for different users, and can be fixed dynamically or

at syé?ém loading (later than system generation). Generally, the File Management blocking
and 'd‘eblocking routines are in this space, and so is Debug and the Line Editor. However,
users can include a math library, a FORTRAN run-time, or a data management system here

if desired -~ and each task can select which segments to use. It is also possible to substitute
a different editor or debug, very easily, by changing this system library. Again, if not used,

this space is reserved in virtual memory but unused in real memory, for this user,

The entire region from 0 to 96K is called Task Virtual Memory (TVM) and is "switched" each
‘time one task is suspended (or terminates) and a new task dispatched. Of course, if a page B

~
o)

is not used, it can be flagged "no access” and no map address ‘is needed.
’ e]e] s p

The regibn from 96K to 128K is called System Virtual Memory (SYM) and is independent of
the particular task in progress. This region does not change when tasks are switched, and
normally changes only during a hardware reconfiguration or system loading operation. This
minimizes system overhead for dispdfching and scheduling, and also provides a guaranteed area
for use by sySfém interrupt and trap routines, independent of the particular user task executing.
(That is, MPM does not chcnge any of the map on most lm‘errupfs, including 1/O and

‘communications interrupts.)

-M5-

Also includea in SVM, in addition to 1/O interrupt routines, are all of the immediate service
rouhnes fhat the user can call (by CALx instructions) from his program. In addition, a |arge
body of sysfem subrouhnes that are parf of the resident monitor operate in SVM (such as
schedulmg and swcppmg routines and the 1/O Control System). No ‘vcrlcble length or user-

dependem‘ tables are in SVM, but are located elsewhere.

Soffwc:re Segmenfchon .

The prec1se mefhod of conh‘olllng fhe locchon of da’ro or msfruchons in virtual memory.
(either TVM or SVM) is by means of a software segmentation scheme, as follows: The active
memory at any time is composed of a series of segments, under software control, Each seg—
ment consists of an integral number of pages, from one to a maximum of 127, These pages
within a segment are. contiguous and dense, but there may be "gaps" in ’yirfudl memory
between segments. Eéch segment is built by the Iivnkagev editor from one or more relocatable
object modules (ROM:!s) or library routines or "reserves". Each segment is given a name and
a virtual memory starting location at linkage edit time, as well as a length. This name,
virtual location, and length remain with the segmén’r permanently, Each segment must, of
course, begin on a page boundary. Segments may contain data, instructions, or feserved
space -- or a combination. The segment is the smallest "sharable" unit of memory (sharable . -
between quks). Several segments may begin at the same virtual memory address, if desired,
and if so will in effect be "overlay" segments for each other; only one of these may be active-
at any one time, obviously, and this "ccfi\-/e"; one will be represented in the actual hardware
| map at execution time. Because each segment is independent of other segments, any sort of
overlay structure may be built —- the user is not limited to a conventional tree structure. A
maximum of 64 segments may be active for a task, and up to 255 segments may be defined for
a task at one time. | |

3

2

" The reasons for defining these variable lehgfh software segments are many. Fifs’r, fhg hardware
page size of 512 words is very good for memory allocation and relocation purpbses, but is too ‘
large for some protected control blocks and tao small for most sharing and program definition
need#. Therefore, the overhead for program defihiﬁon, for sharing, and for overlays ‘is reduced
by controlling these on a segfnenf basis, rather than on an individual page basis. It isi very easy

to "name" segments, and then activate them or overlay them as required.

“Méb-

. To-illustrate the wse of segments, a simple, non-overlaid FORTRAN user program would appear
 as follows: : ~

.Memory Loyouf

) 0 . 6'4K P

fe] ow -/////////// £
e Mam Program - Unused Spcce R - Blank Common -
' , ond Subrouhnes . 3 COR '

" FIGURE 2: Simple Use of Segments . -

: Thie cor;sisfs' of‘ two segments, *M! and 'BC', plhus phantom poge segmer.\fsond syéfem lichry
(no'r shown), Thls is built aufomahcally by the linkage edlfor, and the user never needs to be

| aware, ofsegmen’rs unless he wants to perform some overloys or share somefhmg One of ’rhe
obvnous quGn’roges of segmenfs in fhe total scheme of vnrfuol memory programmmg is for -

' defining only necessary pages; the unused poges in the middle of task virtual memory do not

cost anything, are convenient to allocate (as for the lmkoge editor to re|ocofe common and

'~ user progrom separately), and would not be possible without a map.

A shared FORTRAN v compiler mighf oppeor as in Figure 3:

6K

S '
0 R —
- - . i T1 S1
TCB - | RO d ‘
S P2 |,
. i
]
I P3 o
)

FIGURE 3: Complex Use of Segments

R In F'gur«eB RQ is the root segment, P1is pass 1 code, P2 is pass 2 code, P3 is pass 3 code,

T s ﬁampsgsme, and S1is symbol table space. Segments RO, P1, P2, and P3 are “read and
execute” @nﬂyy and are shared by cx” users of FORTRAN, and P1, P2, and P3 overlay each ofhef
fim mm‘l‘ml memory. Segments T1 and ST are writable segmenfs and are private for each user
pmgm'n ?oamg complled (Nofe that P1, P2 and P3 probably all exist in real ‘memory, non-

- ‘overlmd u‘Fﬁ%e compller is hecvxly used.)

-M7-

There are a number of distinct activity states and transitions possible for a segment. The

activity states for a segment are:

ACTIVE-HIGH

ACTIVE-LOW

SEMI-ACTIVE-HIGH
- SEMI-ACTIVE-LOW

INACTIVE

DEFINED

The segment exists in real high speed memory, on
the swapping RAD, and in the map if the task is

active.

Same as ACTIVE-HIGH, except uses LCS instead of

high speed memory.

Same as ACTIVE-HIGH except not in map.

Same as ACTIVE-LOW except not in map.

Segment exists on the swapping RAD only, and is not ’
brought into recl memory with the task, and hence,

cannot be in the map.

Segmenf contents do not exist in real memory or on
the swapping RAD, but the segment name and descrlpfors

exist; for example, used for Blank Common.

It is possible for pages of a segment to be in different states, but generally they are all the

same. (Page calls are used for this, anytime after the segment is defined.)

The transition operations for segments are:

- ACTIVATE-HIGH (Segment name)
ACTIVATE-LOW (Segment name -

SEMI-ACTIVATE-HIGH (Segment name)
SEMI-ACTIVATE-LOW (Segment name)

DEACTIVATE (Segment name
ERASE (Segment name)
DEFINE (Segment name)

AUTO-ACTIVATE-HIGH (Segment name)
- AUTO-ACTIVATE-LOW (Segment name)

-M8-

These can also apply to pages, where the virtual page number and the segment name are
‘both given. (Monitor calls provide information on unused pcge numbers, at execution

time, if needed. This activation information can be used to better manage use of LCS, also,)

.AQto—Acfivate is-a type of demand allocation; that is, when a segment is marked as auto-
| activate, nofhmg is broughf into memory and no real pages are assigned. However, if the
) task beglns to write into a page in the segment, a protection trap takes place, a page of
zeros is given fo that task, and subsequent swaps will alwoys swap this page. Therefore,
unlike demdr“ pagmg, only the first reference to a page causes anything spec:al This
is particularly useful for dynamic tables -~ the user need not request more pages than needed,

but lets the system acquire pages as needed.

On an overldy opeiation, one segment is explicitly deactivated and another activated, by
the user. Or if the first is never to be used again, it can be erased; and if it may be used
_again in a few milliseconds, it can be explicitly semi-activated so that another "overlay"

is really only a map change. (This is, in effect, an adherence factor.)

Anyfirhe c'x‘segmenf or page is needed that is not in memory, vfhe task will be dismissed (and'
may be swapped out, if the system is very busy). When the segment (or task) is swapped in,

the task is again eligible for scheduling. Thus, a large overlay cdn take place in less than |
34 milliseconds as part of the normal swapping operations, with no special effort. And by
semi-activating ségments to LCS, very very large programs can be "overlaid® in virtual rhefnory
by means of map changes. The MPM system makes extensive use of deactivate and auto-activate to -
» minimize the normal swapping operations. By use of these techniques, the loader "diéappears” .

out of the space of the program it is loading ~- always a problem on non-mapped computers.

Access Protection

On a time-sharing or multi-programming system, the system or other users must be completely
protected from any single user. This is accomplished with special hardware. Hardware access -

protection is available on a page basis, in the following four types:

No access
. Read only
Read and execute

. Write, read, or execute

-M9-

Thé "no access" code is used for pages that are undefined or not yet referenced in an auto-
activated segment. All writable pages are-initially set "read and execute”, on each swap-
in, so that on the first write after each swap-in a protection trap informs the swapper that
this page has been modified and must be swapped out; otherwise, it is merely "thrown away”

on swap-ouf, fo minimize swap-oluf activity,

- The "no access” or "read only” or "read and execute” access codes are used to keep the

~ user out of his TCB, some of his phantom pages, and SVM, Thus, the user can _coni'rél the
ac>cess codes in the TVM below,64K (except the TCB in page 0) but cannot change or often’
even read the system, On dispatching every task, the access codes for all 128K are changed,
to insure that all memory is p‘roperly protected and to permit some system tasks foll.wv‘e greater .
privileges into system virtual memory than user tasks have. (On Sigma 9, unlike Sigma 7,

there is a master-protected mode; MPM will use this extensively for system reliability.)

Summary

"In summary then, virtual memory programming and the hardware map are used for:

. Configuration independence

. Relocation _

. Software segmentation

. Demand allocation

Sharing of mem'ory‘ .

. Reentrancy '

. Eliminating real memory fragmentation problems
« . . Minimizing swapping

. Providir;tg secure, sélech;vé access profecﬁon
. Efficient use of real memory space

. Fast, explicit qurIays

They are not used for:
. Demand paging
. Automatic overlays

. Use of virtual memory larger than real memory

TASK MANAGEMENT |

Definition of a Task

In MPM, we define a task as the basic unit of work for control purposes; tasks are the
. enhhes which are scheduled. From The viewpoint of the system, all tasks are lndependenf
in the sense that they may be performed concurrently. But in tasks that stem from one |ob

dependency relationships may be inherent due to program logic.

" Since it is the combination of ;drpgram (code, procedure) and data - together with other
resources - which enables work to be done, tasks may also be described as such a combination.
Thus, for example, the FORTRAN translafor is a program which, when combined with source
statements as data and resources such as workspace and files for output, is capéble of being
scheduled to do work. In MPM, we speak of the request for such a combination of program,

- data, and resources as the invocation of a task. Hence, a user who requests FORTRAN com-
pilation of a source file onto some object file is invoking a FORTRAN task., Several FORTRAN
tasks may exist concurrenfly in the system; since the translator is pure procedure, only one -

"copy” of the program need exist to satisfy these invocations.

In MPM, any program which is reenfrant and has a unique name may be mcorporcfed as a

shared subsystem a la FORTRAN, The process requires two steps:
. The program must be link-edited fo prepare it as a subsysfem.

. The program s name must be entered in a shcred—subsysfem name fable This step

does not requnre a SYSGEN

~ Design Considerations

Many MPM system functions are themselves performed as tasks. For exarhple, I/O ‘interrupt
handlers perform error detection funcfiens.i If an error is found, the handlers invoke a task

to do error analysis and reeovery. Since tasks run in task virtual memory (see Memory
Management) this technique offers considerable savings in system virtual memory requirements .-

in addition to solving some asynchronous scheduling problems,

-T2-

This last point leads us into the rationale for designing MPM as a "task oriented" system.

The following list is unordered with respect to importance:

—

* Tasks provide a mechanism for incorporating programs as subsystems. In a

system oriented towards user built application packages, this is crucial.

* Tasks are one means whereby the shortcomings of limited (virtual memory) '
addressing space can be overcome. Not only can the user avail hlmself
of this technique, the system can (and does) also so do; many system services
run as "normal " tasks in user virtual memory. (Segment overlay capability,
discussed elsewhere in this report, prbvide another way of increasing

addressing space.)

o Tasking allows for structuring complex problems in a more naturai -
" manner: concurrent processes can be expressed as concurrent tasks;
dependency relationships are established via several mechanisms-

(described under "Event Control ") for inter-task communication.

» Hierarchical processors, such as SIMSCRIPT which translates from SIMSCRIPT
source statements to FORTRAN source statements which must then be compiled,

are facilitated by the ability to invoke a task during execution of another task.

o Total system organiiaﬁon is simplified by the uniformity of treatment that

a task structure allows.

* In combination with memory management segment techniques, the task structure
allows library elements (such as the FORTRAN run-time package) to be

shared among all the tasks which require them,

Task Invocation

We have alluded to the ways in which tasks are invoked in MPM in the foregoing discussion;

invocation requests may emanate from: -
. A user at a terminal.
o A program in execution,
¢ Job control sfafeﬁehfs in a batch job.

o A user created stored command file.

-T3-

The invocations will almost always be explicit, that is the terminal user or programmer will

usually be aware that he has invoked a task, There are two cases in which invocation will

be implicit:

- A terminal connect signal (ring.detect, attention, ,.,) will normally invoke an

executive task.

A terminal which connects via a dedicated line* will, in addition to invbking
the executive task, be "attached" to a filed procedure associated with that line.
In genéi'ol, it is qssuméd that-the procedure will eventually invoke the task
associated with that line, Thus, for example, the user could be cutomaﬁcdlly

connected to an application package for stock market quotations.

Definition of.a Job

~ In MPM, we define a job as the basic independent organizational unit for a collection of tasks,

Its essential characteristic is its independence from other jobs; one job cannot affect another job

other than as system load affects all jobs. Within MPM, the only functions of a lob are:

To accrue accounting information as each of its tasks terminates,

To provide a mechanism for sharing resources among its tasks that assures
independence from tasks in other jobs. (The task mechanism itself allows
independent sharing of system resources.) |

To provide a mechanism for attaching multiple-terminals to one application package.

. The only explicit manifestation of the concept of job are the .various control blocks that

accommodate these functions. This will become more clear as the description proceeds,

A conventional batch "job" is also a job under MPM, and the batch]§b steps are tasks, How-

ever, an additional executive task also exists,

Resources that are shared can be broadly‘ classified as segments {of program, data, or work-space)

and files, Sharing is accomplished by always referring to these elements indirectly (through

_ pointers). Thus, a given resource used by a task may come from itself, from its job, from a

shared subsystem, or from a shared library, On task invocation, its access to shared: resources

may be controlled by its invoker-(limited to a level no greater than its invoker’s),

*A dedicated line is defined as one on which the user always wishes to be connected \\lfo the
same program, ' '

T4

Structure and Examples

Figure T1 is a conceptualization of how jobs and tasks-are organized and resources are shared.
Each of three tasks.is represented by a control block whiéh has associated local resources
(workspace, data, program). Since terminals and files are usually job resources in MPM - -
(though not necessarily available to every task), the tasks are shown as attached to shared
job resources. Task 1 is the only task in job 1; tasks 2 and 3 are both in job 2 and could be

. sharing segments, From the MPM point of view, tasks 2 and 3 are independently sharing

resources of job 2; any dependenéy relationships are inherent in the tasks themselves (e g.,
they may interlock on a shared data ifem). Tasks 1T and 2, which are sharing a subsystem,
are fotally independent since the subsystem is a pure procedure and there is no other way
for these tasks to communicate. Thus, Figure T2 is a better logical representation of the

same siructure,

. Shared : Jox\ _..__._‘
Local Job 1 4
Resources Resources SR W
Con%rc?slkBlock Task 1
1
* Shared
Subsystem
Control Block . :
Task o i @
Local - - Shared : o Vs
Resources Job : _740 ,
‘ ‘ Resources 2 \ | Task 2
Control Block
Task i ~ o E R %
Locali - o - . v Task 3
Resources IR , : -

FIGURETT. | FIGURE T2

-T5-
VFngne"B illustrates the steps involved in connecting a user to BASIC. In A, the user implicitly

vinvc‘Jked an EXECUTIVE task. In B, he has requested BASIC, and the EXEC invokes a BASIC
task for him. Finally, the user is conversing with BASIC as shown in C, with the EXEC task

inactive.

1
EXECUTIVE
TASK

- FIGURE T3-A

User

EXECUTIVE
TASK

BASIC
TASK

FIGURE T3-B

EXECUTIVE
TASK

BASIC
7 TASK.

FIGURE T3-C

~T6-

Figuré T4 is the hierarchical SIMSCRIPT use of FORTRAN mentioned earlier. The user has
reqﬁesfed SIMSCRIPT and the EXEC task has invoked a SIMSCRIPT task for him. In the course
of execution, the SIMSCRIPT task has invoked a FORTRAN task (which the user n_eéd not be
aware of). Presumably, upon completion of compilation, the FORTRAN task terminates and

a signal is sent to the SIMSCRIPT task; thus we may think of FORTRAN as a serial sub~task. o

fo the SIMSCRIPT task. ,On the other hand, the FORTRAN task could be processing data in
parallel with the SIMSCRIPT task, in which case they could be called concurrent tasks, It
is important to recognize that such distinctions are strictly a function of how programs are °

written and inter task communication facilities are used; MPM recognizes no differences in

task types.

EXEC TASKl

SIMSCRIPT . FORTRAN.
TASK TASK

FIGURE T4

17~

Figure T5 represents the programmer's view of the kind of complex structure that MPM tfask

management permits.

Exec

Task

User Invoked

Task

.1 Concurrent

Sub-Task

Task 1

Y

Sub-Task 11

Concurrent
Task 2

Y

FIGURE T5:

Sub-Task 12

JU—

-8~

MPM's command language processor imposes the restriction that the user (Whefher at a
terminal or through a filed procedure) may inyoke only one task at a time; programs have
no such restriction, Our rationale is that the requirement for this capability is low and |
protocols involving "invoke and wait” and "invoke and continue” (even if the former is
default) together with aﬁendani‘_ambiguifbies in interpreting the meching of an "attention"
or "BREAK" signal are unduly complex for most terminal users. Note that an application
'ﬁdckage programmer may overcome this restriction by having a suifcble.command language
withjn the application. In addition, an upper limit on the numbevr‘of active tasks that @
job may have is imposed to protect the system from "run away™ programs. This limit is a
job parameter rather than a system parameter in order to provide flexibility for installation

managers.

Multi-Terminal Application Packages

Thus far, we have described Task Management from the point of view of terminal users
working independently to solve their individual problems. There are cases in which groups

- of terminal users may wish or need to work fogether fo solve a common problem. MPM offers
facilities to build appliéaﬂon packages to meet such requirements, Figure T6 illustrates the
structure that accommodates two "groups” of users (as represented by JOB 1 and JOB 2)

independently using the same application package. It is important to recognize that the

boxes represent the control blocks for the tasks; the programs (code, constants) are shared

between the jobs; workspace and files are job dependent.

Note that the executive task - whose main function for single terminal users is to provide a

"fall back base" with which the user can communicate when all else fails - has been eliminated;
this function is more logically performed within the multi-terminal application package control
program. . Attendant reductions in space on the swapping RAD and 'in internal control tables also

influenced this decision,

Since any sharable subsystem is, by definition, capable of handling mUll‘iple terminals -
"simultaneously", the question arises as to why we support multiple terminal applications in a
"specialized” way. The question is even more relevant when MPM's ground rules for interfaces .

are listed, since they impose burdens upon the application package programmer:

iy o

A

ser, .

1

Use

(Use

Applic. Pkg.

Control Task

Applic. Pkg.

Shared
Code

Control Task

FIGURE T6

oy I
, L
Tasks |—=—=———-
Shared
Code
i ---------
1
1 {
]]
Vther :
|
i
Tasks |—— - = — = =!
i -

-T10-

. The application package (AP) will perform time sharing functions for terminals
within a group. MPM will time shfxre among the groups.

. .AP will do accounting (as it requires) for individual terminals in a group, MPM .

_ will do accounting for the group as a whole. - o

. AP will dccepf "log-off" from a terminal and inform MPM. (MPM will inform :
AP of "disconnects”). Once a terminal "joins™ a group, it will be unable to ‘
get back to MPM without a disconnect and a new log-in. | _

. MPM will provide AP with internal identification numbers for fhé terminals.
Any privileges which are a function of a terminal's external identification will

be established via protocols between AP and the user.

We have already indicated one of our rationales for multi-terminal application package
support: more effective space utilization by elimination of the executive task for each user.,

Over and above the strong arguments for efficiency that this implies, there are two crucial

points:

. We don't know how to provide inter-terminal communications facilities in a
"general purpose” environment. An AP is in a much better position to handle
its specific requirements, | |

. We don't know how to provide generalized "file sharing” capablllhes with

"gqutomatic” lock-out on write at several levels (e.g., logxcal record, page,
..., entire file) and accounting for potential deadlock problems, Agcm, AP

is in a much better pos.iﬂon to handle its specific requirements.

Thus, we feel that by facilitating rﬁulﬁ-terminal dpblicaﬁohs, we enable MPM to suppor.i'
a broader range of appllcahons than would otherwise be p0551b|e, albeit cxf some cost in

complexuiy in programming of the AP's, Note that AP's which don't require these facmhes
can be programmed like any standard subsystem (e.g., FORTRAN),

T1-

Summary

The general subject of inter-task communication facilities in MPM is discussed in another
section of this document (Event Control). It should be remarked, however, that powerful
facilities are afforded as a by~-product of the ability to share resources, in particular, data

segments,

.MPM'S Task Management provides:

. Interjob independence coupled with interjob sharing of system resources.

. Intra job sharing of job resources with controlled access privileges.

. Natural expression of complex prbblem structures.

. Capability for hierarchical building upon existing sub-systems.

. Uniformity in dealing with jobs whether they be batch, single terminal, or

multiple terminal and independent of whether or not the terminals are on

dedicated lines.

EVENT CONTROL

Preface
In preceding sections, as well as in those which will follow, diverse requirements for

communication among entities” are noted:

. Inter-task communication
. System-task Communication (e.g., signalling completion of asynchronous services)
. Intra system communication ‘ \

Since "event control® was a proven technique (e.g.} 0S/360) for handling most of our needs
we decided fo pursue this approach. We found that, in conjunction with pseudo—inférrupt
capabilities, we could not only satisfy all of our needs, but that we also had what we in-
tuitively felt was a very flexible and powerful capabilify, albeit one whose potential we
hadn't fully investigated. Thus, this section is in two parts: event control as it satisfies

system needs, and a "feel" for event control as it might ultimately be utilized.

Fundamental Concepts

The dictionary defines an event as "anything that happens”.. MPM's definition is the same
except that the "things" that can happen are finite in number and must, eventually, be listable.
Since our design is inycomplefe, and the intent of the following list is to be indicative, it is

incomplete:

. A request for 1/O is an event.
. An 1/O start is an event.

. An 1/O completion is an event,

. An interrupt is an eveyrﬁ'. .

. A trap is an event. :

. Expiration ofd pre-set time is.an event.

. Requesting; cna recei\)ing the direcfory’ for a file are events.
. Internal (soffware) s.ignals are events. -

. ‘Errors are events, |

. Task completion is an event,

As can be deduced from the above list, the system itself makes heavy use of events and event
posting techniques as well as making these available to tasks it is monitoring. In what follows,
the word "task" implies a user task or an MPM system task; they are treated in the same manner,

‘although the latter may have special privileges.

Event Types and Event Control Blocks

- Event control is used, in general, to synchronize asynchronous activity, whether that be as
mundane as "waiting for I/O completion" or complex inter task coordination. Events may be
expected - e.g., an I/O completion, in which case we term them solicited; or unexpected -

such as an attention signal from a terminal, in which case we use the term unsolicited.

With the exception of hardware traps (see below), those happenings which are defined as
"events” in MPM result in the creation of an event control block (ECB), examination of an
ECB, posting to an ECB, or destruction of an ECB. For example, an I/O request results in

ECB creation, a request for status prior to completion results in ECB éxaminoinn, 1/O com-
pletion results in ECB posting, and a request for status (after completion) results in ECB
destruction. In addition to thus serving as the sequencing agent for asynchronous activity,
ECB's also serve as the repository for information which must be conveyed from step to step

in the activity. In éa;ﬁculcr, ECB's (which are resident) contain information related to a
fequesiL from a task (which is swappable); such information, for example, as the pages involved -

in an I/O transaction.

In most cases, ECB's are on threaded lists chained both to the requestor for an action (e.g.,
a task) and the requestee for that action (e.g., asystem handler). Hence, a task's request
for 1/O results in creation of an ECB which is chained to the task as a solicited event and.

to the I/O handler as an unsolicited event:

-E3-

FIGURE El
- Task -h B - : - - 1/O Handler
Solicited - .) - Solicited """“"——\l
Events » [‘ Events : :
__Unsolicited \l/ ' Unsolicited
Events ECB : ‘ Evenis -
Solicited Link
~Unsaticited]

ng | \!/
______q/ ‘

The same threaded list structure is used to handle inter-task, system-task, and intra-system

communication needs in a unifofm manner, Thus, in the figure: the "I/O Handler" could
have been another task or another system element, and/or the "Task" could have been a

system element.

Waiting on Events

Since MPM permits certain kinds of parqllellism (e.g., concurrent tasks, asynchronou§ 1/0),

it is Vnecessary to provide rﬁechcnisms for waiting upon and signclling confluence of separate |
activities. Solicited events may be handled in two ways (separafely or in combmohon) by
waiting upon event completion and/or by requesting a pseudo-interrupt (see below) upon

completion. Unsolicited events may be handled only via pseudo interrupt.

In MPM we permit a task to wait upon:

. Asingle specified event
. All of a set of specified events
. Any event A

More complex logic is, of course, possible, Since the requirement for it is small and such
capability would entail additional overhead for all users, we deemed.it inappropriate.. The.
primitives supplied allow programmers to build as complex a set of facilities as they require

for a given application,

- -E4-

Pseudo-Interrupts

The MPM pseudo interrupt system consists of:

" A single interrupt level with 31 séparately armable request lines, somewhat analogous

.

to the Sigma series hardware 1/O interrupt.
-« Alevel inhibit capability for use by the task.
o
. System protection against reentry until reentrancy requirements have been met,

Flexibility in "pseudo™ interrupt programming equivalent to that in "hardware”
b4 p prp q

)
.

interrupt programming.
A brief expansion of the last two points is appropriate: Flexibility is afforded the interrupt
level programmer partially by making the context (registers, PSD) of the point at which his
program was interrupted available to him at the time of interrupt. Since he may wish fo save
this context (as well as to perform éthér functions) before allowing another interrupt to occur,
the system automatically inhibits interrupts until he says "OK”, In hardware terms, the system

performs an XPSD that inhibits interrupts, the interrupt program performs the LPSD to allow them.
MPM reserves some request lines for system use (e.g., an attention signal from the terminal).
The remainder are available for the task to use in two ways: .

As part of the request for some action (i.e., a solicited event) a request line to

activate upon completion may be specified.

_In inter-task communication (see below), the sending task must specify a request

~ line to be activated in the receiving task.

Inter~-Task Communication:

Tasks can communicate with each other in one of two ways:

. Through their shared resources (e.g., common segments of data).

. Through signals, together with small amounts of data, which MPM handleil via

event control.

~F5-~

The mechanism is simple; the sending task makes a system call specifying:

. The ID of the receiving task.
. The number of a pseudo mferrupt request line to be frlggered in the recelvmg task.

L Ophonclly, several words of data (the maximum has not been set as yei‘)

This information, together with the ID of the sending task is placed in an ECB and treated as

¢ -dn unsolicited event for the recelvmg task.

Nofe that this technique does not allow a receiving task to directly wait upon a signal from
“another task as a solicited event. However, by suitable communication between a task's
mferrupf handler cnd its main line program, the equivalent can be accomplished by wamng

on cmy eveni'

Hardware Traps

Hardware traps are a special class of unsolicited events for which MPM takes default action
that usually results in aborting the task that caused the trap or, in the case of hardware mal-
functions the tasks that have been affected by the trap. Tasks may elect to have some traps
(e.g., floating point, some CAL's) routed directly to their own handlers (which are constrained
to be in slave mode). By keeping the old and new PSD pairs for these traps in the task's control
block (which is read only to the task), MPM is made totally fransparent to the traps for tasks
that exercise this option, Furthermore, by adopting the philosophy that context for traps whxch
a task can cause should be kept with that task, trap routine reentrancy problems are greatly
alleviated. Other traps (e.g., non-allowed operation), which - for reliability reasons - must
be handled by sysfem fault management routines, may optionally be routed indirectly (i.e., |
after system processing) to a task's own handlers. Thus, the debugger can field traps such as.

privileged instruction violations and construct error messages with contextual data {e. g.,

statement labels) meanmgful to the user.

Potential _
The examples that we have used to describe Event Control in MPM have been rather #standard™:
Input/Output and inter-task signalling. The potential of the power and flexibility of the system

are something we haven't fully explored as yet. However, some possibilities are worth mentioning:

-E6-

There is no reason why the mechanisms described for inter-task communication
cannot be used for infrc—-fgsk communication. That is, the VID's for the sending
-and receiving tasks can be the same. Hence a task can "trigger” its own bseudo
interrupt programs and present them with data. This has obvious values for -
~ debugging individual tasks which will later be incorporated in larger jobs.
It is also roughly akin to the capability for mvoklng serial sub~tasks descrlbed

in the section on Task Management.

By noting that a task may be invoked from an interrupt level in another task,
we realize that asynchronous solicited events and/or unsolicited events may
very easily be used to cause task invocation. Thus, for example, statements

of the form:

ON event INVOKE task-name

seem to be natural to handle.

Deferred executions — tasks which are fo be run at some selected clock fime

or time intervals can be handled either by waiting for the time event or
.interrupfing on the time eVenf and then invoking the task to be run, (It would
be preferable if the system, rather than tasks within the system, handled deferred
exeéufions since the latter require space, However, we believe this is a
sahsfactory mechanism for providing a desirable capability and, consnderlng

that it's a by-product of other mechamsms, it's free)

Summary

This section has described MPM Event Control primarily as it satisfies internal cémmuniéaﬁon)
needs, We have also indicated how, in combination with other system facilities such as Task
Management, Event Control offers powerful tools for sophisticated progrdmmers (such as those
who must implement a subsystem like PL/1). At the same time, we satisfy casual users (e.g.,

a user of BASIC) who need not be aware of any of the system mechanisms,

SCHEDULING

There are really two distinct kinds of scheduling in MPM - swap scheduling and CPU
scheduling. Swap scheduling is concerned wi;h the decisions and techniques of moving

task in and out of recl}memory;. CPU scheduling is responsible for regulating the priority
que;es from which a task is dispatched. It is important to understand that these are logically
séparafe operations, although they do interact and i'héy do use some of the same interval

q}ieues and tables,

: S-wqﬁ Scheduling

All tasks in MPM are swapped out of memory onto the high-speed swapping RAD when Theyv

are nof needed for léng peri.odsv of time, This includes inferactive user tasks, batch user

tasks, MPM tasks, and shared SL'JbS)/Sfem tasks. Only tasks are swapped. (That is, all of

MPM in System Virtual Memory is permanently resident in real memory.) Thus, there is

only one mechanism for swapping. Before a task can be a candidate for CPU dispatching,

all ocﬁvé pages of active segments must be in real memory; there is no "demand paging" as
used in some systems. (Semi—activé segments are "being" swapped in also, although may not
have yet arrived iﬁ real memory.) The swapping logfc employs angular queuing techniques on
the high-speed RAD, and does not use file management but goes directly to IOCS. Thus, space

on the swapping RAD is managéd by the swap scheduler, not file management.

There are two main decision paths in chp scheduling: deciding what to swdp in, and deciding
what to swap out, Tasks which are not waiting on some event (some ECB)cre eligible for swap

in, The decisions for swap in or swap out are based on whether the system is currently memory
limited, CPU limited, or /O limited. For example, if the sysf;am is memory limited, tasks .
may be swapped in that tend to minimize memory requirements —- through subsystem queuing or : .
analysis of shared memory resources as well as on the basis of task size. And if the system is
memory limited, all tasks are .swcppéd out as soon as they go into a WAIT state, If it is not
‘memory limited (as when running mosfly'muli‘i-programmihg batch), tasks are not swapped out ex-
cept for very‘ long blockages. The exact rules require a detailed, technical undersfcr:.ding of the
system and will be described in the MPM Project Design Fi‘e. The important point is *hci‘ ,

analysis is made continually to determine the limiting resource —- memory, CPU, or I/‘z‘O -

-S2-

and adjustments are taken in small stveps, rather than large jumps, to damp out sudden fluctuations.,
However, the system is able to adjust automatically to everything from pure multi-programming |
batch with 1/O bound jobs to heavy conversational loads. These can occur at different times

of the day or at different installations. In all cases, good conversational response is considered

more important than highest CPU utilization, and swap selection is designed to support this rule,

_Egéh fime tasks are swapped in, all "writable" pages are marked "read and execute” initially,
so the system only has to swap ouf‘pagés that have been modified, All swap~in and swap-out

is ’pe;formed on a page basis, rather than a segment or a task basis. That is, if there is I/O

in progress on a single page for a task, this page is flagged as having I/O in progress and is

held in memory, and all other pages for the task are swapped out. Pages or segments that the
user has deactivated are never swapped in, and hence real memory requirements are kept as
modest as possible, Of course, shared subsystem segments need only one copy in real memory
and are not swapped out -- since they have not been modified. (Hardware protection guarantees

this.)

Dispatching :

Each CPU, as it completes its current activity (usually signalled by the expiration of a short
quantum) goes to a set of centralized routines from which all currently ready tasks are dis-
patched. Through these routines the CPU selects the work of highest priority (as determined
from the system priority queues) to execute. With the excephon of interrupt level subrouhnes,
everything is scheduled onto the queues and dispatched from them: MPM tasks, interactive
tasks, compute tasks, and batch tasks. It should also be noted that - in contradistinction to

the "Kernel Scheduling” of TSU - neither scheduling nor.dispatching is done from an interrupt)
level. The WAIT operations and ECB's, described under Event Control, are the only means ‘
of changing from WAITING to ready cnd then to active (that is executing) status for individual
tasks, Poshng to an ECB can cause a Task wamng on an event assoc:a’red with that ECB fo move

to a CPU dlSqucher queue for schedullng.

All task execution is time-sliced, whether batch or conversational, Generally, short quantums

are used, unless the task has requested a long quantum or unless MPM has already identified

_$3-

the task as compute bound. This is designed to give good response to conversational requests
(which are typically shorter even than the short quantum) and to keep file I/O activity high even

when only multi-programming batch is running.

Prlorlfy of tasks is considered in ’fhe CPU dispatching, with some MPM tasks highest and
conversahoncl tasks in the middle and compute-bound batch jobs generally low, Some MPM
_hgusekeepmg tasks may be even lower than batch tasks, Applications tasks can select their

priority level queve.

Multi-Processor Considerations

When two, three, or four Sigma 9 CPU's are operating, they can all' be executing one copy

of MPM routines and even some system tasks, Multiple CPU's are considered equal for all
purposes (except initial system load). Thus, each CPU does its own CPU dispatching, but inter~
processor interlocks on data permit only one CPU at a time to do swap .séheduling. T;Nov user
tasks can, if the user so permits, be operating on different CPU's at the same time iz?r the

same job, to permit faster tum-around. But the user, not MPM, is responsible for providing

interlocks on files or shared data segments == with the aid of standard MPM facilities,

The philosophy of lockout in MPM routines is to place interlocks on small data tables or
table entries, and fo use a large number of these locks, as required, to keep other CPU's
out of data that is currently being modified. This is used instead of placing interlocks on
code or on a few major tables, This takes a liftle more initial design effort, but resulfs in

a much lower probability of CPU conflict when operating as a multi-processor.

Although the CPU's operate as equals, this is not the same as anonymous CPU's; That is,
some one CPU may be processing certain interrupts exclusively, due to having ifs interrupt
level armed and enabled. But all other CPU's possess these same i‘nferrupts and can take
over the processing if the other CPU fails. Thus, one CPU may do a little more work than A
~ others, But all CPU's can schedule themselves, and this is not true in a master-slave CPU
relationship, Having equal CPU's is genera”y more efficient and also permits faster re-

configuration in case of CPU errors or failures than using a master-slave relationship,

FILE MANAGEMENT

1/0 Management

The 1/O operations for MPM are organized into four separate levels, in a distinct

hierarchy. Only one of these four levels is properly called file management.* The

Tour levels are:

« Information Management - the highest level, dealing with external
- ‘

. (user) interfaces and the total flow of data and control.

. Data Management - the next highest level, dealing with the logical

manipulafion of data and the organization of data within files, the
content of this data, and the accessing methods used to store/retrieve

this data.

. File Management - the level dealing with the physical organization
of data into files, the allocation of secondary storage, and the naming,

extent, and location of files.

. Device Management (IOCS) - the level dealing with device and channel

routines and the physical transfer of data to and from external devices.

There are a number of reasons for this hierarchy. For one thing, modularity is forced

in this way, and modularity is always a good design feature. Also, system reliability

is improvéd. The Device Management routines (IOCS) cre‘pdvrt of the resident monitor,:
~in System Virtual Memc;ry. Thus, they operate in master mode, protected and unpfo’rected.
The File Manogerheni- also operates as immediate service routines in System Virtudl Memory,
or as MPM tasks in Task Virtual Memory. Both of these operaté mostly in master mode
protected. File Management is entered from the user by way of CAL's; IOCS is not
directly available from user tasks. By contrast, all of Data Management runs in user
mode, mapped, protected, either in the system library as shared routines or as private
copies in task me;nory; Data Management is entered by BAL instructions. And the
Information Management routines will run as user tasks, with ﬁoi‘mal user profecfién.

(No specific Information Mancgemenl" tasks are currently designed for MPM.) Information

Management is built on Data Management which uses File Management which ccl}s on

* This is a change from previous TSU or MPM documents.

-F2-

Device Management. Thus, maximum freedom for growth in Information Management
~and Data Management, with full sharing and efficiency features, is pos;sible. And
yet the resident monitor and the protected pcrfé of MPM are absolutely unaffected.
“And users who need only file page cperations do not pay for inverted or in_dé'xed

sequential file operations.

The remainder of this section deals only with File Management, in the limited
sense of the definition. What has been described under structured (sequential)
or indexed sequential operations is now part of Data Management, and is discussed

in the next section.

File Organization

A file is defined as a named collection of data, known to the system only by name,
absolute location, and extent; and known to the user by name, a set of ordered (logical)
pcges, and internal structure and content. Every file is treated by MPM as a set of

N pages (from 1 through N, logically contiguous) with unknown contents. (A page

in a file is 2048 bytes, the same as meméry pages.) Effectively, the user sees each of

his files as a "virtual" set of pages, numbered from T to N, and the system "maps" them
into the actual pages of secondary storage as part of its file management responsibility.
(The "map" is the file directory, described below.) Furthermore, every file is a random
access file to MPM--on a page basis; that is, the virtual .pag.e number is the index of
each random file page; This is true for files on RAD, disc pack, CRAM, and even magnetic
tape--although tape motion should be sequential by pages for any reasonable sort of ‘
efficiency. (All file default assignments are to disc paék.) Figure FM~1 shows this effect

for a file on a disc pack.

-F3fv

Virtual /
Ve
Pages %
. s
]) \\ o //
2 e - 7
File as RN . - s
. 3 ~ -~ N -/ .
viewed RN | ;o
by user N File S
" tasks I ~ Directory N T -
' 7] (File Map) N
sk
s N N
/
v // S
Y . '
AN
N-1 7 N
// h
N File
Packets
on Disc

FIGURE FM-1: File Virtual Pages

As the figure shows, a contiguous set of pages is presented to the user, but the file-
is acﬁ:ally broken into fragments called packets on secondary storage, where the

packet size is a function of the storage device. (See more on "file allocation", below.)

~ This technique has some of the same advantages as virtual memory programming, for
avoidirng fragmentation problems in the real storage device, for permitting files to
grow or shrink efficiently, for permitting easy and device independent referencing,
and for sharing of devices with other files. Furthermore, on this flexible file orgohiia’rion .
any number of data management techniques can be built, since the pages of a file can
be actessed in any order desired--including sequential or random. Tt should be
emphasized that only file management knows the translation from virtual file page
address to secondary storage address; IOCS knows nothing of files but only of cylinders,
tracks, sectors and devices; and user tasks can only refer to file pages by virfual.page
number. This permits maximum freedom for device independence, for reconfiguration,
for reliability, and for ease of allocation. Also, since a page is the physical block

size for all devices, and since every physical transfer involves one or more file pages

~FA-

onto page boundaries in virtual memory the file management is truly an extension of

virfucl memory programming. This fact is used to "lock™ pages in memory where I/O.

is in progress, and swap out the remainder of a task -- when necessary. Also, when a |
page of memory is written fo a file page, the page in memory can be removed from the |
user's memory map (and the user gets a fresh, clean page) and the first feal memory page -
is turned over to ﬁle‘mcnagemenf (and IOCS) while it waits being written fo disc. The
niemory map is thus used to quickly "move" pages -~ no core fo core move is ever needed,
This results in very efficient memory utilization arjd low overhead in file management, The
requirement that all file operations use a physical block size of exactly 2048 bytes éimplifies
all file mdanemeni‘ operations, resulfs in good memory utilization, corresponds well to the
fixed sector sizes on XDS disc packs, CRAM, and RAD’s, and results in efficient transfer

for logical records in most cases.

System Client Inventory

The name of each file known to MPM is kept in a special system file, called the System
Client Inventory, Each file name is located in a user account entry (a catalog) in this
file, and thus each file request must specify fhe-complete account name as well as the
file name. (This may be done implicitly for the user. The account name can be arranged
in a hierarchy of up to six levels -~ for company account, department account, project
account, and individual account - for example.) Also included in this System Client
Inventory with each file name is a file type -~ eighter source file or relocatable object
module file or absolute (loadable) file, or checkpoint file, and so on. Thus, user's can
refer to a program = in all its forms -~ by a single name and the system will inform file
management (from the context of the request) which type of the file to actually use, This

results in a vast simplification for the user in naming his files,

Also included in the System Client Inventory is information on file size limitations, special
device privileges, and the péinfer to the System File Inventory for the file (and file type) -

being referenced.

System File Inventory

The System File Inventory (SFI) is another special system file which contains

an entry for each file known to MPM,

Each entry contains the reel number(s)

(or pack number or deck number; never the physical device number) where)

this file is located, and the location of the directories or packets for this file-=in ferms
of cylinder and track numbers, as appropriate. If the file is smaller than 12 packets,
there is nbldirecfory required and the System File Inventory 'poinfs directly to the actual
file packets. Otherwise, the S‘FI points to up to & directory pages. Therefore, a file

reference, given a file name and account name, would proceed as shown in Figure FM-2:

Complete
File

Name

Actually, only when the file is first assigned is this entire procedure required. Once the

System
Client

"t Inventory

System
File
Inventory

| File
Large | Directory
File
Small_File

e =

FCB

FIGURE FM-2: File Referencing. :

File
Packets

SFI is‘validafed, the information is copied into a File Conirol Block (FCB) and this is kept

in protected memory with the user job for all future references.

File Securi by

The SFI also contains information on the user's access rights to the file. By comparing the

user's active account number with the account number of the file and checking the rules
(saved at file creation) that govern this file use, the file use is verified. If account ‘

number is not sufficient, a key is requested (a password type of philosophy). The user

must specify his intended use of the file at ASSIGN time. This would be either:

~F6-

. Modify access rules or keys
. Read
. . Execute

- Write (add-on only)
. Update (read and write)

‘ D-ifferent access rules and keys are (can be) required for each type of file use, Permission
fo share the file is also checked at this time, from other information retained i in the SFI,

If the file has been accidentally destroyed or purged from secondary storage to tertiary
storage (that is, tape archives) this backup file information is also in the SFI, and mount

. D
instructions are issued to the operator,

Volumes

A volume is defined as a singl'e. >unif of secondary storage; for example, a reel of tape,

a disc pack, a RAD unit, and a CRAM deck are all volumes, There are two types of

volumes under MPM: public and private. Public volumes are always mounted when

the system is in normal operation, and contain files for any number of users, Private

volumes are only mounfed on spec:al request, and may contain files for only one accouni‘
“per volume., RAD's are always public volumes, disc packs may be either public or private,
and CRAM's and tapes are always private, MPM supports both multi-volume files and mulfi-
file volumes, Each volume has a volume label at the beginning of the volume, and each file
on tape has a header label and a trailer label. Non-standard tapes (without labels and other
than 512 word page blocks) are permlﬂ'ed but only through special calls to IOCS -~ not
through file management, Foreign disc packs are not permitted. A special command (an
ATTACH) is provided to permit either on- llne or baich users to work with prlvafe volumes,

but use of private volumes must be granted from lnformahon in the account,

File Allocation

There are two methods of physical file organiiaﬁon-——casual and formal. - They differ in"

methods of allocation, as described below.

-F7-

_The unit of blocking and fransfer is a page. The unit of file allocation is a packet, where

a packet is:

3 pages for the RAD (half a track)

3 pages for "casual " disc pack files (one frack)

60 pcges for "formal " disc pack files (one cylmder)

1405 pages for CRAM (one strip) (CRAM is always "Formal")

. 1 reel for magnetic tape -

This results in considerable efficiencies in terms of directory sizes, allocation overhead,
and recﬁ)‘cﬁon in seek time for multi-page fronsferé or for use with privafe volumes, as .
opposed to using the allocation unit of a page. It does mean the user is charged for a
few more pages than he is actually using, sometimes, but the improved.performonce is
wotth it. Since reliability information is kept only on a track basis, this is also the
smallest reasonable unit to deal with for allocation. The RAD is allocated on the basis
of half a track to make it look like the disc packs.) Formal files on private volumes
can reside on up to 7 separate volumes, if necessary. Thus, files of up to about]50

million bytes can be accommodated on disc packs, and up to 700 million byfes on CRAM.

All allocation for "casual" files is done on "demand", as the file grows. Allocation for
Mormal " files is done when the file is defined, and the user can control allocation to some
extent, for better efficiency of operation. However, compacting is not done except as a

housekeeping function or by direct user request.

MPM accounting operations collect information on the number of pages allocated, per

day per account.

File Control Blocks . . _

File Control Blocks (FCB's) are built and maintained in-job memory that is read-protected
. i) N :

to the user task. Therefore, the user cannot modify their contents, and they need be

verified only when set up the first time. FCB's contain only information on. the logation

and extent of the file in question--not on its content or current logical position. The

~F8-

blocking information for logical record operations is contained in a Data Control
Block (DCB) and is located in ”‘wrifqble“ user memory. This means that for files
requiring only page operations, no DCB or blocking buffers o;re required, and FCB's
are very small (about 12 words per file). The FCB points to the System Device
»Iﬁvéntory entry that contains the particular fi_le or porﬁon of a file, by"imecns‘:

~ of a logical device pointer ‘(nof a physical device number). If FCB's _réfer

to ~mplﬁ—vélume _files, pbinfers to all volumes are contained in the FCB, If

the volume is a-public. volume, FCB's from many tasks point to if. (See the section

on IOCS for more on the System Device Inventory.)

Logical File Number

The Logical File Number (LFN) is an internal number, used in all file calls, to identify
the particular FCB being use‘c;l. The LFN is really the same.as. the Logical Unit Number

in FORTRAN I/O statements, and so is very easy to use for FORTRAN progrdmmers. The
LFN must be set equal to some file name (and hence, to some FCB) by a command language
ASSIGN statement. There are a set of 32 LFN's in each task TCB, and kfhis table of 32

LFN's is really another map-=-this time of the internal file number to FCB equivalence.

Logical : : System
File Number ‘ Device
Table Inventory
_ , T LDN

T i N FCB-i /
/ i

FIGURE FM=3: Internal File Naming

-F9-

If it is meaningful for the file operations, several LFN's can point to the same FCB.
Or there can be up to 32 unique FCB's for a task. Thus the "binding" of file names
is on a symbolic basis and is postponed until execution time, permitting as much flexibility

.as possible for device and file assignments.

Buffer Pool Management

A critical part of any file management or data management operation is buffer pool

sharing and allocation. Since File Management does not do any. blocking or need any‘

buffers for data operations on logical records, it could simply ignore the problem of

buffer péol management. Howeven;, doing data management with reentrant routines would

result in difficulties communicating space needs to the requesting programs if those programs
were in FORTRAN or COBOL, Therefore, some of the phantom pages or available task space

is used for an 1/O buffer pool, and special calls to file management are provided to acquire and

release space in this buffer pool.

File Page Operations

As mentioned above, all requests to read or write a physical block of information from

a file must specify the virtual page number of memory, the virtual page number of the file,
and the number of pages. Only full page operations are permitted. All operations permit
1/O-compute overlap; that is, all operations permit a no-wait operation, requiring a later
"check" operation before the transfer is considered complete. ﬁws users or a data management)
routine can exercise full control of 1/0 Buffering. By use of specific WAIT requests |
specifying which FCB's to“wait on, or by use of pseudo interrupts for end action or unusual

end notification, very close synchronization of task and 1/Q is possible with little effort.

All file page operations take place by way of CAL's to immediate service routines in

System Virtual Memory.

File Integrity

File integrity is considered the single most important part of system reliability. Consequently,
a great deal of effort is spent in guaranteeing file integrity. All write operations to the

System Client Inventory, the System File Inventory, and file directory are write-checked.

-F10-

Further, all entries are individually checksummed in software, to further minimize |
possibility of error. All file allocation techniques are designed to minimize the number
of files affected when tracks or surfaces are lééf. All user files, at the user option,
can be check-written, at direct cost to the user. In some system modes, all transfers to
selected devices are automaticaily c'nec“k—wri tten at no extra cost to the user. Backup
copies of all files that have been modified are saved (on tape) at periodic intervals
or af the request of the user. All posting operations are done as "cleanly" as possible
fo minimize extent of damage in case of error or failure and fo minimize the amounf of
"transition" time when a file s being "changed". For most editing operations, a temporary
file is used for editing, and only on the successful completion of the operation is the
"name" ;hcnged to reflect this fact, so that the unmodified old version is available In‘

_case of error or failure.

Device preventive maintenance and reconfiguration routines keep a complete history of
all hardware problems, by track number, and save this part of the volume label, on each

volume.-

More' details on file integrity are included in the section on High Availability.

DATA MANAGEMENT

Data Management can, and probably will, grow to be larger than File Management. As

noted under File Management, Data Management will be implemented as library subroutines,
link-edited to user programs and entered with a BAL, All of Data Management will be in user
mode, therefore, Initially however, only structured files, byte operations to unstructured files,
and indexed sequential files will be supported. Only a brief overview of structured files is

described here.

Structured Files

Structured files are sequential fileé consisting of variable length records, with EBCDIC blanks |
compressed out, trailing blanks removed, and format bytes and sequence numbers added,

Structured files are completely device independent, and operate with tape, disc, CRAM, RAD,
remote terminals, and (through symbionts) to unit record equipment. Structured files really are
designed for source input files and listing output files, but-can be used for any other sequential

byte string operations desired, if a logical record format is convenient.

A set of Data Management routines are provided in the system library to read, write, and
position logical records wifhin a structured (sequential) file, A decision is made in theé_e
routines to acquire buffer space if necessary, to block to File Management page operdl‘ions.
Or if the current file assignment is o a remote conversational terminal, these Data Manage-
ment routines will call the Terminal Control System to read or write a record through the
communications system, Whenever a physical 1/O transfer is involved (as when a‘blocking
buffer is full or empty) an explicit WAIT is issued by these routines on behalf of the task on the

file being used.

DEVICE MANAGEMENT

All I/O operations and all 1/O interrupts go through the 1/O Control System, or IOCS.
IOCS consists of routines and tables necessary to allocate I/O devices, to issue Start 1/O
operations (SIO'), and to answer I/O interrupts, 10OCS resides in System Virtual MeAmory |
as part of the Resident Monitor. A primary design concept for IOCS is uniformity -- all
calls on TOCS look the same, regardless of the caller; and only 1IOCS is responsible for
manipulating the tables under its control, User tasks cannot call 10CS directly buf"‘alwcys
‘.c:c;ll File Mancx.gemem‘, IOEX, or a Symbiont, (IOEX is an MPM immediate service routine
that handles device dependent 1/O requests and performs argument consistency checks,)
File Management is used for all device independent 1/O operations. Symbionts are used to
drive unif record ’equipmeni'. Then File Management, IOEX, or the Symbionts will prepare
an 1/O Event Control Block (ECB) and call IOCS,

All calls to IOCS refer to devices by a Logical Device Number (LDN). No one in the
system except IOCS actually knows the physical device numbers for devices, and these
are kept in a fixed table in IOCS called the System Device Inventory. This permits device
reassignment in case of hardware error, It also makes all 1/O operations very configuration
independent and easy to use, A user merely asks for a magnetic tape, for example, and
never knows which tape drive he is using. Thus, the compufer operators never need to
change tape unit numbers, and the system can maintain counters and statistics on tape units
or disc drives, All file catalogs and file direc'fories refer to "reel™ number or "pack™ number, °
and only IOCS knows which reel is on which physical drive. Thus, a reconfiguration does

not affect removable disc pack assignments or catalogs.

The tables for IOCS.Vare shown in Figure D1. The System Device Inventory is the central -

table, If is indexed, as described above, by Logical Device Number, This System Device
Inventory is created at system load time (not system generation) from information supplied on
configuration cards or from previous history. It can be modified by ﬁysfem control commands
later, if necessary, or by reconfiguration routines, It contains one entry per I/O device in
the system. Each entry contains the actual (physical) device number, an alternate device
vnumber (for reconfiguration), and pointers to the Device Controller Table and to the Device

Type Table,

-D2-

The Device Type Table is mostly fixed at assembly time and can be modified at sysgen,

system lodd, or during execution, There is one entry in this table for each device type

in the ﬁysfem.» Each éh’rry contains device type name, standard I/O Order Bytes, standard
retry counts, standard failure thresholds, and ID's for error and failun;e tasks for this type of
~cl;evice. |

The-Device Controller Tabklei contains one entry per logical 1/O subchannel in the system.

(That is, a dual-access controller is one logical chc;nne|, and one entry,) The Device
Controller Table contains /physical subchanne! activity status for single or multi-unit device
controllers, and for both subchannels if a dual-access controller. This table is allocated at
system load time and is the most dynamic of the IOCS tables. All I/O requests are queued
from the appropriate entry in the Device Controller Table, Aduclly, the queue entries g‘n:é
the ECB's that were given to IOCS on the I/O request, These ECB's are in a doubly linked
list, with one link from the proper 1/O subchannel and the other (not shown) from the re-
questing task entry in the System Task Inventory (which controls tasks), Thus, IOCS uses

the general ECB facility fo handle queues for all requests, This makes it easy for IOCS to

~ "post™ completion of an 1/0 operation to the requesting task -- it uses the normal ECB

posting routine, If there is an I/O error, the ECB is given to the proper MPM error analysis
task, and all request and status information is carried along in the ECB. Eventually, if the
user fask had requested pseudo interrupt control at 1/O completion, this same ECB is attached
to the task unsolicited event list (and fhus‘ is doubly linked to its requesting task). This scheme
means that IOCS does not need to provide within its own tables for variable length I/O queue -
entries, as in most systems -~ the ECB's and a doubly linked (threaded) list approach removes .
“this hecessity. Also, if a task wants status on any of its 1/O requesfsvor if a task must be aborted
for any reason, the latest status on all ECB's for this fask can be found by following the chain
from the task in qué;fion. “Then queued ECB's can be removed from the subchannel queue, if |

~ necessary, | Furthermore,v all of the user task can be swapped out’ of memory, before'I/O com- .

pletes, except the ECB's and the actual pag‘es where 1/O is still in progress, (Without swapping,

-D3-

the ECB's would not be as large. But larger ECB's mean smaller memory requirements for

task residence during 1/O operations.) - B

The 1/O Processor Table, or IOPT, confcuns sla’rus error, dand configuration information .
on an 1/O processor. There is one entry in this table per I/O processor in the system..

This is normally used only for errors and reconflgurohon.

IOP

Table
Device
Controller
Table
System
Device - - e
Inventory
}
! ECB :
) " |
/ . oo] A \E AN ::J
LON 7 RN Device Type
‘ Table
T
! ECB X
i

FIGURE D1: 1OCS Tables |

HIGH AVAILABILITY.

Goals

High availability is defined for MPM as providing "nearly™ continuous access to computing

services for users, This means that only very short and very infrequent interruptions are
permiﬁed when users are attempting to access the system. It is not a goal of the system to
~avoid all breaks in service, or to never require user restarts, However, part of the goal -

. .p'f high availability does imply absolute protection for data files; that is, once a user has
enf;usfed his files to the system, the system will take whatever steps are necessary fo insure |

that these files are never lost or destroyed -~ beyond a "backup® point under the user's control,

This goal of high availability is accomplished by adherence to four basic principles:

. All error and failure detection and recovery is on-line and uses all the power of

the conversational time-sharing services of MPM,

. A complete and precise audit trail is provided for system programmers or customer

engineers of all errors, failures, and reconfigurations of the system, °

. Alternate paths are provided to all peripherals through a combination of Slgma 9
hardware and MPM software techniques to permit automatic or semx—aufomahc

reconfiguration after failures,

. All references to hardware =~ whether memory or peripherals ~- are logical rather
than absolute, so that user and system programs can still continue after hardware

failures or reconfigurations.

On-Line Detection

Much of the error and failure detection is imbedded in File Management or in IOCS but
some parfs are separate; and all parts are on-line. There are really the followmg disfinct

parts to MPM error cmd Fculure detection:

. 1/O interrupt general error analysfs. routines

. Swapping RAD error analysis routines A

. File Management error analysis routines SR

. Specific device-dependent error and failure analysis tasks

. Examiner Symbiont Process (ESP)

“H2-

. System On-Line Diagnostic (SOLD)
. Watchdog timer trap .
« . Parity fault trap -
. Noﬁ—dllowed operdtion trap
. . Sequence fault trap
. Power On/Qff ihferrupf _
. Memory fault interrupt .
e Processor fault interrupt .
. Software detected faults

. Software timeout routines

The tasks, referenced/above, are non-resident, (This includes ESP and SOLD,) All /O
general error analysis routines and all trap and interrupt routines are resident and react
immedicfely to hardware detected errors or failures. (An error is defined as an invalid
condition that has not resulted in loss of data; that is, an error is recoverable. A failure
is unrecoverable and is always much more serious.) MPM, unlike many systems, ovperafes'
on the premise that hardware failures are imminent but are never a cause for affecting more

than one (or a few) of the operaﬁbns in progress; that is, they are deliberately localized,

Most of the above routines do the "obvious” thing when traps or infefrup’rs occur, The
Examiner Symbiont Process is in effect a software preventative maintenance task that runs
at a low priority under MPM and checks all possible hardware registers and software tables
for consistency, and forces reconfiguration before failures occur. The System On-Line
Diagnostic runs as a conversational job, with customer engineers as usérs, to exercise,
diagnose, or repair peripherals or memory banks that are marginal of that have failed.
Thus, fhevsysfem can continue fo operdi’e; and tapes, discs, or unit record equipment can
be repaired on~line. The on-line detection and repair tends to significantly reduce MTTR

(mean time to repair) which means higher availability of the system to users,

Audit Trail
. .) 1
Since a large configuration has many possible configuration alternatives and many possible

sources of errors or failures, MPM provides a means of leaving a visible audit trail fo‘lr chuanges.

-H3-

All changes to the configuration and all errors and failures, as they occur, result in log

entries to the MPM error log. The error log is printed on-line on a dedicated keyboard/

printer for all errors above a preset severity threshold, in a short format, A longer format

of the error log, with simple English messages, for all errors or failures, is printed (on Vdemavncl)» E
by a special logging symbiont, All error and failure analysis routines in MPM call this central

~ logging routine with message codes and severity level indicators. Thus, in the event of a crash,

' é.summory hisfory is immediately available and a more detailed history is available on request.
Since this error file uses normal file management services, the logging symbiont can print this

file on either a local or a remote conversational terminal or a local or remote line printer,

Reconfigljraﬁon

In every configuration that has the proper high reliability options, an alternate data path is
provided to every device. This takes the form of dual access controllers on separate IOP's
or peripheral switches to switch devices automatically, if an IOP fails, The software can

select this alternate path dufomcﬂccllly if there is a failure in the primary path to the device.

If the device itself fails, there are two possible reconfiguration options: o

Software partitioning - the device is unavailable for normal allocation but can be

accessed by ESP or SOLD or other pfivileged diagnostics.

Hardware partitioning - the device is switched out of the system alfogefher, possibly

to an off-line maintenance configuration if one is available,

Logical References

One of the design implications for all of MPM that results from the requiremenf for high
a\)ailabilify is the need to make all hardware references ona logical rather than a physical
basis, Then,> in the event of a hardware failure, the user program can be directed fo use an
alternate device by merely changing an eniry inside MPM, without the user being aware of

the change. Some of the techniques to accomplish this are described under Memory Management,
File Management, and Device Management (as with the Logical Device Numbers). Mény of
these techniques are alsotuseful in a multi-programming system, for ease of allocation. But

the requirements for allocation flexibility extend to all of MPM itself as well as user programs,

“HA-

Thus, without the Sigma 9 hardware features such as the MPCU, the relocatable CPU
homespace, the hardware map, and flexible memory bdnk and device assignments, this
would be an impossible goal. For this reason, the MPCU is required even in a single
CPU configuraﬁoh. For this reason all of MPM itself runs mapped or under a single
extension fie|d in real-extended memory. Thus, loss of any CPU or memory bank or
any peripheral, as long as minimum sys’rerﬁ capacity remains, will not result in stopping
:ﬂﬂe,sysfem (after at most a slight pause for reconfiguration if the device or memory was
critical), For this reason also all of MPM uses File Management for all data files, fo
permit full file reassignment (through centralized facilities in file managemen‘r-)‘ in case
o failures. (Thus, éymbionfs under IY\PM always use normal File Management, even for

error logs.)

