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PREFACE 

The RBM User's Guide explains how to use some of the more basic and commonly required features of the RBM 
operating system. It is to be used with, but does not supplant, the RBM/RT, BP Reference Manual, 90 10 37. t The 
writing styl e is informal, and technical terminology is avoided wherever possible for the benefit of the new RBM user. 

The primary intent of the User's Guide is to assist new users in getting their first programs on the RBM system with a 
minimum of study. No attempt has been made to provide comprehensive examples for utilizing every feature in the 
RBM system. Your understanding of this manual will be improved if you are already partly familiar with the contents 
of the RBM Reference Manual, although this is not strictly necessary. One assumption that has been made however, 
is that you have at least a basic understanding of one of the programming languages that operate under RBM (i. e., 
ANS FORTRAN IVor Extended Symbol). 

The User's Guide illustrates the necessary interface between your program and the operating system's services through 
a series of job examples and short discussions of specific appl ications. The examples generally present the simplest 
case for each application. Once these are thoroughly understood, the use of more sophisticated options, their re
lationships to one another, and the techniques for implementing them wi II be more readi Iy apparent. 

An effort has been made to organize the text so that experienced real-time programmers can directly access topics 
of immediate interest. A study of the Table of Contents should enable you to go directly to such relevant items and 
skip through other material already fami liar to you. 

In reading the User's Guide, you will probably notice that some definitions and several other items of information 
are repeated in several places. This repetition is intentional. Its purpose is to reenforce your understanding of cer
tain basic terms and concepts that will make the learning of more complex facets of the system an easier task. 

A full understanding of the material in this manual will not, in itself, make you an expert in utilizing all the capa
bilities of the RBM system. Further study of the RBM Reference Manual and some experience in the writing, 
checkout, and running of programs will be necessary. When going on to an in-depth study of the RBM Reference 
Manual and related manuals, there is a simple technique that may be used to help you learn new features of the sys
tem. The technique is not to study each unfamil iar feature with respect to its relationship to other parts of the sys
tem (whose significance may also be slightly hazy), but rather to key each item directly to some real or imaginary 
program. You can do this by asking yourself the following questions, as appropriate: 

1. Why would I want it for my program and what will it do? 

2. How do I use it? 

3. If I can't use it, why not? 

4. Is it a service I must request for myself, or does the system provide it automatically? 

5. What are its possible side effects? 

6. Is there another, perhaps better, way that I can accompl ish the same thing? 

Such a program-oriented approach to learning new features is less confusing, and will eventually lead to a rec
ognition of the relationships between system components (much of the material in the RBM User's Guide was prepared 
by using this same study technique). 

tThe User's Guide contains a number of references to appropriate sections of the RBM/RT, BP Reference Man
ual, 90 10 37. For purposes of brevity, the title of that manual has been shortened to "RBM Reference Manual" 
in all such references. 



If you are unfamil iar with the RBM system and have not had an opportunity to attend formal or informal training 
classes, it may be useful to review the available RBM documentation. By placing each manual in its proper con
text in terms of relevance to your own programming efforts, such a review may suggest general guidel ines for further 
study and the priorities of such study. 

• RBM/RT,BP Reference Manual, 901037: This manual is addressed to all personnel within an RBM instal-
lation. It is the primary reference for all resources and services provided by the RBM system and gives 
detai led descriptions of each feature with expl icit instructions for util izing them. Since FORTRAN users 
commonly call Monitor services indirectly through the FORTRAN library, the areas of immediate interest 
to the FORTRAN programmer will be the sections dealing with the background processors, with special em
phasis on their control command structure: Monitor, RAD Editor, Overlay Loader, and Uti I ity Processor. 
The sections on operator communication (unsolicited key-ins) and the Public Library will also be per
tinent. Assembly language users, in addition to the items above, will require a knowledge of the Monitor 
service routines and I/O sections of the manual, since these users request Monitor services directly in their 
code. Real-time programmers, both assembly language and FORTRAN users, will need to study the real
time programming section (assembly language users should give some emphasis to the Task Control Block 
subsection). The section on System Generation will be of primary interest to the installation's system pro
grammers. The Standard Object Language appendix will usually be of interest only to those engaged in 
writing their own language processors and to systems programmers. The RBM Reference Manual is not in
tended to be a tutorial text. It is a feature oriented and logically organized approach to the system, as 
opposed to the User Gu ide's job oriented approach. 

• RBM/OPS Reference Manual, 90 15 55: This manual is addressed to programmers/operators working at the 
console. It is basically a digest of operations and diagnostic features abstracted from the RBM Reference 
Manual and is organ ized in al phabetical sequences, rather than logical, for fast reference when corrective 
action is required while running a job. The RBM/OPS Manual confines itself to control command formats, 
operator key-ins, various diagnostic and warning messages, and some peripheral device considerations and 
data switch setti ngs. 

• RBM/System Technical Manual, 90 11 53: This manual is addressed to system programmers and analysts 
who are concerned with the internal structure of the RBM system for maintenance purposes. It is to be used 
in conjunction with the system listings supplied to each RBM installation, and the manual is essentially a 
"road map" through the RBM listings. Generally speaking, this manual has limited value or interest to ap
pi ications programmers. 

• Sigma 2 or 3 Computer Reference Manuals, 900964 and 90 15 92: These manuals (whichever is pertinent) 
are addressed to all RBM users, but have particular relevance to real-time users because of the descriptions 
of the hardware interrupt structure. Of special importance to assembl y language users are the sections on 
the machine instruction set and I/O, since these users generally are "closer to the machine II than FORTRAN 
users. 

The programming language manuals I isted in "Related Publ ications II include information on the language processor 
interface with RBM. (FORTRAN/RBM interface will be found in the appropriate FORTRAN Operations Manual. ) 

System programmers, real-time programmers, or any others who may be invol ved in heavy file management or spe
cial ized hardware peripheral considerations shoul d consul t the X DS PAL Manual, suppl ied to each installation, for 
a description of the appropriate peripheral reference manuals. It should be noted that the PAL Manual also contains 
descriptions of availabl e software packages that were generated by other members of the User's Group. 
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1. THE RBM OPERATING SYSTEM 

Before discussing ways for your program to util ize basic RBM services it is necessary to come to a common understanding 
of certain concepts, terms, and processes within the RBM context. The first of these is the operating system 
itself. 

An operating system consists of all the software used at a local facility to perform the services for which the instal
lation was designed. The software includes the Real-Time Batch Monitor, language processors (assemblers and 
compilers), service processors, and user programs, all closely integrated for a given number of applications. 

No two operating systems are completely alike, because the user-created programs that form the user's extension of 
the operati ng system and the processors chosen from the manufacturers I ist of software modu I es are sel ected to fit 
unique requirements of the local facility. These requirements frequently change, and the system is correspondingly 
enlarged or otherwise modified. 

These factors are generally found in all operating systems, but there are other characteristics that make RBM unique. 

REAL-TIME BATCH MONITOR SYSTEM 

A real-time system such as RBM has event-driven schedul ing for all real-time operations. That is, certain external 
events occurring outside the immediate environment of the installation, such as various processes in an automated 
factory or biomedical diagnostic lab, determine which real-time computer operation is taking place at any given 
moment in time. The sequence of these real-time operations is not under the immediate control of a computer 
opera tor or programmer. 

Furthermore, although a number of outside events can be taking place simultaneously, each event has a priority of 
importance in relation to all others, and this priority level determines which event gets service from the system first. 
Each real-time event produces a signal that is connected to a hardware interrupt. The interrupt is the connecting 
I ink between the external event and the real-time task that responds to it. 

Under control of a real-time program, the computer can be set to respond to external events in many ways that 
do not involve scanning or decision making by the CPU. For example, when one interrupt level becomes 
ACTIVE, two or three higher, related levels might be DISABLED (postponed) long enough for the active level 
to complete a portion of its work before the higher levels could become active. Yet any incoming signals 
could be remembered. Further, a higher level that was ARMED and ENABLED could become ACTIVE immedi
ate�y upon receiving an external signal. 

This leads into one of the most important and distinguishing features of a true real-time operating system such 
as RBM: unl ike other forms of operating systems that may offer some real-time capabil ity as a secondary fea
ture, RBM guarantees that its ability to provide extremely fast responses to interrupts will not be degraded by 
outside interference. That is, within the predictabl e I imits of the hardware interrupt priority system and cer
tain structural considerations of the real-time software (program segmentation), RBM absolutely protects a cur
rentl y active real-time event from any slowing of response time (within 100 microseconds) by the actions of a 
lower-priority real-time process, a background process, or even inadvertent human interference such as hitti ng 
a Control Panel INTERRUPT switch. Further, the Monitor never interjects itself between real-time processes 
and their interrupts, but remains passively ready to respond immediately to calls for service from real-time ex
ternal events within the self-imposed time limit stated above. 

Some body of user-designed code (called a task) is associated with each interrupt level, and the RBM system is 
organized around the concept of tasks and programs. The most fundemental unit of software associated with an 
interrupt is the real-time task. 

The RBM Operating System 



REAL-TIME TASK 

A task is a body of code (and data) associated with one and ~ one hardware priority interrupt. This task is 
executed only if its corresponding interrupt level becomes ACTIVE. The task executes at the priority of its level 
and may be interrupted by a higher priority task. When completed, the higher level task will exit to the next lower 
waiting task. It does this by restoring any registers that have been modified, by restoring system pointers and status 
values to their previous conditions and by executing an instruction to exit from the current active level. These func
tions are performed either by a Monitor Service Routine or by the task itself. 

Tasks may be triggered by other tasks or by external events. For example, a very high priority task may be con
nected (via an interrupt level) to an external signal. When the signal triggers the interrupt, the high priority task 
may be used to collect real-time data. The task may then term inate itself, triggering (under program control) a 
lower priority level task to process the data. The lower level task can continue processing at a less critical time 
when all intermediate levels are inactive. This procedure prevents loss of valuable data due to conflicting demands 
on computer time, yet enables the computer to be used as fully as possible for the most critical operations. It should 
be noted that it is never necessary for a task to know specifically which task it is interrupting or which task inter
rupted it. Note also that there is a distinction between real-time tasks and foreground programs. 

FOREGROUND PROGRAMS 

A real-time program is a collection of one or more related tasks and common data loaded and controlled as a unit. 
This collection of tasks may have (but need not have) contiguous interrupt levels in hardware priority sequence. 
Such a program is identifiable by name, so that it may be loaded into core memory or released from memory on re
quest. A foreground program could consist of a single task, and the triggering of its interrupt would set off a series 
of processes in serial sequence. 

It is possible to have foreground programs that are not controlled by external events but which nevertheless execute 
in foreground memory (and are connected to hardware interrupt levels) with all the protection privileges and use of 
dedicated I/O devices that real-time tasks have. Such programs may be loaded and released by the computer oper
ator by other foreground tasks, or may be loaded from the background job stack. They may be operated periodically 
from a real-time clock, I/O end-actions, etc. 

A foreground program may be called in and initialized by any of the following: 

Another foreground task 

Computer operator (unsol icited key-in) 

Background job stream 

Execution of the tasks connected to interrupts may be caused by any of the following processes: 

External interrupt 

Real-time clock 

Computer operator (unsol icited key-in) 

There are three possible types of foreground programs in RBM and they are classified according to the manner and 
location in which they are installed in foreground memory. Foreground memory is divided into two areas: resident 
and nonresident. 

1. A resident foreground program is automatically loaded into its fixed area (absolute location) in resident 
foreground memory every time the system is booted in. 

2 Real-Time Task/Foreground Programs 



2. A sem iresident foreground program is expl icitly called from secondary storage (RAD or disk pack) into its 
portion of resident foreground memory for execution. The expl icit call is made either by a resident fore
ground program or operator key-in. It is the responsibility of the caller to ensure that the required memory 
space is really available and not already occupied, since the program is unconditionally loaded. 

3. A nonresident foreground program is also expl icitly called by another foreground program or operator key
in from secondary memory but normally is loaded into the nonresident portion of foreground memory for 
execution. The space thus occupied is considered lIactive II and the program is fully protected by the 
Monitor from the background. If the nonresident space is already occupied when the call is made, the re
quest is queued. t 

Note that foreground programs, regardless of type or function, can only execute (e. g., perform read/write and 
compute operations in the foreground area. Compilations or assembl ies can never take place in the foreground mem
oryarea. Therefore, before any foreground programs and tasks can be executed, they must first have been created 
by background jobs. 

BACKGROUND JOBS 
A job is the basic independent process performed in the background area of memory. Each job is independent of any 
other job, and consists of one or more directly or indirectly related job steps. A job step is the execution ofa single 
language processor program, service processor program, or user program within a job. The program for each step is 
brought in for execution by a processor command that identifies the program. Jobs can call for Extended Symbol 
assemblies or FORTRAN compilations; that is, they can translate your source (symbolic) deck into a binary format 
called the relocatable object module, and then call in a service processor called the Overlay Loader to form the 
executable version of your program termed the absolute load module or program file. 

Background jobs are frequently referred to as batch jobs, which means that RBM permits you to load a series of jobs 
for sequential processing (see IIJob Stream Summary II below and Chapters 2 and 3 for definition) or build a job stack 
of several unrelated jobs. Naturally, all inputs that follow a given processor command within a batch must be writ
ten in the same language; that is, all must be written in FORTRAN or all in Extended Symbol, etc. Additionally, 
the parameters specified on the processor command will appl y to every input modul e that follows it within the job 
step. The primary purpose in batching jobs is to reduce idle time between jobs and to increase throughp~t speed. 

All background jobs, whether they are to become real-time programs or not, are loaded, assembled or compi led, 
and checked out in the same way. The only difference is that jobs intended for the foreground must be given per
mission to be loaded into protected foreground memory through operator FG key-ins and options on some control 
commands before the executable versions are loaded in a protected foreground area. 

As implied above, some background jobs never become foreground programs. Once they have been processed into 
executable form, they are executed in the background memory area as background programs. Background programs 
are identified by name, (filename), the same as foreground programs. Background programs must execute in user 
mode and must perform a II I/o through Monitor servi ce routines, as opposed to foreground programs that execute in 
master mode and can either elect to use Monitor servi ce routines or perform their own I/O. 

In this explanation of job processing, we have implied that various services are performed by the system to aid your 
programming efforts, and we have alluded to IIforeground ll and IIbackground ll memory without defining them fully. 
Further discussion of foreground/background programs requires that we now define these as well as other terms. 

THE MONITOR 

The Moni tor is the supervisor or executive part of the system that controls, coordinates, and provides servi ces for 
both real-time and background programs. For background processing, the communications link between you 
and the Monitor is through a subprocessor called the Job Control Processor (JCP). The JCP reads, interprets, and 

tIn RBM, IIqueuingll refers to a list of entries maintained by the Monitor that identifies items waiting for servi ce or 
attention. The following terms are sometimes interchangeably used with queuing: scheduling, sequencing, ordering, 
or dispatching. 
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RESPONSE TIME 

Response time is the total time it takes for a task to begin executing meaningful instructions in response to some 
external signal. If a program must be brought into core, response time is the total time required to access the RAD, 
bring the root into core, initialize, and then respond to external interrupt(s). The amount of delay in response time 
that can be tolerated must be determined for each individual real-time program (and sometimes each task)within the 
system. However, many real-time appl ications at a given facil ity do not need response time as rapid as that avail
able with resident programs, and of course, response time is not a factor in background programs. 

The following section summarizes preceding material and presents additional information that is necessary before 
going on to the examples in Chapter 2 or 3. 

JOB STREAM SUMMARY 

Sigma RBM provides two levels of services for computer users: real-time (foreground) services and batch (back
ground) services. The sequence of foreground programs is controlled by external interrupts, interval timers, a call 
by another foreground task, or the computer operator. Most operating system services are called in via system func
tion calls within the program, with certain other services being impl icitly provided. 

Batch programs are processed serially in the order submitted. There are four primary subprocessors (often called 
service processors) to assist the Monitor in providing service to the background job stream: 

Job Control Processor 

Overlay Loader 

RAD Editor 

Uti Ii ty Processor 

To make use of these background service processors, each job submitted must conform to the general requirements of 
the operating system and the specific requirements of the service processor being util ized. 

The portion of the operating system that responds to control commands preceded by an exclamation mark (!) and 
performs and coordinates many other system functions in the background is the Job Control Processor. The terms 
"JCP commands II and IIMonitor commands II are frequently used interchangeabl y. The JCP accepts control command 
input from a specific input device designated as the Control Command Device (referred to in this manual as the 
"CC II device). This device is commonl y a card reader, although other media may be used instead of cards (the use 
of a RAD or magnetic tape as the "CC" device generally is not recommended because they are less flexible). 

In a typical batch operation, several jobs are combined into a singl e "batch stream II al though each job retains 
its identify through its preceding !JOB (or !JOBC) control command. The entire job stream is terminated when 
the JCP interprets a ! FIN control command that informs the Monitor that no more jobs are to be processed in 
the current batch stream. 

In addition to the !FIN control command terminating the batch stream and the !JOB control command preceding each 
job, other Monitor control commands may be used within a job to request various services. For example, a ! LIMIT 
control command may be used if the user wants to I imit the processing time or other system resources expended. 
Should the job exceed the time I imits defined on the! LIMIT command, it would be aborted. 

There are many control commands that can be used in a job, with one of the most generally useful being the 
!ASSIGN command. An !ASSIGN command may be used to direct the flow of I/O to or from a specified 
peripheral device or RAD file. ! ASSIG N commands enable the user to write a program containing symbol ic 
reference to "logical II I/O devices rather than to "physical II devices by assigning a device-file name to an 
operational label (logical device name), RAD file, or physical device. This allows selection of a particular 
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physical device to be deferred until the job deck is prepared, and also permits any logical device to be reassigned 
at certain points within job processing. 

In addition to control I ing the assignment of a logical devi ce, an IASSIGN command may be used to control a variety 
of I/O parameters for that device. For example, an IASSIGN command may specify that a particular logical device 
is to read information from a specified RAD file. When the user's program is executed during a subsequent step 
within the job, the Monitor searches its Master File Directory for the specified file, and makes that file available 
whenever data is to be read via the assigned device. The !ASSIGN commands remain in effect until the next! JOB 
or ! JOBe command is encountered. 

A background job is a collection of one or more job steps. A job step is all the control commands required for the 
setup and execution of a single processor or user program within a job. These job steps can be one of the service 
processors, a standard language processor such as Extended Symbol or ANS FORTRAN IV, or a user-designed program. 

Each processor, whether a service or language processor, is called for execution by means of a "processor" control 
command. A processor control command begins with an exclamation mark followed by a name identifying the re
quested processor; e. g., ! FORTRAN or IXSYMBOL. Such commands may also contain parameters pertaining to the 
execution of the program; the exact form depending on which processor is being called. Data decks usually follow a 
processor command, although data may be input from a RAD file or other media. 

Binary output from a language processor may be produced on punched cards, magnetic or paper tape, or a RAD fil e. 
Such output is always in Sigma Standard Object Language format and must be translated (I ink edited) into execut
abl e format by either the Absolute Loader or Overlay Loader before it can be executed by the computer. The Abso
lute Loader is called via an !ABS command, and is principally used to place the Overlay Loader on the RAD at 
System Load (SYSLOAD) time. While the Absolute Loader can also be used for placing user programs on the RAD, 
this is generally not recommended, and there are a number of restrictions in using it for this purpose (the Absolute 
Loader is described in the Sigma RBM Reference Manual under the lABS command). 

The Overlay Loader is called via an !OLOADcontrol command, and is a much more powerful and versatile processor 
for user program purposes. Throughout the rest of this manual, the term "Loader" always refers to the Overlay 
Loader unless otherwise stated. 

The I OLOAD command may specify parameters related to the program elements to be loaded, the type of program, 
(foreground or background) being constructed, and other optional parameters. If no special options are needed, the 
command! OLOAD is sufficient. The name of the operational label used for the output generated by the Loader is 
always "OV", which is assigned by default to a special file located in the System Data area of the RAD, and is 
termed "RBMOV". The OV operational label is used to rewrite on this file. The output of the Loader is called a 
program file (load module), which is a RAD file containing a core image of the executable program. 

The program in RBMOV (sometimes referred to as the "OV file") file is called for execution via an !XEQ 
command. Note that there is no protection for the program in the OV file. However, this file is not altered 
by the Monitor, and unless changed by the background job stream, may remain intact between jobs. 

Object modules may be I inked by the Loader to form an "overlay" program structure. The logical structure of 
an overlay program is defined for the Loader by means of I$ROOT and !$SEG Loader subcommands that must 
follow the ! OLOAD command. Segments are identified by segment numbers and are defined by ! $SEG com
mands for use by M:SEGLD service routine calls coded into the user's program. Segment 0 is always the root. 

After a background program has been processed by the Loader, it may be brought into core for execution by 
means of an IXEQ or ! name command. Foreground programs can be loaded by an ! XEQ command or by a 
Monitor service routine call in another foreground task. Use of an ! XEQ control command to load foreground 
programs must be preceded by an operator FG key-i n. 
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File allocation, management, and manipulation is provided by calling in the RAD Editor service processor via a 
1 RADEDIT control command. The 1 RADEDIT command itself requires no parameters; after the RAD Editor is called 
in, it reads subcommands that have a number sign (#) in column 2 and following an exclamation character in 
column 1. These subcommands identify the functions to be performed, such as l#COPY, 1 #TRU NCATE, 1 #DELETE, 
etc., and each contains user-defined parameters that specify the RAD areas and files to be processed. 

Further file manipulation, such as file and record editing functions, copying files from one non-RAD device to an
other non-RAD device, etc., is provided by calling the Utility processor through a lUTILITY control command that 
also defines the type of Utility function to be used. Each Utility function has its own set of unique control sub
commands that further define a given operation to be performed. 

The operating system is capable of handling foreground tasks and background batch jobs concurrently because of the 
allocation of core into distinct foreground and background areas. All programs eventually intended for real-time 
applications are first assembled or compiled, processed by the Loader, and checked out through the background job 
stream. The programs are then loaded into their assigned files in the Foreground Programs area of the RAD. There
after, a /I new or modified foreground programs are first assembled or compi led in the background job stream in ex
actly the same fashion as any other batch job, and memory is allocated as required. 

Now that basic orientation for the RBM system has been provided, some job examples for compiling or assembling 
and loading through the background can be considered. If you plan to write most of your program in FORTRAN you 
should go on to the next chapter. If you plan to write programs in assembly language, you should skip to Chapter 3. 
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2. HOW TO COMPILE AND LOAD FORTRAN JOBS 

Xerox Basic FORTRAN, Xerox Basic FORTRAN IV, and Xerox ANS FORTRAN IV are the standard FORTRAN 
compilers currently available to Sigma 2/3 RBM users. In a typical foreground;'background environment, FORTRAN 
users may range from engineers or other technical personnel who only occasionally write programs and have little in
terest in the internal functions of the RBM system, to real-time programmers whose knowledge of the software and 
hardware must be extensive. The discussion and examples that follow in this and other chapters are in increasing 
order of complexity that reflects this user range. 

The examples in this chapter use the ANS FORTRAN IV specification options on the ! FORTRAN processor card. 
Except for this major difference, all examples are equally valid for users of the other two compilers unless otherwise 
noted. ANS FORTRAN IV will process programs written for Basic FORTRAN and Basic FORTRAN IV. 

COMPILATION WITH SOURCE LISTING 

Figure 1 shows a FORTRAN job deck with the minimum control commands required to obtain a compilation of a 
source program and a source I isting output to the I ine printer. The !JOB command informs the Monitor that a new 
job is being input. Optionally, the !JOB command could also contain an account number and user-defined name; 
e.g., !JOB 12345, FORTSAMP if job account was being used at the local facility. 

Since binary output is not usually desired for an initial compilation and you will want to IIdesk check ll the source 
I isting before producing an object deck, the two !ASSIG N cards are used to suppress binary output to the BO 
(usually a card punch) and GO devices. If BO and GO were not assigned to 0, a request for binary output would 
be assumed by defau It. 

The! FORTRAN card specifies a source I isting (always defaulted) and the SO option specifies that the compiler is to 
perform a sequence check of the source deck. Use of the SO option is recommended for all initial compilations. 

The! EO D card indicates that no further FORTRAN source statements are to be compi! ed and allows the compil er to 
exit to the Job Control Processor (JCP). 

Figure 1. Compil e with Source Listing and Suppressed Binary Output 
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The! FIN card informs the system that the job is completed and no other jobs are forthcoming. Should the job be 
one of a series in a IIbatch II, the source decks woul d be followed by an ! EOD card for each deck instead of ! FIN 
until the final deck was input. This example is the simplest case of an ANS FORTRAN compilation under RBM. 

COMPILE MAIN PROGRAM WITH SUBPROGRAMS 

Compilation of a FORTRAN program with included subprograms poses no problems in terms of RBM interface. The 
single !ASSIGN card shown in Figure 2 suppresses binary output to the GO device but binary output to the BO de
vide will be produced in this case. The compiler will produce a source listing on the line printer. The system does 
not require any control commands between the subprogram modules. 

Figure 2. FORTRAN Compilation with Subprograms, Binary Output to BO Device, and Source and Object 
Listing to LO Device 

EXECUTE OBJECT MODULE FROM CARD INPUT 

After a source program has been successfully compiled into a binary object version that is free of obvious logical or 
coding errors, it is ready to be reloaded into the computer for execution. The example in Figure 3 shows the deck 
structure for loading a FORTRAN - produced binary object deck. Note that in this example we are assuming that 
the BIoperational label is assigned to the card reader device at the local installation; if this was not the case, BI 
would have to be temporarily reassigned to this device via an !ASSIGN command. 
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Figure 3. Object Program Input from Card Reader for Execution 

The !OLOAD card calls in the Overlay Loader, and the BI and 1 parameters on the Loader !$ROOT card informs the 
Loader that it is to read one object module (binary deck) from the card reader, translate this into the load module 
(executable program or program file) and write this executable program into the RBMOV file. The RBMOV file is 
the default output file for the Loader and is located on the RAD. The default OV file will be reused the next time 
a program is loaded. The use of the !OLOAD card without parameters implies default of all options. Therefore, this 
will be a root onl y, background program with COMMO N size taken from the object module (see the Overlay Loader 
chapter of the RBM Reference Manual for discussion of other options). The double comma on the !$ROOT card tells 
the Loader that the default cases are to be used for the "temp" and "exloc" options. 

The !XEQ card causes the core image copy of the executable program to be loaded into core from RBMOV to 
process the data. 

COMPILE AND EXECUTE FORTRAN PROGRAM 

When your source program has been checked out to the point where any remaining coding errors are I ikel y to be 
minor or the program is very simple, it is often useful to compile, load, and execute the program as one job. This 
procedure is commonly known as a "Ioad-and-go II operation, and saves both computer time and unnecessary hand
ling of the job. 

In the load-and-go example illustrated in Figure 4, the !ATTEND card immediately following the !JOB card 
inhibits the Monitor Abort routine so that the system will go into a wait state instead of aborting the program 
in case any remaining program error is encountered. This will enable you to attempt corrective action at con
sole while the program is still in memory, and is generally recommended for personally attended load-and-go 
jobs. 

Since there are no commands preceding the ! FORTRAN processor card, binary output will be written to both 
the BO and GO devices. The GO "device" is the RBMGO file on the RAD, and is the file from which 
the Overlay Loader will read its input. A source I isting wi II be printed. The! OLOAD card call s the Over
lay Loader, and the GO option on the !$ROOT card informs the Loader that it is to read one object module 

Compile and Execute FORTRAN Program 11 



"GO,l 

Figure 4. FORTRAN Load and Go Job 

from the GO file, form the load module, and write it into the RBMOV file for subsequent loading into core for 
execution. The! $ROOT card also specifies that the "temp" and "exl oc" default cases (double comma) are to 
be used. 

The ! $ML card informs the Loader that a Long map is to be output (an example and explanation of a load map is 
given in Chapter 6, "How to Build An Overlay Program "). 

The! PMD card provides for a core dump for further diagnosis if corrective action at the console is unsuccessful. As
suming !ATTEND was present, the !PMD card will cause a post-mortem dump to be output if you terminate a 
console recovery attempt with an X key-in (operator abort). Since ALL is specified, all of background mem
ory and the CPU registers will be dumped in case of an abort for any reason. Generally, use of a !PMD com
mand is advisable for load-and-go jobs regardless of the presence or absence of an !ATTEND card. The !PMD 
command is effective only for the job step following its appearance. 

The !XEQ card calls the load module into core and gives control to the program for execution. 

Figure 5 illustrates the job flow of a typical load-and-go job. 
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FORTRAN Load 
and Go Job. 

CPU 

Compiler 

CPU 

Overlay Loader 

CPU 

User Program 

Figure 5. Load and Go Sequence 
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COMPILE, LOAD, AND GO FROM PERMANENT GO FILE 

In the last example, we made the statement that the contents of the RBMGO file (the default GO file) is temporary 
and will be destroyed the next time a program is assembled or compiled. In some cases, it may be desirable to save 
the compiler output. In cases where you may be modifying or patching a program and do not wish to recompile every 
time, the compiler output file can be saved by defining your own GO file on the RAD (i. e., in the U D area). 

Creating a user-defined file involves two control commands: the RAD Editor !#ADD card and the !ASSIGN card. 
The Editor !#ADD card is covered in more detail in the chapter "How To Create and Manipulate Files". 

In the example in Figure 6, the! PAUSE KEYIN SY, S card is used to remove Monitor protection of previously defined 
RAD areas, and it functions in a similar manner to the FG key-in except that it permits access to protected RADareas 
instead of foreground core memory. 

!JOB 

Figure 6. Compile, Load, and Go from User-Defined GO File 
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The !#ADD card following the !RADEDIT card informs the Editor that a new entry is to be added to the UD area, 
the name of the user-defined file is FORGO, and the file size is four records. The record must be 120 bytes to 
accommodate the Standard Object Language, and the file format should be blocked sequential access (B) for 
space economy. 

The ! ASSIG N command temporaril y assigns the GO operational label to fil e FORGO (for this one job onl y) in the 
U D area of the RAD. 

The! FORTRAN card specifies that a source I isting is requested, a binary ob ject deck is to be produced, and the Re
locatable Object Module (ROM) is to be written to the GO operational label (which is reassigned to file FORGO). 
Identical ROMS are output on both BO and GO. 

The Overlay Loader is called in (! OLOAD) and translates the ROM defined by the !$ROOT and (GO) into a load 
module and writes it in the RBMOV file (by default) for subsequent loading and execution. The double comma on 
the !$ROOT card specifies the default case for the IItemp" and lIexloc II parameters. Note that although the number 
of modules is specified (1), the 11111 does not actually have to be specified in this case, since the !EOD on the GO 
file would terminate reading of the module. 

BO instead of GO coul d have been assigned to file FORGO if a copy of the ROM was not desired from some selected 
device media. The choice is up to you, but there is a rule about assigning BO to a user file that should be 
remembered: 

• The record size specified on the! # ADD command must be 120 bytes (60 words per record) and an EOF 
should be written by the user (! WEOF BO) to properly indicate end of data in the fi Ie. The compi ler 
does not write an EOF to the BO operational label. 

The Overlay Loader requires that all of its input object modules have 120-byte records and will abort the job if this 
is not so. Since the compiler does write an EOF to the GO operational label, no ! WEOF command is necessary in 
the example; a file mark is written automatically at the end of the object module. 

COMPILE, LOAD, AND GO FROM PERMANENT OV FILE 

In the previous example, a program was compiled and the object module was written into a user-defined permanent 
GO file, but the Loader wrote the load module (executable program or program file) onto the RBMOV file for exe
cution. Like RBMGO, the RBMOV file contents are considered temporary and may be altered from one job to an
other. Using the OV file is a useful procedure for programs not completely checked out or subject to frequent 
updating. However, once a program is completely debugged, you can define your own permanent OV file. The 
program can then be loaded into core for execution repeatedly, without the necessity of recompiling or recreation of 
the load modu Ie by the Overlay Loader. 

The method for creating your own permanent OV file is quite similar to creating a permanent GO file, and again 
involves use of the !ASSIGN command and the RAD Editor !#ADD command. 

In the example in Figure 7, the! RADEDIT card calls in the RAD Editor and the! # ADD card informs the Editor that 
a new entry is to be added to UP area. The name of the file is to be USEROV and there are four records within the 
file (filesize). The double comma specifies that the default record size is to be used and the format is to be random 
access (R). The file has write protection from everything except background programs (B). 

The! FORTRAN card specifies a source and object listing, sequence check, a binary object deck, and a copy of 
the object module to be written into the RBMGO file. 

The !ASSIG N command assigns the OV operational label to file USEROV (for this one job only) in the UP area 
of the RAD. 
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!JOB 

Figure 7. Compile, Load, and Go from Permanent OV File 

The Overlay Loader translates the object module defined by the !$ROOT command into a load module and 
writes it in the USEROV file for subsequent execution. Future execution may be either by use of !ASSIGN 
OV = USEROV, UP and !XEQ cards, or the processor call! USEROV. You have created a permanent user program 
named USEROV. 

Of course, there is nothing to prevent you from combining the creation of permanent GO and OV files into 
one job. This would merely invol ve adding the ! ASSIGN and Editor ! # ADD cards from the previous perma
nent GO file examples. 
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COMPILE AND EXECUTE IN FOREGROUND AREA 

An example of loading a FORTRAN job from the background job stream that is to be executed in the nonresident 
foreground area of memory is illustrated in Figure 8. The deck structure for such jobs is identical to other load
and-go jobs except that the operator must key-in FG,S to access foreground memory, and the foreground option (F) 
must be specified on the lOLOAD card (the default option is B for background). 

Figure 8. Compile, Load, and Execute in Foreground Area 

All access to protected memory from the background job stream must be preceded by an FG key-in. Failure to do 
so is a foreground write protection violation and aborts the job unless an lATTEND card is present. If lATTEND 
is present and the lPAUSE KEY-IN FG,S card is accidently excluded, the Monitor will go into a wait state. The 
FG key-in must then be input and the command that caused the protection violation must be repeated. 

The first comma (preceding ItFII) on the lOLOAD card informs the Loader by default that only a root segment is 
to be loaded; the ItFIt identifies the load module as a foreground task; the triple comma specifies that the step 
mode and Debug options are not being used. The X parameter requests the Loader to abort the job if a severity 
level greater than zero is encountered during the load process. 
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The double comma on the !$ROOT card informs the Loader that the default temp stack size (80 cells) is to be 
used and that the default beginning location for the load module is to be K:NFFWA (nonresident foreground first 
word address) in the nonresident area of foreground memory. The GO option specifies that the Loader is to read 
the single ROM (1) from the RBMGO file and write the load module into the RBMOV file by default. 

The !$ML card causes the Loader to output a Long map when the load module is written into RBMOV. 

The IPAUSE KEYIN FG,S card causes the system to go into a wait state so that the operator can perform the 
necessary FG,S combined key-in. This directs the Monitor to permit access to protected memory and continue 
processing. 

The !XEQ command causes the load module on OV to be loaded into nonresident foreground memory for exe
cution, beginning at location K:NFFWA. 

HOW TO USE 026 SOURCE AND DATA DECKS 

The RBM system expects all card images for source and data to be in the 029 character set. However, it is 
sometimes necessary or desirable to run FORTRAN jobs that were originally punched in the 026 character set 
format. 

RBM has SYSGEN input parameter options called BR4 (026 card input), BP3 (026 card punch output), and B7 
(7-track BCD magnetic tape) that will process I/O in BCD format instead of EBCDIC. If any or all of these 
required options are not already assigned to user-selected device file numbers at your local installation, it will 
be necessary to re-SYSGEN or perform a SYSGEN update before they can be used. See the subheading "In
put Parameters" in the System Generation chapter of the RBM Reference Manual. 

Figure 9 shows a complete FORTRAN job example with all input in 026 format, including main source program 
and subprograms on cards and the input data (to be read on FORTRAN device unit number F: 112) on 7-track 
magnetic tape. The example assumes that a prior SYSGEN has assigned BR4 to device file number (DFN) 11 
and that B7 has been assigned to DFN 12. 

The presence of the !ATTEND and !PMD cards are suggested for diagnostic and corrective action when sub
mitting a job that may be unfamil iar to the programmer submitting the job. 

The first !ASSIGN card assigns the SI (source input) device to DFN 11 to read the source program and 
subprograms. 

The ! PAUSE command outputs the message on the card and then causes the Monitor to go into a wait state so 
that the operator can mount the 7-track tape containing the 026 input data to be processed. 

The next !ASSIG N card assigns the FORTRAN device unit number (F: 112) to DFN 12 to read in the data at 
execution time. 
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card codes 

"GO 

BCD (026) 

Figure 9. Job Setup with 026 Source and Data 
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3. HOW TO ASSEMBLE AND LOAD EXTENDED SYMBOL JOBS 

Xerox Extended Symbol is the standard assembler available to RBM users. The information and examples in this 
chapter deal with the basic interface between RBM and your symbolic programs or updates; other and more com
plex material is given in the chapters concerning the Standard Procedure (S2) File, assembly language and FORTRAN 
routine interface, and real-time procedures. 

EXTENDED SYMBOL ASSEMBLIES 

Figure 10 shows an Extended Symbol job deck with the minimum control commands required to obtain an assembly 
listing output to the line printer. The !JOB command informs the system that a new job is being input. Optionally, 
the I JOB command may also contain a name and account number (e.g., !JOB SAMP1,12345). 

Figure 10. Assemble Single Program with Listed Output to LO Device 

The IXSYMBOL card following the !JOB card informs the JCP that control is to be transferred to the assembler 
and LO specifies that an assembly I isting is to be output (normally to I ine printer). The BO parameter is not speci
fied because you will usually wish to IIdesk check II an initial assembly before producing an object deck. 

Since in this program example we do not wish to use all the default options available (BO,GO,and LO), the desired 
option (LO) is specified. The only output will be the assembly listing. 

The I EOD card must be present, to terminate execution of the assembler, before the ! FIN card is encountered 
or the job will be aborted. The !FIN card informs the system that the job is completed and no other jobs are 
forthcoming. 

ASSEMBLE, LOAD AND GO 

When your source (symbolic) program has been IIdesk checked II to the point where any remaining errors are likely to 
be minor or nonexistent, it is often useful to assemble, load, and execute the resulting program file (load module}as 
one job. Such a job is commonly known as a IIload-and-go ll operation and saves both computer time and unneces
sary handling of the job. 
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In the load-and-go example illustrated in Figure 11, the lXSYMBOL card specified by defaul t that I isting output 
is to be transmitted to the La device, that binary output is to be produced (BO), and that the object program produced 
from the assembly is to be written on the RBMGO file, from which it is later read by the Overlay Loader as input. 

Figure 11. Assemble, Load, and GO 

The 10LOAD card calls in the Overlay Loader, and GO option on the I $ROOT card directs the Loader to read the 
object module from the GO file, translate this into the load module {executable program or program file} and load it 
onto the RBMOV file. The OV file contents are also temporary and may be destroyed if another load module is 
loaded into the file. 

The double comma on the I $ROOT card tells the Loader that the defaul t cases are to be used for the "temp" 
and lIexloc ll options and the program will be executed in the background. The "111 following the GO parameter 
informs the Loader that only one object module is to be loaded. 

The IPMD card applies only to the job step following it, and provides added information for future diagnosis 
if corrective action at the console proves unsuccessful. Assuming !ATTEND was present, the !PMD card will 
cause a post-mortem dump to be output if you terminate the console recovery attempt with an "XII key-in {op
erator abort}. If the IIU II option is specified, an unconditional dump will be output regardless of whether or not 
the program is aborted; if IIU II is absent the dump will only be output if an abort {for any reason} takes place. 
If IIALL II is present, all background plus the CPU registers are dumped. Up to six pairs of lito II and "from II 
locations can be specified for selective dumping. If no options are specified on the ! PMD card, only the CPU 
registers will be dumped {these registers are always dumped regardl ess of any specified I imits}. Generally, use 
of the ! PMD command is advisable for load-and-go jobs regardl ess of the presence or absence of an !ATTEND 
card. The !ATTEND card inhibits the Monitor abort routine and will cause the Monitor to go into a wait 
state instead of aborting a job so that corrective action can be attempted at the console. 

Since the ! PMD card in the exampl e does not contain any optional parameters, it will cause dumping of the CPU 
registers (only) if the program is aborted for any reason. 
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The !XEQ card causes the core image copy of the executable program located on OV to be loaded into 
background core and executed. 

LOAD AND GO FROM PERMANENT GO FILE 

It is sometimes desirable to save the assembler output. In cases where you may be modifying or patching a program 
every time it is loaded, the assembler output can be saved by defining your own file in the UD area {for instance}. 

Creating a user-defined GO file involves use of two control commands not previously discussed: the RAD Editor 
!#ADD command and the !ASSIGN command. The Editor !#ADD command is covered in the chapter "How To Cre
ate and Manipulate Files". 

In the example in Figure 12 the PAUSE KEYIN SY,S card is used as a check to remove Monitor protection of pre
viously defined RAD areas. SY is the RAD file analog of the FG key-in used for accessing foreground core memory. 

The! # ADD card following the ! RADEDIT card informs the Editor that a new entry is to be added to the U D area, the 
name of the user-defined file is to be GOUSER, and the filesize is four records. The record size must be 120 bytes 
to accommodate the Standard Object Language, and the file format should be blocked sequential access {B} for 
space economy. 

!JOB 

Figure 12. Load and Go from User-Defined GO File 
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The IASSIGN command temporarily assigns the GO operational label to file GOUSER (for this one job only) in 
the UD area of the RAD. 

The IXSYMBOL card specifies by default that a listing is desired (LO), binary output is to be produced on some 
peripheral device (normally a card punch), and the Relocatable Object Module (ROM) is to be written to the GO 
operational label which is reassigned to file GOUSER for this job. Identical ROMs will be written on both BO 
and GO. 

The Overlay Loader is called in (! OLOAD) and translates the ROM defined by the ! $ROOT card (GO) into a load 
module and writes it in the RBMOV file by default for subsequent loading and execution. The double comma on the 
!$ROOT command specifies the default case for the "temp" and "exloc" parameters. Note that although the num
ber of modules is specified (1), the "111 does not actually have to be specified in this case, since the !EOD on the 
GO file would terminate reading of the module. 

BO instead of GO could have been assigned to file GOUSER if a copy of the ROM was not desired from some sel
ected device media. The choice is up to you, but there is a rule about assigning BO to a user file that should be 
remembered: 

• The record size specified on the !#ADD command must be 120 bytes (60 words per record) and an EOFshould 
be written by.the user (!WEOF BO)to properly indicate end of data in the file. The assembler does not 
write EOF to the BO operational label. 

The Overlay Loader requires that all input object modules have 120-byte records and will abort the job if this is 
not so. Since the assembler does write an EOF to the GO operational label, no ! WEOF command is necessary; a 
file mark is written automatically at the end of the object module. 

MODIFY AN ASSEMBLY IN A PERMANENT GO FILE 

Now that you have an assembled program located in a permanent file, it can be updated or modified without going 
through a reassembly. Using the GOUSER file from the previous example, the deck structure in Figure 13 would add 
the patches and cause execution of the modified program. 

Figure 13. Assembly Update from Permanent GO File 
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ASSEMBLE. LOAD. AND GO FROM PERMANENT OV FILE 

In the two previous examples a program was assembled and the object module was written into a user-defined 
permanent file, but the Loader wrote the load module (executable program or program file) onto theRBMOVfile for 
execution. Like RBMGO, the RBMOV file's contents are frequently altered from one job to another. Using the 
RBMOV file is a useful procedure for programs not completely checked out or subject to frequent updating. How
ever, once a program is completely debugged, you can define your own permanent file. The program can then be 
loaded into core for execution repeatedly, without the necessity of reassembly or recreation of the load module by 
the Overlay Loader. 

The method for creating your own permanent file is quite similar to creating a permanent GO file, and again in
volves use of the RAD Editor! #ADD command and the !ASSIGN command. 

In the example in Figure 14, the 1 RADEDIT card calls in the RAD Editor and the 1# ADD card informs the Editor 
that a new entry is to be added to the UP area; the name of the file is to be USEROV, and there are four records 
within the file (filesize). The double comma specifies that the default record size is to be used and the format is to 
be random access (R). The fi Ie has write protection from everything except background programs (B). 

!JOB 

Figure 14. Assemble, Load, and Go from Permanent OV File 
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The lXSYMBOL card specifies that listed output is to be produced (LO) and the object program is to be written on 
the RBMGO file (GO). 

The !ASSIGN command assigns the OV operational label to file USEROV (for this one job only) in the UP 
area of the RA D. 

The Overlay Loader translates the object module, defined by the 1 $ROOT command, into a load module and writes 
it in the USEROV file for subsequent execution. Future execution may be either by use of lASSIGN OV=USEROV, 
UP and lXEQ commands, or the processor lname call lUSEROV. You have created a permanent user program named 
USEROV. 

Of course, there is nothing to prevent you from combining the creation of permanent GO and OV fil es into one job. 
This would merely involve adding the lASSIGN and Editor l#ADD cards from the previous permanent GO file 
examples. 

ASSEMBLE IN BATCH MODE 

A "batch" assembly is a series of successive assemblies performed with a single !XSYMBOL command. Batching of
fers processing and easier loading for the operator. There are three rules about batch assemblies that should be 
remembered: 

• The assignments and options on the single lXSYMBOL card apply to .sill. assemblies within the batch 
stream. 

• Batch mode must be specified on the lXSYMBOL command via the BA option only if I EOD cards are used 
to separate the decks; otherwise, BA need not be specified. 

• The last job in a batch must be terminated by doubl e I EOD cards if the BA option is specified. 

The example illustrated in Figure 15 shows three assemblies in a batch. Since IEOD cards are used as separators, 
BA must be specified on the I XSYMBO L card so that the assembler wi II reinitial ize itsel f when it encounters the 
next source deck within the batch stream. Note that the parameters on IXSYMBO L coul d be in any order. 

Figure 15. Assemble in Batch Mode 
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Figure 15. Assemble in Batch Mode (cont.) 

ASSEMBLE AND EXECUTE IN FOREGROUND AREA 

An example of loading an assembly from the background job stream that is to be executed in the nonresident fore
ground area of memory is illustrated in Figure 16. The deck structure for such jobs is identical to batch jobs 
except that the operator must key-in FG,S to access foreground memory and the foreground option (F) must be 
specified on the 1 OLOAD card (the default option is B for background). 

All access to protected memory from the background job stream ..!!!!:!& be preceded by an FG key-in. Failure 
to do so is a foreground write protection violation and aborts the job unless an lATTEND card is present. If 
an lATTEND card is present and the lPAUSE KEY-IN FG,S card is accidently excluded, the Monitor will go 
into a wait state. The FG key-in must then be input and the command that caused the protection violation 
must be repeated. 

The first comma (preceding IIFII), on the lOLOAD card informs the Loader by default that only a root segment is to 
be loaded; the IIFII identifies the load module as a foreground task; and the triple comma specifies that the step 
mode and Debug options are not being used. The X parameter requests the Loader to abort the job if a sever
ity level greater than zero is encountered during the load process. 

The double comma on the ! $ROOT card informs the Loader that the defaul t temp stack size (80 cells) is to be 
used and that the default beginning execution location for the load module is to be K:NFFWA (nonresident 
foreground first word address) in the nonresident area of foreground memory. The GO option specifies that the 
Loader is to read the single ROM (1) from the RBMGO file and write the load module into the RBMOV file 
by default. 

The 1 $ML card causes the Loader to output a Long map when the load modul e is written into RBMOV. 

The 1 PAUS E KEYIN FG,S card causes the system to go into a wait state and outputs the message on the card to the 
operator1s console so that the operator can perform the necessary FG,S combined key-in. This directs the Monitor to 
permit access to protected memory and continue processing. 

The lXEQ command causes the load module on OV to be loaded into nonresident foreground memory for exe
cution, beginning at location K:NFFWA. 
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!$ROOT "GO,l 

Figure 16. Load and Execute in Foreground Area 
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4. HOW TO CREATE AND MANIPULATE FILES 

Whenever you want to allocate space or create or maintain permanent files on a RAD or disk pack, you must first 
call in the RAD Editor. The RAD Editor interprets and executes Editor control commands that define the operation, 
area mnemonic, and file name to be used. 

Fi les to be saved achieve their permanent status by being created in the designated permanent area. Permanent 
areas are large blocks of RAD or disk pack space, each of which represents a grouping of files in terms of function. 
These permanent areas are initially set up at System Generation time and RBM will define the following areas by 
default if not defined by the user: 

System Processor area (SP) 

System Library area (SL) 

System Data area (SD) 

Checkpoint area (CP) 

Background Temp area (BT) 

Contains language processors, nonresident portions of the Monitor, etc. 

Contains FORTRAN Library, etc. 

Generally contains the RBMGO and RBMOV files among other items. 

Used for storing the background context when checkpointed by the 
foreground. 

Used as temporary scratch storage by background programs or processors. 

During SYSGEN, the default cases for any of these areas may b~ overridden. The following areas are of direct 
concern to the RAD Editor: 

System Processor area (SP) 

System Data area (S D) 

System Library area (SL) 

Background Processor area (BP) 

Foreground Processor area (FP) 

User Processor area (UP) 

User Data area (UD) 

User Library area (UL) 

Data area (Xn, where n is a hexadecimal digit) 

aa (where aa represents a two-character mnemonic on the Dictionary) 

You can put any type of file into any area desired. The area names are simply a convenience to expedite file 
housekeeping and management. The area names are formalized at SYSGEN and certain protection privileges 
are accorded to the areas, but what is put into these areas is up to you. Program fi les could be put into Data 
areas or vice versa. 

The very permanence of Editor-created files suggests that you exercise economy by not using up any more per
manent RAD or disk pack space than is strictly necessary, and instead, use temporary space in the BT area 
whenever possible. 
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The Background Temp area (BT) does not contain any permanent files and therefore is not the concern of the Editor 
since it cannot create files in this area. The Background Temp area contains the temporary scratch file (Xl 
through Xn) that are used by processors and the users. 

• Management of permanent RAD areas and their files is handled by the RAD Editor via Editor control 
commands. 

• Management of the Background Temp area (BT) scratch fil es is controlled through! DEFINE and !TEMP com
mands, or M:DEFINE Monitor service routine. 

Since the Editor is itself a background processor, use of RAD Editor services is performed through the background job 
stream. This means that a foreground program never calls the RAD Editor to perform services. The allocation and 
subsequent manipulation of both foreground and background files are performed as background job steps. 

Before discussing the use of the Editor and some of the control commands used to communicate with it, two terms must 
be clearly understood in the RBM context: 

• A record is the amount of information processed by a singl e Write or Read instruction, and contains a user
specified decimal number of bytes. This number of bytes constitutes the RECORD parameter (record size). 

• A file is an arbitrary, predetermined number of records that define the file's FILE parameter (file size). A 
fil~n the RADmust always have a name of three to eight EBCDIC characters by which it will be cataloged 
by the Editor in the proper permanent RAD area directory for all later calls to it. The file name is created 
by the user. Types of files include: program files that are interchangeably called executable programs or 
load modules; System and User Library files used by the Overlay Loader to satisfy external references in 
user's programs; and data files. Files are further categorized by FORMAT type: sequential, which may be 
U (unblocked), B (blocked), C (compressed); or random, whi ch may be unblocked random (R) or (packed) 
random (P). 

HOW TO CREATE A FILE 

To create a file on the RAD for subsequent loading of either data or a background or foreground program, the Editor 
command 

!#ADD areaname,filename 

is used. Since the Editor needs to know whether it has RAD space available whenever it encounters an ! #ADD 
command defining an area and a file name, it also expects you to specify 

file (file size) 

record (record size) 

format (blocked, unblocked, compressed, random, blocked random) 

on the same card, where as discussed previously, a file is a logically ordered group of records, and a record 
is the amount of information generally processed by one Read or Write request. FILE tells the Editor how many 

How to Create a File 29 



records to allocate a fi Ie. RECORD tells the Editor the maximum number of bytes per record. FORMAT tells the 
Editor the structure of the fi Ie. However, RECORD and FORMAT do not necessari Iy have to be specified if you are 
willing to let the Editor give you default options. For descriptions on default options, see RAD Editor chapter in 
the RBM Reference Manual. To create a data file, the sample command 

Dl,SAMP,20, ,U 

would define a file named SAMP to be allocated in the Dl area of the RAD. This file can contain up to 20 records. 
Since the IIRECORDII was not specified, SAMP would have a default size of 360 bytes or 1024 bytes, depending on 
the RAD sector size where Dl is located. 

Assume the default size is 360 bytes; therefore, the above !#ADD command would cause the Editor to reserve 7200 bytes 
of space in Dl under file name SAMP. So, the example has exactly the same effect as writing the command 

!# ADD Dl,SAMP ,20,360,U 

Using unblocked II FILEII format can sometimes waste space. For instance, if the purpose of the fi Ie SAMP is to hold 
the contents of 20 data cards (one EBCDIC card = 80 bytes of information), then 280 bytes in each one of the 
20 records is wasted RAD space, and better efficiency is needed. Change the format of the example to blocked 
and the record size to 80 bytes: 

!#ADD Dl,SAMP,20,80,B 

For any blocked file, a 180-or512-word blocking buffer is used to group as many records as will fit. If the blocking 
buffer is 180 words, in our new definition of SAMP above, four and one-half 80-byte records will fit in one block. 
Since it would take five blocks to contain 20 records, the amount of RAD space used would be five sectors. 

This is very efficient use of RAD space, so use this last version of !#ADD to create a file as shown in Figure 17. 

I !FIN 

------11 !#ADD Dl,SAMP,20,80,B 

I !RADEDIT 
.. ' I ! PAUSE INTERRUPT KEY-IN SY,S 

!JOB 

I--

Note 1: Since the permanent file directories are software write-protected, an SY key-in must be initiated 
before updating or initial izing a file directory if the area has an SY or FG protection code. 

Note 2: For RADEDIT, ! #END is equivalent to ! EOD. 

Figure 17. Create a RAD File 
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HOW TO DELETE A FILE 

A file is deleted by the Editor !#DELETE command. Any files may be deleted from the permanent file directory. To 
delete the SAMP file used previously, the deck structure shown in Figure 18 would be used. 

!FIN 

!#DELETE Dl,SAMP 

! PAUSE KEY-IN SY,S 

!JOB 

Dl is the area the file is located in and SAMP is file to be deleted. 

Figure 18. Deleting a Fi Ie 

If the file deleted is the last file within the area, the space is automatically recovered without squeezing (see 
IIHow to Squeeze a RAD AREA II later in this chapter). 

HOW TO TRUNCATE A FILE 

The Editor !#TRUNCATE command is used to delete unused but allotted space in a file by setting the EaT pointer 
equal to EOF. 

Let's examine a hypothetical case. A blocked sequential file called BFILE of 100 records has been allotted. Thus, 

!#ADD Dl,BFILE,100,40 

Fifty records are copied into the file via the Utility COpy command (see Chapter 7 of this manual) and an EOF 
pointer is set at the end of the 50th record. Truncate the file as shown in Figure 19. 

The resulting file will only contain 50 records (even though 100 records were allotted on the! # ADD card) because 
the ! #TRU NCATE card cut down the size of the file to the actual number of sectors required to contain the 50 rec
ords by moving the EaT pointer equal to the EOF pointer. 
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!FIN 

l#TRUNCATE Dl,BFILE 

1 PAUSE KEY-IN SY S 

!JOB 

Figure 19. Truncating a File 

However, the space deleted via the! #TRUNCATE card is still trapped; that is, it cannot be accessed either by other 
files or file BFILE. Since file size reduction has already been performed, the RAD area must be "squeezed". 

HOW TO SQUEEZE A RAD AREA 

To release unused space in a truncated file and to recover space occupied by deleted files so that the system 
can use it, the RAD Editor !#SQUEEZE command is used. This moves all files forward and leaves empty space 
at the end of the area. It is inserted after the 1 #TRU NCATE card as shown in Figure 20, but note that it is 
not always necessary to truncate a file before squeezing an area. 

lFIN 

! #SQUEEZE Dl 

!#TRUNCATE Dl,BFILE 

! RADEDIT 

lPAUSE KEY-IN SY,S 

!JOB 

Figure 20. Squeezing a RAD Area 
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After the processes illustrated in Figures 19 and 20 have taken place, you may wish to know how much space 
your file actually takes in the designated RAD area. To find out, the Editor !'MAP command is used as shown 
in Figure 21. 

I !FIN 

.1 
I 

I !RADEDIT 

!JOB 

-

-

Figure 21. Output a RAD Map 

This map provides a I ist of all the files in D1 area with their corresponding records and fil e sizes as shown in 
Figure 22. 

ARF:A D1 CEV gO BeT 19F'O EeT 1A90 

NA~E FeRMAT WRITE F'8RE REC8RD TRACK SECT B8T EeF' E8T 
RF'ILF: R NB N 0168 033E 0002 19F'2 F'F'F'F' 19F'C 
UF'ILE U N8 

"" "N-" 0168 033F' 0004- 19F'C F'F'F'F' lA06 
SAMPA B Sy N 0078 0340 0006 lA06 F'F'F'F' lAOA 
CKPTAle R N8 N 0168 0341 0002 lAOA 1Aoe lAoe 
A fa ~ ~8 ~ 0168 0341 0004 lAOe lAOE lAOE 
S~FILE 8 8G N 0078 0341 0006 lAOE 0009 1Al1 
8F'ILE 8 N8 N 0078 0342 0001 lAl1 FF'F'F' 1A1S 
SAMFis ~ FG ----N""" 005A 0342 0005 1A15 F'I='I='F' 1A29 

Eeo 
ET.000.05 
11/12/71 1214 8KaOOC.131F'a aOOO.OO,ID.OOO,OO 

Figure 22. RAD Area Map Example 

RAD area maps are a necessity, of course, when multiple users are creating files in a given area. Otherwise, the 
individual users would not know whether space is available in the area, whether a file with the same desired name 
already exists, etc. 

HOW TO ACCESS A FILE 

Now that we have created a file and initial ized it with data, the problem of how to access the file remains. Files 
are read or written in background user programs in the same way that I ine printers, card readers, or other devices are 
accessed. The linkage between RAD files and your program is provided via !ASSIGN or commands inserted into your 
program deck. (See the !ASSIGN discussion in Chapter 2 of the RBM Reference Manual.) Foreground users access 
data files through Monitor service routines (Read/Write) coded into their programs. 
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HOW TO CREATE A PROGRAM FILE 
Before discussing th, technique for creating a program file that can be called into core for execution, a quick 
review of the two methods of accessing a file for either a Read or Write operation is necessary. 

SEQUENTIAL ACCESS 

When you use sequential access, you access a RAD file on a record-by-record basis (see definition of record given 
previously in this chapter) in exactly the same way that you access a data file on magnetic tape. This method can 
be used for blocked, unblocked, or compressed files. 

RANDOM ACCESS 

To perform random access you must supply the relative record number of the start of the Read/'Nrite request and the 
number of bytes to be transferred, where "relative record number" is the number of a granule relative to the start of 
the file for an unblocked file, or the relative logical record number relative to the start of the file for a blocked 
file. (A granule is defined by the user to be one or more sectors.) The default (and typical) size is one sector for 
unblocked files. Addressing files by granules allows direct access to be independent of the RAD sector size. 

CREATION PROCEDURES 

All files are created in the same manner regardless of the functions for which they are to be used. This reduces gen
eral rules for program files to the following: 

• To save a load module (executable program) in a user-defined file, the file must be created with an Editor 
!# ADD command before a load module is stored into it. 

• The defined file must be a random access file. 

When you call in the Overlay Loader via the !OLOAD command to create a load module the Loader will print out 
the size of the load module on the load map, assuming you used one of the Loader map options. This size is given 
in sectors and since a load module is a random access file, this is the value to use as the FILE parameter entry on 
the Editor! # ADD card. 

If you do not know the size of the load module until after it has been created, how do you know how to !#ADD a 
file of precisely the right size? There are two solutions: 

1. Create the module on the OV file, which is the default output file for load modules. Look up the granule 
size on the resulting load map and use this number as the FILE parameter on an Editor !#ADD card. Use an 
Editor! #FCOPY card to copy the OV contents to the newly created fi Ie. 

Example: 

Assume the load module created with the Overlay Loader used 20 granules in the RBMOV file. Allot a file 
called FTEST of 20 granules in area D1 and copy OV out to the new file. The deck structure given in Fig
ure 23 would copy OV to the new file. 
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OV,Tl 

!ASSIGN Tl =FTEST,D1 

!#ADD D1,FTEST,20,O,R 

!RADEDIT 

KEYIN SY,S 

!JOB 

Figure 23. Fi Ie Creation with Specific Granule Allotment 

2. Use an !#ADDcommandtocreate a file that you know is sufficiently large for the load module. Put the load 
module into this file via an !ASSIGN command prior to an !OLOAD command in the command stack, and then 
followwith Editor !#TRUNCATEand !#SQUEEZEcommands that have a corresponding file specification. 

Example: 

Assume a new fi Ie called TESTl in area D1 is to contain a load module of unknown length. The deck struc
ture given in Figure 24 would allocate all available space to the file, load the module into the file, and 
then recover the unused space. 

Figure 24. Fi Ie Creation with Granule Over-Allotment 
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I !FIN 

J !EOD 

I !#SQUEEZE D1 

--..... • ... l' !#TRUNCATE D1,TESTl 

I !RADEDIT 

I !EOD 

l !$ROOT "GO,l 

I !OLOAD 

--......... 1 !ASSIGN OY=TESTl,D1 

-

-
-

Figure 24. File Creation with Granule Over-Allotment (cont.) 

HOW TO CREATE A NEW LIBRARY 

A library consists of six files: MODIR, EBCDIC, EDFRF, BDFRF, MDFRF, MODULE. These files are allocated in 
either the System Library (SL) or User Library (UL) areas, as appropriate (these are the only two areas that can have 
libraries), and the files must have the exact names given above and be in random format. 

For instructions on how to compute the sizes of each file for a particular library, see the RAD Editor chapter in the 
RBM Reference Manual. 

All library files are random files. In the !#ADD command example 

!#ADD SL,MODIR,6,S,R,SY 

the 11611 parameter followi ng the fi Ie name MODIR means a size of six records in the SL area. Since II RECORDII is S, 
you have specified that you wanted RECORD =SECTOR size. The FORMA T IIRII specifies an unblocked random access 
file. The Write parameter IISyll means write permitted when the SY key-in is in effect. When computing the sizes 
of the files from the formulas in the RAD Editor chapter in the RBM Reference Manual, remember that the results will 
be in granules or the number of records needed. If you do not have enough information to compute the size of each 
fi Ie, allocate them a greater number of sectors than are required. 

After all six files have been created with #ADD commands, the #LADD command enters the library routines into 
the defined four files, depending on the I ibrary code parameter on the !#LADD command: Basic (B), Main (M), or 
Extended (E) as defined in Figure 25. The same basic method is used to set up the User Library. 

Note: If you ever plan to add new programs to a library or replace existing library routines with larger rou
tines, omit the ! #TRUNCATE command. 
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.. 

!JOB 

t Note that SY,S Key-in is required to write into the SL area. This would also be required 
for creating a library in the UL area. 

Figure 25. Input Library Files 

HOW TO ADD A LIBRARY ROUTINE 

Since the library already exists, the method for adding a new routine is quite simple, as illustrated in Figure 26. 
This example is essentially the same deck structure used to create the library, except that you ADD onto the end of 
the existing library files. The example assumes that BI has been assigned to the card reader. 
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Note: The #LADD command adds an object module to the designated library. 
The lIidentification II parameter identifies the object module being loaded. 

Figure 26. Add a Library Routine 

HOW TO DELETE A LIBRARY ROUTINE 

To delete a routine from a library it is first necessary to determine the name associated with each routine in that li
brary via a RAD Editor !#LMAP command. Besides listing a name for each routine on the RAD map, it also lists all 
other entry poi nts or data words in each routi ne. 

The !#LDELETE command deletes an object module specified in the identification parameter from the designated li
brary as shown in Figure 27. 

lEaD 

! #LDELETE SL,LABS 

!RADEDIT 

! PAUSE KEY-IN SV,S 

!JOB 

Figure 27. Delete a Library Routine 
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HOW TO RECOVER UNUSED LIBRARY SPACE 

It is sometimes desirable to recover previously used file space and to make it available for storing other library 
routines after a routine has been deleted. The ! #LSQU EEZE command is used to release the space. The 
!#LSQU EEZE command shown in Figure 28 woul d restore the space formerl y occupied by the LABS routine in 
the System library files. This command does not change the file sizes allocated but compacts the data in the 
files. 

!FIN 

! #LSQUEEZE SL 

! #LDELETE SL,LABS 

! PAUSE KEY-IN SY,S 

!JOB 

Figure 28. Library Space Recovery 

HOW TO REPLACE A LIBRARY MODULE 

During the evolution of a routine in a User Library, updates are very common in the development of the final oper
ational version. The !#LREPLACE command is used to replace an existing intermediate object module with a newer 
object module bearing the same identification. This command will not recover the space occupied by the replaced 
routine. 

Example: 

Assume a BASIC library routine called "BUB" that is located in the User Library. To replace this routine with an 
updated version, the deck structure shown in Figure 29 woul d be used. (The example assumes that BI has been 
assigned to the card reader. ) 
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Figure 29. Replace Library Object Module 

Note that the space used by the original BLIB would not be recovered, and that the new BLIB would reside at the 
end of the current library. 
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5. HOW TO BUILD AN OVERLAY PROGRAM 

Use of the Overlay Loader with nonoverlay programs has been covered in the examples given in the FORTRAN and 
Extended Symbol chapters, and it is now necessary to discuss some of the ways the Loader can be used to create seg
mented (overlay) programs. 

The only purpose in overlaying a program is to minimize core size requirements. Since there is a sl ight degradation 
in response time for each level of overlay within a foreground program, it is obvious that such programs should not 
have any more overlay levels than are absolutely necessary. 

Before discussing overlay techniques, the term ROM must be fully defined: 

• A ROM is a Relocatable Object Module, and is the only type of object module the Overlay Loader will 
accept to form the load module. IIRelocatable II means that the execution location in core for the module 
is determined by the Overlay Loader at load time. 

The other type of object module is absolute; that is, a fixed execution location is determined by the user at assembly 
time through use of the Extended Symbol (or SYMBOL) ASECT and ORG directives. Absolute object modules are 
loaded by another processor called the Absolute Loader, and are always executed in the same predetermined loca
tion unless reassembled. 

Every reference to lIobject module ll in this manual always means ROM, and this term is used by the Overlay Loader 
when it outputs a load map or diagnostic message. 

The material and examples in this chapter do not encompass every option available to the Loader user; rather, the 
chapter presents what constitutes an overlay'job and the interface between basic structures and several Loader con
trol commands. A study of the examples will make the significance of other Loader commands and options (i.e., the 
! $TCB command described in later chapters) more apparent. 

The presence or absence of a single option on the !OLOAD command (F), causes the Loader to define the resulting 
program as either background or foreground (B is the default case). All of the examples below are relevant to both 
foreground and background programs. 

Assume the following program: 

1. A Main program that calls in subroutines A, B, and C. 

2. Subroutine A does not reference subroutines B or C. 

3. Subroutine B does not reference subroutines A or C. 

3. Subroutine C does not reference subroutines A or B. 

This program could be loaded into memory in nonoverlay form to appear as 

Main A B c 

low memory I-I----------------------------------il high memory 
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However, if the program was segmented, it would take up less memory and would appear as 

A 
(segment 1) 

Main B 
(root segment 0) (segment 2) 

C 
(segment 3) 

10'# memory 1-1-------------------11 high memory 

where subroutine A is not residing in memory (saved on the RAD) when subroutine B is in memory, and vice versa. 
Note that the root segment is always resident and is designated as segment o. The Main program (root segment) has 
the responsibility of calling the appropriate segment into memory (see "Communication Between Segments" later in 
this chapter). 

Assuming the object modules are residing on the GO file in the order Main, A, B, and C, the structure could be 
created by the following set of commands which woul d create the overlay structure pictured above: 

!XEQ 

! $ROOT , ,GO,l 

!OLOAD 3,B 

The structure is defined by the !$ROOT and !$SEG cards. The first !$SEG card defines segment number 1 to be 
connected to segment number 0 {root}. The second and third !$SEG cards correspondingly define segments number 2 
and 3, also connected to the root. 

For another example, assume the following program: 

1. A Main program that calls subroutines A and B. 

2. Subroutine A calls subroutine C. 

3. Subroutine B calls subroutine C. 

4. Subroutine A does not reference subroutine B. 
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This program could be segmented in the following manner: 

A 
(segment 1) 

B 
(segment 2) 

low 1-1---------------11 high 

allowing C to be available to both subroutines A and B without an extra copy of C being necessary. However, as
suming the order on the GO fil e is Main, C, A, and B, then using the previous control command string woul d give 
you the unworkable structure 

C 
(segment 1) 

Main A 
(root) (segment 2) 

B 
(segment 3) 

which does not allow the required calls. Since this structure does not allow A or B to call C and then to continue 
upon CiS return (C wi" wipe out A or B in memory), it is obvious that the simple structure we used above cannot be 
used to solve this problem. 

The following control cards could be used instead: 

! $SEG 2,O,GO,1 

! $SEG 1,O,GO,1 

!$ROOT "GO,2 

!OLOAD 2 

These commands put the first two routines on the OV fil e in the root, and one routine each in segments 1 and 2. 

Full understanding of the use of the !$ROOT and !$SEG commands is imperative for segmenting programs. Assume 
the following program: 

1. The Main program calls in subroutines A and B. 

2. Subroutine A does not reference routine B. 

3. Subroutine B does not reference routine A. 

4. Main, A, and B are to be input via the card reader (the binary input (BI) device). 
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The following command structure is needed {assuming the commands are also read in from the card reader}: 

Whenever more than one modul e is needed, the number is required, or a bl ank may be used. If no number is speci
fied the Loader expects to encounter an ! EOD command following the object modules before any other Loader sub
command is encountered. Let's consider a slightly more complex example. 

Assume the following program: 

1. A Main program that calls subroutines A and B. 

2. Subroutine A calls subroutine C, D, and E. 

3. Subroutine B calls subroutine C. 

4. Subroutine D calls subroutine C. 

5. Subroutine E does not reference any routine. 

6. Main, A, and E are on magnetic tape; oplabel MO. 

7. C and D are on magnetic tape; oplabel M 1. 

8. B is on the GO file. 
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Thus, the overlay structure is 
D ~ 

(segment 2) I 

A 
(segment 1) 

E J 

(segment 3) I I 

Main I C 

B J 

(segment 4) I' 

low I~ __________________________________________ ~ 
I high 

and the control command sequence caul d be 

!$END 

! $SEG 1 ,O,MO, 1 

!$LD Ml,l 

, ,MO, 1 

!OLOAD 4 

Whenever the overlay structure is such that some segments I ink to segments other than the root, there is an order to 
the !$SEG commands that must be followed. This can be illustrated by the following example: 

J 
(segment 2) I 

(segment 1) 

I 
(root) (segment 3) I 

I 

(segment 4) I 
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As soon as segment 1 is defined, all segments I inking to it (segments 2 and 3) must be defined via ! $SEG commands 
before! $SEG 4,0, can be encountered. 

Let's take a look at another example: 
I 

(segment 3) I 

(segment 2) 

J 

(segment 1) (segment 4) I 

I (segment 5) I 

I (root) I 

(segment 7) I 

J 
(segment 8) I 

(segment 6) I 

(segment 9) I 

I 
(segment 10) I 

In this case, after a ! $SEG 1 command is input, either segment 2 or 5 may be defined. However, whenever seg
ment 2 is defined, then all segments I inked to it must be I isted next (i. e., segments 3 and 4). There are several 
deck structures that could be used to construct the overlay above. One of these deck structures is shown below: 

These two segment defini
tions could be interchanged 
since no other segment links 
to them. 

~ !$SEG 4,2,xx,l 

L f! $S EG 3,2,xx, l 

!$SEG 2,l,xx,l 

"xx,l 

!OLOAD10 

where xx denotes the oplabel where the module resides 
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Another deck structure is as follows: 

!$SEG 5,1 ,xx, 1 

However, the following deck structure cannot be used since all segments linked to 2 must follow the !$SEG 2, l,xx, 1 
command: 

! $SEG 3,2,xx,1 

There is no general rule regarding the actual numbers selected to designate segments. Segment numbers may range 
from 1 to 255 and may appear in any order. The segment numbers are needed for communication between the user 
program and the Segment Loader during execution. 
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COMMUNICATION BETWEEN SEGMENTS 

Since the primary objective of the RBM operating system is to provide fast response and processing for real-time 
users, there is no automatic loading of overlay segments as the result of a reference to a routine within the segment. 
If the root only occasionally uses segment 2 in the following structure, then it can call it in, use it, and continue 
on without having waited for segments 1 and 20 to be brought in. 

I 

(segment 2) I 

(segment 20) 

I 

(segment 1) (segment 87) I 

I I 
I (root) (segment 14) I 

I 

(segment 17) I 

This permits the real-time user to manage the overlay process in the most efficient manner for a given program. 

The exact procedure for calling in segments is different for the FORTRAN user and the assembly language user. 

FORTRAN SEGMENT CALLS 

A FORTRAN user calls in a segment with the statement 

CALL SEGLD (I) 

or 

CALL SEGLD (I, J) 

where 

is the segment number. 

J is the file from which the segment is to be loaded. 

In the case where J is not designated, the PI (processor input) fi Ie is assumed. 

However, a call to SEGLDX causes an overlay segment to be loaded and control transferred to the transfer address 
of the segment. A call to SEGLDX has the form 

CALL SEGLDX (I) 

or 

CALL SEGLDX (I, J) 

where 

is the segment number. 

J is the fil e from which the segment is to be loaded. 

In the case where J is not designated, the PI (processor input) file is assumed. 
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ASSEMBLY SEGMENT CALLS 

Assembly language users are provi ded with system calls for segment loading and have a choice as to how to load 
segments. They may 

1. Load the segment and return. 

2. Load the segment and transfer to the "starting address" of the segment upon completion of the load. The 
"starting address" is defined by a label on the END card of the assembly, or the FWA (first word address) 
of the segment by default. 

3. In foreground, request the segment to be loaded and do not wait for the load to take place. Instead, spe
cifya II0ading-complete" receiver, which would transfer to a specified address when the I/O interrupt be
comes active (any processing performed by the "end-action II routine should be kept as short as possible to 
prevent degradation of response time for lower-priori ty interrupts). 

SEGMENT COMMUNICATION USING COMMON AREAS 

Blank COMMO N 

Both FORTRAN and Extended Symbol users can define blank COMMON either in their source code or through the 
cmn parameter on the ! OLOAD card. 

In allocating COMMa N for background programs, the Loader compares the cmn parameter with the first nonzero 
COMMON size allocation value encountered in loading and employs the larger of these two values. The COM
MON base is set by subtracting the COMMON size from the upper limit of core memory. 

For foreground programs having blank COMMON, cmn denotes the base (i.e., first word address) of COMMON. 
In this case, the effective upper limit of the program is cmn plus the largest COMMON size allocation value en
countered in loading. For foreground programs in which COMMON is allocated but in which cmn has not been spe
cified, the COMMON base is set by subtracting the first nonzero COMMON size allocation value encountered from 
the upper limit of nonresident foreground memory. Foreground programs that have no COMMON may use the cmn 
parameter to specify an upper I imit for the program, if the address specified by cmn is higher than the root FWA. If 
the program exceeds the limit, the Loader aborts. The default value of the upper I imit for foreground programs with
out COMMON is the upper limit of the nonresident foreground area. 

Foreground loads may specify the cmn parameter at a lower address than the root FWA; in which case, the end of 
nonresident foreground is the program upper limit. A check is made at the end of the load to determine whether the 
COMMON allotment overlaps the root. If it does, the warning message "OLERR Ca" is printed out but no error 
severity I evel is set. 

See also the subsection "Blank COMMON Storage" in Chapter 8 of this manual. 

Labeled COMMON 

Labeled COMMON is defined in the source code and labeled COMMON areas precede the module in which they 
are first defined. 

• A fresh copy of the labeled COMMON is brought into memory as each segment with a labeled COMMON 
is loaded. This means that any data the programmer wishes to save between segments that occupy the same 
memory area should be either in blank COMMON, or in labeled COMMON in a segment that does not get 
overlaid while the data is still pertinent. 

• The FORTRAN IV compiler is capable of using labeled COMMON directly, but Extended Symbol must first 
REF the labeled COMMa N block, which will give the start address of the block; access is achieved through 
the source code. 
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HOW TO READ A LOAD MAP 

The primary intention in outputting a load map is to simpl ify the programmer's job when a set of programs fails to 
satisfy all external references. Additionally, various size and location information is output to simplify the task of 
file and core allocation. The Load Map shown in Figure 30 is the most extensive of the map options and is produced 
by the contro I command ! $M L. 

For the !$MP command, the same information is output except for the Publ ic Library and Monitor service DEFs (the 
list of names between the lines marked OVERLAY TASK and ROOT), and Library symbols (those denoted by an L 
immediately to the right of the symbol name; X:ERROR, for instance). 

The !$MS command outputs only the header lines; that is, the lines marked OVERLAY TASK, ROOT, SEGMENT, 
ERRSEV, and END MAP. 

All size and location data is in hexadecimal. The terms "core location" and "address" in this discussion refer to 
core locations at execution time. 

The OVERLAY TASK line gives information about the entire overlay cluster. From left to right, the various items 
have the following meaning: 

BA: 

ORG: 

HLOC: 

CBAS: 

CSIZ: 

UMEM: 

SECT: 

means a background program; foreground programs cause "FO" to be printed. A map will show 
either BA or FO. 

means first (lowest) core location of the program's temporary stack (see RBM Reference Manual). 

means highest core location of the overlay cluster. 

means first core location of the blank COMMON area. 

means size of the blank COMMON area in words. 

means unused memory, the difference between HLOC and eBAS (the amount of memory available 
to the Monitor for blocking buffers). 

means the number of sectors required by the overlay cluster in a processor file. 

Following the first line is a list of all the DEFs in the Public Library. These are flagged by the P to the right of the 
name; the M indicates that this r'outine was placed in the Publ ic Library in the Main mode. The other possible modes 
are Extended and Basic and are flagged by an E and a B, respectively. 

The remainder of the DEFs in this I ist are the various Monitor service routines. The numbers to the right of the Pub
lic Library DEFs and the Monitor service DEFs are their respective core locations in the Monitor's "Transfer Vector 
Table" (see Chapter 4 of the RBM Reference Manual), which is a table maintained by the Monitor for its own use in 
locating these routines. 

This list will not change (for any load with an !SML command) unless a user changes the Public Library, in 
which case only the Public Library DEFs will change. 

The ROOT line contains the following information: 

ORG: 

LWA: 

means the first core location of the root's program section for a background program, or the loca
tion of the TCB for a foreground program. 

means the last core location of the root (including whatever I ibrary routines are in the root). 
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/"lAP 

eV£RLAV TASK SA 5RG.6000 HLeC.61F3 CBAS.FOOO CSIZ=OOOO UMEM=8EOC SECT.0006 

DEF PL:SECT p M lFBJ.t 
DEF PL:RDCHK p M irBS 
DEF PL:WTCHK p M 1F66 
DEF PL:READ p M iF'B7 
DEF PLPtJRrTE p M lF88 
DEF M:FSAVE 047C 
DEF D:KEV lF9B 
DEF D:CARD iF 9C 
DEF D:SNAP lF9D 
DEF M:SAVE lF96 
DEF M:EXIT lF97 
DEF M:IBEX lF9E 
DEI=' M:READ 1FAQ 
DEF M:itJRITE lFAl 
DEF V.:CT~L lFA2 
PEF ~:TE..~'" iF A4 
DEF !"l:DATIME lF' A3 
DEF M:ASeRT lFAS 
DEF "'l:HEXI'" lFA6 
DEF :'1: I NHE X lr A 7 
DEF M:CK~FST iFA8 
DEF '1:LeAD 1F 98 
DEF' M:':}PEN 11="A9 
DEF M:CL8SE lFAA 
DEF ~1:DKEYS If:AB 
DEF 1'·q~AIT l FAC 
DEF M:SEGLD lFAD 
DEF M:\)EFINE lFAE 
DEF ~:ASSTGN lFAF 
DEF M:epI="ILE lFBC 
DEF '-1; pep Hal 
OEF ~H~ES lF82 
DEF ~:DV\I l F83 
DEF ~:~SVP lF99 
DEF '-':D6w lF9A 
DEF "1:cec l F9F 

RB8r 8RG=6050 Lr..Aa6t B7 LEN.0168 T"A.6C50 SEv=oOOO ~V:L[JAD=6052 

DEF X:ERReR L s M 6114 
DEF X:DIR L s M 60ED 
DEF L:DIR L S M 6eED 
DEF L:ERRe R L 5 M £,114 
DEF M:PUSH L s M £,17 F 
DEF X:CK L s M 607A 
OEF L:CK L 5 M b07A 
OEF L:33R3 L s i:3 ~O61 
DEI=' L:33R2 L s B 6065 
DEF L:33Rl L S i::S 6069 
OEF ~V:LeAD I 6052 

P REF SEG2 I 0002 
p REF" SEGl I 0001 

DEI=" SUBl I 6C51 

SEGMENT IDENT NaDE eRG L.W.A LE.N TRio. SEV 
0001 0000 61B8 61F- 3 003C 610 ... COOC 

I.)EF" ~:sR L s M 61E3 
DEF .AINT L S B 61BA 
PEF LiAI"JT L S 1.:3 6188 
DEI=" SEGl I 61B8 

Figure 30. Loap Map Example 
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SEGMENT IDE\lT 
0002 

DEF 
DEF 
DEF 
DEF 
DEF 

F:RR~EV. 0000 

F"ND ~AP 

ET;lCOO·3:1 
10/20/71 1555 

I='rN 

~6DE ~RG 
0000 61"8 

X;3N 
L:3N 
M:SR 
ASS 
SE G2 

LwA LEN TRA SEV 
6108 0024 616~ 0000 

L S M 61C3 
L 5 M 61C3 
L S M 61CB 
L- S 8 6189 
I 61B8 

Figure 30. Load Map Example (cont.) 

LEN: means the overall root size in words. 

TRA: means the root's entry point, which is determined by the argument of the END statement in a 
program written in assembly language. 

5EY: means the error severity level; the highest error severity encountered in loading the root (either 
assembled or Loader-generated). 

OY:LOAD: means the OV Load Table location, which is a 5-word-per-entry table generated by the Loader 
at the end of the root's program section. It contains information to allow the Monitor to locate 
and load into core the segments of the program at run-time. If there is only a root, no OV Load 
Table is generated, and instead of a core location, the word NO NE is printed. 

Following the ROOT line is a list of DEFs and REFs encountered while loading the root (including library routines). 
Each symbol (name) is error-flagged or identified by one or two characters as follows: 

For DEFs: 

For REFs: 

D means duplicate. 

U means a DEF statement was declared (in the code) but no value was given (there was no label 
in the routine matching the argument of the DEF statement). 

LC means a Labeled COMMON block was defined. 

U means unsatisfied; the Loader could find no matching DEF while loading this path. 

P means a primary Reference (REF). 

5 means a secondary Reference (5REF). 

To the right or each name are from one to three characters denoting the input source for that name. An "L" signifies 
a library file, "5" signifies the System Library (a "U" would signify the Users Library and a "P" would signify Public 
Library), and a "B", "E", or "M" signifies Basic, Extended, or Main mode respectively. An "I" to the right of a 
DEF means that it was encountered during the program load of this segment; for a REF, the "I" means that a match
ing DEF was found in a higher level segment. 
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The numbers in the rightmost column denote the first core location of the routine containing that DEF or the segment 
number containing a DEF which matches that REF; i.e., primary REF SEG 1 is "satisfied II in segment number one. 

Note that there are several pairs of Library routines whose core addresses are the same, e.g., X:DIR and L:DIR. 
This signifies that these are different DEFs (entry points) in a single module. 

When the Loader satisfies an external REF in the same segment, the symbol table entry for that REF is changed to a 
DEF. Thus, although the program whose map is illustrated contained a REF SUBl in the root, it is not printed since 
a DEF SUBl was encountered during root loading. 

The information in a SEGMENT I ine differs from that in a ROOT I ine in three items, as follows: 

1. There is no OY:LOAD entry since only the root has an OY:LOAD table. 

2. The number under the IDENT is the first parameter on the !$SEG card for that segment. It is the Seg
ment Identifier. 

3. The number under the "NODE" is the second parameter on the !$SEG card. It is the segment identifier of 
that segment to which this segment is connected. 

The listed information following the SEGMENT line is exactly similar to that following a ROOT line. 

The ERRSEY line shows the highest error severity level encountered during the entire program load and the END 
MAP line is self-explanatory. 

LOADER PROCESS SUMMARY 

During the loading process, the Loader must exist in background core together with the absolute load module version 
of the segment being loaded, plus various tables that are required for linkage. One such table is the Segment Table, 
which requires 10 (N+2) cells, where N is the number of segments specified on the !OLOAD card. The Segment 
Table is located at the highest available core locations. 

Below the Segment Table are the various Symbol Tables, all of which have the same entry format. Each entry refers 
to a specific definition or reference. The entries are of variable length, from five to eight words, depending on the 
number of characters in the DEF or REF symbol. 

The Permanent Symbol Table is a set of DEFs of the Monitor service routines; typically 230 words in length where 
there is no Public Library. If a Public Library exists, a Permanent Symbol Table entry is generated for each DEF in 
the I ibrary, again from five to eight words in length. 

Below the Permanent Symbol Table, the Loader builds the Root Symbol Table, working from high core toward low 
core. The Loader is also building the absolute core image of the program, working from low core toward high core. 
(If the program should meet the Symbol Table, table overflow occurs and the load is aborted.) Whenever a REF is 
seen in the root, the currently existing Symbol Tables are searched for a satisfying DEF. If none is found, the REF 
is added to the root symbol table. 

When the program portion of the root is completely loaded, it is written to the OY file, and the specified or default 
I ibraries are searched for any unsatisfied REFs in the Symbol Table. When all the library DEFs that match any un
satisfied REFs have been loaded, the I ibrary portion of the root is written to the OY file. Segment loading then 
proceeds similarly to the root loading, except that the program and I ibrary portions of each segment are loaded to
gether, and then written to the OY file. The Segment Symbol Tables are built below the Root Symbol Table (again 
working from high toward low core) until a new path (or portion of a path) is begun, at which time that part of the 
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Segment Symbol Table that refers to the just-completed path is written to a temporary file (oplabel XI). Assuming 
no overflow or other problems are encountered, this process continues until the program is completely loaded. Then 
PASS2 of the load process commences, where all forward REFs are linked and any requested maps are output. 

The important factors in segmenting a program are these: 

• Program segment sizes (including I ibrary code) 

• Number of segments 

• Number of DEFs and REFs in each ROM 

• Response time requirements 

The diagram in Figure 31 illustrates the layout of core during the load process. 

High 
Control Card Buffer 

Segment Table 

Monitor Service Routine Table 

~----- ---- - -

Public Library Table 

Root Symbol Table 

-- - - - - -- - --

Segment/Path Symbol Table 

-- - - - -- - - --

~-- - -- - - - - -

Segment Under Load 

Overlay (::::: 3000 cells) Loader 

---- --- - -- --

Low 

Resident J 
Background 

Foreground 

... .... 

Figure 31. Core Layout During Loading 
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6. HOW TO USE MONITOR SERVICE ROUTINES 

Most previous discussions and examples in this manual concerning communication with the Monitor have dealt with 
control commands and key-ins used in the background job stream prior to execution of an operational program. 
Monitor service routines are the means used by an executing program or task to request I/O, privileged operations, 
or other services from the Monitor. Service routines are the only means by which the background can perform I/O 
or privileged instructions. 

You request a Monitor service routine by establishing a pointer to an argument list, a return link such as a register 
copy and increment (RCPYI), and a branch instruction coded into your source program prior to assembly, or com
pilation. The techniques for branching to the service routines are primaril y the concern of assembly language users, 
since FORTRAN users normally call these services indirectl y through FORTRAN Library routines. Note however, 
that Xerox ANS FORTRAN has an in-I ine assembl y language capabi lity via an liS II in column 1, and this capabil ity 
permits branches to Monitor service routines without going through the FORTRAN Library. 

There are three easy ways to access the various Monitor service routines. The first two are basically the same; that 
is, by branching indirectly through a fixed RBM Zero Table location. These locations are obtained by referencing 
the Transfer Vector Table for Monitor Services in Chapter 4 of the RBM Reference Manual. This table will supply 
the address associated with the desired routine, and Note 1 in the same table gives the steps to follow when coding. 

In small developmental routines, it is often convenient to use the actual Zero Table location, as in this call to 
M:WRITE: 

LDX =ARGLIST (pointer to argument list) 

RCPYI P,L (return link) 

B *X'CA' (indirect branch through vector location) 

ARGLIST DATA X '3005 1
, 'LO', BUFF, 18 (parameter list) 

BUFF TEXT '1)WRITE TO PRINTER I 

However, in larger and more complex programs, it is often convenient to create a set of EQU directives that equate 
mnemonically satisfying labels to the appropriate core locations, as follows: 

V:READ EQU X'C9 1 

} Definition of Zero Table locations 
V:WRITE EQU X'CA' 

LDX =ARGLIST 

) RCPYI P,L Program section: call to M:READ 

B *V:READ 

As shown above, the branch indirect is accomplished exactly as in the first example; the difference being only 
one of convenience. 
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The third method is to reference the appropriate service routine at the beginning of each program element. This is 
easier from a programming standpoint, since you need not know the fixed core locations. The Loader will create 
the required linkage at load time. However, the cost of such simplicity is increased core requirements. During 
loading, each REF creates an additional Symbol Table entry. (See the Overlay Loader, Chapter 7 in the RBM 
Reference Manual and Chapter 5 in this manual.) Programs using this technique may require reloading when a new 
version of the Monitor is installed. An example of this type of access would be 

(Routi ne start) 

REF M:READ, M:WRITE, M:LOAD, •.• 

RCPYI P,X 

B LABEL 

DATA X 138011, IX 11, BUFF, 360, 2 

LABEL RCPYI P,L 

B M:WRITE 

The above example also illustrates a slightly different method of entering the address of the M:WRITE argument list 
into the index (X) register. 

All of the examples described assume the existance of a set of register equates in the program of the form: 

P 
L 

EQU 
EQU 
etc. 

1 
2 

See Chapter 4 of the RBM Reference Manual for detailed descriptions and argument list requirements for each Moni
tor service routine. 

Figure 32 shows assembled examples of some of the most frequentl y used service routines (see also Chapter 9 in this 
manual, "How To Use Standard Procedure Files "). Note that none of the examples are set up to be executed, but 
only illustrate how Monitor service routines are coded within a program. 

1 REF MIWRITEIMIREAO,MICTRL'MIDATrMEIM:AB~~T,M:HEXIN 
2 REF MI~eAOIM:e~EN,M:ASSTGN,M:SEG~OIM:O~~I~£,M:RES 
3 REF tJVlUtAO 
... 0001 A ", EQU 1 
5 0002 A L. EQU 2 
6 0003 A T EQU 3 
7 * 8 • T~IS RSUTINE WILL. W~ I TE Te T'ty 
9 * 10 0000 C85E A L.DX -LIsT1 

11 0001 75141 A ~CPYI P,L 
12 0002 '+C50 A 8 M:W~ITE 
13 0003 3005 A LIST1 OATA X'3005"'8C',MESS,10 

000 ... 06C3 A 
0005 0007 R 
0006 00014 A 

1 ... 0007 40C8 A MESS TEXT ' Hr THERE' 
0008 C9'+0 A 
0009 E3C8 A 
00014 C509 A. 
0008 C5'+0 A 

Figure 32. Monitor Service Routine Examples 
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15 • 
16 It T~IS RBUTINE wIL~ READ AN EBr-Drr CARD 
17 • 
18 OOOC C854 A 1.0X -LIsT2 
19 0000 75141 A ~CPYI P,~ 
20 OOOE '+C53 A B MaREAD 
21 OOOF" 3006 A LIST2 DATA X'3006','St"BUFF,80 

0010 E2C9 A 
0011 0013 R 
0012 0050 A 

22 0013 BUFF RES ~O 
23 • 
21+ • THIS W IL.~ REw I NO THE MT eNLINE 
25 It 

26 0038 C827 A ~D)( -LIsT3 
27 003C 75141 A RCPYt P,l. 
28 0030 I+C26 A B M:CTRL 
29 003E 003B A 1.1ST3 DATA x' 3B', 'A I' 

003F C1C9 A 
30 • 
31 It T~IS R6UTINE WILL. F tND THE TTMe: 
32 It 

33 0040 C82"+ A 1.0X -LlsT"+ 
31+ 00~1 15Al A RCPYI P,I. 
35 00"+2 4C23 A B M:DATIME 
36 001+3 COOO A ~IST,+ DATA XICOOO' 
37 OO~~ 00~!5 R ADR!.. TIMe: 
38 00~5 TIME ~ES 7 
39 It 

"+0 It THIS PRINTS ABeRT C6DE AB AT L~C 123~ 
~1 It 

"+2 OO"+C 8811. A I.DA -123~ 
"+3 00'+0 CB1A A LOX III'AB' 
~~ OO~E 75141 A RCPYI P,L 
~5 OOI+F '+C19 A B MIAB6RT 
~6 • 
~7 It CeNVERT R6IJTINE 
48 • 
"9 0050 C1C2 A INPUT DATA 'AS" 'CO' TR Br: C6~VERTEO 

0051 C3C"+ A 
50 0052 1096 A 1.00 INPUT 

0053 89FO A 
51 005"+ 7SAl A RCPY! P,I. 
52 0055 4C1"+ A B MZHEXIN ACC RETU~NEO WIT~ XIABCD' 
53 .. 
5~ .. T6 LeAD PReGRAM FILE 
55 .. 
56 0056 C81- A 1.0X -LIST5 
57 0057 75141 A RCPYI P,~ 

58 0058 '+C13 A B MII.BAD WTLL CAUSE THE ~eAD!~G eF THE. Re~T 
59 0059 1+000 A LISTS DATA XI"+OOO' SF T~E LeAD M~DULE 'FtLE' AT THE 
60 00514 C6C9 A OATA,4+ 'FILE CANTRBl TASK LEVfL 

005B 03C5 A 
005C "+0"+0 A 
0050 "+0"+0 A 

61 OOSE 0003 R L,P66L 
OOSF 0000 E 
0060 OOOF R 
0061 0000 E 
0062 003E R 
0063 0000 E 
006"+ 00"+3 R 
0065 0000 E 
0066 0,,+02 A 
0067 elC2 A 
0068 0000 E 
0069 0000 E 
00614 0059 R 
0068 0000 E 

62 .. 
63 * THIS R6UTINE wtL~ e?EN A FILE" 6_ .. 
65 006C C8BA A LOX 8LIsT6 

Figure 32. Monitor Service Routine Examples (cont.) 
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66 0060 7514.1 A ~C~YI P,L. e~~N A ~rLE WTTH BL.eCKING BU~FER 
67 006E 4IoC89 A. B MISPEN S~~CTFIED 6F LAB~L PQ IS ALREADY 
68 006F ~ooo A LIST6 DATA X'~OOO"'PQ' ASSrG"'ED T6 FTL.E 

0070 0708 A 
69 0071 0072 R DATA BL.eCKER 
70 0072 BLeCI(ER RES 180 BU~FF~ SrZE F'eF( '20X ~AD 
11 0126 006r: ~ L.peeL. 

0127 0000 E 
72 • 
73 ... THIS RSUTINE wILL. A.SSIGN AN ePLABLE 
71t ... 
75 0128 CSDO A LDX ~L.IST7 
76 0129 7514.1 A RCPYI P,l. 
77 01?,6. .Ccr: A B M:ASSIGN NAMEn HELl.6 IN USER PRSCEsseR 
78 012B COOS A L.IST7 GENlc.dO,4 3,0,5 
79 012C D7D8 A DATA 'PCiH, T£MP 

0120 0132 R 
80 O12E CSC5 A DATAl 4 'HELL.e 

012F' D3D3 A 
0130 0640 A 
0131 4040 A 

81 0132 TEMP ~ES 180 U~ED BY ~'ASSrGN ~6~ AREA DICTle"'ARY 
82 * 83 * TI-lIS ReUTINE WILL. LetAD 1\ l.SAn A SEG~ENT TNTA CeRE 
84 * 
85 01E6 CS1~ A L.OX -L.IsT8 
86 01E7 7514.1 A RCPY! P,L. BRINn IN SEGM~NT 1 A~D 
87 01E8 4+C13 A S MISEGLD TRAN~F'EQ CeNTReL Te IT. 
88 01E9 COOl A LISTS DATA X' COO 1 " 'P I ' py T~ AUTBMATTCALLY ASSIGNED 

OlEA D7C9 A. 
89 01E8 0000 E AORL 6V, U3AO r:AR 9ACKGReUND PReGRA~ 
90 * 91 * THIS ReUNT! NE: WI L.L CREATE A RANneM FtL.E 
92 ... 
93 01EC C810 A L.OX -LIST9 
9~ OlED 7514.1 A RCPYJ P,L. CREATE A RAND"M FILE eF 10 
95 01EE 4COF A B M.DE~INE GRANLJLER IN ST, THE FILE WILL 
96 OlEF C04+0 A LIST9 GENI3,6,1,6 610,1,0 ~AVE: AN e~ L.SEL 146 A~D A 
97 OlFO C1C2 

'" 
DATA '14.6,,10,720 GRANULE SIZE SF 2 720X S~CTeRS 

Olr:l 00014. A 
01F2 0200 A 

98 * 99 * RE.E~TRANT ReUTINE 
100 • 
101 01F3 7581 A RCFlYI P,T 
102 01F .. 4tC03 A B *$+3 A R£.£NTRANT ~UBReUTINE CAL.l Te 
103 01J:5 0005 A DATA 5 M:RE~ T~E SUBR6UTrNE WIL.L STBRE 
10 .. 01J:6 0000 A DATA 0 Twa VARIABLE r~ TEMP STACK 
105 01F'7 0000 E DATA MIR£S 
106 01F8 012B R END 

01r:9 0000 E 
01F'A 01E9 R 
01F'B 0000 E 
01Fe 01EF R 
01F'0 0000 E 

Figure 32. Monitor Service Routine Examples (cont.) 
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7. HOW TO USE UTILITY 

The Utility Processor is a highly flexible collection of media operation routines composed of six primary functions: 
Copy, Dump, three Editors and a Control Function. Each function operates independently of the others but in con
junction with a root called the Utility Executive. The Executive scans the IUTILITY control command for param
eters and if none are found, it is assumed that only the control functions are desired by the user. 

The Control Function Processor consists of file and record positioning commands, pause and message commands, an 
assignment command, a write file mark command, and a prestore command. 

When a specific routine is requested, the Executive checks to see that it is available, reads it into core, and ini
tializes the required tables and flags. The Executive is used to process all utility control commands, which are 
always read using the S I operational label. 

The "prestore" function requires an additional explanation. Prestore is a condition wherein the control commands, 
or sometimes data, is "prestored" in a temporary file (X5) for later processing. The prestore function may be in
voked by control command (! *PRESTORE) or, under certain conditions, by the requested routine. Termination of 
the prestore function occurs when a I EOD, I *END, or file mark is encountered. The conditions under which pre
store is invoked will be discussed more fully in the description of the Utility routines. 

All of the Utility routines share the use of certain operational labels: SI, UI, UO, LO, DO, OC, and BI. Several 
functions will optionally accept user-supplied operational labels, and these cases will be described in the individual 
descriptions. 

Before going on to discussions and examples of the various functions, three points should be mentioned about the 
material covered in this chapter: 

• When using any of the functions for the first time, you should supplement the material in this chapter with 
study of the appropriate subchapter in the Uti! ity section of the RBM Reference Manual (Chapter 9). 

• All Utility examples in this chapter show IASSIGN cards with device mnemonic operational labels instead 
of device file numbers in the device assignments. This is a SYSGEN-implemented capabil ity that is rec
ommended where a number of intermittent users are on the system, and particularly if a large number of 
Utility jobs are being run. See Chapter 19, "How To Assign and Use Device Operational Labels II in this 
manual for more details. 

• In these examples, IEOD cards may be replaced by I *END cards. 

HOW TO COpy AND VERIFY 

The Copy routine is called by a IUTILITY COpy command to copy information from one device to another device 
and, optionally, to verify (compare) the copies. Note that RAD or disk pack files are also considered IIdevices li

• 

Copy requires a I*OPLBS command to define the output device{s). This command must precede any file positioning 
or processing commands, but must follow a I *PRESTORE command (if present), and may follow I *ASSIG N commands. 
Data to be copied is always input from the UI device. The UI assignment must be specified on an !ASSIGN or 
I *ASSIGN command, if different from the SYSGEN assignment. The copies are output on the device{s) specified 
on the I *OPLBS command. A command string may contain more than one I*OPLBS command. In the verify func
tion, Copy uses oplabel X4 as one input, and the oplabel specified on the last prior I *OPLBS command as the 
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other input; or, data from X4 is compared to an in-core buffer if the CORE parameter was used on the IUTILITY 
COpy command. If UI and SI are assigned to the same device (or device file number, if the device is a RAD), SI 
is prestored. The number of records and files copied or verified is output to the DO device upon completion. 

HOW TO COpy CARD READER INPUT TO LINE PRINTER 

The example illustrated in Figure 33 will read one file from a card reader and list the contents of the file on 
the I ine printer. 

Figure 33. Copy Card Input to Line Printer 

The IASSIGN card assigns UI to the permanent operational label CR. Note that CR is a SYSGEN-defined label 
assigned to the file number (DFN) associated with the card reader. If device mnemonic operational labels were not 
implemented at the local facility, UI would have to be assigned to the DFN {e. g., 2} or another less-easily remem
bered operational label assignment to the card reader DFN. 

The IUTILITY COpy card calls in the Utility Executive and the Executive calls in the Copy routine. Since the 
CORE option is not specified, a copy of the input wi" not be stored in core memory. 

The I*OPLBS card specifies that the output device for the copy is to be the line printer (LP). At this point, the 
Copy routine determines if prest ore should be invoked. Since the control commands (SI) and the Utility inputs (UI) 
oplabels are assigned to the same device (card reader), prestore will be used. The control commands, through the 
first I EOD card, will be written on temporary RAD file X5. The control commands are now read and executed as 
though oplabel SI had been assigned to X5. 

The I *COPY card causes the records from the card reader to be written to the I ine printer until one compl ete fil e is 
copied (specified by the F parameter). If "R" was specified instead of "F", one record would be copied. The sec
ond lEaD card indicates end of file for the card reader inputs. The lEaD following the! *COPY card not only 
term inates prestore, but will cause Util ity to exit when read from X5. 

If we had wanted to copy from paper tape (for instance) to the line printer, the !ASSIGN card would be 
changed to read UI=PT, and the input would be followed by an IEOD (NL). Since SI and UI would be as
signed to different devices, no prestore would be used. 

60 How to Copy and Verify 



HOW TO COpy AND VERIFY FROM A RAD FILE TO PAPER TAPE 

In the example in Figure 34, the input to be copied on paper tape is located in a user-defined permanent RAD file 
called COPT in the U D (User Data) area. 

!EOD 

! *REWIND UI 

! *PAUSE LOAD PT TO VERIFY 

! *COPY F 

! *OPLBS PT 

! UTILITY COpy 

--....... -I!ASSIGN X4=COPT,UD 

!JOB 

Figure 34. Copy and Verify File from RAD Area to Paper Tape 

The first! ASSIG N command defines the input IIdevice II from which the data is to be copied as file COPT in the U D 
area of the RAD. The UI device must always be defined when using the COpy routine. This may be done either at 
SYSGEN or at run-time. ---

The second ! ASSIG N card defines X4 to also be fi Ie COPT in the UD area. This card also causes adjustment of the 
byte count (from the COPT input) to 80 or 120 bytes before being copied to paper tape. The byte count depends on 
the contents of the first byte in the data to be copied. Note that non-standard binary can be copied to or from 
paper tape by specifying the byte count in the BIN mode on either the! *COPY or the ! *VERIFY commands. See 
the COpy run-time discussion in Utility Chapter of the RBM Reference Manual. 

The! *OPLBS card specifies that the output device for the copy is to be paper tape (SYSG EN-defined device mne
monic operational label PT). 

The! *COPY card specifies that a file (F) is to be copied rather than a record (R), and by default, specifies that a 
single file is to be read. 

The! *PAUSE card causes the system to go into a wait state to give the operator time to rewind and load the paper 
tape output for verification. 

The ! *REWIN D UI card causes the RAD to IIrewind II to the beginning of the fi Ie prior to the verify process. Since 
UI and X4 are assigned to the same device, the card could alternatively specify !*REWIND X4. 

The ! *VERIFY card causes the two fil es to be verified (compared) to the end of one file (F). 

The ! EOD card causes control to be returned to the Monitor. 
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HOW TO COPY MAGNETIC TAPE TO MAGNEnC TAPE 

The example in Figure 35 will copy and verify all files from one magnetic tape to another until a double end-of-file 
is encountered. 

--___ -1 1 *VERIFY F,ALL,8192 

1 *REWIND M1 

l*REWIND UI 

1 *OPLBS M 1 

lUTILlTY COPY 

lASSIGN X4 = MO 

!JOB 

Figure 35. Copy and Verify Magnetic Tape to Magnetic Tape 

The first two !ASSIGN cards assign oplbs UI and X4 to the same magnetic tape input device (MO). 

The 1 *OPLBS card defines M 1 as the device that receives the copy output. 

The 1 *COPY card specifies that all files (ALL) are to be copied until a double EOF is encountered, and the double 
comma specifies that the FORM parameter is not being used since no output is to go to the line printer or keyboard/ 
printer. Since we will, in this example, assume that the maximum record size is not known, the maximum permis
sable record size of 8192 bytes is specified. If any record read exceeded this maximum, a "CALLING SEQUENCE 
ERROR II message would be output and Utility would abort with a UT abort code. 

The l*REWIND UI (or l*REWIND X4) and l*REWIND UO will rewind the MOand Ml magnetic tapes in prepara
tion for verification. 

The 1 *VERIFY card causes the MO and M 1 magnetic tapes to be read and compared. 

The two 1 *U NLOAD cards cause the tapes to be rewound and placed in manual mode. 

HOW TO COpy A FILE TO LINE PRINTER 

An example of how to copy the listing output from either an assembly or compilation to the line-printer is given in 
Figure 36. The input (UI) could be read in from a magnetic tape or compressed RAD file. 
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!EOD 

---"-1 ! *COPY F" FORM 

! *OPLBS LP 

! UTILITY COPY 

!JOB 

Figure 36. Copy LO File to Line Printer 

In this example, the !ASSIGN card assigns UI to a compressed RAD file called MYLO located in the User 
Data area. 

The! *OPLBS card defines the line printer (LP) as the device to receive the copy, and the ! *COPY card specifies 
by default (double comma) that one file is to be copied. The FORM parameter specifies that the first byte of each 
record is used for I ine printer or keyboard/printer format control and is not to be printed. 

HOW TO PRESTORE CONTROL COMMANDS 

The prestore mode separates control command functions from data when both are read in from the same input device, 
and then delays execution of the control commands until an !EOD is encountered. It does this by prestoring all 
Utility commands on a temporary RAD file (X5) up to an !EOD, and they are then executed in sequence to process 
the input data. 

When the Copy routine is being used, the Utility Executive will automatically prestore commands when SI and one 
or more other oplbs are assigned to the same input devicet but you can "force" prestore through the use of a Utility 
! *PRESTORE card. 

In the exampl e shown in Figure 37, a card deck is verified against a paper tape, with the data deck and control 
commands being read in from the same device. We will use the UO operational label as an input source to com
pare against X4. 

The first two !ASSIGN cards assign SI (for PRESTORE input) and UO (for VERIFY output) to the card reader (CR de
vice operational label), and the third !ASSIG N card assigns the X4 device to paper tape. 

The ! *PRESTORE command (which must always follow the ! UTILITY card) causes all Util ity control commands to be 
loaded into the X5 RAD file and delays their execution until the! EOD card following the !VERIFY card is read. 

t Prestore takes place under different conditions in the Object Module Editor. See the OMEDIT subsection in 
Chapter 9 of the RBM Reference Manual. 
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Figure 37. Verify Card Deck and Paper Tape with Forced Prestore 

The !*OPLB5 card defines UO as the output (in this case input) device, which is the card reader since UO was pre
viousl y assigned to CR. 

The ! *VERIFY card causes card deck to be read from UO and compared with the data written on paper tape 
(X4). 

HOW TO USE UTILITY DUMP 

The Dump routine will dump (print) records or files from one media onto any device you specify. You can also 
specify whether the dump is to be in EBCDIC or hexadecimal format. Dump is called by a !UTILITY DUMP command. 
If an operational label is specified with this command, input is from the device assigned to that label; otherwise, in
put is from the UI device. Output is always to the LO device. The number of records may be specified by the first 
parameter on a ! *DUMP command. If this parameter is blank, records will be dumped to a file mark. If the param
eter is ALL, records will be dumped to a double EOF. Maximum record size may also be specified. Input data may 
be binary or EBCDIC. If the HEX parameter is specified on the! *DUMP command, the output is in the hexadecimal 
equivalent of the input (assumed binary). If HEX is omitted, records with a binary indication in the first byte (see 
the DUMP description in Chapter 9, RBM Reference Manual) are output in hexadecimal; all others are assumed 
EBCDIC and are output as such. 

If 51 and the input device are assigned to the same device or RAD DFN, 51 is prestored. 

64 How to Use Utility Dump 



HOW TO DUMP A MAGNETIC TAPE 

The deck example given in Figure 38 will dump a magnetic tape assigned to operational label MT onto whatever 
device is assigned to LO (normally a line printer). 

I I FIN 

IIEOD 
--__ -:1 I*DUMP ALL 

--....... -1: !UTILITY DUMP MT 

IJOB 

-

-

Figure 38. Dump a Magnetic Tape 

The IUTILITY DUMP card calls in the Dump routine and specifies that input is to be read from MT. If an oplb was 
not specified, input woul d be read by default from the device to which UI is assigned. 

The I *DUMP card specifies that all records on the tape are to be dumped until a double EOF is encountered (ALL). 
Since neither the IImode" or "size" are specified, the default options of EBCDIC format for the output and the stan
dard record size (120 bytes) will be used. 

HOW TO DUMP A HAD FILE 

The exampl e given in Figure 39 will dump a user-defined sequential access RAD fil e called SAMP from the User 
Data area of the RAD. 

!EOD 

-----1 I *DUMP ,HEX,12000 

! UTILITY DUMP -----1 !ASSIGN UI=SAMP,UD 

!JOB 

Figure 39. Dump Sequential Access RAD File 
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The !ASSIGN card assigns UI to file SAMP, in the User Data (UD) area of the RAD. 

The lUTILITY dump card calls in the Dump routine and specifies the input device as UI by default, which for 
the length of this one job, is temporarily assigned to the SAMP file in the UD area. 

The l*DUMP card causes the SAMP file to be dumped out to the La operational label. The HEX parameter speci
fies the dump is to be in hexadecimal format and maximum size of the record to be dumped is 12000 bytes (which 
would probably be determined by looking at a RAD map). Note that since this is a sequential access file, themaxi
mum record size specified must be an even number. 

HOW TO USE THE OBJECT MODULE EDITOR 

Like the other two Utility Editors, the Object Module Editor generates or maintains (updates) magentic tape, paper 
tape, RAD, or disk pack files. As its name implies, OMEDIT works with binary object modules that are output from 
assembl ies or compilations. 

OMEDIT is called by a lUTILITY OMEDIT command and itself has no specification parameters. OMEDIT oper
ates in two modes: list and modify, and either a l*LIST or l*MODIFY card must follow the lUTILITY OMEDIT 
card. 

In the I ist mode, object modules are input from the UI device, checksum and sequencing are checked, and the 
"i dent II (the result of an IDNT directive in Extended Symbol or a subroutine name in FORTRAN) is printed on the 
LO device. Checksum and sequence errors are flagged on LO, and I isting continu~s. 

In the modify mode, two alternatives are available: GEN and INSERT. If the GEN parameter is used, it must be 
followed by a 1 *INSERT command. OMEDIT then copies binary records from SI to UO, performing checksum and 
sequence checks. 

If the INSERT parameter is used, it may be followed by 1 *INSERT commands or by 1 *DELETE commands. Sinaryrec
ords are copied from UI to UO. A 1 *DELETE card causes the named modules to be omitted from the UO records. The 
1 *INSERT command causes modul es from the BI device to be written, in sequence, to the UO device. The first ident 
on the 1 *INSERT command specifies the BI module to be inserted; the second ident, if present, specifies the UI mod
ule it is to follow. If the second ident is absent, the BI module will be the next module written to UO. 

Prestoring of control commands or binary data will occur under the following conditions: 

Oplabels Assigned to 
the Same Devi ce Prestored 

51, BI 51 

51, UI 51 

BI, UI BI 

SI,BI,UI 51, BI 

OMEDIT will not terminate and exit until two successive 1 EODs are encountered from UI or BI. 

HOW TO LIST OBJECT MODULES FROM GO FILE 

The example in Figure 40 will read the object module{s) located on the default GO file (RBMGO) from the System 
Data area of the RAD, and I ist the contents until a double lEaD is encountered. 
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!EOD 

--___ -1 ! *LIST 

! UTILITY OMEDIT 

--_ ... -1 !ASSIGN UI==RBMGO,SD 

!JOB 

Figure 40. list Object Module from RAD File 

The !ASSIGN card assigns UI to the RBMGO file, and the ! *LIST card will cause the contents to be listed on 
the La device (norma II y the I ine printer). 

HOW TO UPDATE OBJECT MODULES FROM CARDS 

The example in Figure 41 will read in a set of update modules (BI) that modify the original binary object modules 
(UI). The updates, original modules, and control commands are all read in from the same device. The updated 
version of the program is to be written on magnetic tape. Since BI (updates) and UI (old modules) are assigned to 
the same device (51), the complete BI file will be automatically prestored on a temporary RAD file before the up
date takes place. All inserts and ! *INSERT commands must be in the proper sequence. 

! *INSERT CHANGE,INP 

! *DELETE OUTP 

! *INSERT STEP,CALC 

!JOB 

Figure 41. Update Object Modules from Card Reader to Magnetic Tape 
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UIObject 
Modules To --_~I 
Be Updated 

BI Update 
Modules 

UIObject 
Modules To 
Be Updated 

Figure 41. Update Object Modules from Card Reader to Magnetic Tape (cont.) 

The deck structure in Figure 41 wi II perform the following functions: 

1. Insert module STEP after module CALC. 

2. Delete module OUTP. 

3. Insert module CHANGE after module INP. 

4. Insert "new" module MOD after module CHANGE. 

5. Delete "old" module MOD. 

6. Write updated version on magnetic tape assigned to UO. 
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The card images of the resulting updated version of the program written on magnetic tape would appear as shown 
in Figure 42, as compared to the UI version shown in Figure 41. 

Figure 42. OMEDIT Update Example 

HOW TO USE THE RECORD EDITOR 

The Record Editor edits FORTRAN or assembly language source input by record number in the following manner: 

• Generates source data fi I es. 

• Lists source data fi les with associated I ine numbers. 

• Modifies source data files. 

A ! *LlST command places RECEDIT in the list mode. Source files are read from UI and listed on LO, with asso
ciated I ine numbers starting with "1". An! EOD or file mark will cause I ine numbering to restart with 1. An op
tional "number" parameter on the! *LIST command indicates the number of files to be read; if "number" is omitted, 
one file will be read. If double! EOOs are encountered, the list mode is terminated. 

The !*MODIFY command initiates the modify mode (and will terminate the list mode). The GEN parameter on this 
command causes source images to be copied from SI to UO. If the LIST parameter is also present, UO and the asso
ciated I ine numbers will be I isted on the LO device. 

If the GEN parameter is absent, updating is imp I ied. If LIST is present, the LO I isting will contain the U I line 
numbers. In the update mode, UI is read, modified by control commands and source images from SI, and written 
to UO. Lines specified by number on a !*DELETE command are omitted from UO. 

Source images following (on SI) an ! *INSERT command are written on UO following the UI' I ine number that 
is specified on the! *INSERT command. A source image following a ! *CHANGE command replaces the UI 
source image whose number is specified on the ! *CHANGE command. If more than one source image follows 
the !CHANGE card, those following the "changed" one are inserted before the next UI image is copied. Two 
numbers on the ! *CHANGE command causes deletion of all UI images inclusively between the numbers. Source 
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images on SI following either 1 *INSERT or 1 *CHANGE commands are inserted on UO until the next control 
command is encountered. When a 1 EOO is encountered from SI, the remainder of the UI file is copied to UO. 

If 51 and UI are assigned to the same device, SI is prestored. 

It is worth mentioning that assembly language users have some record editing functions available to them through 
the assembler. See the specification options on the lXSYMBOL control command in the Extended Symbol/LN, 
OPS Reference Manual, 90 10 52, for record updating capabil ity. 

HOW TO LIST A SPECIFIED FILE FROM MAGNETIC TAPE 

The example given in Figure 43 would I ist the sixth file from a magnetic tape. 

lJOB 

Figure 43. List Specific File for Magnetic Tape 

The lASSIGN card assigns UI to the MT operational label for a magnetic tape, and the 1 FSKIP card causes UI to 
be skipped past the first five EOF marks. 

The 1 *LIST card then causes all records in file six or the UI tape to be I isted until the next EOF is encountered 
and UI is then rewound. 

HOW TO MODIFY A SOURCE MODULE TO A RAD FILE 

The example in Figure 44 wi II read source record updates, the original source deck, and all control cards from the 
card reader. The updated source module will then be written in a compressed, blocked RAD file called MYSORS 
(user-defined) in the User Data area. Prestore will be imposed since SI~I. 

The l*MOOIFY card specifies that both the records deleted and the records inserted will be listed on LO, including 
UI line numbers deleted and the line number preceding the one inserted. Since updating is to be performed, the 
G EN parameter must not be present on the card. 

The 1 *OELETE card specifies that lines 31 and 32are to be deleted from the source records, and the 1 *INSERT card 
specifies that source records are to be inserted after line 49. In our example, four new records are inserted. 
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!JOB 

Figure 44. Update Source Records in Source Module 

The! *CHANGE card specifies that line 54 is to be replaced and that new source records may be inserted after the 
new line 54. In this case, two new records are inserted. 

HOW TO USE THE SEQUENCE EDITOR 

SEQEDIT performs the same functions and operates similarly to RECEDIT; the principal difference being that SEQEDIT 
operates on sequence numbers in the sequence field of the source image (columns 73-80 of a source card), thus pro
viding more flexibility than RECEDIT. Again, source is read from ur, modified by commands and source data from 
51, and the update is written to UO. SEQEDIT is not recommended for paper tape use. 

SEQEDIT is called by a !UTILITY SEQEDIT command. Three optional parameters are all owed on the call: 
GEN, IGN, and ALL (in that order). The GEN parameter specifies that the source is copied from SI to UO. 
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The absence of G EN impl ies UPDATE mode. The IG N parameter indicates that sequence errors are ignored 
on SI if in GEN mode, or UI if in UPDATE mode. The presence of the ALL parameter causes SEQEDIT to con
tinue until double ! EODs are encountered. 

A special command! *IDENT is available to break the sequence field into an II ident ll and a numerical section. 
This facil itates updating of mul tipl e files or multi -program files. 

Insertions and replacements are accomplished by the source images (on SI) themselves, rather than by specific com
mands. If an image on SI has the same sequence field as an image on UI, the SI image is written to UO instead of 
the image from U I. If an SI image has a sequence number between two UI images, the SI image will be inserted, on 
UO, between those two UI images. If SI contains a block of images with blank sequence fields that followsan image 
with a sequence number, UO will contain the numbered image (be it insertion or replacement), followed by the 
blank-sequence images. 

Deletion of images from U I is accompl ished by a ! *DELETE or a ! *SUPRESS command that contains the sequence num
ber to be deleted. If two numbers are present, UI images will be deleted inclusively between the numbers. The 
difference in the two commands is that! *DELETE causes the deleted images to be listed on LO while ! *SUPRESS 
does not. 

The! *SEQUENCE command may be used to sequence a file being generated, or to resequence files being updated. 
If multiple fi les are being updated, a new! *SEQUENCE command must be used for each file. 

If UI and SI are assigned to the same device, SI is prestored. 

HOW TO GENERATE AND SEQUENCE A FILE ON MAGNETIC TAPE 

The job example in Figure 45 will generate and sequence a new file on magnetic tape. 

The !UTILITY SEQEDIT card specifies that a single file is to be generated on UO, and the presence of the GEN pa
rameter also informs the Sequence Editor that no updates are to take place. (Updating and generation cannot take 
place within the same call to the Sequence Editor.) IG N indicates that SI sequence errors are to be ignored. 

Figure 45. Generate and Sequence a File on Magnetic Tape 
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The ! *SEQUENCE card specifies that UT is the ident field and that the sequence numbers are to be in increments 
of 100. This will permit a large number of later insertions without interfering with the original sequence numbers. 
Thus, the first sequence number would appear as UT000100, the second number as UT000200 and so on. The se
quencing will take place as the fil e is being generated. 

HOW TO UPDATE AND RESEQUENCE TWO FILES ON MAGNETIC TAPE 

The example in Figure 46 will update and resequence two separate files on a magnetic tape and write the updated 
versions on a new magnetic tape. 

!JOB 

Figure 46. Update and Resequence Two Magneti c Tape Fi les 

The first !ASSIGN card assigns SI to CC, which defines the device from which the updates and control commands 
will be read. The next two !ASSIG N cards assign M 1 as the device from which to read the two fil es to be updated, 
and M2 as the output device to write the updated and resequenced version. 

The triple comma on the !UTILITY SEQEDIT card specifies that the GEN, IGN options are not being exercised, and 
the ALL option specifies that updating is to continue until two EOFs are encountered on the UI device (M 1). 
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The! *IDENT card, used only when updating files, specifies that the number of characters in the ident portion of 
the sequence field is two characters, and the 6 specifies the number of characters in the sequence number subset of 
the sequence field. The card holds true for both updates. 

The first! *SEQUENCE specifies that resequencing will begin when a card containing PK000010 in columns 73-80 is 
found, and that resequencing will be in increments of 100, beginning with PK000010 (if the increment number was 
missing, the increment would be 10 by default). The II PKOOOOlOli parameter (in columns 73-80) specifies the se
quence number at which the resequencing is to commence to incorporate the update. 

The PK update will be added to the original file beginning at sequence number PK000010, and all line numbers 
from that point will be in increments of 100 (e.g., PKOOOllO, PK000210, etc). 

The second! *SEQU ENCE card causes identical functions to be performed with the CP update. 
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8. HOW TO INTERFACE ANS FORTRAN IV AND EXTENDED SYMBOL SUBROUTINES 

This chapter defines the conventions and techniques required for interfacing Extended Symbol and ANS FORTRAN IV 
programs and subprograms with one another and with FORTRAN Library routines. The material attempts only to 
clarify those points directly related to interface problems, and more detailed coverage of the items discussed wi" be 
found in the appropriate language reference manuals I isted in "Related Publ ications ". It is a ssumed that you are 
already conversant with the use of the language processors, Loaders, and characteristics of the I ibrary routines that 
are available on your system. 

GENERAL CONCEPTS AND CONVENTIONS 

EXTERNAL REFERENCES 

Separatel y assembl ed or compil ed program sections or I ibrary routines may refer to symbol ic locations with in other 
sections via external references. In Extended Symbol, this is accompl ished with the DEF and REF directives. A 
DEF "name" declares that the value of "name" is accessible to the outside world. A REF "name ll implies that the 
value of "name" is to be obtained from another program section and is to replace all references to "name" within 
this section. In particular, if IIname ll is a DEF within a selected library, the REF will cause that library routine 
to be loaded as part of the program. Since, during loading, the value of the "name 11 is its location, this means 
that the location of the name will replace the references to "name ll

• 

In FORTRAN, a DEF is impl ied in a SU BROUTIN E or FU NCTIO N subprogram, where "name II is the name of the 
subroutine or function. A REF is created either by the explicit IICALL name (x)", or by the use of a function name 
within an expression {e. g., A = name (x»). Additionally, if "name ll appears in an EXTERNAL statement, all ref
erences to "name" will result in the creation of a REF. 

TEMPORARY STACK 

When operating in a priority-interrupt environment, it is essential that a routine that might be used concurrently by 
different tasks (i.e., interrupt levels) is coded reentrantly. To achieve reentrancy, the called routine must not 
store call-dependent data values within itself at fixed locations. The method adopted by Sigma 2/3 standard soft
ware is for the program calling a reentrant routine to provide a certain amount of scratch storage for any storage the 
reentrant routine may require. This is called a temp stack, and it is expected that the calling program will make 
available the start address of its own temp stack before calling the reentrant routine. To provide for this structure, 
ANS FORTRAN IV is careful to ensure that the temp stack does not attempt to contain any preset data. (See also 
Chapter 14 of this manual for a detailed explanation of temp stack and assembly language reentrancy.) 

Any variables (scalar or array) that appear in a DATA statement in an ANS FORTRA N IV program or subprogram wi II 
be allocated within the body of the program along with the code. All other variables are allocated in the temp 
stack. This technique has no impact on nonreal-time programs. However, it does allow the real-time programmer 
to have "named constants II within his program. An example of an occasion where the named constant concept is val
uable is where the routine is to be parameterized. If this "constant" variable is used in lieu of an actual constant, 
it is possible to easily alter the control. 

Real-time programmers may el ect to use variabl es that have been preset as other than "named constants ". Any such 
usage must be done with extreme caution. 

FLOATING ACCUMULATOR 

The Floating Accumulator is simply a name for the first six cells in a calling program IS temp stack. Since various 
routines employ temp storage for different purposes, this convention shoul d not be thought of as an actual area used 
onl y for floating -point cal culations. Wi thin a sequence of floating operations, however, it is treated much I ike 
the A-register in Sigma 2/3 class 1 instructions. 
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COMPLEX ACCUMULATOR 

In order to handle the computation of complex arithmetic functions, ANS FORTRAN IV has introduced the Complex 
Accumulator. The Complex Accumulator is the name for the n + 4 to n + 15 cells of the portion of the temp stack 
that is reserved by a FORTRAN Main program. The location of this area is held in the n + 3 cell of the Main pro
gram, and is passed to each FORTRAN program that is called. 

BLANK COMMON STORAGE 

The Overlay Loader provides for both program-relocatable and blank COMMON-relocatable load items. Note that 
the Loader will not actually place data into blank COMMON storage, but will resolve address references relative 
to a specified COMMON base. It is often desired to share COMMON storage between FORTRAN and Extended 
Symbol. Its use should be made clear by the example below, which defines identical COMMON areas: 

FORTRAN 

COMMO N DA Tl (1 0,20), TEMP(20),ICNT ,ITEMP(5),MOD 

Extended Symbol 

(Assume above compilation uses the standard XDS allocation) 

INTSIZE EQU INTEGER WORD SIZE 

REALSIZE EQU 2 REAL WORD SIZE 

* 

DATl COMMON REALSIZE*(10*20) 400 LOCA nONS 

TEMP COMMON REALSIZE*(20) 40 

ICNT COMMON INTSIZE 

ITEMP COMMON INTSIZE*(5) 5 

MOD COMMON INTSIZE 

Blank COMMON is discussed in detail in the chapter "How to Build An Overlay Program" earlier in this manual. 

NAMED COMMON STORAGE 

ANS FORTRAN IV has introduced an additional form of named COMMON that is available for use by both the 
FORTRAN and Extended Symbol programmers. An Extended Symbol program may reference named COMMON 
that is defined in a FORTRAN program. In general, the Extended Symbol access to a named COMMON is roughly 
equivalent to the technique that would be used to access locations within an Extended Symbol routine that has 
only its first location DEF'd. The example below shows the general form of the technique to be used: 

FORTRAN 

Extended Symbol 

REALSIZE 

DAT9 

TEMPA 

COMMON/ALPHA/DAT9, TEMPA(20), TEMPB(300), TEMPC(2) 

EQU 

EQU 

EQU 

2 

o 
DAT9+REALSIZE 

REAL WORD SIZE 
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TEMPB EQU TEMPA+(20*REALSIZE) 

TEMPC EQU TEMPB+(300*REALS IZE) 

LDX = ALPHA 

LDA DAT9,1 

LDX =ALPHA 

LDA TEMPA,l TEMPA(l) 

LDX = ALPHA 

LDA TEMPA+(9*REALSIZE),1 TEMPA(10) 

LDX = ALPHA 

LDA = TEMPC 

RADD A,X 

LDA 0, 1 TEMPC(l) 

CODING EXTENDED SYMBOL ROUTINES FOR CAllS FROM FORTRAN 

Both SUBROUTINE and FUNCTION subprograms may be coded in assembly language for subsequent call by a 
FORTRAN program. The name(s) identifying the entry point(s) to the routine is (are) declared in a DEF 
directive. 

STANDARD CALLING SEQUENCE 

FORTRAN generates the following code when a SUBROUTINE call or FUNCTION reference occurs: 

REF name 

RCPYI P,L 

B name 

DATA X'n' argument keyword 

ADRL ?rg 1 one entry for each 

actual argument in the call 
ADRL arg

k 

The "argument keyword" specifies the addressing mode of each argument address. It consists of 1-8 two-bit codes 
such that bits 0-1 refer to arg1' 2-3 to arg2' etc. More than eight arguments in a call will have an argument key
word preceding each group of eight argument addresses. The two-bit codes have the following meaning: 

00 - no more arguments (refers to argument k+ 1, which is nonexistant). 

01 - absolute address (the ADR L contains the actual address of the argument). 

10 - indirect relative address (the ADRL value, added to the present contents of the B-register, gives the ad
dress of the argument). 
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11 - relative address (the ADRL value, added to the present contents of the B-register, gives the actual 
address of the argument). 

These codes have been covered in detail here because they will be used extensively in following subsections 
of this chapter. 

ARGUMENT TRANSFER ROUTINES 

There are several argument transfer routines available in the FORTRAN Library to rei ieve the Extended Symbol pro
grammer of the necessity for deciphering these calling sequences. The most general routine, M:PUSH, will be 
covered here. The other routines are, in general, subsets of M:PUSH and may be used as the appl ication warrants. 
Essentially, M:PUSH does the calculations necessary to produce an absolute address for each of the arguments in the 
call, and moves these new addresses into a specified temp stack for easy accessibil ity in the called routines. 

The call ing sequence for M:PUS H is 

RCPYI P,T 

B *$+3 

DATA n (number of words to reserve) 

ADR L TEMP (address of temp stack) 

ADRL M:PUSH 

where n is equal to three plus the number of argument addresses (r) that will be converted and passed into the temp 
stack from the call ing parameters, plus the number of temporary cells needed by the routine. M:PUSH exits with 
the A-register unchanged, the entry contents of the B-register in location TEMP+J, and the return address (calcu
lated from the number of arguments and the entry contents of the L-register) in location TEMP+2. In locations 
TEMP+3 to TEMP+3-+n-J will be the absolute addresses of the call ing arguments. The B-register will point to loca
tion TEMP. The E-register contains the number of arguments processed by M:PUSH upon return. 

It should be noted that the alternate entry point M:PUSHC must be used if the Extended Symbol routine is to call 
(directly or indirectly) another FORTRAN routine. The M:PUSHC entry operates the same as the M:PUSH entry 
with the exception that .!l.must be equal to four plus the number of argument addresses. TEMP+J and TEMP+2 have 
the same contents as for M:PUSH. TEMP+3 contains the address of the complex accumulator (obtained from the 
calling routine). Locations TEMP+4 to TEMP+4-+n-J will contain the absolute addresses of the calling arguments. 

SUBPROGRAM EXIT 

The call to M:PUSH or M:PUSHC is normally placed as early in the subprogram as possible. Care must be taken 
to preserve the entry value of the L-register upon calling M:PUSH. Exit from a subprogram that used M:PUSH or 
M:PUSHC is effected simply by 

B M:POP RETURN TO CALLING PROGRAM 

TEMP STACK DEFINITION 

The recommended method for terminating the source code of a subprogram is 

LPOOL 

RES 

END 

n 

DROP ANY LITERAL S 

SET UP TEMP STACK 

NO TRANSFER ADDRESS 
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Note that IITEMp lI and lin II are the same as in the call to M:PUSH. The LPOOL is included as a safety measure 
because no data can follow the temp stack if the program is to be converted to use dynamic storage. If this routine 
is placed in the Publ ic Library by the Overlay Loader, the call to M:PUSH wi II automatically be changed to indi
cate dynamic temp all ocation, and the trail ing temp stack will be removed from the subprogram. 

ARGUMENT CHECKING 

M:PUSH ensures that the calling argument list is at least no larger than the n-3 locations allocated for it by the call 
to M:PUSH. More arguments cause a PU abort code. However, the subprogram may well be interested in whether 
there are ~ than the specified number of arguments in the call. Note that the L-register, upon entry to the sub
program, contains the address of the first argument keyword. Thus, to check for a minimum of three arguments, we 
might code 

RCPY 

LDA 

AND 

BAZ 

L,X 

0,1 GET KEYWORD 

=X 10COOI CHECK THIRD KEY 

ERROR ERROR IF ABSENT 

A FUNCTION subprogram makes use of the same techniques, the only difference being that a meaningful result must 
be left in the A-register and/or the Floati ng Accumulator upon exit. Conventions associated with such math routines 
are covered in the next subsection. 

CALLING MATH LIBRARY ROUTINES FROM EXTENDED SYMBOL 

Often a FUNCTION or SUBROUTINE subprogram coded in Extended Symbol will need to make use of the floating
point and I/O routines in the Math Library. These routines may be grouped in three main cI asses with regard to the 
call ing and usage conventions: Math routines, Arithmetic routines, and I/O routines. 

The address modes that are used in the reference of parameters may be classified as follows: 

TYPE 1 01 Key: direct (or absolute) address. 

Type 1 data refers to constants that are incorporated directly in a program. They should never be 
altered by the program, and are referenced as Type 1 only by the program in which they are assem
bl ed. COMMON variables may not be assembled into the program but are addressed as Type 1 
data. 

TYPE 2 10 Key: indirect, base-relative address. 

Type 2 address references are those made to subprogram dummy variables. In this case, M:PUSH has 
moved the addresses of the call ing program IS data into the subprogram IS temp stack. 

TYPE 3 11 Key: base-relative address. 

Type 3 data refers to non-blank-COMMON variables used within a given program. Variables should 
never be given initial values at assembly time, but instead should be initialized at execution time by 
moving Type 1 data into the subprogram IS temp stack. (Blank COMMON variables must be initial
ized at execution time. ) 

The above conventions ensure the reentrancy of any subprogram that may be used in a real-time environment. 
Note that the DATA statement in FORTRAN sets up Type 1 data, but allows this data to be modified at execution 
time. A FORTRAN subprogram should thus avoid ever modifying an item declared in a DATA statement if it is to 
be used in a reentrant mode. FORTRAN reentrancy is further discussed in Chapter 17. 

Call ing Math Library Routines from Extended Symbol 79 



MATH ROUTINES 

The call ing sequence for a Math routine is the same as that used for standard function references. All registers, with 
the exception of the B-register, should be assumed to be volatile. The result will be returned in the Floating 
Accumulator. 

ARITHMETIC ROUTINES 

Although Math routines may be called with several arguments and thus use the keyword for address resolution, an 
Arithmetic routine expects at most one argument, and the address resolution is specified by sel,ecting the appro
priate entry point to the routine. The second argument of an Arithmetic routine is expected to be in the Float
ing Accumulator. 

The call to an Arithmetic routine is of the form 

RCPYI 

B 

DATA 

RETURN 

where 

P,L 

p:IDn 

argument 

P is L for standard precision. 

X for extended precision. 

:ID is the base name of the routine. 

n is 1, 2, 3, or 4, and corresponds to the address type of the argument. 

Each Arithmetic routine except p:33CPn (real compare) increments the L-register one location past the return ad
dress before returning. This allows consecutive calls on Arithmetic routines with only an initial RCPYI P,L. 
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9. HOW TO USE STANDARD PROCEDURE [S2) FILES 

A Standard Procedure (S2) fi Ie is an easy-to-use mechanism for allowing common symbols and often-used procedures 
to be stored in a special format so that they can be used automatically during an assembly, without being duplicated 
in each source program that uses them. 

A basi c set of procedures that define the Sigma 2/3 machine instructions are supplied with the Extended Symbol as
sembler. This set of procedures should be considered a minimal base upon which to build other installation-specific, 
or user and program-specific S2 fi les. There is no limit to the number of S2 fi les you may have on a system. How
ever, RBM52 is the only default S2 file and therefore does not need an !A5SIGN card. (!ASSIGN cards are re
quired for all other S2 fi les. ) 

WHAT MAY BE STORED IN AN S2 FILE 

There are two logi cal portions of an S2 fi Ie: the assembler's global symbol table, and the skeleton ("sample") pro
cedure definitions. These form the initial symbol and sample table areas within the assembler. Additional symbols 
and procedure definitions are added as they are defined in the source program. 

Any procedure definition may be stored in an S2 fi Ie. It may contain LOCAL directives, calls on other procedures 
defined in the same S2 fi Ie, or even calls on procedures that wi II be defined later in the source program that uses 
this S2 fi Ie. In general, anything that may legally occur within a CNAME, PROC, ... , PEND group wi II be 
correctly stored on an S2 fi Ie. 

Some care must be taken in storing Main program global symbols (and their values) on an S2 file, but the resulting 
convenience is often as great as that of common procedure definitions. Likely candidates for standard 52-defined 
symbols are register designators and Zero Table constant identifiers. Such constants should be defined as absolute 
values via the EQU directive. In following the two rules itemized below, such symbols should not be placed within 
procedures in order to save core storage. A global definition such as, A EQU 7, wi II require six cells of storage if 
its definition is invoked by a procedure name, but will require only two cells if left at the Main program level when 
creating the S2 fi Ie. 

• Symbol values (at Main program level) stored on an S2 file should not be redefined by the source, nor 
should any attempt be made to store Main program-level LOCAL symbols on an S2 fi Ie. 

• No symbols stored on an 52 file should be used as arguments in a DEF, REF, or SREF directive (unless 
within a procedure definition). 

The action of the assembler is unpredictable if the above rules are violated. 

In summary, any legal procedure definition may be stored on an S2 file as may any unredefinable, nonexternal, 
global symbo I value. A code-generating program should not be used to create an 52 fi Ie if the code generation 
occurs during creation of the fi Ie. 

HOW TO CREATE AN S2 FILE 

It is not possible to read in an existing S2 fi Ie, add to it, and create a new S2 fi Ie. For this reason it may be de
sirable to at least keep a source copy of the Sigma 2/3 instruction procedure set on bulk storage (RAD or disk pack). 
If a listing of this file is obtained at SYSLOAD time, it may be posted (or distributed) so as to serve as a base for 
special 52 files. The example in Figure 47 illustrates one method of preserving the source during 5YSLOAD. 
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ASSUME 'SY' 

Figure 47. Save Instruction Procedures During SYSLOAD 

This example creates the standard (default) RBMS2 fj Ie and saves the source in a fi Ie called RBMS2SI in the User 
Data area. (Xl is a copy of the source and is normally used only for the assembly listing). 

Assuming that the above procedure was used, the example in Figure 48 shows how a new S2 fi Ie is created using 
RBMS2 as a base. (Also assume that the listing from the example in Figure 47 showed the last line before the END 
line to be line number 90. ) 

!ASSIGN S2=MY$PROCS, UD 

!ASSIGN SI=RBMS2SI, UD 

---Jo"-I!# ADD UD, MY$PROCS, 40, 108, B, R 

KEY-IN SY S 

!JOB 

Figure 48. Create An S2 File 
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• 

UI, PP, LO 

Figure 48. Create An S2 FiJe (cont.) 

The example in Figure 48 causes the source from RBMS2SI to be read, the source for the new procedures to be 
inserted immediately before the original END line, and the resulting set of procedures written to the MY$PROC5 
fi Ie in the User Data area. Note that MY$PROC5 has been created using a blocked fi Ie with a record size of 
108 bytes, which is the required format for 52 files. Subsequent assemblies using this new file might be done as 
shown in Figure 49. 

Figure 49. Assemblies Using 52 File 

The !AS5IGN card in Figure 49 prevents the automati c assignment of 52 to the default RBM52 fj Ie. 
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The fo" owi ng update packet ill ustrates I ega I usage in creati ng an expanded S2 fi Ie: 

+90 

* 

Z 

P 

E 

A 

* 

K:X8000 

K:X4000 

K:M15 

K:M16 

* 

BAL 

XR 

+END 

: OPERATIONAL REGISTER EQUATES 

EQU o ZERO 

EQU PROGRAM 

EQU 6 EXTENSION 

EQU 7 ACCUMULATOR 

: MONITOR CONSTANTS 

EQU X '09 1 X '8000 ' 

EQU X'OA' X '4000 ' 

EQU X '33 1 X'FFF1' 

EQU X '34 1 X'FFFO' 

: PROCEDURES 

CNAME 

PROC 

RCPYI 

B 

PEND 

CNAME 

PROC 

REOR 

REOR 

REOR 

PEND 

BRANCH AND LIN K (TO SUBROUTINE) 

P, CFR(2) 

AFR(1), AF(2), AF(3) 

EXCHANGE RE GISTER 

AFR(1), AFR(2) 

AF(2), AF(1) 

AF(1), AF(2) 

The above packet defines Z - A as standard symbols denoting operational registers, various symbols for standard 
zero-table constants, and a set of user-defined procedures such as BAL, A SUBRNAME, which loads a return address 
into the A-register and branches to "SUBNAME"; or XR T, A, which exchanges the contents of the T and A-registers 
without altering the condition codes. 
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10. HOW TO REDUCE ASSEMBLY LANGUAGE HARDWARE REOUIREMENTS 

The standard RBM processors make certain assumptions about resource allocation, and they operate most efficiently 
when these assumptions are met. A well-planned installation will provide these resources in the majority of in
stances, but exceptional problems can sometimes be accommodated within the existing resources via special 
techni ques. 

The common resource constraints are either fast core storage, or bulk (RAD or disk pack) storage. In the case of 
Extended Symbol, these two constraints are related, since this assembler uses several blocked fi les on bulk storage 
that require blocking buffers in fast core for each blocked fi Ie. Assuming that Extended Symbol is loaded with the 
standard blocking buffer parameters, an 1 XSYMBOL call wi II cause m*n words of fast core to be reserved for I/o 
buffers, where 

m = blocking buffer size = 180 for a 720X RAD-only system. 

= 512 for a disk-pack-only, or a mixed RAD/disk pack system. 

n = the number of the following operational labels that are currently assigned to blocked fi les: 

51, UI, SO, La, GO, BO, Xl, X3, 52, DO 

Unless reASSIGNed, the GO, Xl, X3, and 52 files are assigned to blocked files by default. In addition, the X2 
file requires a buffer that must be the size of a sector of the device to which the X2 operational label is assigned. 
On a disk-pack-only system, this would immediately remove over 2500 words from Extended Symbol IS working stor
age (enough for assembly of approximately 2000 additional lines of program). Unless noted otherwise, the techniques 
given below apply to minimizing core storage requirements. Some consideration is also given to situations where 
such fi Ie elimination might be inadvisable. 

COPING WITH EXISTING RESOURCES 

Without modifi cation of a program, the only improvement in resource demands during an assembly wi" be achieved 
by cutting down on the number of RAD/disk pack fi les and their associated blocking buffers. 

GO FILE ELIMINATION 

The GO file has a default blocking buffer, and is probably the safest to eliminate. If you have a suitable binary 
file output device such as magnetic tape, high-speed paper tape, or card punch, it may be feasible to bypass binary 
output to RAD or disk pack. The command 

(ASSIGN GO=O 

saves a blocking buffer whether binary output is requested or not. If binary output is required, the following cards 
are recommended for saving RAD and buffer space: 

lXSYMBOL BO, ... 

lASSIGN BO=device 

lASSIGN GO=O 
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X1 FILE ELIMINATION 

The Xl fi Ie has a default blocking buffer and is used by Extended Symbol to maintain a copy of the source (with 
possible updates) for listing purposes. If you are not using the update feature of Extended Symbol, it may be pos
sible to eliminate the Xl fi Ie. If you have magnetic tape and the one or more source programs are separated by 
fi Ie marks on the tape, the following commands wi II eliminate Xl and its buffer: 

IXSYMBOL ... LBA] 

!ASSIGN SI=tape unit 

In the case where your source program is already on a RAD/disk pack fi Ie, it is sti" possible to assemble this one 
program and eliminate Xl. This may be done as follows: 

!XSYMBOL options 

!ASSIGN Xl=SI 

!ASSIGN SI=fi Ie name, area 

Xl FILE ELIMINATION 

The X3 fi Ie has a default blocking buffer, but this fi Ie is only used if the source program uses LOCAL directives at 
the main-program (i. e., not within a PROCedure) level. If it is known that a program does not use main-level 
LOCAL symbols, the !XSYMBOL command should be preceded by 

(ASSIGN X3={) 

It is not necessarily a good practice to avoid main-level LOCAls however, since their use can generally reduce 
resource requirements more than their avoidance (see, "Coding for Existing Resources" in this chapter). 

S2 FILE ELIMINATION 

The final file with a default blocking buffer is S2. The S2 file should be left assigned to RAD/disk pack if at all 
possible. Whi Ie the procedure for running S2 from paper-tape, cards, etc. is easy to perform, the method is 
highly dependent upon the particular hardware configuration. 
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REDUNDANT FILE ASSIGNMENTS 

In general, unnecessary or redundant assignment of assembler files to RAD or disk pack should be avoided. This 
precept includes assigning unused default files to device zero. A redundant assignment would include something 
like assigning BO=GO, or DO=LO, where GO and LO were assigned to RAD/disk pack files. 

CODING FOR EXISTING RESOURCES 

There is an upper limit to the size of a program that may be assembled in a given system configuration. In Extended 
Symbol, the limit generally depends upon core size balanced against the number of unique symbols in a program. 

The most obvious technique for reducing core requirements during an Extended Symbol assembly is to reduce the 
number of unique symbols in the program. This can be accomplished by using several LOCAL regions in the program 
and using the same LOCAL symbols for each region, as shown in the following example: 

LOCAL $10, $20, $30 

AROUTINE RES 0 

$10 RES 0 

$20 RES 0 

$30 RES 0 

LOCAL $10, $20 

BROUTINE RES 0 

$10 RES 0 

$20 RES 0 

END 

The above technique is practical in most programs since programs are often divided into many separate routines; the 
routine name being global to the whole program, but many symbols within the routine are referenced only by that 
routine. 

Note that main-level LOCAL symbols do require RAD or disk space during an assembly. The requirements are three 
words per symbol per LOCAL region. The above example would thus require 15 words of bulk storage. Since a 
blocking buffer is required for the LOCAL (X3) file, this technique must be used consistently over moderate-to
large programs before the savings in core storage becomes effective. 
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11. HOW TO USE HARDWARE INTERRUPTS 

This chapter forms a natural division in the organization of the User's Guide. All previous topics have dealt either 
with purely background applications or with those services and procedures used in common by both foreground and 
background. The descriptions and suggestions for using the hardware interrupt system given below mark the entry 
into the real-time world of RBM, and it is recommended that some attention be given to this material before going 
on to succeeding chapters. By studying the capabilities and implications of the hardware interrupt system, you will 
be better able to calion these resources in a way best suited to your own foreground programming requirements. 

In particular, all foreground users should at least be cognizant of the internal interrupt structure and purposes of 
the RBM Tasks that comprise the Monitor, since RBM is itself a real-time program that must respond to time-critical 
events such as I/o interrupts and operator interrupts. The interrupt levels of the RBM Tasks and their interrelation
ship with user tasks and programs are described briefly at the end of this chapter as an example of one way to use 
hardware interrupts. (A description of the Tasks' functions is given in the Real-Time Programming chapter of the 
RBM Reference Manua I. ) 

Note that some foreground programs can uti lize interrupt levels without being real-time programs, and one sugges
tion for such use is given later in this chapter. 

PURPOSE OF HARDWARE INTERRUPTS 

The Sigma hardware architecture includes a powerful hardware priority interrupt system. This consists of a multi
level interrupt structure composed of both external and internal levels arranged in an expandable, flexible, and 
partially pre-selected order. RBM has been specifically designed to use this hardware priority interrupt structure 
to the fullest extent possible, and this particular structure's purpose is to efficiently allocate the CPU. The impli
cations of this structure are described in detai I to suggest ways that you can use Sigma interrupts. For if you do not 
take advantage of these features when designing a real-time system, the full power of the hardware approach is lost. 
To get the maximum utilization out of a Sigma 2/3, your real-time system design should be based on a clear under
standing of the power and flexibility of the hardware interrupt system. 

The detailed implications of Sigma interrupts are as follows: 

• Fast real-time response: On the occurrence of some predetermined external or internal event, the 
Sigma 2/3 can stop its current operation and switch to an entirely different operation within a few instruc
tions. This permits real-time programs to operate in a time-critical manner. 

• Priority response: Since each hardware level has an implied priority (by its position in the interrupt chain) 
and since a level only interrupts the CPU if it is the highest active level, the CPU is guaranteed to al
ways be working on the most important (highest priority) operation that needs attention in the system. 

• Low overhead: No time is spent by the CPU in posting to software queues, periodically scanning these 
queues, and checking to see if something new has arrived on the ready queue that is higher priority than 
the current operation; instead this is all done automatically by the hardware priority interrupt system. In 
fact, this system can be viewed as a separate II processor II that executes in parallel with the CPU, main
taining a "queue" in the interrupt hardware and operating in a microprogrammed fashion to do the sched
uling for the Sigma 2/3 CFU. Thus, the Sigma 2/3 CPU can be involved with solving user problems 
instead of trying to decide what to do next. 

• Noninterference: When events of a lower priority than the currently executing program become ready, this 
fact is noted by the hardware interrupt system but the CPU is not diverted away from its currently more 
important operation (even for a microsecond) to record the fact and make a decision relative to the priority 
of these two tasks; this decision is accomplished automati ca IIy in the interrupt hardware. 

• Asynchronous operation: The hardware interrupt system is truly asynchronous; that is, it executes a task at 
a specific interrupt level only when that level goes active as the result of some specific event. If the times 
of such an event are variable and random, this asynchronous but immediate response is highly important. 
(Asynchronous operation is considered in detai I later in this chapter. ) 

• Anonymous operation: The design of tasks need not be concerned with what other tasks may be operating 
when an interrupt occurs, or what context the interrupted task was using upon entry. Each task saves (in 

88 How T.) Use Hardware Interrupts 



its own area) the registers and other temporary working storage that it will modify, does its own function, 
and then restores these registers independently of what the other task was. Thus, this is a strictly LIFO 
(last-in, first-out) method of scheduling that minimizes debugging and desi gn problems. Another way of 
defining anonymous operation is that an interrupted task is never aware that it was interrupted, except 
where timing considerations (such as real-time clock pulses) are a factor. 

• Flexibility: From one to 100 interrupt levels can be used and they can be arranged in various priority 
levels; some above and some below the I/O level and other RBM levels. By selecting the number of inter
rupts, the groups of interrupts, the priority of these interrupts, and the source of activation pulse for each 
level, each installation can fit its own unique demands. 

SUMMARY OF HARDWARE INTERRUPT FEATURES 

A complete description of the features of the hardware interrupts can be found in the Sigma 2 or 3 Computer Refer
ence Manuals. However, the key points as related to your program design can be summarized in this chapter. 

The interrupt lIenvironment ll (CONNECT, ARM, ENABLE, INHIBIT) is controlled either directly through special RD 
or WD instructions coded into your program, or indirectly through RBM Monitor servi ce routines accessed by calls, 
key-ins, or control commands. The hardware interrupts for Sigma 2/3 computers possesses the following 
characteri sti cs: 

• No level may advance to an active state whi Ie a higher level is active. 

• Under program control, individual levels (or IIgroupsll) may be set to ignore incoming signals (DISARMED) 
or to postpone reaction to these signals unti I some later time (DISABLED or group INHIBITED). 

• The initial condition of all interrupt levels (except the override group, when the options exist) is DIS
ARMED and DISABLED. 

• Interrupt levels may be TRIGGERED either by program control or by external signals. 

• All levels (except the override group) may be inhibited by a single instruction; the inhibit may also be 
removed by a single instruction. 

• The internal and external interrupts can be inhibited either separately or at the same time. 

• The previous state of interrupt inhibits can be saved, and new inhibit conditions set or reset in a single 
instruction. 

• The previous interrupt inhibit state is saved (in the old PSD) on a task entry sequence, and the first instruc
tion of the task is always executed before another interrupt can take place; thus, this first instruction can 
inhibit all further interrupts if desired. 

• No level may advance from the waiting state to the active state unless it is ENABLED and not inhibited. 

• The hardware priority sequence may be arranged in virtually any priority order, either above or below the 
I/o group. The override group is always high. 

• An interrupt level should not be DISARMED whi Ie it is active because the results are unpredictable. Since 
the hardware priority search during the EXIT sequence is based on certain mutually exclusive states of the 
interrupt flip-flops, DISARMING causes a level to be ignored even though it is active. 

• Only one-level of signal is remembered by interrupts. That is, if a level is already waiting to go active, 
another TRIGGER will have no additional effect on it; and if a level is already active, another TRIGGER 
is ignored. 

Some of the implications of these characteristics are as follows: 

• Real-time programs can be debugged by using software triggering for certain levels before the real-time 
hardware is connected. 
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• Real-time programs can work in groups by using internal WD 0/'.frite Direct) instructions to TRIGGER 
various levels; thus, a high priority level may be connected to external signals and collect data at the 
high priority, and then TRIGGER a lower priority to process the data at its leisure. 

• Under program control you can select which interrupt levels to initially ARM and ENABLE, and can reject 
or postpone future signals based on program logi c or program computations. 

• Real-time programs that have to inhibit interrupts anywhere (except as the first instruction on task entry) 
should do so by a save-and-inhibit sequence (a special RD instruction). Later, they should never "remove" 
interrupt inhibits but should always "restore" them to their previous state; either by executing an EXIT se
quence (and using the old PSD), or by a "restore" sequence that uses the information from the save-and
inhibit sequence. This is because some tasks may inhibit externals and not internals, or vice-versa. 

• If an active task wishes to have all future signals to its own level ignored, it should DISABLE this level 
and EXIT rather than DISARM it and then EXIT. Some future, lower-priority task can DISARM the 
disabled level if this is really necessary. One should not DISARM an active level. One should also not 
ARM an active level since this interferes with the current state. 

INTERRUPT TASK SCHEDULING 

The possibilities for real-time task scheduling based on these hardware interrupts are very broad, subject only to the 
LIFO requirement. The several suggestions given below are meant to be general guidelines only. 

A particular interrupt level can be used to uniquely identify an event that requires processing. At the same time, 
it establishes the priority of this processing relative to other levels. Or, an interrupt level (such as the I/O level) 
may only identify a class of possible events, and further information may be required to identify the specific event. 

When a series of tasks, each of which is connected to separate interrupt levels, all use the same database (tables 
or files), the other tasks in the group can be DISABLED while anyone of them is modifying critical portions of the 
database, and it still permits higher priority interrupts in another group to become active if necessary. A general 
inhibit instead of a DISABLE would not permit this. Also, any signals to the DISABLED tasks wi II be "remembered" 
for later processi ng, whi ch wou Id not occur if a DISARM were used. 

A task connected to a level higher than the I/O level can be activated from some critical real-time event (such as 
an over-temperature condition in a process plant), and this task is guaranteed 100 IJS response to any signals, as
suming this is the highest real-time user level, since RBM never inhibits interrupts for longer than 100 us. 

A user task at a high priority level may sample some data input devices periodically and then TRIGGER other, lower
priority levels associated with some particular condition that requires further processing, and such processing can be 
performed at a lower level that is commensurate with the importance of the parti cular condition. 

RBM itself uses some interrupt levels for its own processing as identified in the RBM Reference Manual. But gen
erally speaking, RBM does not interfere with the real-time interrupt levels and user programs are free to make their 
own scheduling rules. 

It is by no means necessary to limit the use of interrupt levels to real-time operations. A tape-to-printer routine 
in the foreground can be connected to an interrupt level and can use the AIO Receiver and no-wait I/O operations 
to schedule and synchronize itself in order to buffer output to a printer, and so permit other (lower priority) tasks 
(including the background) to execute whi Ie I/O is in progress for this task. 

SOFTWARE SCHEDULING OF SUBTASKS 

We stated earlier by implication that attempts to schedule CPU allocation through user software, rather than taking 
full advantage of the hardware features, would result in degradation of the system. This is true at the primary task 
level but software scheduling within a task can be useful. While the primary (task) scheduling in RBM is strictly 
off the hardware priority interrupt system, it is possible for a task at a parti cular hardware interrupt level to organ
ize itself into a series of subtasks. 

Suppose that in your installation a very large number of distinct real-time events are possible. And suppose that 
many of them are processed in little groups, each related in some way to an external event. It is not necessary to 
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have a separate task with a separate interrupt level for each of them. There is a concept of secondary scheduling 
that can be controlled by user software, at your discretion, through any of a number of schemes. 

When the primary task is activated by its hardware interrupt, it might identify a subtask (or subfunction or subevent) 
to be performed by means of status information read in from the external equipment. Communications equipment and 
analog or digital converters very often operate this way. Or, a fixed number of subtasks under the primary task 
might be processed sequentially if their execution sequence is always fixed and always known. Or again, the pri
ority of each subtask mi ght correspond to a bit in a software status word and the primary task mi ght search the status 
word from left to right, looking for the highest priority subtask to process. These bits might be set by the primary 
task or by other subtasks, based on conditions during the processing of these subtasks. 

Many other methods are also possible. A primary task could be thought of as special foreground executive, with 
the job of scheduling the activity of a set of related subtasks. As a special RBM service, there are 32 dedicated 
locations in low core (mail boxes) available to all real-time programs to aid in this intratask communication. 

The rules for determining which events should be processed as primary tasks and which as subtasks are very simple: 

1. At least a portion of all primary tasks must be resident to answer a hardware priority interrupt. Subtasks 
can be resident or can be nonresident overlay segments; if overlaid, the overlays are controlled from the 
primary task by calls to RBM service routines. 

2. All subtasks must operate to completion (in regard to other subtasks at the same level) or until they explic
itly release control back to their primary task executive before another subtask at this same level can be 
scheduled. Thus, the types of events that can operate as subtasks are restricted in regard to other subtasks 
at this level, since this is basically synchronous operation. But they are not restricted relative to other 
primary tasks. Primary tasks at separate interrupt levels can interrupt each other immediately when an 
event occurs that needs attention. Thus, primary tasks are basically asynchronous and are much more 
responsive than subtasks. 

3. Control of subtasks is centraHzed at their primary task and is exercised through software. Primary tasks 
are controlled with decentralized hardware scheduling. 

RBM ORGANIZA liON 

To better illustrate the idea of programs, tasks, and subtasks, the detailed structure of RBM should be examined, 
since RBM is itself a real-time program with several tasks and subtasks. RBM uses up to nine of the fixed hardware 
priority levels on a Sigma 2/3 and one assignable external interrupt level that is controlled by software triggering 
from other tasks or from Monitor service routines. This priority interrupt structure is illustrated in Figure 50. The 
RBM Control Task level is designed primarily for operator control and for control of the background, and must not 
interfere with the foreground. Thus, it must always be assigned to an interrupt level below all the foreground pri
ority levels. The resident part of this level causes the various RBM subtasks to be loaded from the RAD as needed. 

The other RBM tasks perform a minimum of analysis at their level, set status bits in the RBM Control Task control 
word, trigger the RBM Control Task level, and then exit. For example, when the operator activates the Control 
Panel interrupt, which is just below the I/O interrupt and above most of the real-time tasks, this RBM Control Panel 
Task sets a bit in the RBM Control Task status word to signify that the operator key-in subtask is needed, and then 
triggers the RBM Control Task. Thus, operator key-ins do not interfere with foreground operation, since these key
ins are designed to control batch background processing. Similarly, if the background tries to execute a privileged 
instruction or tries to branch to protected core, the Memory Protect task is activated; this task sets the Abort subtask 
flag, triggers the RBM Control Task, and then exits. From the address in the program status doubleword, the RBM 
Abort subtask can tell the exact location causing the protection violation. This information is printed in the abort 
message to aid in debugging background programs. The printing of messages and the deactivation of the background 
does not interfere with foreground operation. Thus, the entire set of RBM tasks works as an asynchronous whole to 
control the operation of the system. 

Discussion on the RBM handling of input/output to achieve multi-task operation is in order at this point. Remember 
this fundamental rule: 

• All input/output is initiated and checked for completion at the priority level of the requesting task. 
Further, a II input/output uses interrupt control to coordinate I/O activity. 
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Power On Task (RBM) 
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Protection Task (RBM) 

Multiply Exception Task (RBM) 

Divide Exception Task (RBM) 

Real-Time Foreground Tasks (if any) 

Input/Output Interrupt Task (RBM) 

Control Panel Task (RBM) 

Real-Time Clock # 1 (RBM) 

Rea 1-Ti me Foreground Tasks (if any) 

RBM Control Task 
Power On (Hi ghest Subtask) 
Background Checkpoint (Highest Subtask) 
Background Restart 
Absol ute Loader 
Background Abort 
Background Termination 
Operator Key-in #2 
Operator Key-in #1 
Post Mortem Dump 
Idle Task 
Control Card Interpreter (Lowest Subtask) 

Background Program (No Hardware Level Used) 

Figure 50. RBM Hardware Priority Interrupt Levels 

To prevent the problem of I/o hang-up on shared devices like the RAD, the I/o Interrupt Task in RBM saves end
action status information in a task context area called a Device Fi Ie Table that is unique to each task. For example, 
if the background initiates an operation on the RAD and then is interrupted by the foreground before the operation 
is complete, the I/o Interrupt Task saves the device status at channel end in the specified background Device File 
Table and frees this device for further use. The foreground may then use this device. later, when control returns 
to the background and when the data is needed, a check is made to determine if the operation was completed suc
cessfully. If any retries are necessary, they are performed here. Otherwise, the operation is complete. Standard 
error recovery is provided for all devices, but user programs can elect to treat errors in any manner they choose. 

A very important servi ce that is in keeping with the phi losophy of asynchronous operation is the Ala Receiver. This 
permits a foreground task to initiate I/o with a no wait option. When the Monitor has then successfully initiated 
the I/o operation, it returns control to the foreground task; the foreground task can then set a flag for itself that 
I/O is pending and exit to a lower priority task (or to the background). Later, when this level becomes active, 
processing wi" continue for that task. This feature can be used in the foreground to permit more efficient use of 
the computer. Thus, users have a choice about releasing control during I/O operations. This is an efficient way 
to buffer or queue I/O operations for foreground tasks. (A foreground program could have one task to do nothing 
but queue and buffer for other tasks, for example. ) 
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12. HOW TO CREATE A TASK CONTROL BLOCK 

A Task Control Block (TCB) is a convenient means for storing and orgamzlng the information required to allow 
various foreground tasks to operate and interrupt each other in an orderly manner. The Monitor assumes that a 
TCB is the first loadable item within a foreground program. The TCB is used by the Monitor service routines 
M:SAVE, M:EXIT, M:LOAD, M:OPEN, M:CLOSE, and also when a C: (connect) control command or C key-in is 
read. (See the next chapter, "How To Connect Tasks To Interrupts" for more details about TCB and C: interface.) 

You have two a Iternatives in the creation of a Task Control Block for foreground use: code your own TCB (if pro
gramming in Extended Symbol), or allow the Overlay Loader to create it. If you wish to code your own TCBs, refer 
to Chapter 6 of the RBM/RT, BP Reference Manual, 90 10 37 for detailed information on TCB composition. The in
formation given below deals entirely with Loader-bui It TCBs. 

If the Loader bui leis the TCB, it does so completely; that is, no initialization of the TCB by the user is allowed. 

A foreground root may contain one or more tasks, with each task connected to its own interrupt. This is accom
plished through multiple Overlay Loader !$TCB commands within the root loading sequence. The first !$TCB com
mand must precede the !$ROOT command and is called the "initial" TCB. The only difference between it and 
subsequent !$TCB commands is that a "temp" parameter on the initial I$TCB command is ignored; instead, the value 
of the "temp" parameter from the !$ROOT command is used. 

The other two parameters on the initial !$TCB command, wl and w2, are placed by the Loader in the next two loca
tions of the TCB. For simplicity, these words are usually written as hexadecimal numbers (e. g., preceded by a +), 
although if desired, they could be written in decimal. Groups of bits within these two words are used as indicators 
and interrupt locations. See the "Task Control Block" table in Chapter 6 of the RBM/RT, BP Reference Manual, 
90 1037 for more detailed TCB construction. 

The first parameter, w
1
, is constructed as follows: 

Bits 0-3 contain the A register bit number for a Write Direct instruction. This is a number from a through F 
(hexadecimal) associated with each individual interrupt within its group. Refer to Table 1 in Chapter 2 of the 
Sigma 3 Computer Reference Manual, 90 15 92. The list of numbers below the heading "Write Direct Register 
Bit (3)" of this table is the A register bit number referred to above. 

Bit 4 is a flag indicating whether the Monitor should set core locations 1 through 7 when M:SAVE or F:SAVE is 
called. If any Monitor service routines are called within the task, bit 4 should be zero indicating that the 
Monitor is to set these core locations. 

Bit 5 is not used but should be zero. Bit 6 indicates whether the interrupt should be triggered when the task is 
loaded ("1" means tri gger, and "0" means not to tri gger). 

Bits 7-15 contain the core location (in hexadecimal) of the particular interrupt to be associated with this task. 
Refer again to Table 1 in Chapter 2 of the Sigma 3 Computer Reference Manual 90 15 92. The leftmost column 
in this table gives the location for each interrupt. 

Assuming that wl was written as +C30C, the indicators would mean that the interrupt wired to location X'10C (268) 
is associated with this task, the Monitor is to set core locations 1-7 (the usual case), and interrupt X'10C is to be 
triggered when its task is loaded into core. Remember that the Overlay Loader does not load programs into core; 
this is the function of the M:LOAD Monitor service routine. 

The second parameter, w2, is constructed as follows: 

Bits 0, 1,2,4 and 8-11 are always zero, and bit 3 is always 1. Bits 5,6 and 7 contain an "operation code" that 
is used with the Write Direct instruction. The "Interrupt System Control II section in Chapter 2 of the Sigma 3 
Computer Reference Manual, 90 1592, describes the action taken with each of these codes. Bits 12-15 of w2 
contain the Group Number of this interrupt. These numbers are listed in the rightmost column in Table 1, in 
Chapter 2 of the Sigma 3 Computer Reference Manual. 

Assuming w2 contained +1200 in conjunction with a wl containing C30C as described previously, this would cause 
interrupt X'10C to be armed and enabled when the task is brought into core. This means that when the program 
task is loaded into core, interrupt X'10C would be armed and enabled (the "2" in 2 S+1200) and then triggered 
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(since bit 6 in 1 is a 1), causing the computer to set its P register to the address contained in location X'10C'. 
This address would have been stored in this location by M: LOAD, using information placed in the task's TCB by the 
Overlay Loader. 

The flexibility of the "operation code" technique for interrupt control allows the user a wide variety of interrupt 
handling methods. For instance, if this example used a code of 3 (that is, if w2 were +1300), the interrupt would 
have been armed and disabled on loading. The Monitor would have tried to trigger it, but no action would have 
occurred. However, since an"interrupt that is armed and disabled "remembers" a trigger, a different task could 
enable this level, which in turn, would cause interrupt X'10C' to go "active" (transferring control to its task) as 
soon as it became the highest priority active interrupt. 

You may define multiple tasks within a single root by having additional !$TCB commands subsequent to the initial 
!$TCB command. Each must be followed by one or more !$LD commands to load the ROMs for that task. A !$TCB 
command may also be followed by a !$BLOCK command to specify any oplbs that may require blocking buffers in 
that task. 

The "temp" parameter on !$TCB commands subsequent to the initial one is used to reserve temporary space in the 
same way as on the !$ROOT card. If the "temp" is absent, a default value of 80 (X'50') is supplied by the Loader. 

Since there is a heavy interface between the !$TCB commands and C: control commands or key-ins, it is recom
mended that you now turn to the next chapter, "How To Connect Tasks To Interrupts". 
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13. HOW TO CONNECT TASKS TO INTERRUPTS 

The function of linking a foreground task to its interrupt, and optionally controlling the state of the interrupt is 
performed through the Monitor !C: control command or the C: operator key-in. The !C: control command and 
C: operator key-in function in precisely the same way and have identical parameters. For brevity, they wi II be 
termed "Connect" commands in the rest of this chapter. A frequent use of the Connect commands is to check out 
real-time systems that use externally triggered interrupts. Once the foreground is initialized, operation of the 
various tasks may be checked without the necessity of actually applying signals to the interrupt lines. 

The first and mandatory parameter for a Connect command is the first core location of the task's TCB.
t 

The second 
and optional parameter is an "operation ll code. This is a number from 0-7, and if present, is used by the Monitor 
in place of the code contained in bits 5, 6, and 7 or word 2 of the TCB; that is, w

2 
on the !$TCB command. How

ever, the data in the TCB is not changed. 

For instance, assuming a foreground task had been loaded with a !$TCB command where w
2 

was +1100, it would be 
brought into core with ifls interrupt disarmed. A C: key-in with a code of 2 could then be used to ARMand ENABLE 
the interrupt. A second C: key-in (for the same TCB) with a code of 7 would then TRIGGER the interrupt, and if 
no higher-priority interrupt were ACTIVE, the task would receive control. 

Note that if you request the Overlay Loader to bui Id a TCB, but have supplied a transfer address (that is, a label 
in the argument field of your END statement), M: LOAD wi II honor this as an initialization entry point and this 
address wi II also be used for interrupt entry. If this is not appropriate, you must alter it in your code. If the 
Loader bui Ids the TCB but no transfer address is supplied, the interrupt entry will be the first word of the program. 
The Loader will output a IIOLERR TAli message and set an error level of 1; however, this is only a warning message 
and does not affect program execution. 

tThe location of the task's TCB is the location immediately following the keyword II ORGII on a load map. See the 
load map example in Chapter 6, IIHow To Build an Overlay Program II. 
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14. HOW TO ATTAIN REENTRANCY IN ASSEMBLY LANGUAGE SUBROUTINES 

Reentrancy in a subroutine permits the subroutine to be interrupted during its execution for one task by a higher 
priority task, entered and executed by the higher priority task, and later reentered and continued for the original 
task with all previ0us environment saved. The advantage of reentrancy, of course, is the savings in memory space 
achieved by the sharing of procedural code. 

Reentrancy is made possible through the use of two special hardware registers: the base register and the link register. 

The base register (B) is used by reentrant routines to point to a temporary scratch area (called the "temp stack"), 
that is allocated by the Loader, and is unique to each task. The base register contains an absolute core address 
that is the start address of the temp stack. Note that the Sigma 2/3 instruction set permits use of both a base re
gister and an index register (with or without indirect addressing) whi ch is a powerful techni que for manipulating 
data and address va lues. 

The link register (L) is used in reentrancy to save the return address in all subroutine calls. Since no subroutine 
area can be modified, a method for subroutine calling that uses a branch-and-store instruction counter wi II not 
work, because it would store the return address in the subroutine area. However, with the link register as a sep
arate register for the return address, linking is quite easy. 

With the exception of the B register, all of the hardware registers can be used as a temporary scratch area in a man
ner similar to temp stack usage. 

There are two inter-dependent software parts that are responsible for providing reentrancy: the task and the ~ 
trant subroutine. If the proper conditions are not met in both items, no reentrancy is possible. That is, the task is 
not itself reentrant, but if it calls a reentrant subroutine and the subroutine requires more working storage than can 
be provided by the general registers, then the calling task must provide a temporary storage area for the reentrant 
subroutine. The reentrant subroutine will use this area as required. 

When a task's interrupt occurs, the pointer to the temp stack of the interrupted task is switched by the interrupting 
task via the M:SAVE Monitor service routine. This pointer (K:DYN) is set in the task's TCB to identify the temp
orary work area for the reentrant subroutine. In order for the subroutine to get the B-register set to the unused part 
of the stack, it should call M:PUSH upon entry. To release this space before the subroutine exits, it should call 
M:POP. This temporary space is illustrated in Figure 51. 

The address of the temp stack is in word 3 of the Task Control Block. This address can also be found in location 6 
(K:BASE). The best method for using the stack for temporary storage of up to lin" words is to use the M:RES and 
M:POP Monitor service routines, where the calling sequence 

RCPYI P, T 

B *$+3 

DATA n (number of cells) 

DATA o 

ADRL M:RES 

would save the previous value of B in the temp stack and set B to the FWA of the temporary scratch area (within the 
temp stack) being allocated, and the sequence 

LOA =RETURN 

STA 2" 1 

B M:POP 

would set up the return to TEMP+2, after releasing the current temp storage stack and restoring the previous 
value of B. 
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Figure 51. Reentrant Subroutine Calling Example 
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The size of the required temp stack is determined by the maximum nesting of subroutine calls. For example, assume 
the following events: 

Task C calls Subroutine 2, which requires 15 words of temporary space. 

Subroutine 2 calls Subroutine 3, which requires 8 words of temporary space. 

Task C must therefore provide a temporary stack with a minimum of 23 words. 

Let's further assume that Task C has a tota I of 50 words of temp stack. The temp stack wou Id then appear as ill us
trated in Figure 52 when Subroutine 3 was executing. 

During the execution of Subroutine 3, the base register does not point to the beginning of the temp stack, but in
stead, points to the beginning of space required for Subroutine 3. 

If Task C had called Subroutine 3 directly instead of indirectly from Subroutine 2, the space required for Subrou
tine 3 would have been at the top of the stack. 
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In summary, then: 

Word 1 

Word 15 
Word 16 

Word 23 

Word 50 

Temp Stack 
for Task C 

Space reserved for 
Subroutine 2 (fixed 
by M:PUSH) 

Space reserved by 
Subroutine 3 
(8 words) 

Figure 52. Temp Stack Usage Example 

B-register during 
execution of 
Subroutine 3 

• Tasks that call reentrant subroutines must reserve adequate temp stack space and get this space pointed to 
from the TCB, via a call to M:SAVE. 

• Subroutines designed to be reentrant must call M:PUSH (or M:RES) to set the B-register and reserve space, 
must use base addressing to reference this space, and must call M:POP to release this space. 

Procedures for assembly language calls to reentrant FORTRAN Library routines are discussed in detai I in Chapter 8. 
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15. HOW TO WRITE AN ASSEMBLY LANGUAGE INTERRUPT HANDLER 

The sample assembly language program example illustrated in Figure 53 and 54 will output the message 

KEY-IN THE DATE AND TIME BEFORE PROCESSING ANY JOBS 

on the OC device when any of the following conditions are encountered: 

• Each time the system is booted in from a RAD or tape. 

• Whenever a trigger is initiated by either a C: control command or C: operator key-in. 

• Whenever a !name processor command is encountered, preceded by an FG operator key-in. 

Figure 53 shows the source listing and required control commands and Figure 54 shows the assembled program. The 
message 

OLERR TA 

that appears following !OLOAD in Figure 53 is expected and is to be ignored. 

At execution the program is loaded into memory and is armed/disarmed, enabled/disabled, and/or triggered in ac
cordance with the specification in the Task Control Block (TeB). The TCB in this program arms and enables the 
interrupt and triggers when the program is loaded in. 

When the message 

KEY-IN THE DATE AND TIME BEFORE PROCESSING ANY JOBS 

appears on the OC device, the program has been loaded correctly. 

* 

-.JJt;j ~Rc.E.Tll\i~ 

~~~S~ ~~y.,~ Sy#S T~ U~·PRBTECT THE RAD 
!-or "C~i,...l I 

~A~~ J~,~~~ETI~~,3~,k,R,~ 

"'U,L 
AS;;; 1 ~r. ;,c=b2"Ht<T"" SO 
X~YMceL L~,G~J~~,~s,u~,a~ 

l)!:'~ 1 YPE. 

* T~'~ ~ku~~Ar ~lLL TYP~ ~~SSAGE EACH TIME THE SYSTEM IS SeBTED. 
* 
lYPl:. I-L:" A i-( Li : A I) D I~ SET X REGISTER T6 ARGUMENT LIST 

i-<L.I"'YI I-',L SET L REGISTER T6 RETL:RN ADDRESS 
b ill"::io'IkIT£ aR.ANCH Te RbM M:~RITE. 
bAi. "h I T E:. : f) K t:H~Jl"CH IF 1/6 SVCESSFLiL 
kLI"'Y ~'I A SET L8CATIBN IN A REGISTER 

ADDR 

L..0" X:Co~l:. ~ET A8eRT CfjDE (Et3CDICl I~ X hEGIST 
r<LI"'YI r'IL 
:;j *M;Ad6RT 
kc.;I"'YI P,L 
., *i'1:EXIT 

********.************************* 
*~***.*~****.~.***.**********4**** 
A h G : A J') r\ A ~ I'( L 
AkG JAIA 

tJAIA 
JA' .A 

..-AIA 

$+1 
X ' 3C05' 
ItjC' 
!"·t.SSA(j~ 

~6 

SET L REG Ttt FfjREG~6UI\D 

bRANCH T6 RtsM AtHjRT I ELSl 
SET L REG T~ FBf.(EG~eUI\D 
tjRA~CH Te '!tiRMAL RI:3f"1 EXIT 

ADDRESS 6F ARGUMENT LIST 
WRITE, EBCDic, WAiT 
~P~ABEL FeR BPERATIBNS CBNSBLE 
ADDRESS eF MESSAGE T6 BE euTP~T 
~ENGTH eF MlSSA(jE I~ BYTES 

Fjgure 53. Interrupt Handler Source Listing 
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Mt:.SSAUE UAIA X'1b~O' NEw ~INE I SPACE 
X'1515' NEW ~INE I NEW ~I~E UAIA 

'Tf.AT 
iJAIA 

!KEY·I~ THE DAT~ ANO TIME BEF6RE PReCESSI~G ANY Jess' 
x'l~lb' NEW ~INE I NE~ ~INE 

****************.***************** 
X;CBOt UA1A I~E' 
M;WRITE ~~u X'C9' 
M:A~6kT £~U X'CE' 
M;EXIT t~V XfOO' 

ABBRT CBDE WRITE ERReR 
TRANSFER ADDRESS F~R RBM WRITE 
TRA~SFER ADDRESS FBR RBM ABeRT 
TRANSFER ADDRESS FBR RBM EXIT 

************************************************************************** 
E.NLJ 

000 

t:.60 
PAUS~ KtY·'~ F~/S 
AS~IuN ~V·~Rt:.ETI~uIUP 
tiL.~AU (;, fo-
SMS 
$TC~ +1311/+1205 
$R6~r lUU/.3UOOI~6,1 

$E~D 

XE~ 
~6D 
FI~ 

Figure 53. Interrupt Handler Source Listing (cont.) 

OV01/71 PAGE 1 , DE~ TYPE 
i • 
i • THIS PReGRAM WIL~ TyPE MESSAGE EACH TIME THE SYSTEM IS aeeTED. • • • 0000 C80A A TYPE I.OX AAijlADOR SET x REGISTER Te ARGUMENT LIST AO ~ • 0001 75A~ A RCPYI P,!. SET L R~GISTER Ta RETURN ADDRESS 
'l ooor .... C9 A B .MIWRlTE BRANCH T8 RBM MIWRITE , 0001 6 .. 05 A BAl WRITE.OI( BRANCH IF 1/8 SUCESSFU~ , 000. 7 .. Fl A RCPY P,A SET LeCATleN IN A REGISTER 

18 00015 C827 A I.OX XICeDE SET AB6RT ceDE ([BCDICI IN x REGIS 
U 0006 75A1 A RCPYI P,~ SET L R~G TO FOREGReUNO 
Ii 0007 ""CE A B .""ABftRT BRANCH T6 RBM ABeRT / E~SE 
1i 000' 75Al A WRITE 161( RCPYI P,I. SET L R£G TO F8R[GReUNO 
It 000' .... 00 A B .MI[Xn BRANCH T6 NeRMA~ RBM EXIT 
lt •••••••••••••••••••••••••••••••••• 
l' •••••••••••••••••••••••••••••••••• 
11 000. 0008 R ARI3IAODR ADR!. "1 ADDR£SS 6F ARGUMENT ~IST l' OOOIS 3005 A ARij DATA X'30051 WRITE~ EBCDIC~ WAIT 
l' OOO~ D6C3 A DATA 'ecI ePLABE~ FeR ePERATIftNS CeNSftLE 
2Q 0001' OOOF R DATA "'ESSAGE ADDRESS fiF MESSAGE T8 BE eUTPUT 
n 000' 00314. A DATA 58 LENGTH 8F MESSAG£ IN BYTES 
21 •••••••••••••••••••••••••••••••••• 
U OOOf 15,.0 A MESSAGE DATA x'lS"O' NEW LINE / SPACE 
2ft 001i 1515 A OATA XI1515 1 NEW LINE I NEW ~INE 
It OOU 021:5 A TExT 'KEY-IN THE OATE AND TIME BEFORE PReCESSING ANY JeBS , 

0011 E860 A 
OOU C905 A 
OOH "OE3 A 
oon C81:5 A 
OOlt "OC" A 
0017 C1E3 A 
001$ CS"O A 
oou C1D5 A 
001A C,,40 A 
OOllS E3C9 A 

Figure 54. Interrupt Handler Assembly Listing 
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000 

• 
• 

0,./01/71 PAGE e 

001' 0'+C5 A 
OOlf) 40C2 A 
001t: C5C6 A 
OOlf 0609 A 
002Q C5'+0 A 
0021 0709 A 
002e: D6C3 A 
002i C5E2 A 
002* £2C9 A 
0025 DSC7 A 
002. '+OCl A 
0027 D5E8 A 
00215 '+001 A 
002' D6C2 A 
00211. E2'+0 A 

2ft 002S 1515 A DATA X'1515' NFW LINE I NEW ~!N£ 
27. •••••••••••••••••••••••••••••••••• 
2' 002~ E6C5 A x:c:eDE DATA 'WI::' ABSRT CSDE WRITE ERReR 
21 00C9 A MIWRITE EQU X'Cg' TRANS~E~ ADDRESS FeR RBM WRITE 
3g OOCE A M:AS6RT EQU X'CE' TRANSFER ADDRESS FeR RB~ At;eRr 
3. ~ODO A M: EX IT EQU X,Oo' TRANSFER ADDRESS FeR RBM EXIT 
3i •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
3i END 

ilia wARNINu I.INES 
Ne ERf(eR I..INE5 

ERfI'eR SEVE~ I TV : 0 

SIGMA 2/3 CRess REFERENC~ LISTING 
U A 
C 115 ARG 
C 17 ARGIADOR 
U L 
E 30 MIA~eRT 

E 31 MIEX IT 
E 29 ,'",wltlTE 
C 23 MESSAGE 
U P 
C 5 TYP~ 
C 13 WR Il'EI 51( 
C 28 XlceOE 
u S 

PAUSE KIY_IN FG,S 

ASSIGN QV-GREETING,UP 

61."11.0 O,F 
SMS 
tTea .l311,.1205 
t~6eT .00,+3000,Ge,l 
Sl"'JO 

J~~ GRE~TING ,8 
0'+/01171 0002 

RAOEDJT 
-ADD UP,GREETIN~,3"R,R,F 
'END 

H-ooall; 

ASSIGN S2.S2"RB~,SD 

xSYM8e~ ~e,Ge,C~,Ns,Dw,8e 

9 

5 
6 11 

12 
1'+ 

7 
cO 

6 9 
1 
8 

10 
17 

13 

11 13 

Figure 54. Interrupt Handler Assembly Listing (cant.) 

··.f· •. · 

How To Write An Assembly Language Interrupt Handler 101 



!'lAP 

8V£~~AY TASK Fe 8RG.3000 H~eC.30AB C~AS.'''EE CSll.oooo UMEM.2F.2 5£CT.0002 

ROOT eRG.3;6~ ~WA.30AC ~EN.OO-9 TRA.N8NE SEV·OOOO eVIL8AD.30AC 

[RRSEV. OOO~ 

ENO /'lAP 

ET.OOQ.8i 

XEI.l 
0./01/71 OOO~ 8K.OOO.85,~G.OOO.61,ID'000.OO 

FIN 

Figure 54. Interrupt Handler Assembly Listing (cont.) 
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16. HOW TO WRITE AND EXECUTE A REAL-TIME PROGRAM 

The source listings in Figures 55 and 56 illustrate the interface between two real-time task examples. The first task 
calls for a checkpoint of the background, specifies the Checkpoint Complete Receiver (via the M:CKREST Monitor 
servi ce routine and is used simi larly to the AIO Receiver), and then exits itself. The task is reentered at channel 
end. The Checkpoint Complete Receiver then triggers a second, higher priority task to restart the background. 

The deck structure given in Figure 57 would load and cause execution of the two real-time tasks illustrated in 
Figures 55 and 56. 

When both tasks have successfully executed, the message 

CKPOINT SPECIFIES AIO RECEIVER 
!! BKG RESTART 

will be output on the operator1s console. 

EOO 

, 
~ 

~ 
_ 

0000 
r:; 0001 

" 0002 
7 0003 
~ 0001t 
q 

10 
11 0005 
1~ 
1~ 
1_ 0006 
1!1\ 0007 
1,. 
17 0008 
1~ 0009 
lq OOOA 
20 
21 
2~ 

0006 
OOOC 
0000 
OOCE 
OOo~ 

, 
::> 
:1 
4 0000 
!=i 0001 
fo. 0002 
7 
~ 
q 0003 

1n 000'+ 
1t 0005 
1::> 
13 0006 
144-
1~ 

1"- 0007 
17 

00:01 04/01/11 PAGE 

0001 A P 
0002 A L. 
esoB A START 
7511.1 A 

REF 
EQU 
EQU 
LOX 
RCPYI 
B 

M:CKREST,MIEXIT,M:WRITE 
1 
2 
-All. 
P,L 
M:CI(REST 

CHECKP61NT BACKGR6UND 

'+eOA A 
6'+02 A 
6~FF A 

'+e08 A 

cooo A 
0008 R 

Ft806 A 
I)C06 A 
7 .. 92 A 

0000 R 
0006 R 
COOO E:. 
0000 E 
8000 A 
1705 A 

BAZ $+2 
BAN .-1 

********************* 
.******************.* 

B M:EXIT 
.******************* • 
•• **.**.**.****.*** •• 
All. DATA X'COOOI 

DATA AI'lREC 
* 
AI"RE.C LOA -X I 8000' 

WD X'1705' 
Rep., L,P 

*.********.*****.**** 
*********.* •••• **** •• 

E"ID START 

11.16 RECEIVER ADDRESS 

11.16 RECEIVER IS ENTERED AT THE 
LEVEL 6f THE 1/6 INTERRUPT TASK 
TRIGGER JNTERRU~ +110(272)' 

Figure 55. Real-Time Task Example, Checkpoint Call and Exit (Task 1) 

0001 A P EQU 1 
0002 A L EQU 2 

REF M:EXIT,M;CKREST,M:WRITE 
C818 A STARl 1..0 X -BB wRITE BUT MESSAuE 
70Al A RCPVI P, L IN EBCIDIC 
I+C1A A B M:WRITE 

*****-*************** 
********************* 

C81A A LDX -A.A. RESTART ~ACKGD AT THE LEVEL 
7~Al A RCPYI P,L eF THE R~M C6NTR6L TASK 
4+C19 A B M:CKREST 

* 
4+C19 A B M:EXIT 

********************* 
********************* 

0000 A AA DA.TA 0 
********************* 

Figure 56. Real-Time Task Example, Restart Background (Task 2) 
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1~ ********************* 
1q 0008 3005 A 88 DATA X'3005' 
20 0009 D6C3 A DATA 'eC' 
21 OOOA oooC R ADRL BUFFER 
2~ oooa OOlC A DATA 28 
2~ ooOC ~oC3 A BUFFER TEXT , CKPT SPECIFIED Ale RECEIVER , 

0000 D207 A 
OOOE £34+0 A 
OOOF E207 A 
0010 C5C3 A 
0011 C9C6 A 
0012 C9C5 A 
0013 C~~O A 
0014- (le9 A 
0015 D6~0 A 
0016 09C5 A 
0017 C3C5 A 

0018 C9E5 A 
0019 C509 A 
OOlA ~04+0 A 

2 .. ********************* 
2~ ********************* 
2~ 0000 R END START 

OolB 0008 R 
oolC 0000 E 
0010 0007 R 
oolE 0000 E 
OolF 0000 E 

Figure 56. Real-Time Task Example, Restart Background (Task 2) (cont.) 

2----1 

!JOB 

Figure 57. Deck Example For Loading and Executing Real-Time Tasks 
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7----~ 

!ASSIGN OV=AIO, UP 

6----1 

5----' 

4-----1 !ASSIGN OV=CKPTAIO, UP 

where the flagged control commands have the relevance and meaning given below: 

1. Permits loading into the foreground. 

2. Permits modifi cations to the RAD area. 

3. Creates two fi les: AIO and CKPTAIO. The fi les are to be two records (sectors) long, 
random access, resident foreground, and have RBM write protection. 

4. Core image output by the Overlay Loader goes directly on fi Ie C KPTAIO. 

5. Task is connected to interrupt +0110 (or 27210 in decimal) in external group 5. The interrupt is 
armed and enabled but is not to be triggered when loaded into memory for execution. 

6. Starting address is +2700 (temp stack FW A). 

7. Task is connected to interrupt +0111 (27310 in decimal) in external group 5. The interrupt is 
armed and enabled, and is to be triggered when loaded into memory for execution. 

Figure 57. Deck Example for Loading and Executing Real-Time Tasks (cont.) 
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When designing and coding your own real-time programs, there is a cardinal rule to be remembered. It was touched 
upon in previous chapters but is so important and fundemental to RBM design that it deserves added emphasis: 

• Each and every foreground task must be connected to a hardware pri ori ty interrupt and therefore wi II exe
cute if and ~ if its interrupt level is ACTIVE. In particular, a foreground task must not continue exe
cution if the interrupt level is removed from ACTIVE status for any reason. 

The single exception to this rule is during the initial ization phase of a foreground program, which is run at the 
RBM Control Task level. (Exit from initialization must return to the RBM Control Task.) It is assumed that initiali
zation activity is of short duration. 

The priority level of user foreground tasks must be above the priority level of the RBM Control Task and below the 
I/o priority level if any I/O is to be performed by the user task. 
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17. HOW TO CREATE A FORTRAN REAL-TIME SYSTEM 

Using ANS FORTRAN IV, you have the ability to construct a Sigma 2/3 real-time system that may be entirely 
written in FORTRAN if desired. 

REENTRANCY 

To effectively use a FORTRAN program in a real-time environment, it is necessary to structure the subprograms so 
that they are reentrant. The Main program and TASK Main programs are, as noted elsewhere, not reentrant; how
ever, any subroutine that may be reached from the Main program and a TASK Main program or two TASK Main 
programs must be reentrant if the system is to function properly. As indicated in Chapters 13 and 15, Sigma 2/3 
programs achi eve reentrancy through separation of program and data and the use of a dynami c temp stack a II ocated 
by the Over I y Loader. --

The standard object code output by the ANS FORTRAN compiler is designed so that it may be transformed into reen
trant subprograms. Such a transformation is achieved through the following requirements: 

• The subprogram must use M:RES, M:MPUSH, M:PUSHC, or M:PUSHK for its storage allocation. 

• The temp stack must be allocated at the very end of the subprogram. 

• The temp stack must not contain any preset data. 

• The program area must not be modified during execution. 

When made reentrant, a subprogram is set so that it uses the dynamic temp (see the "Public library FORTRAN Rou
tines" subsection later in this chapter). 

TASKS 

The key to the generation of a real-time FORTRAN system is the TASK Main program, which is a Main program 
having a TASK statement as its first statement. The TASK statement provides a means of naming (other than with 
F:MAIN) a Main program so that it may be used by the CONNECT subroutine. Thus, TASK Main programs are the 
interrupt entry points used in constructing a real-time FORTRAN system having more than one entry point. Note 
that tasks themselves are not reentrant; however, they provide temporary space to any reentrant subprograms and to 
Monitor service routines. 

BASIC STRUCTURE 

An example of a possible real-time FORTRAN system is shown in the schematic given in Figure 58. In the example, 
"the Main program provides the initialization for the rest of the real-time system. Initial entry would be to the Main 
program, whi ch would then connect the tasks ALPHA and BETA. 

Interrupt A 
(optional) 

Interrupt B 

Interrupt C 

I 

I 

I 

Main Program I 
I 

Task ALPHA I 
I 

Task BETA I 
I 

S 
... U 

B 
R 
0 

... U 
T 
I 
N 
E 
S 

Figure 58. Sample Real-Time FORTRAN System Schematic 
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If the main program is to be connected to an interrupt, it wi II be necessary to have the Main program alter a preset 
variable so as to flag the fact that the later entries are not to do initialization. 

Figure 59 shows the deck setup that might be used to construct the schematic sample in Figure 58. The first !$TCB 
card instructs the Overlay Loader to initiate the root segment through the w

1
, w

2 
specification. 

The !$ROOT card tells the Loader the size of the Main program1s temp stack (t 1) and a Iso where to find the Main 
program and the subroutines BI. 

The second !$TCB card sets the Loader to expect a TASK Main program (t2) which will be task ALPHA, and also 
causes the Loader to allocate temp stack space for the task. The task module with its! $SLD command (ALPHA deck) 
must immediately follow the ! $TCS card; otherwise the CON NECT subroutine wi II malfunction. The use of ! $TCB 
commands is further discussed in Chapter 12 of this manual. 

INITIALIZATION 

In initialization, you have the option of allowing the Overlay Loader to do all the work (thus avoiding the problem 
of determining whether the Main program entry is really the initial entry), or you can use the CONNECT subroutine 
in an initialization routine. 

If the Overlay Loader is to do the initialization, you must then specify aWl' w2 on the !$TCS cards (see the !$TCS 
command in the Overlay Loader chapter in the RSM Reference Manual, and IIHow To Create Task Control Blocks ll 

in this manual). 

If the Main program is to perform an initialization function, then only the Main program need have aWl' w
2 

field 
entry. 

Figure 59. Overlay Loader Controls For Sample Real-Time FORTRAN System 
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You could use a mixture of these two approaches if desired. A Main program and one or more tasks might be 
initiated by the Loader. Then, at the occurrence of some specified set of conditions, other tasks could be con
nected to their respective interrupts. 

SUBROUTINE SHARING 

Caution must be exercised if subroutines could possibly be shared by two or more interrupts after activation. Where 
this condition exists, you must be able to ensure that a subroutine is either in the Public Library or that it uses only 
dynami c storage (directly or indirectly). 

PUBLIC LIBRARY FORTRAN ROUTINES 

Since all routines in the FORTRAN Library fulfill the requirements for conversion to a reentrant subprogram, it is 
possible to convert a FORTRAN subroutine into a Public Library routine. As previously stated, a routine to be con
verted must use M:RES, M:PUSH, M:PUSHC, or M:PUSHK for storage allocation, and the static temp stack must be 
empty and allocated at the end of the program. 

With these conditions fulfilled, the Overlay Loader can be used to convert a FORTRAN routine to a Public Library 
version. In general, the conversion involves altering the storage allocation calling sequence so that it requests 
dynamic temp and by stripping the static temp stack from the end of the program. The chapter "How To Write Reen
trant Subrouti nes In Assembly Language" in this Manual and the Overlay Loader chapter in the RBM Reference Man
ual give more specific details. 
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18. HOW TO DEBUG ASSEMBLY LANGUAGE PROGRAMS 

The most useful features of the RBM Debug package are conditional dumps and the capabi lity to insert code. Both 
of these features require a region of memory that we wi II call the lIinsertion block ll

• 

HOW TO DEFINE AN INSERTION BLOCK 

The insertion block is defined with the Debug command: 

(D start, end 

and must be given before any code insertions or snapshots may be specified. The most convenient way to define the 
insertion block limits is to initiate program execution with an !XED control command that will cause the message 

! !DKEYIN 

to be output on the OC device after the program is loaded into core. At this point, you can type in the insertion 
block definition, type in the conditional snapshots and/or code insertions, and then begin execution. 

HOW TO INSERT SNAPSHOTS AND CODE 

The listing in Figure 60 is an example of a background program using a conditional snapshot and two code insertions. 

[00 

t 
lI' 
~ 
4 
~ 

" 7 

" II 
ln 
11 
ll1' 
U 
1. 
Hi 
1" 
11 
1" 
19 
2n 

* Ne ERRI!R 

* ERRI!R 

ET·OOo.2~ 

eLItAD 
."'S 

0000 C8l9 A 
0001 75Al A 
0002 .. Cl8 A 
0003 C838 A 
000. 7SAl A 
0005 4C37 A 
0006 75Al A 
0007 ,.C36 A 
0008 3006 A 
0009 06C3 A 
OOOA 0011 R 
0008 0050 A 
OOoC 3005 A 
0000 06C3 A 
OOOE 0010 R 
OOOF 0050 A 
0010 FOOO A 
0011 

0000 R 
0039 0008 R 
O03A 0000 E 
0038 oooc R 
003C 0000 E 
0030 0000 E 

LINES 
SEVERITY: 0 

,ReeT +1100"Ge 
.END 

START 

WRITE 

STep 

IN~!ST 

!tUTUST 

fltUT8UFft 
I NSUf'F 

09:0lt 10/22/11 PAGE 

REF M:REAO,MIWRITE,~ITERM 
LOX "INI.IST READ 
RCPYI 1,2 FRItM 
B M:READ ec 
LOX ·eUTLIST wRITE 
RCPY! 1,2 5N 
B MHo/RITE eC 
RCPYI 1,2 TERMINATE 
8 "':TERM PRItGRA~ 
DATA )(.3006. READ AUTe, WAIT, STO ERR REcevp:RY 
DATA 'eC' 8PERATIeNAI. LABEl. 
DATA INBUF'F' BUFFER ADDRESS 
DATA 80 BYTE ceUNT 
DATA )('3005, WRITE EBCDIC, WAIT, eTO ERR ~ECeVERY 
DATA '5C' 
DATA 5UTBUF'F 
DATA 80 
DATA X·F'OOOi 05UBlE SPACE FeRMAT ~eOE & NUI.L 
RES ·0 
END START 

Figure 60. Example, Background Conditional Snapshot With Two Code Insertions 
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MAP 

eVER~AY TASK BA &RG.3FOO H~6C.503D CBAS.FOOO CSIZ.OOOO UMEM_9FC2 SECT.0002 

RBBT BRG-SOOO ~WA.503D ~EN-003E TRA-SoOO SEV.OOOO eVIL6AD·~e~E 

ERR!;EV" 0000 

F:NO MAP 

ET·000.2, 

MESSAGE WHEN DKEYIN IS 6UTPUT, TYPE IN leI F6LLBWED BY NEW LINE 

PAUSE SET PR&TiCT SWITCH T8 'BFFI, INTERRUPT, KEYIN IS' 

)(,-0 
DKEYtN 
c 
D "OOO,!liOOO 
S 5003/RA<>.,o/lERReR',RR 
18 5003.D01C,620-,RCPYIPL,"C01,5007 
IR 5006 ... 0*5000 . 
B 

Figure 60. Example, Background Conditional Snapshot With Two Code Insertions (cont. ) 

The example in Figure 60 reads one 80-character record from the OC device, outputs the same record on the OC 
device, and then terminates. 

The !$ROOT card causes the program to be loaded for execution at X'50QO'. Since the beginning of background is 
at X'3FOQ' in the system used for this example, the region from X'3FOQ' to X'3FFF' is used as dynami c temp space 
for the program. 

When the! !DKEYJN message is output, the operator types in "C", which causes Debug to read further commands 
from the Debug DJ device. 

The S (snapshot) command tests for register A being equal to the value 0, following the call to M:READ. If A does 
not equal zero, the message 

ERROR 

is output on the Debug DO device, followed by a hexadecimal dump of the register contents. 

The IB (Insert Before) command inserts a test for an EOF condition (A=3) before the snapshot. The symbolic equiva
lent of the inserted code is 

CP =3 

BNC $+3 

B *$+1 *$+1 

DATA STOP 

The IR (Insert Replace) command inserts an unconditional branch back to START, following the call to M:WRITE. 
The symbolic equivalent of the inserted code is 

B START 
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HOW TO DEBUG A FOREGROUND PROGRAM 
The use of Debug with a foreground program involves the use of a high-level interrupt for use by RBM whi Ie the 
foreground program is active. The background program example given previously in Figure 60 can be made to 
operate in the foreground as shown in Figure 61. 

The !ROOT card shown in Figure 61 causes the program to be loaded so that the label START is at location X'3400'. 
The start of the program is computed as 

TeB address = exloc (X'3300') + temp (X'E5') 

START = TCB address (X'33E5') + TCB size (X'lB') 

Since the default temp size is X'50', the !$ROOT command could also be 

($ROOT ,+3395, GO 

to cause the label START to be on a convenient boundary. The TCB would sti" be at X'33E5'. 

EOO 00100 09/21/11 
, IONT 'PRSG' 
~ RE' HIREAD,MIWRITE,HI[XIT 
:I 0000 CU9 A START LD)( I!NLIST READ 
• 0001 7SAl A RCPy! 1,2 FR8" 

" 0002 ItC38 A B HH~EAD ItC 
It 0003 C838 A WRITE LD)( "eUTL.IST WRITE 
7 0001t 75Al A RCPYI h2 eN 

" 0005 ItC37 A B M:WRITE ItC 
9 0006 7SAl A STep RCPYI hi TERMINATE 

10 0007 ItC36 A B M;EXIT TASK 

PAGE 

11 0008 3006 A INL.IST DATA X'3006' READ AUT!, WAIT, STD ERR REceVERY 
1~ 0009 D6C3 A 
1:1 00011. 0011 R 
1. OOOB 0050 A 
15 OOoC 3005 A 
1,. 0000 06C3 A 
17 OOOE 0010 R 
U OOOF 0050 A 
111 0010 FOOO A 
20 0011 
2, 0000 R 

0039 0008 R 
00311. 0000 E 
003B OOOC R 
003C 0000 E 
0030 0000 E 

• Nit [RAeR LINES 
• [RASR SEVERITYr 0 

[T.000.1" 

&LSAO 0,,"0 _ ... 
eTCB .1111,.1205 
.RItItT ,.3500,Ge 
_rNO 

eUTLIST 

eUTBUFF 
INSUFF 

DATA 'eC' 8PERATleNAL LABEL 
DATA INBUFF BUFFER AgDRESS 
DATA 80 BYTE CI!tUNT 
DATA )('3005, WRITE EBCDIC, WAIT, STD ERR REceVERY 
DATA '8C' 
DAU 8UTBU" 
DATA 80 
DATA X,FOOO' CI!tUBLE SPACE FeRMAT ceDE & NULL 
RES ItO 
END START 

INTERRUPT 111, ARM, [NABLE 

Figure 61. Foreground Conditional Snapshot With Two Code Insertions 
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MAP 

aVEQLAV TASK F8 8R~_3500 HL8e.35A8 tBAS.3EEE tSIZ.oooo UMEM.09~5 SECT_0002 

RB8T eRG135!o LWA-35A8 LEN'OOS9 TRA.~eNE SEV-oooo eVILeADIN8NE 

ERRREV. 0000 

END MAP 

ET'OOO.l~ 

PAUSE KEVIN FG.s 

M[SSAGE WHEN DKEVIN IS OUTPUT. TVPE IN .e. FOLLOWED BV NEW.LINE 

XED 
OKEYIN 
e 
0 .. 110 
D3200.3~OO 
S tPROG.1/RA<>'0/,IERR8RI,RR 
I! .PReG.3,DolC'620_,RCPVIPL,~C01"PReG.7 
IR .PReG~,40 •• PP8B 
8 

c: U550 .. 7 

Figure 61. Foreground Conditional Snapshot With Two Code Insertions (cont.) 

HOW TO USE $NAME AND @NAME 

The Debug package provides two methods of referring to program locations by name rather than by hexadecimal 
value. Both methods involve the use of an arbitrary symbol of up to eight alphanumeric characters preceded by a 
$ or by an @ sign. Examples: 

$PROGRAM 

$SEGl 

@START 

@S 

REQUIREMENTS fOR $NAME 

1. The source program must include an IDNT statement. Example: 

IDNT 'PROGRAM' 

2. The !OLOAD command used to load the program must contain the character Das the fourth parameter. Example: 

iOLOAD O,F" D 

3. The Debug insertion block must be large enough to contain a blocking buffer for reading from the opera
tional label ID. The blocking buffer is allocated as the last K:BLOCK words of the insertion blocks, where 
K:BLOCK words of the insertion blocks have the value 180 or 512. This value is contained in location 
X'EE ' in all RBM systems from Version DOD upward. If snapshots or insertions are to be made, the insertion 
block must be large enough to contain the blocking buffer and the additional space required for the inser
tions or snapshots. 

The example in Fi gure 62 shows how the $NAME feature can be used with a foreground program. 
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[00 00101 09/22171 PAGE 

1 REF MIRE40.MIWRITE,MIEXrT 
'2 0000 C839 A START LDX .rNUST READ 
] 0001 75Al A RCP"I 1.2 ~ReM ,. 0002 4C38 A B MIREAO ftC 
!II 0003 CU8 A WRITE LDX .. eUTLIST WRITE ,. 0004 7SAl A RCP"I 1.2 ItN 
7 0005 4C37 A B MIWR!TE ec 
I 0006 15Al A STep RCP"I 1.2 'l'ERMINATE 
9 0007 4C36 A B M:Exn TASt< 

10 0008 3006 A INLIST DATA X'300" READ AUT6, WAIT, STO ERR REceV[RY 
it 0009 06C3 A DATA 'ec' ePERATleNAL LABEL 
U· OOOA 0011 R DATA INBUFF BUF~ER ADDRESS 
U OooB 0050 A DATA 80 BYTE C8UNT 
1. OOOC 3005 A ~UTLIST OAU X'3005, WRITE EBCDIC, WAIT, STO ERR RECItVERY 
1 !!I 0000 06C3 A DATA 'ltC' 
lit OOOE 0010 R DATA eUTBUF~ 
17 OOO~ 0050 A DATA 80 
U 0010 FOOO A 8UTBUF~ DATA X'~OOO' oeU8LE SPACE FeRMAT ceDE , NULL 
19 0011 INDuFF RES *0 
20 0000 R END START 

0039 0008 R 
003A 0000 E 
0038 OOOC R 
003C 0000 E 
0030 0000 E 

• N8 ERItl!R LINES 
• ERiteR SEVERIT": 0 

ET-000.l0 

eLeAD O.F 
sMS 
sTCB +1111,+1205 
.R88T +E5,+3300,Ge 
sEND 

MAP 

INTERRUPT 111, ARM, ENABLE 

eVEItLAV TASK ~e eRG.3300 HL8C_343D CBAS.lEEE CSIZwoOOO UMEMwOABo SECT.0002 

ReeT eRGw33E! LWA.343D LE~-0059 TRA-NeNE SEV-OOOO eVILeAD-NeNE 

ERRSEV. 0000 

END MAP 

EhOOO.U 

PAUSE KEVIN ~G,s 

M[SSAGE WHEN DKEVIN IS eUTPUT, TYPE IN ,c. ~eLLeWED BY NEW LINE 

XED 
OK[VrN 
C 
o.UO 
D 3200.]300 
S 3403/RA<>_0/'ERR8R'.RR 
IS 3403.001C,620-.RCP"IPL,,,C01,3407 
IR 3406.40*3400 
B 

TRIGG£R INTERRUPT 

Figure 62. Foreground Debug Example Using $NAME 
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REQUIREMENTS FOR @NAME 

When it is desirable to be able to refer to locations within a program, the use of a Debug symbol table is required. 
The symbol table may be assembled into the program or it may be constructed in an unused area of core with Debug 
Modify commands. Use of the @NAME foci lity a flows you to write snapshots for subroutine entry or exit points, to 
simulate input values, etc., for programs being assembled and executed within the same job. 

The structure of the Debug symbol table is 

C1 C2 

C3 C4 

C5 C6 

C7 C8 

Value 

o 

Symbol name, left-justified and padded with blanks 
to a total of 8 characters. 

The I ocati on va I ue to be used. 

Indicates end of table. 

The Debug G command is used to define the start of the symbol table. The listing in Figure 63 is an example of 
using @NAME with a background program. 

£00 00101 0'/22171 'AOf , DEF SYMTAB 
~ REF M:~EAO,MIWRITE,M:TERH 
3 0000 E2E3 A SY"'TAB TEXT tSTAAT t 

0001 Cl09 A 
0002 [3"0 A 
0003 "0"0 A .. 000" 0010 A DATA START 

8 0005 £6 .. 0 A TEXT tW 
0006 40"0 A 
0001 40"0 A 
0008 40"0 A 

" 0009 0013 R DATA WRIT; 
7 OOOA [2E3 A TEXT tST8 

0008 D601 A 
ooOC 40"0 A 
0000 "0"0 A 

" OOOE 0016 R DATA STep 
I) OOOF 0000 A DATA 0 

10 0010 CU' A START LOX ~1.NLIST READ 
it 0011 75Al A RCPYI 1,2 FR!tM 
lit 0012 "e38 A B HI~£AO 8C 
13 0013 C838 A WRITE LOX .!tUTL.IST WRITE 
1- 001" 75Al A RCPVI 112 eN 
18 0015 "C31 A 8 HIWRITE ee 
lI- 0016 75Al A ST8P RCPYI 1,2 TERMINATE 
17 0011 .. C36 A 8 MITERM PR!tGRAM 
1" 0018 3006 A tNI.IST DATA X'lOO6, READ AUTe, WAIT, STO ERR REeeVERY 
19 0019 D6C3 A DATA '!tC' ePERATI!tNAL LABEl. 
20 OOlA 0021 R DATA INBUFF BUFFER ADOREiS 
2t 0018 0050 A DATA 80 BYTE eltUNT 
2i 001C 3005 A eUn.IST DATA X13005' WRITE EBCDIC, WAIT, 5TO ERR REC8vERY 
n 0010 D6C3 A DATA teCt 
2_ 001E 0020 R OATA eUTBUFF 
28 OOlF 0050 A DATA 80 

Figure 63. Background Debug Example Using @NAME 
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[00 

26 0020 FOOO A 8UTBUFF DATA 
27 0021 INBUFF RES 
2. 0010 R END 

00'" 0018 R 
OO .. A 0000 [ 
OO"S OOlC R 
OOItC 0000 [ 
OOltD 0000 E 

• Ne [RReR LINES 
• [RReR SEVERITV: 0 

£1.OOO.U 

8L8AD 
.HL 
.ReaT .110Q"Ge 
UNO 

MAP 

BYEQI.AY TASK BA eRG_3FOO HI.8C.50_D CBAS.FOOO 

ReeT 

DEF M.FSAVE 
DEF OIICEY 
DEF OICARO 
DEF OrSNAP 
OEF i'1ISAYE: 
DEF ~IEXIT 
DEF MueEX 
DEF MIREAD 
DEF MI WRITE 
DEF MleTRL 
DEF "':TERM 
DEF ",:OAUME 
DEF M.ABftRT 
DEF MIHEXIN 
DEF "'IINIoIEX 
DEF MICKREST 
DEF "'IL8AD 
OEF M:ePEN 
DEF M:CLeSE 
DEF MIOKEYS 
OEF "':wAIT 
OEF M:SE<iLO 
DEF ""DEFINE 
DEF "'USStGN 
OEF MlePFtl.E 
DEF "':Pep 
OEF MIRES 
OEF MIOVN 
DEF "'IRSVP 
DEF M:oe~ 
DEF MICeC 

eRG-SOOO LwA-501+0 I.EN-OOI+E 

DEF SYMTAB 

ERRAEV_ 0000 

END MAP 

E1.OOo.20 

01+7D 
27A8 
27AC 
27AD 
27A6 
27A7 
2'AE 
27BO 
27B1 
27B2 
27BIt 
27B3 
27B5 
2786 
2787 
2788 
27AB "5, 
27BA 
27BB 
278t 
27BO 
27BE 
278F 
27CO 
27C1 
27C2 
27C3 
2'A9 
27U 
21A' 

TRA-S010 

5000 

00101 09/22/71 PAGE 

oeUSLE SPACE FeRMAT CeDE & NULL 

CSIZ.OOOO UM[M.9Fez SECT.0002 

sEV-OOOO eVtl.eAD-lIIeNE 

PAUSE SET PReTECT SwITCH T8 '8FF', INTERRUPT, KEVIN'S' 

MESSAGE WHEN DKEyIN IS eUTPUT, TYPE IN Ie, Fel.LewED BY NEw I.INE 

XED 
DI<[YIN 
C 
D I+OOO,lIiOOO 
G5000 
S ,W/RAc>_O/,'ERR8R',RR 
IS aw,DnlC,6201t,RCPVIPI.,ltC01,iST6P+l 
IR IST8P,l+o*aSTART 
B 

FIN 

Figure 63. Background Debug Example Using @NAME (cont.) 
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19. HOW TO ASSIGN AND USE DEVICE OPERATIONAL LABELS 

Physical devices are norma IIy assigned at SYSGEN to device fi Ie numbers (DFNs). However, at installations where 
relatively large numbers of personnel submit jobs on a somewhat irregular basis, it is highly useful to permanently 
assign device mnemonic operational labels to hard-to-remember DFNs. This is particularly true when large numbers 
of Utility jobs are submitted, since the Utility processor works only with operational labels. 

For instance, a nonprofessional programmer would find it much easier to use 

(ASSIGN BO=MO 

instead of the standard DFN assignment of 

(ASSIGN BO=IO 

for a temporary assignment of binary output to a magnetic tape unit. 

Or again, the nonprofessional programmer submitting a Utility job could assign (for instance) 

(!ASSIGN Ul<R 

instead of a "normal" DFN assignment of 

(ASSIGN UI=3 

to read in his input, with much less possibility of an incorrect assignment. 

When permanently assigning DFNs to operational labels at SYSGEN, the oplabels should convey as much mnemonic 
information as possible. The fol Jowing Jist, however, is suggestive only: 

Typical 
DFN 

2 

3 

4 

5 

6 

10 

1n 

Physical 
Device 

Keyboard/Printer 

line Printer 

Card Reader 

Card Punch 

Paper Tape Reader 

Paper Tape Reader 

Magnetic Tape Unit 0 

Magnetic Tape Unit n 

Suggested 
Mnemonic Oplabel 

KP 

LP 

CR 

CP 

PR 

PP 

MO 

Mn 

The assignment of DFNs to devi ce mnemonic operational labels takes place during the SYS GEN assi gnment of the 
background operational labels (see "BCKG. OP. LBL" output message in the SYSGEN Input Options and Parameters 
table in the System Generation chapter of the RBM Reference Manual). 

How To Assign and Use Device Operational Labels 117 



Assuming that the card reader is assigned DFN3, the permanent SYSGEN assignments would appear as 

SI = 3 

UI = 3 

CR = 3 

with corresponding device mnemonic operational labels for other DFN assignments. 
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20. HOW TO PATCH RBM 

RBM can be patched either temporari Iy or permanently through use of the RBM Hex Corrector. Whether the patch 
is temporary or permanent is determined by the manner in which the Hex Corrector is activated. 

A temporary patch means that the copy of RBM located on the RAD is not altered, and this is achieved by activating 
the Hex corrector via a ! HEX control command or an II HII operator key-in. 

A permanent patch means that the RAD copy of RBM ~ altered, and therefore the changes will remain in effect for 
all future boots of the system from the RAD. Permanent changes are effected through activating the Hex Corrector 
by setting DATA switch 1 when RBM is booted in. By using the two methods in conjunction, you can check 
out patches on a temporary basis and when satisfied that they are correct, make the patches permanent. 

When the Hex Corrector has been activated by either one of the two methods described above, it will read records 
from the CC operational label and write records on the DO operational label. The records read in are either bias 
or corrector records. 

Bias records have the form 

1 
bbbb I 

+ ID~~} [*Commen ts] 

where 

bbbb is a hexadecimal number. 

PA represents the RBM Patch area defined at SYSGEN. 

XX is an RBMoverlay identifier (for example, 41 is the Hex Corrector). 

Corrector records have the form 

aaaa cccco cccc
1 

••• ccccr .. cccc
n 

[*comments] 

where 

aaaa is the hex location where the corrections will go. (If a bias card has been encountered, aaaa will be 
added to it to determine the location of the patches.) 

cccc. is the hex correction to be inserted at the location aaaa + bias + i. The hex correction cccci may also 
~Iso be of the form Rcccci which means the value to be stored is cccci + bias, or it may be of the form 
PCCCCi which means the value to be s'tored is cccci + bias of the RBM Patch area. 

An ! EOD terminates the Hex Corrector's input. 

Figure 64 shows sample input to the Hex Corrector. 

How To Patch RBM 119 



POOO 1 *B PA+ 1 

+ID41 *HEX CORRECTOR 

0001 4C01 ROOlO *B PA+ 10 

+IDPA *RBM PATCH AREA 

tThe first and last cells of the RBM Patch area should not be used for corrections, since the first contains the 
length of the Patch area and the last contains the number of temporary RBM overlay patches. Each temporary 
overlay patch takes three Patch area words (taken from the top of the Patch area down). 

Figure 64. Hex Correction Input Example 
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21. HOW TO SAVE AND RESTORE AN RBM SYSTEM 

The RAD Editor can be used to save and restore an RBM system without the necessity of going through a complete 
SYSGEN. Two methods are available for saving the RBM system files: rebootable save and file save. 

HOW TO CREATE A REBOOTABLE SAVE TAPE 

The following control command sequence 

! PAUSE MOUNT 1FST SAVE TP ON UNIT #0 

!JOB 

will generate a rebootable save tape on magnetic tape that contains the entire tRBM system. 

Note that the "TO" device operational label used on the !ASSIGN command instead of a standard device fi Ie num
ber (DFN) is an option that must be defined at SYSGEN (see Chapter 19). 

The RBM areas contained on the rebootable save tape may be restored in their entirety by performing a bootstrap op
eration with the magnetic tape, or may be selectively restored via the RAD Editor! #RESTORE command. 

BOOTING AN RBM SAVE TAPE 

When an RBM save tape is bootstrap loaded via the hardware load procedure, the message 

RESTORING VERSION XX OF mm/DD/yy HRMN 

is output on the keyboard/printer. 

where 

XX is the version of the RBM system. 

mm/DD/yy HRMN is the date and time the save tape was created. 

tIf no parameter follows !#SAVE, the RAD Editor will save all areas currently known to RBM except CP (Check
point) and BT (Background Temp). 
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As each new area is encountered on the save tape, the message 

RESTORING AR TO DN 

is output on the keyboard printer 

where 

AR is the area mnemonic. 

DN is the device number to contain the area. 

If an area is being restored to a disk pack, the first occurrence of such an area will cause the following message to 
be output: 

IDLE, RUN TO WRITE 

If it is permissible to write on the indicated device, move the COMPUTE switch to IDLE and then back to RUN. 
This measure is intended to prevent inadvertent destruction of information on disk packs. 

If an I/O error occurs, the program wi II output an appropriate message and retry the operation. If the error condi
tion persists, the operator may abort the restoration of the area currently being restored by pressing the Control 
Panel INTERRUPT switch. This wi II cause the program to skip to the next area on the tape. 

When a II areas have been restored (or the logical end of tape is encountered), the program will unload the input 
tape and execute the RBM bootstrap. 

SELECTIVELY RESTORING AREAS FROM A REBOOTABLE SAVE TAPE 

The control command sequence in the example 

UP, UD, UL 

!JOB 

wi II restore the User Processor, User Data, and User Library areas from a magnetic tape that was generated as de
scribed previously. 

The RAD Editor restores the selected areas to their currently allocated regions, which must be on the same device as 
they were at the time of the save. However, the areas being restored need not be to the same physical region of 
the device. If the BOT of the area being restored is different from the BOT of the current allocation for that area, 
the restore will proceed normally and the area file directory will be updated to reflect the new file positions. If 
the area being restored contains nonzero data past the EOT of the current allocation, an EOT message will be out
put and the area will be truncated to fit the current allocation. In this case, the updated file directory may con
tain files that appear beyond the area EOT; these files should be deleted. 
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Note that selective restoration may not be used to restore the SP or SD areas. The bootstrap operation must be 
used if the SP or SD areas are to be restored. 

HOW TO SAVE RBM SYSTEM FILES 

If the RAD Editor! #SAVE command is used with the keyword II FILE", the fi les indicated by the remainder of the 
parameters are saved on the BO device, which may be a magnetic tape, a paper tape punch, or a card punch. 

Each file is identified by its area mnemonic and file name, together with sufficient information to restore the file 
to the area from which it was saved. The example 

r---------------------------------------, 
!#END 

FILE1,FILE2 

!#SAVE FILE, UP, UD, FILE1, FILE2, UL, D1,; 

!JOB 

will cause the following fi I es to be saved on the current BO device assignment: 

A reo Fjles 

UP all 

UD FILE1,FILE2 

UL all 

01 FILE 1 ,FllE2 

RESTORING RBM SYSTEM FILES 

The RAD Editor! #RESTORE command is used to restore files previously saved via a ! #SAVE command. For example, 
if the commands 

!JOB 

were given with the output from the previous !#SAVE example being read from the BI device, the following files 
would be restored: 

Area 

UP 

UD 

Files 

All that existed at the time of the save would be added to current area contents. 

FILE 1 and FILE2 would be added to current area contents. 

In this method of restoring files, the file name is added to the area if it does not already exist; otherwise, the cur
rent content of the fi Ie is replaced by that from BI. 
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