
'!
ji/

r "ffII""'""",

~

I
I
I
I
I
I
I
Ie
I
I
I
I
I

,,~-

I
I
If:'
I

SAMSO-TR-67 -23

This document
is unlimited.

I

SPECIFICATION FOR

SPACE PROGRAMMING LANGUAGE

Prepared By:

L. J. Carey
A. E. Kroger

System Development Corporation
Santa Monica, California 90406

August 1967

Prepared For:

(SPL)

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND

AIR FORCE UNIT POST OFFICE
LOS ANGELES, CALIFORNIA 90045

has been approved for public release and sale; its distribution

[

••

IILu

(
J

I

[

,I
(

(

(

[

r
(

SAMSO-TR-67-23

SPECIFICATION FOR

SP AC E PROGRAMM I NG LAN G UAG E (SPL)

Prepared By:

L. J. Carey
A. E. Kroger

System Development Corporation
Santa Monica, California 90406

August 1967

Prepared For:

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND

AIR FORCE UNIT POST OFFICE
LOS ANGELES t CALIFORNIA 90045

This document has been approved for public release and sale; its distribution
is unlimited.

i

FOREWORD

This is a technical n~port (h~ftning n common Space Programming L;tngu;tgt· (SI'L).
It was produced by tlw SYHtt>m Development Corponllion durfn-g !.IH· ('ontl";rcl

period from Ft'brunry .1967 through August 11)67. Tills work waf{ p"rforult .. ·d under
Contract Number FO /.69~)-61:"'·C-UOt)6. A.lso produc.ed under tid::; ~:cJl\tract w.:1H .:I

document enli tled Coml?iler Requirements for Space Programming Language (SPL).,
SAMSO TR-b7-3.

Based on a study of spaceborne software, SDC previously produced a four volume
report, SSD TR-67-ll. Volume III of that series contains an initial descrip­
tion of SPL in English prose form.

This report specifies the SPL language including two extensions for· space
computer programming applications.

The personnel involved were:

a. Air Force ProJect Officers

Roger B. Engelbach
Lieutenant, USAF

MichaelA. Ikezawa
Major, USAF

b. Air Force Project Consultant

Dr. Walter A. Sturm
Aerospace Corporation

c. SDC Project Manager

Gerard A. Hirschfield

d. SDC Technical Staff

L. J. Carey, Project Head
A. E. Kroger
C. J. Shaw

dJJL± ~
G. A. Hirschfield, Manager
Advanced Space and Range Projects

reviewed and is approved.

Roger B. Engelba ,Lieutenant
USAF Project Officer

ii

I

(

[

[

[

[

II

ABSTRACT

This document contains a complete specification of

the Space Programming Language (SPL) in Backus-Naur

form. A description of Basic SPL and an extension is

given. SPL is a space application language with a

large array of capabilities. It is further an

extendable language with punctuation rules and

vocabulary designed for ease of learning and

progranuning.

iii
(page iv blank)

[

1
~-. .,

I
I
I
I
T
"""",

,[

I~

1
~[

[

[(

I'
e {

[[

(

[

(

I,

(

[(

I:

(~

[

[

[

[

[
r~

I: ~j
[

1.

2.

TABLE OF CONTENTS

1 NTROD UCTION

1.1

1.2

1.3

1.4

1.5

1.6

Intended Use of the Specification

Background

Language Requirements

SPL Recommendation

Significant Features of SPL

1.5.1

1.5.2

Basic SPL

SPL Extension

Notation and Metalanguage

1.6.1

1.6.2

Notation

Metalanguage

ALPHABET, VOCABULARY, AND PROGRAM STRUCTURE

2.1 Alphabet and Symbols

2.2 Names

2.3 Primitives

2.4

2.5

2.6

2.7

2.3.i

2.3.2

2.3.3

Constants

Delimiters

Operators

Descriptors

2.4.1 Numeric Constants

2.4.2 Textual Constants

2.4.3

2.4.4

Pointer Constants

Boolean Constants

Statement Structure

Comments

Program Structure

v

1

1

1

2

3

5

5

9

10

10

11

13

13

14

15

15

15

16

17

17

18

19

19

20

20

21

1

CONTENTS 1
Page

J. DATA DEFINITION 22
.L

3.1 Item Declarations 22]
3.2 Array Declarations 25

3.3 Group Declarations 26]
3.4 Mode Declarations 27

3.5 Storage Declarations 28
] 3.6 Variables 30

3.6.1 Subscripted Variables 32] 3.6.2 Catenated Variables 36

3.6.3 Conditional Variab}_es 37

3.6.4 Hardware Operands 37]
3.7 Compao1 Declaration 38

'l

4. STATEMENTS 39 ,_J

4.1 Assignment Statements 39

4.1.1 Formulas 42

4.1.2 Direct Code 53

4.2 Control Statements 54

4.2.1 Transfer Statements 54

4.2.2 Repeated Statements 55

4.2.3 Conditional Statements 56

4.2.4 Parallel Statements 57

4.2.5 Stop Statements 58

4.2.6 Delayed Statements 59

4.2.7 Chronic Statements 60

4.3 Inp,ut-Output and Files 61

4.3.1 File Declarations 63

4.3.2 Assign Declaration 65

v.i

()

r
[---~

I'
('

(

[',

:r
("

r ~-
"--

'"
\ .,

I'

(

[

50

CONTENTS

4.3.3 Opening and Closing Files

4.3.4 Testing and Positioning Files

4.3.5 Reading and Writing Records

PROCEDURES AND FUNCTIONS

5.1 Procedure Declaration

5.1.1

5.1.2

Procedure Call Statements

Entry and Exit Statements

5.2 Function Subroutines

5.3 Recursive and Reentrant Subroutines

5.4 Built-in Functions

5.4.1

5.4.2

5.4.3

5.4.4

Trigonometric Function

Absolute Value

Base e Exponential

Base 2 and Base 10 Logarithm

6. COMMANDS

7 •

6.1 Debug Command

6.2 Optimization Command

6.3 Count Command

6.4

6.5

Define Command

Execute Corrnnand

EXTENDED SPL

7.1 Complex Values

Code Declarations

List Declarations

7.2

7.3

7.4 List Processing Statements

vii

;':

!'age

65

67

68

70

70

72

73

74

75

76

76

76

77

77

78

78

79

79

80

86

87

87

87

92

92

CONTENTS

7.4.1 Reference Statements

7.4.2 Link Statements

7.4.3 Free Statements

7.5 Encoding and Decoding

7.6 Algebraic Formula Man,ipu1ation

7.6.1 The Evaluation Function

7.6.2 The Represent Function

7.6.3 The Defined Function

7.6.4 The Identity Function

7.6.5 The Approximate Function

7.6.6 The Reduce Function

7.6.7 The Expa.nd Function

7.6.8 The Coefficient Function

7.6.9 The Differentiation Function

7.7 Interactive Progranuning

7.8 Commands

7.8.1 Edit Commands

7.8.2 Save Commands

7.8.3 Get Conunands

7.9 Built-in Functions

7.9.1 Functions

8. LISTING OF SYNTAX EQUATIONS

INDEX

viij

Page

93

95

98

100

106

112

112

113

113

114

114

115

116

116

118

119

119

1L3

125

127

127

130

143

(

J

1
,.
r'1

J

1
;..1

(l

'-aU

n

\.,

[

r~-<~
(
\

l
[

[

[,

("

I
11

(
'----

[

I~

l.:
(

[

I
I~
r
I ---------/

I

1. INTRODUCTION

1.1 INTENDED USE DF THE SPECIFICATION

This document contains a complete specification of the EFace frogramming~anguage

(SPL). Included is a description of the alphabet, the syntactic forms and

the meaning of each language element. The metalanguage used to describe SPL

syntax is the Backus-Naur form with a few modifications.

The first and foremost consideration made in presenting this material is

precision and completeness of information content. Thus, the in~ent is to

present a language in a well defined form. This description is not a learner's

text; it is intended to be the authoritative reference on SPL for the progranuning

language designer, reviewer, developer, and implementer.

1.2 BACKGROUND

The development of the Space Programming Language is a result of a recommendation

made to the Space Systems Division Directorate of Technology based on a study

performed by the System Development Corporation as documented in SSD-TR-67-ll,

"Recommendations for a Corrunon Space Progranuning Language - Volume III,"

January 1967. This 'study of programming languages for spaceborne software was

performed between the time period August 1966 and January 1967. The primary

purposes of this study were to determine:

a. the language. elements required for spaceborne

programming in the time period 1968 - 1973.

b. if a common higher-order language would be feasible and'

useful for spaceborne software.

1

A comprehensive analysis of spaceborne software projects, such as Minuteman,

Centaur, Apollo, Gemini, and Titan lII,ind{cated a trend toward

increasing reliance on data processing for misE-ion planning, simulation tor

vehicle development and on-board data processing functions.

1.3 LANGUAGE REQUIREMENTS

In the analysis of the spaceborne software application area, it became apparent

there were three distinct areas for language requirements which we shall refer

to as: Flight Programming, Development Programming and Support Progranuning.

The data processing cipplications in thes'e, three areas can be summarized as

follows:

Table 1.

Flight Programming

Keyboard & Display

Event Sequencing

'Navigation

Guidance

Flight Cont,rol

Experi~ent~_p:tC?nitoring

System testing

Digital co~aunications

Three Requirement Areas for SPL

Development Programming

Mission planning

Equation formulation

Scientific simulations

2

Support Prograrmning

Computer simulators

Vehicle simulators

Pregfamming tools

Data reduction

I

1
]

]

]

[

(~'-
(

I,
[

['

('

(~'

('

[
(~

~-

(

11

I:'

I:

(

I
I

nt~"'''''

"'I

(

I
I

Programming personnel utilized to perform the programming for each of these

three areas can be summarized as follows: for flight programming, professional

programmers oriented toward numeric data processing are utilized; for

development programming engineers and personnel from other scientific

disciplir'les are utilized; for support programming, prograrrnners and, to a

lesser extent, engineers ,perform the programming tasks.

The computers to be utilized in space borne data processing during the projected

time period will be off-the-shelf machines, of a capability comparable to

present-day machines. Implementation of SPL, however, will be, in most cases,

on a large, general-purpose) ground machine.

The computer program p~oduction technique will continue to be largely batch

processing. Interactive or time-sharing program production techniquF - should

play an increasing part in the program production process.

The burdens assumed by space borne software will become greater with more

ambitious space programs. Astronauts and scientists on manned missions will

use on-board computers for analysis of experimental data, as well as for

on-board navigation, guidance, system monitoring and control, and perhaps

even crew training and assignment. In addition, ground-based users will rely

on computers for reduction of space data, as well as for satisfying the

computational requirements of general research. For greater effectiveness,

an increasing amount of the software development work should be done inter-
)

actively with the scientist or programmer in direct communication with the

machine.

1.4 SPl. RECOMMENDATION

A recommendation for the development of SPL was made after analysis of

existing languages. Because of the diversity of the application, the study

further recommended that a basic language be designed for spaceborne data

processing and that to accommodate the other two applications in space

3

software, an SPL extension should be developed. This conclusion was reached

after an'analysis of the needs of potential language users, the mission

functions and their required data processing' support, the types of programming

required, the hardware utilized, and the program production methods used. The

resulting language" SPL, is based, in part, on JOVIAL which has been recently

adopted as an Air Force Standard Programming Language.

The study further identified the present time as particularly opportune to

develop a higher-order language for space applications. Several factors,

such as ground and space hardware changes, expanded space programming

requirements, and the lack of a higher-order language for use in spaceborne

applications, combine to make this a useful period for implementation of a

language for space sbftware for use during the latter 1960's and early 1970's.

4

I

I
I
I
I
I

I
I
[[

[

", ..

[

[

r
('

('

[

(

',I,
I .
I

(

I~

(

[

I
I

(-

I
I

1.5 SIGNIFICANT FEATURES OF SPL

The varied requirements of computer progranuning forI space applications, which

encompass mathematical prograrrnning, system progrannn~ng, and real-time

programming, result in a widely expressive) yet ea~ily extendable

programming language. Other equally vital needs for the 1anguage.are: easy

for nonprogrannners--engineers and space scientists--to use, practical to

implement, and,in the hands of professional programmers, economical of

computing resources. And finally, the language must be highly machine­

independent and yet capable of exploiting unique machine characteristics.

The requirements of SPL have been established with these needs in mind, and

it has been possible to outline a language that meets the needs of each area

of space programming without compromising the needs of others.

1.5.1 Basic 8PL

Since the specification for SPL has been organized by first defining the basic

language and then the 8PL extension, the description of the capabilities of

8PL will be organized in the same manner.

1.5.1.1 Operations

Basic SPL incorporates a limited but very powerful specific set of operations.

They include:

a o Logical and relational operations

b.

c.

d.

e.

f.

g.

Built-in operations (functions)

Arithmetic operations (formula evaluation)

Real-Time Control operations

Input/output operations

Command opeJ?ations __ \for the compiler)

Notational extension operations

5

SPL incorporates all of the ordinary logical and relational operations and a

capability for incorporating built-in operations is provided. The most

significant' of these operations is arithmetic operations, real-time control

operations and command operations.

1.5.1.1.1 Arithmetic Operations. In addition to the ordinary

arithmetic operations, special vector .and matrix operations are incorporated

as primitives in the language. Further, arithmetic operations can include

pairs of operands which can differ in dimension (scalar vs. multi-dimensional

values) in representation (fixed-point vs. floating-point values) and in

other subsidiary attributes. The precision (or accuracy) of arithmetic

operations maybe rigorously controlled through scaling information attached

to the processing statement. Parentheses may be used freely in constructing

numeric formulas of arbitrary complexity, according to the notational

conventions of ordinary algebra.

1.5.1.1.2 Control Operations. Extensive program control operations

are available for the handling of interrupts, device monitoring, parallel

processing and input/output processing. Execution of program statements

(including compound statements) may be specified as conditional, repetitive,

chronic (occurring whenever a specified condition occurs), delayed (until a

specified condition occurs), or in parallel with the execution of other

statements. These primitive control operation's, in conjunction with a set

of implementation-defined hardware operands, are the minimum needed to

provide the professional programmer with complete control through the SPL

programming language. Though complete, they do not entail unnecessary burden

by implying operations that can more'effectively be specified by custom­

tailored sequences of other availap1e operations. Statements which allow for

the control and monitoring of time increments are also provided. This is

very important where code sequences must be executed within a given time

frame •

6

"'"

J
J
]

]
.,-

J

/

J

I

I
[

[

(

(
. '-.

['

[

[

[

[,

[

1.5.1.1.3 Command Operations. Command Operations include commands

to the compiler to produce optimized code for time (object program run time)

or space (object program computer storage requirements). Commands are also

provided for, for debugging.the object program and for time counts of object

program code time requirements. An execute command exists to allow a set of

code to be operated at compile time to initialize a parameter.

One of. the most significant of 8PL r s command operations is the notational

extension capability. This provides for defining notational

extensions for new data types and structures and new operations in terms of

existing language elements. The facility in building new operations and

extending punctuation and vocabulary allows versions of 8PL to be customized

to satisfy special programming problems. For instance, a programmer might

define an extended notation and vocabulary for his particular programming

area, and build a highly problem-oriented vocabulary and language capability.

In addition, notational definitions may be used to make existing programming

languages compatible with 8PL. A notational definition package can be

generated which would map languages such as FORTRAN, PL/I, or JOVIAL into

SPL. This would allow an SPL compiler to process these languages, thus

allowing a programmer to code in these languages while the SPL compiler

produces an equivalent 8PL code and listing. This would also circumvent the

necessity to reprogram the existing inventory of problems which are opera­

tional and coded in some other language.

The notational definition capability can also be used to aid in the imple­

mentation of SPL. A core subset of SPL can be implemented using conventional

means; notational definitions can then be used to "define" the balance of the

language, thus reducing implementation time and cost.

7

1.5 .1.2 Data Declarations

Basic 8PL incorporates a wide variety of operand types and structures. Data

structures include: ,item declarations, array declarations, and group

declarations. One declaration is used to describe the storage of these

collections of data;

storage declarations

Further provision is made in basic SPL for one type of input/output declaration;

file declaration

SPL incorporates numeric operands including fixed-point, arbitrary-precision

floating point, vector, and matrix values; primitive (i.e., built-in)

alphabets; and symbolic operands including Boolean and status values.

Basic 8PL also provides for almost any type of data structure, including

combinations of arrays, groups, and files. To achieve the most efficient

use of storage) the programmer has the option of specifying exactly. how

storage is allocated to his data elements.

1.5.1.3 Program Structures

Program structure in SPL is based on the powerful, generalized block-structure

concept. Procedure subroutines and function subroutines, recursive sub­

routines, and re-entrant subroutines may be specified.

The language syntax has been designed to minimize grammatical rules and

punctuation. This will serve to minimize the amount of training required and

reduce scripting errors when programming. There has also been an attempt to

minimize vocabulary without sacrificing clarity. Where a needed capability

already exists in the JOVIAL language, JOVIAL notation has been used if it is

consistent with the criteria previously described.

8

1

/

I
I
I

I
I
I
I]

[

I:
1('

I
(
(~-

"---~/

(

[
(t

I~;

(

[

1("
I -----./

I

1.5.2 SPL Extension

The SPL extension contains the basic operations, plus additional features

suited for the applications area. For developmental programming, algebraic

formula and interactive progranuning operations are specified. For support

progranuning, simple text and list processing operations are included. Additional

data definitions in extended SPL include list declarations, code declarations and

program-declared alphabets (see Section 7)-.

9

1.6 NOTATION AND ME~ALANGUAGE

1.6.1 Notation

This report gives a complete specification of SPL and extension using as a

syntax metalanguage, a modified .Backus-Naur Form,'r (BNF). Some typographic

conventions are introduced to distinguish among terms (which are constructed by·

the language designer to identify and categorize the various parts of the language) ,

names (which are constructed by the pr~grammer to identify the elements of his

program), and primitives (which are the built-in "words and symbols" of the

language).

Terms are printed using lower case letters. For example:

statement

algebraic-formula

Names are printed using upper case letters. For example:

ALPHA

GROSS

T23

And finally, word-like primitives are underlined. Implementation defined primitives,

such as hardware names, are capitalized in addition to being underlined. For example:

for

while

and

CLOCK

It is important to remember, however, that these typographic conventions are

part of the metalanguage notation, and not pRrt of SPL.

-1~ As used in the "Revised Report on ALGOL 60," Communications of the ACM,
Peter Naur, May 1960.

10

·T

cJk·.

I

I·

[

('

I
(

I
I'
[

(:

('

I
I

(:

('

[

(

I
I

The syntax of SPL is specified by defining terms. The main elements of thes,~

definitions are the signs, symbols,and other terms. Except for the non-printing

graphic character for "space" then, 8PL signs stand for themselves.

1.6.2 Metalanguage

The metalanguage used in this specification has three basic elements. They

are:

a.

b.

c •

: : =

<>

This symbol signifies syntactic equivalence and

should be read as the word lIis".

This symbol signifies selection between alternate

strings of elements und should be read as the word

lIor".

These symbols signify a gouping and are used to

enclose alternatives. They should be read as the

word. "either" and are used with the symbol "I".

There are two metalinguistic extensions used:

a.

b.

Subscripting is utilized as a semantic cue to distinguish

among otherwise identical terms.

nothing This ter~ signifies a null term or an empty

string of,symbols or signs.

There is one SPL term "space" introduced which is represented in 8Pt by the

lack of characters and is represented in the metalanguage notation by the

following symbol:

This symbol signifies separation of syntactic strings and

is inserted for clarity. The symbol "fl" represents optional,

not required separation.

-'''~
11

To simplify the semantic explanation, . alternative definitions of certain terms

are given at different places in the report. This has been noted, but the index

at the end is perhap~ the most convenient guide. Finally, it is worth noting

that no attempt has been made to specify in BNF the syntax of SPL with complete

rigor. Certain syntactic aspects of ahy programming language can more clearly

and simply be described in prose, where a BNF description would be lengthy,and

complex.

For those already familiar with BNF, the extensions used in this report are

essentially just two: the brackets, "<'l and ">", are used for grouping rather than

delimiting ter.ms, and semantic-cue subscripts are used to distinguish otherwise

identical terms. The purpose of these two extensions is to reduce the number

of terms that have to be defined, with the ultimate goal being to define

syntactically all and only those terms rteed~d in the prose description of

the semantics of the language. Without such extension, BNF ordinarily requires

the syntactic definition of many otherwise unnecessary terms.

BNF, even as extended here, is actually quite easy to read. A pair of examples,

defining a parade should make this clear .

. parade ::= parade-unit <parade-unit I parade>

parade-unit :: = floa.t I band I drill-team I bunch-of-guys-on-horses

The first definition says: a parade is a parade unit followed by either

a~other parade unit, or a whole parade 0 And the second says: a parade unit

is a float, or a band, or a drill team, or a bunch of guys on horses., The

first definition specifies, precisely, that a parade must have at least two

parade units, but the number of parade units it may have is not limited.

When a thing is defined in terms of itself it is called a recursive defini­

tion, and is frequently used in BNF language description for reasons of

clarity and conciseness.

12

..,

1

I

/

[

r
(

(;

[,

[

[

[

[

[

[

II,'

['

[

('

[

(

[""

(i

Ii ~_/

[

2. ALPHABET, VOCABULARY AND PROGRAM STRUCTURE

2.1 ALPHABET AND SYMBOLS

SPL's symbols may be formed from a basic alphabet of 48 characters consisting

of the 26 letters, the 10 decimal digits, and a dozen miscellaneous marks

including the space and the dollar sign. This alphabet is almost universally

available on mechanical printing, typing, and card punching equipment. However,

SPL also permits the use of an extended character set. In practice, the

extended characters will depend upon the characteristics of the equipment

that is available.

SYNTAX

character ~ : = letter digit mark

letter .. A B C D E F G H I J K L I
M N 0 P Q R S T U V W X I Y I z

digit ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

mark :: = space I (,) I + I - I ~'(r / I . I , I r , = I $

Where lower-case letters are available they may be used indistinguishably

from the basic set of uppercase letters to improve the typographical

appearance of the program.

The alphabet of SPL is used to form symbols which are the basic elements of

the language. Symbols are syntactically defined as names, primitives, and

constants.

SYNTAX

symbol ::= name r primitive I constant

13

2.2 NAMES

Names serve to identify the various program and data elements that may be

referenced in an 8PL program: statements; subroutines, items; groups; arrays;

files; patterns; hardware operands; hardware operators. A name is a string of

one or more letters and digits which, may be punctuated for readability by the

period. Notice that a name must begin with a letter, must not end with a period,

may contain no embedded spaces and no embedded period strings of length greater

than one.

name ::= <letter I name> <nothing I letter I digit I .letter I .digit>

Examples:

ALPHA

Z

8TEP.27.3

BRANCH

Names are defined at the point where they are term.inated by a period. Thus,

ALPHA. indicates that the name ALPHA is being defined.

To facilitate the independent composition of portions of a program, statement

names defined in a program have a strictly determined scope of definition

(

for statement reference, being bounded by the innermost pair of named begin and end

brackets containing the definition of the name.

It should be noted that the strict determination of the scope of definition of

names for statements and declarations does not apply to commands; any previously

defined name may be referenced in a command.

Although it is poor programming ~ractice, where a name is defined to be identical

to a SPL primitive word, there is no ambiguity in contexts where the syntax

rules out one or the other.

14

\&.

,k

I
I
1
'1
I

I

I
1
1
]

1
J

(
[

(

[

(

(

[
(~

[
[! ,

(
[

r
[

[
(

[

I r
I ~~

I

2.3 PRIMITIVES

Primitives are, the built-in symbols of SPL--its punctuation, verbs, adjectives,

etc. Primitives have fixed meanings, as described in later sections. Primi­

tives for basic SPL fall into the categorias given below:

SYNTAX

primitive ::= delimiter I operator descriptor

2.3.1 Delimiters

Delimiters are those symbols of the language which serve exclusively to indicate

the bounds of other syntactical elements.

SYNTAX

delimiter ::= . I , I / I $ I (I) I I I "I begin lend I term program

2~3.2 Operators

Operators are those symbols in a language which indicate some action is to be

performed on an operand.

operator ::= catenation-operator

arithmetic-operator

SYNTAX

repetition-operator 'conditional-operator

define-operator /logical-operator I
relational-operator assignment-operator I functional-operator

discrimination-operator I sequential-operator I input-output-operator

location-operator I editing-operator I compile-operator

arithmetic-operator::= - /+ I * I / I **
logical-operator ::= not I and I~

relational-operator ::= ~ I~ I &£ I l! I gs I ~ I equiv

conditional-operator ::= if I then /else

assignment-operator ::= = I set

repetition-operator ::= times 1£Y 'while I until for

15

catenation-operator ::= II I III

discrimination-'operator ::=sub 1<) I at I in

sequential-operator ::= goto / stop I when / o~ /call lentry lexit Ifor Ido

input-output-operator ::= open/close I read J write I assign [status Iposition

location-operator::= store I at

editing-operator .::= out I is I all to show thru

compile-operator ::= optimize /count

define-operator :: = execute I where, I then , names --- of-terms"l\'

2.3.2.1 Functional Operator. Functions are a special class of operators

allowable within SPL and which are governed by a set of rules outlined in

Section 5. In general, functions act on a parameter list which follows the

name and returns a value which may be part of a larger formula. A list of

intrinsic (built-in) functions is given below:

SYNTAX

functional-operator ::= 10g.e I log.lO I sin I ~ I tan I abs

The programmer may define his own set of functions that will be treated in a

manner similar to those intrinsic to SPL.

2.3.3 Descriptors

The descriptors are the functional modifiers and descriptions of operands in SPL.

SYNTAX

descriptor ::= integer I real/ pointer I boolean 'array I mode /procedure I
function I pattern / file / dec I oct I hex Ibit I text I fixed I
float I cell I true I false I ready I busy I error I addr I

* Listing of terms in Section 7.

16

I

(
I

~,~ -

1

I
I
I
1

T

]

1
]

[J

J
J

(

r:
(
\

(,

(:

('

['

(

['

['

I
,.-

I:
Ie

I~
I~I

(:

I:
1_,

f-

I ~- /

II,

item I minimum I digit I maximum I signed I unsigned Iround

truncate I group I compool I full I· unready I value result

recursive I reentrant time I space I ~

2.4 CONSTANTS

SPL programs manipulate both numeric data (integer and real) and nonnumeric data

(textual) pointer, and Boolean values). The symbols that denote these values

are constants.

SYNTAX

constant numeric-constant textual-constant pointer-constant I
boolean-constant

2.4.1 Numeric Constants

SPL includes constants for denoting integer or real values. Integer values may

be denoted by binary, octal, decimal, and hexadecimal constants.

SYNTAX

numeric-constant .. number I real-constant binary-constant

decimal-constant I hexadecimal-constant

numeral .. - digit <nothing I numeral>

signed ~.= + I -

number '0:::: numeral <nothing e numeral>
-xponent-base-lO

octal-constant I

real-constant ::= <numeral . I. numeral numeral. numeral> <nothing I

Examples:

018

123e4

• .5

6.789~-10

e numeral
-xponent-base-lO e b 10 signed numeral> -xponent- ase-

17

Integer and real constants denote numeric values in the conventional decimal sense.

The numeral following ~ in these constants is a decimal scaling factor expressed

as an integral power of 10. Binary, octal, decimal, and hexadecimal constants have

the obvious meaning of unsigned binarYl octal, decimal, or hexadecimal integers.

SYNTAX

binary-constant ::= <name. I nothing> ~ ·bit t binary-string 1

binary-string ::= <0 I 1> <nothing I binary~string>

octal-constant ::= <name. I nothing> 6 oct t octal-string I

octal-string ::= <0 I 1 I 2 I 3 I 4 I 5 I 6 I 7> <nothing I octal-string>

decimal-constant ::= <name. nothing> 6 <nothing I dec> I numeral t

hexadecimal-constant ::= <name. I nothing> ~ hex I hexadecimal-string t

hexadecimal-string ::= <numeral I A I Bel DIE I F> <nothing

hexadecimal-string>

Examples:

AL. bit'11GllI0Q'

oct'334'

ABC. dec'156'

hex'9C'

2.4.2 Textual Constants

A textual constant is a symbol used to denote a string of one or more alphanumeric

characters or a status value. The omission of the word text indicates that a status

value rather than an alphanumeric string is being defined.

SYNTAX

textual-constant ::= <name. nothing> <nothing I text> ' character string t

character string ::= character <nothing character-string>

18

[

'

1
1:

I
I
:1

/ 'r'

'",

I
,,...

("',-

~kc

:1

1
:I

C
1.

1.

~,

[

(

[

i[

'[1, I,
I ,

(

(

I~

I

Examples:

~ 'THIS IS AN ALPHANUMERIC CONSTANT. '

~ 'SO IS THIS. t

ALP. ~ '92768'

QUALITY 'GOOD'

STATE i KANSAS t

2.4.3 Pointer Constants

'There are two types of pointer constants. The first type addr gives the

effective address value of a statement, procedure, subroutine, array, or

group and the second cell gives an index ,!alue within arrays, Broups, or

tables.

SYNTAX

pointer-constant ::= cell 6 name I addr l\ name

A cell is uot necessarily the same as a computer word: internal storage is not

necessarily limited to hardware considerations but is logically oriented and

depend upon item structure within tables or airays.

Pointer constants serve to denote pointer values and are represented as integers.

An addr, O".l the other hand, refers to the actual value of the location to which

a particular element in the language has been assigned.

2.4.4 Boolean Constants

The Boolean constants true and false have the obvious meanings; true is

represented by 1 and false is represented by O.

SYNTAX

boolean-constant ::= true false ---

19

2.5 STATEMENT STRUCTURE

Statements are the operational units of SPL. They describe the data processing

actions that the program is to perform: computational actions; input-output

actions; and statement sequence-control actions. It is converiient, however, to

recognize two types of statements: l)simple statements, which express computa­

tional, input-output, or control actions whether simple or conditional, and which

may incorporate other statements within them and control their execution; and, 2)

compound statements, which group together whole strings of simple, or compound

statements. Compound statements may also contain declarations and commands.

Statements are normally executed in the sequence in which they were written,

although control statements affect this sequence and provide exceptions to this

rule. Statements may be named--so they can be referenced and executed out of the

normal sequence.

SYNTAX

statement ::= simple-statement compound statement

compound-statement ::= <name. I nothing> b. begin b. statement-string 6 end 6

<name I nothing>

statement-string ::= statement I declaration I command <statement-string I
nothing>

declaration :: = data-declaration I subroutine,-declaration I file-declaration

simple statement ::= simple-control-statement I input-output-statement I
procedure-call-statement I assignment-statement

A comma (,) may b~ optionally used to terminate any simple statement.

--The defini tioD of command is deferred to Section 6.

2&6 COMMENTS

A comment allows a remark or clarifying prose or punctuation to be included among

the symbols of an SPL program. Connnents are ignored by the compiler and so have

no operational effect whatever on the program.

20

C

C

I
(...-.

_.J

1.1"

'T

1.11 •.

I""'"
IAi

r'"
l)
,,.
,1

:r
1

..

I
(T

",j

!"f

I".

["

:J

t]

U
r,

~

~

I

(

[

(

[

[

[

[

[

I

I

SYNTAX ---

comment ::= "character-string"

The character-string ih a connnent may not contain the connnent delimiter.

Example:

"THIS IS A COMMENT"

The omission of a comment bracket,or the inclusion of an extraneous comment

bracket wi.:thin the comment, is a major error, for subsequent commentary is

interpreted by the compiler as part of the program.

2.7 PROGRAM STRUCTURE

In SPL, a program is merely a named statement-string, beginning with the pro£!am

delimiter and followed by declarations, statements, and/or commands followed by

the term delimiter. The program name defines it for external reference.

SYNTAX

program .. program 6 narne.6statement-string 6 term <name Inothing>

21

3. DATA DEFINITIONS

Basic'SPL provides declarations fox' defining numeric, textual) pointer, and

Boolean items as well as for defining arrays, and groups. In addition, the

arrangement of elements in memory may be specified and various default descrip­

tions (modes) may be specified.

SYNTAX

data-declaration ::= item-declaration array-declaration group-declaration I
storage-declaration mode-declaration

Other declarations for defining functions, procedures, files, and textual

patterns (see Sections 4,5,6) will bi described in later sections.

3.1 ITEM DECLARATIONS

In SPL) the basic (scalar) units of data are called items. All necessary

attributes of an item's value, such as its type and format, are supplied only

once in an item description.

assumed to be mode-defined.

In the absence of an item declaration, data is

In SPL, values other than those denoted by constants or those used only as

intermediate results must be declared. Several different but similarly described

items may be declared at once.

SYNTAX

item-declaration : : = <item nothing> fj name-string b. item-description fj <nothing I
initial-value-string>

name-string ::= name. 6 <nothing I name-string>

initial-value-string ::= litem-value b. <nothing initial-value-string>

item-value ::= numeric-constant I pointer-constant I textual-constant I
boolean-constant

item-description ::= numeric-item-description

pointer-item-description

22

textual-item-description

boolean-item-description

[

[

'c.:Jl"

[

I

[

[

[[

(

r-
(

[

(,

(

[

[

I

(

[

[

I

I

numeric-item description :: = full-integer-item-'description

description

full-real-item-

full-integer-item-description ::= integer b. number
l

/). <~ I digit> t:. <minimum

nothing> b. <nothing I number
2

b. maximum>

full-real-item-description

<nothing I signed

truncate>

unsigned> b. <nothing

"= real t:. number
1

t:. <bit I digit> t:. <nothing i'minimum>

t:. <nothing I -> number
2

<bit I digit> t:. <nothing

float I fixed> t:. <nothing I signed unsigned> t:.

<nothing I round I truncate>

textual-item-description ::= text b. <nothing I number b. character

name f ' ,b. character> o -1.nteger-1.tem

pointer-item-description ::= pointer

boolean-item-description ::= boolean

Note a. In real item declarations, a negative scale number (of fractional or

exponent) bits is only relevant where the scale is fixed.

b. Number
l

indicates minimum number of bits or decimal digits.

c. Number
2

indicates either number of fractional bits or decimal digits

or number of bits or decimal digits needed to represent the exponent.

Examples:

item ADAM. integer 6 bit minimum /74

item BE9. ~ 31 bit 7 bit float signed truncate

item ROD. text 4 character

item SA. pointer

item BOB. boolean

23

The numeric item descriptions have several common elements. In an integer,

real, or item description, number
l

indicates the minimum number of binary bits

or decimal digits*--including any fraction or exponent but excluding any sign-­

needed to represent the item; the unsigned descriptor indicates that the item's·

value is always positive or zero; the omission of the unsigned descriptor or

indication of a signed item indicates that the item can also take on negative

values; the truncate descriptor indicates that any value assigned to the items

is to be truncated rather than rounded, as would be the case if round or nothing

were used.

Abbreviated descriptions are possible for numeric items, according to the

declared mode (see Section 3.4). In an integer item description, the maximum

absolute value that the item will be assigned is indicated by number value.

(Where this is omitted, the maximum absolute value is taken to be either

Znumberl -lor lOnumberl -1~ depending, of course, on whether bits or digits

are indicated.) In an integer item if the minimum number of bits is omitted

the initial value. will be used as an indicator of the minimum number of bits.

In a real item description, fixed-point representation may be indicated by the

fixed'descriptor. Floating-point representation is assumed where nothing or

float is indicated. Where fixed~point representation is indicated, number2

indicates the number of fractional bits or digits. If the indicated number
2

of fractional bits or digits is negative (as indicated by the presence of the

minus sign, -), the number2 of low order integer bits or digits are not signif­

icant and therefore need not be carried. And if the indicated number
2

of

fractional bits or digits is greater than number
l

, then the (number 2 - number
l

)

high order fractional bits or digits are not significant and therefore need not

be carried. On the other hand, where floating-point representation is indicated

*Only one base is used, although the programmer can specify numeric item size
in terms of either.

24

I
I
[

[

I
(,

(

l
(

[

I"

I-
I
I-~

I
~--

I
('

I'
(

[

I
I
~ 1-/

I

(by the omission of the fixed descriptor), number
2

indicates the minimum number

of bits or digits needed in the binary or decimal exponent to adequately represent

the item's value.*

In a textual item description, the length of the item in characters may be

indicated by a number, or it may be indicated by the name of an integer item,

where the current length of the textual item is specified by the current value

of the integer item. Where no length is indicated, a length of 1 character is

assumed. The last symbol in a textual item description indicates the item's

alphabetic code.

Pointer and Boolean items are described with the pointer and boolean descriptors.

(A Boolean item is actually represented as a one-character, binary textual item,

with the Boolean constants true and false equivalent to bin 'l' and bin '0' .')

3.2 ARRAY DECLARATIONS

An array declaration describes the structure of a collection of similar data

elements--either items or groups, Rectangular arrays of practically any number

of dimensions may thus be declared and several different but similarly described

arrays may be declared at once.

array-declaration : :=

array-description .. -

SYNTAX

array 6 name-string 6 array-description

'<item-description , group-description> 6 dimension-string

6 <initial-value-string I nothing>

dimension-string .. = <number I name f ' t 't > 6 <nothing I EY 6 dimension-o -1.n eger-1. em
string>

* The floating-point operations on most machines
(if any) on the values of number

l
and number

2
,

translate these into the values 1.ndicating tfie
precision floating-point representation.

25

permit only limited variations
The SPL compiler must therefore

appropriate single- or multiple-

Examples:

array PRESSURE,. integer 4 digit 10 h 20 12Y. 5

array GRIDI., boolean 32 .!?.l 32

array A. begin I.. J. K. integer 25 bit end (A)

In designating an individual element from an n-dimensional array, the array

name must be subscripted by an n-component index string of numeric formulas.

And where the size of a dimension is K elements, the integral value (truncated,

if necessary) of the corresponding component of the index string can only range

from 1 to K.

Abbreviated descriptions are possible for arrays according to the declared mode

(see Section 3.4).

3.3 GROUP DECLARATIONS

A group is a collection of (usually) dissimilar data elements--items, arrays, and

even subgroups. A group declaration serves to describe the elements of a group

and give it, optionally, a name. (A group name may be omitted when the group is

never referenced as an entity, but only its elements.) In addition, functional

relationships among the elements of q group may be declared within a group

declaration, as functional data elements of the group. Several different but

similarly described groups may be declared at once.

SYNTAX

group-declaration .. - group 6 ~nothing I name-string> 6 group-description

group-description .. = begin 6 declaration-string 6 end 6 <nothing I (name)

declaration-string ::= <item-declaration I array-declaration I group­

declaration/ function-declaration , mode-declaration

storage-declaration> 6 <nothing I declaration-string>

26

(-~

~-.

[[

1
J
I
I
'[1

1

,.

~[

1,

I

I
'I'"
i'

I

[

[

I
[

I,
(

r

(

I.
(

I
(

I

I

Note: Where groups are nested t the inclusion, in parentheses after the group

description, of the group or array name (if any) immediately preceeding

the group description, automatically "ends" any "open" subgroups (or

compound statements) within the groups. Thus~ "end (name)" in the ex­

pression "name. begin •.• end (name)" may be syntactically equivalent

to a string of several end brackets.

Examples:

group begin item I.. integer end

group A. begin item W. integer gro~ Q. begin item P. text 6

character item V.' boolean end (A)

~ TRACK. begin ~ INITIAL. begin item X. Y. z. real end item N. integer

"NUMBER OF LEGS" 2 digit, 80 digit maximum unsigned, truncated end (TRACK)

3.4 MODE DECLARATIONS

Mode declarations serve to declare normal modes of description for numeric items,

arrays, lists, and files.

mode-declaration

Examples:

mode 6 <numeric-item-description I array-description I
full-file-description>

mode integer 15 bi~ unsigned truncate

mode real 31 bit 7 bit scale ----

27

3.5 STORAGE DECLARATIONS

Although the programmer is often unconcerned with the details pf memory 'alloca­

tion, he may control it with storage declarations. A storage declaration serves
\

to indicate to the compiler the de.sired arrangement within memory of the various

program elements--items, arrays, groups, files, statements, functions, and pro­

cedures--named in the declaration.·

\
storage-declaration

\

block-description
I
I

SYNTAX·

::= store ~ block-description 6 at 6 pointer-formula

•. - name fIt 6 <nothing I block-description> o -e emen

Note a. The name of.any element may appear only once per storage declaration,

but may appear in other storage declarations if lo~ical inconsistencies

are a~oided, such as declaring once that A is stored after B and again

that B is stored after A.

Note b. When a storage declaration appears within a group description~ only

those items, arrays, and subgroups declared within the group may be

named in the storage declaration. This excludes functions declared

within the group as well as external elements.

Examples:

store A at cell sub I -----
store A B !!:!. step

store A at bit (9 ~ 11)

store B at byte hex (1 to 6)

The elements--it~ms, arrays~ groups, files, statements, functions, and pro­

cedures--named in a block description are allocated, in the sequence given, a

block of consecutive units of storage. Each different block described in a

storage declaration is allocated storage beginning at a common origin cell. In

28

1
r
j

J
l

IT

J

1

]

[J

I

I,r'---
:

I
I
I
I

r
(

I
(

I

I

other words, each block has the same pointer value, and this value may be

explicitly spe~ified in the storage declaration by a pointer formula. Each

block thus "overlays" the other blocks listed in the declaration, permitting

the programmer to utilize the same block of memory for different purposes at

different times during the computation.

29

3.6 VARIABLES

In SPL, variables (scalar) item values, arrays of values, and groups of values

may be ?lteredduring the course of program execution. Variables may be.

specifically located in memory and they may be subscripted by numeric formulas

to distinguish them from other elements of arrays. Variables may be both

conditional and subscripted. Variables may also be enclosed in parentheses to

alter or emphasize the sequence in which these operations are performed. In

addition, certain compiler-dependent hardware operands and certain functions

may also serve as variables.

SYNTAX

variable ::- name I subscripted-variable I conditional-variable

catenated-variable I hardware-operand

Note 1. The name must be that of an item, an array, or a group.

Note 2. To be a variable, a hardware operand must be one that can. be assigned

a value by· programmed action.

Examples: ";'e

The exemplary variables in this section will often involve the following data

elements:

array A. begin

A _

(AI)
(A

2
)

(A
3

)

(A4)

(AS)

(A
6

)

end (A) 6

* The - sign stands for semantic equivalence.

30

f

l

1", \.

1

II

1
:1

J
]

J

~l

[

r
(,

I
[

I
I
I~

I
I
I <

~

['

I:~

I'
I'
(

[

[r~
I-j

I

array I. integer 3

array B. begin ... array'C. begin ... end 2 end 3 £y 2

B
Itl tl'l ~Cl'l'lm [~Cl' 2'1~ - -

(ell 2) Bl.2 ~ Cl.2 ~ (Cl.2,2) , ,

B :: H2,l - ~2'1 - ~C2'1'1~
(C2,1,2) B2 ,2= [c2 •2 ~C2'2'11 :: (C2 ,2,2)

B3 ,1
= t3

•
1 =

r3'1~1~
(C3,1,2) B3 ,2 -

t [(C3
'
2

'
lJ

C3,2 :: (C3 ,2,2)

array J. integer 2 £y 3

~J 1 1 = 5) (Jl ,2 :: 3) (J1 3 =2~ J =) ,
(J2 ,1 := 6) (J2 ,2 :: 1) (J2 3 :: 4) ,

$LIGHT :: a Boolean 36-array of console lights

Note: $ signifies hardware operand (see Section 3.6.4).

31

3.6.1 Subscripted Variables

Elements of a nonscalar variable (e.g., an array) may be designated as a

variable by subscripting with an index string, which is essentially a

numeric formula that is interpreted according to the dimension of the variable

being subscripted.

SYNTAX

subscripted-variable ::= variable «index-string) I 6 sub 6 index-string>

index-string ::= index 6 <nothing' <II I to> 6 index-string>

index : : = <numeric-fo'rmula I index-string> 6 <nothing I index> I (index)

Examples:

- rAA3l'] A sub (3//1) - (A sub 3, A sub 1) ~

A sub «31/1» [A A]

A sub (1 to 3) ~ (A3su: l//A sub 2// A ~ 3)~[;~]
A sub I - (A sub 2, A sub 4, A sub 1) {::]

A sub (1 sub 2 //2) - (A sub 4, A sub 2)~[::J

The description of the catenation operator II is in section 3.6.2.

32

a
1

~- 1
]

J
:1

]

J

J

J

n

c

I
f

I

[(

I:

I
I

[

I

A sub (J sub «1//2), 2» - A sub (J sub (1,2), J sub (2,2» - A sub (3,1)

== A sub (3//1)

B sub (J sub «1//2),2» == B sub (3,1)

A sub J == A sub (5,6//3,1//2,4) == A sub

[

A5

«5//6)//(3,1)//(2//4» == A3

. A2

Bsub (2//3) == B sub «2,1) to (3,2» - B sub «2,1//2,2//(3,1//3,2» -

(A sub J)sub 2 == (A sub J) sub «2,1) to (2,2» - (A sub J) sub

«(2,1)/1(2,2») == [A3 AI]

J ~ 1 == [5 3 2J

(J sub 1) sub 2 == J sub (1,2) - J 1 2 ,

An index string conforms to the syntax rules for numeric formulas. In this

light, an index string is a row-vector of indexes, which are themselves column

vectors whose elements are either positive (.i.e., greater than zero) truncated

integers as specified by numeric formulas, or else index strings. An index

containing an index string is semantically equivalent to an index string, as

explained in the following example:

A, (B 1/ C // D), E == A,B,E /1 A,C,E 1/ A,D,E

By such trans formations, any index str.ing may be simplified by expansion to an

equivalent index string whose component indexes do not themselves contain index

strings.

33

The effect in an index string of the repetition operator to is as follows:

(in' ••• , i 2, i 1) to (tn' ••• , t 2, t 1) === (••• (*1n, .•• , 12, i1 to in' .•• ,

i 2, i1 ±l tu... to in' ••• i 2, tlt1 to in' ••• i 2, t 1) to(in' ••• , i 2±l, i1

** ... , !, ± 1, i1 ± 1 td ••• to int ••. , i k+1 , t k , t k_1 , ..• , t 2 , t 1) •••) to

((. . +1" .. +1 ••• 1n' .•• , 1k+l ; ,1k , 1k_1 , "', 12 , 1l~ ••• to tn' "', t 2 , t l - to

tn' ••• , t 2 , t l)···).· While this is the general rule, a simpler example may

prove helpful. Thus, (1,1,1) to (2,2,2) :: «(1,1,1 to l,l,2) to (1,2,1 to 1,2,2»

to «2 , 1 ,1 ~ 2, 1 , 2) to (2 , 2 ,1 to 2 , 2 , 2))) •

Nominally, an index for a k-dimension variable contains k or less components.

And where an index contains less components, a rule of the following type holds.

Consider the 3-dimension array: array P. begin ••• end X Ex. Y ~ Z. Then, P

(A) =, P «A) 1, 1) 1.2. (A, Y, Z». Actually, an index with more than the

nominal k components has a defined meaning. For a k-dimension variable, then,

an index string of n simple indexes (i.e., indexes containing no component

index strings) behaves as if assigned to a data element, E, declared as follows:

begin

K. intE:ger

array E. integer K

where K and N are positive integer items with maximum values k and n, and E

is a positive, truncated integer array. After this (hypothetical) assignment,

E (1) contains the first index, E (2) the second, and so on.

"/(n parentheses

-!(~'c k parentheses

34

[

~ 'I
I

I'~ •• , I

I .\

It:,

I
I
T
J

I
I

/

"'-,

I
]

]

J
J
J

l

I
J.i

[

r
r
[

r
r
[

[

['

[

[

[

[

The result of a subscription operation on a variable is a column vector of the

elements specified by each index in the (unsimplified) index string. Of course,

these elements may be scalar or nonscalar, and in general, a subscription

operation may produce a nonrectangular array.*' Consider, for example, array Q.
begin end J .£.Y. K, where Q (A,B II C .!.£ ,:D, E E.2. (F,G!.2. H,I»

Qa~b
Qc,l

Qd,e

Qf,g

Q 2 ... Q k c, c,

Qh .
,1

It is important to note~ then, that where index strings are nested, the elements

designated by the indexes of the outermost index string are row catenated, the

elements designated by the indexes of the next level index strings are column

catenated, and so on.

For purposes of subscription, a complex, scalar numeric value (e.g., Q) may be

considered as a 2-element, real vector, so that Q (1) designates the real

part of Q and Q sub 2 designates, as a real value, the imaginary part of Q.

Similarly, a scalar, n-character textual value (e.g., T) may be considered as

an n-element character vector, so that T (i) designates the ith character

of T and T (i to i+k) designates the k-character subtext beginning at the

ith character.

* Variables with the structure of a nonrectangular array can) of course
be subscripted; but it must be done very carefully.

35

3 .. 6.2 Catenated Variables

In SPL, scalar (single dimension) variables may be catenated into nonscalar

(multi-dimensional) variables, which may in turn be catenated into nonscalar

variables of greater size or number of dimensions.

SYNTAX:

catenated-variable ::= variable fl <nothing I catenation-operator> fl variable

Note. Row catenation is assumed where a column, plane, etc., catenation

operator is omitted.

Examples:

Al II

A sub (1 to 3) II I - A2 12

A3 I3

A sub (6 to 4) II c sub

(1 ~ 3,1) III A ~ (1 to

3) II I :::

J 1 ,1 J1 ,2 J 1 ,3

J sub 1 (I sub 1 II I sub 2 II I sub 3) J

sub 2 -

36

c

J
J

J

[

1\
(

I
('

I
(

I
I'
I'
I

''"--

('

('

('

I'
(

[

r r
l~jl

I

3.6.3 Conditional Variables

SPL permits variables to be conditionally specified.

conditional-variable .. =

SYNTAX

if 6 condition 6 then 6 variable
l

6 <nothing I else ~
variable2>

A conditional variable specifies one of two alternative variables--if the

condition is true then variable l , otherwise (else) variable
2

. Thus, if true

then A else B ~ A, and if false then A else B = B.

Examples:

if I Is J then J else I

if A ~ 27 or T then ALPHA

if T then I

3.6.4 Hardware Operands

Hardware operands are compiler-dependent data elements that may in general,

acquire their values independently of, and without, programmed action.* A

hardware operand may be a numeric, pointer, or Boolean item.

Hardware operands are often, but not always, "read-only" in nature. Some

typical hardware op'erands are: clocks, switches; elapsed time counters;

device status indicators; device control signals; program interrupt signals.

Clearly, some hardware operands could also be described as files, with the

choice depending on program efficiency considerations peculiar to the particular

system. One such consideration is, of course, the practicality of automatically

monitoring the changes in value of a hardware operand that is used in specifying

the condition for executing a chronic statement.

*This is not a prerequisite, though. A hardware operand may be completely
under programmed control~

37

I

hardware-operand ::= $ name

Examples:

$LIGHT

$CLOCK

$KEynOARD

$TAPE

$OVERFLOW

$ACCUMULATOR

SYNTAX

In a hardware operand, the $ identifies the name as that of a hardware operand.

Where a complete set of hardware operands is available, the prograrrrrner may

command the entire machine. Hardware operands generally differ from machine to

machine, so that programs containing them are usually machine-dependent.

3.7 COMPOOL DECLARATION

A compool declaration defines the name of the compool to be utilized for a

program. The compool contains definitions of items, array, groups, or. programs

that are commonly used by a numbe! of programs or procedures. Where this common

usage exists the data may be defined once in a compool and then called upon by the

program desiring to utilize it through the compool declaration. Data declarations

within a program take precedence over compool declarations.

compool-declaration ::=

Examples:

compool BAl

SYNTAX

compool 6 name f 1 a -compoo

The compool resides in the binary system library and is not recompiled with each

program which references it unless it is changed. Where there is a conflict in

name definition between the compool and the program, that conflict is resolved

in favor of the individual program. The compool declaration should irrrrnediately

follow the program identification statement.

38

1

]

J

J

n

u

I
f.
I
(

(

(

I.
I
(I"

(

('

(-

I~

(

(

[

[
~.:..

~- ,

I) -------/

I

4. STATEMENTS

4.1 ASSIGNMENT STATEMENTS

An assignment statement assigns the value specified by a fonnula to be the

value thereafter designated by a variable. The assignment of nonscalar values

is on an element-by-element basis.

SYNTAX

assignment-statement .. - <nothing I set> 6 variable 6 = 6 formula

Note: The statement prefix, set, is an optional "noise" word, useful for

improving readability in certain contexts.

Examples:

ALPHA (1 to N) = 0

$SIGNAL (K) = true

WEATHER (AIRBASE) = 'CLOUDY'

set IDENTIFIER = ~ lCALCIUM CYCLAMATE'

~ SWITCH = 16*44

set IT = p"'(';""y - (x+a"('';'(' 2)

PI = 4"'(arctan 1

Assignment is done as if in two steps: first, the formula is evaluated; then,

the resulting value is assigned to the variable. The formula may involve the

variable, in which case the old value of the variable is used in the calculations

needed to evaluate the formula.

Assignment is defined basically on scalar operands. Nonscalar assignments are

done on an element-by-element basis by index.

39

Assignment by index is done according to the following rules:

1. Both the variable and the specified operand are considered

to be dimensionally normalized. This is done by, in effect,

rearranging the dimensions of the two operands as follows:

(a) wherever a dimension in the variable, or specified operand

has only one element, unless that dimension is one whose size

varies in the variable operand, it is moved so that it is a

higher dimension than any with more than one or a variable

number of elements; (b) both operands are then reduced in

dimension by disregarding all dimensions higher than the

highest dimension with more than one or a variab1 e number

of elements.

By considering both the variable and the specified operand to be thus dimen­

sionally normalized, both a 2 by 1 by 1 by 3 by 1 by 9 array, and a 1 by 2 by

1 by 3 by 9 array, for example, may be considered, for assignment purposes

only, as 2 by 3 by 9 arrays. As another example, a 2 by 1 by 3 by 9 by 9

specified array assigned to a 2 by 1 by 3 by N by 9 variable array, maybe

considered as a 2 by 3 by 1 by 9 specified array assigned to a 2 by 3 by N by 9

variable array. To further illustrate, where A is an N-e1ement row vector and

B iS,an N-e1ement column vector, then A = B :: A = B (1,1) (I=l to N), and B = A­

B =A (I) 11(1 = 1 to N).

2. After any dimensional normalization, where the number of

elements in the ith dimension of the variable is specified

by an integer item, that item is automatically assigned the

value min (x,y), where x is the size (i) of the specified

operand and y is the .maximum value declared or determined

for the item.

40

1

I
I

I

1
:I
1

('
(

I
[

[

(

I

I
(

I

I

3. The specified operand is then dimensionally adjusted, where

necessary, to the dimensions of the variable. Where the

specified operand has fewer dimensions than the variable, it

is converted to the higher dimension by appropriate replication.

And where it has more dimensions than the variable, its higher

dimensions are truncated (disregarded).

Dimensional adjustment of th'e spec ified operand permits a scalar value, for

example zero, to be appropriately replicated for assignment to each of the

elements of an array.

4. After any dimensional adjustment, elements of the variable are

assigned the values of identically indexed elements of the

specified operand. Where an element of either the variable

or the specified operand has an index that is not the same as

the index of any element in the other, however, no assignment

involving that element is made.

Assignments between scalar operands--including multicharacter texts--obey the

following, additional rules:

5.

6.

Assignment is only done between pairs of numeric operands,

pairs of textual operands, pairs of pointer operands, or pairs

of Boolean operands--allowing, however, for the equivalences

between Boolean values and binary textual values, and between

binary,' octal, decimal, and hexadecimal textual value~ and

integer numeric values.

Where necessary, scalar numeric values are automatically

converted during assignment to the mode and reprsentation,

and are rounded or truncated to the precision, of the variable

to which they are being assigned. Truncation of "overflow

digits" (i.e., most significant integer digits) is done as a

last resort. Assigning a negative value to an unsigned

variable is equivalent to assigning an absolute value.

41

7.

8.

4.1.1

Where necessary, scalar textual values are considered to be

automatically converted during assignment to their highest

connnon code. Where either or both scalar textual operands in

an assignment are multi-character texts, assignment occurs

exactly as if between vectors of one-character texts, except

that considerations of right or left justification are applied

first ..

Assignments between scalar pointer values and scalar Boolean

values are straightforward.

Formulas

A formula specifies a value and is, in effect, a computing rule for obtaining

that value. A formula may contain variables and so the value it specifies,

in general, is dynamically dependent on these variables, as will be described.

A formula results in a single value which is designated by a combination of

variables, constants, arithmetic or logical operators, and grouping brackets.

Hence, variables and constants are also formulas. The same characteristics

apply to both formulas and variables.

formula ::= numeric-formula

boolean-formula

SYNTAX:

textual-formula I pointer-formula I
(formula)

As a f,)rmula, the value specified by a variable is, of course, that which it

designates. A function specifies the value computed by a subroutine, and a

constant specifies the value it denotes. Formulas may also be enclosed in

parentheses to alter or emphasize the sequence in which the operations on

formulas are performed. In addition, any compiler-dependent hardware operand

may serve as a formula .to specify a va lue.

42

1
1

1
I

]

J

I

(

(

('

(

I
r
[

(

(

[

[

I

A formula may specify values containing a variety of data types. The rules

for the evaluation of such formulas are given later. For~ulas that specify

values with all numeric components are classed as numeric formulas, however.

Likewise for textual, pointer, and Boolean values.

4.1.1.1 Numeric Formulas

A numeric formula specifies a scalar or nonscalar numeric value computed from

the values expressed by its individual operands, which are themselves numeric

formulas (e.g., variables and functions of numeric type, numeric constants, etc.).

The arithmetic operators +, -, *, /, and ** have the conventional meanings of

addition, subtraction or negation, multiplication, division and exponentiation.

Enclosing an arithmetic operator in parentheses converts it from a binary to an

n-ary operator. Double arithmetic operators are useful in specifying matrix

operations.

As in algebra, division by zero (and the equivalent raising of zero to a negative

power) is undefined. Mixed and fractional exponents are allowed, as are

exponentiations.

numeric-formula .. -

SYNTAX

constant I function / variable I hardware-operand

6 <nothing I arithmetic-operator> 6 <nothing

numeric-formula> I n-ary-arithmetic-operator 6 numeric-

formula I numeric-formula 6 matrix-operator

numeric-formula I boolean-formula

n-aryarithmetic-operator ::= (arithmetic-operator)

matrix-operator .. arithmetic-operator l . arithmetic-operator2

of double arithmetic or matrix operator is explained later in this The meaning

section.

43

Examples:

27

(T-l)

A sub 0 = Q

(ALPHA sub (T-2» /1.889E-6

(A, B, C)·k (2, 3,4) := (A';b"'2, B';b'<3, C-;'(''''(4)

Parentheses may, of course, be. used freely in constructing numeric formulas

of arbitrary complexity, according to the notational conventions of ordinary

algebra. Arithmetic operations in a numeric formula are generally performed

in sequence, from left to right, except that parenthesized operations are

performed first, and then operations are performed in the following order of

precedence:

a. n-ary arithmetic operations

b. matrix operations

c. exponentiation, unary addition and negation (these are performed

in sequence from right to left, in exception to the general rule

stated above)

d. multiplication and division

e. addition and subtraction

Arithmetic operations involving any pair of numeric operands are defined in

8PL (except for division by zero, of course), even though they may differ in

dimension (scalar vs. nonscalar values), in representation (fixed-point vs.

floating-point values), and in other subsidiary attribute~. To achieve compati­

bility in dimension and representation between operands, where this may

be necessary, the following conversions are automatically applied:

44

1
(~ 1

1
J
J
J
]

1
J

n
I

[

[

[

(

[

I
[~

~-.-

(\

('

(

[

[

I
[
r~\

I
I

a. Binary (including Boolean I-bit texts) octal, decimal, and hexadecimal

texts are converted to unsigned integer values according to the obvious

positional notation. For example: jit'OOIIOllllO' == 222. The empty

text (zero characters), as denoted by null, is converted to the value

zero.

h. Integer and fixed-point values are converted to floating-point

representation.

c. Scalar values are (in effect) converted to nonscalar values by assuming

appropriate replications of the scalar. Similarly, nonscalar values of

lower dimension are converted by replication to nonscalar values of

higher dimension. For example: (A,B,C//D,E,F//G,H,I)+l =
(A+1,B+1,C+1//D+l,E+I,F+l//G+1,H+l,I+l) and (A,B,C//D,E,F//G,H,I)*

(1, 2, 3) == (A"kl, B'1\"2, C';'''3 / /D'1'''l, E'1'(2 ,F"i'(3/ /G"kl, H,\"2, 1';'''3) .

d. Arithmetic operations involving nonscalar operands of similar dimension

but different size (number of elements) are done by truncating (i.e.,

disregarding) the excess elements (of either operand) in any of the

dimensions. For example: (A,B,C)+(1,2) = (A+l,B+2), and (A,B,C//D,E,F)

/(1,2//3,4//5,6) == (A/l,B/2//D/3,E/4). In other words, arithmetic

operations are only done on operand pairs with identical indexes.

Arithmetic operations on real operands are done according to the following

scaling rules, not all of which apply in any given case. The following notation

is used. Note, this notation is in part SPL notation and standard mathematical

notation.

45

N'l - number of integer digit s ,,/,

N
2 - number of fraction digits

N3 - number of significant digits

N4 - number of exponent digits

W - maximum number of digits in an integer or fixed-point

valued operand"'c*

Where N'l) ~, and Wapply to integer and fixed-point valued operands, and

N3 and N4 to floating-point valued operands.

1. Fixed-point addition and subtraction:

2.

C = A + B C = A-B.

Nl (C) 1+ ~ [Nl (A), Nl (B)]

N
2

(C) = if N
2

(A) ~ N2 (B) 2£ N2

(B) ~ 0 then N2(A) else

if N2(A) ~ 0 then N2(B)

else 1+ min [N2(A),N2(B)]

Fixed-point multiplication: C

NI(C) = Nl(A) + NlCB)

N
2

(C) = N2(A) + N2(B)

*It is assumed in these equations that N. (A) - number of digits in A of
1-

type i.

**This is an implementation constraint, but should not be less than 10 decimal
or 32 binary digits.

46

1

('

r

I ,
(

I
I:
I~

I
I'

(

I~

I

(

I

I

3. Fixed-point division: C = AlB

NI(A) + N2(B)

if N2(A) ~ 0 ~ N2(B)

~ 0 then W-I-NI (A) else

if N
2

(A) ~ 0 and N2 (B)

~ 0 then 2*N
I

(B)+N
2

(B)-1

else ifN
2

(A) ~ 0 then

NI(B) + N2(A)

4. Fixed-point exponentiation: C = A**B.

5.

Exponentiation is done in floating-point, unless: The base A is an

integer or fixed-point value; and the exponent B is an integer value;

and the greatest possible magnitude of the exponent, times the nu~her nf

(integer and fraction) digits in the base, is less than W. If this

condition is satisfied, the scaling rules for fixed-point multiplication

and division apply--as many as W-2 mUltiplications followed by, at most,

one division.

[N
l

(A)+l}'(B-l

N
2

(A)'I(B

Floating-point arithmetic operations.

Intermediate integer and fixed-point results are represented by W,digits.

Where the number of digits (determined above) exceeds W, excessive digits

are truncated. Truncation is done first on least significant fraction digits

then, if necessary, on most significant integer digits.

47

In defining the arithmetic operators as n-ary rather than binary operators,

there are three cases to consider: where the operand (A, for example)

specifies a scalar numeric value; where it specifies a vector (one-d1mensional

array); and where it specifies a multidimensional array_ The result of an n-ary

arithmetic operation (C, for example) is defined in the following table:

Scalar A Vector A Multidimensional A

C - (+)A C - A C - (A1+A2+· · .+An) C
1 - (+)Al , · .. , C - (+)A

n n
C - (-)A C - -A C - (AI -A2 - ••• -An) Cl - (-)A

l
, · .. , C - (-)A n n

C - (<;'()A C - A C - (AI <;'<A2"1< ~_. • "I(An) C
1 - (<;'()A

l
, · .. , C - (-;,()A

n n
C - (I)A C - A C - (A

l /A2 / ••• /Aj C
1 - (/)A

l
, · .. , C - (/)A n n

C - (<;b'<)A C - A C - (AI <;b'<A£'<"I'(••• "ld(An) Cl - Ud()A
l

, ... , C - (<;'(-}()A
n n

The meaning of the matrix operators is defined, in general, as follows. Given

two numeric arrays X and Y declared

array X. begin end m £y p EY
array Y. begin end q £y n EY

and any two arithmetic operators, cPl and 01'2' then the result,

oP1 . oP2 Y may be defined by defining the elements of C.

C sub (1,1) - (oP1) (X sub 1 oP2 Y sub (1 !£ q, 1»)

C sub (i,j) - (op!) (X sub i oP2
Y sub (1 to q, j»)

c sub (m,n) - (op!) (X sub m oP2 Y sub (1 to q, n»

1n particular, where X and Yare declared, for example,

array X. real M by P

array Y. real P by N

then X+.*Y is the familiar operation of matrix multiplication.

48

C, of X

1
I

I

I
I
1

T

[

1
1

C
1

--- l.

[

I
I~ ~-
(

I-

I
I
I
I
I
I:
(

I
I
(

I~

(

I
1< {-'

I ---_/

I

, ,
I

4.1.1.2 Textual Formulas

A textual formula specifies a scalar or nonscalar textual value computed from

the values expressed by its individual operands, which are themselves textual

formulas--textual variables and functions, textual constants, etc. No special

operators are provided in SPL just for text processing; instead the generally

applicable operations of subscription, catenation, etc., are used. Boolean

formulas specify values that, textually, are l-character binary texts.

textual-formula .. =

Examples:

SYNTAX

textual-constant 6 <catenation-operator I subscription­

operator> I

'THOMAS ROMANOV' sub (9 to 11) = 'OMA'

(r T f f H r 'OMA' r S r) sub 3 = r OMA '

4.1.1.3 Pointer Formulas

A pointer formula specifies a scalar or nonscalar pointer value computed from

the values expressed by its individual operands, which are themselves pointer

formulas--pointer variables and functions, pointer constants, etc.

Intermediate floating-point results are carried in N3(C) significant digits.

Unless a floating-point result is for use in computing a value to be assigned

to a truncated real item, it is, in effect, first calculated to N3(C)+1

significant digits and then rounded (away from zero) by adding one to this

least significant digit and then discarding it and renormalizing if necessary.

49

pointer-formula

Examples:

STEP sub J

cell SORT

STEPS
cell sub 3
bit sub N ----

: :.=

SYNTAX

name /). < sub b. index-string Inothing >Icell ,I:::. sub b.

index-Atri,no 'ce'J_ lIvar ":a~1_e t bit ~ sul> A -- --
index-string

The ith cell in memory may be specified by cell sub i; the origin cell for a

variable V may be specified by cell V'. (Where cell ,cell , and
--c

i
-c

2

cell
-----c

n
contain a value, the value's origin cell is cell ,where i < J', for --c -

i

j = 1, 2, ... , n. The pointer formula cell, V, for any variable V, therefore

always specifies a scalar pointer value.

4.1.1.4 Boolean and Relati.onal Formulas

A Boolean formula specifies a scalar or nonscalar Boolean value computed from

the values expressed by its individual operands, which are themselves Boolean

formulas--Boolean variables, functions, and constants, and relational formulas-­

and binary textual formulas. The conventional logical operators and, .£,E., equiv

(equivalence), and not are available, as are the relational operators ~ (equals),

!!Sl. (is not equal to), h-(is less than), .B!.. (is greater than), ~ (is less than

or equal to), and E& (is greater than or equal to). N-ary logical and rela­

tional operators are also available. Logical and relational operations on

nonscalar operands are done on an element-by element basis. A scalar Boolean

formula is more conveniently called a condition, and a binary text may be con­

sidered a vector of Boolean values.

50

I
~- 1
l~_

1
'1'

I

l!,

I
I
I
I'
I

I

~ ..

I
I
I
:1
J:

l
T
1

I

I
('

(

1
[
(-

I
I' " 'I

I

I
I:
(

I
(

('

('

(

I

Ir~~
I

/
~/

I

pYNTAX

condition ::= boolean-formula

boolean-formula ::= boolean-constant I ~ 6 boolean-formula I boolean-

formula 6 ~ I £E, I equiv> ~ boolean-formula I
relational-formula I n-ary-logical-operator 6 boolean­

formula

relational-formula .. - <nothing n-ary-relational-operator> 6 formula

6< ,nothing , relational-operator 6 relational-formula>

n-ary-logical-operator .. - «and'.2.E.. I equiv»

n-ary-relational-operator .. - (relational operator)

Examples:

not T

not T and (B eguiv C or T)

A ~ Q .£!. not T

bit ' 1 ' == true

false, not T, V sub I to V sub (1+1 to J)

A~Q1s.DE.Sl.1

Parentheses may, of course, be used freely in constructing Boolean formulas

of arbitrary complexity. Logical operations in a Boolean formula are performed

in sequence, from left to right, except that parenthesized operations are done

first, and then operations are done in the following order of precedence:

1. n-ary-relational operations

2. relational operations

3. n-ary-logical operations

4. not

5. and and or

6. eguiv

51

- .. ~--,,, .. -, ... ,,,-,,'-'===

Relational op~rators are defined primarily on pairs of scalar values. If the

indicated relation holds, the operation specifies the Boolean value tl~, other­

wise it specifies the value false. A relational formula involving scalar

operands and several relational operators specifies a.Boolean vector, e.g., A

~ B ~ C gsD = A ~ B, B ~ C, C ~ D. Relational operations on nonscalar

operands are done on an element-by-element basis~ yie~ding a nonscalar Boolean

value, and where it is necessary to achieve dimensional compatibility, the

dimensional conversions described in Section 4.1 on numeric formulas are

automatically applied.

In comparing numeric operands, where it is necessary to'achieve compatibility

in dimension, mode and representation, the conversions described in Section 4.1.1

on numeric formulas are automatically applied. However, only the relations

equal and not equal are defined when either operand is complex. In addition,

in comparing a pair of integer or fixed-point values A and B, the comparison

is only carried out to [if N2 (A) Is 0 and N2 (B) Is' ° then min (N 2 (A),N2(B»

else ~ (0, min (N2 (A),N2 (B»)] fraction digits (where N2(X) = the number of

fraction digits of X.) And in comparing a pair of floating point values Y and

Z, the comparison is only carried out to [min (N
3

(Y),N,{Z»] significant digits

(where N (X) = the number of significant digits of X). In comparing scalar
3 textual operands of the same length in the same alphabet, the shorter text is

left or right justified and filler characters are appended. Then, for textual

operands of the same length in the same alphabet, comparison involves the pair­

by-pair comparison of characters according to the alphabet's collating sequence.

Scalar pointer values are compared according to the following ascending order:

nu1l.* cell sub 1, cell sub 2, cell sub 3, and so on.

Boolean values may also be relationally compared, according to the following

ascending order: false, true.

* See section 7.1 for a definition of null.

52

I
I
I
I

~ -,

I
I
I
I:
[

~.

(- I
~

1

[

I
I'

(

I~

[

(

('

I
I;
(I

(

(

('

(-

I
[

I
I ~~
~.'

I ---------/

I

Mixed nonscalar operands may be compared t although for scalar operands the

relational operators are only defined for pairs of numeric values, pairs of

textual values, pairs of pointer values, and pairs of Boolean values-­

exceptions are due to the equivalence between Boolean and I-character binary

values and between binary, octal, decimal, and hexadecimal texts ~nd integer

numeric values.

Logical operators are defined primarily on scalar Boolean values. Logical

operations on nonscalar Boolean operands are done on an element-by-element basis,

yielding a nonscalar Boolean value, and where it is necessary to achieve

dimensional compatibility, the dimensional conversions described in Section 4.1

on numeric formulas are automatically applied. : N-ary logical operators are

defined in the same manner a n-ary arithmetic operators; that is, (and) (~..9),

(A, B, C, D) == (A ~ B., and B ~ C, and C ~ D). The n-ary and operator may be

omitted where it is clear from context that a scalar rather than a nonscalar

Boolean value is appropriate, for example, where a nonscalar Boolean value is

assigned to a Boolean item, or is used as a condition.

4.1.2 Direct Code

SPL provides for direct code statements, however they must be preceded by a $.

A machine instruction or hardware operator followed by a parameter string may be

used in any SPL form in which a simple statement or compound statement is allowed.

direct-code-statement

Examples:

$STO ($P, cell (Q»

$LDA (Q, $IX.l)

.. -
SYNTAX

$name b. (t 1 .) of-hardware-operator ac ua -parameter-str~ng

$BRU (STEP sub (ALPHA-I), 'I')

53

4.2 CONTROL STATEMENTS

Control statements are provided in SPL to: transfer control to a specified

statement; execute one statement or another,or none, depending on a specified

condition; execute a statement repeatedly, perhaps each time with different values

for designated variables; initiate an asynchronous process; delay execution of

a statement until a specified condition is evaluated to be true; stop a process;

execute a statement whenever a specified condition is evaluated to be true; and

call a procedure subroutine.

SYNTAX

control-statement ::- simple-control-statement complex-control-statement

simple-control-statement ::= transfer-statement I stop-stbtement I procedure­

call-statement

complex-control-statement ::= repeated-statement

parallel-statement

chronic-stateu~nt

conditional-statement

delayed-statement I

Procedure call statements are discussed in Section 5. 1 . 1 .

4.2.1 Transfer Statements

Transfer statements break the normal, written sequence of statement executions

by transferring control to the statement whose origin cell is specified by a

pointer formula.

SYNTAX

transfer-statement ::= <go 6 to I goto> 6 pointer-formula

Examples:

B£. to COMPUTE

B£ to STEP (I)

.&2. to £.til (oct '150000')

goto cell ALPHA

54

1
I
I

I
I
I
]

]

(1
~- J

I
(I

(
\

I~

(

(

('

(

('

['

(

(

Ie

(

I'
I
I
I
~

Ii
I;

---_/

In the case of a transfer-switch the variable at the end of the statement

controls the switch direction.

It should be remembered that pointer formulas can specify the origin cells

of data elements as well as statements, so it is the programmer's responsibility

to see that execution control does not get transferred, for example, to an

array of floating-point numbers. However, the ability to transfer execution

control to what is nominally a data element is an occasionally desirable,

therefore not prohibited, action--for example, when it is desired to execute

a machine-language program text that has just been read.

4.2.2 Repeated Statements

SPL provides for the repeated execution of statements, either a specified

number of times, or where the number of repetitions depends on some condition-­

perhaps each time with different values for a designated (control) variable.

SYNTAX:

repeated-statement ::= for ~ repetition-clause ~ statement

repetition-clause ::= variable 6 = 6 value-sequence

value-sequence : : = formula I numeric-formulal 6 ~ 6 numeric-formula2 6

<while I until> 6 condition

Note: A chronic statement may not be repeatedly executed.

Examples:

for I = I ~ I until I ~ 100, PRINT I

for I = 1 by 2 while I Is 99, for J = I by 3 until J .B..E.

1+99, A sub J = I

55

"

A sequence of one or more values to be assigned the control variable may be

given by a formula specifying an array of dimension equal to or one greater

than that of the control variable •. Or, where the control variable is numeric

in ty.pe, a sequence may be given by assignin~; it an initial value (for that

sequence) as specified by numeric-formula
l

, with subsequent values being

determined by the addition of an increment value, as determined by numeric­

formula 2 " In this latter case, the sequence of assignments continues while or

until the given condition--which usually involves the control variable--specifies

the value true. Since the evaluation of the condition is done prior to each

assignment in this sequence, zero or more assignments may thus be .specified.

The statement in a repeated statement is repeatedly executed, zero or more

times. The repetition clause determines the number of such executions.

In a repeated statement, the repeatedly executed statement may, of course,

reference and even alter the value of the control variable.

Any transfer of control into a repeatedly executed statement from outside

will generally produce undefined results. Furthermore, while it is possible

to terminate the repeated execution of the statement by a transfer of control

to outside the repeated statement, the value of the control variable remains

defined as of , its last setting.

4.2.3 Conditional Statements

A conditional statement expresses the action of deciding to execute one

statement or another from a pair of statements, or of deciding to execute

or skip a single statement.

56

/

(
I

~--

'-,
j

r,

(. .1 ..

\l

J
'1
J

~I

l.J

]

1,

I
1
I
I
1
~

[I

I:
II

I:
i

1
1

,

('

('

(

[

(:

I
I:
(

II
Ij
II

I~
11

l
I

~/

SYNTAX:

conditional-statement :: = if 6 condition l'1 then ~ statemen~l <nothing I /:::, else

D. s ta temen t 2>

Note: A chronic statement may not be part of a conditional statement. ASide

from that, statement
2

may be any statement while statement l , may not

be a conditional statement.

Examples:

if HOURS sub EMPLOYEE !!!l. 0, then COMPUTE begin ... end

if T ~ A = 0 else B = 1

if A ls 0 or T then.&£ to NEXT else if A 8!:. 0 and not T then .&2. to ALPHA

A conditional statement causes the execution of one of two alternative

statement--if the condition is true, then statement l is executed, else,

statement z is executed.

4.Z.4 Parallel Statements

A parallel statement is a complex control statement that serves to cause the

parallel or asynchronous execution of its component statement (where the

implementing system will support this kind of operation). The body

(incorporated statement) of a parallel statement may be executed in parallel

or asynchronously with the subsequently written statements.

SYNTAX:

parallel-statement ::= do I::. statement

Note: A chronic statement may not be part of a parallel statement.

57

Examples:

do begin T = false, A = B, T = ~ end

do read RECORD = SENSOR

do ~ !.£. START

A parallel statement ordinarily serves only to establish a new task--a tempor­

ary, parallel or asynchronous sequence of execution--which ends when the

incorporated. statement: completes its execution. However, a parallel statement

can also establish a new process--which is a more permanent, parallel or

asynchronous sequence of execution--mere1y by executing a transfer of control

out of the parallel statement, thus bypassing the implicitly built-in stop

at the end of the parallel statement. The difference between a parallel task

and, a parallel process is mainly one of subjective convenience.

A transfer of control into a parallel statement from outside does not

establish a parallel task or process, however. With reference to either of

the previous pair of examples, &21£ THIS will cause the execution of

statementl followed by the execution of the (implicit or explicit) stop

statement.

When a statement that is normally executed in paralle1--such as an input­

output statement--is written without a do indicating that it is not to be

executed in parallel, the next statement is automatically delayed until the

execution of its predecessor .is completed.

4.2.5 Stop Statements

A stop statement serves to halt a (main or parallel) process. It signifies'

the completion of the statement sequence in which it is executed. A stop

statement may be conditionally invoked.

SYNTAX:

stop"'stFltement ::= stop

5R

I"A.,

''1

,1

I
:1
,

~

1
II
IT

' ..
1"'1

1.Jt-

iT
l,i

rr
~

\"f

(

~-
,,4,

~,

l"

I

(

[

[

[

[

[

I

[

I
I~

I

I

Examples;

~ ..

A stop statement also has the incidental effect of closing any files left

open by the process or task in which it is executed. (see Section 4.3 on

opening and closing files).

lj.2.6 Delayed Statements

Delayed statements cause conditional delays in a process or task. The

execution of a statement may be thus delayed until any specified condition

occurs.

SYNTAX:

delayed-statement ::= when ~ condition ~ statement

Note; A chronic statement may not be part of a delayed statement.

Examples:

when T .&E... 4, se t A = I

when $TCS "Teletype Channel Status" ~ 'FREE' write TELETYPE MESSAGE

The condition for execution of a delayed statement is specified, of course,

by a (scalar) Boolean formula.· The delayed statement is repeatedly executed

until its enabling condition is evaluated as true. Delayed statements are

similar in this respect to chronic statements, (although a delayed statement

is not automatically re-executed upon reoccurence of its enabling condition), ~

and they are often used to synchronize parallel tasks and processes ..

An example of this involving four parallel assignments, is shown below.

59

T1, T2, T3 = false

do begin A = B, T1 =~~

do begin C = D, T2 = ~end

do begin E = F, T3' = ~end

~G .= H when T1 ~ T2 and T3 EQ ~

4 .2.7 Chrbnic Statements

Chronic statements cause the execution of any given statement whenever a

specified condition occurs or re-occurs. Chronic statements are useful for

interrupt processing, priority processing, and parallel processing. They are

executed asynchronously--depending on the hardware resources--either in

parallel with, or by interrupting, some current process or task without,

however, affecting that process or task beyond perhaps delaying it or

explicitly altering its data.

SYNTAX:

chronic-statement .. - ~ ~ condition ~ statement

Examples:

on

on

$ETC "Elapsed Time Counter ".8.!. 500 "milli-seconds" begin
end

$FPO "Floating-Point Overflow" &2. to ABORT

PROCESS. ~ SIGNAL ~ 0 and SIGNAL.8.!. CURRENT begin ... end

~ $.Q.§. "DEVICE STATUS" .~ 'DONE' .&£ to CONTINUATION sub I
. -- ---

60

1

[..... :
I) i

l'
,T!
i:

i

!
I

1·1
"i

!
I

i
""'I

1

[

i •. :

I ;

I

[[

[

I
C

l

(

(

(

I:

I
[

I
(

I
(

I

The condition for executing a chronic s~atement is specified by a (scalar)

Boolean formula, which is automatically levaluated whenever any of its operands

is assigned, or acquires, a new value. The chronically-executed statement is

executed as a parallel task if a processor is available or, if all are busy,

as a primary task--by interrupting some current process or task. Thus, a

chronically-executed statement when its "time has comet" it has paramount claim

to processing. The programmer, however, has complete control over specifying

the condition under which a chronic statement is executed, and in particular,

conditions may be specified so that a chronic stat~ment is not executed until

the facilities it needs are available, so that a low-priority chronic statement

does not interrupt a high-priority task or process, so that a high-priority

chronic statement does interrupt a low-priority task or process, and so that

the automatic evaluation of the condition occurs no more frequently than, and

indeed, exactly when, desired.

Chronic statements are executed only on the occurrence or re-occurence of their

enabling condition. They are not part of the "normal" sequence of statement

execution, which is why they are inappropriate components of other control

statements 0 Aside from this restriction (which is ;'10t a syntactic necessity

but is meant primarily to prohibit confusing statement constructions), chronic

statements may be written wherever convenient in the program; the "normal"

sequence of statement executions will automatically bypass them. And while

a chronic statement may not be transferred to.) (the automatic bypass would

frustrate this), its component statement can be transferred to ..

Many data storage devices impose accessing restrictions in that reading or

writing an individual value may, for efficiency,·ordinarily irivolve the transfer

of an entire block of data. Such devices are called external storage devices,

61

II

as contrasted with the internal memory of the computer. To allow a description

of reasonably efficient input-output op~r~tions, therefore, data entering or

leaving the computer's internal memory are organized into files. A file is

thus a body of data contained in some external storage device, such as punched

cards or tape, or magnetic tape, discs, or drums.

To provide maximum flexibility for real-time computation, the input and output

features of SPL place major emphasis on the activities of reading and writing

and little emphasis on data manipulation and conversion, for which adequate

facilities are otherwise provided. (In partic11lar, the operations of encoding

and decoding a record according to a given format, though described in the SPL ex­

tensions, have been removed from the operations of reading and writing so that

they may be applied to operands other than records.) Data conversion and record

buffering and blocking, where they are needed, must therefore be explicitly

specified either in the program or in library subroutines.

In SPL, files are defined by file declarations and processed by the input-output

operations of opening and closing, positioning and testing,* and reading and

writing a file.

SYNTAX:

input-output-statement ::= open-statement I close-statement I read-statement I
write-statement

*Positioning ,and testing are input-output operations that involve functions,
rather than statements.

62

(-

~-

[

1:

1
[
I

rr

,t!

[

I
I
[[
\)

r'

~

[1

[

I,
:1
[

[

t
l

[

(

I
\

l
('

r
(

I:

(

(

(

(

[

I

I

4.3.1 File Declarations

Files, which are collections of data that are externally stored or available,

or input or output, are considered in SPL to be strings of records, each record

distinguished by its position in the file. In turn, a record is considered to

be a linear array of texts, called lines. A file declaration gives the

dimensions of the file, names its alphabet and the device and module used to

access and hold it, and provides several other file attributes, some of them

implementation-defined. In certain cases, several different but similarly

described files may be declared at once.

SYNTAX

file-declaration .. = file 6 name-string 6 file-description

file-description ::= device-name 6 <nothing I $(character-string» 6 <nothing

dimension-string> 6 <nothing' I code-name>

device-name ::= name. I device-name. <nothing I number> 6 <nothing
number>

code-name ::= <bin I oct I dec I hex I ~>

module-name.

Notes: a. The character string may not contain the ")" close parenthesis.

b.

Examples:

file A. SITE

With regard to the dimension string, a file is a three­

dimension entity: records per file, lines per record, and

characters per line.

file D. TAPE.07 REEL.3661

file E. TTY.14 STATION.71 $(213-3993411) I ~ 1 ~ J

file F. TAPE, K E.Y. L E1. 32 bin

63·

In a file declaration, the device name indicates the type of peripheral device

used to access the file. For systems with several units of the indicated type,

the suffix numbers tell which units shall be used to access the filet and may'

be omitted if any unit of the indicated type is acceptable. Device names and

the interpretation of suffix number~ are implementation defined. However, they

should account for cases where a device is used to access several files, and

where several devices are used to access a single file.

A given type of device may imply any or all o.f the other attributes of a filet

in which case these attributes may be omitted from the declaration, or it may

place limits on them--for example, a printer that cannot produce lines longer

than 132 characters.

The module name in a file declaration indicates the particular storage module

--tape reel, card deck, disc pack, type of preprinted form, display area, etc.

--used to access the file. Like device names, module names usually include

module type and suffixed serial number, and are implementation defined,_ And

they should also account for cases where a (physical) module contains several

files, and where several modules are needed to contain a s~ngle file. Module

name may be omitted if the identification of a module is unimportant or

irrelevant to the device, or handled outside the system, e.g., manually.

Any implementation-defined, machine- or syst(!m-dependent file attributes may

be declared within the $(and) brackets. Some examples might be: password;

work order number, special labeling instructions; source or destination for the

file; author; expected activity; security classification; purge date.

The three-component dimension string gives the dimensions of the file: number of

records per file, number of lines per rec9rd, and number of characters per line.

Where device and module permit, any of the dimensions may be given, by an

integer-valued numeric item, as varying. However, number of characters per

line may only be considered as varying between records, not within a record.

And where number of records is given by a number, this is taken as a maximum

value.

64

[

1
1

[

1

1

[

[

(

(

[

(

(

I
('

I,
[

r
I
I

I

The code name indicates the alphabet in which the file is coded. The alphabet

must, of course, be defined. And it may contain both nonprinting control

characters, and graphic characters.

Where the file description is not so specific as to be pertinent to one and

only one file, it may be used in declaring several files at once, and in a

mode declaration.

4.3.2 Assign Declaration

The distinction can be made in SPL between files which represent logical units

and the actual physical units to which a file is assigaed. This logical unit/

physical unit equation is done by means of an assign declaration. What physical

units are available is, of course, implementation dependent.

SYNTAX

assign-declaration .. - assign, 6 name to 6 device-name

Examples:

assign MASTER to TAPE 1

assign LOG to PRINTER

assign OUTPUT to PUNCH

4.3.3 Opening and Closing Files

A file may be opened with an open statement, which designates the file and

completes or overrides the catalog of. the file's declared attributes. A file

may be closed with a close statement, which designates the file and indicates

whether an end-of-file is to be written, or with a stop statement.

65

30 September 1967 66 '.l'M-J 119/ UO() /00

SYNTAX

open-statement ::= open /1 device-name 11 <nothing , $(character-string> IJ <nothing

dimension-string> /1 <nothing I code-name> /1 file-designation

close-statement ::= close /1 <nothing ~ I ~ /1 module-name> /1 file-designation

file-designation

Notes: a.

::= name f f"l I file /1 at /1 pointer-formula
O-le -- -

The character-string may not contain the ")" close parenthesis.

b. The elements in an open statement between the primitive,

open, 'and the file designation, may be written in any order.

Examples:

open A

close A

open TAPE.OS

close out REEL D -----
open file at P sub I

close out file at P sub I --------

An open statement supplies missing or overriding file attributes, which are

taken to aold until the file is closed. Opening a file may cause manual access­

ing and mounting of the indicated module. And where the module is of a type

that cannot be accessed by the indicated device, it may cause loading of the

file into the appropriate external storage medium. Opening a file does not alter

the position of the file, should it have previously been opened, accessed, and

closed. Otherwise, an open statement will automatically position the file to

the first record. Other implementation-defined actions, such as label checking,

may result from opening a file.

Closing a file releases the device used to access the file, but it does not

alter the position of the file should it be subsequently opened. Closing out

a file causes an end-of-file to be written and also releases the device, but

it leaves the position of the file undefined. In addition, in closing out a

66

[

(--
fI

I

~-'

1
I
(~

b1

[

I
I
I
T'

,jJ

1
J:
I
[

[

[I

1
l 1

[

(

1'1
(

(

('

)

(

[,

(~

('

I:

(

[

I
I]

I
I~-

I', / '----_/

I

I

file, a new module name may be givell. Till s hl'W llIodul(' lWlIle lIlay JJlt'n.~ ly bt'

substituted for the old one, or where the module type cannot be accessed by

the file accessing device, the file is unloaded from the external storage

medium containing it, onto the module.

4.3.4 Testing and Positioning Files

The testing and positioning of files in SPL : ... s done with non-input-output

statements employing a pair of built-in functions, status and position. For

addressable files, the position function serves as a functional variable.

SYNTAX:

function ::= file-designation 6 <status I position>

functional-variable ::= file-designation 6 position

Examples:

A status

(file ~ P sub I) position

The file-status function specifies a one-character textual value in an

implementation defined code that may differ from device-type to device-type.

Regardless of these differences, certain codes are established with standard

meanings for all devices and implementations. These are:

1.

2.

3.

4.

5.

6.

7 •

'READY'

'BUSY'

'EOF'

'FULL'

'ERROR'

'UNREADY'

'CLOSED'

the device has transmitted a record or is ready to

transmit a record

the device is in the process of transmitting a record

an end-of-file has been encountered by the device

another write operation would cause the file to exceed

the capacity of the module or modules allocated to it

the device is unsuccessful in transmitting a record

due to an error which cannot be corrected

the storage device is not ready or unavailable, or

the module has not been mounted

the file has been closed, or not opened

67

With these codes, and any itnplementation-defined, nonstandard ones, the status

of a file may be determined with such Boolean formulas as: A status ~ 'BUSY'.

Appropriate hardware operands may also be referenced for more specific status

information in many cases.

So far as position is concerned, an SPL file is self-indexing, meaning that

the record available for transfer to or from the file depends on the file's

current position. The records of an n-record file have the positions 1 to n,

and the position of the record currently available for transfer is specified

by the position function. The transfer of a record to or from a file automa­

tically increments (or decrements, for a reverse file) by one, the file's

posi tion. Furthermore, where the storage or input-output device a110y]s, the

position function designates a scalar, unsigned integer variable that may be

altered by the assignment of an arbitrary numeric value, thus repositioning

the file. Such a file is an addressable file, as opposed to a serial file,

where such a general positioning operation is to be avoided as impossible or

inefficient. Some serial files do, however, permit restricted forms of the

positioning operation. For a tape file T, for example, it might be possible

to specify rewind by "T position =1," backspace by "T position

-1," and skip N records by "T position = T position +N."

4.3.5 Reading and Writing Records

T position

Reading and writing a 'READY' file is done in SPL by read and write statements,

wherein the programmer designates the file and designates or specifies the

data elements to receive or provide the record.

SYNTAX:

read-statement ::= ,read ~ variable ~ into ~ file-designation

write-statement ::= write ~ file-designation ~ from b textual-formula

Note: In a read statement, the variable must be textual in type.

68

[

/ 1
~···l

I

[

I
I
[1

I

[

[

[

[[

(

(

(

I
(

I
(

I'
(

I
I

I

Examples:

read BUFFER ~ A

write F from BUFFER

write E from 'THE QUICK BROWN FOX .•• TESTING'

do read bit (ALPHA sub (J to K)) into C

Read and write work precisely according to the rules of the assignment state­

ment, where the record is one of the operands and is considered to be a row

vector of texts (lines) of dimension and alphabet declared (or given in the

open statement) for the file. Where the number of lines per record and/or

the number of characters per line are declared, with an integer item, as

variable, read and write have the effect of assigning the appropriate value

to these items. Read and write also advance by one the position of the file-­

either forward or, for a reverse file, backward. In general, a file may be
both written and read.

69

5. PROCEDURES AND FUNCTIONS

5.1 PROCEDURE DECLARATION

The procedure is a type of closed subroutine that may be classified as program

independent because it can operate upon data independent of item names and

their definitions as defined in the main program or in the compool. This is

accomplished by the use of formal data declarations (dummy data) defined in

the procedure. The data to be operated upon (parameters) are transmitted from

the calling routine to the procedure via the procedure call. During the operation

of the procedure, the data transmitted from the calling routine are referenced

by the formal data declarations defined in the procedure. General purpose

routines may now be generated which enable the many programs in a system to

centralize their common routines within proc2dures and call upon each one when

needed.

Thus, a procedure declaration sets up a closed subroutine that may have input

parameters, output parameters, or both. A procedure declaration is independent

of outside loop statements; it may be invoked from within any loop statement

in the main program or in other processing declarations without deactivating

the loop variables. On the other 'hand, fhe outside loop variables are not

defined in the procedure declaration.

SYNTAX

procedure-declaration "= procedure-heading 6 <nothing I parameter-declaration­

string> 6 statement

procedure-heading ::= procedure· 6 name f d 6 <nothing I (formal-
, 0 -proce ure

parameter-string»

formal-parameter-string ::= formal-parameter ~ <nothing I formal-parameter-string/

formal-parameter ::= name

parameter-declaration-string .. - parameter-declaration 6 <nothing I parameter­

declaration-string>

70

i

[I
I

t
1
I
[1

[

I
I
1

T

jJ

~
I,

I
[

il~

[

/[
(

~-~

I
·i;.

(

r
(11

1
(;

(

("

('

('

I
(

('

('

I
(

(

I
Ir -
I ----_/

I

parameter-declaration ::= <item-declaration I array-declaration I group-declaratio~>
6 <nothing I value> 6 <nothing I result> <procedure­

heading I function-heading> 6 <nothing parameter­

declaration-string> , file-declaration

Note: The statement in a procedure declaration may not be a chronic statement.

Examples:

procedure A. begin •.. end (A)

procedure SORT. (N, VECTOR) integer N. value real VECTOR. array N result begin

.•. ~nd (SORT)

procedure G. (Y, FCT, X) real Y. function FCT. (Z) Y = FeT eX)

Formal subroutine parameters, like actual parameters, fall into three categories:

(1) Formal value parameters correspond to actual parameter~ that are values

(although designated or specified by variables and formulas). A formal value

parameter must be declared in the parameter declaration string as an item,

array, or group with the value descriptor appended. Starage is allocated within

the subroutine for value parameters, and references to them within the subroutine

refers to that storage. (2) Formal expression parameters correspond to actual

·parameters that are variables or expressions. A formal expression parameter must

be declared in the parameter declaration string as an item, array, or group but,

of course, without the value descriptor. No storage is allocated within the

subroutine for expression parameters. Instead, the subroutine is executed as

if the variable or formula constituting the actual parameter were substituted for

the formal parameter name throughout the subroutine. (3) Formal name parameters

correspond to actual parameters that are names. A formal name parameter may be

declared in the parameter declaration string as a file or a subroutine (complete

with everything except processing statements). Those not declared are name

parameters whose attributes are determined by their use in the subroutine, and

by the corresponding actual parameters appearing in the subroutine's various

calls. For a formal name parameter, the subroutine is executed as if the name

constituting the actual parameter were substituted for the formal parameter name

throughout the subroutine.

71

Formal value and expression parameters are themselves divided into two categories:

argument parameters and resul t parameters. Formal argument parameters ·correspond

to a·ctual parameters whose values are not affected by the execution of the

subroutine, while formal result parameters correspond to actual parameters whose

values are affected. An actual parameter corresponding to a formal result

parameter must therefore be a variable .. Formal result parameters are declared

with the result descriptor; formal argument parameters are declared without it.

5.1.1 Procedure Call Statements

To execute the computation defined in a procedure declaration, it is necessary

to invoke the procedure by executing a procedure call statement, which may be

thought of as an abbreviated description of process it invokes.

SYNTAX

procedure-calI-statement .. - call ~ name
---- of-procedure

6. <nothing

string»
actual-parameter I (actual-parameter-

actual-parameter-string .. - actual-parameter 6. <nothing I

string»
(actual-parameter-

actual-parameter .. - variable I formula I name

The actual parameters of a procedure call statement or a functl"on must correspond
to formal parameters of the subroutine declaration both in number and in sequence.
Actual parameters may not, therefore, be oml."tted. H f 1 owever, a ormu a or variable
as an actual parameter may designate or specify a nonscalar value with a varying

number of elements, and it may be necessary to use parentheses to establish the

desired correspondence. In addl."tl."on a t 1 , n ac ua parameter must be compatible

with its definition and/or use within the subroutine declaration.

72

[[

1
I

I
I

I.· I

, J

:);;)'

I I

I I

I
[

[

[

I--~
1

i
~-.. l

~

I
r

(I

I
(I

[

I
('

(

[

(
,,-

(

(

(

I
I
I

1,-
I~/

I

Examples:

call B (T)

call G (GAMMA, sin, V*PI)

A procedure subroutine is invoked by a procedure call statement according to

the following steps:

a. Any formal value argument parameters are assigned the

values of the corresponding actual parameters.

b. In effect, the corresponding actual parameters are substituted

for any formal expression and name parameters.

c. The subroutine is executed, and if it completes its operation

(i.e., does not stop or transfer control outside the subroutine),

the following steps are done;

d. The values of any formal value result parameters are assigned

to the corresponding actual parameters;

e. Control is returned to the statement following the subroutine

call statement,

When a procedure subroutine is in~oked by a parallel statement (i.e., "do

call"), steps a-bare done in sequence, steps c-e in parallel.

A procedure call statement invoking a hardware operator will follow the same

steps, except that the subroutine executed will generally be a single machine

instruction. Indeed, with appropriate actual parameters (in many cases,

hardw~re operands), such a procedure call statement may be entirely equivalent

to single machine instruction.

5.1.2 Entry and Exit Statements

In order to enter a procedure at some point other than the beginning, the entry

statement may be used. One or more entry statements may be defined within a

73

procedure to define secondary entry points. Like the heading statement of a

procedure, each of the entry statements must have a label to serve as the entry'''-­
name for that point, and each may specify a list of formal parameters which

need not be the same as for the procedure or as for other entry points. At

the point it is desired to leave .a procedure·, the exit statement· should be

invoked .. An exit will be generatE·d after the last statement of a procedure but,

in order for alternate exits to be taken, an exit statement is required.

SYNTAX

entry-statement ::= name 6. entry «parameter-declaration) I nothing>

exit-statement ::= exit

Examples:

SEC entry (A, B)

THIRD. entry (C)

exit

5.2 FUNCTION SUBROUTINES

Function subroutines are defined by declaration and invoked by functions. Function

declarations are very similar to procedure declarations, except that a function

may have parameters preceeding the function name, a function has only one result

parameter, a value parameter designated by the function name and declared in the

function heading, to which a value may be assigned by an abbreviated assignment

statement.

SYNTAX

function-declaration .. = function~heading 6. <nothing I parameter-declaration­

string> 6 <= 6. formula I complex-statement I compound­

statement>

function-heading ::= function 6 <nothing I formal-parameter' (formal­

parameter-string» 6. name of-function /). <nothing I
formal-parameter I (formal-parameter-string» 6 <item­

description I array-description , group-description> 6

<nothing I recursive I reentrant>

74

[

I

[

~I

I

I

[

[1

(

" (

I

(

I'

[

r
[

('

[

[

[

[

Note: The (complex) statement in a function declaration may not be a chronic

statement.

-Examples:

function RANDOM. real reentrant begin

function F. (A,B) integer recursive

The rules governing procedure declarations also apply to function declarations.

In addition, for a function subroutine to compute a functional value, the

statement comprising the subroutine body must assign a value to the formal

result parameter designated by the function name and also, of course, complete

its operation.

5.3 RECURSIVE AND REENTRANT SUBROUTINES

Recursive or reentrant subroutines may be declared in SPL. A recursive subroutine

is one that, directly or indirectly, invokes itself. A reentrant subroutine is

one that is compiled into "read-only" code, so that it may be invoked by several

parallel processes or tasks before it has finished the computation required by

a previous invocation, without confusing the data associated with the various

invocations.

Both recursive and reentrant subroutines must be explicitly declared as such

in the procedure or function heading. A subroutine may not be both recursive

and reentrant; in addition, a reentrant subroutine may not involve a

han-reentrant subroutine.

75

5.4 BUILT-IN FU~CTIONS

Basic SPL contains a minimum number ot built-in functions. They specify a

numeric result.

5.4.1 Trigonometric Function

The t-rlgonometric function sin, ~, and!!!! specify, for any real scalar

argumenL x expressed in radians, the sine, cosine, and tangent of x. The arctan

function specifies, for any real scalar argument x, the arctangent of x in

radians.

SYNTAX

function '. ::= <sin
of-numer1c-type .£2! I ~ I arctan> 6 numeric-formula

Example:

sin (tan_ X)

Complex arguments of these functions are converted to real mode by disregarding

their imaginary parts. Nonscalar arguments specify identically-structured

nonscalar results.

5.4.2 Absolute Value

The absolute value function specifies the positive value of an integer or real

scalar argument, and the positive'magnitude of a complex scalar argument.

SYNTAX

function . ::= abs 6 numeric-formula of-numer1c-type

Example:

abs (I-J)

Nonscalar argument.s of the absolu'" I,:'.lue func 1: :Lon specify identically structured
nonscalar results.

76

1

I

I
I
]

[]

J

J

I
f

(

I
(

(

[

I ~
l'
('

I,
I
I
I]

1(,

I
I

5.4.3 Base e Exponential.

The base e exponential and logarithm functions specify, for any numeric scalar

argumeni:. x, the values eX and loge x.

, SYNTAX:

function' ::- <exp J log.e> A numeric-formula of-numeric-type

Examples:

exp X

log.e (exp X)

Nonscalar arguments of these func::ions specify identically-structured nonscalar
results.

5.4.4 Base 2 and Base 10 Logarithm.

The base 2 and base 10 logarithm functions specify, for any real scalar argument

x, the value log2 x and loglO

SYNTAX:
,-

function ::- <10g'.2 I, :log.IO> !::. ntnneric-formula of-numeric-type

Examples:

!9.,K.2 (2**X)

!£K .. lO (log. lOX)

Complex arguments of these functions are converted to real mode by

disregarding their imaginary parts. Nonscalar Arguments specify

identically-~,t.ruct_l1red nooscalar results.

77

6. COMMANDS

Every SPL program is composed of declarations which generally describe the

for~ of the data to be operated tiponby the program and statements which

provide the rules for operating upon that data. Commands are an additional

language features which provide the programmer in SPL additional controls

in the areas of language definition, editing, debugging, code optimization,

time and storage control and program execution. Each one of these categories

is described in the sections that follows.

Commands permit the programmer to command the compiler to: translate some

portion of the program according to a defined notational extension; execute

statements immediately; show (either in typeout or display) any defined data

element values; direct the compiler for code optimization; calculate time

required for. code execution for generated inBtructions.

SYNTAX

command ::= define-command I execute-command I debug-command I optimization~
command I count-command

6.1 DEBUG COMMAND

A debug command serves to print or display (either in the listing produced by

the compiler or on a display) any previously provided (input, entered, or

. executed) lines of program text, or any defined data element value.

SYNTAX

debug-command .. - show /::,. <slmbolic I nothing> location-identifier /::,. <number

nothing> <thru I nothing> /::,. <location-identifier nothing>

location-identifier ::= <name I cell/::,. name> 6. <code-name I nothing>

78

1
1

I

I

I

I
1

I

[

(

(:

(

[

[

I
[

(

(

(

[

I ~ .. ~.
{
I

The symbolic attribute indicates if the display of data is to be in the form

in which it was declared. The location identifier can be any name defined in

the program or compool. The number following indicates the number of cells to

be displayed. The display area can be identified by bracketing with names or

cell numbers.

6.2 OPTIMIZATION COMMAND

The optimization command serves to indicate the type of code optimization pre­

ferred for a portion of the program. The SPL user has some control over the

type of code optimization which will be in effect during the compilation of a

specified segment of code.

SYNTAX

optimization-command ::= optimize ~ <time space none> ~ statement

The primitive time specifies that the statement which follows, simple or

compound, is to be optimized for a minimum operating time. The analogous

capability for space is indicated if the primitive space precedes the compound

statement. If ~ is specified, this would negate any rearrangement of code

for optimization. If the optimized command is not specified, the normal

optimization alogrithm is used (one which appears optimum for a majority of

cases).

6.3 COUNT COMMA1~

The count command serves to indicate the execution time for a sequence of

code. The statement, whether simple or compound, following a count command is

operated with data values declared in the data declarations and the amount of

execution time recorded for output.

SYNTAX

count-conunand ::= count 6. ~ IJ. <statement I declaration>

.79

II
Ij

1
I
I

6.4 DEFINE COMMAND

SPL is an extendable language. Not only may subroutines be defined to extend

the language's computational capabilities, but notational extensions may be

defined for any other statement or declaration format that is required. These

extensions may range from the definition of simple synonyms and abbreviations,

to the definition of complicated new data structures and the operations on

them.

Indeed, with the subroutine definition capability described in SPL and

the notational definition capability described here, it is likely that, in

any implementation of SPL, a great many of its features will be implemented

either as built-in subroutines, or built-in notation definitions, leaving

only a relatively simple language ke.rnel for the compiler to implement.

A notational extension is given in a define command and is applied to the

source program text prior to compilation. A define command in effect,

serves to translate some new language form into an equivalent SPL representa­

tion. This translation is done at the source level in what effectively is a

pre-pass over the source language statements if the define command capability

is specified by the SPL user ..

The define command may be followed by a series of definition rules which

apply to the program which follows them, or it may simply specify the name

of a set of rules, previously defined, which are brought in by the system

from the library and similarly applied.

Notational Definitions can be thought of as having two parts. The first half

of the define command begins with the word where and describes the code to be

sought out of the source program code for translation into SPL. The second

half of the define command begins with the word then and describes the

equivalent SPL code for the non-SPL form.

80

I
[1

I
1

T

1

J

I:
r

(

I
(

(

(

[

(

[

I

(

[

I
I
I

I

SYNTAX.

define-command ::= <name. I nothing> ~ where ~ definition ~ then ~ translation 6

<end I define-command-string>

definition ::= textual-formula I term I textual-pattern not

6 definition I definition ~ < or I and > 6 definition

define-command-string : := begin 6 define-command <nothing I define-command> 6 end

pattern-declaration .. - pattern ~ name ~ definition
of-pattern

define-command-call . . - define ~ name .
of-deflne-command

textual-pattern :: = pattern < (textual-constant) r (tern) I (name-of-pattern) >

translation :: = declaration Istatement Icommand

term .. character I letter I digit I name I null I constant I

Examples:

simple-statement I compound-statement

array-declaration I group-declarati~n

variable I hardware-operand I formula

lOA. where 'z' then 'P**2-P+expP' end

comment I item-declaration

storage-declaration

ASIGN. where '=' variable',' constant '+' variable then variable (1) '='

constant '+' variable (2) end

\
Note: The term null denotes an empty ,text--the character string of length zero.

81

FOR. begin where 'DO' pattern GEO. (statemeEt-~) variable',' '=' variable

',' nothing.2!. variable then tFOR' variable (1) '=' variable (2) 'BY' if

variable (4) then variable (4) else '1' ',' variable (3) where statement­

label and GEO statement then GEO statement 'END' end

In the first example a substitution is made for 'z' and in the second example

an assignment statement of a non-SPL form is mapped into the SPL assignment

statement form. In the last example, a" FORTRAN "DO" statement is transformed

into an SPL "FOR" statement.

A define command may employ just a definition (which may itself be composed of

a series of elementary definitions) or, for more elaborate notational extensions,

it may employ a definition string, which may contain declarations and other

definitions. A definition may contain pattern ~eclarations.
j

A textual pattern may be specified by enclosing a textual constant or a term in

parenthesis. Enclosing a single term indicates the textual pattern
i

represented by the term is being defined as a pattern. The elements of a

pattern, then, are alphanumeric textual formulas (and in particular, alphanumeric

constants), terms (which are the names used in this report to identify the

textual patterns of SPL), and the names of declared patterns.

The logical operators and, £Ej and not may also be used in specifying patterns,

where they have the set-theory meanings of intersection, union, and complementa­

tion. Thus, A and B specifies any pattern that is at once both an A pattern

and a B pattern. A ~B specifies any pattern that is either an A pattern or a

B pattern. And not A specifies any pattern except an A pattern.

A define command may involve a definition string that exists only at compile

time. The declarations in a definition string establish patterns, data elements,

subroutines files, etc. that exist only at compile time--they may not be referenced

82

[

(
1:

~- J

I
[1

[

I
I
[
r
A.-

[1

1
I
~

l
~
I]

(~ J

t-'

~

I

(

I

[

('

[

(

I
I~

I

I

by the program at execution time. In addition, the names thus declared are

defined only for the definition string in which they are declared--and for any

definitions or definition strings appearing within the program text that is

affected by the define command containing this definition string.

The most general case is shown below:

where begin
l

A .•••

where ••• A ..• B ••••

where
3

... A ..• B. .•• c. ... end
l

The first define command applies to and contains the next (define) command,

which applies to and contains the following statement, which in turn contains

a define command. Anything, for example, A, declared in the first definition

string may be referenced in any definition or definition string between begin
l

and end i .

It must also be noted that definitions may contain compound statements, which

may naturally contain other declarations. These also establish compile time

entities, whose names are defined for the compound statement containing their

declarations.

A definition in a define command specifies an alphanumeric textual pattern and

indicates some action to be taken by the compiler whenever it encounters that

pattern in the program text to which the define command applies. This action

may be just a replacement of the encountered matching text by the value of a

textual formula, or it may be a more complicated action, as specified by a

compound statement, which is executed when the elementary definition is applied.

83

When used as a textual variable i.n the textual formula 'or compound statement of

an elementary or single element defil)ition, a pattern name or term refers to the

program text to which the define command containing the elementary definition

applies'. Specifically, for each application of an elementary definition, any

term or pattern name it establishes as a textual variable will designate the matching

part (or parts) of that segment of the statement, or declaration that matches the

pattern given in the elementary definition.

The pertinent rules in applying notational definitions are described in the

following rules:

Rule 1. Where define commands are nested within begin and end brackets, the

first define command is applied first, and subsequent nested define

commands are applied to text immediately following the symbol of the

preceding define conrrnand.

Rule 2. In applying a define command, its definitions are repeatedly applied,

in the order given, to the entire program text to which the define

command app1ies--unti1 they are no longer applicable.

84

1

I
[

]

1
1

1

J

J

r

c

I

(I

[

[

(

[

(

I

I{ •. _ ... ,
~~

I

I

definition
C3 apply

anywhere?

Apply the

definition

of Cl

Apply the

definition

of C2

Apply the

definition

of C3

Rule 3. In any single application of a definition to a program

text, it is applied to the leftmost part that (1) matches the

pattern, and (2) is not followed by a part such that the two parts

together would also match the pattern.

85.

I
~

I

6.5 EXECUTE COMMAND

An execute command may utilize a definition t() identify a set of code which is

to be replaced by a value which obtained by executing a formula prior to compila­

tion. An execute command serves to provide a capability to compute compile'time

calculated constants. This capability will serve to reduce the size of the

stored object program required. The execute command can be thought of as having

two parts. The first half begins with where and describes the code to be sought

out of the source program for substitution by the calculated value. The second

half of the execute command begins with the word execute and can be followed by

an item declaration, which is only active for the execute command, and a formula.

execute-command

Examples:

SYNTAX

.. - <name. I nothing> ~ where ~ definition !J. execute ~ item­

declaration ~ formula

lOB. where 'z' execute ~ P. integer/4 (P**2P)-4P/P

lOCo where 'A**' '+' 'B' execute item C. integer/7

item D. integer/16

C/D d~ (D+l.4)

An execute command operates at compile time and must result in a single

value.

86

T

1

I
,
"

[

I:

I

II

(!

I

II
(

',I,

(

I

7. EXTENDED SPL

An extension to SPL is described heJ:'e--for Mission DevE.:lopment Programming

and for Support Programming. The defined SPL extension does and any other

SPL extension should have as their base "basic SPL". Discussions in this

section will assume the existence of basic SPL.

7.1 COMPLEX VALUES

The extended SPL programs may manipulate complex values (i.e., imaginary

numeric values). Imaginary constants denote numeric values in the

conventional decimal sense.

SYNTAX

numeric-constant ::= imaginary-constant I number I real-constant r binary­

constant I octal-constant decimal-constant I
hexadecimal-constant

imaginary-constant . '= <number I real-constant> i

,t<.xamples:

2.i

88i

Integer numbers and real and imaginary constants denote numeric values in the

conventional~ decimal sense.

In extended SP1, a complex item, i.e., one having imaginary parts, may be declared.

The description of a complex item applies to both the real,and imaginary parts.

87

SYNTAX

complex-item-description ::= complex 6. number l 6. minimum 6. <bit I digit I
nothing> 6. <nothing I -> number2 f f . 1 o - ract10na -

r <bit I digit> 6. <nothing I float I or-exponen.., -- ---

7.2 CODE DECLARATIONS

fixed> 6. <nothing

round I truncate>

signed unsigned> 6. <nothingj

A code declaration serves to name and define a coded alphabet. To each character

in a declared alphabet corresponds a machine-language code, denoted in the

declaration (according to the rules of the assignment statement) by a number or

by a textual constant from another alphabet, or deduced by the mechanism of

Note b, following. The code string in the declaration establishes these

correspondences. In a code declaration, the code name identifies the alphabet

being declared. The code size is indicated in number of bits, digits, or

characters per character. The right or left descriptor indicates whether shorter

character strings are to be right or left justified in relation to longer

strings.* This indication may be omitted if the character strings used are

such that justification is never required.

SYNTAX

code-declaration ::= ~ ~ name f d ~ code-description o -co e

code-description' ,= <nothing I code-string> ~ number ~.<bit I digit I character>

~ <nothing I left I right>

* Binary, octal, decimal, and hexadecimal texts are right-justified;

'alphanumeric texts are left-justified.

88

~

C

[

: 1

I J

.1

II

'T

I.J..

'1"

1.,1,

rT

11

I
fI I. J

~I
"
"",I

II

I
I
l
~I I ..

~I
11'

I-

I'!I

[:

I
I

(:"

I
[

(

(

[

[

[

(

[

[

[

[

[

I

I

code-string -'textual-constant ~ <nothing I i! code> ~ <nothing I
code-string>

code

Notes:

a.

b.

c.

d.

e.

number , textual-constant

Each textual constant in a code string that is not serving as a code is

understood to contain only one character of the alphabet being declared.

The different characters must be uniquely represented.

A code may be omitted if the "natural successor" to the previous code

is meant, or if zero is meant when there is no previous code. (The

natural successor to a textual constant may be derived by replacing

its last character with the next character in the collating sequence of

the alphabet from which the textual constant is constructed; or, if the

constant's last character is also the last character of the alphabet, by

replacing it with the first character in the alphabet and then replacing

the constant's next-to-last character, and so on.

It is not necessary for each code in a code string to be different;

many-to-one codings are often quite useful.

It is not necessary for the codes in a code string to be in numeric

order. Indeed, the collating sequence for a declared alphabet is

determined, not by the numeric encoding, but by the sequence of

characters as given in the code string, with the first character

used as the filler character when justification is required.

If the code string contains no codes that are textual constants,

then either the bit descriptor or the digit descriptor is appropriate

89

for specifying the units of code size. If the code string does contain

a code that is a textual constant, the character descriptor ~Jst be

used in specifying the units of tode size. Textual constants from more

than one alphabet may not be used as codes ina code string.

f. It sometimes cannot be determined from the code declaration alone

if a space or a conma is intended as a character separator.

However, this ambiguity can easily be -r:esolved by looking at a

multi-character textual constant in that alphabet.

g. The code string may be omitted from a. code description for those

. alphabets where textual constants are never used in denoting the

value of textual items with that code.

Examples:

code -L. 'A' 'B' 'e' 'D' 'E' 'F' 'G' 'H' 'I'
'J' 'L' 'M' 'N' '0' 'p' 'Q' 'R' 's'

'u' 'V' 'W' 'X' 'y' 'g' 5 bit .!tl.t

90

'J'

'T'

[

(-- 1
~- 1

II
T
I~

[1

I
J:
I:

I
I
I

[

--1
C~

I

I
1-

(,

I~ -

I

I'
I

(

[

I
(

I
I
I

I

.£.QSk GREEK. is L' / I ALPHA , is L'A' / 'BETA'

is L'B' / 'GAMMA' is L'G' / 'DELTA'

is L'D' / 'EPSILON' is LIE' / '~TA'

is L'l' / 'ETA' is L'EY' / 'THETA ' is

L'TH' / 'IOTA' is L'I' / 'KAPPA' is

L'K' / 'LAMBDA' is L'L' / 'MO' is

LIM' / 'NU' is L'N' / 'XI' is L'X' /

'OMICRON' is L'O' / 'PI' is L'p' /

'RHO' is L'-RH' / 'SIGMA' is L'S' /

'TAU' is L'T' / 'UPSILON' is L'U' /

'PHI' is L'PH' / 'CHI' is L'CH' /

'PSI' is L'PS' / 'OMEGA ' is L'OH'

2 character left

code DIRECTION. 'NORTH I 'SOUTH' 'EAST' 'WEST' 2 bit

code COIN.

code WORD.

'PENNY' is 1, 'NICKEL' is 5, 'DIME' is 10, 'QUARTER' is

25, 'HALF' is 50, 'DOLLAR' is 100, 3 digit

36 bit

91

7.3 LIST DECLARATIONS

Lists are collections of similar data elements--items, arrays, or groups--that

are linked together in memory by pointer items. A list may have several pointer

items linking its elements together in several separate sequences. Several

different but similarly described lists may be declared at once.

SYNTAX

list-declaration ::= list 6 name-string 6 list-description

list-description "= full-list~description

full~list-description ::= <item-description I array-description I group­

description> ~ name-string

Examples:

list AFTER. array PLACE. real 3

list Q. integer M.

list LAST.

The name' string in the list description serves to declare the pointer items

that link the list elements together.

Abbreviated descriptions are possible for lists, according to the declared mode

declaration.

7.4 LIST PROCESSING STATEMENTS

The list processing statements in extended SPL provide a rudimentary but basically

adequate capability for list processing. List processing statements are

available for referencing, linking, and freeing elements of lists.

92

[

(-
II

~-- II
I :

I
I
I
I
J

I
I

I
1--

(

l

I

I

I
(

I
I
I'
I
I

I

SYNTAX

list-processing-statement ::= reference-statement I link-statement I
free-statement

1.4.1 Rererence Statements
• n d ·d t· " A reference statement places an ele~ent of a llstun er conSl era lon, so

that is--and its components and associated pointers--may be subsequently

designated ~<J:~.thout being exnlIcitiy located.

SYNTAX

reference-statement ::= ~ 61ist-element-reference

list-element-reference .. - nameof-list 6 <nothing I ~6 pointer-formula>

NOTE: a.

b.

A list element may be located anywhere, as specified by an arbitrary

(scalar) pointer formula (see Section 8.2.4 on located variables).

However, a list element that has been automatically linked into a

list, by a link statement, nay be reliably referenced, after the

execution of another link statement, not necessarily for the same

list or in the same process, only by one of the list's pointers,

since such list elements are subject to automatic reallocation of

storage and concomittant adjustment of linkages by a built-in

routine, usually called a "garbage collector", which may be

automatically called during th~ execution of a link statement.

Where a pointer formula is omitted in a list-element reference ,
the element currently under consideration is assumed.

93

Examples:

see LETTER I

see WORD at NEXT-WORD -- --
see SYMBOL at cell sub Q

see SYMBOL at null ---

Although several lists may each have an element under consideration at once,

no more than one element in any single list can be considered at any given

time--regardless of how many processes are active--and unless a pointer value

locating another list element is explicitly specified, defined references to

data in a list element including points, pertain to the element currerltly

under consideration.

A new element in a list may be considered by another execution of a reference

statement. By giving the name of a list and the name of a pointer, for example,

the programmer may place under consideration with a reference statement either

the first or the next element in the list according to that pOinter,* depending

on whether or not an element in that list was previously under consideration.

(When no element is under consideration for a list, its pointers each designate

the location of the first element, if any, (or the null pointer value if none),

in the corresponding element sequences they link.)

A list element can be removed from consideration by the execution of a reference

statement where~n the pointer formula specifies the null pointer value.

* Note that a list element may have several pointers associated with it, so
that it may have as many (or fewer) successors.

I' [

1
1
I
'I
I
'1'

~l,

:1
~,

1

1

:1
' -

I

J
1

C
J

I.

I,
\

I
[

I
(

I
I.

(

I
I
I
I
I

I

For lists with only one pointer, the pointer formula may be omitted from a

reference statement, with the name of the lone pointer being assumed. With

the list, LETTER. 1 character text NEXT.ELEMENT. list, for example, ~

LETTER = see LETTER at NEXT. ELEMENT.

7.4.2 Link Statements

A link statement serves to allocate storage for a new list element, and

to link it into the list aR a successor to other elements in the list. A

link statement may also serve to dynamically allocate storage for an item,

an array, or a group.

SYNTAX

link-statement : := link 6 <linkage-set I name >
of-item-array-or-group

linkage-set ::= linkage D <nothing I linkage-set>

linkage ::= <nothing I pointer-set 6 from> 61ist-element-reference

pointer-set ::= name f. 6 <nothing I pointer-set> o ":'polnter

Notes: a. A linkage set will ordinarily reference only one list, but

may reference several identically-declared lists to permit

inter-list linkages.

b.

c.

The pointers in a pointer set must all belong to the list

named in the list-element reference in the linkage. Moreover,

a pointer should' not be named in a pointer set more than once.

A pointer need not be named in a linkage for a list with only

one pointer.

95

Examples:

link LETTER

link NEXT.ELEMENT from LETTER

link NEXT.ELEMENT from LETTER at NEXT.ELEMENT

link PREVIOUS. WORD from WORD at NEXT.WORD, NEXT.WORD from WORD

A link statement containing a linkage set allocates storage for a single list

element and its pointers,* and links that element into the list~ as indicated

by the set of linkages. Each linkage references a single list element as

predecessor for the new element and, by naming the, pointers, indicates the

sequences in which the new element is to be the successor of the referenced

element. Several linkages in a link statement should specify several pre­

decessors for the new element; the actual linking, though,is done in the order

in which the linkages are written.

For each linkage, a link statement will assign the named pointers in the new

element the values of those same pointers in the predecessor element, and

then assign the named pointers in the predecessor element the pointer value

of the new element. Consequently, the named pointers in the predecessor

element will point to the new element, and the named pointers in the new

element will point to the predecessor element's previous successors (for those

pointers).

The mechanics of establishing a linkage are perhaps best explained with an

illustrated example. Consider the following list, ELEMENT. begin

P2.P3. p4. PS. list, where the element at cell X is shown below:

Predecessor
list element
at cell.X

end Pl.

'~When necessary, a link statement may automatically invoke "garbage collection."

96

[,
I i
, 1

I

I '1:
'i

1
I
I
I
I
I

[

-[

f
~'

I
[

(

I:

[

I

I

I
[

I

I

Till .. I:iltualJon after the execution of the link statement link PI, P2, P3 from

ELEMENT at CELL.X, is shown next:

Predecessor
list element
at cell.X

New list
element at
cell.Y

The example shows that pointers not named in a link statement are assigned the

null pointer value. Of equal importance though, is the fact that none of the

components of a newly allocated and linked list element have defined values

until these values are later assigned.

As in the reference statement, if no pointer-formula is given in a list-element

reference in a linkage, the element currently under consideration is assumed.

And if no element is currently under consideration for the list, then the

newly linked element becomes the first element in the list--at least for

the named pointers.

The execution of a link statement does not affect which list element (if any)

is currently being considered.

The link statement may be applied to other data elements besides lists, i.e.,

items, groups, and arrays. When this is done, the data element is considered

as a pointerless, zero- or one-element list, and linking accomplishes the

dynamic allocation of storage for that element. Where storage is already

allocated, however, a link statement has no effect.

97

7.4.3 Free Statements

A free statement serves to unlink one or more elements from one or more sequences

. in a list, perhaps deleting some elements from the list entirely, thus freeing

their storage for later reallocation. A free statement may also serve to dynamictll1v

free storage for an item, an array, or a group.

SYNTAX

free-statement : : = free Do <linkage~set I name . >
of-1tem-array-or-group

Examples:

free LETTER

free NEXT. ELEMENT from LETTER

free NEXT. ELEMENT from LETTER ~ NEXT. ELEMENT

~ NEXT.WORD from WORD, PREVIOUS.WORD from WORD i!.!. NEXT.WORD

A free statement may contain a linkage set, indicating which of the list's

linkages are to be unlinked. Each linkage in such a f~ee statement contains

a reference to a single list elem~nt, which is the predecessor to the one or

more successor elements that are to be freed (unlinked) from the predecessor

element. These successor elements are specified by the values in the

predecessor element of the pointers named in the linkage's pointer set.

Unlinking occurs as follows. Each successor element is specified by a pointer

in the predecessor element. The value of that same pointer in the successor

element is assigned as the pointer's value in the predecessor element, and the

pointer in the successor element is assigned the null pointer value. This is

done for each successor element in the linka~e, and then for each linkage in

the free statement, in the order written. T~e result is that the named

pointers in the referenced predecessor elements now point to the successors

of the successor elements they previously specified. Again, an illustrated

example is probably helpful. Consider then the next situation.

98

[

I

[

[

I
I

:]

J
]

'l]

J

~
~

C_

(

I
r

(

,I'
, ,

I
I
(

I
I
(

IJ

I

Predecessor
list element
at cell.X

Successor
list element
at cell.Y

Successor
list element
at cell.E

PI P2

PI P2

P3 P4 P5

P3 p4 P5

The situation after the execution of the free statement, free P2, P3, P5 from

ELEMENT at CELL.X, is shown next.

Predecessor
list element
at cell.X

List element
at cell.Y

I List element
at cell.E

PI P2

PI P2

P3 P4 P5

P3 P4 P5

blil

99

As in the reference and link statements, if no pointer-formula is given in a

list-element reference in a linkage, the element currently under consideration

for the list is assumed. And if no element is currently under consideration

for the list, then the unlinked elements are the first in their respective

sequences.

The execution of a free statement does not affect which list element (if any)

is currently being considered.

The free statement may be applied to other data elements besides lists, i.e.,

items, groups, and arrays. When this is done, the data element is considered

as a pointerless, zero- or one-element list, and freeing accomplishes the

dynamic freeing of storage for that element. Where no storage is allocated,

however, the free statement has no effect.

7.5 ENCODING AND DECODING

Encoding and decoding are conversion operations ordinarily used in extended SPL

in conjunction with reading and writing externally formatted record. Nevertheless,

these operations are useful for converting other texts besides records, and even

for conversions where neither operand is textual.

The encode and decode statements both have the same three parts: a (nominally)

textual operand; a (nominally) nontextual operand; and a format, composed of

conversion procedure calls that may be grouped by parentheses and unconditionally,

'conditionally and repetitively catenated.

100

[

(- 1:
i
~-1

I
:1I

I
:1

1
J

-..,.

...I

]

J

J

J
r
I
Id

c

I

I '--

I
(-

I

I
I:

(

[

I
I
I]

I

SYNTAX

encode-decode-statement ::= <encode I decode> D. variable 6 = D. formula 6 E.Y D.

format

format ~:= conversion-procedure-call I (6 format D.) I catenated-format I
repeated-format I conditional-format

conversion-procedure-call ::= name D. <nothing I actual-parameter I of-procedure
(I::. actual-parameter-string D.) >

catenated-format ::= format D. <nothing I catenation-operator> 6 format

repeated-format ::= format D. <nothing I catenation-operator> I::. (I::. repetition­

clause 6)

conditional-format ::= closed-conditional-format I open-conditional-format

closed-conditional-format ::= if 6 condition I::. thenD. format
l

I::. else I::. format
2

open-conditional-format ::= if I::. condition I::. then I::. <format
3

I open-conditional­

format I D. else D. format 4>

Notes: a. The discussion of encode and decode statements is based on the

assumption that the variable in an encode statement and the

formula in a decode statement are both textual in type. This

need not generally be so, and the syntactically indicated

extension to more general operands should be obvious.

b. Format3 may be any format. Format l , format 2 , and format 4 may

be of any format but an open conditional format.

The encode statement converts the value specified by a (nominally) nontextual

formula, assigning the results as the value designated by a (nominally textual)

variable. The encode statement works by invoking, in turn, each individual

conversion procedure from the format, first automatically providing it with its

major, actual parameters. (Any minor parameters must be supplied in the

conversion procedure call.)

101

A conversion procedure in an encode statement may have several, minor argument

parameters, but it has two major result parameters--an expression parameter,

which is the (nominally textual) variable itself, and another expression

parameter, which is an index variable designating the origin within this

variable that is to receive the results of the conversion--and it mayor

may not have a major argument parameter.* If it does, it will be either a

value or an expression parameter specifying some part of the formula's value,

to be converted.

The segmentation of the formula's value into a sequence of actual major argument

parameters for the format-specified sequence of conversion-procedure invocations,

is done according to the rules given on repeated statements.

That is, where C is the formal major argument parameter of the conversion

procedure being invoked, and A is the remaining, unconverted part of the formula,

of dimension equal to or greater than C, the part of A that is to be the actual

parameter corresponding to C is: A sub «if (*) C size.8!. 1 then «1 (C size

size times» to C size», 1).

Where a catenation operator is encountered in an encode format, the effect is

to pad the variable, where necessary, with the appropriate filler character,

and to increment by one the corresponding dLaension of the actual index

parameter (which gives the origin within the variable for the results of the

next conversion) and to reset its lower dimensions to one. Where, for example,

*A conversion procedure in an encode statement that merely inserts punctuation
or control characters into the variable, may not require a major argument
parameter.

102

/
I

~-

fI
1

I

;1'.
, -

1

'1
I,

I
1
~

~

1
J

~

I
r'

(

(

I
I
I
(

(

(

(

I

I

the variable is a three-dimension textual operand (whose dim~nsions correspond

to (1) characters in a line, (2) lines in a page, and (3) pages in a report),

then the row catenation operator has the effect 6f inserting a single

filler character in the variable and incremeuting the character dimension of

the index parameter by one; the II catenation operator has the effect of padding

the remainder of the line with filler characters, incrementing the line

dimension of the index parameter by one and resetting the character dimension

to one; and the III catenation operator has the effect of padding the remainder

of the page with filler characters, incrementing the page dimension of the

index parameter by one, and resetting both the character and the line dimension

to one.

In summary, then, an encode statement invokes each individual conversion proce­

dure in turn from the format, and where the conversion procedure has a major

argument parameter, supplies it with the next unconverted portion of the value

specified by the formula, and then inserts the converted results into the

variable at the indicated origin.

The decode statement, on the other hand, also invokes each individual conversion

procedure in turn from the format. But here, the implicit index parameter

applies not to the variable, but to the formula.

A decode statement, then,converts the value specified by a (nominally textual

formula), assigning the results as the value designated by a (nominally non­

textual) variable. The decode statement invokes each individual conversion

procedure in turn from the format, first automatically providing it with its

major, actual parameters. (Any minor parameters must be supplied in the

conversion procedure call.)

103

A conversion procedure in a decode statement may have several, minor argument

parameters, but it has just one major argument parameter--an expression

parameter--which is the (nominally textual) formula itself. A decode conversion

procedure also has at least one major result parameter--an expression parameter-­

which is an index variable designating the origin within the formula of the

data that is to be converted, 'and it mayor may not have another major result

parameter ... ·(If it does, it will be €ither a value or an expression parameter

designating some part of the variable that is to receive the converted resurts.

The segmentation of the vari'able into a sequence of actual major result

parameters for the format-specified sequence of conversion-procedure invocations,

is done according to the segmentation rule already described for the encode

statement (and for the repeated statement).

In summary, a decode statement invokes each individual conversion procedure in

turn from the format, and automatically supplies it with its major actual

parameters: (1) as an argument, the formula given in the decode statement

itself; (2) as a result, an implicit index variable designating the origin in

the formula of the data to be converted; and in most cases (3) as another

result, the next part of the variable given in the decode statement that is

to receive the results of the conversion.

The format in an encode and decode statement gives a sequence of conversion­

procedure calls. These may be grouped by parentheses and unconditionally,

repetitively, and conditionally catenated.

,'(A decode conversion procedure that merely interprets punctuation or control
characters in the formula, may not require another major result parameter.

104

II

I

I

.u;,-

[

I

[

(

r
~

I
(
(
[
(
I'
(

I
(
(

(

I
I
I

~
I ~

I

So far as the conversion procedures themselves are concerned, SPL allows for a

complete set of "built-in" encode and decode procedures for converting 'between,

on the one hand, alphanumeric texts representing numeric t textual, pointer,

and Boolean constants, and nonscalar formulas containing only these constants,

and on the other hand, the internal representations of these as data values.

The programmer may, of course, declare other conversion procedures in addition

to those built-in. An encode conversion procedure has at least two formal

parameters: an expression result parameter 'Nhose corresponding actual parameter

is the variable given in the encode statement; and an expression result parameter

whose corresponding actual parameter is the implicit index variable generated

by the encode statement. Most encode conversion procedures also have at least

a third formal parameter: an expression or value argument parameter whose

corresponding actual parameter, automatically supplied by the encode statement,

is (or specifies) some portion of the value that is specified by the formula

given in the encode statement. These are the major parameters of an encode

conversion procedure.

A decode conversion procedure also has at least two formal parameters: an

expression argument parameter whose corresponding actual parameter is the

formula given in the decode statement; and an e~pression result parameter whose

corresponding actual parameter is the implicit index variable generated by the

decode statement. Most decode conversion procedures also have at least a third

formal parameter: an expression or value result parameter whose corresponding

actual parameter, automatically supplied by the decode statement, is (or

designates) some portion of the variable given in the decode statement. These

are the major parameters of a decode conversion procedure.

105

Conversion procedures may also be declared with additional, so-called minor

parameters: argument or result parameters; value, expression or name

parameters. Any minor parameters must precede the major parameters in the formal

parameter string, however.

When a conversion procedure is invoked by an encode or decode statement, the

actual, major parameters are omitted from the conversion procedure call, since

these are supplied automatically by the encode or decode statement. Any actual

minor parameters must, however, be supplied.

A conversion procedure may also be invoked, however, outside an encode or

decode statement, by a procedure call statement. And in this case, all actual

parameters, both major and minor, must be explicitly supplied. Conversion

procedures may, of course, invoke other conversion procedures, either directly,

or by encode and decode statements. The only· restriction on the computation

done by a conversion procedure is that it must update the implicit index

variable generated by the encode or decode statement so that, on completion,

it designates the origin for the next conversion.

7.6 ALGEBRAIC FORMULA MANIPULATION

In SPL, algebraic variables may be declared, and algebraic formulas may be

symbolically manipulated, and where they are equivalent to defined numeric

formulas, evaluated. An algebraic variable or formula is represented as a

tree-like list of elements, any of which may be an algebraic variable or

formula or an alphanumeric text, representing an algebraic operator, a

numeric constant, or an atomic operand. Actually, all algebraic variables

and formulas declared and specified in a program are represented in a single

list. Where AFl, AF2, ••. , AFn are the declared algebraic variables, this

list might be declared as follows:

106

1

(-- 1
I

~~

1
]

J
~
(1
Ij

(

I

11

I

(

(

I'
(

(,

I
I
I

I

ALGEBRAIC. FORMULA. LIST.

begin

L. integer

ATOM. L character text

OPe L character text

store ATOM/OP

ATOMIC. Boolean

end

T.AFI. T.AF2. T.AFn.

N.AFI. N.AF2. N.AFn.

list

In the above algebraic formula list, N.AFi points to the next element of AFi.

If the current element of AFi is an alphanumeric text, then L ~ 0 and T.AFi

~ null, and the Boolean item ATOMIC indicates whether the text represent an

atomic operand, or an algebraic operator or numeric constant. On the other

hand, if the current element of AFi is an algebraic variable or formula, then

L ~ 0, and T.AFi points to this element of T.AFi. Any given implementation

of this algebraic formula manipulation capability may include additional

pointers and items to simplify processing. i~ The programmer who wants to

construct his own, special-purpose manipulation procedures, however, may

reference those given above.

107

An alphanumeric text as an element of an algebraic f:>rmulR may represent:

a defined numeric formula specifying a numeric valuf.; an undefined numeric

formula--actually, any sign-string; a numeric constant; or an algebraic

operator. In this context, a defined numeric formul.a is one whose operands

are all either numeric constants, declared numeric items or arrays, or

numeric-valued functions. Whether defined or undefined, though,the algebraic

formula manipulation operations in SPL treat numeric-formula text as atomic

operands; that is, the operations do not apply to the components of the

numeric formulas. A numeric formula may be represented as an algebraic

formula where it is desired to manipulate it algebraically.

Algebraic variables and arrays of algebraic variables may be declared (though

only scalar algebraic formulas are manipulated), and algebraic formulas may

be assigned to algebraic variables. In addition, a variety of built-in

functions take algebraic arguments and pro4uce numeric, textual, and Boolean

as well as algebraic results. Algebraic functions and procedures may also

be declared by the programmer, wherein the formal parameters corresponding

to actual algebraic parameters are formal name parameters.**

*In particular, pointers for an algebraic "accumulator" may be included.

**rhis is already adequately accommodated by the subroutine capability
described in Section 9, so no more need be said about it here.

lU8

1
1

I
I

1

I
I
I

rJ
i:J

I
I:

(,:
\

('

(~

(

I
I'
I
I
(

I)

I

SYNTAX

algebraic-declaration ::= name-string 6 algebraic 6 <nothing I dimension-string

6 array>

algebraic-variable

algebraic-formula

::= name fIb' . bi D <nothing I sub I o -a ge ralc-varla e

6 index-string>

::= numeric-constant I algebraic-variable I atomic-operand I
(~ algebraic-forrrula~) I <- I + > 6 algebraic-formula

algebraic-formula ~ <- I + I * I I I ** I rem>

~ algebraic-formula I<abs I floor I ceiling I exp I log.e

1£&.2 I 1£&.10 I sin I ~ I ~ I arctan I cosh I $inh I

tanh> 6 algebraic-formula I<min I max > D (6 algebraic­

formula-string 6)

algebraic-formula-string ::= algebraic-formula D <nothing 1 algebraic-formula>

atomic-operand-string ::= atomic-operand D <nothing atomic-operand-string>

atomic-operand ::= 'numeric-formula' I 'sign-string' textual-formula

algebraic-assignment-statement ::= <nothing I let> 6 algebraic-variable

6 = 6 <algebraic-formula

function . >
of-algebralc-type

algebraic-operator ::= (./) I + ··1 - I * ** I / I abs I floor I
ceiling I ~ I exp I log.e I 1£&.2 I 1£&.10 I sin

~ I tan I arctan I cosh I tanh I sinh I min I max

109

,

Notes:

a. The index string in a subscripted algebraic variable must specify

a scalar algebraic variable.

b. A numeric-formula text as an atomic operand in an algebraic

formula should probably--but not necessarily--specify a scalar

value, since algebraic formula manipulations are done as if on

scalar values, and in some cases these manipulations are not

mathematically valid for nonscalar operands.

c. A numeric-formula text as an atomic operand in an algebraic

formula should contain no textual constants--eitheras numeric

operands or as argumertts to numeric functions.

d. A sign string (nominally representing an undefined numeric formula)

as an atomic operand in an algebraic formula, must not contain the

I sign.

e. Numeric constants and algebraic operators, though represented as

alphanumeric texts in the algebraic formula list, are'not written

in an algebraic formula as textual constants.

f. The statement prefix let is a "noise" word and may be omitted, though

it improves readability in certain contexts.

, g. Algebraic functions are not permissible elements of algebraic formulas,

contrary to what might be expected, since they involve algebraic

manipulations.

110

1
J

J
J

J

J

(

(

(

(

(

(

(

I
I

I

Examples:

array N A. B. C. algebraic

D. algebraic

let D = A sub I - (D-.'d(2 + B sub Ilc sub I)

let A sub I = 'ALPHA sub I' * 'THIS OPERAND SHOULD FACTOR OUT'

let C sub 8 expand D

e sub K = 27

An algebraic declaration serves to declare one or more algebraic variables.

In addition, each algebraic variable is given an initial, atomic value: an

undefined text typographically identical to the algebraic variable used to

designate the value. Thus, D has the initial value 'D', e sub 1 has the

initial value 'e sub l' and so on.

The algebraic operators are quite analogous to the arithmetic operators

and numeric func~ions they typographically resemble. Nevertheless, they

do not automatically invoke numeric operations--or algebraic operations

for that matter--since they are basically just textual symbols in a

symbolic formula.

The algebraic assignment statement operates in a straightforward way, as

if by linking the elements of the algebraic formula toge·ther in some

algebraic accumulator, freeing the elements of the algebraic variable, and

then linking to it the elements in the algebraic accummulator, or by first

doing the manipulations specified by the algebraic function, and then using

the results as an algebraic formula for assignment.

III

7 .6.1. The Evaluation Function

The evaluate function takes an algebraic formula as argument--one containing

no undefined atomic elements--and converts it to a numeric value by first

evaluating the atomic elements and then evalllating the resulting formula by

considering the algebraic operators as arithmetic operators and numeric

functions.

SYNTAX

function . ::= eval 6 algebraic-formula
of-numer~c-type

Examples:

eval D

eval (A sub I - (D*,;~2+B sub llc sub I))

The result of evaluating an algebraic formula with undefined atomic elements

is undefined. The result of evaluating an algebraic formula with defined but

nonscalar atomic elements is, in general, nonscalar.

7.6.2 The Represent Function

The represent function takes an algebraic formula as argument and converts it

to an alphanumeric textual value--an equivalent algebraic formula containing

no non-atomic operands (i.e., no algebraic variables).

SYNTAX

function .. = rep 6, algebraic-formula
of-textual-type

Examples:

* rep D = (initially) 'D'

rep (A sub I - (D ** 2 + 'Q' * B sub I))

*Before any assignments to D.

112

I
(
~ 1:

I

~- 1
I
1
1
l'

I
I

~/.

I
1
1

[I

li o

r
(

(

I
('

(

I
('

('

I
',---

(

I
(\

(

I
,I
Ir I ~/

I

7.6.3 The Defined Function

The defined function takes an algebraic formula as argument and produces a

sc.;:tlar Boolean value as result: true if the algebraic formula contains no

undefined atomic elements; false if it does.

SYNTAX

function 00= algebraic-formula 6 defined of-Boolean-type

Examples:

'Q' defined

D defined

(A sub I -(D * 2 + 'Q' * B sub I» defined

7.6.4 The Identity Function

The identity function takes a pair of algebraic formulas as arguments and

produces a scalar Boolean value as result: true if the two formulas are

found to be identical or mathematically equivalent; false otherwise.*

functionof_Boolean_type ::= algebraic-formula 6 ident h. algebraic-formula

Examples:

D ident 27

C sub 1 ident (D "i'('k 2 + 'Q' "k D)

"i'(This, of course, is not a sure test, since only the more conunon equivalences
are employed. Another good procedure here is to evaluate the two formulas
for a range of values and compare the results.

113

7.6.5 The Approximate Function

The approximate function takes as its atguments a pair of algebraic formulas

and a scalar numeric formula specifying a tolerance value, and produces a scalar

Boolean value as result: true if ,the two formulas are found to be approximately

identical or mathematically equivalent; fal~ otherwise.

SYNTAX

function .. - algebraic- formula /:), anprox 'l\ «numeric-formula I of-Boolean-type ~

algebraic-formula»

Examples:

D approx (1~-4) 'Q')

(27*'Q') approx (28, 'Q') - ~

The approximate comparison is performed in almost exactly the same way as'

the identity comparison, and using the same equivalences, except that two

algebraic formulas are apnroximate if matching terms in each have constant

coefficients that do not differ by an amount whose absolute value is greater

than the absolute value of the tolerance value.

7.6.6 The Reduce Function

The reduce function takes as its arguments an algebraic formula and a binary

textual formula, specifying a 22-bit binary text with a special meaning: each

bit of the text corresponds to an algebraic operator, and a zero bit means the

corresponding algebraic operation is to be reduced while a one bit means the

corresponding algebraic operation is not to be reduced. The reduce function

produces a "simplified" algebraic formula. However, only the indicated algebraic

operations are employed in arriving at this simplified result the others

are "not reduced."

114

1
I
I
1
~l

1
1

(

~

]

]

J

J

~

~
n

C
III

~
~

(

I
I'
(

I
I'
(

I
I
I

I:

function .~
oI-algebraic-type

Examples:

reduce (D, null)

SYNTAX

reduce c., (algebraic-formula D. textual formula)

redu~ CD -Id~ 2 + 'Q' ~'. D, bit '1000100110110110111110')

The reduce function operates as' follows:

a.

b.

c.

7.6.7

all defined atomic operands are evaluated.

where their operands have been numerically evaluated,

all indicated algebraic operations (except those

specified as not to be reduced) are numerically performed.

like terms and factors are combined. '

The Expand Function

The expand function takes an algebraic formula as argument and removes the

parentheses from it by applying the distributive law and/or the multinomial

theorem, thus producing as a result, an "expanded" algebraic formula.

SYNTAX

function .
of-algebra~c type

- expand 6 algebraic-formula

Examples:

expand D

expand (B sub I * 'if T then 0 else Q')

115

7.6.8 The Coefficient Function

The coefficient function takes a pair of algebraic formulas as its arguments,

and the result is an algebr~ic formula that is the coefficient of the second

argument as it appears within the first argument.

SYNTAX

function .
of-algebra~c-type

. -= algebraic-formula
l

6 coeff 6 algebraic-formul?2

Examples:

D coeff 'Q'

('Q' "k 'X I -:d~ 2 + 'p I 'i'c I X' -!d(3) £2.e f f (' X' 'ib'(2) _ (I Q' + I p' 'i'c ' X ')

Where the second argument is not an element of the first, the result of the

coefficient function is, of course, zero.

7.6.9 The Differentiation Function

The differentiation function takes the (full or partial) derivative of an

algebraic formula with respect to one or more other algebraic formulas. The

result is an algebraic formula.

To permit differentiation where functional relationships among atomic operands

are not explicitly given (at least in terms of the operations and functions

allowed in an algebraic formula), implicit dependence relationships among
,

atomic operands may be given as an adjunct to the differentiation function.

116

1
J
J

J
J
]
, ,

1

[

(

[

I:
I:

(

I
(

(

[

[

I
I

I

SYNTM·

function .. ::= algebraic-formula 6 deriy 6 <algebraic-formula
of-algebra~c-type

I (algebraic-formula-string» <nothing

(where 6 dependencies»

d·ependencies ::= atomic-operand 6 is 6 i (6 atornic-operand-string 6.)

& <nothing I dependencies>

Examples:

D deriv 'Q'

D deriv (ry sub 1', 'y sub 2', 'y sub 3')

(where 'x' is i ('y sub 1', 'y sub 3')

The differentiation function works as follows: the derivative of the algebraic

formula preceeding deriv is first taken with respect to the first algebraic

formula following deriv, then the derivative of the resulting formula is taken

with respect to the second algebraic formula following deriv (if any), and

so on. Where dependencies among atomic operands are specified for a differentiation,

the atomic operand preceeding is depends on (is some unspecified function of)

the atomic operand or operands within the i (and) brackets.

Certain of the algebraic operators are not differentiable, and thus care

should be exercised in differentiating an algebraic formula containing them.

117·

7.7 INTERACTIVE PROGRAMMING

Interactive, on-line programming is possible in extended SPL with an interpreter

incremental (line-at-a-time) compiler running. on a time shared computer. The

commands used to control the on-line compilation and execution of a program

are also useful in controlling program compilation and execution off-line, and

the results are completely similar, except for the lack of quick interaction.

Each statement, declaration, and command input or entered is immediately checked

by the compiler for formal errors and, to some limited extent, for logical

errors. Diagnostics or warnings are: automatically incorporated in the program

listing immediately after the line causing them (but without a line number).

These should emphasize intelligibility, yet be reasonably brief. Should a

novice programmer, on-line, require further explanation, he may be able to re­

trieve a tutorial text, cataloged under some appropriately descriptive title.

The system's diagnostic, warning, and advisory messages are printed without

line numbers.

To facilitate the writing in extended SPL of programs intended to communicate

interactively with an on-line teleterminal, extended SPL includes a pair

of built-in-procedures--accept and display--which perform the necessary

read-decode, encode-write operations on an implementation defined file

employing the appropriate device: the user's own terminal in a multi-access

system, the operator's terminal otherwise. The calls for these procedures

have the following syntax.

SYNTAX

procedure-calI-statement •• - <nothing call> 6. <accept 6, variable

display 6 formula>

118

[

(1
I

"'-1

I
or

[

I
I
I
I

kt-

I

[

I

(

I'
I~

I~

(

(

(

(

I
I

I

Examples:

accept I

accept (J, A sub I II B)

display ('PI = ' II 4*arctan 1)

At the terminal, the effect of the three procedure call statements above would

be to print:

set I =
set (J, A sub I II B)

PI = 3.1415927 .••

After each of the first two printouts, the user or operator would be expected

t,o enter an appropriate SPL formula--containing only constant operands, though-­

which the accept procedure would read, decode, and assign to the designated

variable.

Insofar as possible, the message produced by the display procedure will be

tabular. But where the size andlor dimension of the value specified by the

formula preclude this, the displayed message will utilize the linear notation

of SPL formulas.

7.8 COMMANDS

7.8.1 Edit Camm'ands

Programs are written to be executed but, unfortunately, modification or editing

is a far more common operation. Programs are considered to be input or entered

a line at a time. Each line of program text--whether it contains a statement,

a declaration, a command, or a comment--is automatically given a serial line

number, for editing purposes, by the compiler. The editing command permits

lines to be inserted, deleted, replaced, and renumbered.

119

SYNTAX

edit-conunand ::= edit 6 lines 6. <nothing' 2!:!1 I ~ 6. character-string

lines .. = <all I line-number I !2. 6. line-number I line-number £\ to

Ii line number> A <nothing I lines>

line-number number <nothing f line-number>

Examples:

edit all

edit all out

edit 38 to 38.19 is begin ... end

edit 17.1 out

edit to 74.6.9

Lillt>~) input or entered are automatically given serial numbers by the compiler:

1, 2, 3, 4, 5, 6, etc. Line numbers 'are automatically printed at the beginning

o[Cd.C~l lil~c, effectively) as part of the line-feedl carriage-return action.

AS:iume 100 lines of text have been entered; these would be numbered

1.

2.

3.

99.

100.

in the left margin. To insert new lines between 57 and 58, say, the edit command.

101. edit 57.1 is •••

would be used. The remainder of the edit command on line 101 would logically

become line 57.1) and the automatic line ntnnbering would reSlBTle with 57.L.,

57.3, and so on. When the insertion is done and it is desired to n.'SI.1I!ll' ll)l'

program where it had been left off, the edit command

57.23. edit 102 is .•.

could be used. To insert text at the heginning of a program, an ed1l cOllllTI<..tnd

without a line number is used. Thus,

120

[

.1
I

1
]

]

J

J

(

I,
!
\

I~

I

(

t38. edi t is ...

would cause the remainder of line 138 to be given the number 0.1, and the next

line number would be 0.2, and so on. Another such edit command, e.g.,

O. 28 • ed i tis ...

would cause the remainder of line 0.28 to have the line number 0.0.1, and the

next line number would be 0.0.2, and so on.

To delete a line, or a series of lines, the primitive out must be explicitly

used. The edit command,

I O. 0.3. edit 75 out

(

(

I
I

[

I
[

I

would delete line 75 from the previously provided text. The edit command

0.0.4. edit 70 .!£. 88.6 out

would then delete lines 70-74 and 76-88.6; line 75 having of course been pre­

viously deleted. It should be noted that a subsequent edit command

0.0.5. edit 0.0.3 out

would not have the effect of replacing line 75, just the effect of deleting

line 0.0.3 from any subsequent listing of the text. Nor, to use an earlier

example, would

0.0.6. edit 101 out

have any effect on what the edit command on that line had already caused to lw

inserted at line 57.1.

All previously provided text may be deleted by the all-consuming command

0.0.7 edit all out ------
After such a command, the next line number would automatically be 1. But

assume such drastic steps are unnecessary, and it is only desired to replace

a line.

A line, say 27, may be replaced with the following edit command:

0.0.7. edit 27 is

121

1~lH is entirely equivalent to

0.0.7. edit 27 ~t ~ 27 is •••

With either command, the remainder of line 0.0.7. is given the ntunber 27, and

the next line would automatically be 28, so th.3.t anything entered or input

there would replace any previous line 28, and so on. (But it would not replace

any line 27.1 or any other line between 27 and 28.) If such s.ubsequent auto­

matic replacement of lines 28,29-,et. seq. were not desired, the command

0.0.7. edit 27.0 i.s •••

This would also replace line 27 (::27.0) with the remainder of line 0.0.7, but

the nex~ line would automatically be 27.1.

A sequence of lines may also be repla1ced with an edit conmand, say

27.1. edit 70 !2. 88.6 .!2. ..•
And this is exactly equivalent to

27.1. edit 70!2. 88.6 out, edit 70 is •••

Not that such an edit command deletes all lines between 70 to 88.6, inclusive,

no matter how deeply they may be ntunbered.

After a great deal of the kind of editing exernplified above, line nlDnbers are

likely to be in a hodge-podge, with gaps in the sequence, and seven- or elght-

Jl'Vl'l line numbers in places. This can be corrected by renumbering, with an

(·d i L cummand, such as

]67.6.5/L2. edit all

\vh i ell renumbers all previously provided and remaining lines: 1, 2, 3, and so

011.- Of course, any sequence of lines can also be renumbered, with an: edit com­

maud like

59.6. edit 23.4 !Q 38.7.12

T.,l\lich would rentmlber all lines between 2'3.1 and 38.7.12, inclusiv(', no m;ltt('r

llOW dl~t>ply numbered. These would be renumbered: 23.4, 23.5) 2'3.0, and so ()l).

122

.. 1
~

I

1

I

1
II
\; ;

[l

I

(

I:

(

(

(

(

[,

(

I:

I
I

I

An edit command to renumber can also have the effect of replacing lines (though

this can easily be avoided, with a little care, where replacement is not wanted).

For example

38.5. edit 16 to 25

would cause the indicated lines to be renumbered 16_ 17, l8~--and if there

were more than ten lines in the sequence--25, 26,27, ••• and so on, causing

any lines previously numbered 26, 27, etc. to be replaced.

To renumber just some initial sequence of lines, the command

57. edit to 31.6

could be used to renumber all lines with numbers less than or equal to 31.6.

'And to renumber some final sequence, the command

58. edit 40

might be used (since there is no point, of course, in renumbering a single

line) to renumber all lines with numbers greater than or equal to 40. '(This

last interpretation does not apply to deletion. Thus,

59. edit 40 ~

would delete just a single line.)

7.8.2 Save Connnands

A save command serves to store and catalog, under a user supplied title, the

current values of any data elements, or any lines of previously supplied

program text--including texts composed entirely of commentary.

save-command

title

SYNTAX

.. - 6 title 6 = 6 <formula I lines>

name 6 <nothing I (all»

123

Note: There is syntactic ambiguity between some numeric fonnulas and some

line numbers.. In a save command, in such cases, the lines number

interpretation will prevail. And if, for some strange reason, the

programmer wants to save the integers 1 to 100 rather than lines 1

to 100, he must use parentheses; e.g., (1 to 100).

Examples:

~EXPLANATION.OF.SAVE = 'A SAVE COMMAND SERVES TO STORE AND CATALOG,

UNDER A USER SUPPLIED TITLE, THE CURRENT

save JONES.PROGRAM.EPHEMERIDES.03 = all

save D.7 = to 132.8

Used as a title in a save~ show, or get command, a name exhibits a hierarchic

structure, with the embedded periods delimiting the various levels. A varie~y

of names can be given to the different levels. Library-file-section-shelf­

volume-book-chapter-page-paragraph might be one such (improbable) sequence,

so that A.B.C.D.E.F.G.H.I, as a title, would be interpreted: library A, file B,

section C, shelf D, volume E, book F, chapter G, page H, paragraph I. A less

improbable interpretation of one of the preceding ,examples might be: Jones'

library, program file, Ephemerides routine, 3rd vers~on. The point of all this

is that an abbreviated title, say JONES.PROGRAM, refers to all the routines

in the program file of Jones' library.

A save command may replace an existing element in a library or add a new ele­

ment (or even a new library) to the system, depending on whether or not an

element cataloged under that title already exists in the system. In either

case, the saved element will be cataloged in the appropriate place in the

hierarchy.

124

(~--

I

~-

I
1
1
1
I
I
I
1
I

I
I
[

[

[

I
(I '--

(

(

('

[

I
(

(

(

[

I

I

Whenever a name is used in a title that refers to an existing element that is

not at the bottom level of its hierarchy--i.e., the name refers to a number of

bottom level elements--the primitive all must be added in parentheses after

the name as part of the title, to make it less likely that unintentional re­

placement or purging of whole files will occur. Any other safeguards to pre­

vent unauthorized or unintentional replacement, purging, or access to saved

elements are implementation defined.

Any bottom level element, say Jones' program, Ephemerides, version 03, may be

purged (along with its name) by a save command like the following:

~ JONES. PROGRAM. EPHEMERIDES. 03 null

Any bottom level element or collection of bottom level elements, say all

versions of Jones' program, Ephemerides (with their .names) may be purged with

a save command like the following:

save JONES.PROGRAM.EPHEMERIDES (all) = null

It is a useful end relatively simple and straightforward practice for the user

to construct and maintain an index--with save commands--for any level of a

library hierarchy. The system does not, however, do this automatically.

7.8.3 Get Commands

A get command serves to retrieve any previously saved (and retained) data or

lines of program text.

SYNTAX

get-command .. = .8!:.!.6 <variable L\ = A title , title>

125

Examples:

~ JONES. PROGRAM. EPHEMERIDES. 03

. ~ COMPOOL.21 (all)

~ BETA = N1626.MATRIX (all)

~ D.7

Where a set command retrieves data, the effect is that of assignment to a

variable. Thus:

save Q = 1.693"'d~I sub (1 to N), ~ P = Q, save Q = null

has exactly the same effect as:

Where a get command retrieves lines of program text, the effect is exactly the

same as if the lines of text were input or entered--any commands in the

retrieved text will be obeyed. The line numbers of the retrieved text,

however, will all be prefixed with the line number of the get command itself.

Thus,

61.13 ~ SYSTEM.SUBROUTINE.OBOE

The lines of system subroutine OBOE would be inserted as 61.13.1, 61.13.2,

61.13.3, etc. And if for some reason this is not desired, for example, because

of the existence of another line 61.13.1 that is to be tetained, the following

commands could be. used:

61.13. edit 61.13.0 is ~ SYSTEM. SUBROUTINE. OBOE

so that OBOE would be inserted as 61.13.0.1, 61.13.0.2, 61.13.0.3, and so on.

126

I

I
1
I
I

T

I

[

[

[

I:
I:

(

I
(

('

('

(

I'
[

(I

[

(

I'
(

1:1

I~I,

I
I~

r
I _/

r:

Where a get command retrieves several separate sets of program text, as in

17. ~ COMPOOL.21 (all)

the line numbers in each set are prefixed with a unique serial number for the

set, before being prefixed by the get command's line number. Thus, in the

above example, the line numbers for the first part of COMPOOL.21 would be

17.1.1, 17.1.2, 17.1.3, and so on, and for the ith part" they would be 17.i.1,

17.i.2, etc.

7.9 BUILT-IN FUNCTIONS

Extended SPL contains a number of built-in functions in addition to those

described for basic SPL.

7.9.1 Functions

7.9.1.1 Minimum and Maximum Functions. The minimum and maximum functions

are used to specify the minimum and maximum scalar value in a (nonsca1ar) formula.

7.9.1.2 Remainder Function. The remainder function specifies the remainder,

after division, of the real scalar dividend x by the real divisor y. The re­

mainder function may be generally defined as: x rem y = x-y * floor (x/y).

Complex arguments of the remainder function are converted to real mode by dis­

regarding their imaginary parts. Nonscalar arguments specify identically

structured nonscalar results.

7.9.1.3 Conjugate Function. The conjugate function, for any complex

scalar argument (a+b*l!), specifies (a-b*li). Real arguments of the complex

conjugate function are converted to complex mode by assuming imaginary parts

of zero. Nonscalar arguments specify identically-structured nonscalar results.

7.9.1.4 Floor Function. The floor function, for any integer or real

scalar argument x, specifies the largest integer not exceeding x. Complex

arguments of the floor function are converted to real mode by disregarding their

imaginary parts. Nonscalar arguments specify identically-structured nonscalar

results.

127

7.9.1.5 Ceiling Function. The ceiling function t for any integer or real

scalar argument X t specified the smallest integer not exceeded by x. Complex

arguments of the ceiling function are converted to real mode by disregarding

their imaginary parts. Nonscalar arguments specify identically-structured

nonscalar results.

7.9.1.6 Hyperbolic Functions. The hyperbolic functions sinh t cosh, and

tanh specifYt for any real scalar argument x, the hyperbolic sine, cosine, and

tangent of x. Complex arguments of these functions are converted to real mode

by disregarding their imaginary parts. Nonscalar arguments specify identically­

structured nonscalar results.

7.9.1.7 Identity Matrix. The identity-matrix function specifies an m by

n numeric matrix whose elements have the value one along the main diagonal and

zero elsewhere. The number of rows in the identity matrix is specified by the

scalar numeric-formulal , the number of columns by the scalar numeric-formula
2

•

Either or both arguments may be omitted where the number of rows or columns can

be determined by compatibility considerations of context.

The elements of the identity matrix may be d~fined as follows:

id sub (I,J) == if I ~ J then 1 else O.

7.9.1.8 Determinent Function. The determinent function specifies, for

any square n by n numeric matrix A, the determinent of A.

7.9.1.9 Size Function. The size function specifies, for any k-dimen-

sional formula F, the number of elements along each of the dimensions of F.

The size function, for a k-dimensional formula, specifies an index value-­

an integer-valued k-element vector (integer k array). For a rectangular,

nonsca1ar formula, ~ sub 1 specifies the number of rows, size, sub 2 the

number of columns, ~sub 3 the number of planes, and so on (assuming the

128

I',
~i

/
:1:

'~_-

1

I
I

.I

I'
1
:1
iT

l.l

1
I,
I
1
[I
[
r"""f

>~~

~

l

iT
It.

I:

I:
I:

I~

1('
l, I

I
[

I:

I:
I

Ii

number of dimensions exceeds 3). For a nonrectangular, nonscalar formula,

the number of elements along any given dimension may vary. Here, the

corresponding element of the size specified vector is the maximum number. For

a scalar argument, the si~ function specifies the value one and for a null

argument, for example, a text of length zero, the size function specifies zero.

7.9.1.10 Origin Function. The origin function specifies, for any pair of

formulas X al!d Y, where the value of X is an element of the value of Y, the

index of the first origin--first in the sequence (1,1, .•. ,1) to (Y size)--of

X in Y. Where the value of X is not an element of the value of Y, the origin

function specifies the value zero. Where X is an element of k-dimensional Y,

the origin function specifies an index value--an integer-valued k-element

vector. Also, X ~ Y sub «X origin Y) to (X origin Y + X size».

7.9.1.11 Coordinate Transformations. The coordinate transformation

functions specify the transformations among real-valued 3-vectors represent­

ing Polar, Cartesian, and direction cosine coordinates in 3-space (syntax

unspecified).

129

s. LISTING OF SYNTAX EQUATIONS

8.1 ALPHABET, VOCABULARY AND PROGRAM STRUCTURE (Ref. Section 2)

character ::= letter digit mark

letter ::= ABC D E F G H I J K I L I
M N 0 P Q R STU V W" X I y I Z

digit ::= 0 I 1 I 2 I 3 I 4 I 5 I 6, / 7 I 8 I 9

mark :: = space I (I) I + / - I ,,< I I I . I , , I I = I $

symbol: := name J primitive I c'>.~~_:a~t _ ., __ ------'
"-'r.&me--:'i-~-<ietter"l-nam~~"<n~thing I letter digit I .letter I .digit>

primitive ::= delimiter / operator / descriptor

delimiter :: = . I , I I / $ I (I) I ' I·" I begin I end I ~ I program

operator ::= catenation-operator I repetition-operator Iconditional-operator

arithmetic-operator I define-operator /logical-operator ,

relational-operator I assignment-operator I functional-operator

discrimination-operator I sequential-operator / input-output-operator j

location-operator I editing-operator I compile-operator

a~ithm;;i~-~op~~;to;-~'~-~---=-T+--r- * r I / ,'<-Ie

logical-operator ::= not / and 1££
relational-operator ::=~. /gs I B£' Is I ~ I ~ I eguiv

conditio,nal-operator :: = if I then I else

assignment-operator = I set

repetition-operator : := times I~ Iwhile / until I for

catenation-operator ::= II ill

i ! when I _on I,call lentry lexit i10r id()
sequcntial-operator ::= gotoi stoP!

input-output-operator ::= open J~ I read I ~ I assign I status Iposition

130

1

I

/ 1
(

~ J.

[

I
I

(,.

[

(

,(

(

[

(

I
I
I

I
I

I

location-operator ::= store I at

editing-operator ::= out I is I all

compile-operator ::= optimize 'count

to thru

define-operator ::= execute' where' then /. names f ~
-- --- 0 -terms'"

functional operator ::= log.e 10g.10 I sin I ~ I ~ I abs

descriptor ::= integer / real' pointer / boolean /array , mode /procedure ,

function' pattern I file I dec I oct I hex Ibit , text / fixed

float I cell I ~ I false I ready , busy I error I addr I
item 'minimum I digit I maximum / signed I unsigned /round

$tuncate , group' compool' full I ~yeady I value result

recursive / reentrant time' space I ~
constant - numeric-constant

boolean-constant

textual-constant pointer-constant

numeric-constant ::= number I real-constant I binary-constant

decimal-constant' hexadecimal-constant

numeral ::= digit <nothing I numeral>

signed ::= + I -

number ::= numeral <nothing e numeral>
-xponent-base-lO

octal-constantl

real-constant :: = <numeral' • ,. nume·.cal numeral • numeral> <nothing I
e . numeral
-xponent-base-10

e signed numeral>
-xponent-base-10

binary-constant .. - <name. I nothing> ~ ·bit ' binary-string •

binary-string ::= <0 I 1> <nothing I binary-string>

octal-constant ::= <name. I nothing> ~ oct' octal-string'

octal-string ::= <0 , 1 , 2 I 3 I 4 I 5 I 6 I 7> <nothing I octal-string>

decimal-constant <name. ~ nothing> ~ <nothing I dec> ' numeral '

hexadecimal-constant ::= <name. I nothing> ~ hex' hexadecimal-string'

hexadecimal-string ::= <numeral I A I BCD I ElF> <nothing

hexadecimal-string>

* Listing of terms in Section 7.

131

textual-constant ::== <name. nothing> <nothing I text> ' character string r

character string :.: = character <nothing character-string>

point~r-coristant ::=cell 6 name I addr 6 name

boolean-constant ::-~ I false

statement ::= simple-statement compound statement

compound-statement ::= <name. I nothing> IJ. begin IJ. statement-string IJ. end

<name I nothing>

statement-string .. -.. - statement I declaration I command <statement-string I

declaration .. -
nothing>

data-declaration I subroutine-declaration I file-declaration

simple statement ::= simple-control-statement I input-output-staternent

procedure-call-statement' assignment-statement

comment .. - "character-string"

program .. = program IJ. name.~statement-string IJ. ~ <name Inothing>

8.2 DATA DEFINITIONS (Ref. Section 3)

data-declaration ::= item-declaration array-declaration group-declaration I
storage-declaration mode-declaration

item-declaration :: == <item I nothing> IJ. name-st.ring IJ. item-description!::. <nothing ,

initial-value-string>

name-string ::= name. IJ. <nothing I name-string>

initial-value-string ::= litem-value IJ. <nothing initial value string>

item-value ::= numeric-constant I pointer-constant I textual-constant I
boolean-constant

item-description ::= numeric-item-dcscription

pointer-item-description

textual-item-description

boolean-item-description

numeric-item description ::= full-integer-item-description

descriptioil

full-real-item-

132

[1

('1,
\

~.

I
:1

I
~~

I
1
i

:1.,
\ .

I
[

[[

(

(

(

,(

(

(

I
I
(

I
I
I

I

I

full-integer-item-description ::z integer ~ number l ~ <bit I digit> ~ <minimum

nothing> ~ <nothing I number 2 ~ maximum> <nothing

signed unsigned> ~ <nothing round I truncate>

full-real-item-description real ~ number
l

~ <bit I digit> ~ <not~ing 1 mini~um>

~ <nothing I -> number
2

<bit I digit> {j. <nothing

float I' fixed> ~ <nothing 1 signed unsigned> ~

<nothing I round I truncate>

textual-item-description .. - text b. <nothin,g.1 number b. character
, '

name f . ~. b. character>
o-~nteger..1~tem

pointer-item-description .. = pointer

boolean-item-description ::= boolean

array-declaration ::= array 6 name-string 6 array-description

array-description .. = <item-description I group-description> 6 dimension-string

6 <initial-value-string I nothing>
. -.... - .---- - .,- .. -. . _._, ... -... _-,., -..... - ~

dimension-string ::= <number I name f . t . t > 6 <nothing o -~n eger-l. em .£y L. dimension-

string>

group-declaration :: = group 6 <nothing I name-string> 6 group-description

group-description .. -

declaration-string : :=

mode-declaration ::-

begin 6 declar~tion-string 6 end 6 <nothing I (name)

<item-declaration I array-declaration I group­

declaration I function-declaration' mode-declaration·1

storage-declaration> 6 <nothing declaration-string>

~ ~ <numeric-item-description

f~ll- f i},e-d<:.~ c ri p tion>

array-description I

storage-declaration ::= ~ ~ block-description 6 at 6 pointer-formula

block-description ::= nameof~l~.m~...Dt!::. <noth~ng I block-description>

variable ::- name I subscripted-variable I conditional-variable

catenated-variable I hardware-opexand i

133

1

subscripted-variable ::= variable «index-string) I b. sub b. index-string>
I

index-string ::= index 6 <nothing' <II , to> 6 index-string> t
index :: III: <numeric-formula I index-string> 6 <nothing I index> I (index)

catenated-variable :: = variable !J. <nothing r.ca'tenation-oper~~.0.r2. __ ~---.::v..ar.?:~~l~ __ ._
;

COnditiOnal-variab .. l~. = '$' -namief 6. condition 6. .then 6. variable l -/1' <nothing I else f1 variablezl,

har~ware-operan~

compool-declaration ::= compool 6 nameof_compool

8.3 STATEMENTS (Ref. Section 4)

assignment-statement ::= <~othing I ~ 6 variable 6 = 6 formula

formula ::= numeric-formula

boolean-formula

textual-formula , pointer-formula I
(formula)

numeric-formula : :. constant function I variable I hardware-operand

6 <nothing I arithmetic-operator> 6 <nothing

numeric-formula> I n-ary-arithmetic-operator 6 numeric­

formula I numeric-formula 6 matrix-operator ~

numeric-formula' boolean-formula

n-aryarithmetic-operator ::= (arithmetic-operator)

matrix-operator ::= arithmetic-operatorl . arithmetic-operator2

textual-formula ::=, textual-constant 6' <catenation-operator I subscription­

operator>

pointer-formula :: == .. name ,b. <s~b 6 ~ndex-st'C'ing Inothing > I cell A sub ~

index-string I cell b. variable I bit ~ sub ~

index-string

condition:: = boolean-formula
boolean-formula .. - boolean-constant I'~ 6 boolean-formula I boolean­

formula 6 ~ I £! I equiv.> 6 boolean-formula I

relational-formula I n-ary-logical-operator 6 boolean-

formula

134

I, ' , ,i

I I
I

"'-1

I

I

[

1I

I

[

I
I
I~

[

(

(

I
(

I
I
I

I

relational-formula .. - <nothing I n-ary-relational-operator> 6 formula

6<·nothing I relational-operator 6 relational-formula>

n-ary-logical-operator ::= «and I £E. I equiv»

n-ary-relati~nal-operator ::= (relational operator)

direct-code-statement .. - $ name ~ (actual-parameter-string) of-hardware-operator

control-statement ::= simple-control-statement I complex-control-statement

simple-control-statement .. - transfer-statement I stop-statement I procedure­

call-statement

complex-control-statement ::- repeated-statement

parallel-statement

chronic-statement

conditional-statement

delayed-statement I

transfer-statement .. - <go ~ to I goto> ~ pointer-formula

repeated-statement .. - for ~ repetition-clause ~ statement

repetition-clause ::= variable ~ = ~ value-sequence

value-sequence .. - formula I numeric-formulal ~ ~ ~ numeric-formula
2

~

<while I until> ~ condition

conditional-statement ::= if ~ condition ~ then ~ statement
l

<nothing I
~ else ~ statement 2>

parallel-statement ::- do ~ statement

stop-statement ::= stop

delayed-statement ::= when ~ condition ~ statement

chronic-statement ::= ~ ~ condition ~ statement

input-output-statement ::= open-statement I close-statement I read-statement I
write-statement

file-declaration ::- file ~ name-string ~ file-description

file-description ::= device-name ~ <nothing I $(character-string» ~ <nothing I
dimension-string> ~ <nothing I code-name>

device-name ::= name. I device-name. <nothing I number> !:J. <nothing I module-name.
number>

135

code-name ::- <~ I ~ I ~ I ~ I text>

assign-declaration ::- assign 6 name to 6 device-name

open-statement : := open 6 device-name 6 <nothing I $(character-string> 6 <nothing

dimension-string> 6 <nothing I code-name> ~ file-designation

close-statement ::= close 6 <nothing ~ I ~ ~ module-name> ~ file-designation

file-designation ::- nameof_file I .!.!.k 6 ~ 6 pointer-formula

function ::- file-designation ~ <status I position>

functional-variable ::- file-designation 6 position

read~statement ::- read 6 variable 6 into a file-designation
'--

write-statement ::= write a file-designation fl from 6 textual-formula

8.4 PROCEDUgiS AND FUNCTIONS (Ref. Section 5)

procedure-declaration ::= procedure-heading 6 <nothing I parameter-declaration­

string> 6 statement

procedure-heading ::= procedure 6 name f 6 <nothing I (formal-o -procedure

parameter-string» 6. <nothing I formal-parameter-strl.ng>

formal~p~!:.~1ll:.eter-string ::= formal-parameter 6 <nothing I formal-parameter-string>

formal-parameter ::= name

parameter-declaration-string .. = parameter-declaration 6 <nothing I parameter­

declaration-string>

parameter-declaration .. = <item-declaration I array-declaration I group-declaration>

6 <nothing I value> 6 <nothing I result> <procpdure-

procedure-cali-statement

heading I func tion.-heading· ·;'tQt;hL:-':~

~<C~.~it't \t·(·ffl- ~trl%'g;~ 'I !f1.11{'> ""de<: larat Lon

: : = call 6 name ---- of-procedure

6 <nothing I actual-parameter I (actual-parameter­

string»

136

1
) i

·1
I

1

I
1
]

I

I

I
I
I
I

I

I
I
I

actual-parameter-string ::= actual-parameter 6 <nothing I (actual-parameter­

string»

actual-parameter - variable I formula I name

entry-statement ::= name 6 entry «paramete,r-decla.ration) I nothing>

exit-statement ::- exit

function-declaration ::= function-heading 6 <~othing I parameter-declaration­

string> 6 <= 6 formula , complex-statement I compound­

statement>

function-heading : : = function 6 <nothing formal-parameter I (formal-

Parameter-string» 6 name f ft' /::I <nothing I o - unc 10n

formal-parameter I (formal-parameter-string» 6 <item-

description I array-description I group-description> 6

,<nothing I recursive I reentrant>

function ::= <sin I ££!. I tan I arctan > 6numeric-formula
of-numeric-type

function
of-numberlc-type

function
of-numeric-type

function
of-numeric-type

::- !£! 6 numeric-formula

::- <!!2 J log,e> 6 numeric-formula

: :- <10g.2 I log. 1» [). numeric-formula

8.5 COMMANDS (Ref. Section 6)

command ::= define-command I execute-command I debug-command I optimization­

command I count-command

debug-command show [). <symbolic I nothing> location-identifier ~ <number i
nothing> <thru I nothing> ~ <location-identifier nothing>

location-identifier ::= <name I 5e11 '[). name> [). <code-name nothing>

optimization-command ::-- optimize [). <time I space I none> [). statement
----r

137

count-command ::- count ~ ~ ~<8tatement I declaration>

define-command ::- <name. I nothing> ~ where II definition ~then 11 translation 11

<end I define-command-string>

definition ::= textual-formula I term I textual-pattern I not

11 definition I definition /). < or ·1 and > /). definition

define-command-string : := begin 6 define-command <nothing I define-command> 6 end

pattern-declaration · .-· .- pattern b name b . definition
of-pattern

define b name f d f' d
. 0 - e 1ne-comman

define-command-call · .-

textual-pattern :: = pattern < (textual-'-constant) I (term) I (name-of-pattern»

translation :: = declaration Istatement Icommand

term .. character I letter I digit I name I null I constant I

simple-statement I compound-stacement comment I item-declaration

array-declaration I group-declaration storage-declaration

variable I hardware-operand I formula

execute-command ::- <name. I nothing> ~ where /). definition b execute 11 item­

declaration 6 formula

B.6 EXTENDED SPL (Kef" Section 7)

numeric-constant ::= imaginary-constant I number I real-constant I binary-

constant I octal-constant

hexadecimal-constant

decimal-constant I

imaginary-constant ::- <number I real-constant> i

138

I

~-

1

I

1

1' .. ,1.
I I

!
I

1
I

If.',1 I I

I

I

I",i.' ; :

i
1

I
I [I
I

l'

I'
I'
I ,-

I
I~
('

(

I
I
I
I
I
I
I
I
I
I r
I ~

I

.'\

complex-item-description ::- complex 6. number
l

6. minimum 6. <bit I digit I
nothing> 6. <nothing I -> number

. 2 of-fractional-

r r <bit I digit> 6. <nothing I float I o -exponen"" --

fixed> 6. <nothing

round I trunc8~
signed unsigned> 6. <nothing

code-declaration::= ~ 6 nameof_code ~ code-description

code-description: :_= <nothing code-string> ~ number 6, «bit I digit

/)., <nothing I Ie ft I r'ight>
.... ~-.~---~--.-.----:----------~-~--- '--"- .. --_ _ .. - -.•

code-string textual-constant ~ <nothing I is code> ~ <nothing

code-string>

code::= number textual-constant

list-declaration list h name-string 1\ list-description

list-description full-list-description

character

full-list-description <item-description I array-description I group­

description> ~ name-string

list-processing-statement "= reference-statement I link-statement

free-statement

reference-statement::== see 6 list-element-reference

list-element-reference :: = nameof-list 6. <nothing I ~. 6. pointer-formula>

link-statement ::= link 6. <linkage-set name . >
of-ltem-array-or-group

linkage-set linkage A <nothing I linkage-set>

linkage .. == <nothing I pointer-set L. f rom> I::::. 1. is t-el~IIH:'nt-ref L' n'IH:e

pointer-set ::= name f' A <nothing I pointer-sel>
o -polnter

free-statement::- ~b, <linkage-set I name . >
of-~tem-array-or-group

139

encode-decode-statement ::= <encode I decode> /). variable (j, = 6 formula A EY A

format

format ::= conversion-procedure-call I (/). format /).) I catenated-format I

repeated-format I conditional-format

conversion-procedure-call ::= name f d 11 <nothing I actual-parameter I o -proce ure
(/). actual-parameter-string 11) >

catenated-format ::= format 11 <nothing I catenation-operator> 11 format

repeated-format ::= format 6 <nothing I catenation-operator> 11 (11 repetition­

clause 6)

conditional-format ::= closed-conditional-format I open-conditional-format

closed-conditional-format ::= if 6 condition 6 then/). format
l

11 else 11 format
2

open-conditional-f ormat ::= if_ 11~~ndition /). ~hen b. <format3 I open-conditional­

format I b. else 6 format
4

>

algebraic-declaration ::- name-string 6 algebraic 6. <nothing I dimension-string

6 array>

algebraic-variable : : == nameof-algebraic-variable 6 <nothing I sub

6 index-string>

algebraic-formula ::= numeric-constant I algebraic-variable I atomic-operand I
(6 algebraic-formula 6) <- I + > 6 algebraic-formula I
algebraic-formula 6 <- I + I * I I I ** I ~>

algebraic-formula-string

6 algebraic-formula I<abs

10g.2 I l2£.10 I sin I cos

tanh> 6 algebraic-formula

formula-string 6)

I floor I ceiling I ~ I log.e

I ~ I arctan I cosh I sinh I
I<min I ~ > 6 (6 algebraic-

::= algebraic-formula 6 <nothing I algebraic-formula>

atomic-operand-string ::= atomic-operand 6 <nothing atomic-operand-string>

atomic-operand, ::- 'numeric-formula' I 'sign-string' textual-formula

140

·1:,···!' •. I

I

1.,' ,! li
[
I;
I :
i ' ,)1

i

[
I

II
j

IT.· I:· :1'
I

l~

[

I

(

[

[

I:

I
I:
I
I
I
I
I

I

algebraic-assignment-statement ::= <nothing I let> 6. algebraic-variable

6= 6 <algebraic-formula

function . >
of-algebralc-type

algebraic-operator ::= (.,) I + I - I * ** I / I abs I floor I
ceiling I rem I exp I log.e I 1£&.2 I log.IO I sin

~ I ~ I arctan I cosh I tanh I sinh I min I ~

functionof_numeric_type ::= ~~ algebraic-formula

function
of-textual-type : : == rep 6 algebraic-formula

function
of-Boolean-type ::= algebraic-formula 6 defined

function .
of-Boolean-type ::= algebraic-formula 6 ident 2, algebraic-formula

functionof_Boolean_type : : = algebraic- formula £::. approx 6, «numeric-formula I

algebraic-formula»

function. ~ .. ~~.a.~~~~r.~i..~~~}1~~ ... ~~:_.~~~~~e 6 (al.~~~~~.~.~~ .. ~~~~ula !'J textual formula)
function 00= expand D algebraic-formula

of-algebraic type

function
o£-algebraic-type

function of-algebraic-type

: := slgebraic-formulal/!'J coeff 6. algebraic-formuls
2

::= algebraic-formula 6 ~ 6. <algebraic-formula

I (algebraic-formula-string» <nothing

(where 6. dependencies»

dependencies ::= atomic-operand ~ is ~ i (~ atomic-operand-string /:;)

~ <nothin8 I dependencies>

procedure-calI-statement ::- <nothing .£.!ll> t::.. <accept f'... variable

display 6 formula>

edit-command ::= edit 6. lines 6. <nothing , out , ~ 6. character-string

lines .. = <all I line-number I to /\ line-number I line-number (\ to

[\ line number> ~ <nothing I lines>

141

line-number""= number <nothing I line-number>

save-command ::- 6 title 6 = 6 <formula' lines>

title :: = name 6 <nothing I (all»

get-conmand :: = ~6 <variable 6 =;:., title I title>

142

[

i- 1:
~-l

i i

Ii
I

i

l'
[Ii

,II
i

i

I
II

/
-rl

~

I

I
1
II

~ I

r
[

[

(/
i:

~-- J,

[Ii

I
1<

(,

("

I
INDEX

I
Page

Actual Parameter 72

I
Actual Parameter String 72

Algebraic Assignment Statement 109

Algebraic Declaration 109

I~ Algebraic Formula 109

Algebraic Formula Manipulation 106

(Algebraic Formula String 109

Algebraic Operator 109

(Alphabet 13

Arithmetic Operator 15

I
Array 25

Array Declaration 25

Array Description 25

I Assign Declaration 65

Assignment Operator 15

(Assignment Statement 39

Atomic Operand 109

I
Atomic Operand String 109

Binary Constllnt 18

I
Binary String 18

Bit 18

Block Description 28

I Boolean Constant 19

Boolean Formula 50

I Boolean Item Description 23 p

Bui1t~In Functions 76

Ir
Catenated Format 101

Catenated Variable 36

Catenation Operator 16 I / i~

Character 13

Chara'cter String 18

I 143

-----~ ~--,- ---,=-==='","=-":"---,--:::":..

Chronic Statement

Close Statement

Code

Code Declaration

Code Description

Code Name

Code String

Commands

Conunent

Complex Item Description

Compound Statement

Compool-Declaration

Condition

Conditional Format

Conditional Operator

Conditional Statement

Conditional Variable

Constant

Control Statement

Conversion Procedure Call

Complex Control Statement

Count Conunand

Data Declaration

Debug Command

Decimal Constant

Declaration

Declaration String

Define Command

Define Conunand Call

Define Conunand String

Definition

Delayed Statement

.Delimiter

14"

60

66

89

88

80

63

89

78

20

88

80

38

51

100

15

56

37

17

54

101

54

79

22

78

18

20
26

80

81

81

80

59

26

['.,!, ! ,
;

I !

II
I

Ii
I

[

II
I

Ii
I

I

I
i

: !

rr,i
~I ,

Ii
ifi: 1,

i

[j
[I

(1
l ~

[

I
[>

(

I
I
(

(

II
I /

I
I:
I
I
I
I
I r'"
I~j

I

Descript<?r

Device Name

Digit

Dimension String

Discrimination Operator

Edit Connnand

Editing Operator

.Encode Decode Statement

Entry Statement

Execu te C 11rmnand

Exit Statement

File Declaration

File Description

File Designation

Formal Parameter

Formula

Free Statement

Full Integer Item Description

Full Real Item Description

Function

Function Declaration

Function Heading

Functional Operator

Functional Variable

Get Command

Group

Group Declaration

Group Description

Hardware Operand

145

16

63

13

25

16

119

16

100

73

86

73

63

63

66

70

42

98

23

67

74

74

16

67

125

26

26

26

37

Hexadecimal Constant

Hexadecimal ;String

Imaginary Constant

Index

Index String

Initial Value String

," Input-Output Operator

Input-Output Statement

Item

Item Declaration

Item Description

Item Value

Letter

Line Number

Lines

Link Statement

Linkage

Linkage Set

List Declaration

List Description

List Element Reference

List Processing Statement

Location Identifier

Location Operator

Logical Operator

Mode Declaration

Mark

Matrix Operator

Name

Name String

146

Page

18

18

87

32

32

22

16

62

22

22

22

22

13

120

120

95

95

95

92

92

93

93

78

16

15

27

13

43

14

22

1:

(1 I
I
I

1:
!
I

II l I

1
I;
I:
1

i

l'
/ ,"

I
,"' I

i

1 . I
I

1
1
I
[

II
1:

C 1:
[

I

[

(

I:
('

('

I
I
I
I'
I
I
I
I

Ir
I ~~/

I

Number

Numeral

Numeric Constant

Numeric Formula

Numeric Item Description

N-ary Arithmetic Operator

N-ary Logical Formula

N-ary Relational Formula

Oct

Octal Constant

Octal String

Open,Conditional Format

Open Statement

Optimization Command

Operator

Parallel Statement

Parameter Declaration

Parameter Declaration String

Pattern

Pattern Declaration

Pointer Constant

Pointer Formula

Pointer Item Description

Pointer Set

Primitive

Procedure Call Statement

Procedure Declaration

Procedure Heading

Program

Read Statement

Real Constant

14i

17

17

17,87

43

23

43

51

51

18

18

18

101

66

79

15

57

70

70

81

81

19

49

23

95

15

72,120

70

70

21

68

17

Recursive

Reentrant

Reference Statement

Relational Formula

Relational Operator

Repeated Format

Save Command

Sequential Operator

Signed

Simple Control Statement

Space

Statement

Statement String

Stop Statement

Storage Declaration

Store

Subscripted Variable

Symbol

Term

Textual Constant

Textual Formula

Textual Item Description

Textual Pattern

Transfer Statement

Translation

Value Sequence

Variable

Write Statement

148

Page

75

75

93

51

15

101

123

16

22,17

54

13

20

20

58

28

28

32

13

81

18

49

23

81

54

81

54

30

68

I
T
1)

I
I
I
1)

I,
I

T

\

'" ""

1
1
I
[l

[I

[l

1
J
~

I
I[

(1
I~

I
I
I
I
(

I
I

'---

I
I
I
I
I
I
I r
I '-_/'

I

UNCLASSIFIED
Security Classi icatlOn

DOCUMENT CONTROL DATA· R&D
(Sccurit,V classification of title, body of /1b~tmct und indcxinll 8nnotIJlion nllJst he OJ/tert'€! wlwn tilt' oVtJrull r('porl /" cllls:,/fioci)

\, ORIGINATING ACTIVITy'(Corporate author) Uf. HEPORT SECURITY CLAS<;If:ICATION

System Development Corporation
2500 Colorado Avenue
Santa Monica. California 90406

3. REPORT TI TL E

UNCLASSIFIED
2b. GROUP

Specification for Space Programming Language (SPL)

4. DESCRIPTI VE NOTES (Type of report and inclusive dates)

5. AU THOR(S) (First name, middle initial, last name)

Levi J. Carey, Al E. Kroger

6. REPORT DATE

August 1967
8a. CONTRACT OR GRANT NO.

b. PROJEC T NO.

c.

d.

\0. DISTRIBUTION STATEMENT

711. TOT AL NO. OF PAGES

153
17b. NO. OF REFS

9a. ORIGINATOR'S REPORT NUMBER«S)

SAMSO TR-67-23

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

SDC TM-37l9/000/00

This document has been approved for public release and sale; its distribution
is unlimited

1\. SUPPLEMENTARY NOTES

'3. ABSTRACT

'2. SPONSORING MILITARY ACTIvITY

Space and Missile Systems Organization
Air Force Systems Command
Los Angeles, California 90045

This document contains a complete specification of the Space Programming
Language (SPL) in Backus-Naur form. A description of basic SPL and extensions
is given. SPL is a space application language with a large array of capabilities.
It is further an extendable language with punctuation rules and vocabulary
designed for ease of learning and programming.

DO ,F~oR:6S 1473 UNCLASSIFIED
Security Classification

~
14. LINK A l.IN K 13 LINK C

KEY WO~OS
ROLE 'NT HOLE WT nbLE WT

(
,1

Software
Spaceborne Software
Computer Programming

I

\,
1

Computer Program Languages
Procedure-Oriented Languages
Space Programming Language
Programming Language Implementation I

i

~
I
1
I
1

(1

~- -
£

]
. J

:1

]

~

W

n
I

C
I

UNCLASSIFIED ~

Security Classification
r
~

