is unlimited.

{

SAMSO-TR-67-~23

' SPECIFICATION FOR
SPACE PROGRAMMING LANGUAGE (SPL)

Prepared By:

L. J. Carey
A. E. Kroger

System Development Corporation
Santa Monica, Califorria 90406

August 1967

Prepared For:.

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
AIR FORCE UNIT POST OFFICE
LOS ANGELES, CALIFORNIA 90045

e~

SAMSO~TR-67-23

SPECIFICATION FOR
SPACE PROGRAMMING LANGUAGE (SPL)

Prepared By:

L. J. Carey
A. E. Kroger

System Development Corporation
Santa Monica, California 90406

August 1967

Prepared For:

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
AIR FORCE UNIT POST OFFICE
LOS ANGELES, CALIFORNIA 90045

This document has been approved for public release and sale; its distribution
is unlimited.

FOREWORD

This is a technical report defining a common Space Programming Languape (SPL).
It was produced by the System Development Corporation durfng the contract ‘
period from February 1967 through August 1967. Thlis work was performed under:

Contract Number FO 46Y5-6/-C=0096, Also produced under this contract was a

document entitled Compiler chuirements for Space Probr&mmlng Language (SlL),
SAMSO TR-67-3. -

Based on a study of spaceborne software, SDC prev1ously produced a four volume
report, SSD TR-67-11. Volume III of that series contalnq an 1n1t1al descrlp—
tion of SPL in English prose form.

This report spe01f1es the SPL language 1ncluding two exten81ons for space
computer programming applications.

The personnel involved were:

a. Air Force Project Officers
. Roger B. Engelbach
g Lieutenant, USAF

Michael A. Ikezawa
Major, USAF

b. Air Force Project Consultant

Dr. Walter A. Sturm
Aerospace Corporation

c. SDC Project Manéger
Gerard A, Hirschfield

d. SDC Technical Staff

L. J. Carey, Project Head
A. E. Kroger '
C. J. Shaw.

/QC@W

G. A. Hirschfield, Manager - Levi J. garey, Projecf Head
~Advanced Space and Range Projects ~ Space Programming Language

This fechnical report ha beep reviewed and is approved.

‘Roger! B. Engelbach, Lieutenant
. - USAF Project Officer

i

ABSTRACT

- p—

This document contains a complete specification of

—

the Space Programming Language (SPL) in Backus-Naur

form. A description of Basic SPL and an extension is

fm—

given. SPL is a space application language with a

large array of capabilities. It is further an

< -

extendable language with punctuation rules and

vocabulary designed for ease of learning and

programming.

iii
[o (page iv blank)

,//.\ | N K\” N

e B e B ”

TABLE OF CONTENTS

INTRODUCTION

1.1 Intended Use of the Specification

1.2 Background

1.3 Language Requirements

1.4 SPL Recommendation

1.5 -Significant Features of SPL
1.5.1 Basic SPL
1.5.2 SPL Extension

1.6 Notation and Metalanguage

ALPHABET, VOCABULARY, AND PROGRAM STRUCTURE

2.4

1.6.1 Notation

1.6.2 Metalanguage

Alphabet and Symbols

Names

Primitives

2.3.1 Delimiters

2.3.2 Operators

2.3.3 Descriptors
Constants

2.4.,1 Numeric Constants
2,4,2 Textual Constants
2.4.3 Pointer Constants
2.4.4 Boolean Corstants

Statement Structure

Comments

Program Structure

Page

“i W N e

(%))

10

10
11

13

13
14
15

15
15
16

17

17
18
19
19

20
20
21

CONTENTS

- DATA DEFINITION

3.1 Item Declarations

3.2 Array Declarations

3.3 Group Declarations

3.4 Mode Declarations

3.5 Storage Declarations

3.6 Variables
3.6.1 Subscripted Variables
3.6.2 Catenated Variables
3.6.3 Conditional Variables
3.6.4 Hardware Operands

3.7 Compool Declaration

STATEMENTS

4.1 Aésignment Statements
4.1.1 Formulas
4,1,2 Direct Code

4.2 Control Statements
4.2.1 Transfer Statements
4.2.2 Repeated Statements
4.2.3 Conditional Statements
4.2.4 Parallel Statements
4.2.5 Stop Statements
4.2.6 Delayed Statements
4.2.7 Chronic Statements

4.3 Input~Output and Files

4.3.1 File Declarations

4.3.2 Assign Declaration

22

Page N

22

25
26
27
28 \
30

32
36
37
37
38

39

39 .

61

63
65

s CONTENTS

4.3.3 Opening and Closing Files
4.3.4 Testing and Positioning Files

l“’ 4.3.5 Reading and Writing Records

5. PROCEDURES AND FUNCTIONS

5.1 Procedure Declaration
5.1.1 Procedure Call Statements
1: ’ 5.1.2 Entry and Exit Statements
5.2 Function Subroutines
IA 5.3 Recursive and Reentrant Subroutines
A 5.4 Built-in Functions
‘ﬂﬂ 5.4.1 Trigonometric Function
5.4.2 Absolute Vaiue
H - 5.4.3 Base e Exponential
~. 5.4.4 Base 2 and Base 10 Logarithm
ﬂ” 6. COMMANDS
6.1 Debug Command
I” 6.2 Optimization Command
4 6.3 Count Command
: A 6.4 Define Command
MA ' 6.5 Execute Command

I 7. EXTENDED SPL
" 7.1 Complex Values
li 7.2 Code Declarations
7.3 List Declarations

7.4 List Processing Statements

! : vii

Page
65
67

.68

70

70
72
73

74
75
76

76
76
77
77

78

78
79
79
80
86
87
87
87 .
92
92

8.
INDEX

CONTENTS

- 7.4.1 Reference Statements
7.4.2 Link Statements
7.4.3 Free Statements
7.5 Encoding and Decoding
7.6 - Algebraic Formula Manipulation
7.6.1 The Evaluation Function
7.6.2 The Represent ¥Function
7.6.3 The Defined Function
7.6.4 The Identity Function
7.6.5 The Approximate Function
7.6.6 The Reduce Function
7.6.7 The Expand Function
7.6.8 The Coefficient Function
7.6.9 The Differentiation Function

Interactive Programming

7.8 Commands
7.811 Edit Commands
i} 7.8.2 Save Commands
7.8.3 Cet Commands
7.9 Built-in Functions
7.9.1 Functions

LISTING OF SYNTAX EQUATIONS

viii

Page
93
95
98

100
106

112

112

113
113
114
114
115
116
116

118
119

119

123
125
127
127

130
143

N

1|

A
!

o e Saam

B
)

/

{
\

)

\,

1. INTRODUCT ION

1.1 INTENDED USE OF THE SPECIFICATION

This document contains a complete specification of the Space Programming Language
(SPL). Included is a description of the alphabet, the syntactic forms and
the meaning of each language element. The metalanguage used to describe SPL

syntax is the Backus-Naur form with a few modifications.

The first and foremost consideration made in presenting this material is
precision and completeness of information content. Thus, the intent is to
present a language in a well defined form, This description is not a 1earner'g
text; it is intended to be the authoritative reference on‘SPL for the programming

language designer, reviewer, developer, and implementer.

1.2 BACKGROUND

The development of the Space Programming Language is a result of a recommendation
made to the Space Systems Division Directorate of Technology based on a study
performed by the System Development Corporation as documented in SSD-TR-67-11,
"Recommendations for a Common Space Programming Language - Volume III,"

January 1967. This study of programming languages for spaceborne software was
performed between the time period August 1966 and January 1967. The primary

purposes of this study were to determine:
a. the language. elements required for spaceborne

programming in the time périod 1968 - 1973.

b. . if a common higher-order language would be feasible and'

useful for spaceborne software.

A comprehensive analysis of spaceborne software projects, such as Minuteman,

Centaur, Apollo, Gemini, and Titan 1II,indicated a trend toward

increasing reliance on data processing for mission planning, simulation tfor

vehicle development and on-board data processing functions. .

1.3 LANGUAGE REQUIREMENTS

In the analysis of the spaceborne software application area, it became apparent

there were three distinct areas for language requirements which we shall refer

to as: Flight Programming, Dévelopment Programming and Support Programming.

The data processing applications in these . three areas can be summarized as

follows:

Table 1.

Three Requirement Areas for SPL

Flight Programming

Development Programming

Support Programming

Keyboard & Display
Event Sequencing
‘Névigation

Guidance

Flight Control »
Experiment monitoring
System testing

Digital communications

Mission planning
Equation formulation

Scientific simulations

Computer simulators
Vehicle simulators
Progfamming tools

Data reduction

1 =R

N

_ A c

®* g

—
)

p

(

i

w8

)

- The computers to be utilized in spaceborne data processing during the projected

Programming personnel utilized to perform the programming for each of these
three areas can be summarized as follows: for flight programming, professional

programmers oriented toward numeric data processing are utilized; for

development programming engineers and personnel from other scientific
disciplines are utilized; for support programming, programmers and, to a ’

lesser extent, engineers ,perform the programming tasks. ' i

time period will be off-the-~shelf machines, of a capability comparable to
present-day machines. Implementation of SPL, however, will be, in most cases,

on a large, general-purpose, ground machine.

The computer program production technique will continue to be largely batch
processing. Interactive or time-sharing program production technique - should

play an increasing part in the program production process.

The burdens assumed by spaceborne software will become greater with more
ambitious space programs. Astronauts and scientists on manned missions will
use on~-board computers for analysis of experimental data, as well as for
on-board navigation, guidance, system monitoring and control, and perhaps
even crew training and assignment. In addition, ground-based users will rely
on computers for reduction of space data, as well as for satisfying the
computational requirements of general research. For greater effectiveness,
an increasing amount of the software development work should be done inter-

J

actively with the scientist or programmer in direct communication with the

machine.

1.4 - SPL RECOMMENDATION

A recommendation for the development of SPL was made after analysis of

existing languages. Because of the diversity of the application, the study
further recommended that a basic language be designed for spaceborne data

processing and that to accommodate the other two applications in space

software, an SPL extension should be developed. This conclusion was reached
after an analysis of the needs of potential language users, the mission
functions and their required data processing support, the types of programming
, fequired, the hardware utilized, and ﬁhe program production methods used. The.
resulting language, SPL, is based, in part, on JOVIAL which has been recently

adopted as an Air Force Standard Programming Language.

The study further identified,thebpresent time as particularly oppdrtune to
develop a.higher—order language for space applicatiomns. SeVerai factors,
‘such as ground and space hardware changes, expanded space progrémming
requirements, and the lack of a higher-order language for use in sbaceborne
applications, combine to make this a useful period for'implementation of a

 language for space software for use during the latter 1960's and early 1970's.

N

b b a3 2 E 3

B

—a e

fing feag MR R TR W
4\

_— een A

e I e B e

1.5 SIGNIFICANT FEATURES OF SPL

The varied fequirements of computer programming foryspace applications, which
encompass mathematical programming, system programmting, and real-time
programming, result in a widely expressivé, yet eaﬁily extendable
programming language. Other equally vital needs for the language are: easy
for nonprogrammers--engineers and space scientists--to use, practical to
implement, and,in the hands of professional programmers, economical of
computing resources. And finally, the language must be highly machine-

independent and yet capable of exploiting unique machine characteristics.

The requirements of SPL have been established with these needs in mind, and
it has been possible to outline a language that meets the needs of each area

of space programming without compromising the needs of others.

1.5.1 Basic SPL

Since the specification for SPL has been organized by first defining the basic
language and then the SPL extension, the description of the capabilities of

SPL will be organized in the same manner-.

1.5.1.1 Operations

Basic SPL incorporates a limited but very powerful specific set of operations.

They include:

a, Logical and relational operations
b. Built~in operations (functions)
c. Arithmetic operationé (formula evaluation)
d. Real-Time Control operations
e. Input/output operations
f. Command operations (for the compiler)
g. Notational extension 6perations
5

SPL incorporates all of the ordinary logical and relational operations and a
capability for incorporating built~in operations is provided. The most
significant of these operations is arithmetic operations, real-time control

operations and command operations.

1.5.1.1.1 Arithmetic Operations. In addition to the ordinary

arithmetic operations, special vector and matrix operations are incorporated
as primitives in the language. Further, arithmetic dperatiohs can include
pairs of operands which can differ in dimension (scalar vs. multi-dimensional
values) in representation (fixed-point vs. floating-point values) énd in
other subsidiary attributes. The precision (or accuracy) of arithmetic
operations may be rigorously controlléd through scaling information attached
tq the processing statement. Parentheses may be used freely in constructing
numeric formulas of arbitrary complexity, according to the notational

conventions of ordinary algebra.

1.5.1.1.2 Control Operations. Extensive program control operations

are available for the handling of interrupts, device monitoring, parallel
processing and input/output proceésing. Execution of program statements
(including compound statements) may be specified as conditional, repetitive,
chronic (occurring whenever a specified condition occurs), delayed (until a
specified condition occurs), or in parallel with the execution of other
statements. These primitive control operations, in conjunction with a set

of implementation-defined hardware operands, are the minimum needed to
provide the professional programmer with complete control through the SPL
programming language. Though complete, they do not entail unnecessary burden
by implying operations that can more'effectively be specified by custom-
téilored sequences of other available operatiOns. Statements which allow for
the control and monitoring of time increments are also provided. This is
very important where code sequences must be executed within a given time

frame,

£

.) -

folly

5 \/"A/

1.5.1.1.3 Command Operations.’ Command Operations include commands

to the compiler to produce optimized code for time (object program run time)
or space (object program computer storage requirements). Commands are also
provided for, for debugging .the object program and for time counts of object
program code time requirements. An execute command exists to allow a set of

code to be operated at compile time to initialize a parameter.

One of the most significant of SPL's command operations is the notational
extension capability. This provides for defining notational

extensions for new data types and structures and new operations in terms of
existing language elements. The facility in building new operations and
extending punctuation and vocabulary allows versions of SPL to be customized
to satisfy special programming problems., For instance, a programmer might
define an extended notation and vocabulary for his particular programming

areé, and build a highly problem-oriented vocabulary and language capability.

In addition, notational definitions may be used to make existing programming
languages compatible with SPL. A notational definition package can be
generated which would map languages such as FORTRAN, PL/I, or JOVIAL into
SPL. This would allow an SPL compiler to process these languages, thus
allowing a programmer to code in these languages while the SPL compiler
produces an equivalent SPL code and listing. This would also circumvent the
necessity to reprogram the existing inventory of problems which are opera-
tional and coded in some other language.

The notational definition capability can also be used to aid in the imple-
mentation of SPL., A core subset of SPL can be implemented using conventional
means; notational definitions can then be used to "define" the balance of the

language, thus reducing implementation time and cost.

1.5.1.2 Data Declarations

Basic SPL incorporates a wide’variety of opérand types and structures., Data
structures include: item declarations, array declarations, and group
declarations. One declaration is used to describe the storage of these
collections of data;

storage declarations

Further provisioﬁ is made in basic SPL for one type of input/output declaration;

file declaration

SPL incorporates numeric operands including fixed-point, arbitrary-precision
floating point, vector, and matrix values; primitive (i.e., built-in)
alphabets; and symbolic operands including Boolean and status values.

Basic SPL also provides for almost any type of data structure, ihcluding
combiﬁations of arrays, groups, and files, To achieve the most efficient
use of storage,‘the programmer has thé option of specifying exactly how

storage is allocated to his data elements.

1.5.1.3 Program Structures

Program structure in SPL is based on the powerful, generalized block-structure
concept. Procedure subroutines and function subroutines, recursive sub-

routines, and re-entrant subroutines may be specified.

The language syntax has been designed’to minimize grammatical rules and _
punctuation. This will serve to minimize the amount of training required and
reduce scripting errors when programming. There has also been an attempt to
minimize vocabulary without sacrificing clarity. Where a needed capability‘
already exists in the JOVIAL 1anguage, JOVIAL notation has been used if it is

consistent with the criteria previously described.

N

|

3

[o

ﬁ,

el

) [Y e [

R |

e e Bl

\

1.5.2 SPL Extension

The SPL extension contains the basic operations, plus additional features

suited for the applications area, For developmental programming, algebraic
formula and interactive programming operations are specified. For support
programming, simple text and list processing operations are included. Additional
data definitions in extended SPL include list declarations, code declarations and

program-declared alphabets (see Section 7).

1.6 . NOTATION AND METALANGUAGE

1.6.1 Notation

This report gives a complete specifiéation of SPL and extension uéing as a

syntax metalanguage, a modified Backus-Naur Form* (BNF). 'Some typographic
conventions are'introduced to distinguish among terms (which are constructed by

the language designer to identify and categorize the various parts of the language) ,
names (thch are constructed by the programmer to identify the elements of his
program), and primitives (which are the built-in "words and symbols" of the

language).

Terms are printed using lower case letters. For example:

statement

algebraic~-formula

Names are printed using upper case letters. For example:

ALPHA
GROSS
T23

And fiﬁally, word-like primitives are underlined. Implementation defined primitives,

such as hardware names, are capitalized in addition to being underlined. For example:

It is important to remember, however, that these typographic conventions are

\

part of the metalanguage notation, and hot part of SPL.

* As used in the "Revised Report on ALGOL 60,'" Communications of the ACM,
Peter Naur, May 1960. ‘ ‘

10

h

e

F

(S

—_ —

The syntax of SPL is specified by defining terms. The main elements of thes~

definitions are the signs, symbols, and other terms. Except for the non-printing

graphic character for "space' then, SPL signs stand for themselves.

1.6.2 Metalanguage

The metalanguage used in this specification has three basic elements. They

are:

a. te= This symbol signifies syntactic equivalence and

should be read as the word "is".

b. | This symbol signifies selection between alternate

strings of elements and should be read as the word

"or".

c. < > These symbols signify a gouping and are used to
enclose alternatives. They should be read as the

word "either" and are used with the symbol "|".

There are two metalinguistic extensions used:

a. Subscripting is utilized as a semantic cue to distinguish

among otherwise identical terms.

b. nothing This term signifies a null term or an empty

string of,symbols or signs.

There is one SPL term 'space' introduced which is represented in SPL by the

lack of characters and is represented in the metalanguage notation by the

following symbol:

A This symbol signifies separation of syntactic strings and
is inserted for clarity. The symbol "A" represents optional,

not required separation.

11

il

To simplify the semantic explanation,‘altetnatiye definitions of certain terms
are given at different places in the repdrt. This has been noted, buﬁ the index
at the end is perhapg the most convenient guide, vFinally, it is worth noting
that no attempt has been made to specify in BNF the syntax of SPL with complete
rigor. Certain syntactic aspects of any prbgramming language can more clearly
and simply be described in prose, where a BNF description would be lengthy, and

complex.

For those already familiar with BNF, the extensions used in this report are
essentially just two: the brackets, '<'" and ">", are used for grouping rather than
delimiting terms, and semantic-cue subscripts are used to distinguish otherwise
identical terms. The purpose of these two extensions is to reduce the number

of terms that havé to be defined, with the ultimate goal being to define
syntactically all and only those terms needed in the prose description of

the semantics of the language. Without such extension,kBNF ordinarily requires .

the syntactic definition of many otherwise unnecessary terms. |

BNF, even as extended here, is actually quite easy to read. A pair of examples,

defining a parade should make this clear.

“parade ::= parade-unit <parade-unit’parade>

parade-unit ::= float | band | drill-team | bunch-of-guys-on-horses

The first definition says: a parade is a parade unit followed by either
another parade unit, or a whole parade. And the second says: a parade unit
is a float, or a band, or a drill team, or a bunch of guys on horses.. The
"first definition specifies, precisely, that a parade must have at least two
parade units, but the number of parade units it may have is not limited.
When a thing is defined in terms of itself it is called a recursive defini-
tion, and is frequently used in BNF language description for reasons of

clarity and conciseness.

12

AN

f—

—

H‘“H -

3

.

—

= pema e

2. ALPHABET, VOCABULARY AND PROGRAM STRUCTURE

2.1 ALPHABET AND SYMBOLS

SPL's symbols may be formed from a basic alphabet of 48 characters consisting
of the 26 letters, the 10 decimal digits, and a dozen miscellaneous marks
including the space and the dollar sign. This alphabet is almost universally
available on mechanical printing, typing, and card punching equipment. However,
SPL also permits the use of an extended character set. 1In practice, the |
extended characters will depend upon the characteristics of the equipment

that is available.

SYNTAX
character ::= letter | digit | mark
letter ::= A | B| C } D|E|F|G|H]|I | 3 | x| L |
M|N|O|]P|]Q|R|s|]T|]UulvIiwlx]|Y]z
digit ::=0 | 1| 2| 3| 4| s5|]e6] 7|89

mark ::=space | (|) |+ | - *] /| .|, 1 "]|=]S$

Where lower-case letters are available they may be used indistinguishably
from the basic set of uppercase letters to improve the typographical

appearance of the program,

The alphabet of SPL is used to form symbols which are the basic elements of
the language. Symbols are syntactically defined as names, primitives, and

constants,

SYNTAX

symbol ::= name | primitive | constant

13

il
a
2.2 . NAMES v : v -
Names serve to identify the various program and data elements that may be
referenced in an SPL program: statements; subroutines, items; groups; arrays;
. rd N

files; ?atterns; hardware operands; hardware operators. A name is a string of
one or more letters and digits which may be punctuated for readability by the
period, Notice that a name must begin with a letter, must not end with a period,

' may contain no embedded spaces and no embedded period strings of length greater

than one.
SYNTAX

name ::= <letter name> <nothing [letter digit .letter .digit>

e e —

Examples:

ALPHA

Z
STEP.27.3
BRANCH

o

-

N
\'\

Names are defined at the point where they are terminated by a period. Thus,

ALPHA, indicates that the name ALPHA is being defined.

To facilitate the independent composition of portions of a program, statement
names defined in a program have a strictly determined scope of definition
for statement reference, being bounded by the innermost pair of named begin and end

brackets containing the definition of the name.

names for statements and declarations does not apply to commands; any previously

defined name may be referenced in a command.

Although it is poor programming practice, where a name is defined to be identical
to a SPL primitive word, there is no ambiguity in contexts where the syntax

rules out one or the other,

« ‘ \

It should be noted that the strict determination of the scope of definition of]
(I/»

14 ' ﬂ

p—

Y

/

'“>

(
\

2.3 PRIMITIVES

Primitives are the built-in symbols of SPL--its punctuation, verbs, adjectives,

etc, Primitives have fixed meanings, as described in later sections. Primi-

tives for basic SPL fall into the categories given below:
SYNTAX

primitive ::= delimiter [operator | descriptor

2.3.1 Delimiters

Delimiters are those symbols of the language which serve exclusively to indicate

the bounds of other syntactical elements.
SYNTAX

delimiter ::= . [, 1718 Cl>y] "' begin |end | term | program

2.3.2 Operators

Operators are those symbols in a language which indicate some action is to be

performed on an operand.
SYNTAX

operator ::= catenation-operator l repetition-operator ,conditional-operator f
arithmetic~operator ' define-~operator]logical-operator f
relational-operator , assignment-operator f functional-~operator]
discrimination-operator fsequential-operator [input-output-operator |
location-~operator } editing-operator] compile-operator

arithmetic-operator ::= = ,+ , * ’ /! e

logical-operator ::= not ’ and ,gg

relational-operator ::= eq |nq | gr | 1s | gq | 1q | equiv

conditional-operator ::= if , then]else

assignment-operator :: =vf set

repetition-~operator ::= times ,EZ lwhile l until] for

15

catenation-operator ::= // | ///

discrimination-operator ::=>§2E f()]IEE_' in
sequential-operator ::= goto l stop !‘when l Qﬁ [call]entryklexif lfor]gg
input-outﬁut-operator £:= open lcloée] read] write ‘ assign ’status lposition

location-operator ::= store l at
editing-operator ::= out | is | all | to | show | thru

compile-operator ::= optimize]count

define-operator ::= execute l where , then l names

of~terms¥*

'2.3.2.1 Functional Operator. Functions are a special class of operators

allowable within SPL and which are governed by a set of rules outlined in
Section 5. In general, functions act on a parameter list which follows the
name and returns a value which may be part of a 1argér formula. ‘A list of

intrinsic (built-in) functions is given below:
SYNTAX

functional-operator ::= log.e | log.10 | sin I cos | tan | abs

The programmer may define his own set of functions that will be treated in a

manner similar to those intrinsic to SPL.

2.3.3 Descriptors

The descriptors are the functional modifiers and descriptions of opeféhds in SPL.

SYNTAX

descriptor ::= intéger , real l pointer l boolean larray ’ mode lprocedure l

function | pattern | file | dec | oct | hex |bit | text | fixed |

float | cell | true | false | ready | busy | error | addr |

* Listing of terms in Section 7.

16

 —

A

&

M

o s e B b 3 —

PR

-

‘_ .

)
-] e

e B

o R — . =

item Iminimum l digit I maximum | signed] unsigned Iroun& l

truncate l group | compool l full |‘unready | value] result
recursive]reentrant [time | space] none B
2.4 CONSTANTS

SPL programs manipulate both numeric data (integer and real) and nonnumeric data

(textual, pointer, and Boolean values). The symbols that denote these values

are constants.

SYNTAX
constant ::= numeric-constant textual-constant | pointer-constant
boolean-constant
2.4.1 Numeric Constants

SPL includes constants for denoting integer or real values. Integer values may

be denoted by binary, octal, decimal, and hexadecimal constants.

SYNTAX
numeric-constant ::= number [real-~constant [binary-constant octal-constant
decimal -constant , hexadecimal-constant
numeral ::= digit <nothing [numeral>
signed ::= -+ ! -
11 i n
number numeral <nothing [gxponent-base—lo umeral>
real-constant ::= <numeral . |. numeral | numeral . , numeral> <nothing |
Exponent-base-lo numeral I 2xponent-base-lO signed ““meral’
Examples:
o188
123e4
e3
6.789¢e-10
17

Integer and real constants denote numeric values in the conventional decimal sense.
The numeral following e in these constants is a decimal scaling factor expressed
as an integral power of 10, Binary, octal, decimal, and hexadecimal constants have

the obvious meaning of unsigned binary, octal, decimal, or hexadecimal integers.

SYNTAX
binary-constant ::= <name. | nothing> A bit ' binary-string '
binary-string ::= <0] > <nothing'] binary-string>
octal-constant ::= <name. | nothing> A oct ' 6cta1-string '
octal-string ::= <0 | 1 | 2 l 3 l 4 l 5 l 6 | 7> <nothing l octal~string>
decimal-~-constant ::= <name. l nothing> A <nothing | dec> ' numeral ' |
hexadecimal-constant ::= <name, | nothing> A hex l‘hexatdecimal-str:’mg '

hexadecimal-string ::= <pumeral | A | B | C | D | E l F> <nothing
hexadecimal-string> '

Examplés:

AL. bit'11011100'

oct'334'

ABC. dec'156'

hex'9C'

2.4,2 Textual Constants

A textual constant is a symbol used to denote a string of one or more alphanumeric
characters or a status value. The omission of the word text indicates that a status

yvalue rather than an alphanumeric string is being defined.

SYNTAX
textual-constant ::= <name, nothing> <nothing | text> ' character string '
character string ::= character <nothing | character-string>
18

—

— ey

e e j—

=

— —

< st 3

p— — —

p—

e

amR SR e

text 'SO IS THIS.'

Examples:

text 'THIS IS AN ALPHANUMERIC CONSTANT. '

ALP. text '92768'
QUALITY ‘GOOD'
STATE 'KANSAS'

2.4.3 Pointer Constants

‘There are two types of pointer constants. The first type addr gives the

effective address value of a statement, procedure, subroutine, array, oY

" group and the second cell gives an index value within arrays, groups, or

tables.

SYNTAX

pointer-constant ::=cell A name | addr /A name
A cell is not necessarily the same as a computer word: internal storage is not

necessarily limited to hardware considerations but is logically oriented and

depend upon item structure within tables or arrays.
Pointer constants serve to denote pointer values and are represented as integers.

An addr, on the other hand, refers to the actual value of the location to which

a particular element in the language has been assigned.

2.4.4 Boolean Constants

The Boolean constants true and false have the obvious meanings; true is

represented by 1 and false is represented by O.

SYNTAX

boolean-constant ::= true false

19

2.5 STATEMENT STRUCTURE

Statements are the operational units of SPL. They describe the data processing
actions that the program is to perform: computational actions; input-output
actions; and statement sequence-control actions. It is convenient, however, to
recognize two types of statements: l)simpie stétements,kwhich express computa-
tional, input-output, or control actions whether simple or éonditional, and which
may incorporate other statements within them and control their execution; and, 2)
compound statements, which group together whole strings of simple, or compound

statements. Compound statements may also contain declarations and commands.

Statements are normally executed in the sequence in which they were written,
although control statements affect this sequence and provide exceptions to this
rule. Statements may be named--so they can be referenced and executed out of the

normal sequence.

'SYNTAX
statement ::= simple~-statement | compound statement
compound-statement ::= <name, I nothing> A begin A statement-string A4 end 4
<name | nothing>
statement-string ::= statement | declaration | command <statement-string |
nothing> _
declaration ::= data-declaration l subroutine~declaration file-declaration
simple statement ::= simple—control-statementT l input-output-statement '
procedure-call-statement] assignment-statement

4 comma (,) may be optionmally used to terminate any simple statement.

" The definition of command is deferred to Section 6.

2,6 COMMENTS »

A comment allows a remark or clarifying prose or punctuation to be included among
the symbols of an SPL program. Comments are ignored by the compiler and so have
no operational effect whatever on the program,

¢

20

\

P

/

g N R R R e e

k /
. i

SYNTAX

comment ::= "'character-string"

The character-string in a comment may not contain the comment delimiter.

Example:

"THIS IS A COMMENT"

The omission of a comment bracket, or the inclusion of an extraneous comment
bracket within the comment, is a major error, for subsequent commentary is

interpreted by the compiler as part of the program.

2.7 PROGRAM STRUCTURE

In SPL, a program is merely a named statement-string, beginning with the program
delimiter and followed by declarations, statements, and/or commands followed by

the term delimiter. The program name defines it for external reference.

SYNTAX
program ::= program A name.Astatement-string A term <name |nothing>
21

3, DATA DEFINITIONS

‘Basic SPL provides declarations_fof defining numeric, textual, pointer, and
Boolean items as well as for defining arrays, and gfoups. " In addition, the
arrangement of elements in memory may be specified and various default descrip-

tions (modes) may be specified.
- SYNTAX

data-declaration ::= item-declaration | array-declaration I group-declaration

storage-declaration | mode-declaration

Other declarations for defining functions, procedures, files, and textual

pattefns (see Sections 4,5,6) will be described in later sections.

3.1 ~ ITEM DECLARATIONS

In SPL, the basic (scalar) units of data are called items. All necessary
attributes of an item's valué, such as its type and format, are supplied only
once in an item description. 1In the absence of an item declaration, data is

assumed to be mode-defined.

In SPL, values other than those denoted by constants or those used only as
intermediate results must be declared. Several different but similarly described

items may be declared at once,
SYNTAX

item-declaration ::= <item | nothing> A name-string A item-description & <nothing]

initial-value-string>

name-string ::= name. 8 <nothing | name-string> ,
initial-value-string ::= /item-value A <nothing [initial-value-string>
item-value ::= numeric-constant | pointer-constant | textual-constant |
" boolean-constant
item-description ::=vnumeric-item-description ’ textual-item~-description]'
pointer-item-descriptién | boolean-item-description
22

//\\‘

J//

~

<4 ==

e

p

-k

u —

P B e o 4 < = = 4

/

I

(

4

numeric-item description ::= full-integer-item-description | = full-real-item-
description
full-integer~item-description ::= integer Avnumberl A <bit | digit> A <minimum |

nothing> A <nothing | number2 A maximum>

<nothing | signed | unsigned> A <nothing | round |
truncate>

full-real-item-description ::= real A numberl A <bit | digit> A <nothing | minimum>

A <nothing | -> number2 <bit | digit> A <nothing |

float [fixed> A <nothing [signed] unsigned> A

<nothing ! round } truncate>

textual—item~description -

]

text A <nothing | number & character |

name _ . . A character>
of-integer-item = ——

pointer-item-description ::= pointer

boolean-item~-description ::

boolean

Note a., In real item declarations, a negative scale number (of fractional or’
exponent) bits is only relevant where the scale is fixed.
b. Numberl indicates minimum number of bits or decimal digits.
c. Num.ber2 indicates either number of fractional bits or decimal digits

or number of bits or decimal digits needed to represent the exponent.
Examples:

item ADAM. integer 6 bit minimum /74

item BE9, real 31 bit 7 bit float signed truncate'

item ROD. text 4 character

item SA. pointer
item BOB. boolean

23

The numeric item descriptions have several common elements. In an integer,

real, or item description, number1 indicates the minimum number of binary bits

or decimal digits*--including any fraction or exponent but excluding any sign--

needed to represent the item; the unsigned descriptor indicates that the item's .

value is always positive dr‘zero; the omission of the unsigned descriptor or
indication of a signed item indicates that the item can also take on negative

values; the truncate descriptor indicates that any value assigned to the items

is to be truncated rather than roundeéd, as would be the case if round or nothing

were used.

Abbreviated descriptions are possible for numeric items, according to the
declared mode (see Section 3.4). In an integer item description, the maximum
absolute value that the item will be assigned is indicated by number value.
(Where this is omitted, the maximum absolute value is taken to be either

number number |

2 -1 or 10 -1, depending, of course, on whether bits or digits
are indicated.) 1In an integer item if the minimum number of bits is omitted

the initial value will be used as an indicator of the minimum number of bits.

In a real item description, fixed-point representation may be indicated by the
fixed descriptor. Floating-point representation is assumed where nothing or

float is indicated. Where fixed-point representation is indicated, number2

indicates the number of fractional bits or digits. If the indicated numberzl

of fractional bits or digits is negative (as indicated by the presence of the

minus sign, -), the number2 of low order integer bits or digits are not signif-

icant and therefore need not be carried. And if the indicated number2 of
9~ numberl)

fractional bits or digits is greater than number then the (number

1’

high order fractional bits or digits are not significant and therefore need not

be carried. On the other hand, where floating-point representation is indicated

*Only one base is used, although the programmer can specify numeric item size
in terms of either.

24

&
)

1

J

_ = =

=2

—a

;
/

i eeas
/ i

AR ma N -

A4
/

(by the omission of the fixed descriptor), number2 indicates the minimum number

of Dbits or digits needed in the binary or decimal exponent to adequately represent

the item's value.*

In a textual item description, the length of the item in characters may be
indicated by a number, or it may be indicated by the name of an'integer item,
wherevthe current length of the textual item is specified by the current value
of the integer item. Where no length is indicated, a length of 1 character is
assumed. The last symbol in a‘textual item description indicates the item's

alphabetic code.

Pointer and Boolean items are described with the pointer and boolean descriptors.

(A Boolean item is actually represented as a one-character, binary textual item,

with the Boolean constants true and false equivalent to bin 'l' and bin '0'.)

3.2 - ARRAY DECLARATIONS

An array declaration describes the structure of a collection of similar data
elements~--either items or groups, Rectangular arrays of practically any number
of dimensions may thus be declared and several different but similarly described

arrays may be declared at once.

SYNTAX

array-declaration :: array A name-string A array-description

array-description ::= ‘<item—descriptioﬁ | group-description> A dimension-string

A <initia14value-string] nothing>

s i . - b a]) . . S
dimension-string <number] n meof-lnteger-lteﬁ> A <nothing I by A dimension

string>

(
\

*The floating~point operations on most machines permit only limited variations
(if any) on the values of number. and number,. The SPL compiler must therefore
translate these into the values indicating t%e appropriate single- or multiple-
precision floating-point representation.

25

Examples:

array PRESSURE. integer 4 digit 10 by 20 by 5 |
array GRIDI. boolean 32 by 32

array A, begin I. J. K. integer 25 bit end (A)

In designating an individual element from an n-dimensional array, the array
name must be subscripted by an n-component index string of numeric formulas.
And where the size of a dimension is K elements, the integral value (truncated,

if necessary) of the corresponding component of the index string can only range

from 1 to K.

Abbreviated descriptions are possible for arrays according to the declared mode

(see Section 3.4).

3.3 GROUP DECLARATIONS

A group is a collection of (usually) dissimilar data elements--items, arrays, and
even subgroups. A group declaration serves to describe the elements of a group‘
and give it, optionally, a name. (A group name may be omitted when the group is
" never referenced as an entity, but only its elements.) 1In addition, functional
relatibnships among the elements of a group may be declared within a group
declaration, as functional data elements of the group. Several different but

similarly described groups may be declared at once.

SYNTAX
group-declaration ::= group A Znothingl name-string>'A'group-description
grbup-description = Dbegin A declaration-string A end A <nothing [(name)
declaratién-string 1= <item-declaration | array-declaration | group-

declaration] function-declaration | mode-declaration l

storage-declaration> A <nothing | declaration-string>

26

N
1
1‘
:

¥

e T e B e

a

ol

Note: Where groups are nested, the inclusion, in parentheses after the group
description, of the group or array name (if any) immediately preceeding
the group description, automatically "ends" any "open" subgroups (or
compound statements) within the groups. Thus, "end (name)" in the ex-

pression 'name. begin ... end (name)" may be syntactically equivalent

' to a string of several end brackets.

Examples:

group begin item I, integer end

group A. Dbegin item W. integer group Q. begin item P, text 6
character item V. boolean end (A)

< - [

l“ group TRACK. begin group INITIAL. begin item X. Y. Z. real end item N. integer
|
"NUMBER OF LEGS" 2 digit, 80 digit maximum unsigned truncated end (TRACK)

gﬁ 3.4 MODE DECLARATIONS

Mode declarations serve to declare normal modes of description for numeric items,

arrays, lists, and files.

< ‘Aﬂ>v ‘ o I,-

SYNTAX

mode—declaration

mode A <numeric-item-description | array-description l

full~file~description>

Examples:

mode integer 15 bit unsigned truncate

mode real 31 bit 7 bit scale

27

3.5 - STORAGE DECLARATIONS

Although the programmer is often unconcerned with the details of memory alloca-
tion; he may control it with storage declarations. A storage declaration serves
to indicate £o the compiler the desired arrangement within memory of the various
program elements--items, arrays, gfoups, files, statements, functions, and pro-

cedures—-named in the declaration.
: y ;

 SYNTAX

storage-declaration ::= Bstore A block-description A at A pointer—formula'
|] :
block—descrlpFlon Pi= name o oot A <nothing | block~description>

{

Note a. The name of any element may appear only once per storage declaration,

but may appear in other storage declarations if logical inconsistencies

are avoided, such as declaring once that A is stored after B and again

that B is stored after A.

Note b. When a storage declaration appears within a group description, only
those items, arrays, and subgroups declared within the group may be '
named in the storage declaration. This excludes functions declared

within the group as well as external elements.

Examples:

store A at cell sub I

store A B at step

store A at bit (9 Eg_ll)

store B at byte hex (1 to 6)

The elements-—-items, arrays, groups, files, statements, functions, and pro-
cedures--named in a block description are allocated, in the sequence given, a
block of consecutive units of storage. Each different block described in a

storage declaration is allocated storage beginning at a common origin cell. 1In

28

&
[~

'

. =

e =

i(‘) ivﬁ 3 fﬁ—‘ '% i “ﬁi E:— 5

P

other words, each block has the same pointer value, and this value may be
explicitly specified in the storage declaration by a pointer formula. Each
block thus "overlays' the other blocks listed in the declaration, permitting

I the programmer to utilize the same block of memory for different purposes at
different times during the computation.

) |

29

3.6 VARIABLES e

In SPL, variables (scalar) item values,‘arrdys of values, and groups of values

may be altered -during the course of program executipn. Variables may be
specifically located in memory and they may Bg subscripted by numeric formulas
to distinguish thembfrqm other elements of arrays.‘ Variables may be both
coniditional and subscripted. Variables may élso be enclosed in parentheses to
altef or emphasize the séquence in which these operatibns are performed. 1In
addition, certain compiler-dependent hérdwarevoperands and certain functions
may also serve as variables. '

SYNTAX

variable ::= name | subscripted-variable | conditional-variable |

catenated-variable | hardware-operand

Note 1. The name must be that of an item, an array, or a group.
Note 2. To be a variable, a hardware operand must be one that can be assigned

a value by programmed action. ‘ !

Examples: ¥

The exemplary variables in this section will often involve the following data

elements:

array A. begin ... end (A) 6

(A)
(A))
A=z (Ap
(W)
(Ag)
(A

6)

* The = sign stands for semantic equivalence.

30

o T

M

iy ~—|

3

—

&

S ey En ..

QA

/

—_——— e .

j
{
{
\
AN

array I. integér 3

(Ii z 2)
I = (12 = 4)
(I3 = 1)

array B. begin ..

. array C. begin ...

- _q _
B P €y,1,0 (C1,2,1)
L€y 49 B1,2 T 1,2 €6, 2,2
J) { 5
- N\
- r - ~
€, 1 | (€.,
Bz = fc = i B =icC =1(C)
2,1 (€51, 2,27 %2,2 7| "2,2,2
L I |
\'
~ Rig ~
(€3,1,2 (€3,2,1)
I [V ‘ I8, . _lc, . _
=3t E G520 3,2 2 173,2 5 (€5 5)
L I L
array J. integer 2 by 3
;. (Jl,l = 5) (Jl’2 = 3) (Jl,3 2 2)
Up,p 29 Uy =) (524
S$LIGHT = a Boolean 36-array of console lights
Note: §$ signifies hardware operand (see Section 3.6.4).

31

3.6.1 Subscripted Variables

Elements of a nonscalar variable (e.g., an array) may be designated'as,a

variable by subscripting with an index string, which is essentially a

numeric formula that is interpreted according to the dimension of the variable

being subscripted.

SYNTAX

subscripted-variable ::= wvariable <(index-string) | A sub A index-string>

index-string ::= index A <nothing [<// [to> A index-string>
index ::= <numeric-formula l index-string> 4 <nothing" index> ’ (index)
Examples:
A sub 3 = A3
' A
A sub (3//1) = (A sub 3, A sub 1) =
; 1
A sub ((3//1)) = [A; 4[] .
. » Al
A sub (1 to 3) = (A sub 1//A sub 2// A sub 3)= A2
A A3
’ 2
A sub I = (A sub 2, A sub 4, A sub 1) = A4
Ay
A4 . S
A sub (I sub 2 //2) = (A sub 4, A sub 2)= '
A
2

The déscription of the catenation operator // is in section 3.6,2.

~

. A,v 44: . ; . - i i

1 [———

[

a

—

A sub (J sub ((1//2), 2)) = A sub (J sub (1,2), J sub (2,2)) = A sub (3,1)
= A sub (3//1)

sub (J sub ((1//2),2)) = B sub (3,1)

A sub J = A sub (5,6//3,1//2,4) = A sub ((5//6)//(3,1)//(2//4))

i

B sub (2//3) = B sub ((2,1) to (3,2)) = B sub ((2,1//2,2//(3,1//3,2)) =

i

fuly liig .
w
wt
2
()]

(8,17 (By)

— H

(By 1) (Bg o)

!

(A sub J)sub 2 = (A sub J) sub ((2,1) to (2,2)) = (A sub J) sub

(((2,1)//(2,2))) = [Aq 4]

b i ‘4';

Jsubl=1[532]

(J sub 1) sub 2 = J sub (1,2) = J1 2
b4

An index string conforms to the syntax rules for numeric formulas. In this
light, an index string is a row-vector of indexes, which are themselves column
vectors whose elements are either positive (i.e., greater than zero) truncated
integers as specified by numeric formulas, or else index strings. An index

containing an index string is semantically equivalent to an index string, as

explained in the following example:

A, (B// C// D), E=ABE // AGC,E // AD,E

By such transformations, any index string may be simplified by expansion to an

equivalent index string whose component indexes do not themselves contain index

strings.

?“$..‘ W R S S

33

The effect in an index string of the repetition operator to is as follows:

(in, ceny iz, il) to (tn, ey by, tl) = (... (*in, ey iz, il to in, ceey

fgy iyl toee. Lo i, won iy, B4l B0 4, Lal iy, epLo(d, ..., 141, i
: .) *%
+ + i ; ,
cees ig T1, il T1td .., to Lis vees B0 tk, tk—l’ e t2, tl) ces) Lo

+ . . .
¢ iye cees 1k+1; 1, s dp g vees 1gs il to ... to tn’ ceey t2, tl;t 1to
L oo tos tl)...) . While this is the general rule, a simpler example may
prove helpful. Thus, (1,1,1) to (2,2,2) = (((1,1,1 to 1,1,2) to (1,2,1 to 1,2,2))

to ((2,1,1to 2,1,2) to (2,2,1 to 2,2,2))).

Nominally, an index for a k-dimension variable contains k or less components.

And where an index contains less components, a rule of the following type holds.

Consider the 3-dimension array: array P. begin ... end X by Y by Z. Then, P , (
(A) = P ((A,1,1) to (A,Y,Z)). Actually, an index with more than the ‘ ~;I

. nominal K components has a defined meanihg. For a k-dimension variable, then,
an index string of n simplé indexes (i.e., indexes containing no component

index strings) behaves as if assigned to a data element, E, declared as follows:

o

begin

K. integer

o Y

array E. integer K

end N

where K and N are positive integer items with maximum values k and n, and E
is a positive, truncated integer array. After this (hypothetical) assignment,

E (1) contains the first index, E (2) the second, and so on.

*. n parentheses

*% k parentheses

34

——

.) RS- 4 [

)

\

The result of a subscription operation on a variable is a column vector of the
elements specified by each index in the (unsimplified) index string. Of course,

these elements may be scalar or nonscalar, and in general, a subscription .

operation may produce a nonrectangular array.’ * Consider, for example, array Q.

begin ... end J by K, where Q (A,B to C to D E to (F,G to H,I))

- =
Qa,b

- Qc,l Qc,2 tee Qc,k
'Qd,e
.o U,

L t

It is important to note, then, that where index strings are nested, the elements
designated by the indexes of the outermost index string are row catenated, the
elements designated by the indexes of the next level index strings are column

catenated, and so on.

For purposes of subscription, a complex, scalar numeric value (e.g., Q) may be
considered as a 2-element, real vector, so that Q (1) designates the real
part of Q and Q sub 2 designates, as a real value, the imaginary part of Q.
Similarly, a scalar, n-character textual value (e.g., T) may be considered as
an n-element character vector, so that T (i) designates the ith character

of T and T (i to i+k) designates the k-character subtext beginning at the

ith character.

* Variables with the structure of a nonrectangular array can, of course
be subscrlpted but it must be done very carefully,

. 35

3.6.2 Catenated Vériables,

~In SPL, scalar (single dimension) variables may be Catenatéd into nonscalar
(multi-dimensional) variables, which may in turn be catenated 1nto nonscalar
variables of greater size or number of dimensions.
 SyNTAx:
catenated-variable ::= variable A <nothing ’ catenation-operator> A variable

Note. Row catenation is assumed where a column, plane, etc.,, catenation

operator is omitted.

Examples:
- -
| A Ly
A sub (1 to 3) // ; = A2 12
43 13
2 A -
r2 Bt Ill
A sub (6 to4) //C sub . A, ?é
. 7]
(1 to 3,1) /// A sub (1 to [Ac €, 1] IB—J
3) // 1= !
A5 C2,l 'l
A, C !
- L L 4 39];'11
I Jsub 1l = Il
I
I3
Jl 1 91,2 91, 3

J sub 1 (I sub 1// 1sub 2 // I sub3)J

o -
J1,1 91,2 91,3

sub 2 = I I I

"

P

3

B

sy

3.6.3 Conditional Variables

SPL permits variables to be conditionally specified.

SYNTAX
conditional-variable ::= if A condition A then A variablelvax<n0thin8 | else j
variable2> '

A conditional variable specifies one of two alternative variables--if the

condition is true then variableI, otherwise (else) variable,. Thus, if true

then A else B = A, and if false then A else B = B.

Examples:

if T 1s J then J else 1

if A eq 27 or T then ALPHA
if T then I

3.6.4 * Hardware Operands

Hardware operands are compiler-dependent data elements that may in general,
acquire their values independently of, and without, programmed action.* A

hardware operand may be a numeric, pointer, or Boolean item.

Hardware operands are often, but not always, ''read-only" in nature. Some
typical hardware operands are: clocks, switches; elapsed time counters;

device status indicators; device control signals; program interrupt signals.
Clearly, some hardware operands could also be described as files, with the
choice depending on program efficiency considerations peculiar to the particular
system., One such consideration is, of course, the practicality of automatically
monitoring the changes in value of a hardware operand that is used in specifying

the condition for executing a chronic statement.

*This is not a prerequisite, though. A hardware operand may be completely
under programmed control.

37

e

- SYNTAX

hardware-operand ::= $ name

Examples:

$LIGHT
$CLOCK
SKEYBOARD
$TAPE
$OVERFLOW
SACCUMULATOR

In a hardware operand, the $ identifies the name as that of a hardware operand.

Where a éomplete set of hardware operands 18 available, the programmer may
- command the entire machine. Hardware operands generally differ from machine to

machine, so that programs containing them are usually machine-dependent.

3.7 COMPOOL DECLARATION

A comgoolldeclaration defines the name of the compool to be utilized for a

program. The compool contains definitions of items, array, groups, or programs
that are commonly used by a number of programs or procedures. Where this common

usage exists the data may be defined once in a compool and then called upon by the
program desifing to utilize it through the compool declaration. Data declarations
within a program take precedence over compool declarations.

SYNTAX

co l-declaration ::= co 1 a
mpoo tio mpool A nvmeof—compool

Examples:

compool BAl

The compool resides in the binary system library and is not recompiled with each

program which references it unless it is changed. Where there is a conflict in

name definition between the compbol and the program, that conflict is resolved
in favor of the individual program. The compool declaration should immediately

follow the program identification statement.

38

\\‘:

Y

L

e

4, STATEMENTS
4.1 ASSIGNMENT STATEMENTS

An assignment statement assigns the value specified by a formula to be the

value thereafter designated by a variable. The assignment of nonscalar values

is on an element-by-element basis.
SYNTAX
assignment-statemént ::= <nothing set> A variable A = A formula

Note: The statement prefix, set, is an optional "noise' word, useful for

improving readability in certain contexts.

Examples:

ALPHA (1 to N) = 0

$SIGNAL (K) = true

WEATHER (AIRBASE) = 'CLOUDY'

set IDENTIFIER = text 'CALCIUM CYCLAMATE'
set SWITCH = 16%44

set IT = p¥¥y - (xta®¥ 2)

PI = 4% arctan 1

Assignment is done as if in two steps: first, the formula is evaluated; then,

the resulting value is assigned to the variable. The formula may involve the

variable, in which case the old value of the variable is used in the calculations

needed to evaluate the formula.

Assignment is defined basically on scalar operands. Nonscalar assignments are

done on an element-by-element basis by index.

39

 Assignment by index is done according to the following rules:

1. Both the variable and the specified operand are considered
to be dimensionally normalized. This is done by, in effect,
-rearranging the dimensions of the two operands as follows:
(a) wherever a dimension in the variable. or spe01f1ed operand
has only one element, unless that dimension is one whose size
varies in the variable operand, it is moved so that it is a
higherbdimension than any with more than one or a variable
number of elements; (b) both operands are then reduced in
dimension by disfegarding all dimensions higher than the
highest dimension with more than one or a variabl e number

of elements.

By considering both the variable and the specified operand to be thus dimen-
sionally normalized, both a 2 by 1 by 1 by 3 by 1 by 9 array, and a 1 by 2 by

1 by 3 by 9 array; for example, may be considered, for assignment purposes
only, as 2 by 3 by 9 arrays. As another example, a 2 by 1 by 3 by 9 by 9
specified array assigned to a 2 by 1 by 3 by N by 9 variable array, may be
considered as a 2 by 3 by 1 by 9 specified array assigned to a 2 by 3 by N by 9

variable array. To further illustrate, where A is an N-element row vector and

B is an N-element column vector, then A = B = A =B (1,I) (I=1 to N), and B = A =

= A (1) //(I =1 to N).

2. After any dimensional normalization, where the number of
elements in the ith dimension of the variable is spetified
by an integer item, that item is automatically aséigned the
value min (x,y), where x is the size (i) of the specified.
operand and y is the maximum value declared or determined

for the item.

40

i

\\

a

o

3. The specified operand is then dimensionally adjusted, where
necessary, to the dimensions of the variable. Where the

specified operand has fewer dimensions than the variable, it

And where it has more dimensions than the variable, its higher

[is converted to the higher dimension by appropriate replication.
l dimensions are truncated (disregarded).

Dimensional adjustment of the specified operand permits a scalar value, for

example zero, to be appropriately replicated for assignment to each of the
elements of an array.

)

4. After any dimensional adjustment, elements of the variable are

assigned the values of identically indexed elements of the

or the specified operand has an index that is not the same as

l) specified operand. Where an element of either the variable
ﬂ the index of any element in the other, however, no assignment

N involving that element is made.

Assignments between scalar operands--including multicharacter texts--obey the

following, additional rules:

5. Assignment is only done between pairs of numeric operands,
pairs of textual operands, pairs of pointer operands, or pairs
of Boolean operands--allowing, however, for the equivalences

between Boolean values and binary textual values, and between

integer numeric values.

|

|

l

[binary, octal, decimal, and hexadecimal textual values and

[6. Where necessary, scalar numeric values are automatically
converted during assignment to the mode and reprsentation,

[and are rounded or truncated to the precision, of the variable
to which they are being assigned. Truncation of '"overflow

[digits" (i.e., most significant integer digits) is done as a

|

é(fj, ‘ last resort. Assigning a negative value to an unsigned

l variable is equivalent to assigning an absolute value.
//

41

/i
N
7. Where necessary, scalar textual values are considered to be
automatically convertéd during assignment to their highest
common code. Where either or both scalar textual operands in
an assignment are multi-character texts, assignment occurs
exactly as if between vectors of one-character texts, except
that considerations of right or left justification are applied
first.. o ' '
8. Assignments between scalar pointer values and scalar Boolean
valués are straightforward. '
4.1.1 Formulas
A formula specifies a value and is, in effect, a computing rule for obtaining
that value. A formula may contain variables and so the value it specifies,
in general, is dynamically dependent on these Variablés, as will be described.
A formula results in a single value which is designated by a combination of (//
variables, constants, arithmetic or logical operators, and grouping brackets. o

Hence, variables and constants are also formulas. The same characteristics

apply to both formulas and variables.

SYNTAX:

formula ::= numeric-formula [textual-formula | pointer-formula |

boolean-formula | (formula)

As a formula, the value specified by a variable is, of course, that which it
designates. A function specifies the value computed by a subroutine, and a
constant specifies the valﬁe it denotes. Formulas may also be enclosed in
parentheses to alter or emphasize the sequence in which the operations on
formulas are performed. In addition,bany éompiler-dependent hardware operand

may serve as a formula to specify a value.

42

SR . < o

&

et P

e

[

—

P

A formula may specify values containing a variety of data types. The rules

for the evaluation of such formulas are given later. Formulas that specify -

values with all numeric components are classed as numeric formulas, however.

4.1.1.1 Numeric Formulas

A numeric formula specifies a scalar or nonscalar numeric value computed from
the values expressed by its individual operands, which are themselves numeric

formulas (e.g., variables and functions of numeric type, numeric constants, etc.).

f
It Likewise for textual, pointer, and Boolean values.
ﬂm The arithmetic operators +, -, *, /, and ** have the conventional meanings of
lﬁ addition, subtraction or negation, multiplication, division and exponentiation.

Enclosing an arithmetic operator in parentheses converts it from a binary to an

n-ary operator. Double arithmetic operators are useful in specifying matrix
l operations.

l‘”“ : As in algebra, division by zero (and the equivalent raising of zero to a negative
o power) is undefined. Mixed and fractional exponents are allowed, as are
{ exponentiations.
M’ SYNTAX
numeric-formula ::= constant l function f variable hardware-operand

A <nothing] arithmetic-operator> A <nothing

numeric-formula> | n-ary-arithmetic-operator A numeric-
formula | numeric-formula A matrix-operator A

numeric-formula , boolean—formula

n-ary arithmetic-operator ::= (arithmetic-operator)

The meaning of double arithmetic or matrix operator is explained later in this

section.

[matrix-éperator = alrithmetic—operat:or1 . arithmetic-operator2

43

Examples:

27

(T-1)

A sub 0 = Q |

(ALPHA sub (T-2)) /1.889E-6

(A, B, C)**(2,3,4) = (A%*2, B**3, C#¥4)

Parentheses may, of course, be used freely in constructing numeric formulas

of arﬁitrary complexity, according to the notational conventions of ordinary

algebra. Arithmetic operations .in a numeric formula are generally performed
>in sequence, from left to right, except that parenthesized operations are

performed first, and then operations are performed in the following order of

precedence:
a. n-ary arithmetic operations
b. matrix operations
c. exponentiation, unary addition and negation (these are performed

in sequence from right to left, in exception to the general rule

stated above)
d. multiplication and division

e. addition and subtraction

Arithmetic operations involving any pair of numeric operands are defined in

SPL (except for division by zero, of course), even though they may différ in
dimension (scalar vs. nonscalar values), in représentation (fixéd-point vs.
floating-point values), and in other subsidiary attributes. To achieve compati-
bility in dimension and representation between operands, where this may

be necessary, the following conversions are automatically applied:

b4

\

- : 2 b

o

.

a. Binary (including Boolean 1-bit texts) octal, decimal, and hexadecimal
texts are converted to unsigned integer values according to the obvious
positional notation. For example: »it'0011011110' = 222. The empty

text (zero characters), as denoted by null, is converted to the value

. zero.
b. - Integer and fixed-point values are converted to floating-point
representation.
c. Scalar values are (in effect) converted to nonscalar values by assuming |

appropriate replications of the scalar. Similarly, nonscalar values of r
lower dimension are converted by replication to nonscalar values of

higher dimension. For example: (A,B,C//D,E,F//G,H,I)+1 =

(A+1,B+1,C+1//D+1,E+1, F+1//G+1,B+1,1I+1) and (A,B,C//D,E,F//G,H,1)*

(1,2,3) (A*1,B*2,C%3//D*1,E*2,F*3//G*1, H*2,1%3).

it

d. Arithmetic operations involving nonscalar operands of similar dimension

but different size (number of elements) are done by truncating (i.e.,

—— sa

disregarding) the excess elements (of either operand) in any of the
dimensions. For example: (A,B,C)+(1,2) = (A+1,B+2), and (A,B,C//D,E,F)
/(1,2//3,4//5,6) = (A/1,B/2//D/3,E/4). 1In other words, arithmetic

operations are only done on operand pairs with identical indexes.

Arithmetic operations on real operands are done according to the following
scaling rules, not all of which apply in any given case. The fdllowing notation
is used. ©Note, this notation is in part SPL notation and standard mathematical

notation.

AR SE) S @ San S A
'ﬁ

=
(

45

=
I

= number of integer digits¥®

1
N2 = number of fraction digits
N, = number of significant digits

=z
it}

4' numbexr of exponent digits .

=
i

maximum number of digits in an integer or fixed-point

valued operand¥*
Where Nl’ %, and Wapply to integer and fixed-point valued operaﬁds, and

N3 and N4 to floating-point valued operands.

1. Fixed-point addition and subtraction:

C=A+B,C=A-Bo

N,(C) = 1+ max [N (4),N,(B)]

N,(C) = Lf N,(4) eq Ny(B) or N,)
‘(B) eq O then Nz(A) else , !

. ’ N
if N,(A) eq O then N,(B) '
else 1+ min [NZ(A)’NZ(B)]

2. Fixed-point multiplication: C = A¥*B,

'Nl(C) = N;(A) + N, (B)

Nzgc) = NZ(A) + NZ(B)

*It is assumed in these equations that Ni'(A)_E number of digits in A of
type i.

*%This is an implementation constraint, but should not be less than 10 decimal
or 32 binary digits.

46

&)

3. | Fixed-point diVision: C =A4A/B
N, (C) = Ny(&) + N,(B)
NZ(C) = if NZ(A) eq 0 and NZ(B)
eq O then W-1-N, (A) else
if N,(A) eq O and N,(B)
ng O then 2*N1(B)+N2(B)-1
else if N,(A) ng 0 then

Nl(B) + N2(A)

4. Fixed-point exponentiation: C = A**B,

Exponentiation is done in floating-point, unless: The base A is an
integer or fixed-point value; and the exponent B is aﬁ integer value;
and the greatest possible magnitude of the exponent, times the numher nf
(integer and fraction) digits in the base, 1s less than W. 1If this
condition is satisfied, the scaling rules for fixed-point multiplication

and division apply--as many as W-2 multiplications followed by, at most,

one division.

Nl(C) = [Nl(A)+1]*B-1
N,(C) = N,(A)*B

5. Floating-point arithmetic operations.
N,(C) = max [N,(A),N,(B)]
N,(C) = max [N,(4),N,(B)]

Intermediate integer and fixed-point results are represented by W.digits.
Where the number of digits (determined above) exceeds W, excessive digits
are truncated. Truncation is done first on least significant fraction digits

then, if necessary, on most significant integer digits.

47

In defining the arithmetic operators as n-ary rather than binary operators, . j;

there are three cases to consider: where the operand (A, for example)

e

specifies a scalar numeric value; where it specifies a vector (one-dimensional

—

array); and where it specifies a multidimensional array. The result of an n-ary

arithmetic operation (C, for example) is defined in the following table:

Scalar A Vector A : Multidimensional A
C = (+)A C=A C = (Aj+Ay+.. . +A) c, = (+)A1, cees 'cn = (HA_
C = (-)A C=-A C = (Al-Az-...-An) C1 = (-)Al, coe, Cn = (-)An
C = (¥)A Cc=A C = (Alv'eAz#,_..chn) CL=(MA, ..., C = (MA
C = (/)A C=A C= (A /Ay/.. /M) Cp = (DA, «.vy, C o= (DA
c= (**)A C=A C = (Ap¥FA R, FRA) C, =

The meaning of the matrix operators is defined, in general, as follows. Given

|
(**)Al, ceey €= (FOA i[
I

two ndmeric arrays X and Y declared

array X. begin ... end m by p by ... ' » T

array Y. begin ... end q by n by ... ' L w

and any two arithmetic operators, °py and op,, then the result, C, of X

v 2’
op « ©OP, Y may be defined by defining the elements of C.

C sub (1,1) = (op;) (X sub 1 op, Y sub (1 to q, 1))
C sub (i,j) = (opl) (X sub i op, Y sub (1 to q, j))
é sub (m,n) = (OPl) (X sub m op, Y sub (1 to q, n))

E\\/ - i F ‘_i;', H

In particular, where X and Y are declared, for example,

array X. real M by P

P

array Y. real P by N

then X+.*Y is the familiar operation of matrix multiplication.

)

.

48

1

/
|

: -

{

) |

4.1.1.2 Textual Formulas

A textual formula specifies a scalar or nonscalar textual value computed from

the values expressed by its individual operands, which are themselves textual

formulas—-textual variables and functions, textual constants, etc. No special
operators are provided in SPL just for text processing; instead the generally
applicable operations of subscription, catenation, etc., are used. Boolean

formulas specify values that, textually, are l-character binary texts.

SYNTAX

textual-formula ::= textual-constant A <catenation-operator subscription-

operator>

Examples:

'THOMAS ROMANOV' sub (9 to 11) = 'OMA'
('T" 'H' 'OMA' 'S') sub 3 = 'OMA'

4,1.1.3 Pointer Formulas

A pointer formula specifies a scalar or nonscalar pointer value computed from
the values expressed by its individual operands, which are themselves pointer

formulas--pointer variables and functions, pointer constants, etc.

Intermediate floating-point results are carried in N3(C) significant digits.
Unless a floating-point result is for use in computing a value to be assigned
to a truncated real item, it is, in effect, first calculated to N3(C)+1
significant digits and then rounded (away from zero) by adding one to this

least significant digit and then discarding it and renormalizing if necessary.

SYNTAX

pointer-formula ::= name A < sub A index-étring |nothing >|ce11 A sub A
index-strine [cell Avariahle | Bit A sub A

Examples: index-string
STEP sub J

cell SORT

STEPS
cell sub 3
bit sub N

The ith cell in memory may be specified by cell sub i; the origin cell for a

variable V may be specified by cell V. (Where cell , cell , and

, , “1)
cell contain a value, the value's origin cell is cell , where i < j, for
=T : ‘ ey -
j=1,2, ... , n. The pointer formula cell;V, for any variable V, therefore

always specifies a scalar pointer value.

4.1.1.4 Boolean and Relational Formulas

A Boolean formula specifies a scalar or nonscalar Boolean value computed from

the values expressed by its individual operands, which are themselves Boolean
formulas--Boolean variables, functions, and constants, and relational formulas--
and binary textuai formulas. The conventional logical operators and, or, gggil‘
(equiValence), and not are available, as are the relational operators eq (equals),
ngq (is not equal to), 1s-(is less than), gr (is greater than), 1q (is less than
or eqﬁal to), and gq (is greater than or equal to). N-ary logical and rela-
tional operators are also available. Logical and relational operations on
nonscalar operands are done on an element-by element basis. A scalar Boolean
formula is more conveniently called a condition, and a binary text may be con-

sidered a vector of Boolean values.

'

- 50

— -

- 3

SYNTAX

condition ::= boolean-formula

boolean-fqrmula ::= boolean-constant | not A boolean-formula ’ boolean-

formula A <and ' ggvl equiv> A boolean-formula |
relational-formula l n-ary-logical-operator A boolean-

formula

relational-formula ::= <nothing , n-ary-relational-operator> A formula

A< nothing l relational-operator A relational-formula>

n-ary-logical-operator ::= (<and | or , equiv>)
n-ary-relational-operator ::= (relational operator)
Examples:

not T

not T and (B equiv C or T)

A eq Qor not T

bit ' 1" = true

false, not T, V sub I to V sub (I+l to J)

AeqQlgDngl |

Parentheses may, of course, be used freely in constructing Boolean formulas

of arbitrary complexity. Logical operations in a Boolean formula are performed
in sequence, from left to right, except that parenthesized operations are done

first, and then operations are done in the following order of precedence:

n-ary-relational operations

. relational operations
n-ary-logical operations

not

and and or

equiv

SN W N

.

51

Relational operators are defined p:imarily oh pairs of scalar values. If the
indicated relation holds, the operation specifies the Boolean value true, other-
wise it specifies the value false. A relational formula invOlVing scalar
operands and several relational opérators specifies a Boolean vector, e.g., A
eqg Beq CngD =Aeq B, Beq C, C ng D. Relational operations on nonscalar
operands are done on an éleﬁent—by—element basis, yielding a nonscalar Booiean
value, and where it is necessary ﬁo achieve dimensional compatibility, the
dimensional conversions described in Section 4.1 on numeric formulas are

éutomatically applied.

In comparing numeric operands, where it is necessary to achieve compatibility
in dimension, mode and representation, the conversions described in Section 4,1.1
on numeric formulas are automatically applied. However, only the relations
equal and not equal are defined when either operand is complex. In additionm,
in comparing a pair of integer or fixed-point values A and B, the comparison
is dnly carried out to [iﬁ_Nz(A) 1ls O and NZ(B) 1s O then min (NZ(A)’NZ(B))
else max (O, min (N2(A),N2(B)))] fraction digits (where NZ(X) z the number of
fraction digits of X.) And in comparing a pair of floating point values Y and
Z, the éomparisoﬁ is only carried out to [min (N3(Y),N3(Z))] significant digits
(where N (X) = the number of significant digits of X). 1In comparing scalar
textual operands of the same length in the same alphabet, the shorter text is
left or right justified and filler characters are appended. Then, for textual
operands of the same length in the same alphabet, comparison involves the pair-

by-pair comparison of characters according to the alphabet's collating sequence.

Scalar pointer values are compared according to the following ascending order: .

null* cell sub 1, cell sub 2, cell sub 3, and so on.

Boolean values may also be relationally compared, according to the following

ascending order: false, true.

* See section 7.1 for a definition of null.

52

|

e

1

s

o P fd e —d

_— e e e

/

- 32

}

)

(_

\

Mixed>nonsca1ar operands may be compared, although for scalar operands the
relational operators are only defined for pairs of numeric values, pairs of
textual values, pairs of pointer values, and pairs of Boolean values—-
exceptions are due to the equivalence between Boolean and l-character binary |
values and between binary, octal, decimal, and hexadecimal texts and integer }

numeric values. ' '

Logical operators are defined primarily on scalar Boolean values. Logical
operations on nonscalar Boolean operands are done on an element-by-element basis,
yielding a nonscalar Boolean value, and where it is necessary to aéhieve
dimensional compatibility, the dimensional conversions described in Section 4.1
on numeric formulas are automatically applied. N-ary logical operators are
defined in the same manner a n-ary arithmetic operators; that is, (and) (eq),

(A, B, C, D) = (A eq B, and B eq C, and C eq D). The n-ary and operator may be
omitted where it is clear from context that a scalar rather than a nonscalar
Boolean value is appropriate, for example, where a nonscalar Boolean value is

assigned to a Boolean item, or is used as a condition.

4.,1,2 Direct Code

SPL provides for direct code statements, however they must bé preceded by a $,
A machine instruction or hardware operator followed by a parameter string may be

used in any SPL form in which a simple statement or compound statement is allowed.

SYNTAX
direct-code-statement ::= i
$nameof-hardware-0perator A (actual-parameter-str}ng)

Examples:

$STO ($P, cell (Q))

SLDA (Q, $IX.1)

$BRU (STEP sub (ALPHA-I), 'I')

53

4.2 CONTROL STATEMENTS

Control statements are provided in SPL to: transfer control to a specified
statement; execute one statement or another, or'none, depending on a specified
condition; execute a statement repeatedly, perhaps each time with different values
for designated variables; initiate an asynchronous process; delay execution of

a statement until a specified condition is evaluated to be true; stop a process;
execute a statement whenever a specified condition is evaluated to be true; and

call a procedure subroutine.

SYNTAX

control-statement ::= simple-control-statement l complex-control-statement

- simple-control~statement ::= transfer-statement | stop-stutement | procedure-

call-statement

complex-control-statement ::= repeated-statement | conditional-statement]
parallel-statement | delayed-statement |
chronic~-statement '

Procedure call statements are discussed in Section 5. 1.1.

4.2.1 Transfer Statements

Transfer statements break the normal, written sequence of statement executions
by transferring control to the statement whose origin cell is specified by a
pointer formula.

SYNTAX

transferfstatement 1= <Lgo A to goto> A pointer-formula

Examples:

go to COMPUTE

go to STEP (I)

go to cell (oct '150000') ; «
goto cell ALPHA

54

N

[0

3

3

i CoTTTT EV N l f N ‘ -) - "

c -

- .

~NA4 'Nv:

/

—

In the case of a transfer-switch the variable at the end of the statement

controls the switch direction.

It should be remembered that pointer formulas can specify the origin cells

of data elements as well as statements, so it is the programmer's responsibility
to see that execution control does not get transferred, for example, to an

array of floating-point numbers, However, the ability to transfer execution
control to what is nominally a data element is an oécasibnally desirable,
therefore not prohibited, action--for example, when it is desired to execute

a machine-language program text that has just been read.

4.2.2 Repeated Statements

SPL provides for the repeated execution of statements, either a specified
number of times, or where the number of repetitions depends on some condition--

perhaps each time with different values for a designated (control) variable.

SYNTAX:

repeated-statement ::= for A repetition-clause A statement

repetition-clause ::= wvariable A = A value-sequence

value-sequence ::= formula | numeric—formulal A by A numeric—formula2 Ay

<while | until> A condition

Note: A chronic statement may not be repeatedly executed.

Examples:

I =1Dby Iuntil I gr 100, PRINT I

H lHh
o |0
[a TN 1

I =1by 2 while I 1s 99, for J =1 by 3 until J gr
1499, A sub J = I

55

CA seqﬁence of one or more values to be assigﬁed the control variable may be
given by a formula specifying an array of dimension eqﬁal to or one greater

than that of the control variable.. Or, where the control variable is numeric

in type, a sequence may be given by assigning it an initial value (for that
sequence) as specified by numeric—formulal, with subsequent values being
determined by the addition of an increment value, as determined by numeric-
formulaz. In this latter case, the sequence of assignments continues while or
until the given condition--which usually involves the control variable--specifies
the value tfue. Since the evaluation of the condition is done prior to each

assignment in this sequence, zero or more assignments may thus be specified.

" The statement in a repeated statement is repeatedly executed, zero or more

times. The repetition clause determines the number of such executions,

In a repeated statement, the repeatedly executed statement may, of course,

referehce and even alter the value of the control variable.

Any transfer of control into a repeatedly executed statement from outside

will generally produce undefined results. Furthérmore, while it is possible
to terminate the repeated execution of the statement by a transfer of control
to outside the repeated statement, the value of the control variable remains

defined as of jts last setting.

4.2.3 Conditional Statements

A conditional statement expresses the action of deciding to execute one
statement or another from a pair"of statements, or of deciding to execute

or skip a single statement.

56

N

o

- .
)

SYNTAX:

conditional-statement ::= if Acondition A then A statemen_t1 <nothing | A else

A statement2>

Note: A chronic statement may not be part of a conditional statement. Aside
from that, statement2 may be any statement while statementl, may not

be a conditional statement.

Examples:
if HOURS sub EMPLOYEE ng O, then COMPUTE begin ... end
if T then A =0 else B = 1

if A 1ls 0 or T then go to NEXT else if A gr O and not T then go to ALPHA

A conditional statement causes the execution of one of two alternative

statement--if the condition is true, then statement, is executed, else,

statement2 is executed.

4.2.4 Parallel Statements

A parallel statement is a complex control statement that serves to cause the
parallel or asynchronous execution of its component statement (where the
implementing system will support this kind of operation). The body |
(incorporated statement) of a parallel statement may be executed in parallel

or asynchronously with the subsequently written statements.

SYNTAX:

parallel-statement ::= do & statement

Note: A chronic statement may not be part of a parallel statement.

57

o begin T = false, A =B, T = true end

do read RECORD = SENSOR
do go to START

A parallel statement ordinarily serves only to establish a new task--a tempor-
ary, parallel or asynchronous sequence of execution--which ends when the
incorporated statement completes its execution. However, a parallel statement

can also establish a new process--which is a more permanent, parallel or

asynchronous sequence of execution--merely by executing a transfer of control -

out of the parallel statement, thus bypassing the implicitly built-in stop
at the end of the parallel statement. The difference between a-parallel task

and a parallel process is mainly one of subjective convenience.

A transfer of control into a parallel statement from outside does not
eétablish a parallel task or process, however, With reference to either of
the previous pair of examples, go to THIS will cause the execution of
statementj followed by the execution of the (implicit or explicit) stop

statement,

When a statement that is normally executed in parallel--such as an input-
output statement--is written without a do indicating that it is not to be
executed in parallel, the next statement is automatically delayed until the

execution of its predecessor is completed.

4,2.5 Stop Statements

A stop statement serves to halt a (main or pafallel) process, It sigﬁifieé
the completion of the statement sequence in which it is executed. A stop
statement may be conditionally invoked. A

' SYNTAX:

stop-statement ::= stop

58

M

{ .
\

Examples:
stop
if A eq Q then stop

A stop statement also has the incidental effect of closing any files left
open by the process or task in which it is executed. (see Section 4.3 on

opening and closing files),

42.6 Delayed Statements

Delayed statements cause conditional delays in a process or task. The
execution of a statement may be thus delayed until any specified condition

occurs.

SYNTAX:

delayed-statement ::= when A condition A statement

Note: A chronic statement may not be part of a delayed statement.

Examples:

when T gr 4, set A =

when S$TCS "Teletype Channel Status' eq 'FREE' write TELETYPE = MESSAGE

The condition for execution of a delayed statement is specified, of course,
by a (scalar) Boolean formula. The delayed statement is repeatedly executed
until its enabling condition is evaluated as true. Delayed statements are
similar in this respect to chronic statements, (although a delayed statement
is not automatically re-executed upon reoccurence of its enabling condltlon),
and they are often used to synchronlze parallel tasks and processes.

An example of this involving four parallel assignments, is shown below.

59

T1, T2, T3 = false

do begin A =B, Tl = true end

do begin C =D, T2 = true end
" do begin E = F, T3 = true end

set G =H when Tl and T2 and T3 EQ true

4 ,2,7 Chronic Statements

Chronic statements cause the execution of any given statement whenever a

specified condition occurs or re-occurs. Chronic statements are useful for

interrupt processing, priority processing, and parallel procéssing. They are

executed asynchronously--depending on the hardware'resources--either in
parallel with, or by interrupting, some current process or task without, .
however, affecting that process or task beyond perhaps delaying it or

explicitly altering its data.

SYNTAX:

chronic-statement ::= on A condition A statement

i
| H
! 1

Examples:

on SETC "Elapsed Time Counter "gr 500 "milli-seconds"
end

begin ...

on S$FPO "Floating-Point Overflown 20 to ABORT

PROCESS. on SIGNAL gr O and SIGNAL gr CURRENT begin ... end

on $DS "DEVICE STATUS" eq 'DONE' go to CONTINUATION sub I

60

NG

el

[

N

bl

E

o

e B

— a

e T ~SES Ty S

p— e

e 2 e e e

o

e

o

e T

\

/

J
|

)

N,

The condition for executing a éhronic4s§atement is specified by a (scalar)

Boolean formula, which is automaticallyyevaluated whenever any of its operands

is,assigned, or acquifes, a new value. The chronically-executed statement is
executed as a parallel task if a processor is available or, if all are busy,
as a primary task--by interrupting some current process or task. Thus, a |
chronically-executed statement when its "time has come," it has paramount claim
to processing. The programmer;.however, has complete control over specifying

the condition under which a chronic statement is executed, and in particular,

conditions may be specified so that a chronic statement is not executed untii
the facilities it needs are available, so that a low-priority chronic statemerit
does not interrupt a high—priority task or process, so that a high-priority
chronic statement does interrupt a low-priority task or process, and so that
the automatic evaluation of the condition occurs no more frequently than, and

indeed, exactly when, desired.

Chronic statements are executed only on the occurrence or re-occurence of their
enabling condition. They are not part of the '"normal sequencé of statement
execution, which is why they are inappropriate components of other control
statements. Aside from this restriction (which is not a syntactic necessity
but is meant primarily to prohibit confusing statement constructions), chronic
statements may be written wherever convenient in the program; the '"normal"
sequence of statement executions will automatically bypass them. And while

a chronic statement may not be transferred to, (the automatic bypass would
frustrate this), its component statement can be transferred to.

4.3 INPUT-OUTPUT AND FILES

Many data storage devices impose accessing restrictions in that reading or
writing'an individual value may, for efficiency, ordinarily involve the transfer

of an entire block of data. Such devices are called external storage devices,

61

\\

as contrasted with the internal memory of the computer. To allow a description

of reasonably efficient input-output operations, therefore, data entering or

leaving the computer's internal memory are organized into files. A file is

thus a body of data contained in some external storage device, such as punched

- 4

cards or tape, or magnetic tape, discs, or drums.

To provide maximum flexibility for real-time computation, the input and output

features of SPL place major emphasis on the activities of reading and writing

and little emphasis on data manipulation and conversion, for which adequate

-

facilities are otherwise provided. (In particular, the operations of encoding

and decoding a record according to a given format, though described in the SPL ex-

tensions, have been removed from the operations of reading and writing so that

they may be applied to operands other than records.) Data conversion and record

buffering and blocking, where they are needed, must therefore be explicitly

specified either in the program or in library subroutines.

b

In SPL; files are defined by file declarations and processed by the input-output

operations of opening and closing, positioning and testing,* and reading and

writing a file.

SYNTAX:

input-output-statement ::= open-statement close~statement | read-statement

write-statement

*Positioning and testing are in i i
‘ put-output operations that involve functio
rather than statements. ‘ ' e

P

62 -

o TN

/

)

L

4.3.1 File Declarations

Files, which are collections of data that are externally stored or available,
or input or output, are considered in SPL to be strings of records, each recofd
distinguished by its position in the file. 1In turn, a record is considered to
be a linear array of texts, called lines. A file declaration gives the
dimensions of the file, names its alphabet and the device and module used to
access and hold it, and provides several other file attributes, some of them
implementation-defined. In certain cases, several different but similarly

described files may be declared at once.

SYNTAX
file-declaration ::= file A name-string A file-description
file-description ::= device-name A <nothing | $(character-string)> A <nothing |

dimension-string> A <nothing | code-name>

device~-name = name. | device-name. <nothing | number> A <nothing | module-name.
number>
code-name ::= <bin | oct | dec | hex | text>
Notes: a. The character string may not contain the ")" close parenthesis.
b. With regard to the dimension string, a file is a three-

dimension entity: records per file, lines per record, and

characters per line.

Examples:

file A. SITE

file D. TAPE.07 REEL.3661

file E. TTY.14 STATION.71 $(213-3993411) I by 1 by J
file F. TAPE, K by L by 32 bin

63 .

In a file declaration, the device name indicates the type of peripheral device

" used to access the file. For systems with several units of the indicated type,b

the suffix numbers tell which units shall be used to access the file, and may

be omitted if aﬁy unit of the indicated type is acceptable; Device names and

the interpretation of suffix numbers are implementation defined. However, they

should account for cases where a device is used to access several files, and

where several devices are used to access a single file.

A given type of device may imply any or all of the other attributes of a file,:

"in which case these attributes may be omitted from the declaration, or it may

place limits on them--for example, a printer that cannot produce lines longer

than 132 characters.

The module name in & file declaration indicates the particular storage module
--tape reel, card deck, disc pack, type of preprinted form, display area, etc.
--used to access the file. Like device names, module names usually include
module type and suffixed serial number, and are implementation defined. And
they should also account for cases where a (physical) module contains several
files, and where several mddules are needed to contain a single file. = Module
name may be omitted if the identification of a module is unimportant or

irrelevant to the device, or handled outside the system, e.g., manually.

Any implementation-defined, machine- or system-dependent file attributes may

be declared within the $(and) brackets. Some examples might be: password;

work order number, special labeling instructions; source or destination for the

file; author; expected activity; security classification; purge date.

The three-component dimension string gives the dimensions of the file: number of

records per file, number of lines per record, and number of characters per line.

Where device and module permit, any of the dimensions may be given, by an
integer-valued numeric item, as varying. However, number of characters per
line may only be considered as varying between records, not within a record.
And where number of records is given by a number, this is taken as a maximum

value.

64

\

™~

e =

f ==

)

\

/

8

L

The code name indicates the alphabet in which the file is coded. The alphabet
must, of course, be defined. And it may contain both nonprinting control

characters, and graphic characters.

Where the file description is not so specific as to be pertinent to one and
only one file, it may be used in declaring several files at once, and in a _ |

mode declaration.

4.3.2 Assign Declaration

The distinction can be made in SPL between files which represent logical units
and the actual physical units to which a file is assigaed. This logical unit/
physical unit equation is done by means of an assign declaration. What physical
units are available is, of course, implementation dependent. ‘

SYNTAX

assign-declaration ::= assign A name to A device-name

Examples:

assign MASTER to TAPE 1
assign LOG to PRINTER
assign OUTPUT to PUNCH

4.3.3 Opening and Closing Files

A file may be opened with an open statement, which designates the file and
completes or overrides the catalog of. the file's declared attributes. A file
may be closed with a close statement, which designates the file and indicates

whether an end-of-file is to be written, or with a stop statement.

65

(

—

30 Séptember 1967 ‘ 66 _ TM=3719/000/00
L
\
.
SYNTAX
open—statement ::= open A device-name A <nothing | $(character-string> A <nothing |
dimension-string> A <nothing | code-name> A file-designation
close-statement ::= close A <nothing | out | out A module-name> A file-designation
file-designation ::= name o c.q. | file A at A pointer-formula
Notes: a. The character-string may not contain the ")'" close parenthesis.
b. The elements in an open statement between the primitive,
open, and the file designation, may be written in any order.
Examples:
open A
close A
‘open TAPE.08 ’
close out REEL D » -
open file at P sub I ' N

close out file at P sub I

An open statement supplies missing or overriding file attributes, which are
taken to aold until the file is closed. Opening a file may cause manual access-
ing and mounting of the indicated module. And where the module is of a type
that cahnot be accessed by the indicated device, it may cause loading of the
file into the appropriate external storage mediﬁm. Opening a file does not alter
the position of the file, should it have previously been opened, accessed, and
closed. Otherwise, an open statement will adtomatically position the file to
the first record. Other implementation—definéd actions, such as label checking,
may result from opening a file.

Closing a file releases the device used to access the file, but it does not
alter the position of the file should it be subsequently opened. Closing out

a file causes an end-of-file to be written and also releases the device, but

it leaves the position of the file undefined. In addition, in closing out a

66

gy

P . |

o 3 = 3 = 3

ol

R eam ey

—

file, a new module name may be glven. Lhis hew module name may merely be
substituted for the old one, or where the module type cannot be accessed by
the file accessing device, the file is unloaded from the external storage

medium containing it, onto the module.

4.3.4 Testing and Positioning Files

The testing and positioning of files in SPL s done with non-input-output
statements employing a pair of built-in functions, status and position. For

addressable files, the position function serves as a functional variable.

SYNTAX:

function ::= file-designation A <status l position>

functional-variable ::= file-designation A position

Examples:

A status

(file at P sub I) position

The file-status function specifies a one-~character textual value in an

implementation defined code that may differ from device-type to device-type.

Regardless of these differences, certain codes are established with standard

meanings for all devices and implementations. These are:

1. 'READY' the device has transmitted a record or is ready to

transmit a record

2. 'BUSY' the device is in the process of transmitting a record
3. 'EOF' an end-of-file has been encountered by the device
4. 'FULL' another write operation would cause the file to exceed

the capacity of the module or modules allocated to it
5. 'ERROR' the device is unsuccessful in transmitting a record
due to an error which cannot be corrected
6. '"UNREADY' the storage device is not ready or unavailable, or
the module has not been mounted »

7. 'CLOSED' the file has been closed, or not opened

67

— H

&

P

‘With these codes, and any implementation-defined, nonstandard ones, the status

of a file may be determined with such Boolean formulas as: A status eq 'BUSY'.
Appropriate hardware operands may also be referenced for more speéific status

information in many cases.

—

So far as position is concerned, an SPL file is self-indexing, meaning that
the record available\for transfer to or from the file depends on the file's
current position. The records of én n-record file have the positions 1 to n,
and the position of the record currently available for transfer is specified
by the position function. The transfer of a record to or from a file automa-

tically increments (or decrements, for a reverse file) by one, the file's

position. Furthermore, where the storage or input-output device allows, the

position function designates a scalar, unsigned integer variable that mayvbe

!

altered by the assignment of an arbitfary numeric value, thus repositioning
the file. Such a file is an addressable file, as opposed to a serial file,'
where such a general positioning operation is to be avoided as impossible or
inefficient. Some serial files do, however, permit restricted forms of the

positioning operation. For a tape file T, for example, it might be possible

to specify rewind by "T position =1," backspace by "T position = T position

~1," and skip N records by "T position = T position +N."

4.3.5 Reading and Writing Records

—

Reading and writing a 'READY' file is done in SPL by read and write statements,

wherein the programmer designates the file and designates or specifies the

o

data elements to receive or provide the record.

T
SYNTAX: l

read-statement ::= read A variable A into 4 file-designation

write-statement ::= write A file-designation A from A textual-formula

Note: In a read statement, the variable must be textual in type.

N
C
—

68

o

Examples:
read BUFFER iunto A

write F from BUFFER
write E from 'THE QUICK BROWN FOX...TESTING'

do read bit (ALPHA sub (J to K)) into C

ment, where the record is one of the operands and is considered to be a row
vector of texts (lines) of dimension and alphabet declared (or given in the
open statement) for the file. Where the number of lines per record and/or

the number of characters per line are declared, with an integer item, aé
variable, read and write have the effect of assigning the appropriate value

to these items. Read and write also advance by one the position of the file--

either forward or, for a reverse file, backward. In general, a file may be
both written and read.

li Read and write work precisely according to the rules of the assignment state-
|
l

69

5. PROCEDURES AND FUNCTIONS

The procedure is a type of closed subroutine that may be classified as program
independent because it can operate upon data independent of item names and v
their definitions as defined in the main program or in the compool. This is
accomplished by the use of formal data declarations (dummy data) defined in
the procedure. The data to be operated upon (parameters) are transmitted from
the calling routine to the procedure via the procedure call. During the operation
of the procedure, the data transmitted from the calling routine are referenced

by the formal data declarations defined in the procedure. General purpose

1

[

l

ey

st mocsbmE Nsctawsvicr | 1
|

1

I

routines may now be generated which enable the many programs in a system to : TI
1 |

centralize their common routines within proczdures and call upon each one when
needed. ‘ 4 -
\\ W

Thus, a procedure declaration sets up a closed subroutine that may have input

parameters, output parameters, or both. A procedure declaration is independent ZI
of outside loop statements; it may be invoked from within any loop statement

in the main program or in other processing declarations without deactivating ZI
the loop variables. On the other hand, the outside loop variables are not

defined in the procedure declaration.

pos

SYNTAX

procedure-declaration ::= procedure-heading A <nothing parameter-declaration-

o

string> /A statement

. i &
rocedure-headin 1= rocedure- A name : i - l
p g P Ame ¢ _procedure A <nothing | (formal
parameter-string)>
formal-parameter-string ::= formal-parameter A <noth_ing | formal-parameter-string> l
formal-parameter ::= name f[
‘parameter-declaration-string ::= parameter-declaration A <nothing parameter- //A\'
declaration-string> Ny

o

- 70

=]

SR pam SN 0SS S

I
(

Eﬁ}\!ll!

parameter-declaration ::= <item-declaration | array-declaration | group-~declaration>
A <nothing | value> A <nothing ! result> <procedure-
heading | function-heading> A <nothing | parameter-

declaration-string> , file-declaration

Note: The statement in a procedure declaration may not be a chronic statement.

Examples:

procedure A. begin ... end (A)

procedure SORT. (N, VECTOR) integer N. value real VECTOR. array N result begin
... end (SORT)

procedure G. (Y, FCT, X) real Y. function FCT. (Z) Y = FCT (X)

Formal subroutine parameters, like actual parameters, fall into three categories:
(1) Formal value parameters correspond to actual parameters that are values
(although designated or specified by variables and formulas). A formal value
parameter must be declared in the parameter declaration string as an item,
array,'or group with the value descriptor appended. Storage is allocated within
the subroutine for value parameters, and references to them within the subroutine

refers to that storage. (2) Formal expression parameters correspond to actual

-parameters that are variables or expressions. A formal expression parameter must

be declared in the parameter declaration string as an item, array, or group but,
of course, without the value descriptor. No storage is allocated within tﬁe
subroutine for expression parameters. Instead, the subroutine is executed as

if the variable or formula constituting the actual parameter were substituted for
the formal parameter name throughout the subroutine. (3) Formal name parameters
correspond to actual parameters that are names. A formal name parameter may be
declared in the parameter declaration string as a file or a subroutine (complete
with everything except processing statements). Those not declared are name
parameters whose attributes are determined by their use in the subroutine, and

by the correéponding actual parameters appearing in the subroutine's various
calls. For a formal name parameter, the subroutine is executed as if the name
constituting the actual parameter were substituted for the formal parameter name

throughout the subroutine.

71

Formal value and expression parameters are themselves divided into two categories:

argument parameters and result parameters. Formal argument'parameters'corrgspond
to actual parameters whose values are not affected by the execution of the
subroutine, while formal result parameters correspond to actual parameters whose
values are affected. An actual parameter corresponding to a formal result |
parameter must therefore be é variable. Formal result parametersvare declared

with the result descriptor; formal argument parameters are declared without it.

5.1.1 Procedure Call Statements

To execute the computation defined in a procedure declaration, it is necessary
to invoke the procedure by executing a procedure call statement, which may be

thought of as an abbreviated description of process it invokes,

SYNTAX 3

procedure-call-statement ::= call A name
—_— of-procedure

A <nothing] actual-parameter , (actual-parameter-

string)>
actual-parameter-string ::= actual-parameter A <nothing I (actual-parameter-
string) > S
actual-parameter ::= variable | formula | name

The actual parameters of a procedure call statement or a function must correspond
to formal parameters of the subroutine declaration both in number and in sequence.

Actual parameters may not, therefore, be omitted. However, a formula or variable

as an actual parameter may designate or specify a nonscalar value with a varying

number of elements, and it may be necessary to use parentheses to establish the

desired correspondence. In addition, an actual parameter must be compatible

with its definition and/or use within_the subroutine declaration.

72

/

—l

—_—]

——

\\
1

e |

—

—_—

/

&

s

b

/

J

Examples:

call B (T)
call G (GAMMA, sin,VV*PI)

A procedure subroutine is invoked by a procedure call statement according to

the following steps:

a. Any formal value argument parameters are assigned the

values of the corresponding actual parameters,

b. In effect, the corresponding actual parameters are substituted

for any formal expression and name parameters.

c. The subroutine is executed, and if it completes its operation
(i.e., does not stop or transfer control outside the subroutine),

the following steps are done;

d. The values of any formal value result parameters are assigned

to the corresponding actual parameters;

e. Control is returned to the statement following the subroutine

call statement.

When a procedure subroutine is invoked by a parallel statement (i.e., 'do

call), steps a-b are done in sequence, steps c-e in parallel.

A procedure call statement invoking a hardware operator will follow the same
steps, except that the subroutine executed will generally be a single machine
instruction. Indeed, with appropriate actual parameters (in many cases,
hardware operands), such a procedure call statement may be entirely equivalent

to single machine instruction.

5.1.2 Entry and Exit Statements

In order to enter a procedure at some point other than the beginning, the entry

statement may be used. One or more entry statements may be defined within a

73

procedure to define éecohdary entry points. Like the heading statement of a

~ procedure, each of the entry statements must have a label to serve.;gﬁfﬁéwéﬁffySWK
name for that point, and each may specify a list of formal parameters which

need not be the same as for the proceﬁﬁre or as for other entry points. At

“the point it is desired to leave a procedure, the ggig.statement-should be
invoked. An exit will be generated after the last statement of a procedure but,

in order for alternate exits to be taken, an exit statement is required.

SYNTAX
entry-statement ::= name A entry <(parameter-declaration) , nothing>
exit-statement ::= exit
Examples:

SEC entry (A, B)
THIRD. entry (C)

exit '

5.2 FUNCTION SUBROUTINES

Function subroutines are defined by declaration and invoked by functions. Function
declarations are very similar to procedure declarations, except that a function
may have parameters preceeding the function name, a function has only one result
parameter, a value parameter designated by the function name and declared in the

function heading, to which a value may be assigned by an abbreviated assignment

statement.

SYNTAX

function-declaration ::= function-heading A <nothing | parameter-declaration-

string> A <= A formula | complex-statement | compound-

.statement>

function-heading ::= function A <nothing | formal-parameter | (formal-

parameter-string)> A name A <nothing |

of~function
formal-parameter , (formal-parameter-string)> A <item-

description l array-description , group~-description> A

<nothing | recursive | reentrant>

74

g,/ N

el

!

¥

//

\\

Note: The (complex) statement in a function declaration may not be a chronic

statement,

‘Examples:

function RANDOM. real reentrant begin ... end

function F. (A,B) integer recursive

The rules governing procedure declarations aiso apply to function declarétions.
In addition, for a function subroutine to compute a functional value, the
statement comprising the subroutine body must assign a value to the formal
result parameter designated by the function name and also, of course, complete

its operation.

5.3 RECURSIVE AND REENTRANT SUBROUTINES

Recursive or reentrant subroutines may be declared in SPL. A recursive subroutine
is one that, directly or indirectly, invokes itself. A reentrant subroutine is
one that is compiled into 'read-only" code, so that it may be invoked by several
parallel processes or tasks before it has finished the computation required by

a previous invocation, without confusing the data associated with the various

invocations.

Both recursive and reentrant subroutines must be explicitly declared as such
in the procedure or function heading. A subroutine may not be both recursive
and reentrant; in addition, a reentrant subroutine may not involve a

non-reentrant subroutine.

5.4 BUILT-IN FUNCTIONS

Basic SPL contains a minimum number of built-in functions. They specify a

numeric result,

5.4.1 Trigonometric Function

The trigonometric function sin, cos, and tan specify, for any real scalar
argumen: x expressed in radians, the sine, cosine, and tangent of x. The arctan

function specifies, for any real scalar argument x, the arctangent of x in

radians.
SYNTAX
function . P
of -numeric-type

<sin ’ cos I tan l arctan> A numeric-formula

Example:

sin (tan X)

Complex arguments of these functions are converted to real mode by disregarding

their imaginary parts. Nonscalar arguments specify identically-structured

nonscalar results.

5.4,2 Absolute Value

The absolute value function specifies the positive value of an integer or real

scalar argument, and the positive ‘magnitude of a complex scalar argument.

SYNTAX
function . . ::= abs A numeric-formula
of ~numeric-type —
Example:
abs (I-J).
Nonscalar arguments of the absolu': ‘alue function specify identically structured

nonscalar results.

76

s

2N

e

ey

{

v

il

i

i

{
e

l
|
|
|
|
|
l
l
|
|
|
|
|

l
i
|

I
{
[

P

.

S/

5.4.3 Base e Exponential.

The base e exponential and logarithm functions specify, for any numeric scalar

argumen: x, the values e* and logg x.

_ SYNTAX:

' * opg - y " !
funCtionof—numeric—type ::= <exp | log.e> A numeric-formula

Examples:
exp X

log.e (exp X)

Nonscalar arguments of these func:ions specify identically-structured nonscalar
results.

5.4.4 Base 2 and Base 10 Logafithm.

The base 2 and base 10 logarithm functions specify, for any real scalar argument

X, the value logy; x and 1og10

SYNTAX:

funCtionof—numeric—type L <1og.2ll:log;10> A numeric-formula

Examples:

1og.2 (2%%X)
log.10 (log.10X)

Complex arguments of these functions are converted to real mode by

disregarding their imaginary parts. Nonscalar Arguments specify

identically-gtructured nonscalar results.

77

N

e

6. COMMANDS

Every SPL program is composed of declarations which generally describe the
forin of the data to be operated upon by the program and statements which
provide the rules for operating upon that data. Cbmmands are an additional
1anguage.features which provide the programmer in SPL additional controls

in the areas of language definition, editing, debugging, code optimization,
time and storage control and program execution. Each one of these categories

is described in the sections that follows.

Commands permit the programmer to command the compiler to: translate some
pbrtion of the program according to a defined notational extension; execute
statements immediately; show (either in typeout or display) any defined data
‘element values; direct the compiler for code optimization; calculate time |

required for code execution for generated instructions.
SYNTAX
command ::= define-command | execute-command | debug-command | optimization- \
command | count-command
6.1 DEBUG COMMAND

A debug command serves to print or display (either in the listing produced by
the compiler or on a display) any previously provided (input, entered, or

.executed) lines of program text, or any defined data element value.
SYNTAX

debug—command ::= show A <symbolic] nothing> location-identifier A <number [

nothing> <thru | nothing> A <location-identifier | nothing>

location-identifier ::= <name | cell A name> A <code-name | nothing>

.(/—\\
[— o N ~waoc S —

78

P e f—

-

j —)

The symbolic attribute indicates if the display of data is to be in the form
in which it was declared. The location identifier can be any name defined in

the program or compool. The number following indicates the number of cells'to

be displayed. The display area can be identified by bracketing with names or

cell numbers.

6.2 OPTIMIZATION COMMAND

The optimization command serves to indicate the type of code optimization pre-

ferred for a portion of the program. The SPL user has some control over the
type of code optimization which will be in effect during the compilation of a

specified segment of code.
SYNTAX

optimization-command ::= optimize A <time space none> A statement

The primitive time specifies that the statement which follows, simple or
compound, is to be optimized for a minimum operating time. The analogous
capability for space is indicated if the primitive space precedes the compound
statement. If none is specified, this would negate any rearrangement of code
for optimization. If the optimized command is not specified, the normal

optimization alogrithm is used (one which appears optimum for a majority of

cases) .

6.3 COUNT COMMAND

The count command serves to indicate the execution time for a sequence of
code. The statement, whether simple or compound, following a count command is
operated with data values declared in the data declarations and the amount of

execution time recorded for output.
SYNTAX

count-command ::= count A time A <statement [declaration>

79

6.4 DEFINE COMMAND

SPL is an extendable language. Not only may subfoutines be defined to extend
the 1anguage's computational capabilities, but notational extensions may be
aefined;for any other statement or declaration format that is required. These
extensions may range from the definition of simple synonyms and abbreviations,
to the definition of complicated new data structures and the operations on

them.

Indeed, with the subrqutine definition cépability described in SPL and

the notational definition capability described here, it is likely that, in
any implementation of SPL, a great many of its features will be implemented
either as built-in subroutines, or built-in notation definitions, leaving

only a relatively simple language kernel for the compiler to implement.

A notational extension is given in a define command and is applied to the
source program text prior to compilation. A define command in effect,

serves to translate some new language form into an equivalent SPL representa-
tion. This translation is done at the source level in what effectively is a
pre-pass over the source language statements if the define command capability

is specified by the SPL user.

The define command may be followed by a series of definition rules which
apply to the prdgram which follows them, or it may simply specify the name
of a set of rules, previously defined, which are brought in by the system

from the library and similarly applied.

Notational Definitions can be thought of as having two parts. Tﬁe first half
of the define command begins with the word where and describes the code to be
sought out of the source program code for translation into SPL. The second:
half of the define command begins with the word then and describes the

equivalent SPL code for the non-SPL form.

80

()

o ’ . im - i

ﬁ“’ N

[—)

SYNTAX

define-command ::= <name. | nothing> A where A definition A then A translation A

<end l define~command-string>

definition ::= textual-formula | term | textual-pattern | not

A definition | definition A < or | and > A definition

define-command-string ::= begin A define-command <nothing | define-command> A end

pattern-declaration ::= pattern A name A definition

of-pattern

define~-command-call ::= define A name .
—_— of~-define-command

textual-pattern :: = pattern < (textual-constant) [(tern) |(name-of-pattern) >
translation :: = declaration |statement | command
term :: = character | letter | digit [name | null | constant | ;

simple-statement | compound-statement i comment | item-declaration l

array-declaration | group—declaratiog'| storage—-declaration |

variable I hardware~operand | formula

Examples:

10A. where 'Z' then 'P**2-P+expP' end

ASIGN. where '=' variable ',' constant '+' variable then variable (L) '='

constant '+' variable (2) end

. \
Note: The term null denotes an empty text--the character string of length zero.

81

L

)
N

FOR. begin where 'DO' pattern GEO. (statemert-name) variable ',' '=' variable

'," nothing or variable then 'FOR' variable (1) '=' variable (2) 'BY' if

variable (4) then variable (4) élse 'l' ',' variable (3) where statement-

label and GEO statement then GEO statement 'END' end

In the first example a substitution is made for 'Z' and in the second example
an assignment statement of a non-SPL form is mapped into the SPL assignment
statement form. In the last example, a FORTRAN "DO" statement is transformed

into an SPL "FOR" statement.

A define command may employ just a definition (which may itself be composed of
a series of elementary definitions) or, for more elaborate notational extensions,
it may employ a definition string, which may contain declarations and other

definitions. A definition may contain pattern declarations.

A textual pattern may be specified by enclosing a textual constant Or a term in Ve
parenthesis. Enclosing a single term indicates the textual pattern ‘ . k\‘
represented by the term is being defined as a pattern. The elements of a

pattern, then, are alphanumeric textual formulas (and in particular, alphanumeric
constants), terms (which are the names used in this report to identify the .

textual patterns of SPL), and the names of declared patterns.

The logical operators and, or, and not may also be used in specifying patterns,

where they have the set-theory meanings of intersection, union, and complementa-
tion. Thus, A and B specifies any pattern that is at once both an A pattern

and a B pattern. A or B specifies any pattern that is either an A pattern or a

B pattern. And not A specifies any pattern except an A pattern.
A define command may involve a definition string that exists only at compile

time. The declarations in a definition string establish patterns, data elements,

subroutines files, etc. that exist only at compile time--they may not be referenced

82

-

e & e Beed

o e e

H — H‘MM,

N VA ;‘M

by the program at execution time. In addition, the names thus declared are

‘defined only for the definition string in which they are declared--and for any
definitions or definition strings appearing within the program text that is

affected by the define command containing this definition string.

The most general case is shown below:
where beginl A. ...

where ... A ...B. ..

.
.

.

where. ... A ... B.

3

eee Co oo end

The first define command applies to and contains the next (define) command,
which applies to and contains the following statement, which in turn contains

a define command. Anything, for example, A, declared in the first definition

e

string may be referenced in any definition or definition string between beginl

and endl.

It must also be noted that definitions may contain compound statements, which
may naturally contain other declarations. These also establish compile time

entities, whose names are defined for the compound statement containing their

declarations.

A definition in a define command specifies an alphanumeric textual pattern and

indicates some action to be taken by the compiler whenever it encounters that
pattern in the program text to which the define command applies. This action

may be just a replacement of the encountered matching text by the value of a

textual formula, or it may be a more complicated action, as specified by a

compound statement, which is executed when the elementary definition is applied.

L

83

2

When uséd as a‘teXtual variable in the textual formula 'or compound statement of

an elementaty or single element definition, a pattern name or term refers to'the
program text to which the define command containing the elementary definition
applieéu Speéifically,‘for each application of an’élementaryvdefinition, any

term or pattern name it establishes as a textual variable will desighate the matching
part (or parts) of that segment of the statement, or declaration that matches the

pattern giveh in the elementary definition.

The pertinent rules in applying notational definitions are described in the

following rules:

Rule 1. Where define commands are nested within begin and end brackets, the

first define command is appliedvfirst, and subsequent nested define
commands are applied to text immediately following the symbol of the

preceding define command. , : : /’

Rule 2. In applying a define command, its definitions are repeatedly applied,
in the order given, to the entire program text to which the define

command applies--until they are no longer applicable.

84

e B

i aE Ay A 2SSy

f——

/

f—

R N A AR e

)

Rule 3.

L

Does the

\a

definition o Apply the
Cl apply | definition
?
anywhere? of cl
Does the Apply the
definition of definition
C2 apply
c vhere? of C2
fdefinition of\YE Apply the
C3 apply definition
?
anywhere. of C3

FINISH

text, it is applied to the leftmost part that (1) matches the
pattern, and (2) is not followed by a part such that the two parts

together would also match the pattern.

In any single application of a definition to a program

6.5 ~ EXECUTE COMMAND

An execute command may ufilize a definition to identify a set of code which is

to be replaced by a value which obtained by executing a formula prior to compila-
tion. An execute command serves to provide a capability to compute compile time
calculated constants. This capability will serve to reduce the size of the
stored object program required. The execute command can be thought of as having
two parts. The first half begins with where and describes the code to be sought
out of the source program for substitution by the calculated value. The second
half of the execute command begins with the word execute and can be followed by

an item declaration, which is only active for the execute command, and a formula.

SYNTAX
exe;ute—command 1= <name. | nothing> A where A definition A execute A item-

declaration A formula

Examples:

10B. where 'Z' execute item P. integer/4 (P*%*2P)-4P/P

10C. where 'A**' '4' 'B' oyxecute item C. integer/7

item D. integer/16
C/D * (D+1.4)

An execute command operates at compile time and must result in a single

value.

86

~

" ‘3 S;";

-

- 4

— —_— e =

7. EXTENDED SPL

{

An extension to SPL is described herre--for Mission Development Programming

and for Support Programming. The defined SPL extension does and any other

l SPL extension should have as their base '"basic SPL". Discussions in this
section will assume the existence of basic SPL.

l‘ 7.1 COMPLEX VALUES

ﬂ, The extended SPL programs may manipulate complex values (i.e., imaginary
numeric values). Imaginary constants denote numeric values in the

I conventional decimal sense.

\ SYNTAX
M— numeric-constant ::= imaginary-constant number l real-constant | binary-

constant | octal-constant ' decimal-constant l

hexadecimal-constant

imaginary-constant

<number | real-constant> i

m“ Examples:
[
' 2.1
M‘ 881
|
Integer numbers and real and imaginary constants denote numeric values in the
Iﬁ conventional, decimal sense.

In extended SPL, a complex item, i.e., one having imaginary parts, may be declared.

The description of a complex item applies to both the real and imaginary parts.

87

SYNTAX

complex-item-description ::= complex A number1 A minimum A <bit l digit f

nothing> A <nothing } -> number2 of-fractional-

or<exponent <bit | digit> A <nothing | float |

fixed> A <nothing | signed | unsigned> A <nothing |

round | truncate>

7.2 CODE DECLARATIONS

A code declaration serves to name and define a coded alphabet. To each character
in a declared alphabet corresponds a machine-language code, denoted in the
declaration (according to the rules of the assignment statement) by a number or
by a textual constant from another alphabet, or deduced by the mechanism of

Note b, following. The code string in the declaration establishes these

correspondences. In a code declaration, the code name identifies the alphabet N
. N

being declared. The code size is indicated in number of bits, digits, or
characters per character. The right or left descriptor indicates whether shorter
character strings are to be right or left justified in relation to longer
strings.®* This indication may be omitted if the character strings used are
such that justification is never required.

SYNTAX
code-declaration ::= code A name ¢ oode & ¢ode-description
code-description ::= <nothing | code-string> A number A <bit digit | character>

A <nothing | left | right>
* Binary, octal, decimal, and hexadecimal texts are right-justified;
‘alphanumeric texts are left-justified. o

88

&

el e B e e B 4 b = e

-~

o -

—e

[
1

p—

|
[
[
l
|
|
|
l
l
|
l
|
|
|
%

i
i
e

iff
i
b

code-string ::= textual-constant A <nothing , is code> A <nothing |

code

code-string>

:= number | textual-constant

Notes:

Each textual constant in a code string that is not serving as a code is
understood to contain only one character of the alphabet being declared.

The different characters must be uniquely represented.

A code may be omitted if the 'matural successor' to the previous code

is meant, or if zero is meant when there is no previous code. (The
natural successor to a textual constant may be derived by replacing

its last character with the next character in the collating sequence of
the alphabet from which the textual constant is constructed; or, if the
constant's last character is also the last character of the alphabet, by
replacing it with the first character in the alphabet and then replacing

the constant's next-to-last character, and so on.

It is not necessary for each code in a code string to be different;

many~to-one codings are often quite useful.

It is not necessary for the codes in a code string to be in numeric
order. Indeed, the collating sequence for a declared alphabet is
determined, not by the numeric encoding, but by the sequence of
characters as given in the code string, with the first character

used as the filler character when justification is required.

If the code string contains no codes that are textual constants,

then either the bit descriptor or the digit descriptor is appropriate

89

for specifying the units of code size. If the code string does contain
a code that is a textual constant, the character descriptor must be
used in specifying the units of code size. Textual constants from more

than one alphabet may not be used as codes in a code string.

f. It sometimes cannot be determined from the code declaration alone
if a space or a comma is intended as a character separator.
However, this ambiguity can easily be resolved by looking at a
multi-character textual constant in that alphabet.
8. The code string may be omitted from a code description for those
_alphabets where textual constants are never used in denoting the
value of textual items with that code.
Examples:
Code . ~Lo 1] 1 |Al lBl lcl IDI 'E' IFI lGi IHI lIt |Jl
lJl |L| IM| IN' ‘0' iPI 'Q! IRI isl lTl
g ry! W', 'y |Yv 1z 5 bit left
90

&

-—

O
o e

b

—

s —

b—d

—

—

3

—

o

code GREEK. ' ' is L' / 'ALPHA' is L'A' / 'BETA'

is L'B' / 'GAMA' is L'G' / 'DELTA'

is L'D' / 'EPSILON' is L'E' / 'ZETA'

is L'g'" / 'ETA' is L'EY' / 'THETA' is
L'TH' / 'IOTA' is L'I' / ‘'KAPPA' is
L'K' / 'LAMBDA' is L'L' / 'My' is
L's' / 'wy' is L'N' / 'XxI' is L'X' /
'OMICRON' is L'e' / 'pI'° is L'P' /

'RHO' is L'Re' / 'SIGMA’' is L's' /

'TAU' is L'T' / 'UPSILON' is L'U' /

'pHI' is L'PH' / 'CHI' is L'CH' /

'PSI' is L'Ps' / 'OMEGA' is L'OH'

2 character left

code DIRECTION. 'NORTH' 'souTH' 'EAST' 'WEST' 2 bit
code COIN. '"PENNY' is 1, 'NICKEL' is 5, 'DIME' is 10, 'QUARTER' is

25, 'HALF' is 50, 'DOLLAR' is 100, 3 digit

code WORD. 36 bit

FE SEN SN AR el e S e Sy Semy e

—
)

91

7.3 LIST DECLARATIONS

Lists are collections of similar data elements--items, arrays, or groups--that
are linked together in memory by pointer items. A list may have several pointer
items linking its elements together in several separate sequences. Several

different but similarly described lists may be declared at once.

SYNTAX

[l

list-declaration list A name-string A list-description

list-description full-list-description

fu114list-déscription 1= <item—descripti6n array-description | group-

description> A name-string

Examples:
list AFTER. array PLACE. real 3 -
. . : N
list Q. integer M. v
list LAST.
The name string in the list description serves to declare the pointer items
that link the list elements together;
Abbreviated descriptions are possible for lists, according to the declared mode
declaration.
7.4 LIST PROCESSING STATEMENTS
The list processing statements in extended SPL provide a rudimentary but basically
adequate capability for list processing. List processing statements are
available for referencing, linking, and freeing elements of lists.
-

92

p— Bt

SYNTAX

list-processing-statement ::= reference-statement | link-statement

free-statement

7.4.1 Rererence Statements

, . . 1]
A reference statement places an element of a list “under consideration, so
that is--and its components and associated pointers--may be subsequently

acsignated without being explicitly located.

l SYNTAX

! ‘

' reference~-statement ::= see A list-element-reference

m‘ list-element-reference ::= namegf.igy 2 <nothing | at A pointer-formula>
m NOTE: a.

A list element may be located anywhere, as specified by an arbitrary

h : (scalar) pointer formula (see Section 8.2.4 on located variables).

mﬁ However, a list element that has been automatically linked into a
list, by a link statement, aay be reliably referenced, after the

]. execution of another link statement, not necessarily for the same
a list or in the same process, only by one of the list's pointers,

X since such list elements are subject to automatic reallocation of
I/ storage and concomittant adjustment of linkages by a built-in
routine, usually called a 'garbage collector", which may be

automatically called during the execution of a link statement.

Where a pointer formula is omitted in a list-element reference,

the element currently under consideration is assumed.

93

Examples:
see LETTER ; i

see WORD at NEXT-WORD

see SYMBOL at cell sub Q

see SYMBOL at null

Although several lists may each have an element under consideration at once,
no ﬁore than one element in any single list can be considered at any éiven
time--regardless of how many processes are active--and unless a pointer value
locating another list element is explicitly specified, defined references to

s
data in a list element including points, pertain to the element curre&%ly

under consideration.

A new element in a list may be considered by another execution of a reference
statement. By giving the name of a list and the name of a pointer, for example,
the pfogrammer may place under consideration with a reference statement either
the first or the next element in the list according to that pointer,* depending
on whether or not an element in that list was previously under consideration.
(When no element is under consideration for a list, its pointers each designate
the location of the first element, if any, (or the null pointer value if none),

in the corresponding element sequences they link.)

A list element can be removed from consideration by the execution of a reference

statement wherein the pointer formula specifies the null pointer value.

* Note that a list element may have several pointers associated with it, so
that it may have as many (or fewer) successors.

94

-

=

N

h

£

LN

kA

-

- -

- . . BT 3 e

For lists with only one pointer, the pointer formula may be omitted from a

l reference statement, with the name of the lone pointer being assumed. With
the list, LETTER. 1 character text NEXT.ELEMENT. list, for example, see

lj LETTER = see LETTER at NEXT.ELEMENT.

l

7.4.2 _ Link Statements

A link statement serves to allocate storage for a new list element, and

to link it into the list as a successor to other elements in the list. A

link statement mav also serve to dynamically allocate storage for an item,

an array, or a group.

SYNTAX

>
of-item—-array-or-group

linkage-set ::= linkage A <nothing | linkage-set>

l link-statement ::= link A <linkage-set | name
l linkage ::= <nothing [pointer—set A from> A list-element-reference
i

pointer—set ::= name

. \ <nothin ointer-set>
of-pointer A g I P

Notes: a. A linkage set will ordinarily reference only one list, but
may reference several identically-declared lists to permit
inter=-list linkages.-

b. The pointers in a pointer set must all belong to the list

a pointer should not be named in a pointer set more than once.

c. A pointer need not be named in a linkage for a list with only

one pointer.

I named in the list-element reference in the linkage. Moreover,

(ﬂ’ 95

Examples:

link LETTER

link NEXT.ELEMENT from LETTER

link NEXT.ELEMENT from LETTER at NEXT.ELEMENT

link PREVIOUS.WORD from WORD at NEXT.WORD, NEXT.WORD from WORD'

A link statement containing a linkage set allbcates storage for a single list
element and its pointers,* and links that element into the list, as indicated
by the set of linkages. Each linkage references a single list element as
predecessor for the new element and, by naming the‘pointers, indicates the
sequences in which the new element is to be the successor of the referenced
element. Several linkages in a link statement should specify several pre-
decessors for the new element; the actual linking, though, is done in the order

in which the linkages are written.

For each linkage, a link statement will assign the named pointers in the ﬁew
element the values of those same pointers in the predecessor element, and

then assign the named pointers in the predecessor element the pointer value

of the new element. Consequently, the named pointers in the predecessor
element will point to the new element, and the named pointers in the new
element will point to the predecessor element's previous successors (for those

pointers).

The mechanics of establishing a linkage are perhaps best explained with an

illustrated example. Consider the following list, ELEMENT. begin ... end Pl.

P2.'P3. P4. P5. list, where the element at cell X is shown below:

E

VoV

Predecessor Pl

P3
list element A

P4 P5
D

at cell.X

[ae]
< w|o

*When necessary, a link statement may automatically invoke ''garbage collection.”

96

™
)

4

e

()
si-z —

Ny o

i

A

e B]

-'_"ﬁ-! —

The sltuatlon after the execution of the link statement link P1, P2, P3 from
ELEMENT at CELL.X, is shown next:

Pl P2 - P3 P4 P5
Predecessor
list element I Y Y Y D E
at cell.X ¢ ¢

[New 1list P2 _P3 P4 __P5

Pl
element at -—-1 A B C nullj null]
cell.Y 1

The example shows that pointers not named in a link statement are assigned the
null pointer value. Of equal importance though, is the fact that none of the

components of a newly allocated and linked list element have defined values

until these values are later assigned.

As in the reference statement, if no pointer-formula is given in a list-element
reference in a linkage, the element currently under consideration is assumed.
And if no element is currently under consideration for the list, then the

newly linked element becomes the first element in the list--at least for

the named pointers.

The execution of a link statement does not affect which list. element (if any)

is currently being considered.

The link statement may be applied to other data elements besides lists, i.e.,
items, groups, and arrays. When this is done, the data element is considered
as a pointerless, zero- or one-element list, and linking accomplishes the
dynamic allocation of storage for that element. Where storage is already

allocated, however, a link statement has no effect.

97

7.4.3 . Free Statements

. A free statement serves to unlink one or more elements from one or more sequences
.in a list, perhaps deleting some elements from the list entirely, thus freeing

their storage for later reallocation. A free statement may also serve to dynémicallv

free storage for an item, an array, or a group.-

SYNTAX

free-statement ::= free A <linkage-set | name . >
I of-item-array-or-group

Examples:

free LETTER

free NEXT.ELEMENT from LETTER

free NEXT.ELEMENT from LETTER at NEXT.ELEMENT

free NEXT.WORD from WORD, PREVIOUS.WORD from WORD at NEXT.WORD

A free statement may contain a linkage set, indicating which of the list's
linkages are to be unlinked. Each linkage in such a free statement contains

a reference to a single list element, which is the predecessor to the one or
more successor elements that are to be freed (unlinked) from the predecessor
element. These successor elements are specified by the values in the
predecessor element of the pointers named in the linkage's pointer set.
Unlinking occurs as follows. Each successor element is specified by a pointer
in the predecessor element. The value of that same pointer in the successor
element is assigned as the pointer's value in the predecessor element, and the
pointer in the successor element is assigned the null pointer value. This is
done for each successor element in the linkage, and then for each linkage in
the free statement, in the order written. The result is that the named
pointers in the referenced predecessor elements now point to the successors

of the successor elements they previously specified. Again, an illustrated

example is probably helpful. Consider then the next situation.

98

Pt e p—

| o—

b

o

Pred Pl P2 P3 P4 P5
redecessor
list element ¥ Y b4 D , 2
at cell.X w

Pl P2 P3 P4 P5
Successor
list element A B c null| null
at cell.Y w w w

Pl P2 P3 P4 P5
Successor
list element Q
at cell.E

The situation after the execution of the free statement, free P2, P3, P5 from

v

v

ELEMENT at CELL.X, is shown next.

v

{

Pred Pl P2 P3 P4 P5
redecessor |
list element Y B C. P Q
at cell.X \1/ \1/ \l/ d/
Pl P2 P3 P4 P5
List element A null {null |null [null
at cell.Y W
Pl P2 P3 P4 P5
List element hull
at cell.E P

v

v

{

V

99

Aé iﬁ the reference and link statements, if no pointer-formula is given in a
list-element reference in a linkage, the element currently under considefation
for the list is assumed. And if no element is currently under consideration
for the list, then the unlinked elements are the first in their respective

‘sequences.

The execution of a freé statement does not affect which list element (if any)

is currently being considered.

The free statement may be applied to other data elements besides lists, i.e.,
items, groups, and arrays. When this is done, the data element is considered
as a pointerless, zero- or one-element list, and freeing accomplishes the
dynamic freeing of storage for that element. Where no storage isnallocatéd;

however, the free statement has no effect.

7.5 . ENCODING AND DECODING

Encoding and decoding are conversion operations ordinarily used in extended SPL
in conjunction with reading and writing externally formatted record. Nevertheless,
these operations are useful for converting other texts besides records, and even

for conversions where neither operand is textual.

The encode and decode statements both have the same three parts: a (nominally)
textual operand; a (nominally) nontextual operand; and a format, composed of

conversion procedure calls that may be grouped by parentheses and unconditionally,

‘conditionally and repetitively catenated.

100

a

A\

o B

&y

- ey

&=

/

B

).
Py

()

SYNTAX
encode-decode-statement ::= <encode | decode> Avariable 4= A formulaa by A
format
format ::= conversion-procedure-call | (4 formatA) | catenated-format |

repeated-format | conditional-format

conversion-procedure~call ::= name A <nothing l actual-parameter

of-procedure
(A actual-parameter-string A)>

catenated-format ::= format A <nothing 1 catenation-operatcr> A format

repeated-format ::= format A <nothing I catenation-operator> A (A repetition-

clause B

conditional-format ::= closed-conditional-format | open-conditional-format
closed-conditional-format ::= if A condition A then A format, A else A format

1 2

open-conditional-format ::= if A condition A then A <format3 | open-conditional-

format l A else A format4>

Notes: a. The discussion of encode and decode statements is based on the
assumption that the variable in an encode statement and the
formula in a decode statement Are both textual in type. This
need not generally be so, and the syntactically indicated

extension to more general operands should be obvious.

b. Format3 may be any format. Formatl, formatz, and format4 may

be of any format but an open conditional format.

The encode statement converts the value specified by a (nominally) nontextual
formula, assigning the results as the value designated by a (nominally textual)
variable. The encode statement works by invoking, in turn, each individual
conversion procedure from the format, first automatically providing it with its

major, actual parameters. (Any minor parameters must be supplied in the

conversion procedure call.)

101

A conversion procedure in an encode statement may have several, minor argument
parameters, but it has two major result parameters-—an expression pafémeter,
which is the (nominally textual) variable itself, and another expression
’parameter, which is an index variable designating the origin within this
variable that is to receive the results of the conversion--and it may or

may not have a major argument parameter.* If it does, it will be either a

value or an expression parameter specifying some part of the formula's value,

to be converted.

The segmentation of the formula's value into a sequence of actual major argument
parameters for the format-specified sequence of conversion—prdcedure invocations,
is done according to the rules given on repeated statements,

That is, where C is the formal major argument parameter of the conversion
procedure being invoked, and A is the remaining, unconﬁerted part of the formulsa,
of dimension equal to or greater than C, the paft of A that is to be the actual
parameter corresponding to C is: A sub ((Af (*) C size gr 1 then ((1 (C size
size times)) to C size)), 1).

Where a catenation operator is encountered in‘an encode format, the effect is

to pad the variable, where necessary, with the appropriate filler character,

and to increment by one the corresponding diwension of the actual index

parameter (which gives the origin within the variable for the results of the

next conversion) and to reset its lower dimensions to one. Where, for example,

*A conversion procedure in an encode statement that merely inserts punctuation
or control characters into the variable, may not require a major argument
parameter.

102

|
1
1
1

Y
A

F]

\ the variable is a three-dimension textual opefand (whose dimensions correspond
l to (1) characters in a line, (2) lines in a page, and (3) pages in a report),
then the row catenation operator has the effect of inserting a siﬁgle
filler character in the variable and incremernting the character dimension of
the index parameter by one; the // catenation operator has the effect of padding
the remainder of the line with filler characters, incrementing the line
dimension of the index parameter by one and resetting the character dimension
to one; and the /// catenation operator has the effect of padding the remainder
of the page with filler characters, incrementing the page dimension of the

index parameter by one, and resetting both the character and the line dimension

to one.

In summary, then, an encode statement invokes each individual conversion proce-
dure in turn from the format, and where the conversion procedure has a major
argument parameter, supplies it with the next unconverted portion of the value
specified by the formula, and then inserts the converted results into the

variable at the indicated origin.

The decode statement, on the other hand, also invokes each individual conversion
procedure‘in turn from the format. But here, the implicit index parameter

applies not to the variable, but to the formula.

A decode statement, then,converts the value specified by a (nominally textual
formula), assigning the results as the value designated by a (nominally non-
textual) variable. The decode statement invokes each individual conversion
procedure in turn from the format, first automatically providing it with its

major, actual parameters. (Any minor parameters must be supplied in the

conversion procedure call.)

-
\

103

A conversion procedure in a decode statement may have several, minor afgument
parameters, but it has just one major argument parameter--an expression ,
parameter-~-which is the (nominally textual) formula itself. A decode conversion
procedure also has at least one major result parameter--an expression paramefer--
whicﬁ is an index variable designating the brigin within the formula of the

data that is to be converted, and it may or may not have another major result
parameter.* 1If it does, it will be either a value or an expression parameter

designating some part of the variable that is to receive the converted results.

The segmentation of the variable into a sequence of actual major result .
parameters for the format-specified sequence of conversion-procedure invocations,
is done according to the segmentation rule already described for the encode

statement (and for the repeated statement).

In summary, a decode statement invokes each individual conversion procedure in
turn from the format, and automatically supplies it with its major actual
parameters: (1) as an argument, the formula given in the decode statement
itself; (2) as a result, an implicit index variable designating the origin in
thé formula of the data to be converted; and in most cases (3) as anothef '
result, the next part of the variable given in the decode statement that is

to receive the results of the conversion.

The format in an encode and decode statement gives a sequence of conversion-
procedure calls. These may be groupedkby parentheses and unconditionally,

repetitively, and conditionally catenated.

%A decode conversion procedure that merely interprets punctuation or control
characters in the formula, may not require another major result parameter.

104

(==

1
S
|
1
1
I
1
I

N

P

=

)

So far as the conversion procedures themselves are concerned, SPL allows for a
complete set of "built-in" encode and decode procedures for converting between,
on the one hand, alphanumeric texts representing numeric, textual, pointer,

and Boolean constants, and nonscalar formulas containing only these constants,

and on the other hand, the internal representations of these as data values.

The programmer may, of course, declare other conversion procedures in addition

to those built-in. An encode conversion procedure has at least two formal
parameters: an expression result parameter whose corresponding actual parameter
is the variable given in the encode statement; and an expression result parameter
whose corresponding actual parameter is the implicit index variable generated

by the encode statement. Most encode conversion procedures also have at least

a third formal parameter: an expression or value argument parameter whose
corresponding actual parameter, automatically supplied by the encode statement,
is (or specifies) some portion of the value that is specified by the formula
given in the encode statement. These are the major parameters of an encode

conversion procedure.

A decode conversion procedure also has at least two formal parameters: an
expression argument parameter whose corresponding actual parameter is the
formula given in the decode statement; and an ekpression result parameter whose
corresponding actual parameter is the implicit index variable generated by the
decode statement. Most decode conversion procedures also have at least a third
formal parameter: an expression or value result parameter whose corresponding
actual parameter, automatically supplied by the decode statement, is (or
designates) some portion of the variable given in the decode statement. These

are the major parameters of a decode conversion procedure.

105

Conversion procedureé may also be declared with additional, so-called minor
parameters: argument or result parameters; value, expression or name
parameters. Any minor parameters must precede the major parameters in the formal

parameter string, however.

When a conversion procedure is invoked by an encode or decode statement, the
actual, major parameters are omitted from the conversion procedure call, since
these are supplied automatically by the encode or decode statement. Any actual

minor parameters must, however, be supplied.

A conversion procedure may also be invoked, however, outside an encode or
decode statement, by a procedure call statement. And in this case, all actual
ﬁarameteré, both major and minor, must be explicitly supplied. Conversion
procedures may, of course, invoke other conversion procedures, either directly,
or by encode and decode statements. The only restriction on the computation
done by a conversion procedure is that it must update the implicit index
variable generated by the ehcode or decode statement so that, on completion,

it designates the origin for the next conversion.

7.6 ALGEBRAIC FORMULA MANIPULATION

In SPL, algebraic variables may be declared, and algebraic formulas may be
symbolically manipulated, and where they are equivalent to defined numeric
formulas, evaluated. An algebraic variable or formula is represented as a
tree-like list of elements, any of which may be an algebraic variable or
formula or an alphanumeric text, representing an algebraic operator, a
numeric constant, or an atomic operénd. Actually, all algebraic variables
and formulas declared and specified in a program are represented in a single
list. Where AFl, AF2, ..., AFn are the declared algebraic variables, this

iist might be declared as follows:

106

e

ALGEBRAIC.FORMULA.LIST.
begin
L. integer

ATOM. L character text

OP. L character text

store ATOM/OP

ATOMIC. Boolean

end

T.AFl. T.AF2. ... T.AFn.
N.AFl. N.AF2. ... N.AFn.
list

In the above algebraic formula list, N.AFi points to the next element of AFi.
If the current element of AFi is an alphanumeric text, then L nq O and T.AFi
eq null, and the Boolean item ATOMIC indicates whether the text represent an
atomic operand, or an algebraic operator or numeric constant. On the other
hand, if the current element of AFi is an algebraic variable or formula, then
L eq O, and T.AFi points to this element of T.AFi. Any given implementation
of this algebraic formula manipulation capability may include additional
pointers and items to simplify processing.® ’The programmer who wants to

construct his own, special-purpose manipulation procedures, however, may

reference those given above.

107

An alphanumeric text as an element of an algebraic formula may represent:

a defined numeric formula specifying a numeric value; an undefined numeric
formula--actually, any sign-string; a numeric constaat; or an algebraic

~ operator. In this context, a defined numeric formula is one whose operands
are all either numeric constants, declared numeric items or arrays, or
numeric-valued functions. Whether defined or undefined, though, the algebraic
formula manipulation operations in SPL treat numeric-formula text as atomic
operands; ‘that is, the operations do not apply to the components of the |
numeric formulas. A numeric formula may be represented as an algebraic

formula where it is desired to manipulate it algebraically.

Algebraic variables and arrays of algebraic variables may be declared (though
only scalar algebraic formulas are manipulated), and algebraic formulas may
be assigned to algebraic variables. 1In addition, a variety of bqilt-in
functions take algebraic arguments and produce numeric, textual, and Boolean
as well as algebraic results. Algebraic functions and procedures may also

be declared by the programmer, wherein the formal parameters corresponding

to actual algebraic parameters are formal name parameters,¥*

*In particular, pointers for an algebraic “accumulator' may be included.

**his is already adequately accommodated by the subroutine capability
described in Section 9, so no more need be said about it here.

108

&

N

i

L-;\ N

. - e _

,

-

\

J ~——

.

~algebraic-formula ::= numeric-constant | algebraic-variable l atomic-operand ')

)

|

SYNTAX
algebraic-declaration ::= name-string /A algebraic A <nothing I dimension-string
A array>
algebraic-variable ::= name A <nothing | sub

of-algebraic-variable

A index-string>

(~ algebraic-formula 4) | <- | + > A algebraic-formula |

algebraic-formula A <- | + | * | / | *% | rem> ‘

A algebraic-formula [<abs 1 floor | ceiling | exp | log.e

log.2 | log.10 | sin | cos | tan | arctan | cosh | sinh | 1

tanh> A algebraic-formula |<min | max > A (A algebraic-

formula-string A)
algebraic-formula-string ::= algebraic-formula A <nothing] algebraic-formula>
atomic-operand-string ::= atomic-operand A <nothing f atomic-operand-string>
atomic-operand ::= 'numeric-formula' | 'sign-string' | textual-formula

algebraic-assignment-statement ::= <nothing | let> A algebraic-variable
A = A <algebraic-formula |

funct10n0f_a]_gebraic-type>

algebraic-operator ::= (|) '+ - * | #*| / | abs | floor |

ceiling | rem | exp | log.e | log.2 | log.10 | sin |

cos { tan | arctan | cosh | tanh | sinh | min | max

109

Notes:

a,.

The index string in a subscripted algebraic variable must specify

a scalar algebraic variable,

A numeric-formula text as an atomic operand in an algebraic
formula should probably--but not necessarily--specify a scalar
value, since algebraic formula manipulations are done as if on
scalar values, and in some cases these manipulations are not

mathematically valid for nonscalar operands,

A numeric-~formula text as an atomic operand in an algebraic
formula should contain no textual constants--either-as numeric

operands or as argumerts to numeric functions.

A sign string (nominally representing an undefined numeric formula)
as an atomic operand in an algebraic formula, must not contain the

sign,

Numeric constants and algebraic operators, though represented as
alphanumeric texts in the algebraic formula list, are not written

in an algebraic formula as textual constants.

The statement prefix let is a '"noise" word and may be omitted, though

it improves readability in certain contexts.

Algebraic functions are not permissible elements of algebraic formulas,
contrary to what might be expected, since they involve algebraic

manipulations,

110

)

[a——

- s . -~

Examples: y

array N A. B. C. algebraic

D. algebraic

let D = A sub I - (D*¥2 + B sub I/C sub I)

let A sub I = "ALPHA sub I' * 'THIS OPERAND SHOULD FACTOR OUT'
let C sub 8 = expand D

C sub K = 27

An algebraic declaration serves to declare one or more algebraic variables.
In addition, each algebraic variable is given an initial, atomic value: an
undefined text typographically identical to the algebraic variable used to
designate the value. Thus, D has the initial value 'D', C sub 1 has the

initial value 'C sub 1' and so on.

The algebraic operators are quite analogous to the arithmetic operators
and numeric funcﬁions they typographically resemble. Nevertheless, they
do not automatically invoke numeric operations=--or algebraic operations
for that matter-~since they are basically just textual symbols in a

symbolic¢ formula.

The algebraic assignment statement operates in a straightforward way, as

if by linking the elements of the algebraic formula together in some
algebraic accumulator, freeing the elements of the algebraic variable, and
then linking to it the elements in the algebraic accummulator, or by first
doing the manipulations specified by the algébraic function, and then using

the results as an algebraic formula for assignment.

111

7.6,1 The Evaluation Function -

The evaluate function takes an algebraic formula as argument--one containing
no undefined atomic elements--and converts it to a numeric value by first
eValuating the atomic elements and then evaluating the resulting formula by

considering the algebraic operators as arithmetic operators and numeric

functions,
SYNIAX
function . ::= eval A algebraic-formula
of~-numeric-type —_—
Examples:
eval D

eval (A sub I - (D**24B sub I/C sub 1))

The result of evaluating an algebraic formula with undefined atomic elements

is undefined. The result of evaluating an algebraic formula with defined but

nonscalar atomic elements is, in general, nonscalar.

7.6.2 'The Represent Function

The represent function takes an algebraic formula as argument and converts it
to an alphanumeric textual value--an equivalent algebraic formula containing

‘no non-atomic operands (i.e., no algebraic variables).

SYNTAX

function ::= rep A algebraic-formula

of-textual-type
Examples:

*
rep D = (initially) 'p'

rep (A subI - (D ** 2+ 'Q" * B sub 1))

*Before any assignments to D.
112

(N

5

L R

7%\fll!) an -l

-

an fam e

| s

g S S Gon -

/

i

(
\

7.6.3 The Defined Function

The defined function takes an algebraic formula as argument and produces a
scalar Boolean value as resulti! true if the algebraic formula coﬁ;ains no

undefined atomic elements; false if it does.

SYNTAX

fUHCtionof—Boolean—type ::= algebraic-formula A defined {
Examples:

'Q' defined

D defined

(AsubI ~(D* 2+ 'Q" * B sub I)) defined

7.6.4 The Identity Function

The identity function takes a pair of algebraic formulas as arguments and
produces a scalar Boolean value as result: true if the two formulas are

found to be identical or mathematically equivalent; false otherwise.*

SYNTAX -

function ::= algebraic-formula A ident 2 algebraic-formula
of-Boolean-type _—

Examples:

D ident 27

C sub 1 ident (D **% 2 + 'Q' * D)

*This, 0of course, is not a sure test, since only the more common equivalences
~are employed. Another good procedure here is to evaluate the two formulas
for a range of values and compare the results,

113

7.6.5 " The Approximate Function

The approximate function takes as its arguments a pair of algebraic formulas
and a scalar numeric formula specifying a tolerance value, and produces a scalar
Boolean value as resulti true if the two formulas are found to be approximately

identical or mathematically equivalent; false otherwise.

SYNTAX
funCtionof-Boolean-type ::= algebraic-formula A approx 4 (<pumeric-formula |

algebraic~formula>)
Examples:
D approx (le-4, 'Q')

(27%'Q') approx (28, 'Q') = true

The approximate comparison is performed in almost exactly the same way as
the identity comparison, and using the same equivalences, except that two
algebraic formulas are aporoximate if matching terms in each have constant
coefficients that do not differ by an amount whose absolute value is greater

than the absolute value of the tolerance value.

7.6.6 The Reduce Function

The reduce function takes as its arguments an algebraic formula and a binary
textual formula, specifying a 22-b{t binary text with a special meaning: each
bit of the text corresponds to an algebraic operator, and a zero bit means the
corresponding algebraic operation is to be reduced while a one bit means the
corresponding algebraic operationvis not to be reduced. The reduce function
produces a '"simplified" algebraic formula. However, only the indicated algebraic
operations are employed in arriving at this simplified result the others

are '"not reduced."

114

. e —

P e

SYNTAX
function of-algebraic—type ::= reduce A (algebraic-formula A textual formula)
Examples:

reduce (D, null)

reduce (D ** 2 + 'Q' * D, bit '1000100110110110111110")

The reduce function operates as follows:

a. all defined atomic operands are evaluated.
b. where their operands have been numerically evaluated,
all indicated algebraic operations (except those

specified as not to be reduced) are numerically performed.

c. like terms and factors are combined. '

7.6,7 The Expand Function

The expand function takes an algebraic formula as argument and removes the
parentheées from it by applying the distributive law and/or the multinomial

theorem, thus producing as a result, an 'expanded' algebraic formula.

SYNTAX
[function of-algebraic type ::= expand A algebraic-formula
l Examples:
expand D

expand (B sub I * 'if T then O else Q')

115

7.6.8 The Coefficient Function

The coefficient function takes a pair of algebraic formulas as its arguments,
and the result is an algebraic formula that is the coefficient of the second

argument as it appears within the first argument.
SYNTAX

- ti= ic- oeff A algebraic-formul
function of-algebraic-type algebraic form.ula1 LN coe algebraic-formula

Examples:

D coeff 'Q’

(!Ql Je !Xl ede 2 + 'P' % le‘ Yode 3) _C_:_Qg_g_f_ (IXI Yoot 2) (IQI + IPI % 'X‘)

' Where the second argument is not an element of the first, the resﬁlt of the

coefficient function is, of course, zero.

7.6.9 The Differentiation Function

The differentiation function takes the (fﬁll or partial) derivative of an

algebraic formula with respect to one or more other algebraic formulas. The

result is an algebraic formula.

To permit differentiation where functional relationships among atomic operands
are not explicitly given (at least in terms of the operations and functions
allowed in an algebraic formula), implicit dependence relationships among

atomic operands may be given as an adjunct to the differentiation function.

116

2

N

. h’ 4‘ - .

[—

. . -

. —~

/

)

(

o

SINIAX
function of-algebraic-type ::= algebraic-formula A deriv A <algebraic-formula
[(algebraic-formula-string)> <nothing

(where /A dependencies)>

dependencies ::= atomic-operand & is A f (A atomic-operand-string A)

A <nothing | dependencies>

Examples:
D deriv 'Q'
('x" %% 2) deriv 'X' =(2 * 'X')

D deriv ('Y sub 1', 'Y sub 2', 'Y sub 3')
(where 'X' is £ ('Y sub 1', 'Y sub 3'))

The differentiation function works as follows: the derivative of the algebraic
formula preceeding deriv is first taken with respect to the first algebraic ’
formula following deriv, then the derivative of the resulting formula is taken

with respect to the second algebraic formula following deriv (if any), and

so on. Where dependencies among atomic operands are specified for a differentiation,
the atomic operand breceeding is depends on (is some unspecified function of)

the atomic operand or operands within the f (and) brackets.

Certain of the algebraic operators are not differentiable, and thus care

should be exercised in differentiating an algebraic formula containing them.

117

7.7 INTERACTIVE PROGRAMMING

vInteractive, on-~line programming is possible in extended SPL w1th an 1nterpreter or
incremental (line-at-a-time) compller running on a time shared computer. The'
commands used to control the on-line compilation and execution of a program

are also useful in controlling program compilation and execution off—liﬁe, and

the results are completely similar, except for the lack of quick interaction.

Each statement, declaration, and command input or entered is immediately checked
by . the compiler for formal errors and, to some limited extent, for logical
errors. Diagnostics or warnings are automatically incorporated in the program
listing immediately after the line causing them (but without a line number).
These should emphasize intelligibility, yet be reésonably brief. Should a
novice programmer, on-line, require further explanation, he may be able to re-
trieve a tutorial text, cataloged under some appropriately descriptive titlé.
The system's diagnostic, warning, and advisory messages are printed without

line numbers.

To facilitate the writing in extended SPL of programs intended to communicate
interactively with an on-line teleterminal, extended SPL includes a pair

of built-in-procedures--accept and display—-whichvperform the necessary
read-decode, encode-write operations on an implementation defined file
employing the appropriate device: the user's own terminal in a multi-access
system, the operator's terminal otherwise. The calls for these procedures

have the following syntax.

SYNTAX
procedure-call-statement ::= <nothiﬁg | call> A <accept A variable |

display A formula>

118

()

Examples:

accept' I
accept (J, A sub I // B)
display ('PI = ' // 4*arctan 1)

At the terminal, the effect of the three procedure call statements above would

be to print:
set I =
set (J, AsubI // B) =
PI = 3.1415927...

After each of the first two printouts, the user or operator would be expected
to enter an appropriate SPL formula--containing only constant operands, though--

which the accept procedure would read, decode, and assign to the designated

variable.

Insofar as possible, the message produced by the display procedure will be
tabular. But where the size and/or dimension of the value specified by the

formula preclude this, the displayed message will utilize the linear notation
of SPL formulas.

7.8 COMMANDS

7.8.1 Edit Commands

Programs are written to be executed but, unfortunately, modification or editing
is a far more common operation. Programs are considered to be input or entered
a line at a time. Each line of program text--whether it contains a statement,
a declaration, a command, or a comment--is automatically given a serial line
number, for editing purposes, by the compiler. The editing command permits
lines to be inserted, deleted, replaced, and renumbered.

119

SYNTAX

edit-command ::= edit A lines A <nothing | out l.if A character-string
lines ::= <all | line-number I to A line-number] line-number A fo

/s line number> A <nothing | lines>

line-number ::= number <nothing l line-number>

Examples:

all

[

o
[
rT

(o)
(=%
o
[nd
o
—
-
o]
[
=

38 to 38.19 is begin ... end

1o
=
=
jer

©

[oN

=
jer

!
l

17.1 out
to 74.6.9

In

je
jre
|

Lines input or entered are automatically given serial numbers by the compiler:
1, 2, 3, 4, 5, 6, etc. Line numbers are automatically printed at the beginning
of eacu iiue, effectively, as part of the line-feed/carriage-return action.

Assume 100 lines of text have been entered; these would be numbered

99.
100.
in the left margin. To insert new lines between 57 and 58, say, the edit command,
101. edit 57.1 is ...
would be used. The remainder of the edit command on lime 101 would logically
become line 57.1, and the automatic line numbering would resume with 57.2,
57.3, and so on. When the insertion is done and it is desired to resume the
program where it had been left off, the edit command
57.23. edit 102 is ... ,
could be used. To imsert text at the beginning of a program, an edit command

without a line number is used. Thus,

120

)

C

(
AN

-would cause the remainder of line 138 to be given the number 0.1, and the next

138. edit 1is .

line number would be 0.2, and so on. Another such edit command, e.g.,
0.28. edit is
would cause the remainder of line 0.28 to have the line number 0.0.1, and the

next line number would be 0.0.2, and so on.

To delete a line, or a series of lines, the'primitive out must be explicitly
used. The edit command,
0.0.3. edit 75 out
would delete line 75 from the previously provided text. The edit command
0.0.4. edit 70 to 88.6 out
would then delete lines 70-74 and 76-88.6; line 75 having of course been pre-
viously deleted. It should be noted that a subsequent edit command
0.0.5. edit 0.0.3 out

would not have the effect of replacing line 75, just the effect of deleting
line 0.0.3 from any subsequent listing of the text. Nor, to use an earlier
example, would ‘

0.0.6. edit 101 out
have any effect on what the edit command on that line had already caused to be

inserted at line 57.1.

All previously provided text may be deleted by the all-consuming command
0.0.7 edit all out

After such a command, the next line number would automatically be 1. But

assume such drastic steps are unnecessary, and it is only desired to replace

a line.

A line, say 27, may be replaced with the following edit command:

0.0.7. edit 27 is ...

121

This is entirely equivalent to
0.0.7. edit 27 out, edit 27 is ...

With either command, the remainder of line 0.0.7. is given the number 27, ahd

the next line would automatically be 28, so that anything entered or input

there would replace any previous line 28, and so on. (But it would not replace

any line 27.1 or any other line between'27 and 28.) If such subsequent auto-

matic replacement of lines 28, 29, ef. seq. were not desired, the command
0.0.7. edit 27.0 is ... ’

This would also replace line 27 (327.0) with the remainder of line 0.0.7, but

the next line would automatically be 27.1.

A sequence of lines may also be replaced with an edit conmand, say
27.1. edit 70 to 88.6 is ...
And this is exactly equivalent to
27.1. edit 70 to 88.6 out, edit 70 is ... :
- Not that such an edit command deletes all lines between 70 tb 88.6, inclusive,

no matter how deeply they may be numbered.

After a great deal of the kindiof editing exemplified above, line numbers are
likely to be in a hodge-podge, with gaps in the sequence, and seven- or cight-
level line numbers in places. This can be corrected by renumbering, with an
cdit command, such as

367.6.54.2, edit all

which renumbers all previously provided and remaining lines: 1, 2, 3, and so

on. " Of course, any sequence of lines can also be renumbered, with an edit com-

mand like
59.6. edit 23.4 to 38.7.12
which would renumber all lines between 23.1 and 38.7;12, inclusive, no matter

liwow deeply numbered. These would be renumbered: 23.4, 23.5, 23.6, and so on.

122

;

P

N

o

&

I

e e

\

\

An edit command to renumber can also have the effect of replacing lines (though

this can easily be avoided, with a little care, where replacement is not wanted).

For example ,

38.5. edit 16 to 25
would cause the indicated. lines to be renumbered 16, 17, 18,--and if there
were more than ten 11neé in the sequence--25, 26, 27, ... and so on, causing

any lines previously numbered 26, 27, etc. to be replaced.

To renumber just some initial sequence of lines, the command
57. edit to 31.6

could be used to renumber all lines with numbers less than or equal to 31.6.

‘And to renumber some final sequence, the command

58. edit 40
might be used (since there is no point, of course, in renumbering a single
line) to renumber all lines with numbers greater than or equal to 40. (This
last interpretation does not apply to deletion. Thus,

59. edit 40 out

would delete just a single line.)

7.8.2 Save Commands

A save command serves to store and catalog, under a user supplied title, the
current values of any data elements, or any lines of previously supplied

program text--including texts composed entirely of commentary.

SYNTAX
save-command ::= A title A = A <formula | lines>
title ::= name A <nothing l (all)>

123

Note: There is syntactic ambiguity between some numeric formulas and some
line numbers. In a save command, in such cases, the lines number
interpretation will prevail. And if, for some strange reason, thé
programmer wants to save the integers 1 to 100 rather than lines 1

to 100, he must use parentheses; e.g., (1 to 100).

Examples:-

save EXPLANATION.OF,SAVE = 'A SAVE COMMAND SERVES TO STORE AND CATALOG,
UNDER A USER SUPPLIED TITLE, THE CURRENT ...'

save JONES.PROGRAM.EPHEMERIDES.(03 = all

save D.7 = to 132.8

Used as a title in a save, show, or get command, a name exhibits a hierarchic
structure, with the embedded periods delimiting the various levels. A variet&
of names can be given to the different levels. Library-file-section-shelf-
volume—book-chapter—page—paragraph might be one such (improbable) sequence, '
so that A.B.C.D.E.F.G.H.I, as a title, would be interpreted: library A, file B,
section C, shelf D, volume E, book F, chapter G, page H, paragraph I. A less

- improbable interpretation of one of the preceding examples might be: Jomnes'
library, program.file, Ephemerides routine, 3rd version. The point of all this
is that an abbreviated title, say JONES.PROGRAM, refers to all the routines

in the program file of Jones' library.

A save command may replace an existing element in a library or add a new ele-
ment (or even a new library) to the system, depending on whether or not an
element cataloged under that title already exists in the system. In either
case, the saved element will be cataloged in the appropriate place in the

hierarchy.

124

TN
(\
E

)

 —

b

)

— e

Whenever a name is used in a title that refers to an existing element that is
not at the bottom level of its hierarchy--i.e., the name refers to a number of
bottom level elements--the primitive all must be added in parentheses after
the name as part of the title, to make it less likely that unintentional re-
placement or purging of whole files will occur. Any other safeguards to pre-
vent unauthorized or unintentional replacement, purging,>or access to saved

elenents are implementation defined.

Any bottom level element, say Jones' program, Ephemerides, version 03, may be
purged (along with its name) by a save command like the following:

save JONES.PROGRAM.EPHEMERIDES.O3 = null

Any bottom level element or collection of bottom level elements, say all

versions of Jones' program, Ephemerides (with their names) may be purged with

a save command like the following:

save JONES.PROGRAM.EPHEMERIDES (all) = null
It is a useful end relatively simple and straightforward practice for the user
to construct and maintain an index--with save commands--for any level of a

library hierarchy. The system does not, however, do this automatically.

7.8.3 Get Commands

A get command serves to retrieve any previously saved (and retained) data or

lines of program text.

_SYNTAX
get-command ::= get A <variables =/, title l title>
125

Examples:
get JONES.PROGRAM.EPHEMERIDES.03
‘get COMPOOL.21 (all)

get BETA = N1626.MATRIX (all)

get D.7

Where a set command retrieves data, the effect is that of assignment to a

variable. Thus:

save Q = 1,693%*I sub (1L to N), get P = Q, save Q = null

has exactly the same effect as:

set P = 1.693*%*I sub (1 to N)

Where a get command retrieves lines of program text, the effect is exactly the
same as if the lines of text were input or entered--any commands in the
retrieved text will be obeyed. The line numbers of the retrieved text,
however, will all be prefixed with the line number of the get command itself.
Thus, ‘ ;

61.13 get SYSTEM.SUBROUTINE.OBOE

The lines of system subroutine OBOE would be inserted as 61.,13.1, 61.13.2,
61.13.3, etc. And if for some reason this is not desired, for example, because

of the existence of another line 61.13.1 that is to be,fetained; the following

commands could be. used:
61.13, edit 61.13.0 is get SYSTEM.SUBROUTINE.OBOE

so that OBOE would be inserted as 61.13.0.1, 61.13.0.2, 61.13.0.3, and so on.

126

g

L

ﬁ

IS

—

')

Where a get command retrieves several separate sets of program text, as in
17. get COMPOOL.21 (all)

the line numbers in each set are prefixed with a unique serial number for the
set, before being prefixed by the get command's line number. Thus, in the
above example, the line numbers for the fifst part of COMPOOL.21 would be
17.1.1, 17.1.2, 17.1.3, and so on, and for the ith part, they would be 17.1i.1,
17.1i.2, etc.

7.9 BUILT-IN FUNCTIONS

Extended SPL contains a number of built-in functions in addition to those
described for basic SPL.

7.9.1 Functions

7.9.1.1 Minimum and Maximum Functions. The minimum and maximum functions

are used to specify the minimum and maximum scalar value in a (nonscalar) formula.

7.9.1.2 Remainder Function. The remainder function specifies the remainder,
after division, of the real scalar dividend x by the real divisor y. The re-
mainder function may be generally defined as: x remy = x-y * floor (x/y).
Complex arguments of the remainder function are converted to real mode by dis-

regarding their imaginary parts. Nonscalar arguments specify identically

structured nonscalar results.

7.9.1.3 Conjugate Function. The conjugate function, for any complex
scalar argument (a+b*1i), specifies (a-b*1i). Real arguments of the complex
conjugate function are converted to complex mode by assuming imaginary parts

of zero. Nonscalar arguments specify identically-structured nonscalar results.

7.9.1.4 Floor Function. The floor functien, for any integer or real

scalar argument x, specifies the largest integer not exceeding x. Complex

arguments of the floor function are converted to real mode by disregarding their

:imaginary parts. Nonscalar arguments specify identically-structured nonscalar

results.
127

7.9.1.5 Ceiling Function. The ceiling function, for any integer or real
scalar argument x, specified the smallest integer not exceeded by x. Complex
arguments of the ceiling function are converted to real mode by disregarding
their imaginary parts. Nonscalar arguments specify identically-structﬁred

nonscalar results.

7.9.1.6 Hyperbolic Functions. = The hyperbolic functions sinh, cosh, and -
tanh specify, for any real scalar argument x, the hyperbolic sine, cosine, énd
tangent of x. Complex arguments of these functiéns are converted to real mode
by disregarding their imaginary parts. Nonscalar arguments specify identically-

structured nonscalar results.

7.9.1.7 Identity Matrix. The identity-matrix function specifies an m by
n numeric matrix whose elements have the value one along the main diagonal and
zero elsewhere. The number of rows in the identity matrix is specified by the
scalar numerijformulal, the number of columns by the scalar numeric—formulaz.
Either or both arguments may be omitted where the number of rows or columns can

be determined by compatibility considerations of context.

The elements of the identity matrix may be defined as follows:

id sub (I,J) = if T eq J then 1 else O.

7.9.1.8 Determinent Function. The determinent function specifies, for

any square n by n numeric matrix A, the determinent of A.

7.9.1.9 Size Function. The size function specifies, for any k-dimen-
sional formula F, the number of elements along each of the dimensions of F.
The size function, for a k-dimensional formula, specifies an index value--

an integer-valued k-element vector (integer k array). For a rectangular,
nonscalar formula, size sub 1 specifies the number of rows, size, sub 2 the

number of columns, size sub 3 the number of planes, and so on (assuming the

128

N

——

LY

J

[

-

¢

—

— e e

-

- a

A

!1 ! .* I-v -k I -< R !i " i._

)

"7;9.1410 Origin Function.

e

N

\

number of dimensions exceeds 3). For a nonrectangular, nonscalar formula,

the number of elements along any given dimension may vary. Here, the
corresponding element of the size specified vector is the maximum number. For
a scalar argument, the size function specifies the value one and for a null

argument, for example, a text of length zero, the size function specifies zero.

formulas X and Y, where the value of X is an element of the value of Y, the
index of the first origin--first in the sequence (1,1,...,1) to (Y size)--of

X in Y. Where the value of X is not an element of the value of Y, the origin
function specifies the value zero. Where X is an element of k-dimensional Y,

the origin function specifies an index value-—-an integer-valued k-element

vector. Also, X eq Y sub ((X origin Y) to (X origin Y + X size)).
7.9.1.11 Coordinate Transformations. The coordinate transformation
functions specify the transformations among real-valued 3-vectors represent-
ing Polar, Cartesian, and direction cosine coordinates in 3-space (syntax

unspecified).

129

The origiﬁ function specifies, for any pair of

8. LISTING OF SYNTAX EQUATIONS

8.1 ALPHABET, VOCABULARY AND PROGRAM STRUCTURE (Ref. Section 2)

character ::= letter ’ digit l mark

letter ::=A | B|C|D|E|F|G|H|TIIlJ|KR]|L]|
Mm|N|]o]P|]Q|R|s|T|UlvVIWIXx|Y]|z

digit ::=0] 1] 2] 3]&4]|5]6]7]8]9
mark ::=space | (|)|+ | -|*] /] .|, "]= [$
symbol 1= name] primitive | constant e
“Time ::= <letter | name> <nothing | letter I diglt | letter | .digit>

]

dellmlter I operator I descrlptor

primitive ::
|""| begin |end | term | program

delimiter ::= . | , | |] ¢ |y |

operator ::= catenatlon ~operator , repetltlon-operator ’condltlonal-operator [
arithmetic-operator [define-~operator [logical-operator |
relational-operator , assignment-operator ! functional-operator I
discrimination-operator [sequential-operator , input- output-operator |

locatlon—operator [editlng —-operator | complle—operator

arlthmetlc operator si= - |+ | I /] e

logical-operator ::= not , and 'g£

relational-operator ::= eq |nq | gr | 1s | gg | lq | equiv

conditional-operator ::= if l then']else
assignment-operator ::= = | set

times |91 lwhile | until | for

repetition-operator ::

catenation-operator ::= // ' iy

T .

. ' PR : AN ;o w-
* G bt O R T L ol R AW ¢ O
N ' ‘ N . i e Pp— ———

sequential-operatOr s gotoi stoEAf when i on [call lenggl Iexlt jfor idy

input-output-operator ::= open |close | read | write | assign | status |position

130

—

e

e

i

¥

E’ - i

—_—l e

N

—_— F;ii

—

[

location-operator ::= store | at

editing-operator ::= out | is | all | to | show | thru

compile-operator ::= optimize ’count

define-operator ::= execute l where l then ’:names

of-terms¥*
functional operator ::= log.e | log.10 | sin | cos | tan | abs

descriptor ::= integer , real l pointervl boolean larray f mode lprocedure |

function , pattern l file , dec , oct | hex |bit ! text | fixed [

float | cell | true | false | ready | busy | error | addr [

item |minimum | digit | maximum | signed | unsigned |round |
truncate { group] compool I full

recursive | reentrant | time

| unready | value | result

l space | none

constant ::= numeric-constant | textual-constant | pointer-constant ,
boolean-constant

numeric-constant ::= number [real-co

nstant l binary-constant | octal-constant
decimal-constant hexadecimal-constant
numeral ::= digit <nothing l numeral>
gsigned ::= -+ ! -
- i numeral>
number numeral <nothing | &y ponent-base-10
real-constant ::= <numeral . |. numeral] numeral ., numeral> <nothing
" numeral e igned numeral>
E-xponent-base-lo | =xponent-base-10 sigh !

binary-constant ::= <name. | nothing> A bit ' binary-string !

]

binary-string ::= <0 l 1> <nothing | binary-string>
octal-constant ::= <name, | nothing> A oct ' octal-string '

octal-string ::=<0 | 1 | 2 |3 |4 |5 | 6 | 7> <nothing | octal-string>

decimal-constant ::= <name. A nothing> A <nothing | dec> ' numeral '
hexadecimal-constant ::= <name, I nothing> A hex ' hexadecimal-string !
hexadecimal-string ::= <numeral | A | B | ¢ | D | E | F> <nothing |

hexadecimal-string>

* Listing of terms in Section 7.

131

o

\ .
\\,\I
textual-qoﬁstant ::= <name. ’ nothing> <nothing] text> ' character string '
character string ::= character <nothing] character-string> ‘il
pointer-constant ::= cell A name l addr A name | II
boolean-constant ::= true [false _ &
statement ::= simple-statement { compound statement]]:
|
compound~statement ::= <name. l nothing> A begin A statement-string A4 end A
<name | nothing>)
statement~string ::= statement | declaration I command <statement-string| iI
nothing>
declaration ::= data-declaration | subroutine-declaration file-declaration iI
simple statement ::= simple-control-statement] input-output~-statement] LI
procedure-call-statement'[assignment-statement
- o \ -
comment ::= '"character-string" {
- . \\\v -
program ;:= program 4 name.Astatement-string A term <name nothing> .
8.2 DATA DEFINITIONS (Ref. Section 3)
data-declaration ::= item-declaration ’ array-declaration I group-declaration | ;I
storage-declaration | mode-declaration v CI
item-declaration ::= <item | nothing> A name-string 4 item-description A <nothing f \

initial-value-string>

name-string ::= name. A <nothing , name-string> {I

initial-value-string ::= /item-value A <nothing | initial value string>
item-value ::= numeric-constant | pointer-constant] textual~-constant] [I

boolean-constant
item-description ::= numeric-item-description l textual-item-description l EI
pointer-item-description | boolean-item-description ;
numerié-item description ::= full-integer-itéﬁ-description]"fu11~rea1—item- f‘
description . <;: 1
iy
132

.

full-integer-item-description .= integer A number, A <bit | digit> A <minimum |

nothing> A <nothing l number2 A maximum> <nothing |

signed | unsigned> A <nothing | round | truncate>

full-real-item-description ::= real A num,berl A <bit l digit> A <nothing | minimum>
" A <nothing | -> number2 <pit | digit> 4 <nothing |

float I‘fixed> A <ncthing l signed] unsigned> A

<nothing | round | truncate>

textual-item-description ::

text A <nothing l number A character |

nam A character>

e . . "
of~integer<item

pointer-item-description ::= pointer

boolean-item-description ::= boolean
array-declaration ::= array A name-string A array-description

array-description ::= <item-description | group-description> A dimension-string

A <initial-value-string I nothing>
dimension-string iz Coumber | name . <. e o

g num | n meof-lnteger~iteﬁ> A <nothing ’ by 4 dimension
string>

group-declaration group A <nothing| name-string> A group-description

group-description ::= begin A declaration-string A end A <nothing l (name)
declaration-string ::= <item-declaration | array-declaration I group-

declaration l function-declaration | mode-declaration.l

storage-declaration> A <nothing | declaration-string>

mode-declaration ::= mode A <numeric-item-description | array-description |

storage-declaration ii= store A block-description A at A pointer-formula
block-description ::= n |

ameOf_glgment A <noth}ng’| block-description>

variable ::= name | subscripted-variable | conditional-variable |

catenated-variable l hardware-operand ,

133

subscripted-variabiew 1:= variable <(index-string) | A sub A index-string>

index-string ::= index A <nothing] <// f to> A index-string>

index ::= <numeric-formula | index-string> A <nothing | index> | (index)

catenated-varlable {:- varlable A <noth1ng , catenatlon operatnrz.A~uar1ab1e

conditional—varlable S if A condltlon A then A variable i <noth1ng | else A varlablez

‘hardware-operand ::= § name

compool-declaration ::= compoocl A nameof-compool

8.3 STATEMENTS (Ref. Section 4)

assignment-statement ::= <nothing | set> A variable A = A formula |
- formula ::= numeric-formula | textual-formula] pointer-formula /’ *f
boolean-formula | (formula) _ N

numeric-formula ::= constant ‘ function l variable | hardware-operand

—

A <nothing l arithmetic-operator> A <nothing
numeric-formula> f n-ary-arithmetic-operator A numeric-

formula [numeric-formula A matrix-operator A

numeric-formula , boolean-formula

n-ary arithmetic-operator ::= (arithmetic-operator) :I

matrix-operator ::= arithmetic-operator1 . arithmetic-oper'ator2 iI

textual-formula ::=. textual-constant A <catenation-operator] subscription- R
operator>

|

pointer-formula ::= name p < sub 4 index—string |nothing >|cell 4 sub 4
index-string | cell A variable | bit A sub 4
index-string

condition:; = boolean-formula
boolean-formula ::= boolean-constant | not A boolean-formula | boolean-

formula A <and l'gf | equiv> A boolean-formula |

N

[

relational-formula I n-ary-logical-operator A boolean-

formula

===

134

relational-formula ::= <nothing | n-ary-relational-operator> A formula

A< nothing | relational-operator A relational-formula>

n-ary-logical-operator ::= (<and | or] equiv>)
n-ary-relational-operator ::= (relational operator)

direct-code-statement ::= S$name

of-hardware—operator A (gctual—parameter—strlng)

1

control-statement ::= simple-control-statement | complex-control-statement
simple-control-statement ::= transfer-statement | stop-statement] procedure-

call-statement

complex—-control-statement ::= repeated-statement | conditional-statement]
parallel-statement | delayed—-statement ,

chronic-statement

transfer-statement ::= <go A to I goto> A pointer-formula

repeated-statement ::= for A repetition-clause A statement

repetition-clause ::= variable A = A value-sequence

value-sequence ::= formula | numeric—formulal A by A numeric—formula2 A
<while | until> A condition

conditional~statement ::= if A condition A then A statement, <nothing |

A else A statement2>

parallel-statement ::= do A statement

stop-statement ::= stop
delayed-statement ::= when A condition A statement
chronic-statement ::= on A condition) statement

input-output-statement ::= open-statement | close-statement read-statement

write-statement
file-declaration ::= file A name-string A file-description
file-description ::= device-name A <nothing | $(character-string)> A <nothing |

dimension-string> A <nothing | code-name>

device-name ::= name. I device-name. <nothing | number> A <nothing | module-name.
number>

—

|
code-name :® ‘EEB‘I_SEE | dec | hex | text> II
assign-declaration ::= assign A name to A device-name]
open-statement ::= openm A device-name A <nothing | $(character-string> A <nothing | f
: dimension-string> A <nothing | code-name> A file-designation]
close-statement ::= close A <nothing | EEE.i out A module-name> A file-designation
- i i tom i A inter-formula : 1
file~designation ::i= name . .4, | file A at A poin]
function ::= file—desighationA <status | position>
m
functional-variable ::= file-designation A position
read-statement ::= read A variable A into A file-designation
write-statement ::= ywrite A file-designation 4 from A textual-formula &
8.4 PROCEDURES AND FUNCTIONS & (Ref. Section 5) .
e ~ N
procedure-declaration ::= procedure-heading A <nothing parameter-~-declaration-
string> A statement
procedure-heading ::= procedure A nameof-procedure A <nothing l (formal-
pargmeter-string)> A <nothing [formal-parameter-string>
formal-parameter-string ::= formal-parameter A <nothing | formal-parameter-string>
formal-parameter ::= name
parameter-declaration-string ::= parameter~dec1aration A <nothing , parameter-
declaration-string> 4
parameter-declaration ::= <item-declaration | array-declaration | group-declaration-
A <nothing l value> A <nothing | result> <procedure-
heading [function-heading - © -nothing ' oardmetsr-
 QRChanl Yen - srring W file~declarat ion
ﬁrocedure-call-statement 1:= call A name 4
— of-procedure &\V

A <nothing [actual-parameter f (actual-parameter-
string)>

136

]
1
1

)

(

B SR 2y N

actual-parameter-string ::= actual-parameter A <nothing] (actual-parameter- -
string)>
actual-parameter ::= variable | formula | name

entry-statement ::= name A entry <(parameter-declaration) , nothing>

exit-statement ::= exit

function-declaration ::= function-heading & <nothing , parameter-declaration-
' string> A <= A formula | complex-statement | compound-

statement>

function-heading‘uzgév function A <nothing | formal-parameter | (formal-

parameter-string)> A name _._ A <nothing |

function
formal-parameter | (formal-parameter-string)> A <item-

description l array-description , group-description> &

)

<nothing | recursive | reentrant>

(

cti i:= <sin | ccs | tan |arctan > Anumeric-formula
funCtlonof-numeric-type l I

functi ¥ '
unCtlonof-numberic-type = abg A numeric-formula

funcuonof—nuuetic-type tiw <exp | log,e> A numeric-formula

functionof_numeric_type tim <log.? l log.1)> A numeric-formula

8.5 COMMANDéHI(Ref. Section 6)

command ::= define-command | execute-command | debug-command | optimization-

command | count-command

debug-command ::= show A <symbolic | nothing> location-identifier A <number {

nothing> <thru | nothing> A <location-identifier | nothing-

location-identifier ::= <name | cell A name> A <code-name l nothing>

optimization-command ::= optimize A <time | space | none> A statement
) »

!?ﬁj

-

137

count-command ::= count A time A<statement | declaration>

define-command ::= <name. | nothing> A where A definition A then A translation 4
o <end | define-command-string>

definition ::= textual-formula | term | textual-pattern | not

A definition | definition A < or | and > A definition

define-command-string ::= begin A define-command <nothing | define-command> A end
pattern—declaration ::= pattern A name A . definition

of-pattern

define-command-call ::= define A name .
—_— of-define-command

textual-pattern :: = pattern < (textual-constant) I (term) |(name-of—pattern)>

translation :: = declaration |statement |command

term :: = character | letter | digit | name | null | constant |

simple—statement‘l compound-statement | comment | item-declaration |

array-declaration I group~declaration I storage—declaration]

variable | hardware-operand | formula

execute-command ::= <name. | nothing> A where A definition A execute A item-

declaration A formula

8.6 EXTENDED SPL (Ref. Section 7)

numeric-constant ::= imaginary-constant number [real-constant | binary-
constant | octal-constant | decimal-constant |

hexadecimal-constant

imaginary-constantk ti= <number‘| real-constant> i

138

N
b

Bod et P e o

£

- bffi Dl

el

e

M S RN A S N S AaE S ER RWE e

7%§;l!! -y e

(

e

complex-item-description ::= complex A number, A minimum A <bit | digit |

nothing> A <nothing | ~> number

2 of-fractional-

or-exponent <Rit | digit> A <nothing | float |

fixed> A <nothing] signed] unsigned> A <nothing

round | truncate>

code-declaration ::= code A name . . 4. 4 code-description

code-description ::= <nothing | code-string> A number A <bit | digit | character

A “nothing | left | right-
code-string ::= textual-constant ‘A <nothing | is code> A <nothing |

code-string>

code ::= number | textual-constant

list-declaration ::= 1list /» name-string A list-description

full—iist-description

i

list-description

full-list-description ::= <item-description [array-description ' group-

description> A name-string

list~processing-statement ::= reference-statement | link-statement |
free-statement
reference-statement ::= see /A list-element-reference

list~element-reference ::= namegf.1igt A <nothing [at A pointer-formula>

link-statement ::= link A <linkage-set | name , >
—_—— of-item-array-or-group

linkage-set ::= linkage A <nothing] linkage-set >
linkage ::= <nothing] pointer-set £ from> A list-element-relerence

pointer—-set ::= name A <nothing l pointer-set~>

of-pointer

free-statement ::= free A <linkage-set | name . ' >
——— of-item-array-or-group

139

encode-decode-statement ::= <encode | decode> bvariable 4= Aformulaa by a

format

format ::= conversion-procedure-call | (A formatA) | catenated-format |

N

repeated-format I conditional-format

conversion~-procedure-call ::= name A <nothing | actual-parameter

of -procedure
(A actual-parameter-stringA)>

catenated-format ::= format A <nothing I catenation-operator> A format

repeated-format ::= format A <nothing I catenation-operator> A (A repetition-

o e

clause. 8)

conditional-format ::= closed-conditional-format | open-conditional-format

closed-conditional-format ::= if A condition A then A format
open-conditional-format ::= if A condition A then A <format3 | open-conditional-
format | A else A format

algebraic-declaration ::= name-string /A algebraic & <nothing | dimension-string

A array>

algebraic-variable ::= name

of-algebraic-variable

A index-string>

algebraic-formula ::= numeric-constant | algebraic-variable | atomic-operand |

(A algebraic-formula A) l <~ | +> A algebraic~-formula]
algebraic-formula & <~ | + | * | / | ** | rem>

L alggbraic—formula |<abs] floor ! ceiling l exp | log.e l
lgg}Z-I log.10 I sin | cos] tan | arctan | cosh l sinh |

tanh> A algebraic-formula |<min | max > & (4 algebraic-

1

A else A format

& <nothing | sub |

2

formula-string &)

algebraic-formula-string 1:= algebraic-formula A <nothing] algebraic-formula>

atomic-operand-string ::= atomic-operand A <nothing [atomic-operand-string>

atomic-operand ::= 'numeric-formula' | 'sign-string' | textual-formula

140

e

4

¥

_—

et

-

e B o e e e B e e T e B B T

By

(
N

function

algebraic~assignment-statement ::= <nothing | let> A algebraic-variable
A = A <algebraic-formula |
function

of—alg;ebraic-type>

algebraic—operatof 1= (_|) l + | - % | x| /] abs | floor |

ceiling | rem | exp | log.e | log.2 | log.10 | sin |

cos | tan | arctan | cosh I tanh | sinh | min | max

function H

of-numeric-type = eval {(algebraic-formula
quCtlonof~textual~type = rep A algebraic-formula
function ::= algebraic-formula A defined

of-Boolean-type

funCtionof-Boolean;type = algebraic-formula & ident £ algebraic-formula

funCtionof-Boolean—type ::= algebraic-formula A approx A (<numeric-formula [
"algebraic-formula>) -

function ::1= reduce A (algebraic-formula A textual formula)

of-algebraic-type

function of-algebraic type

::= expand p algebraic-formula

= algebraic-fofmula 0 coeff A algebraic-formula

1
function ::= algebraic-formula A dexiv & <algebraic-formula

of-algebraic-type 2

of-algebraic-type
l (algebraic-formula-string)> <nothing ’

(where A dependencies)>

dependencies ::= atomic-operand A is A f (A atomic-operand-string A)
A <nothing I dependencies>

procedure-call-statement ::= <nothing | call> A <accept A variable |
' display A formula>

edit-command ::= edit A lines A <nothing | out | is A character-string
lines ::= <all line-number | to /v line-number] line-number /. to

A\ line number> A <nothing | lines>

141

line-number ::= number <nothing | line-number>

save-command ::= A title A = A <formula | lines>

title ::= name A <nothing | (all)>

get-command ::= get A <variabled =A title ‘ title>

142

[

1

¢

INDEX

Page
Actual Parameter 72
Actual Parameter String 72
Algebraic Assignment Statement 109
Algebraic Declaration 109
Algebraic Formula 109
Algebraic Formula Manipulation 106
Algebraic Formula String 109
Algebraic Operator 109
Alphabet 13
Arithmetic Operator 15
Array 25
Array Declaration 25
Array Description 25
Assign Declaration 65
Assignment Operator 15
Assignment Statement 39
Atomic Operand 109
Atomic Operand String 109
Binary Constant 18
Binary String 18
Bit 18
Block Description 28
Boolean Constant 19
Boolean Formula 50
Boolean Item Description ' 23
Built-In Functions 76
Catenated Format 101
Catenated Variable 36
Catenation Operator 16
Character 13
Character String 18

143

Chronic Statement 60
Closé Statement 66
Code 89
Code Declarétion 88
Code Description 80
Code Name 63
Code String 89
Commands 78
Comment 20
Complex Item Description 88
Compound Statement 80,
Compool-Declaration 38
Condition 51
Conditional Format 100
Conditional Operator 15
Conditional Statement 56
Conditional Variable 37
Constant 17
Control Statement 54
Conversion Procedure Call 101
Complex Control Statement 54
Count Command 79
Data Declaration 22
Debug Command 78
Decimal Constant 18
Declaration - 20
Declaration String 26
Define Command 80
Define Command Call 81
Define Command String 81
Definition 80
Delayed Statement 59
Delimiter

144

26

4
,
i

&

-

]

\

=)

/

AN SEn S8 S e Sel

T

J

L]
/
\

145

Page
Descriptor 16
Device Name 63
Digit 13
Dimension String 25
Discrimination Operator 16
Edit Command 119
Editing Operator 16
"Encode Decode Statement 100
Entry Statement 73
Execute Crmmand 86
Exit Statement 73
File Declaration 63
File Description 63
File Designation 66
Formal Parameter 70
Formula 42
Free Statement 98
Full Integer Item Description
Full Real Item Description 23
Function 67
Function Declaration 74
Function Heading 74
Functional Operator 16
Functional Variable 67
Get Command 125
Group 26
Group Declaration 26
Group Description 26
Hardware Operand - 37

146

| Page
Hexadecimal Constant | 18

.Hexadecimal;String 18
Imaginary Constant 87
Index 32
Index String 32
Initiél Value String 22
-Input-Output Operator 16
Input-Output Statement 62
Item 22
Item Declaration 22
Item Description 22
Item Value 22
Letter 13
Line Number 120
Lines 120
Link Statement 95
Linkage 95
Linkage Set 95
List Declaration 92
List Description » 92
List Element Reference 93
List Processing Statement 93
Location Identifier 78
Location Operator 16
Logical Operator 15
Mode Declaration 27
Mark 13
Matrix Operator 43
Name 14
Name String 22

2

//“\

Y GEE NN SN ANy MEE aEm AN

3

/.

Page
Number 17
Numeral 17
Numeric Constant 17,87
Numeric Formula 43
Numeric Item Description 23
N-ary Arithmetic Operator 43
N-ary Logical Formula 51
N-ary Relational Fofmula 51
Oct 18
Octal Constant 18
Octal String 18
OpenEConditional Format 101
Open Statement 66
Optimization Command 79
Operator 15
Parallel Statement 57
Parameter Declaration 70
Parameter Declaration String 70
Pattern ‘ 81
Pattern Declaration 81
Pointer Constant 19
Pointer Formula 49
Pointer Item Description 23
Pointer Set 95
Primitive 15
Procedure Call Statement 72,120
Procedure Declaration 70
Procedure Heading 70
Program 21
Read Statement 68
Real Constant l?

Recursive
Reentrant
Reference Statement

Relational Formula

0

Lav)
[+
£

75
75
93
51

Relational Operator 15

Repeated Format 101 ‘I
Save Command 123 =
Sequential Operator 16

Signed 22,17 I
Simple Control Statement 54

Space 13 l
Statement 20

Statement String 20 oo
Stop Statement 58 . N
Storage Declaration 28 l
Store 28 ‘

Subscripted Variable 32 ,

Symbol 13 1
Term 81 ‘
Textual Constant 18 1
Textual Formula 49

Textual Item Description 23 l
Textual Pattern 81 |

Transfer Statement 54 J
Translation 81 i

Value Sequence 54

Variable 30]
Write Statement 68

S——«b—-a

148

[—1

Y

pm—

N

//'

;
.

UNCLASSIFIED

Security Classification

' DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overull report i« cluscifiod)

1. ORIGINATING ACTIVITY (Corporate author)
System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90406

20, REFPORT SECURITY CLASSIFICATION

UNCLASSIFIED

2h. GROUP

3. REPORT TITLE

Specification for Space Programming Language (SPL)

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

S. AUTHORI(S) (First name, middle initial, last name)

Levi J. Carey, Al E. Kroger

6. REPORT DATE

August 1967

7a8. TOTAL NO. OF PAGES

153

7b. NO. OF REFS

8a. CONTRACT OR GRANT NO.

b. PROJECT NO.

SAMSO TR-67-23

9a. CRIGINATOR'S REPORT NUMBERI(S)

this report)

9b. OTHER REPQORT NO(S} (Any other numbers that may be assigned

SDC TM-3719/000/00

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution

is unlimited

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Space and Missile Systems Organization
Air Force Systems Command
Los Angeles, California 90045

S

13. ABSTRACT

This document contains a complete specification of the Space Programming

Language (SPL) in Backus-Naur form.

A description of basic SPL and extensions
is given. SPL is a space application language with a large array of capabilities.

It is further an extendable language with punctuation rules and vocabulary
designed for ease of learning and programming.

DD "&.1473

UNCLASSIFIED

Security Classification

UNCLASSLIELED

Security Clasatfication

KEY WORDS

LINK A

LINK B

LINK C

ROLE wT

ROLE wT

ROLE wT

Software

Spaceborne Software

Computer Programming
Computer Program Languages
Procedure~Oriented Languages
Space Programming Language

Programming Language Implementation

UNCLASSIFIED

Security Classification

I// T

\\ﬂ 7 &
1
d
(‘1
1
d

g o <

T a

