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ABSTRACT 

This document contains a complete specification of 

the Space Programming Language (SPL) in Backus-Naur 

form. A description of Basic SPL and an extension is 

given. SPL is a space application language with a 

large array of capabilities. It is further an 

extendable language with punctuation rules and 

vocabulary designed for ease of learning and 

progranuning. 
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1. INTRODUCTION 

1.1 INTENDED USE DF THE SPECIFICATION 

This document contains a complete specification of the EFace frogramming~anguage 

(SPL). Included is a description of the alphabet, the syntactic forms and 

the meaning of each language element. The metalanguage used to describe SPL 

syntax is the Backus-Naur form with a few modifications. 

The first and foremost consideration made in presenting this material is 

precision and completeness of information content. Thus, the in~ent is to 

present a language in a well defined form. This description is not a learner's 

text; it is intended to be the authoritative reference on SPL for the progranuning 

language designer, reviewer, developer, and implementer. 

1.2 BACKGROUND 

The development of the Space Programming Language is a result of a recommendation 

made to the Space Systems Division Directorate of Technology based on a study 

performed by the System Development Corporation as documented in SSD-TR-67-ll, 

"Recommendations for a Corrunon Space Progranuning Language - Volume III," 

January 1967. This 'study of programming languages for spaceborne software was 

performed between the time period August 1966 and January 1967. The primary 

purposes of this study were to determine: 

a. the language. elements required for spaceborne 

programming in the time period 1968 - 1973. 

b. if a common higher-order language would be feasible and' 

useful for spaceborne software. 

1 



A comprehensive analysis of spaceborne software projects, such as Minuteman, 

Centaur, Apollo, Gemini, and Titan lII,ind{cated a trend toward 

increasing reliance on data processing for misE-ion planning, simulation tor 

vehicle development and on-board data processing functions. 

1.3 LANGUAGE REQUIREMENTS 

In the analysis of the spaceborne software application area, it became apparent 

there were three distinct areas for language requirements which we shall refer 

to as: Flight Programming, Development Programming and Support Progranuning. 

The data processing cipplications in thes'e, three areas can be summarized as 

follows: 

Table 1. 

Flight Programming 

Keyboard & Display 

Event Sequencing 

'Navigation 

Guidance 

Flight Cont,rol 

Experi~ent~_p:tC?nitoring 

System testing 

Digital co~aunications 

Three Requirement Areas for SPL 

Development Programming 

Mission planning 

Equation formulation 

Scientific simulations 

2 

Support Prograrmning 

Computer simulators 

Vehicle simulators 

Pregfamming tools 

Data reduction 
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Programming personnel utilized to perform the programming for each of these 

three areas can be summarized as follows: for flight programming, professional 

programmers oriented toward numeric data processing are utilized; for 

development programming engineers and personnel from other scientific 

disciplir'les are utilized; for support programming, prograrrnners and, to a 

lesser extent, engineers ,perform the programming tasks. 

The computers to be utilized in space borne data processing during the projected 

time period will be off-the-shelf machines, of a capability comparable to 

present-day machines. Implementation of SPL, however, will be, in most cases, 

on a large, general-purpose) ground machine. 

The computer program p~oduction technique will continue to be largely batch 

processing. Interactive or time-sharing program production techniquF - should 

play an increasing part in the program production process. 

The burdens assumed by space borne software will become greater with more 

ambitious space programs. Astronauts and scientists on manned missions will 

use on-board computers for analysis of experimental data, as well as for 

on-board navigation, guidance, system monitoring and control, and perhaps 

even crew training and assignment. In addition, ground-based users will rely 

on computers for reduction of space data, as well as for satisfying the 

computational requirements of general research. For greater effectiveness, 

an increasing amount of the software development work should be done inter-
) 

actively with the scientist or programmer in direct communication with the 

machine. 

1.4 SPl. RECOMMENDATION 

A recommendation for the development of SPL was made after analysis of 

existing languages. Because of the diversity of the application, the study 

further recommended that a basic language be designed for spaceborne data 

processing and that to accommodate the other two applications in space 

3 



software, an SPL extension should be developed. This conclusion was reached 

after an'analysis of the needs of potential language users, the mission 

functions and their required data processing' support, the types of programming 

required, the hardware utilized, and the program production methods used. The 

resulting language" SPL, is based, in part, on JOVIAL which has been recently 

adopted as an Air Force Standard Programming Language. 

The study further identified the present time as particularly opportune to 

develop a higher-order language for space applications. Several factors, 

such as ground and space hardware changes, expanded space programming 

requirements, and the lack of a higher-order language for use in spaceborne 

applications, combine to make this a useful period for implementation of a 

language for space sbftware for use during the latter 1960's and early 1970's. 
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1.5 SIGNIFICANT FEATURES OF SPL 

The varied requirements of computer progranuning forI space applications, which 

encompass mathematical prograrrnning, system progrannn~ng, and real-time 

programming, result in a widely expressive) yet ea~ily extendable 

programming language. Other equally vital needs for the 1anguage.are: easy 

for nonprogrannners--engineers and space scientists--to use, practical to 

implement, and,in the hands of professional programmers, economical of 

computing resources. And finally, the language must be highly machine­

independent and yet capable of exploiting unique machine characteristics. 

The requirements of SPL have been established with these needs in mind, and 

it has been possible to outline a language that meets the needs of each area 

of space programming without compromising the needs of others. 

1.5.1 Basic 8PL 

Since the specification for SPL has been organized by first defining the basic 

language and then the 8PL extension, the description of the capabilities of 

8PL will be organized in the same manner. 

1.5.1.1 Operations 

Basic SPL incorporates a limited but very powerful specific set of operations. 

They include: 

a o Logical and relational operations 

b. 

c. 

d. 

e. 

f. 

g. 

Built-in operations (functions) 

Arithmetic operations (formula evaluation) 

Real-Time Control operations 

Input/output operations 

Command opeJ?ations __ \for the compiler) 

Notational extension operations 

5 



SPL incorporates all of the ordinary logical and relational operations and a 

capability for incorporating built-in operations is provided. The most 

significant' of these operations is arithmetic operations, real-time control 

operations and command operations. 

1.5.1.1.1 Arithmetic Operations. In addition to the ordinary 

arithmetic operations, special vector .and matrix operations are incorporated 

as primitives in the language. Further, arithmetic operations can include 

pairs of operands which can differ in dimension (scalar vs. multi-dimensional 

values) in representation (fixed-point vs. floating-point values) and in 

other subsidiary attributes. The precision (or accuracy) of arithmetic 

operations maybe rigorously controlled through scaling information attached 

to the processing statement. Parentheses may be used freely in constructing 

numeric formulas of arbitrary complexity, according to the notational 

conventions of ordinary algebra. 

1.5.1.1.2 Control Operations. Extensive program control operations 

are available for the handling of interrupts, device monitoring, parallel 

processing and input/output processing. Execution of program statements 

(including compound statements) may be specified as conditional, repetitive, 

chronic (occurring whenever a specified condition occurs), delayed (until a 

specified condition occurs), or in parallel with the execution of other 

statements. These primitive control operation's, in conjunction with a set 

of implementation-defined hardware operands, are the minimum needed to 

provide the professional programmer with complete control through the SPL 

programming language. Though complete, they do not entail unnecessary burden 

by implying operations that can more'effectively be specified by custom­

tailored sequences of other availap1e operations. Statements which allow for 

the control and monitoring of time increments are also provided. This is 

very important where code sequences must be executed within a given time 

frame • 

6 

"'" 

J 
J 
] 

] 
.,-

J 

/ 

J 



I 

I 
[ 

[ 

( 

( 
. '-. 

[' 

[ 

[ 

[ 

[, 

[ 

1.5.1.1.3 Command Operations. Command Operations include commands 

to the compiler to produce optimized code for time (object program run time) 

or space (object program computer storage requirements). Commands are also 

provided for, for debugging.the object program and for time counts of object 

program code time requirements. An execute command exists to allow a set of 

code to be operated at compile time to initialize a parameter. 

One of. the most significant of 8PL r s command operations is the notational 

extension capability. This provides for defining notational 

extensions for new data types and structures and new operations in terms of 

existing language elements. The facility in building new operations and 

extending punctuation and vocabulary allows versions of 8PL to be customized 

to satisfy special programming problems. For instance, a programmer might 

define an extended notation and vocabulary for his particular programming 

area, and build a highly problem-oriented vocabulary and language capability. 

In addition, notational definitions may be used to make existing programming 

languages compatible with 8PL. A notational definition package can be 

generated which would map languages such as FORTRAN, PL/I, or JOVIAL into 

SPL. This would allow an SPL compiler to process these languages, thus 

allowing a programmer to code in these languages while the SPL compiler 

produces an equivalent 8PL code and listing. This would also circumvent the 

necessity to reprogram the existing inventory of problems which are opera­

tional and coded in some other language. 

The notational definition capability can also be used to aid in the imple­

mentation of SPL. A core subset of SPL can be implemented using conventional 

means; notational definitions can then be used to "define" the balance of the 

language, thus reducing implementation time and cost. 
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1.5 .1.2 Data Declarations 

Basic 8PL incorporates a wide variety of operand types and structures. Data 

structures include: ,item declarations, array declarations, and group 

declarations. One declaration is used to describe the storage of these 

collections of data; 

storage declarations 

Further provision is made in basic SPL for one type of input/output declaration; 

file declaration 

SPL incorporates numeric operands including fixed-point, arbitrary-precision 

floating point, vector, and matrix values; primitive (i.e., built-in) 

alphabets; and symbolic operands including Boolean and status values. 

Basic 8PL also provides for almost any type of data structure, including 

combinations of arrays, groups, and files. To achieve the most efficient 

use of storage) the programmer has the option of specifying exactly. how 

storage is allocated to his data elements. 

1.5.1.3 Program Structures 

Program structure in SPL is based on the powerful, generalized block-structure 

concept. Procedure subroutines and function subroutines, recursive sub­

routines, and re-entrant subroutines may be specified. 

The language syntax has been designed to minimize grammatical rules and 

punctuation. This will serve to minimize the amount of training required and 

reduce scripting errors when programming. There has also been an attempt to 

minimize vocabulary without sacrificing clarity. Where a needed capability 

already exists in the JOVIAL language, JOVIAL notation has been used if it is 

consistent with the criteria previously described. 
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1.5.2 SPL Extension 

The SPL extension contains the basic operations, plus additional features 

suited for the applications area. For developmental programming, algebraic 

formula and interactive progranuning operations are specified. For support 

progranuning, simple text and list processing operations are included. Additional 

data definitions in extended SPL include list declarations, code declarations and 

program-declared alphabets (see Section 7)-. 
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1.6 NOTATION AND ME~ALANGUAGE 

1.6.1 Notation 

This report gives a complete specification of SPL and extension using as a 

syntax metalanguage, a modified .Backus-Naur Form,'r (BNF). Some typographic 

conventions are introduced to distinguish among terms (which are constructed by· 

the language designer to identify and categorize the various parts of the language) , 

names (which are constructed by the pr~grammer to identify the elements of his 

program), and primitives (which are the built-in "words and symbols" of the 

language). 

Terms are printed using lower case letters. For example: 

statement 

algebraic-formula 

Names are printed using upper case letters. For example: 

ALPHA 

GROSS 

T23 

And finally, word-like primitives are underlined. Implementation defined primitives, 

such as hardware names, are capitalized in addition to being underlined. For example: 

for 

while 

and 

CLOCK 

It is important to remember, however, that these typographic conventions are 

part of the metalanguage notation, and not pRrt of SPL. 

-1~ As used in the "Revised Report on ALGOL 60," Communications of the ACM, 
Peter Naur, May 1960. 
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The syntax of SPL is specified by defining terms. The main elements of thes,~ 

definitions are the signs, symbols,and other terms. Except for the non-printing 

graphic character for "space" then, 8PL signs stand for themselves. 

1.6.2 Metalanguage 

The metalanguage used in this specification has three basic elements. They 

are: 

a. 

b. 

c • 

: : = 

<> 

This symbol signifies syntactic equivalence and 

should be read as the word lIis". 

This symbol signifies selection between alternate 

strings of elements und should be read as the word 

lIor". 

These symbols signify a gouping and are used to 

enclose alternatives. They should be read as the 

word. "either" and are used with the symbol "I". 

There are two metalinguistic extensions used: 

a. 

b. 

Subscripting is utilized as a semantic cue to distinguish 

among otherwise identical terms. 

nothing This ter~ signifies a null term or an empty 

string of,symbols or signs. 

There is one SPL term "space" introduced which is represented in 8Pt by the 

lack of characters and is represented in the metalanguage notation by the 

following symbol: 

This symbol signifies separation of syntactic strings and 

is inserted for clarity. The symbol "fl" represents optional, 

not required separation. 

-'''~ 
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To simplify the semantic explanation, . alternative definitions of certain terms 

are given at different places in the report. This has been noted, but the index 

at the end is perhap~ the most convenient guide. Finally, it is worth noting 

that no attempt has been made to specify in BNF the syntax of SPL with complete 

rigor. Certain syntactic aspects of ahy programming language can more clearly 

and simply be described in prose, where a BNF description would be lengthy,and 

complex. 

For those already familiar with BNF, the extensions used in this report are 

essentially just two: the brackets, "<'l and ">", are used for grouping rather than 

delimiting ter.ms, and semantic-cue subscripts are used to distinguish otherwise 

identical terms. The purpose of these two extensions is to reduce the number 

of terms that have to be defined, with the ultimate goal being to define 

syntactically all and only those terms rteed~d in the prose description of 

the semantics of the language. Without such extension, BNF ordinarily requires 

the syntactic definition of many otherwise unnecessary terms. 

BNF, even as extended here, is actually quite easy to read. A pair of examples, 

defining a parade should make this clear . 

. parade ::= parade-unit <parade-unit I parade> 

parade-unit :: = floa.t I band I drill-team I bunch-of-guys-on-horses 

The first definition says: a parade is a parade unit followed by either 

a~other parade unit, or a whole parade 0 And the second says: a parade unit 

is a float, or a band, or a drill team, or a bunch of guys on horses., The 

first definition specifies, precisely, that a parade must have at least two 

parade units, but the number of parade units it may have is not limited. 

When a thing is defined in terms of itself it is called a recursive defini­

tion, and is frequently used in BNF language description for reasons of 

clarity and conciseness. 
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2. ALPHABET, VOCABULARY AND PROGRAM STRUCTURE 

2.1 ALPHABET AND SYMBOLS 

SPL's symbols may be formed from a basic alphabet of 48 characters consisting 

of the 26 letters, the 10 decimal digits, and a dozen miscellaneous marks 

including the space and the dollar sign. This alphabet is almost universally 

available on mechanical printing, typing, and card punching equipment. However, 

SPL also permits the use of an extended character set. In practice, the 

extended characters will depend upon the characteristics of the equipment 

that is available. 

SYNTAX 

character ~ : = letter digit mark 

letter .. A B C D E F G H I J K L I 
M N 0 P Q R S T U V W X I Y I z 

digit ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

mark :: = space I ( , ) I + I - I ~'( r / I . I , I r , = I $ 

Where lower-case letters are available they may be used indistinguishably 

from the basic set of uppercase letters to improve the typographical 

appearance of the program. 

The alphabet of SPL is used to form symbols which are the basic elements of 

the language. Symbols are syntactically defined as names, primitives, and 

constants. 

SYNTAX 

symbol ::= name r primitive I constant 

13 



2.2 NAMES 

Names serve to identify the various program and data elements that may be 

referenced in an 8PL program: statements; subroutines, items; groups; arrays; 

files; patterns; hardware operands; hardware operators. A name is a string of 

one or more letters and digits which, may be punctuated for readability by the 

period. Notice that a name must begin with a letter, must not end with a period, 

may contain no embedded spaces and no embedded period strings of length greater 

than one. 

name ::= <letter I name> <nothing I letter I digit I .letter I .digit> 

Examples: 

ALPHA 

Z 

8TEP.27.3 

BRANCH 

Names are defined at the point where they are term.inated by a period. Thus, 

ALPHA. indicates that the name ALPHA is being defined. 

To facilitate the independent composition of portions of a program, statement 

names defined in a program have a strictly determined scope of definition 

( 

for statement reference, being bounded by the innermost pair of named begin and end 

brackets containing the definition of the name. 

It should be noted that the strict determination of the scope of definition of 

names for statements and declarations does not apply to commands; any previously 

defined name may be referenced in a command. 

Although it is poor programming ~ractice, where a name is defined to be identical 

to a SPL primitive word, there is no ambiguity in contexts where the syntax 

rules out one or the other. 
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2.3 PRIMITIVES 

Primitives are, the built-in symbols of SPL--its punctuation, verbs, adjectives, 

etc. Primitives have fixed meanings, as described in later sections. Primi­

tives for basic SPL fall into the categorias given below: 

SYNTAX 

primitive ::= delimiter I operator descriptor 

2.3.1 Delimiters 

Delimiters are those symbols of the language which serve exclusively to indicate 

the bounds of other syntactical elements. 

SYNTAX 

delimiter ::= . I , I / I $ I ( I ) I I I "I begin lend I term program 

2~3.2 Operators 

Operators are those symbols in a language which indicate some action is to be 

performed on an operand. 

operator ::= catenation-operator 

arithmetic-operator 

SYNTAX 

repetition-operator 'conditional-operator 

define-operator /logical-operator I 
relational-operator assignment-operator I functional-operator 

discrimination-operator I sequential-operator I input-output-operator 

location-operator I editing-operator I compile-operator 

arithmetic-operator::= - /+ I * I / I ** 
logical-operator ::= not I and I~ 

relational-operator ::= ~ I~ I &£ I l! I gs I ~ I equiv 

conditional-operator ::= if I then /else 

assignment-operator ::= = I set 

repetition-operator ::= times 1£Y 'while I until for 
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catenation-operator ::= II I III 

discrimination-'operator ::=sub 1< ) I at I in 

sequential-operator ::= goto / stop I when / o~ /call lentry lexit Ifor Ido 

input-output-operator ::= open/close I read J write I assign [status Iposition 

location-operator::= store I at 

editing-operator .::= out I is I all to show thru 

compile-operator ::= optimize /count 

define-operator :: = execute I where, I then , names --- of-terms"l\' 

2.3.2.1 Functional Operator. Functions are a special class of operators 

allowable within SPL and which are governed by a set of rules outlined in 

Section 5. In general, functions act on a parameter list which follows the 

name and returns a value which may be part of a larger formula. A list of 

intrinsic (built-in) functions is given below: 

SYNTAX 

functional-operator ::= 10g.e I log.lO I sin I ~ I tan I abs 

The programmer may define his own set of functions that will be treated in a 

manner similar to those intrinsic to SPL. 

2.3.3 Descriptors 

The descriptors are the functional modifiers and descriptions of operands in SPL. 

SYNTAX 

descriptor ::= integer I real/ pointer I boolean 'array I mode /procedure I 
function I pattern / file / dec I oct I hex Ibit I text I fixed I 
float I cell I true I false I ready I busy I error I addr I 

* Listing of terms in Section 7. 
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item I minimum I digit I maximum I signed I unsigned Iround 

truncate I group I compool I full I· unready I value result 

recursive I reentrant time I space I ~ 

2.4 CONSTANTS 

SPL programs manipulate both numeric data (integer and real) and nonnumeric data 

(textual) pointer, and Boolean values). The symbols that denote these values 

are constants. 

SYNTAX 

constant numeric-constant textual-constant pointer-constant I 
boolean-constant 

2.4.1 Numeric Constants 

SPL includes constants for denoting integer or real values. Integer values may 

be denoted by binary, octal, decimal, and hexadecimal constants. 

SYNTAX 

numeric-constant .. number I real-constant binary-constant 

decimal-constant I hexadecimal-constant 

numeral .. - digit <nothing I numeral> 

signed ~.= + I -

number '0:::: numeral <nothing e numeral> 
-xponent-base-lO 

octal-constant I 

real-constant ::= <numeral . I. numeral numeral. numeral> <nothing I 

Examples: 

018 

123e4 

• .5 

6.789~-10 

e numeral 
-xponent-base-lO e b 10 signed numeral> -xponent- ase-

17 



Integer and real constants denote numeric values in the conventional decimal sense. 

The numeral following ~ in these constants is a decimal scaling factor expressed 

as an integral power of 10. Binary, octal, decimal, and hexadecimal constants have 

the obvious meaning of unsigned binarYl octal, decimal, or hexadecimal integers. 

SYNTAX 

binary-constant ::= <name. I nothing> ~ ·bit t binary-string 1 

binary-string ::= <0 I 1> <nothing I binary~string> 

octal-constant ::= <name. I nothing> 6 oct t octal-string I 

octal-string ::= <0 I 1 I 2 I 3 I 4 I 5 I 6 I 7> <nothing I octal-string> 

decimal-constant ::= <name. nothing> 6 <nothing I dec> I numeral t 

hexadecimal-constant ::= <name. I nothing> ~ hex I hexadecimal-string t 

hexadecimal-string ::= <numeral I A I Bel DIE I F> <nothing 

hexadecimal-string> 

Examples: 

AL. bit'11GllI0Q' 

oct'334' 

ABC. dec'156' 

hex'9C' 

2.4.2 Textual Constants 

A textual constant is a symbol used to denote a string of one or more alphanumeric 

characters or a status value. The omission of the word text indicates that a status 

value rather than an alphanumeric string is being defined. 

SYNTAX 

textual-constant ::= <name. nothing> <nothing I text> ' character string t 

character string ::= character <nothing character-string> 
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Examples: 

~ 'THIS IS AN ALPHANUMERIC CONSTANT. ' 

~ 'SO IS THIS. t 

ALP. ~ '92768' 

QUALITY 'GOOD' 

STATE i KANSAS t 

2.4.3 Pointer Constants 

'There are two types of pointer constants. The first type addr gives the 

effective address value of a statement, procedure, subroutine, array, or 

group and the second cell gives an index ,!alue within arrays, Broups, or 

tables. 

SYNTAX 

pointer-constant ::= cell 6 name I addr l\ name 

A cell is uot necessarily the same as a computer word: internal storage is not 

necessarily limited to hardware considerations but is logically oriented and 

depend upon item structure within tables or airays. 

Pointer constants serve to denote pointer values and are represented as integers. 

An addr, O".l the other hand, refers to the actual value of the location to which 

a particular element in the language has been assigned. 

2.4.4 Boolean Constants 

The Boolean constants true and false have the obvious meanings; true is 

represented by 1 and false is represented by O. 

SYNTAX 

boolean-constant ::= true false ---
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2.5 STATEMENT STRUCTURE 

Statements are the operational units of SPL. They describe the data processing 

actions that the program is to perform: computational actions; input-output 

actions; and statement sequence-control actions. It is converiient, however, to 

recognize two types of statements: l)simple statements, which express computa­

tional, input-output, or control actions whether simple or conditional, and which 

may incorporate other statements within them and control their execution; and, 2) 

compound statements, which group together whole strings of simple, or compound 

statements. Compound statements may also contain declarations and commands. 

Statements are normally executed in the sequence in which they were written, 

although control statements affect this sequence and provide exceptions to this 

rule. Statements may be named--so they can be referenced and executed out of the 

normal sequence. 

SYNTAX 

statement ::= simple-statement compound statement 

compound-statement ::= <name. I nothing> b. begin b. statement-string 6 end 6 

<name I nothing> 

statement-string ::= statement I declaration I command <statement-string I 
nothing> 

declaration :: = data-declaration I subroutine,-declaration I file-declaration 

simple statement ::= simple-control-statement I input-output-statement I 
procedure-call-statement I assignment-statement 

A comma (,) may b~ optionally used to terminate any simple statement. 

--The defini tioD of command is deferred to Section 6. 

2&6 COMMENTS 

A comment allows a remark or clarifying prose or punctuation to be included among 

the symbols of an SPL program. Connnents are ignored by the compiler and so have 

no operational effect whatever on the program. 
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SYNTAX ---

comment ::= "character-string" 

The character-string ih a connnent may not contain the connnent delimiter. 

Example: 

"THIS IS A COMMENT" 

The omission of a comment bracket,or the inclusion of an extraneous comment 

bracket wi.:thin the comment, is a major error, for subsequent commentary is 

interpreted by the compiler as part of the program. 

2.7 PROGRAM STRUCTURE 

In SPL, a program is merely a named statement-string, beginning with the pro£!am 

delimiter and followed by declarations, statements, and/or commands followed by 

the term delimiter. The program name defines it for external reference. 

SYNTAX 

program .. program 6 narne.6statement-string 6 term <name Inothing> 

21 



3. DATA DEFINITIONS 

Basic'SPL provides declarations fox' defining numeric, textual) pointer, and 

Boolean items as well as for defining arrays, and groups. In addition, the 

arrangement of elements in memory may be specified and various default descrip­

tions (modes) may be specified. 

SYNTAX 

data-declaration ::= item-declaration array-declaration group-declaration I 
storage-declaration mode-declaration 

Other declarations for defining functions, procedures, files, and textual 

patterns (see Sections 4,5,6) will bi described in later sections. 

3.1 ITEM DECLARATIONS 

In SPL) the basic (scalar) units of data are called items. All necessary 

attributes of an item's value, such as its type and format, are supplied only 

once in an item description. 

assumed to be mode-defined. 

In the absence of an item declaration, data is 

In SPL, values other than those denoted by constants or those used only as 

intermediate results must be declared. Several different but similarly described 

items may be declared at once. 

SYNTAX 

item-declaration : : = <item nothing> fj name-string b. item-description fj <nothing I 
initial-value-string> 

name-string ::= name. 6 <nothing I name-string> 

initial-value-string ::= litem-value b. <nothing initial-value-string> 

item-value ::= numeric-constant I pointer-constant I textual-constant I 
boolean-constant 

item-description ::= numeric-item-description 

pointer-item-description 
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numeric-item description :: = full-integer-item-'description 

description 

full-real-item-

full-integer-item-description ::= integer b. number
l 

/). <~ I digit> t:. <minimum 

nothing> b. <nothing I number
2 

b. maximum> 

full-real-item-description 

<nothing I signed 

truncate> 

unsigned> b. <nothing 

"= real t:. number
1 

t:. <bit I digit> t:. <nothing i'minimum> 

t:. <nothing I -> number
2 

<bit I digit> t:. <nothing 

float I fixed> t:. <nothing I signed unsigned> t:. 

<nothing I round I truncate> 

textual-item-description ::= text b. <nothing I number b. character 

name f ' ,b. character> o -1.nteger-1.tem 

pointer-item-description ::= pointer 

boolean-item-description ::= boolean 

Note a. In real item declarations, a negative scale number (of fractional or 

exponent) bits is only relevant where the scale is fixed. 

b. Number
l 

indicates minimum number of bits or decimal digits. 

c. Number
2 

indicates either number of fractional bits or decimal digits 

or number of bits or decimal digits needed to represent the exponent. 

Examples: 

item ADAM. integer 6 bit minimum /74 

item BE9. ~ 31 bit 7 bit float signed truncate 

item ROD. text 4 character 

item SA. pointer 

item BOB. boolean 
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The numeric item descriptions have several common elements. In an integer, 

real, or item description, number
l 

indicates the minimum number of binary bits 

or decimal digits*--including any fraction or exponent but excluding any sign-­

needed to represent the item; the unsigned descriptor indicates that the item's· 

value is always positive or zero; the omission of the unsigned descriptor or 

indication of a signed item indicates that the item can also take on negative 

values; the truncate descriptor indicates that any value assigned to the items 

is to be truncated rather than rounded, as would be the case if round or nothing 

were used. 

Abbreviated descriptions are possible for numeric items, according to the 

declared mode (see Section 3.4). In an integer item description, the maximum 

absolute value that the item will be assigned is indicated by number value. 

(Where this is omitted, the maximum absolute value is taken to be either 

Znumberl -lor lOnumberl -1~ depending, of course, on whether bits or digits 

are indicated.) In an integer item if the minimum number of bits is omitted 

the initial value. will be used as an indicator of the minimum number of bits. 

In a real item description, fixed-point representation may be indicated by the 

fixed'descriptor. Floating-point representation is assumed where nothing or 

float is indicated. Where fixed~point representation is indicated, number2 

indicates the number of fractional bits or digits. If the indicated number
2 

of fractional bits or digits is negative (as indicated by the presence of the 

minus sign, -), the number2 of low order integer bits or digits are not signif­

icant and therefore need not be carried. And if the indicated number
2 

of 

fractional bits or digits is greater than number
l

, then the (number 2 - number
l

) 

high order fractional bits or digits are not significant and therefore need not 

be carried. On the other hand, where floating-point representation is indicated 

*Only one base is used, although the programmer can specify numeric item size 
in terms of either. 
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(by the omission of the fixed descriptor), number
2 

indicates the minimum number 

of bits or digits needed in the binary or decimal exponent to adequately represent 

the item's value.* 

In a textual item description, the length of the item in characters may be 

indicated by a number, or it may be indicated by the name of an integer item, 

where the current length of the textual item is specified by the current value 

of the integer item. Where no length is indicated, a length of 1 character is 

assumed. The last symbol in a textual item description indicates the item's 

alphabetic code. 

Pointer and Boolean items are described with the pointer and boolean descriptors. 

(A Boolean item is actually represented as a one-character, binary textual item, 

with the Boolean constants true and false equivalent to bin 'l' and bin '0' .') 

3.2 ARRAY DECLARATIONS 

An array declaration describes the structure of a collection of similar data 

elements--either items or groups, Rectangular arrays of practically any number 

of dimensions may thus be declared and several different but similarly described 

arrays may be declared at once. 

array-declaration : := 

array-description .. -

SYNTAX 

array 6 name-string 6 array-description 

'<item-description , group-description> 6 dimension-string 

6 <initial-value-string I nothing> 

dimension-string .. = <number I name f ' t 't > 6 <nothing I EY 6 dimension-o -1.n eger-1. em 
string> 

* The floating-point operations on most machines 
(if any) on the values of number

l 
and number

2
, 

translate these into the values 1.ndicating tfie 
precision floating-point representation. 
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Examples: 

array PRESSURE,. integer 4 digit 10 h 20 12Y. 5 

array GRIDI., boolean 32 .!?.l 32 

array A. begin I.. J. K. integer 25 bit end (A) 

In designating an individual element from an n-dimensional array, the array 

name must be subscripted by an n-component index string of numeric formulas. 

And where the size of a dimension is K elements, the integral value (truncated, 

if necessary) of the corresponding component of the index string can only range 

from 1 to K. 

Abbreviated descriptions are possible for arrays according to the declared mode 

(see Section 3.4). 

3.3 GROUP DECLARATIONS 

A group is a collection of (usually) dissimilar data elements--items, arrays, and 

even subgroups. A group declaration serves to describe the elements of a group 

and give it, optionally, a name. (A group name may be omitted when the group is 

never referenced as an entity, but only its elements.) In addition, functional 

relationships among the elements of q group may be declared within a group 

declaration, as functional data elements of the group. Several different but 

similarly described groups may be declared at once. 

SYNTAX 

group-declaration .. - group 6 ~nothing I name-string> 6 group-description 

group-description .. = begin 6 declaration-string 6 end 6 <nothing I (name) 

declaration-string ::= <item-declaration I array-declaration I group­

declaration/ function-declaration , mode-declaration 

storage-declaration> 6 <nothing I declaration-string> 
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Note: Where groups are nested t the inclusion, in parentheses after the group 

description, of the group or array name (if any) immediately preceeding 

the group description, automatically "ends" any "open" subgroups (or 

compound statements) within the groups. Thus~ "end (name)" in the ex­

pression "name. begin •.• end (name)" may be syntactically equivalent 

to a string of several end brackets. 

Examples: 

group begin item I.. integer end 

group A. begin item W. integer gro~ Q. begin item P. text 6 

character item V.' boolean end (A) 

~ TRACK. begin ~ INITIAL. begin item X. Y. z. real end item N. integer 

"NUMBER OF LEGS" 2 digit, 80 digit maximum unsigned, truncated end (TRACK) 

3.4 MODE DECLARATIONS 

Mode declarations serve to declare normal modes of description for numeric items, 

arrays, lists, and files. 

mode-declaration 

Examples: 

mode 6 <numeric-item-description I array-description I 
full-file-description> 

mode integer 15 bi~ unsigned truncate 

mode real 31 bit 7 bit scale ----
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3.5 STORAGE DECLARATIONS 

Although the programmer is often unconcerned with the details pf memory 'alloca­

tion, he may control it with storage declarations. A storage declaration serves 
\ 

to indicate to the compiler the de.sired arrangement within memory of the various 

program elements--items, arrays, groups, files, statements, functions, and pro­

cedures--named in the declaration.· 

\ 
storage-declaration 

\ 

block-description 
I 
I 

SYNTAX· 

::= store ~ block-description 6 at 6 pointer-formula 

•. - name fIt 6 <nothing I block-description> o -e emen 

Note a. The name of.any element may appear only once per storage declaration, 

but may appear in other storage declarations if lo~ical inconsistencies 

are a~oided, such as declaring once that A is stored after B and again 

that B is stored after A. 

Note b. When a storage declaration appears within a group description~ only 

those items, arrays, and subgroups declared within the group may be 

named in the storage declaration. This excludes functions declared 

within the group as well as external elements. 

Examples: 

store A at cell sub I -----
store A B !!:!. step 

store A at bit (9 ~ 11) 

store B at byte hex (1 to 6) 

The elements--it~ms, arrays~ groups, files, statements, functions, and pro­

cedures--named in a block description are allocated, in the sequence given, a 

block of consecutive units of storage. Each different block described in a 

storage declaration is allocated storage beginning at a common origin cell. In 
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other words, each block has the same pointer value, and this value may be 

explicitly spe~ified in the storage declaration by a pointer formula. Each 

block thus "overlays" the other blocks listed in the declaration, permitting 

the programmer to utilize the same block of memory for different purposes at 

different times during the computation. 
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3.6 VARIABLES 

In SPL, variables (scalar) item values, arrays of values, and groups of values 

may be ?lteredduring the course of program execution. Variables may be. 

specifically located in memory and they may be subscripted by numeric formulas 

to distinguish them from other elements of arrays. Variables may be both 

conditional and subscripted. Variables may also be enclosed in parentheses to 

alter or emphasize the sequence in which these operations are performed. In 

addition, certain compiler-dependent hardware operands and certain functions 

may also serve as variables. 

SYNTAX 

variable ::- name I subscripted-variable I conditional-variable 

catenated-variable I hardware-operand 

Note 1. The name must be that of an item, an array, or a group. 

Note 2. To be a variable, a hardware operand must be one that can. be assigned 

a value by· programmed action. 

Examples: ";'e 

The exemplary variables in this section will often involve the following data 

elements: 

array A. begin 

A _ 

(AI) 
(A

2
) 

(A
3

) 

(A4) 

(AS) 

(A
6

) 

end (A) 6 

* The - sign stands for semantic equivalence. 
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array I. integer 3 

array B. begin ... array'C. begin ... end 2 end 3 £y 2 

B
Itl tl'l ~Cl'l'lm [ ~Cl' 2'1~ - -

(ell 2) Bl.2 ~ Cl.2 ~ (Cl.2,2) , , 

B :: H2,l - ~2'1 - ~C2'1'1~ 
(C2,1,2) B2 ,2= [c2 •2 ~C2'2'11 :: (C2 ,2,2) 

B3 ,1 
= t3

•
1 = 

r3'1~1~ 
(C3,1,2) B3 ,2 -

t [(C3
'
2

'
lJ 

C3,2 :: (C3 ,2,2) 

array J. integer 2 £y 3 

~J 1 1 = 5) (Jl ,2 :: 3) (J1 3 =2~ J = ) , 
(J2 ,1 := 6) (J2 ,2 :: 1) (J2 3 :: 4) , 

$LIGHT :: a Boolean 36-array of console lights 

Note: $ signifies hardware operand (see Section 3.6.4). 
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3.6.1 Subscripted Variables 

Elements of a nonscalar variable (e.g., an array) may be designated as a 

variable by subscripting with an index string, which is essentially a 

numeric formula that is interpreted according to the dimension of the variable 

being subscripted. 

SYNTAX 

subscripted-variable ::= variable «index-string) I 6 sub 6 index-string> 

index-string ::= index 6 <nothing' <II I to> 6 index-string> 

index : : = <numeric-fo'rmula I index-string> 6 <nothing I index> I (index) 

Examples: 

- rAA3l'] A sub (3//1) - (A sub 3, A sub 1) ~ 

A sub «31/1» [A A ] 

A sub (1 to 3) ~ (A3su: l//A sub 2// A ~ 3)~[;~] 
A sub I - (A sub 2, A sub 4, A sub 1) {::] 

A sub (1 sub 2 //2) - (A sub 4, A sub 2)~[::J 

The description of the catenation operator II is in section 3.6.2. 
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A sub (J sub «1//2), 2» - A sub (J sub (1,2), J sub (2,2» - A sub (3,1) 

== A sub (3//1) 

B sub (J sub «1//2),2» == B sub (3,1) 

A sub J == A sub (5,6//3,1//2,4) == A sub 

[

A5 

«5//6)//(3,1)//(2//4» == A3 

. A2 

Bsub (2//3) == B sub «2,1) to (3,2» - B sub «2,1//2,2//(3,1//3,2» -

(A sub J)sub 2 == (A sub J) sub «2,1) to (2,2» - (A sub J) sub 

«(2,1)/1(2,2») == [A3 AI] 

J ~ 1 == [5 3 2J 

(J sub 1) sub 2 == J sub (1,2) - J 1 2 , 

An index string conforms to the syntax rules for numeric formulas. In this 

light, an index string is a row-vector of indexes, which are themselves column 

vectors whose elements are either positive (.i.e., greater than zero) truncated 

integers as specified by numeric formulas, or else index strings. An index 

containing an index string is semantically equivalent to an index string, as 

explained in the following example: 

A, (B 1/ C // D), E == A,B,E /1 A,C,E 1/ A,D,E 

By such trans formations, any index str.ing may be simplified by expansion to an 

equivalent index string whose component indexes do not themselves contain index 

strings. 

33 



The effect in an index string of the repetition operator to is as follows: 

(in' ••• , i 2, i 1) to (tn' ••• , t 2, t 1) === ( ••• (*1n, .•• , 12, i1 to in' .•• , 

i 2, i1 ±l tu... to in' ••• i 2, tlt1 to in' ••• i 2, t 1) to( in' ••• , i 2±l, i1 

** ... , !, ± 1, i1 ± 1 td ••• to int ••. , i k+1 , t k , t k_1 , ..• , t 2 , t 1 ) ••• ) to 

( ( . . +1" .. +1 ••• 1n' .•• , 1k+l ; ,1k , 1k_1 , "', 12 , 1l~ ••• to tn' "', t 2 , t l - to 

tn' ••• , t 2 , t l )···).· While this is the general rule, a simpler example may 

prove helpful. Thus, (1,1,1) to (2,2,2) :: «(1,1,1 to l,l,2) to (1,2,1 to 1,2,2» 

to «2 , 1 ,1 ~ 2, 1 , 2) to ( 2 , 2 ,1 to 2 , 2 , 2) ) ) • 

Nominally, an index for a k-dimension variable contains k or less components. 

And where an index contains less components, a rule of the following type holds. 

Consider the 3-dimension array: array P. begin ••• end X Ex. Y ~ Z. Then, P 

(A) =, P «A) 1, 1) 1.2. (A, Y, Z». Actually, an index with more than the 

nominal k components has a defined meaning. For a k-dimension variable, then, 

an index string of n simple indexes (i.e., indexes containing no component 

index strings) behaves as if assigned to a data element, E, declared as follows: 

begin 

K. intE:ger 

array E. integer K 

where K and N are positive integer items with maximum values k and n, and E 

is a positive, truncated integer array. After this (hypothetical) assignment, 

E (1) contains the first index, E (2) the second, and so on. 

"/( n parentheses 

-!(~'c k parentheses 
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The result of a subscription operation on a variable is a column vector of the 

elements specified by each index in the (unsimplified) index string. Of course, 

these elements may be scalar or nonscalar, and in general, a subscription 

operation may produce a nonrectangular array.*' Consider, for example, array Q. 
begin end J .£.Y. K, where Q (A,B II C .!.£ ,:D, E E.2. (F,G!.2. H,I» 

Qa~b 
Qc,l 

Qd,e 

Qf,g 

Q 2 ... Q k c, c, 

Qh . 
,1 

It is important to note~ then, that where index strings are nested, the elements 

designated by the indexes of the outermost index string are row catenated, the 

elements designated by the indexes of the next level index strings are column 

catenated, and so on. 

For purposes of subscription, a complex, scalar numeric value (e.g., Q) may be 

considered as a 2-element, real vector, so that Q (1) designates the real 

part of Q and Q sub 2 designates, as a real value, the imaginary part of Q. 

Similarly, a scalar, n-character textual value (e.g., T) may be considered as 

an n-element character vector, so that T (i) designates the ith character 

of T and T (i to i+k) designates the k-character subtext beginning at the 

ith character. 

* Variables with the structure of a nonrectangular array can) of course 
be subscripted; but it must be done very carefully. 
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3 .. 6.2 Catenated Variables 

In SPL, scalar (single dimension) variables may be catenated into nonscalar 

(multi-dimensional) variables, which may in turn be catenated into nonscalar 

variables of greater size or number of dimensions. 

SYNTAX: 

catenated-variable ::= variable fl <nothing I catenation-operator> fl variable 

Note. Row catenation is assumed where a column, plane, etc., catenation 

operator is omitted. 

Examples: 

Al II 

A sub (1 to 3) II I - A2 12 

A3 I3 

A sub (6 to 4) II c sub 

(1 ~ 3,1) III A ~ (1 to 

3) II I ::: 

J 1 ,1 J1 ,2 J 1 ,3 

J sub 1 (I sub 1 II I sub 2 II I sub 3) J 

sub 2 -
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3.6.3 Conditional Variables 

SPL permits variables to be conditionally specified. 

conditional-variable .. = 

SYNTAX 

if 6 condition 6 then 6 variable
l 

6 <nothing I else ~ 
variable2> 

A conditional variable specifies one of two alternative variables--if the 

condition is true then variable l , otherwise (else) variable
2

. Thus, if true 

then A else B ~ A, and if false then A else B = B. 

Examples: 

if I Is J then J else I 

if A ~ 27 or T then ALPHA 

if T then I 

3.6.4 Hardware Operands 

Hardware operands are compiler-dependent data elements that may in general, 

acquire their values independently of, and without, programmed action.* A 

hardware operand may be a numeric, pointer, or Boolean item. 

Hardware operands are often, but not always, "read-only" in nature. Some 

typical hardware op'erands are: clocks, switches; elapsed time counters; 

device status indicators; device control signals; program interrupt signals. 

Clearly, some hardware operands could also be described as files, with the 

choice depending on program efficiency considerations peculiar to the particular 

system. One such consideration is, of course, the practicality of automatically 

monitoring the changes in value of a hardware operand that is used in specifying 

the condition for executing a chronic statement. 

*This is not a prerequisite, though. A hardware operand may be completely 
under programmed control~ 
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hardware-operand ::= $ name 

Examples: 

$LIGHT 

$CLOCK 

$KEynOARD 

$TAPE 

$OVERFLOW 

$ACCUMULATOR 

SYNTAX 

In a hardware operand, the $ identifies the name as that of a hardware operand. 

Where a complete set of hardware operands is available, the prograrrrrner may 

command the entire machine. Hardware operands generally differ from machine to 

machine, so that programs containing them are usually machine-dependent. 

3.7 COMPOOL DECLARATION 

A compool declaration defines the name of the compool to be utilized for a 

program. The compool contains definitions of items, array, groups, or. programs 

that are commonly used by a numbe! of programs or procedures. Where this common 

usage exists the data may be defined once in a compool and then called upon by the 

program desiring to utilize it through the compool declaration. Data declarations 

within a program take precedence over compool declarations. 

compool-declaration ::= 

Examples: 

compool BAl 

SYNTAX 

compool 6 name f 1 a -compoo 

The compool resides in the binary system library and is not recompiled with each 

program which references it unless it is changed. Where there is a conflict in 

name definition between the compool and the program, that conflict is resolved 

in favor of the individual program. The compool declaration should irrrrnediately 

follow the program identification statement. 
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4. STATEMENTS 

4.1 ASSIGNMENT STATEMENTS 

An assignment statement assigns the value specified by a fonnula to be the 

value thereafter designated by a variable. The assignment of nonscalar values 

is on an element-by-element basis. 

SYNTAX 

assignment-statement .. - <nothing I set> 6 variable 6 = 6 formula 

Note: The statement prefix, set, is an optional "noise" word, useful for 

improving readability in certain contexts. 

Examples: 

ALPHA (1 to N) = 0 

$SIGNAL (K) = true 

WEATHER (AIRBASE) = 'CLOUDY' 

set IDENTIFIER = ~ lCALCIUM CYCLAMATE' 

~ SWITCH = 16*44 

set IT = p"'(';""y - (x+a"('';'(' 2) 

PI = 4"'( arctan 1 

Assignment is done as if in two steps: first, the formula is evaluated; then, 

the resulting value is assigned to the variable. The formula may involve the 

variable, in which case the old value of the variable is used in the calculations 

needed to evaluate the formula. 

Assignment is defined basically on scalar operands. Nonscalar assignments are 

done on an element-by-element basis by index. 
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Assignment by index is done according to the following rules: 

1. Both the variable and the specified operand are considered 

to be dimensionally normalized. This is done by, in effect, 

rearranging the dimensions of the two operands as follows: 

(a) wherever a dimension in the variable, or specified operand 

has only one element, unless that dimension is one whose size 

varies in the variable operand, it is moved so that it is a 

higher dimension than any with more than one or a variable 

number of elements; (b) both operands are then reduced in 

dimension by disregarding all dimensions higher than the 

highest dimension with more than one or a variab1 e number 

of elements. 

By considering both the variable and the specified operand to be thus dimen­

sionally normalized, both a 2 by 1 by 1 by 3 by 1 by 9 array, and a 1 by 2 by 

1 by 3 by 9 array, for example, may be considered, for assignment purposes 

only, as 2 by 3 by 9 arrays. As another example, a 2 by 1 by 3 by 9 by 9 

specified array assigned to a 2 by 1 by 3 by N by 9 variable array, maybe 

considered as a 2 by 3 by 1 by 9 specified array assigned to a 2 by 3 by N by 9 

variable array. To further illustrate, where A is an N-e1ement row vector and 

B iS,an N-e1ement column vector, then A = B :: A = B (1,1) (I=l to N), and B = A­

B =A (I) 11(1 = 1 to N). 

2. After any dimensional normalization, where the number of 

elements in the ith dimension of the variable is specified 

by an integer item, that item is automatically assigned the 

value min (x,y), where x is the size (i) of the specified 

operand and y is the .maximum value declared or determined 

for the item. 
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3. The specified operand is then dimensionally adjusted, where 

necessary, to the dimensions of the variable. Where the 

specified operand has fewer dimensions than the variable, it 

is converted to the higher dimension by appropriate replication. 

And where it has more dimensions than the variable, its higher 

dimensions are truncated (disregarded). 

Dimensional adjustment of th'e spec ified operand permits a scalar value, for 

example zero, to be appropriately replicated for assignment to each of the 

elements of an array. 

4. After any dimensional adjustment, elements of the variable are 

assigned the values of identically indexed elements of the 

specified operand. Where an element of either the variable 

or the specified operand has an index that is not the same as 

the index of any element in the other, however, no assignment 

involving that element is made. 

Assignments between scalar operands--including multicharacter texts--obey the 

following, additional rules: 

5. 

6. 

Assignment is only done between pairs of numeric operands, 

pairs of textual operands, pairs of pointer operands, or pairs 

of Boolean operands--allowing, however, for the equivalences 

between Boolean values and binary textual values, and between 

binary,' octal, decimal, and hexadecimal textual value~ and 

integer numeric values. 

Where necessary, scalar numeric values are automatically 

converted during assignment to the mode and reprsentation, 

and are rounded or truncated to the precision, of the variable 

to which they are being assigned. Truncation of "overflow 

digits" (i.e., most significant integer digits) is done as a 

last resort. Assigning a negative value to an unsigned 

variable is equivalent to assigning an absolute value. 
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7. 

8. 

4.1.1 

Where necessary, scalar textual values are considered to be 

automatically converted during assignment to their highest 

connnon code. Where either or both scalar textual operands in 

an assignment are multi-character texts, assignment occurs 

exactly as if between vectors of one-character texts, except 

that considerations of right or left justification are applied 

first .. 

Assignments between scalar pointer values and scalar Boolean 

values are straightforward. 

Formulas 

A formula specifies a value and is, in effect, a computing rule for obtaining 

that value. A formula may contain variables and so the value it specifies, 

in general, is dynamically dependent on these variables, as will be described. 

A formula results in a single value which is designated by a combination of 

variables, constants, arithmetic or logical operators, and grouping brackets. 

Hence, variables and constants are also formulas. The same characteristics 

apply to both formulas and variables. 

formula ::= numeric-formula 

boolean-formula 

SYNTAX: 

textual-formula I pointer-formula I 
(formula) 

As a f,)rmula, the value specified by a variable is, of course, that which it 

designates. A function specifies the value computed by a subroutine, and a 

constant specifies the value it denotes. Formulas may also be enclosed in 

parentheses to alter or emphasize the sequence in which the operations on 

formulas are performed. In addition, any compiler-dependent hardware operand 

may serve as a formula .to specify a va lue. 
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A formula may specify values containing a variety of data types. The rules 

for the evaluation of such formulas are given later. For~ulas that specify 

values with all numeric components are classed as numeric formulas, however. 

Likewise for textual, pointer, and Boolean values. 

4.1.1.1 Numeric Formulas 

A numeric formula specifies a scalar or nonscalar numeric value computed from 

the values expressed by its individual operands, which are themselves numeric 

formulas (e.g., variables and functions of numeric type, numeric constants, etc.). 

The arithmetic operators +, -, *, /, and ** have the conventional meanings of 

addition, subtraction or negation, multiplication, division and exponentiation. 

Enclosing an arithmetic operator in parentheses converts it from a binary to an 

n-ary operator. Double arithmetic operators are useful in specifying matrix 

operations. 

As in algebra, division by zero (and the equivalent raising of zero to a negative 

power) is undefined. Mixed and fractional exponents are allowed, as are 

exponentiations. 

numeric-formula .. -

SYNTAX 

constant I function / variable I hardware-operand 

6 <nothing I arithmetic-operator> 6 <nothing 

numeric-formula> I n-ary-arithmetic-operator 6 numeric-

formula I numeric-formula 6 matrix-operator 

numeric-formula I boolean-formula 

n-aryarithmetic-operator ::= (arithmetic-operator) 

matrix-operator .. arithmetic-operator l . arithmetic-operator2 

of double arithmetic or matrix operator is explained later in this The meaning 

section. 
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Examples: 

27 

(T-l) 

A sub 0 = Q 

(ALPHA sub (T-2» /1.889E-6 

(A, B, C)·k ..... (2, 3,4) := (A';b"'2, B';b'<3, C-;'(''''(4) 

Parentheses may, of course, be. used freely in constructing numeric formulas 

of arbitrary complexity, according to the notational conventions of ordinary 

algebra. Arithmetic operations in a numeric formula are generally performed 

in sequence, from left to right, except that parenthesized operations are 

performed first, and then operations are performed in the following order of 

precedence: 

a. n-ary arithmetic operations 

b. matrix operations 

c. exponentiation, unary addition and negation (these are performed 

in sequence from right to left, in exception to the general rule 

stated above) 

d. multiplication and division 

e. addition and subtraction 

Arithmetic operations involving any pair of numeric operands are defined in 

8PL (except for division by zero, of course), even though they may differ in 

dimension (scalar vs. nonscalar values), in representation (fixed-point vs. 

floating-point values), and in other subsidiary attribute~. To achieve compati­

bility in dimension and representation between operands, where this may 

be necessary, the following conversions are automatically applied: 
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a. Binary (including Boolean I-bit texts) octal, decimal, and hexadecimal 

texts are converted to unsigned integer values according to the obvious 

positional notation. For example: jit'OOIIOllllO' == 222. The empty 

text (zero characters), as denoted by null, is converted to the value 

zero. 

h. Integer and fixed-point values are converted to floating-point 

representation. 

c. Scalar values are (in effect) converted to nonscalar values by assuming 

appropriate replications of the scalar. Similarly, nonscalar values of 

lower dimension are converted by replication to nonscalar values of 

higher dimension. For example: (A,B,C//D,E,F//G,H,I)+l = 
(A+1,B+1,C+1//D+l,E+I,F+l//G+1,H+l,I+l) and (A,B,C//D,E,F//G,H,I)* 

(1, 2, 3) == (A"kl, B'1\"2, C';'''3 / /D'1'''l, E'1'(2 ,F"i'(3/ /G"kl, H,\"2, 1';'''3) . 

d. Arithmetic operations involving nonscalar operands of similar dimension 

but different size (number of elements) are done by truncating (i.e., 

disregarding) the excess elements (of either operand) in any of the 

dimensions. For example: (A,B,C)+(1,2) = (A+l,B+2), and (A,B,C//D,E,F) 

/(1,2//3,4//5,6) == (A/l,B/2//D/3,E/4). In other words, arithmetic 

operations are only done on operand pairs with identical indexes. 

Arithmetic operations on real operands are done according to the following 

scaling rules, not all of which apply in any given case. The following notation 

is used. Note, this notation is in part SPL notation and standard mathematical 

notation. 
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N'l - number of integer digit s ,,/, 

N 
2 - number of fraction digits 

N3 - number of significant digits 

N4 - number of exponent digits 

W - maximum number of digits in an integer or fixed-point 

valued operand"'c* 

Where N'l) ~, and Wapply to integer and fixed-point valued operands, and 

N3 and N4 to floating-point valued operands. 

1. Fixed-point addition and subtraction: 

2. 

C = A + B C = A-B. 

Nl (C) 1+ ~ [Nl (A), Nl (B) ] 

N
2

(C) = if N
2

(A) ~ N2 (B) 2£ N2 

(B) ~ 0 then N2(A) else 

if N2(A) ~ 0 then N2(B) 

else 1+ min [N2(A),N2(B)] 

Fixed-point multiplication: C 

NI(C) = Nl(A) + NlCB) 

N
2

(C) = N2(A) + N2(B) 

*It is assumed in these equations that N. (A) - number of digits in A of 
1-

type i. 

**This is an implementation constraint, but should not be less than 10 decimal 
or 32 binary digits. 

46 

1 

(' 

r 



I , 
( 

I 
I: 
I~ 

I 
I' 

( 

I~ 

I 

( 

I 

I 

3. Fixed-point division: C = AlB 

NI(A) + N2(B) 

if N2(A) ~ 0 ~ N2(B) 

~ 0 then W-I-NI (A) else 

if N
2

(A) ~ 0 and N2 (B) 

~ 0 then 2*N
I

(B)+N
2

(B)-1 

else ifN
2

(A) ~ 0 then 

NI(B) + N2(A) 

4. Fixed-point exponentiation: C = A**B. 

5. 

Exponentiation is done in floating-point, unless: The base A is an 

integer or fixed-point value; and the exponent B is an integer value; 

and the greatest possible magnitude of the exponent, times the nu~her nf 

(integer and fraction) digits in the base, is less than W. If this 

condition is satisfied, the scaling rules for fixed-point multiplication 

and division apply--as many as W-2 mUltiplications followed by, at most, 

one division. 

[N
l 

(A)+l}'(B-l 

N
2

(A)'I(B 

Floating-point arithmetic operations. 

Intermediate integer and fixed-point results are represented by W,digits. 

Where the number of digits (determined above) exceeds W, excessive digits 

are truncated. Truncation is done first on least significant fraction digits 

then, if necessary, on most significant integer digits. 
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In defining the arithmetic operators as n-ary rather than binary operators, 

there are three cases to consider: where the operand (A, for example) 

specifies a scalar numeric value; where it specifies a vector (one-d1mensional 

array); and where it specifies a multidimensional array_ The result of an n-ary 

arithmetic operation (C, for example) is defined in the following table: 

Scalar A Vector A Multidimensional A 

C - (+)A C - A C - (A1+A2+· · .+An) C
1 - (+)Al , · .. , C - (+)A 

n n 
C - (- )A C - -A C - (AI -A2 - ••• -An) Cl - (-)A

l
, · .. , C - (- )A n n 

C - (<;'()A C - A C - (AI <;'<A2"1< ~_. • "I(An) C
1 - (<;'()A

l
, · .. , C - (-;,()A 

n n 
C - ( I)A C - A C - ( A

l /A2 / ••• /Aj C
1 - (/)A

l
, · .. , C - (/)A n n 

C - (<;b'<)A C - A C - (AI <;b'<A£'<"I'( ••• "ld(An) Cl - Ud()A
l

, ... , C - (<;'(-}()A 
n n 

The meaning of the matrix operators is defined, in general, as follows. Given 

two numeric arrays X and Y declared 

array X. begin end m £y p EY 
array Y. begin end q £y n EY 

and any two arithmetic operators, cPl and 01'2' then the result, 

oP1 . oP2 Y may be defined by defining the elements of C. 

C sub (1,1) - (oP1) (X sub 1 oP2 Y sub (1 !£ q, 1») 

C sub (i,j) - (op!) (X sub i oP2 
Y sub (1 to q, j») 

c sub (m,n) - (op!) (X sub m oP2 Y sub (1 to q, n» 

1n particular, where X and Yare declared, for example, 

array X. real M by P 

array Y. real P by N 

then X+.*Y is the familiar operation of matrix multiplication. 
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4.1.1.2 Textual Formulas 

A textual formula specifies a scalar or nonscalar textual value computed from 

the values expressed by its individual operands, which are themselves textual 

formulas--textual variables and functions, textual constants, etc. No special 

operators are provided in SPL just for text processing; instead the generally 

applicable operations of subscription, catenation, etc., are used. Boolean 

formulas specify values that, textually, are l-character binary texts. 

textual-formula .. = 

Examples: 

SYNTAX 

textual-constant 6 <catenation-operator I subscription­

operator> I 

'THOMAS ROMANOV' sub (9 to 11) = 'OMA' 

(r T f f H r 'OMA' r S r) sub 3 = r OMA ' 

4.1.1.3 Pointer Formulas 

A pointer formula specifies a scalar or nonscalar pointer value computed from 

the values expressed by its individual operands, which are themselves pointer 

formulas--pointer variables and functions, pointer constants, etc. 

Intermediate floating-point results are carried in N3(C) significant digits. 

Unless a floating-point result is for use in computing a value to be assigned 

to a truncated real item, it is, in effect, first calculated to N3(C)+1 

significant digits and then rounded (away from zero) by adding one to this 

least significant digit and then discarding it and renormalizing if necessary. 
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pointer-formula 

Examples: 

STEP sub J 

cell SORT 

STEPS 
cell sub 3 
bit sub N ----

: :.= 

SYNTAX 

name /). < sub b. index-string Inothing >Icell ,I:::. sub b. 

index-Atri,no 'ce'J_ lIvar ":a~1_e t bit ~ sul> A -- --
index-string 

The ith cell in memory may be specified by cell sub i; the origin cell for a 

variable V may be specified by cell V'. (Where cell ,cell , ..... and 
--c

i 
-c

2 

cell 
-----c 

n 
contain a value, the value's origin cell is cell ,where i < J', for --c -

i 

j = 1, 2, ... , n. The pointer formula cell, V, for any variable V, therefore 

always specifies a scalar pointer value. 

4.1.1.4 Boolean and Relati.onal Formulas 

A Boolean formula specifies a scalar or nonscalar Boolean value computed from 

the values expressed by its individual operands, which are themselves Boolean 

formulas--Boolean variables, functions, and constants, and relational formulas-­

and binary textual formulas. The conventional logical operators and, .£,E., equiv 

(equivalence), and not are available, as are the relational operators ~ (equals), 

!!Sl. (is not equal to), h-(is less than), .B!.. (is greater than), ~ (is less than 

or equal to), and E& (is greater than or equal to). N-ary logical and rela­

tional operators are also available. Logical and relational operations on 

nonscalar operands are done on an element-by element basis. A scalar Boolean 

formula is more conveniently called a condition, and a binary text may be con­

sidered a vector of Boolean values. 
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pYNTAX 

condition ::= boolean-formula 

boolean-formula ::= boolean-constant I ~ 6 boolean-formula I boolean-

formula 6 ~ I £E, I equiv> ~ boolean-formula I 
relational-formula I n-ary-logical-operator 6 boolean­

formula 

relational-formula .. - <nothing n-ary-relational-operator> 6 formula 

6< ,nothing , relational-operator 6 relational-formula> 

n-ary-logical-operator .. - «and'.2.E.. I equiv» 

n-ary-relational-operator .. - (relational operator) 

Examples: 

not T 

not T and (B eguiv C or T) 

A ~ Q .£!. not T 

bit ' 1 ' == true 

false, not T, V sub I to V sub (1+1 to J) 

A~Q1s.DE.Sl.1 

Parentheses may, of course, be used freely in constructing Boolean formulas 

of arbitrary complexity. Logical operations in a Boolean formula are performed 

in sequence, from left to right, except that parenthesized operations are done 

first, and then operations are done in the following order of precedence: 

1. n-ary-relational operations 

2. relational operations 

3. n-ary-logical operations 

4. not 

5. and and or 

6. eguiv 
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Relational op~rators are defined primarily on pairs of scalar values. If the 

indicated relation holds, the operation specifies the Boolean value tl~, other­

wise it specifies the value false. A relational formula involving scalar 

operands and several relational operators specifies a.Boolean vector, e.g., A 

~ B ~ C gsD = A ~ B, B ~ C, C ~ D. Relational operations on nonscalar 

operands are done on an element-by-element basis~ yie~ding a nonscalar Boolean 

value, and where it is necessary to achieve dimensional compatibility, the 

dimensional conversions described in Section 4.1 on numeric formulas are 

automatically applied. 

In comparing numeric operands, where it is necessary to'achieve compatibility 

in dimension, mode and representation, the conversions described in Section 4.1.1 

on numeric formulas are automatically applied. However, only the relations 

equal and not equal are defined when either operand is complex. In addition, 

in comparing a pair of integer or fixed-point values A and B, the comparison 

is only carried out to [if N2 (A) Is 0 and N2 (B) Is' ° then min (N 2 (A),N2(B» 

else ~ (0, min (N2 (A),N2 (B»)] fraction digits (where N2(X) = the number of 

fraction digits of X.) And in comparing a pair of floating point values Y and 

Z, the comparison is only carried out to [min (N
3

(Y),N,{Z»] significant digits 

(where N (X) = the number of significant digits of X). In comparing scalar 
3 textual operands of the same length in the same alphabet, the shorter text is 

left or right justified and filler characters are appended. Then, for textual 

operands of the same length in the same alphabet, comparison involves the pair­

by-pair comparison of characters according to the alphabet's collating sequence. 

Scalar pointer values are compared according to the following ascending order: 

nu1l.* cell sub 1, cell sub 2, cell sub 3, and so on. 

Boolean values may also be relationally compared, according to the following 

ascending order: false, true. 

* See section 7.1 for a definition of null. 
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Mixed nonscalar operands may be compared t although for scalar operands the 

relational operators are only defined for pairs of numeric values, pairs of 

textual values, pairs of pointer values, and pairs of Boolean values-­

exceptions are due to the equivalence between Boolean and I-character binary 

values and between binary, octal, decimal, and hexadecimal texts ~nd integer 

numeric values. 

Logical operators are defined primarily on scalar Boolean values. Logical 

operations on nonscalar Boolean operands are done on an element-by-element basis, 

yielding a nonscalar Boolean value, and where it is necessary to achieve 

dimensional compatibility, the dimensional conversions described in Section 4.1 

on numeric formulas are automatically applied. : N-ary logical operators are 

defined in the same manner a n-ary arithmetic operators; that is, (and) (~..9), 

(A, B, C, D) == (A ~ B., and B ~ C, and C ~ D). The n-ary and operator may be 

omitted where it is clear from context that a scalar rather than a nonscalar 

Boolean value is appropriate, for example, where a nonscalar Boolean value is 

assigned to a Boolean item, or is used as a condition. 

4.1.2 Direct Code 

SPL provides for direct code statements, however they must be preceded by a $. 

A machine instruction or hardware operator followed by a parameter string may be 

used in any SPL form in which a simple statement or compound statement is allowed. 

direct-code-statement 

Examples: 

$STO ($P, cell (Q» 

$LDA (Q, $IX.l) 

.. -
SYNTAX 

$name b. ( t 1 . ) of-hardware-operator ac ua -parameter-str~ng 

$BRU (STEP sub (ALPHA-I), 'I') 
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4.2 CONTROL STATEMENTS 

Control statements are provided in SPL to: transfer control to a specified 

statement; execute one statement or another,or none, depending on a specified 

condition; execute a statement repeatedly, perhaps each time with different values 

for designated variables; initiate an asynchronous process; delay execution of 

a statement until a specified condition is evaluated to be true; stop a process; 

execute a statement whenever a specified condition is evaluated to be true; and 

call a procedure subroutine. 

SYNTAX 

control-statement ::- simple-control-statement complex-control-statement 

simple-control-statement ::= transfer-statement I stop-stbtement I procedure­

call-statement 

complex-control-statement ::= repeated-statement 

parallel-statement 

chronic-stateu~nt 

conditional-statement 

delayed-statement I 

Procedure call statements are discussed in Section 5. 1 . 1 . 

4.2.1 Transfer Statements 

Transfer statements break the normal, written sequence of statement executions 

by transferring control to the statement whose origin cell is specified by a 

pointer formula. 

SYNTAX 

transfer-statement ::= <go 6 to I goto> 6 pointer-formula 

Examples: 

B£. to COMPUTE 

B£ to STEP (I) 

.&2. to £.til (oct '150000') 

goto cell ALPHA 

54 

1 
I 
I 

I 
I 
I 
] 

] 

( 1 
~- J 



I 
(I 

( 
\ 

I~ 

( 

( 

(' 

( 

(' 

[' 

( 

( 

Ie 

( 

I' 
I 
I 
I 
~ 

Ii 
I; 

---_/ 

In the case of a transfer-switch the variable at the end of the statement 

controls the switch direction. 

It should be remembered that pointer formulas can specify the origin cells 

of data elements as well as statements, so it is the programmer's responsibility 

to see that execution control does not get transferred, for example, to an 

array of floating-point numbers. However, the ability to transfer execution 

control to what is nominally a data element is an occasionally desirable, 

therefore not prohibited, action--for example, when it is desired to execute 

a machine-language program text that has just been read. 

4.2.2 Repeated Statements 

SPL provides for the repeated execution of statements, either a specified 

number of times, or where the number of repetitions depends on some condition-­

perhaps each time with different values for a designated (control) variable. 

SYNTAX: 

repeated-statement ::= for ~ repetition-clause ~ statement 

repetition-clause ::= variable 6 = 6 value-sequence 

value-sequence : : = formula I numeric-formulal 6 ~ 6 numeric-formula2 6 

<while I until> 6 condition 

Note: A chronic statement may not be repeatedly executed. 

Examples: 

for I = I ~ I until I ~ 100, PRINT I 

for I = 1 by 2 while I Is 99, for J = I by 3 until J .B..E. 

1+99, A sub J = I 
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A sequence of one or more values to be assigned the control variable may be 

given by a formula specifying an array of dimension equal to or one greater 

than that of the control variable •. Or, where the control variable is numeric 

in ty.pe, a sequence may be given by assignin~; it an initial value (for that 

sequence) as specified by numeric-formula
l

, with subsequent values being 

determined by the addition of an increment value, as determined by numeric­

formula 2 " In this latter case, the sequence of assignments continues while or 

until the given condition--which usually involves the control variable--specifies 

the value true. Since the evaluation of the condition is done prior to each 

assignment in this sequence, zero or more assignments may thus be .specified. 

The statement in a repeated statement is repeatedly executed, zero or more 

times. The repetition clause determines the number of such executions. 

In a repeated statement, the repeatedly executed statement may, of course, 

reference and even alter the value of the control variable. 

Any transfer of control into a repeatedly executed statement from outside 

will generally produce undefined results. Furthermore, while it is possible 

to terminate the repeated execution of the statement by a transfer of control 

to outside the repeated statement, the value of the control variable remains 

defined as of , its last setting. 

4.2.3 Conditional Statements 

A conditional statement expresses the action of deciding to execute one 

statement or another from a pair of statements, or of deciding to execute 

or skip a single statement. 
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SYNTAX: 

conditional-statement :: = if 6 condition l'1 then ~ statemen~l <nothing I /:::, else 

D. s ta temen t 2> 

Note: A chronic statement may not be part of a conditional statement. ASide 

from that, statement
2 

may be any statement while statement l , may not 

be a conditional statement. 

Examples: 

if HOURS sub EMPLOYEE !!!l. 0, then COMPUTE begin ... end 

if T ~ A = 0 else B = 1 

if A ls 0 or T then.&£ to NEXT else if A 8!:. 0 and not T then .&2. to ALPHA 

A conditional statement causes the execution of one of two alternative 

statement--if the condition is true, then statement l is executed, else, 

statement z is executed. 

4.Z.4 Parallel Statements 

A parallel statement is a complex control statement that serves to cause the 

parallel or asynchronous execution of its component statement (where the 

implementing system will support this kind of operation). The body 

(incorporated statement) of a parallel statement may be executed in parallel 

or asynchronously with the subsequently written statements. 

SYNTAX: 

parallel-statement ::= do I::. statement 

Note: A chronic statement may not be part of a parallel statement. 
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Examples: 

do begin T = false, A = B, T = ~ end 

do read RECORD = SENSOR 

do ~ !.£. START 

A parallel statement ordinarily serves only to establish a new task--a tempor­

ary, parallel or asynchronous sequence of execution--which ends when the 

incorporated. statement: completes its execution. However, a parallel statement 

can also establish a new process--which is a more permanent, parallel or 

asynchronous sequence of execution--mere1y by executing a transfer of control 

out of the parallel statement, thus bypassing the implicitly built-in stop 

at the end of the parallel statement. The difference between a parallel task 

and, a parallel process is mainly one of subjective convenience. 

A transfer of control into a parallel statement from outside does not 

establish a parallel task or process, however. With reference to either of 

the previous pair of examples, &21£ THIS will cause the execution of 

statementl followed by the execution of the (implicit or explicit) stop 

statement. 

When a statement that is normally executed in paralle1--such as an input­

output statement--is written without a do indicating that it is not to be 

executed in parallel, the next statement is automatically delayed until the 

execution of its predecessor .is completed. 

4.2.5 Stop Statements 

A stop statement serves to halt a (main or parallel) process. It signifies' 

the completion of the statement sequence in which it is executed. A stop 

statement may be conditionally invoked. 

SYNTAX: 

stop"'stFltement ::= stop 
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~ .. 

A stop statement also has the incidental effect of closing any files left 

open by the process or task in which it is executed. (see Section 4.3 on 

opening and closing files). 

lj.2.6 Delayed Statements 

Delayed statements cause conditional delays in a process or task. The 

execution of a statement may be thus delayed until any specified condition 

occurs. 

SYNTAX: 

delayed-statement ::= when ~ condition ~ statement 

Note; A chronic statement may not be part of a delayed statement. 

Examples: 

when T .&E... 4, se t A = I 

when $TCS "Teletype Channel Status" ~ 'FREE' write TELETYPE MESSAGE 

The condition for execution of a delayed statement is specified, of course, 

by a (scalar) Boolean formula.· The delayed statement is repeatedly executed 

until its enabling condition is evaluated as true. Delayed statements are 

similar in this respect to chronic statements, (although a delayed statement 

is not automatically re-executed upon reoccurence of its enabling condition), ~ 

and they are often used to synchronize parallel tasks and processes .. 

An example of this involving four parallel assignments, is shown below. 
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T1, T2, T3 = false 

do begin A = B, T1 =~~ 

do begin C = D, T2 = ~end 

do begin E = F, T3' = ~end 

~G .= H when T1 ~ T2 and T3 EQ ~ 

4 .2.7 Chrbnic Statements 

Chronic statements cause the execution of any given statement whenever a 

specified condition occurs or re-occurs. Chronic statements are useful for 

interrupt processing, priority processing, and parallel processing. They are 

executed asynchronously--depending on the hardware resources--either in 

parallel with, or by interrupting, some current process or task without, 

however, affecting that process or task beyond perhaps delaying it or 

explicitly altering its data. 

SYNTAX: 

chronic-statement .. - ~ ~ condition ~ statement 

Examples: 

on 

on 

$ETC "Elapsed Time Counter ".8.!. 500 "milli-seconds" begin 
end 

$FPO "Floating-Point Overflow" &2. to ABORT 

PROCESS. ~ SIGNAL ~ 0 and SIGNAL.8.!. CURRENT begin ... end 

~ $.Q.§. "DEVICE STATUS" .~ 'DONE' .&£ to CONTINUATION sub I 
. -- ---
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The condition for executing a chronic s~atement is specified by a (scalar) 

Boolean formula, which is automatically levaluated whenever any of its operands 

is assigned, or acquires, a new value. The chronically-executed statement is 

executed as a parallel task if a processor is available or, if all are busy, 

as a primary task--by interrupting some current process or task. Thus, a 

chronically-executed statement when its "time has comet" it has paramount claim 

to processing. The programmer, however, has complete control over specifying 

the condition under which a chronic statement is executed, and in particular, 

conditions may be specified so that a chronic stat~ment is not executed until 

the facilities it needs are available, so that a low-priority chronic statement 

does not interrupt a high-priority task or process, so that a high-priority 

chronic statement does interrupt a low-priority task or process, and so that 

the automatic evaluation of the condition occurs no more frequently than, and 

indeed, exactly when, desired. 

Chronic statements are executed only on the occurrence or re-occurence of their 

enabling condition. They are not part of the "normal" sequence of statement 

execution, which is why they are inappropriate components of other control 

statements 0 Aside from this restriction (which is ;'10t a syntactic necessity 

but is meant primarily to prohibit confusing statement constructions), chronic 

statements may be written wherever convenient in the program; the "normal" 

sequence of statement executions will automatically bypass them. And while 

a chronic statement may not be transferred to.) (the automatic bypass would 

frustrate this), its component statement can be transferred to .. 

Many data storage devices impose accessing restrictions in that reading or 

writing an individual value may, for efficiency,·ordinarily irivolve the transfer 

of an entire block of data. Such devices are called external storage devices, 
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as contrasted with the internal memory of the computer. To allow a description 

of reasonably efficient input-output op~r~tions, therefore, data entering or 

leaving the computer's internal memory are organized into files. A file is 

thus a body of data contained in some external storage device, such as punched 

cards or tape, or magnetic tape, discs, or drums. 

To provide maximum flexibility for real-time computation, the input and output 

features of SPL place major emphasis on the activities of reading and writing 

and little emphasis on data manipulation and conversion, for which adequate 

facilities are otherwise provided. (In partic11lar, the operations of encoding 

and decoding a record according to a given format, though described in the SPL ex­

tensions, have been removed from the operations of reading and writing so that 

they may be applied to operands other than records.) Data conversion and record 

buffering and blocking, where they are needed, must therefore be explicitly 

specified either in the program or in library subroutines. 

In SPL, files are defined by file declarations and processed by the input-output 

operations of opening and closing, positioning and testing,* and reading and 

writing a file. 

SYNTAX: 

input-output-statement ::= open-statement I close-statement I read-statement I 
write-statement 

*Positioning ,and testing are input-output operations that involve functions, 
rather than statements. 
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4.3.1 File Declarations 

Files, which are collections of data that are externally stored or available, 

or input or output, are considered in SPL to be strings of records, each record 

distinguished by its position in the file. In turn, a record is considered to 

be a linear array of texts, called lines. A file declaration gives the 

dimensions of the file, names its alphabet and the device and module used to 

access and hold it, and provides several other file attributes, some of them 

implementation-defined. In certain cases, several different but similarly 

described files may be declared at once. 

SYNTAX 

file-declaration .. = file 6 name-string 6 file-description 

file-description ::= device-name 6 <nothing I $(character-string» 6 <nothing 

dimension-string> 6 <nothing' I code-name> 

device-name ::= name. I device-name. <nothing I number> 6 <nothing 
number> 

code-name ::= <bin I oct I dec I hex I ~> 

module-name. 

Notes: a. The character string may not contain the ")" close parenthesis. 

b. 

Examples: 

file A. SITE 

With regard to the dimension string, a file is a three­

dimension entity: records per file, lines per record, and 

characters per line. 

file D. TAPE.07 REEL.3661 

file E. TTY.14 STATION.71 $(213-3993411) I ~ 1 ~ J 

file F. TAPE, K E.Y. L E1. 32 bin 
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In a file declaration, the device name indicates the type of peripheral device 

used to access the file. For systems with several units of the indicated type, 

the suffix numbers tell which units shall be used to access the filet and may' 

be omitted if any unit of the indicated type is acceptable. Device names and 

the interpretation of suffix number~ are implementation defined. However, they 

should account for cases where a device is used to access several files, and 

where several devices are used to access a single file. 

A given type of device may imply any or all o.f the other attributes of a filet 

in which case these attributes may be omitted from the declaration, or it may 

place limits on them--for example, a printer that cannot produce lines longer 

than 132 characters. 

The module name in a file declaration indicates the particular storage module 

--tape reel, card deck, disc pack, type of preprinted form, display area, etc. 

--used to access the file. Like device names, module names usually include 

module type and suffixed serial number, and are implementation defined,_ And 

they should also account for cases where a (physical) module contains several 

files, and where several modules are needed to contain a s~ngle file. Module 

name may be omitted if the identification of a module is unimportant or 

irrelevant to the device, or handled outside the system, e.g., manually. 

Any implementation-defined, machine- or syst(!m-dependent file attributes may 

be declared within the $( and) brackets. Some examples might be: password; 

work order number, special labeling instructions; source or destination for the 

file; author; expected activity; security classification; purge date. 

The three-component dimension string gives the dimensions of the file: number of 

records per file, number of lines per rec9rd, and number of characters per line. 

Where device and module permit, any of the dimensions may be given, by an 

integer-valued numeric item, as varying. However, number of characters per 

line may only be considered as varying between records, not within a record. 

And where number of records is given by a number, this is taken as a maximum 

value. 
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The code name indicates the alphabet in which the file is coded. The alphabet 

must, of course, be defined. And it may contain both nonprinting control 

characters, and graphic characters. 

Where the file description is not so specific as to be pertinent to one and 

only one file, it may be used in declaring several files at once, and in a 

mode declaration. 

4.3.2 Assign Declaration 

The distinction can be made in SPL between files which represent logical units 

and the actual physical units to which a file is assigaed. This logical unit/ 

physical unit equation is done by means of an assign declaration. What physical 

units are available is, of course, implementation dependent. 

SYNTAX 

assign-declaration .. - assign, 6 name to 6 device-name 

Examples: 

assign MASTER to TAPE 1 

assign LOG to PRINTER 

assign OUTPUT to PUNCH 

4.3.3 Opening and Closing Files 

A file may be opened with an open statement, which designates the file and 

completes or overrides the catalog of. the file's declared attributes. A file 

may be closed with a close statement, which designates the file and indicates 

whether an end-of-file is to be written, or with a stop statement. 
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30 September 1967 66 '.l'M-J 119/ UO() /00 

SYNTAX 

open-statement ::= open /1 device-name 11 <nothing , $( character-string> IJ <nothing 

dimension-string> /1 <nothing I code-name> /1 file-designation 

close-statement ::= close /1 <nothing ~ I ~ /1 module-name> /1 file-designation 

file-designation 

Notes: a. 

::= name f f"l I file /1 at /1 pointer-formula 
O-le -- -

The character-string may not contain the ")" close parenthesis. 

b. The elements in an open statement between the primitive, 

open, 'and the file designation, may be written in any order. 

Examples: 

open A 

close A 

open TAPE.OS 

close out REEL D -----
open file at P sub I 

close out file at P sub I --------

An open statement supplies missing or overriding file attributes, which are 

taken to aold until the file is closed. Opening a file may cause manual access­

ing and mounting of the indicated module. And where the module is of a type 

that cannot be accessed by the indicated device, it may cause loading of the 

file into the appropriate external storage medium. Opening a file does not alter 

the position of the file, should it have previously been opened, accessed, and 

closed. Otherwise, an open statement will automatically position the file to 

the first record. Other implementation-defined actions, such as label checking, 

may result from opening a file. 

Closing a file releases the device used to access the file, but it does not 

alter the position of the file should it be subsequently opened. Closing out 

a file causes an end-of-file to be written and also releases the device, but 

it leaves the position of the file undefined. In addition, in closing out a 
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file, a new module name may be givell. Till s hl'W llIodul(' lWlIle lIlay JJlt'n.~ ly bt' 

substituted for the old one, or where the module type cannot be accessed by 

the file accessing device, the file is unloaded from the external storage 

medium containing it, onto the module. 

4.3.4 Testing and Positioning Files 

The testing and positioning of files in SPL : ... s done with non-input-output 

statements employing a pair of built-in functions, status and position. For 

addressable files, the position function serves as a functional variable. 

SYNTAX: 

function ::= file-designation 6 <status I position> 

functional-variable ::= file-designation 6 position 

Examples: 

A status 

(file ~ P sub I) position 

The file-status function specifies a one-character textual value in an 

implementation defined code that may differ from device-type to device-type. 

Regardless of these differences, certain codes are established with standard 

meanings for all devices and implementations. These are: 

1. 

2. 

3. 

4. 

5. 

6. 

7 • 

'READY' 

'BUSY' 

'EOF' 

'FULL' 

'ERROR' 

'UNREADY' 

'CLOSED' 

the device has transmitted a record or is ready to 

transmit a record 

the device is in the process of transmitting a record 

an end-of-file has been encountered by the device 

another write operation would cause the file to exceed 

the capacity of the module or modules allocated to it 

the device is unsuccessful in transmitting a record 

due to an error which cannot be corrected 

the storage device is not ready or unavailable, or 

the module has not been mounted 

the file has been closed, or not opened 
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With these codes, and any itnplementation-defined, nonstandard ones, the status 

of a file may be determined with such Boolean formulas as: A status ~ 'BUSY'. 

Appropriate hardware operands may also be referenced for more specific status 

information in many cases. 

So far as position is concerned, an SPL file is self-indexing, meaning that 

the record available for transfer to or from the file depends on the file's 

current position. The records of an n-record file have the positions 1 to n, 

and the position of the record currently available for transfer is specified 

by the position function. The transfer of a record to or from a file automa­

tically increments (or decrements, for a reverse file) by one, the file's 

posi tion. Furthermore, where the storage or input-output device a110y]s, the 

position function designates a scalar, unsigned integer variable that may be 

altered by the assignment of an arbitrary numeric value, thus repositioning 

the file. Such a file is an addressable file, as opposed to a serial file, 

where such a general positioning operation is to be avoided as impossible or 

inefficient. Some serial files do, however, permit restricted forms of the 

positioning operation. For a tape file T, for example, it might be possible 

to specify rewind by "T position =1," backspace by "T position 

-1," and skip N records by "T position = T position +N." 

4.3.5 Reading and Writing Records 

T position 

Reading and writing a 'READY' file is done in SPL by read and write statements, 

wherein the programmer designates the file and designates or specifies the 

data elements to receive or provide the record. 

SYNTAX: 

read-statement ::= ,read ~ variable ~ into ~ file-designation 

write-statement ::= write ~ file-designation ~ from b textual-formula 

Note: In a read statement, the variable must be textual in type. 
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Examples: 

read BUFFER ~ A 

write F from BUFFER 

write E from 'THE QUICK BROWN FOX .•• TESTING' 

do read bit (ALPHA sub (J to K)) into C 

Read and write work precisely according to the rules of the assignment state­

ment, where the record is one of the operands and is considered to be a row 

vector of texts (lines) of dimension and alphabet declared (or given in the 

open statement) for the file. Where the number of lines per record and/or 

the number of characters per line are declared, with an integer item, as 

variable, read and write have the effect of assigning the appropriate value 

to these items. Read and write also advance by one the position of the file-­

either forward or, for a reverse file, backward. In general, a file may be 
both written and read. 
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5. PROCEDURES AND FUNCTIONS 

5.1 PROCEDURE DECLARATION 

The procedure is a type of closed subroutine that may be classified as program 

independent because it can operate upon data independent of item names and 

their definitions as defined in the main program or in the compool. This is 

accomplished by the use of formal data declarations (dummy data) defined in 

the procedure. The data to be operated upon (parameters) are transmitted from 

the calling routine to the procedure via the procedure call. During the operation 

of the procedure, the data transmitted from the calling routine are referenced 

by the formal data declarations defined in the procedure. General purpose 

routines may now be generated which enable the many programs in a system to 

centralize their common routines within proc2dures and call upon each one when 

needed. 

Thus, a procedure declaration sets up a closed subroutine that may have input 

parameters, output parameters, or both. A procedure declaration is independent 

of outside loop statements; it may be invoked from within any loop statement 

in the main program or in other processing declarations without deactivating 

the loop variables. On the other 'hand, fhe outside loop variables are not 

defined in the procedure declaration. 

SYNTAX 

procedure-declaration "= procedure-heading 6 <nothing I parameter-declaration­

string> 6 statement 

procedure-heading ::= procedure· 6 name f d 6 <nothing I (formal-
, 0 -proce ure 

parameter-string» 

formal-parameter-string ::= formal-parameter ~ <nothing I formal-parameter-string/ 

formal-parameter ::= name 

parameter-declaration-string .. - parameter-declaration 6 <nothing I parameter­

declaration-string> 
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parameter-declaration ::= <item-declaration I array-declaration I group-declaratio~> 
6 <nothing I value> 6 <nothing I result> <procedure­

heading I function-heading> 6 <nothing parameter­

declaration-string> , file-declaration 

Note: The statement in a procedure declaration may not be a chronic statement. 

Examples: 

procedure A. begin •.. end (A) 

procedure SORT. (N, VECTOR) integer N. value real VECTOR. array N result begin 

.•. ~nd (SORT) 

procedure G. (Y, FCT, X) real Y. function FCT. (Z) Y = FeT eX) 

Formal subroutine parameters, like actual parameters, fall into three categories: 

(1) Formal value parameters correspond to actual parameter~ that are values 

(although designated or specified by variables and formulas). A formal value 

parameter must be declared in the parameter declaration string as an item, 

array, or group with the value descriptor appended. Starage is allocated within 

the subroutine for value parameters, and references to them within the subroutine 

refers to that storage. (2) Formal expression parameters correspond to actual 

·parameters that are variables or expressions. A formal expression parameter must 

be declared in the parameter declaration string as an item, array, or group but, 

of course, without the value descriptor. No storage is allocated within the 

subroutine for expression parameters. Instead, the subroutine is executed as 

if the variable or formula constituting the actual parameter were substituted for 

the formal parameter name throughout the subroutine. (3) Formal name parameters 

correspond to actual parameters that are names. A formal name parameter may be 

declared in the parameter declaration string as a file or a subroutine (complete 

with everything except processing statements). Those not declared are name 

parameters whose attributes are determined by their use in the subroutine, and 

by the corresponding actual parameters appearing in the subroutine's various 

calls. For a formal name parameter, the subroutine is executed as if the name 

constituting the actual parameter were substituted for the formal parameter name 

throughout the subroutine. 

71 



Formal value and expression parameters are themselves divided into two categories: 

argument parameters and resul t parameters. Formal argument parameters ·correspond 

to a·ctual parameters whose values are not affected by the execution of the 

subroutine, while formal result parameters correspond to actual parameters whose 

values are affected. An actual parameter corresponding to a formal result 

parameter must therefore be a variable .. Formal result parameters are declared 

with the result descriptor; formal argument parameters are declared without it. 

5.1.1 Procedure Call Statements 

To execute the computation defined in a procedure declaration, it is necessary 

to invoke the procedure by executing a procedure call statement, which may be 

thought of as an abbreviated description of process it invokes. 

SYNTAX 

procedure-calI-statement .. - call ~ name 
---- of-procedure 

6. <nothing 

string» 
actual-parameter I (actual-parameter-

actual-parameter-string .. - actual-parameter 6. <nothing I 

string» 
(actual-parameter-

actual-parameter .. - variable I formula I name 

The actual parameters of a procedure call statement or a functl"on must correspond 
to formal parameters of the subroutine declaration both in number and in .... sequence. 
Actual parameters may not, therefore, be oml."tted. H f 1 owever, a ormu a or variable 
as an actual parameter may designate or specify a nonscalar value with a varying 

number of elements, and it may be necessary to use parentheses to establish the 

desired correspondence. In addl."tl."on a t 1 , n ac ua parameter must be compatible 

with its definition and/or use within the subroutine declaration. 
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Examples: 

call B (T) 

call G (GAMMA, sin, V*PI) 

A procedure subroutine is invoked by a procedure call statement according to 

the following steps: 

a. Any formal value argument parameters are assigned the 

values of the corresponding actual parameters. 

b. In effect, the corresponding actual parameters are substituted 

for any formal expression and name parameters. 

c. The subroutine is executed, and if it completes its operation 

(i.e., does not stop or transfer control outside the subroutine), 

the following steps are done; 

d. The values of any formal value result parameters are assigned 

to the corresponding actual parameters; 

e. Control is returned to the statement following the subroutine 

call statement, 

When a procedure subroutine is in~oked by a parallel statement (i.e., "do 

call"), steps a-bare done in sequence, steps c-e in parallel. 

A procedure call statement invoking a hardware operator will follow the same 

steps, except that the subroutine executed will generally be a single machine 

instruction. Indeed, with appropriate actual parameters (in many cases, 

hardw~re operands), such a procedure call statement may be entirely equivalent 

to single machine instruction. 

5.1.2 Entry and Exit Statements 

In order to enter a procedure at some point other than the beginning, the entry 

statement may be used. One or more entry statements may be defined within a 
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procedure to define secondary entry points. Like the heading statement of a 

procedure, each of the entry statements must have a label to serve as the entry'''-­
name for that point, and each may specify a list of formal parameters which 

need not be the same as for the procedure or as for other entry points. At 

the point it is desired to leave .a procedure·, the exit statement· should be 

invoked .. An exit will be generatE·d after the last statement of a procedure but, 

in order for alternate exits to be taken, an exit statement is required. 

SYNTAX 

entry-statement ::= name 6. entry «parameter-declaration) I nothing> 

exit-statement ::= exit 

Examples: 

SEC entry (A, B) 

THIRD. entry (C) 

exit 

5.2 FUNCTION SUBROUTINES 

Function subroutines are defined by declaration and invoked by functions. Function 

declarations are very similar to procedure declarations, except that a function 

may have parameters preceeding the function name, a function has only one result 

parameter, a value parameter designated by the function name and declared in the 

function heading, to which a value may be assigned by an abbreviated assignment 

statement. 

SYNTAX 

function-declaration .. = function~heading 6. <nothing I parameter-declaration­

string> 6 <= 6. formula I complex-statement I compound­

statement> 

function-heading ::= function 6 <nothing I formal-parameter' (formal­

parameter-string» 6. name of-function /). <nothing I 
formal-parameter I (formal-parameter-string» 6 <item­

description I array-description , group-description> 6 

<nothing I recursive I reentrant> 
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Note: The (complex) statement in a function declaration may not be a chronic 

statement. 

-Examples: 

function RANDOM. real reentrant begin 

function F. (A,B) integer recursive 

The rules governing procedure declarations also apply to function declarations. 

In addition, for a function subroutine to compute a functional value, the 

statement comprising the subroutine body must assign a value to the formal 

result parameter designated by the function name and also, of course, complete 

its operation. 

5.3 RECURSIVE AND REENTRANT SUBROUTINES 

Recursive or reentrant subroutines may be declared in SPL. A recursive subroutine 

is one that, directly or indirectly, invokes itself. A reentrant subroutine is 

one that is compiled into "read-only" code, so that it may be invoked by several 

parallel processes or tasks before it has finished the computation required by 

a previous invocation, without confusing the data associated with the various 

invocations. 

Both recursive and reentrant subroutines must be explicitly declared as such 

in the procedure or function heading. A subroutine may not be both recursive 

and reentrant; in addition, a reentrant subroutine may not involve a 

han-reentrant subroutine. 
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5.4 BUILT-IN FU~CTIONS 

Basic SPL contains a minimum number ot built-in functions. They specify a 

numeric result. 

5.4.1 Trigonometric Function 

The t-rlgonometric function sin, ~, and!!!! specify, for any real scalar 

argumenL x expressed in radians, the sine, cosine, and tangent of x. The arctan 

function specifies, for any real scalar argument x, the arctangent of x in 

radians. 

SYNTAX 

function '. ::= <sin 
of-numer1c-type .£2! I ~ I arctan> 6 numeric-formula 

Example: 

sin (tan_ X) 

Complex arguments of these functions are converted to real mode by disregarding 

their imaginary parts. Nonscalar arguments specify identically-structured 

nonscalar results. 

5.4.2 Absolute Value 

The absolute value function specifies the positive value of an integer or real 

scalar argument, and the positive'magnitude of a complex scalar argument. 

SYNTAX 

function . ::= abs 6 numeric-formula of-numer1c-type 

Example: 

abs (I-J) 

Nonscalar argument.s of the absolu'" I,:'.lue func 1: :Lon specify identically structured 
nonscalar results. 
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5.4.3 Base e Exponential. 

The base e exponential and logarithm functions specify, for any numeric scalar 

argumeni:. x, the values eX and loge x. 

, SYNTAX: 

function' ::- <exp J log.e> A numeric-formula of-numeric-type 

Examples: 

exp X 

log.e (exp X) 

Nonscalar arguments of these func::ions specify identically-structured nonscalar 
results. 

5.4.4 Base 2 and Base 10 Logarithm. 

The base 2 and base 10 logarithm functions specify, for any real scalar argument 

x, the value log2 x and loglO 

SYNTAX: 
,-

function ::- <10g'.2 I, :log.IO> !::. ntnneric-formula of-numeric-type 

Examples: 

!9.,K.2 (2**X) 

!£K .. lO (log. lOX) 

Complex arguments of these functions are converted to real mode by 

disregarding their imaginary parts. Nonscalar Arguments specify 

identically-~,t.ruct_l1red nooscalar results. 
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6. COMMANDS 

Every SPL program is composed of declarations which generally describe the 

for~ of the data to be operated tiponby the program and statements which 

provide the rules for operating upon that data. Commands are an additional 

language features which provide the programmer in SPL additional controls 

in the areas of language definition, editing, debugging, code optimization, 

time and storage control and program execution. Each one of these categories 

is described in the sections that follows. 

Commands permit the programmer to command the compiler to: translate some 

portion of the program according to a defined notational extension; execute 

statements immediately; show (either in typeout or display) any defined data 

element values; direct the compiler for code optimization; calculate time 

required for. code execution for generated inBtructions. 

SYNTAX 

command ::= define-command I execute-command I debug-command I optimization~ 
command I count-command 

6.1 DEBUG COMMAND 

A debug command serves to print or display (either in the listing produced by 

the compiler or on a display) any previously provided (input, entered, or 

. executed) lines of program text, or any defined data element value. 

SYNTAX 

debug-command .. - show /::,. <slmbolic I nothing> location-identifier /::,. <number 

nothing> <thru I nothing> /::,. <location-identifier nothing> 

location-identifier ::= <name I cell/::,. name> 6. <code-name I nothing> 

78 

1 
1 

I 

I 

I 

I 
1 

I 



[ 

( 

(: 

( 

[ 

[ 

I 
[ 

( 

( 

( 

[ 

I ~ .. ~. 
{ 
I 

The symbolic attribute indicates if the display of data is to be in the form 

in which it was declared. The location identifier can be any name defined in 

the program or compool. The number following indicates the number of cells to 

be displayed. The display area can be identified by bracketing with names or 

cell numbers. 

6.2 OPTIMIZATION COMMAND 

The optimization command serves to indicate the type of code optimization pre­

ferred for a portion of the program. The SPL user has some control over the 

type of code optimization which will be in effect during the compilation of a 

specified segment of code. 

SYNTAX 

optimization-command ::= optimize ~ <time space none> ~ statement 

The primitive time specifies that the statement which follows, simple or 

compound, is to be optimized for a minimum operating time. The analogous 

capability for space is indicated if the primitive space precedes the compound 

statement. If ~ is specified, this would negate any rearrangement of code 

for optimization. If the optimized command is not specified, the normal 

optimization alogrithm is used (one which appears optimum for a majority of 

cases). 

6.3 COUNT COMMA1~ 

The count command serves to indicate the execution time for a sequence of 

code. The statement, whether simple or compound, following a count command is 

operated with data values declared in the data declarations and the amount of 

execution time recorded for output. 

SYNTAX 

count-conunand ::= count 6. ~ IJ. <statement I declaration> 
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6.4 DEFINE COMMAND 

SPL is an extendable language. Not only may subroutines be defined to extend 

the language's computational capabilities, but notational extensions may be 

defined for any other statement or declaration format that is required. These 

extensions may range from the definition of simple synonyms and abbreviations, 

to the definition of complicated new data structures and the operations on 

them. 

Indeed, with the subroutine definition capability described in SPL and 

the notational definition capability described here, it is likely that, in 

any implementation of SPL, a great many of its features will be implemented 

either as built-in subroutines, or built-in notation definitions, leaving 

only a relatively simple language ke.rnel for the compiler to implement. 

A notational extension is given in a define command and is applied to the 

source program text prior to compilation. A define command in effect, 

serves to translate some new language form into an equivalent SPL representa­

tion. This translation is done at the source level in what effectively is a 

pre-pass over the source language statements if the define command capability 

is specified by the SPL user .. 

The define command may be followed by a series of definition rules which 

apply to the program which follows them, or it may simply specify the name 

of a set of rules, previously defined, which are brought in by the system 

from the library and similarly applied. 

Notational Definitions can be thought of as having two parts. The first half 

of the define command begins with the word where and describes the code to be 

sought out of the source program code for translation into SPL. The second 

half of the define command begins with the word then and describes the 

equivalent SPL code for the non-SPL form. 
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SYNTAX. 

define-command ::= <name. I nothing> ~ where ~ definition ~ then ~ translation 6 

<end I define-command-string> 

definition ::= textual-formula I term I textual-pattern not 

6 definition I definition ~ < or I and > 6 definition 

define-command-string : := begin 6 define-command <nothing I define-command> 6 end 

pattern-declaration .. - pattern ~ name ~ definition 
of-pattern 

define-command-call . . - define ~ name . 
of-deflne-command 

textual-pattern :: = pattern < (textual-constant) r (tern) I (name-of-pattern) > 

translation :: = declaration Istatement Icommand 

term .. character I letter I digit I name I null I constant I 

Examples: 

simple-statement I compound-statement 

array-declaration I group-declarati~n 

variable I hardware-operand I formula 

lOA. where 'z' then 'P**2-P+expP' end 

comment I item-declaration 

storage-declaration 

ASIGN. where '=' variable',' constant '+' variable then variable (1) '=' 

constant '+' variable (2) end 

\ 
Note: The term null denotes an empty ,text--the character string of length zero. 
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FOR. begin where 'DO' pattern GEO. (statemeEt-~) variable',' '=' variable 

',' nothing.2!. variable then tFOR' variable (1) '=' variable (2) 'BY' if 

variable (4) then variable (4) else '1' ',' variable (3) where statement­

label and GEO statement then GEO statement 'END' end 

In the first example a substitution is made for 'z' and in the second example 

an assignment statement of a non-SPL form is mapped into the SPL assignment 

statement form. In the last example, a" FORTRAN "DO" statement is transformed 

into an SPL "FOR" statement. 

A define command may employ just a definition (which may itself be composed of 

a series of elementary definitions) or, for more elaborate notational extensions, 

it may employ a definition string, which may contain declarations and other 

definitions. A definition may contain pattern ~eclarations. 
j 

A textual pattern may be specified by enclosing a textual constant or a term in 

parenthesis. Enclosing a single term indicates the textual pattern 
i 

represented by the term is being defined as a pattern. The elements of a 

pattern, then, are alphanumeric textual formulas (and in particular, alphanumeric 

constants), terms (which are the names used in this report to identify the 

textual patterns of SPL), and the names of declared patterns. 

The logical operators and, £Ej and not may also be used in specifying patterns, 

where they have the set-theory meanings of intersection, union, and complementa­

tion. Thus, A and B specifies any pattern that is at once both an A pattern 

and a B pattern. A ~B specifies any pattern that is either an A pattern or a 

B pattern. And not A specifies any pattern except an A pattern. 

A define command may involve a definition string that exists only at compile 

time. The declarations in a definition string establish patterns, data elements, 

subroutines files, etc. that exist only at compile time--they may not be referenced 
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by the program at execution time. In addition, the names thus declared are 

defined only for the definition string in which they are declared--and for any 

definitions or definition strings appearing within the program text that is 

affected by the define command containing this definition string. 

The most general case is shown below: 

where begin
l 

A .••• 

where ••• A ..• B •••• 

where
3 

... A ..• B. .•• c. ... end
l 

The first define command applies to and contains the next (define) command, 

which applies to and contains the following statement, which in turn contains 

a define command. Anything, for example, A, declared in the first definition 

string may be referenced in any definition or definition string between begin
l 

and end i . 

It must also be noted that definitions may contain compound statements, which 

may naturally contain other declarations. These also establish compile time 

entities, whose names are defined for the compound statement containing their 

declarations. 

A definition in a define command specifies an alphanumeric textual pattern and 

indicates some action to be taken by the compiler whenever it encounters that 

pattern in the program text to which the define command applies. This action 

may be just a replacement of the encountered matching text by the value of a 

textual formula, or it may be a more complicated action, as specified by a 

compound statement, which is executed when the elementary definition is applied. 
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When used as a textual variable i.n the textual formula 'or compound statement of 

an elementary or single element defil)ition, a pattern name or term refers to the 

program text to which the define command containing the elementary definition 

applies'. Specifically, for each application of an elementary definition, any 

term or pattern name it establishes as a textual variable will designate the matching 

part (or parts) of that segment of the statement, or declaration that matches the 

pattern given in the elementary definition. 

The pertinent rules in applying notational definitions are described in the 

following rules: 

Rule 1. Where define commands are nested within begin and end brackets, the 

first define command is applied first, and subsequent nested define 

commands are applied to text immediately following the symbol of the 

preceding define conrrnand. 

Rule 2. In applying a define command, its definitions are repeatedly applied, 

in the order given, to the entire program text to which the define 

command app1ies--unti1 they are no longer applicable. 
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definition 
C3 apply 

anywhere? 

Apply the 

definition 

of Cl 

Apply the 

definition 

of C2 

Apply the 

definition 

of C3 

Rule 3. In any single application of a definition to a program 

text, it is applied to the leftmost part that (1) matches the 

pattern, and (2) is not followed by a part such that the two parts 

together would also match the pattern. 
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6.5 EXECUTE COMMAND 

An execute command may utilize a definition t() identify a set of code which is 

to be replaced by a value which obtained by executing a formula prior to compila­

tion. An execute command serves to provide a capability to compute compile'time 

calculated constants. This capability will serve to reduce the size of the 

stored object program required. The execute command can be thought of as having 

two parts. The first half begins with where and describes the code to be sought 

out of the source program for substitution by the calculated value. The second 

half of the execute command begins with the word execute and can be followed by 

an item declaration, which is only active for the execute command, and a formula. 

execute-command 

Examples: 

SYNTAX 

.. - <name. I nothing> ~ where ~ definition !J. execute ~ item­

declaration ~ formula 

lOB. where 'z' execute ~ P. integer/4 (P**2P)-4P/P 

lOCo where 'A**' '+' 'B' execute item C. integer/7 

item D. integer/16 

C/D d~ (D+l.4) 

An execute command operates at compile time and must result in a single 

value. 
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7. EXTENDED SPL 

An extension to SPL is described heJ:'e--for Mission DevE.:lopment Programming 

and for Support Programming. The defined SPL extension does and any other 

SPL extension should have as their base "basic SPL". Discussions in this 

section will assume the existence of basic SPL. 

7.1 COMPLEX VALUES 

The extended SPL programs may manipulate complex values (i.e., imaginary 

numeric values). Imaginary constants denote numeric values in the 

conventional decimal sense. 

SYNTAX 

numeric-constant ::= imaginary-constant I number I real-constant r binary­

constant I octal-constant decimal-constant I 
hexadecimal-constant 

imaginary-constant . '= <number I real-constant> i 

,t<.xamples: 

2.i 

88i 

Integer numbers and real and imaginary constants denote numeric values in the 

conventional~ decimal sense. 

In extended SP1, a complex item, i.e., one having imaginary parts, may be declared. 

The description of a complex item applies to both the real,and imaginary parts. 
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SYNTAX 

complex-item-description ::= complex 6. number l 6. minimum 6. <bit I digit I 
nothing> 6. <nothing I -> number2 f f . 1 o - ract10na -

r <bit I digit> 6. <nothing I float I or-exponen.., -- ---

7.2 CODE DECLARATIONS 

fixed> 6. <nothing 

round I truncate> 

signed unsigned> 6. <nothingj 

A code declaration serves to name and define a coded alphabet. To each character 

in a declared alphabet corresponds a machine-language code, denoted in the 

declaration (according to the rules of the assignment statement) by a number or 

by a textual constant from another alphabet, or deduced by the mechanism of 

Note b, following. The code string in the declaration establishes these 

correspondences. In a code declaration, the code name identifies the alphabet 

being declared. The code size is indicated in number of bits, digits, or 

characters per character. The right or left descriptor indicates whether shorter 

character strings are to be right or left justified in relation to longer 

strings.* This indication may be omitted if the character strings used are 

such that justification is never required. 

SYNTAX 

code-declaration ::= ~ ~ name f d ~ code-description o -co e 

code-description' ,= <nothing I code-string> ~ number ~.<bit I digit I character> 

~ <nothing I left I right> 

* Binary, octal, decimal, and hexadecimal texts are right-justified; 

'alphanumeric texts are left-justified. 
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code-string -'textual-constant ~ <nothing I i! code> ~ <nothing I 
code-string> 

code 

Notes: 

a. 

b. 

c. 

d. 

e. 

number , textual-constant 

Each textual constant in a code string that is not serving as a code is 

understood to contain only one character of the alphabet being declared. 

The different characters must be uniquely represented. 

A code may be omitted if the "natural successor" to the previous code 

is meant, or if zero is meant when there is no previous code. (The 

natural successor to a textual constant may be derived by replacing 

its last character with the next character in the collating sequence of 

the alphabet from which the textual constant is constructed; or, if the 

constant's last character is also the last character of the alphabet, by 

replacing it with the first character in the alphabet and then replacing 

the constant's next-to-last character, and so on. 

It is not necessary for each code in a code string to be different; 

many-to-one codings are often quite useful. 

It is not necessary for the codes in a code string to be in numeric 

order. Indeed, the collating sequence for a declared alphabet is 

determined, not by the numeric encoding, but by the sequence of 

characters as given in the code string, with the first character 

used as the filler character when justification is required. 

If the code string contains no codes that are textual constants, 

then either the bit descriptor or the digit descriptor is appropriate 
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for specifying the units of code size. If the code string does contain 

a code that is a textual constant, the character descriptor ~Jst be 

used in specifying the units of tode size. Textual constants from more 

than one alphabet may not be used as codes ina code string. 

f. It sometimes cannot be determined from the code declaration alone 

if a space or a conma is intended as a character separator. 

However, this ambiguity can easily be -r:esolved by looking at a 

multi-character textual constant in that alphabet. 

g. The code string may be omitted from a. code description for those 

. alphabets where textual constants are never used in denoting the 

value of textual items with that code. 

Examples: 

code -L. 'A' 'B' 'e' 'D' 'E' 'F' 'G' 'H' 'I' 
'J' 'L' 'M' 'N' '0' 'p' 'Q' 'R' 's' 

'u' 'V' 'W' 'X' 'y' 'g' 5 bit .!tl.t 
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.£.QSk GREEK. is L' / I ALPHA , is L'A' / 'BETA' 

is L'B' / 'GAMMA' is L'G' / 'DELTA' 

is L'D' / 'EPSILON' is LIE' / '~TA' 

is L'l' / 'ETA' is L'EY' / 'THETA ' is 

L'TH' / 'IOTA' is L'I' / 'KAPPA' is 

L'K' / 'LAMBDA' is L'L' / 'MO' is 

LIM' / 'NU' is L'N' / 'XI' is L'X' / 

'OMICRON' is L'O' / 'PI' is L'p' / 

'RHO' is L'-RH' / 'SIGMA' is L'S' / 

'TAU' is L'T' / 'UPSILON' is L'U' / 

'PHI' is L'PH' / 'CHI' is L'CH' / 

'PSI' is L'PS' / 'OMEGA ' is L'OH' 

2 character left 

code DIRECTION. 'NORTH I 'SOUTH' 'EAST' 'WEST' 2 bit 

code COIN. 

code WORD. 

'PENNY' is 1, 'NICKEL' is 5, 'DIME' is 10, 'QUARTER' is 

25, 'HALF' is 50, 'DOLLAR' is 100, 3 digit 

36 bit 
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7.3 LIST DECLARATIONS 

Lists are collections of similar data elements--items, arrays, or groups--that 

are linked together in memory by pointer items. A list may have several pointer 

items linking its elements together in several separate sequences. Several 

different but similarly described lists may be declared at once. 

SYNTAX 

list-declaration ::= list 6 name-string 6 list-description 

list-description "= full-list~description 

full~list-description ::= <item-description I array-description I group­

description> ~ name-string 

Examples: 

list AFTER. array PLACE. real 3 

list Q. integer M. 

list LAST. 

The name' string in the list description serves to declare the pointer items 

that link the list elements together. 

Abbreviated descriptions are possible for lists, according to the declared mode 

declaration. 

7.4 LIST PROCESSING STATEMENTS 

The list processing statements in extended SPL provide a rudimentary but basically 

adequate capability for list processing. List processing statements are 

available for referencing, linking, and freeing elements of lists. 
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SYNTAX 

list-processing-statement ::= reference-statement I link-statement I 
free-statement 

1.4.1 Rererence Statements 
• n d ·d t· " A reference statement places an ele~ent of a llstun er conSl era lon, so 

that is--and its components and associated pointers--may be subsequently 

designated ~<J:~.thout being exnlIcitiy located. 

SYNTAX 

reference-statement ::= ~ 61ist-element-reference 

list-element-reference .. - nameof-list 6 <nothing I ~6 pointer-formula> 

NOTE: a. 

b. 

A list element may be located anywhere, as specified by an arbitrary 

(scalar) pointer formula (see Section 8.2.4 on located variables). 

However, a list element that has been automatically linked into a 

list, by a link statement, nay be reliably referenced, after the 

execution of another link statement, not necessarily for the same 

list or in the same process, only by one of the list's pointers, 

since such list elements are subject to automatic reallocation of 

storage and concomittant adjustment of linkages by a built-in 

routine, usually called a "garbage collector", which may be 

automatically called during th~ execution of a link statement. 

Where a pointer formula is omitted in a list-element reference , 
the element currently under consideration is assumed. 
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Examples: 

see LETTER I 

see WORD at NEXT-WORD -- --
see SYMBOL at cell sub Q 

see SYMBOL at null ---

Although several lists may each have an element under consideration at once, 

no more than one element in any single list can be considered at any given 

time--regardless of how many processes are active--and unless a pointer value 

locating another list element is explicitly specified, defined references to 

data in a list element including points, pertain to the element currerltly 

under consideration. 

A new element in a list may be considered by another execution of a reference 

statement. By giving the name of a list and the name of a pointer, for example, 

the programmer may place under consideration with a reference statement either 

the first or the next element in the list according to that pOinter,* depending 

on whether or not an element in that list was previously under consideration. 

(When no element is under consideration for a list, its pointers each designate 

the location of the first element, if any, (or the null pointer value if none), 

in the corresponding element sequences they link.) 

A list element can be removed from consideration by the execution of a reference 

statement where~n the pointer formula specifies the null pointer value. 

* Note that a list element may have several pointers associated with it, so 
that it may have as many (or fewer) successors. 
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For lists with only one pointer, the pointer formula may be omitted from a 

reference statement, with the name of the lone pointer being assumed. With 

the list, LETTER. 1 character text NEXT.ELEMENT. list, for example, ~ 

LETTER = see LETTER at NEXT. ELEMENT. 

7.4.2 Link Statements 

A link statement serves to allocate storage for a new list element, and 

to link it into the list aR a successor to other elements in the list. A 

link statement may also serve to dynamically allocate storage for an item, 

an array, or a group. 

SYNTAX 

link-statement : := link 6 <linkage-set I name > 
of-item-array-or-group 

linkage-set ::= linkage D <nothing I linkage-set> 

linkage ::= <nothing I pointer-set 6 from> 61ist-element-reference 

pointer-set ::= name f. 6 <nothing I pointer-set> o ":'polnter 

Notes: a. A linkage set will ordinarily reference only one list, but 

may reference several identically-declared lists to permit 

inter-list linkages. 

b. 

c. 

The pointers in a pointer set must all belong to the list 

named in the list-element reference in the linkage. Moreover, 

a pointer should' not be named in a pointer set more than once. 

A pointer need not be named in a linkage for a list with only 

one pointer. 
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Examples: 

link LETTER 

link NEXT.ELEMENT from LETTER 

link NEXT.ELEMENT from LETTER at NEXT.ELEMENT 

link PREVIOUS. WORD from WORD at NEXT.WORD, NEXT.WORD from WORD 

A link statement containing a linkage set allocates storage for a single list 

element and its pointers,* and links that element into the list~ as indicated 

by the set of linkages. Each linkage references a single list element as 

predecessor for the new element and, by naming the, pointers, indicates the 

sequences in which the new element is to be the successor of the referenced 

element. Several linkages in a link statement should specify several pre­

decessors for the new element; the actual linking, though,is done in the order 

in which the linkages are written. 

For each linkage, a link statement will assign the named pointers in the new 

element the values of those same pointers in the predecessor element, and 

then assign the named pointers in the predecessor element the pointer value 

of the new element. Consequently, the named pointers in the predecessor 

element will point to the new element, and the named pointers in the new 

element will point to the predecessor element's previous successors (for those 

pointers). 

The mechanics of establishing a linkage are perhaps best explained with an 

illustrated example. Consider the following list, ELEMENT. begin 

P2.P3. p4. PS. list, where the element at cell X is shown below: 

Predecessor 
list element 
at cell.X 

end Pl. 

'~When necessary, a link statement may automatically invoke "garbage collection." 
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Till .. I:iltualJon after the execution of the link statement link PI, P2, P3 from 

ELEMENT at CELL.X, is shown next: 

Predecessor 
list element 
at cell.X 

New list 
element at 
cell.Y 

The example shows that pointers not named in a link statement are assigned the 

null pointer value. Of equal importance though, is the fact that none of the 

components of a newly allocated and linked list element have defined values 

until these values are later assigned. 

As in the reference statement, if no pointer-formula is given in a list-element 

reference in a linkage, the element currently under consideration is assumed. 

And if no element is currently under consideration for the list, then the 

newly linked element becomes the first element in the list--at least for 

the named pointers. 

The execution of a link statement does not affect which list element (if any) 

is currently being considered. 

The link statement may be applied to other data elements besides lists, i.e., 

items, groups, and arrays. When this is done, the data element is considered 

as a pointerless, zero- or one-element list, and linking accomplishes the 

dynamic allocation of storage for that element. Where storage is already 

allocated, however, a link statement has no effect. 
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7.4.3 Free Statements 

A free statement serves to unlink one or more elements from one or more sequences 

. in a list, perhaps deleting some elements from the list entirely, thus freeing 

their storage for later reallocation. A free statement may also serve to dynamictll1v 

free storage for an item, an array, or a group. 

SYNTAX 

free-statement : : = free Do <linkage~set I name . > 
of-1tem-array-or-group 

Examples: 

free LETTER 

free NEXT. ELEMENT from LETTER 

free NEXT. ELEMENT from LETTER ~ NEXT. ELEMENT 

~ NEXT.WORD from WORD, PREVIOUS.WORD from WORD i!.!. NEXT.WORD 

A free statement may contain a linkage set, indicating which of the list's 

linkages are to be unlinked. Each linkage in such a f~ee statement contains 

a reference to a single list elem~nt, which is the predecessor to the one or 

more successor elements that are to be freed (unlinked) from the predecessor 

element. These successor elements are specified by the values in the 

predecessor element of the pointers named in the linkage's pointer set. 

Unlinking occurs as follows. Each successor element is specified by a pointer 

in the predecessor element. The value of that same pointer in the successor 

element is assigned as the pointer's value in the predecessor element, and the 

pointer in the successor element is assigned the null pointer value. This is 

done for each successor element in the linka~e, and then for each linkage in 

the free statement, in the order written. T~e result is that the named 

pointers in the referenced predecessor elements now point to the successors 

of the successor elements they previously specified. Again, an illustrated 

example is probably helpful. Consider then the next situation. 
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Predecessor 
list element 
at cell.X 

Successor 
list element 
at cell.Y 

Successor 
list element 
at cell.E 

PI P2 

PI P2 

P3 P4 P5 

P3 p4 P5 

The situation after the execution of the free statement, free P2, P3, P5 from 

ELEMENT at CELL.X, is shown next. 

Predecessor 
list element 
at cell.X 

List element 
at cell.Y 

I List element 
at cell.E 

PI P2 

PI P2 

P3 P4 P5 

P3 P4 P5 

blil 
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As in the reference and link statements, if no pointer-formula is given in a 

list-element reference in a linkage, the element currently under consideration 

for the list is assumed. And if no element is currently under consideration 

for the list, then the unlinked elements are the first in their respective 

sequences. 

The execution of a free statement does not affect which list element (if any) 

is currently being considered. 

The free statement may be applied to other data elements besides lists, i.e., 

items, groups, and arrays. When this is done, the data element is considered 

as a pointerless, zero- or one-element list, and freeing accomplishes the 

dynamic freeing of storage for that element. Where no storage is allocated, 

however, the free statement has no effect. 

7.5 ENCODING AND DECODING 

Encoding and decoding are conversion operations ordinarily used in extended SPL 

in conjunction with reading and writing externally formatted record. Nevertheless, 

these operations are useful for converting other texts besides records, and even 

for conversions where neither operand is textual. 

The encode and decode statements both have the same three parts: a (nominally) 

textual operand; a (nominally) nontextual operand; and a format, composed of 

conversion procedure calls that may be grouped by parentheses and unconditionally, 

'conditionally and repetitively catenated. 
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SYNTAX 

encode-decode-statement ::= <encode I decode> D. variable 6 = D. formula 6 E.Y D. 

format 

format ~:= conversion-procedure-call I (6 format D.) I catenated-format I 
repeated-format I conditional-format 

conversion-procedure-call ::= name D. <nothing I actual-parameter I of-procedure 
( I::. actual-parameter-string D. ) > 

catenated-format ::= format D. <nothing I catenation-operator> 6 format 

repeated-format ::= format D. <nothing I catenation-operator> I::. (I::. repetition­

clause 6) 

conditional-format ::= closed-conditional-format I open-conditional-format 

closed-conditional-format ::= if 6 condition I::. thenD. format
l 

I::. else I::. format
2 

open-conditional-format ::= if I::. condition I::. then I::. <format
3 

I open-conditional­

format I D. else D. format 4> 

Notes: a. The discussion of encode and decode statements is based on the 

assumption that the variable in an encode statement and the 

formula in a decode statement are both textual in type. This 

need not generally be so, and the syntactically indicated 

extension to more general operands should be obvious. 

b. Format3 may be any format. Format l , format 2 , and format 4 may 

be of any format but an open conditional format. 

The encode statement converts the value specified by a (nominally) nontextual 

formula, assigning the results as the value designated by a (nominally textual) 

variable. The encode statement works by invoking, in turn, each individual 

conversion procedure from the format, first automatically providing it with its 

major, actual parameters. (Any minor parameters must be supplied in the 

conversion procedure call.) 
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A conversion procedure in an encode statement may have several, minor argument 

parameters, but it has two major result parameters--an expression parameter, 

which is the (nominally textual) variable itself, and another expression 

parameter, which is an index variable designating the origin within this 

variable that is to receive the results of the conversion--and it mayor 

may not have a major argument parameter.* If it does, it will be either a 

value or an expression parameter specifying some part of the formula's value, 

to be converted. 

The segmentation of the formula's value into a sequence of actual major argument 

parameters for the format-specified sequence of conversion-procedure invocations, 

is done according to the rules given on repeated statements. 

That is, where C is the formal major argument parameter of the conversion 

procedure being invoked, and A is the remaining, unconverted part of the formula, 

of dimension equal to or greater than C, the part of A that is to be the actual 

parameter corresponding to C is: A sub «if (*) C size.8!. 1 then «1 (C size 

size times» to C size», 1). 

Where a catenation operator is encountered in an encode format, the effect is 

to pad the variable, where necessary, with the appropriate filler character, 

and to increment by one the corresponding dLaension of the actual index 

parameter (which gives the origin within the variable for the results of the 

next conversion) and to reset its lower dimensions to one. Where, for example, 

*A conversion procedure in an encode statement that merely inserts punctuation 
or control characters into the variable, may not require a major argument 
parameter. 
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the variable is a three-dimension textual operand (whose dim~nsions correspond 

to (1) characters in a line, (2) lines in a page, and (3) pages in a report), 

then the row catenation operator has the effect 6f inserting a single 

filler character in the variable and incremeuting the character dimension of 

the index parameter by one; the II catenation operator has the effect of padding 

the remainder of the line with filler characters, incrementing the line 

dimension of the index parameter by one and resetting the character dimension 

to one; and the III catenation operator has the effect of padding the remainder 

of the page with filler characters, incrementing the page dimension of the 

index parameter by one, and resetting both the character and the line dimension 

to one. 

In summary, then, an encode statement invokes each individual conversion proce­

dure in turn from the format, and where the conversion procedure has a major 

argument parameter, supplies it with the next unconverted portion of the value 

specified by the formula, and then inserts the converted results into the 

variable at the indicated origin. 

The decode statement, on the other hand, also invokes each individual conversion 

procedure in turn from the format. But here, the implicit index parameter 

applies not to the variable, but to the formula. 

A decode statement, then,converts the value specified by a (nominally textual 

formula), assigning the results as the value designated by a (nominally non­

textual) variable. The decode statement invokes each individual conversion 

procedure in turn from the format, first automatically providing it with its 

major, actual parameters. (Any minor parameters must be supplied in the 

conversion procedure call.) 

103 



A conversion procedure in a decode statement may have several, minor argument 

parameters, but it has just one major argument parameter--an expression 

parameter--which is the (nominally textual) formula itself. A decode conversion 

procedure also has at least one major result parameter--an expression parameter-­

which is an index variable designating the origin within the formula of the 

data that is to be converted, 'and it mayor may not have another major result 

parameter ... ·( If it does, it will be €ither a value or an expression parameter 

designating some part of the variable that is to receive the converted resurts. 

The segmentation of the vari'able into a sequence of actual major result 

parameters for the format-specified sequence of conversion-procedure invocations, 

is done according to the segmentation rule already described for the encode 

statement (and for the repeated statement). 

In summary, a decode statement invokes each individual conversion procedure in 

turn from the format, and automatically supplies it with its major actual 

parameters: (1) as an argument, the formula given in the decode statement 

itself; (2) as a result, an implicit index variable designating the origin in 

the formula of the data to be converted; and in most cases (3) as another 

result, the next part of the variable given in the decode statement that is 

to receive the results of the conversion. 

The format in an encode and decode statement gives a sequence of conversion­

procedure calls. These may be grouped by parentheses and unconditionally, 

repetitively, and conditionally catenated. 

,'(A decode conversion procedure that merely interprets punctuation or control 
characters in the formula, may not require another major result parameter. 
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So far as the conversion procedures themselves are concerned, SPL allows for a 

complete set of "built-in" encode and decode procedures for converting 'between, 

on the one hand, alphanumeric texts representing numeric t textual, pointer, 

and Boolean constants, and nonscalar formulas containing only these constants, 

and on the other hand, the internal representations of these as data values. 

The programmer may, of course, declare other conversion procedures in addition 

to those built-in. An encode conversion procedure has at least two formal 

parameters: an expression result parameter 'Nhose corresponding actual parameter 

is the variable given in the encode statement; and an expression result parameter 

whose corresponding actual parameter is the implicit index variable generated 

by the encode statement. Most encode conversion procedures also have at least 

a third formal parameter: an expression or value argument parameter whose 

corresponding actual parameter, automatically supplied by the encode statement, 

is (or specifies) some portion of the value that is specified by the formula 

given in the encode statement. These are the major parameters of an encode 

conversion procedure. 

A decode conversion procedure also has at least two formal parameters: an 

expression argument parameter whose corresponding actual parameter is the 

formula given in the decode statement; and an e~pression result parameter whose 

corresponding actual parameter is the implicit index variable generated by the 

decode statement. Most decode conversion procedures also have at least a third 

formal parameter: an expression or value result parameter whose corresponding 

actual parameter, automatically supplied by the decode statement, is (or 

designates) some portion of the variable given in the decode statement. These 

are the major parameters of a decode conversion procedure. 
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Conversion procedures may also be declared with additional, so-called minor 

parameters: argument or result parameters; value, expression or name 

parameters. Any minor parameters must precede the major parameters in the formal 

parameter string, however. 

When a conversion procedure is invoked by an encode or decode statement, the 

actual, major parameters are omitted from the conversion procedure call, since 

these are supplied automatically by the encode or decode statement. Any actual 

minor parameters must, however, be supplied. 

A conversion procedure may also be invoked, however, outside an encode or 

decode statement, by a procedure call statement. And in this case, all actual 

parameters, both major and minor, must be explicitly supplied. Conversion 

procedures may, of course, invoke other conversion procedures, either directly, 

or by encode and decode statements. The only· restriction on the computation 

done by a conversion procedure is that it must update the implicit index 

variable generated by the encode or decode statement so that, on completion, 

it designates the origin for the next conversion. 

7.6 ALGEBRAIC FORMULA MANIPULATION 

In SPL, algebraic variables may be declared, and algebraic formulas may be 

symbolically manipulated, and where they are equivalent to defined numeric 

formulas, evaluated. An algebraic variable or formula is represented as a 

tree-like list of elements, any of which may be an algebraic variable or 

formula or an alphanumeric text, representing an algebraic operator, a 

numeric constant, or an atomic operand. Actually, all algebraic variables 

and formulas declared and specified in a program are represented in a single 

list. Where AFl, AF2, ••. , AFn are the declared algebraic variables, this 

list might be declared as follows: 
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ALGEBRAIC. FORMULA. LIST. 

begin 

L. integer 

ATOM. L character text 

OPe L character text 

store ATOM/OP 

ATOMIC. Boolean 

end 

T.AFI. T.AF2. T.AFn. 

N.AFI. N.AF2. N.AFn. 

list 

In the above algebraic formula list, N.AFi points to the next element of AFi. 

If the current element of AFi is an alphanumeric text, then L ~ 0 and T.AFi 

~ null, and the Boolean item ATOMIC indicates whether the text represent an 

atomic operand, or an algebraic operator or numeric constant. On the other 

hand, if the current element of AFi is an algebraic variable or formula, then 

L ~ 0, and T.AFi points to this element of T.AFi. Any given implementation 

of this algebraic formula manipulation capability may include additional 

pointers and items to simplify processing. i~ The programmer who wants to 

construct his own, special-purpose manipulation procedures, however, may 

reference those given above. 
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An alphanumeric text as an element of an algebraic f:>rmulR may represent: 

a defined numeric formula specifying a numeric valuf.; an undefined numeric 

formula--actually, any sign-string; a numeric constant; or an algebraic 

operator. In this context, a defined numeric formul.a is one whose operands 

are all either numeric constants, declared numeric items or arrays, or 

numeric-valued functions. Whether defined or undefined, though,the algebraic 

formula manipulation operations in SPL treat numeric-formula text as atomic 

operands; that is, the operations do not apply to the components of the 

numeric formulas. A numeric formula may be represented as an algebraic 

formula where it is desired to manipulate it algebraically. 

Algebraic variables and arrays of algebraic variables may be declared (though 

only scalar algebraic formulas are manipulated), and algebraic formulas may 

be assigned to algebraic variables. In addition, a variety of built-in 

functions take algebraic arguments and pro4uce numeric, textual, and Boolean 

as well as algebraic results. Algebraic functions and procedures may also 

be declared by the programmer, wherein the formal parameters corresponding 

to actual algebraic parameters are formal name parameters.** 

*In particular, pointers for an algebraic "accumulator" may be included. 

**rhis is already adequately accommodated by the subroutine capability 
described in Section 9, so no more need be said about it here. 
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SYNTAX 

algebraic-declaration ::= name-string 6 algebraic 6 <nothing I dimension-string 

6 array> 

algebraic-variable 

algebraic-formula 

::= name fIb' . bi D <nothing I sub I o -a ge ralc-varla e 

6 index-string> 

::= numeric-constant I algebraic-variable I atomic-operand I 
(~ algebraic-forrrula~) I <- I + > 6 algebraic-formula 

algebraic-formula ~ <- I + I * I I I ** I rem> 

~ algebraic-formula I<abs I floor I ceiling I exp I log.e 

1£&.2 I 1£&.10 I sin I ~ I ~ I arctan I cosh I $inh I 

tanh> 6 algebraic-formula I<min I max > D (6 algebraic­

formula-string 6) 

algebraic-formula-string ::= algebraic-formula D <nothing 1 algebraic-formula> 

atomic-operand-string ::= atomic-operand D <nothing atomic-operand-string> 

atomic-operand ::= 'numeric-formula' I 'sign-string' textual-formula 

algebraic-assignment-statement ::= <nothing I let> 6 algebraic-variable 

6 = 6 <algebraic-formula 

function . > 
of-algebralc-type 

algebraic-operator ::= (./) I + ··1 - I * ** I / I abs I floor I 
ceiling I ~ I exp I log.e I 1£&.2 I 1£&.10 I sin 

~ I tan I arctan I cosh I tanh I sinh I min I max 
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Notes: 

a. The index string in a subscripted algebraic variable must specify 

a scalar algebraic variable. 

b. A numeric-formula text as an atomic operand in an algebraic 

formula should probably--but not necessarily--specify a scalar 

value, since algebraic formula manipulations are done as if on 

scalar values, and in some cases these manipulations are not 

mathematically valid for nonscalar operands. 

c. A numeric-formula text as an atomic operand in an algebraic 

formula should contain no textual constants--eitheras numeric 

operands or as argumertts to numeric functions. 

d. A sign string (nominally representing an undefined numeric formula) 

as an atomic operand in an algebraic formula, must not contain the 

I sign. 

e. Numeric constants and algebraic operators, though represented as 

alphanumeric texts in the algebraic formula list, are'not written 

in an algebraic formula as textual constants. 

f. The statement prefix let is a "noise" word and may be omitted, though 

it improves readability in certain contexts. 

, g. Algebraic functions are not permissible elements of algebraic formulas, 

contrary to what might be expected, since they involve algebraic 

manipulations. 
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Examples: 

array N A. B. C. algebraic 

D. algebraic 

let D = A sub I - (D-.'d(2 + B sub Ilc sub I) 

let A sub I = 'ALPHA sub I' * 'THIS OPERAND SHOULD FACTOR OUT' 

let C sub 8 expand D 

e sub K = 27 

An algebraic declaration serves to declare one or more algebraic variables. 

In addition, each algebraic variable is given an initial, atomic value: an 

undefined text typographically identical to the algebraic variable used to 

designate the value. Thus, D has the initial value 'D', e sub 1 has the 

initial value 'e sub l' and so on. 

The algebraic operators are quite analogous to the arithmetic operators 

and numeric func~ions they typographically resemble. Nevertheless, they 

do not automatically invoke numeric operations--or algebraic operations 

for that matter--since they are basically just textual symbols in a 

symbolic formula. 

The algebraic assignment statement operates in a straightforward way, as 

if by linking the elements of the algebraic formula toge·ther in some 

algebraic accumulator, freeing the elements of the algebraic variable, and 

then linking to it the elements in the algebraic accummulator, or by first 

doing the manipulations specified by the algebraic function, and then using 

the results as an algebraic formula for assignment. 
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7 .6.1. The Evaluation Function 

The evaluate function takes an algebraic formula as argument--one containing 

no undefined atomic elements--and converts it to a numeric value by first 

evaluating the atomic elements and then evalllating the resulting formula by 

considering the algebraic operators as arithmetic operators and numeric 

functions. 

SYNTAX 

function . ::= eval 6 algebraic-formula 
of-numer~c-type 

Examples: 

eval D 

eval (A sub I - (D*,;~2+B sub llc sub I)) 

The result of evaluating an algebraic formula with undefined atomic elements 

is undefined. The result of evaluating an algebraic formula with defined but 

nonscalar atomic elements is, in general, nonscalar. 

7.6.2 The Represent Function 

The represent function takes an algebraic formula as argument and converts it 

to an alphanumeric textual value--an equivalent algebraic formula containing 

no non-atomic operands (i.e., no algebraic variables). 

SYNTAX 

function .. = rep 6, algebraic-formula 
of-textual-type 

Examples: 

* rep D = (initially) 'D' 

rep (A sub I - (D ** 2 + 'Q' * B sub I)) 

*Before any assignments to D. 
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7.6.3 The Defined Function 

The defined function takes an algebraic formula as argument and produces a 

sc.;:tlar Boolean value as result: true if the algebraic formula contains no 

undefined atomic elements; false if it does. 

SYNTAX 

function 00= algebraic-formula 6 defined of-Boolean-type 

Examples: 

'Q' defined 

D defined 

(A sub I -(D * 2 + 'Q' * B sub I» defined 

7.6.4 The Identity Function 

The identity function takes a pair of algebraic formulas as arguments and 

produces a scalar Boolean value as result: true if the two formulas are 

found to be identical or mathematically equivalent; false otherwise.* 

functionof_Boolean_type ::= algebraic-formula 6 ident h. algebraic-formula 

Examples: 

D ident 27 

C sub 1 ident (D "i'('k 2 + 'Q' "k D) 

"i'(This, of course, is not a sure test, since only the more conunon equivalences 
are employed. Another good procedure here is to evaluate the two formulas 
for a range of values and compare the results. 
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7.6.5 The Approximate Function 

The approximate function takes as its atguments a pair of algebraic formulas 

and a scalar numeric formula specifying a tolerance value, and produces a scalar 

Boolean value as result: true if ,the two formulas are found to be approximately 

identical or mathematically equivalent; fal~ otherwise. 

SYNTAX 

function .. - algebraic- formula /:), anprox 'l\ «numeric-formula I of-Boolean-type ~ 

algebraic-formula» 

Examples: 

D approx (1~-4) 'Q') 

(27*'Q') approx (28, 'Q') - ~ 

The approximate comparison is performed in almost exactly the same way as' 

the identity comparison, and using the same equivalences, except that two 

algebraic formulas are apnroximate if matching terms in each have constant 

coefficients that do not differ by an amount whose absolute value is greater 

than the absolute value of the tolerance value. 

7.6.6 The Reduce Function 

The reduce function takes as its arguments an algebraic formula and a binary 

textual formula, specifying a 22-bit binary text with a special meaning: each 

bit of the text corresponds to an algebraic operator, and a zero bit means the 

corresponding algebraic operation is to be reduced while a one bit means the 

corresponding algebraic operation is not to be reduced. The reduce function 

produces a "simplified" algebraic formula. However, only the indicated algebraic 

operations are employed in arriving at this simplified result the others 

are "not reduced." 
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function .~ 
oI-algebraic-type 

Examples: 

reduce (D, null) 

SYNTAX 

reduce c., (algebraic-formula D. textual formula) 

redu~ CD -Id~ 2 + 'Q' ~'. D, bit '1000100110110110111110') 

The reduce function operates as' follows: 

a. 

b. 

c. 

7.6.7 

all defined atomic operands are evaluated. 

where their operands have been numerically evaluated, 

all indicated algebraic operations (except those 

specified as not to be reduced) are numerically performed. 

like terms and factors are combined. ' 

The Expand Function 

The expand function takes an algebraic formula as argument and removes the 

parentheses from it by applying the distributive law and/or the multinomial 

theorem, thus producing as a result, an "expanded" algebraic formula. 

SYNTAX 

function . 
of-algebra~c type 

- expand 6 algebraic-formula 

Examples: 

expand D 

expand (B sub I * 'if T then 0 else Q') 
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7.6.8 The Coefficient Function 

The coefficient function takes a pair of algebraic formulas as its arguments, 

and the result is an algebr~ic formula that is the coefficient of the second 

argument as it appears within the first argument. 

SYNTAX 

function . 
of-algebra~c-type 

. -= algebraic-formula
l 

6 coeff 6 algebraic-formul?2 

Examples: 

D coeff 'Q' 

( 'Q' "k 'X I -:d~ 2 + 'p I 'i'c I X' -!d( 3) £2.e f f (' X' 'ib'( 2) _ (I Q' + I p' 'i'c ' X ' ) 

Where the second argument is not an element of the first, the result of the 

coefficient function is, of course, zero. 

7.6.9 The Differentiation Function 

The differentiation function takes the (full or partial) derivative of an 

algebraic formula with respect to one or more other algebraic formulas. The 

result is an algebraic formula. 

To permit differentiation where functional relationships among atomic operands 

are not explicitly given (at least in terms of the operations and functions 

allowed in an algebraic formula), implicit dependence relationships among 
, 

atomic operands may be given as an adjunct to the differentiation function. 
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SYNTM· 

function .. ::= algebraic-formula 6 deriy 6 <algebraic-formula 
of-algebra~c-type 

I (algebraic-formula-string» <nothing 

(where 6 dependencies» 

d·ependencies ::= atomic-operand 6 is 6 i (6 atornic-operand-string 6. ) 

& <nothing I dependencies> 

Examples: 

D deriv 'Q' 

D deriv (ry sub 1', 'y sub 2', 'y sub 3') 

(where 'x' is i ('y sub 1', 'y sub 3') 

The differentiation function works as follows: the derivative of the algebraic 

formula preceeding deriv is first taken with respect to the first algebraic 

formula following deriv, then the derivative of the resulting formula is taken 

with respect to the second algebraic formula following deriv (if any), and 

so on. Where dependencies among atomic operands are specified for a differentiation, 

the atomic operand preceeding is depends on (is some unspecified function of) 

the atomic operand or operands within the i (and) brackets. 

Certain of the algebraic operators are not differentiable, and thus care 

should be exercised in differentiating an algebraic formula containing them. 
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7.7 INTERACTIVE PROGRAMMING 

Interactive, on-line programming is possible in extended SPL with an interpreter 

incremental (line-at-a-time) compiler running. on a time shared computer. The 

commands used to control the on-line compilation and execution of a program 

are also useful in controlling program compilation and execution off-line, and 

the results are completely similar, except for the lack of quick interaction. 

Each statement, declaration, and command input or entered is immediately checked 

by the compiler for formal errors and, to some limited extent, for logical 

errors. Diagnostics or warnings are: automatically incorporated in the program 

listing immediately after the line causing them (but without a line number). 

These should emphasize intelligibility, yet be reasonably brief. Should a 

novice programmer, on-line, require further explanation, he may be able to re­

trieve a tutorial text, cataloged under some appropriately descriptive title. 

The system's diagnostic, warning, and advisory messages are printed without 

line numbers. 

To facilitate the writing in extended SPL of programs intended to communicate 

interactively with an on-line teleterminal, extended SPL includes a pair 

of built-in-procedures--accept and display--which perform the necessary 

read-decode, encode-write operations on an implementation defined file 

employing the appropriate device: the user's own terminal in a multi-access 

system, the operator's terminal otherwise. The calls for these procedures 

have the following syntax. 

SYNTAX 

procedure-calI-statement •• - <nothing call> 6. <accept 6, variable 

display 6 formula> 
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Examples: 

accept I 

accept (J, A sub I II B) 

display ('PI = ' II 4*arctan 1) 

At the terminal, the effect of the three procedure call statements above would 

be to print: 

set I = 
set (J, A sub I II B) 

PI = 3.1415927 .•• 

After each of the first two printouts, the user or operator would be expected 

t,o enter an appropriate SPL formula--containing only constant operands, though-­

which the accept procedure would read, decode, and assign to the designated 

variable. 

Insofar as possible, the message produced by the display procedure will be 

tabular. But where the size andlor dimension of the value specified by the 

formula preclude this, the displayed message will utilize the linear notation 

of SPL formulas. 

7.8 COMMANDS 

7.8.1 Edit Camm'ands 

Programs are written to be executed but, unfortunately, modification or editing 

is a far more common operation. Programs are considered to be input or entered 

a line at a time. Each line of program text--whether it contains a statement, 

a declaration, a command, or a comment--is automatically given a serial line 

number, for editing purposes, by the compiler. The editing command permits 

lines to be inserted, deleted, replaced, and renumbered. 
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SYNTAX 

edit-conunand ::= edit 6 lines 6. <nothing' 2!:!1 I ~ 6. character-string 

lines .. = <all I line-number I !2. 6. line-number I line-number £\ to 

Ii line number> A <nothing I lines> 

line-number number <nothing f line-number> 

Examples: 

edit all 

edit all out 

edit 38 to 38.19 is begin ... end 

edit 17.1 out 

edit to 74.6.9 

Lillt>~) input or entered are automatically given serial numbers by the compiler: 

1, 2, 3, 4, 5, 6, etc. Line numbers 'are automatically printed at the beginning 

o[ Cd.C~l lil~c, effectively) as part of the line-feedl carriage-return action. 

AS:iume 100 lines of text have been entered; these would be numbered 

1. 

2. 

3. 

99. 

100. 

in the left margin. To insert new lines between 57 and 58, say, the edit command. 

101. edit 57.1 is ••• 

would be used. The remainder of the edit command on line 101 would logically 

become line 57.1) and the automatic line ntnnbering would reSlBTle with 57.L., 

57.3, and so on. When the insertion is done and it is desired to n.'SI.1I!ll' ll)l' 

program where it had been left off, the edit command 

57.23. edit 102 is .•. 

could be used. To insert text at the heginning of a program, an ed1l cOllllTI<..tnd 

without a line number is used. Thus, 
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t38. edi t is ... 

would cause the remainder of line 138 to be given the number 0.1, and the next 

line number would be 0.2, and so on. Another such edit command, e.g., 

O. 28 • ed i tis ... 

would cause the remainder of line 0.28 to have the line number 0.0.1, and the 

next line number would be 0.0.2, and so on. 

To delete a line, or a series of lines, the primitive out must be explicitly 

used. The edit command, 

I O. 0.3. edit 75 out 

( 

( 

I 
I 

[ 

I 
[ 

I 

would delete line 75 from the previously provided text. The edit command 

0.0.4. edit 70 .!£. 88.6 out 

would then delete lines 70-74 and 76-88.6; line 75 having of course been pre­

viously deleted. It should be noted that a subsequent edit command 

0.0.5. edit 0.0.3 out 

would not have the effect of replacing line 75, just the effect of deleting 

line 0.0.3 from any subsequent listing of the text. Nor, to use an earlier 

example, would 

0.0.6. edit 101 out 

have any effect on what the edit command on that line had already caused to lw 

inserted at line 57.1. 

All previously provided text may be deleted by the all-consuming command 

0.0.7 edit all out ------
After such a command, the next line number would automatically be 1. But 

assume such drastic steps are unnecessary, and it is only desired to replace 

a line. 

A line, say 27, may be replaced with the following edit command: 

0.0.7. edit 27 is 
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1~lH is entirely equivalent to 

0.0.7. edit 27 ~t ~ 27 is ••• 

With either command, the remainder of line 0.0.7. is given the ntunber 27, and 

the next line would automatically be 28, so th.3.t anything entered or input 

there would replace any previous line 28, and so on. (But it would not replace 

any line 27.1 or any other line between 27 and 28.) If such s.ubsequent auto­

matic replacement of lines 28,29-,et. seq. were not desired, the command 

0.0.7. edit 27.0 i.s ••• 

This would also replace line 27 (::27.0) with the remainder of line 0.0.7, but 

the nex~ line would automatically be 27.1. 

A sequence of lines may also be repla1ced with an edit conmand, say 

27.1. edit 70 !2. 88.6 .!2. ..• 
And this is exactly equivalent to 

27.1. edit 70!2. 88.6 out, edit 70 is ••• 

Not that such an edit command deletes all lines between 70 to 88.6, inclusive, 

no matter how deeply they may be ntunbered. 

After a great deal of the kind of editing exernplified above, line nlDnbers are 

likely to be in a hodge-podge, with gaps in the sequence, and seven- or elght-

Jl'Vl'l line numbers in places. This can be corrected by renumbering, with an 

(·d i L cummand, such as 

]67.6.5/L2. edit all 

\vh i ell renumbers all previously provided and remaining lines: 1, 2, 3, and so 

011.- Of course, any sequence of lines can also be renumbered, with an: edit com­

maud like 

59.6. edit 23.4 !Q 38.7.12 

T.,l\lich would rentmlber all lines between 2'3.1 and 38.7.12, inclusiv(', no m;ltt('r 

llOW dl~t>ply numbered. These would be renumbered: 23.4, 23.5) 2'3.0, and so ()l). 
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An edit command to renumber can also have the effect of replacing lines (though 

this can easily be avoided, with a little care, where replacement is not wanted). 

For example 

38.5. edit 16 to 25 

would cause the indicated lines to be renumbered 16_ 17, l8~--and if there 

were more than ten lines in the sequence--25, 26,27, ••• and so on, causing 

any lines previously numbered 26, 27, etc. to be replaced. 

To renumber just some initial sequence of lines, the command 

57. edit to 31.6 

could be used to renumber all lines with numbers less than or equal to 31.6. 

'And to renumber some final sequence, the command 

58. edit 40 

might be used (since there is no point, of course, in renumbering a single 

line) to renumber all lines with numbers greater than or equal to 40. '(This 

last interpretation does not apply to deletion. Thus, 

59. edit 40 ~ 

would delete just a single line.) 

7.8.2 Save Connnands 

A save command serves to store and catalog, under a user supplied title, the 

current values of any data elements, or any lines of previously supplied 

program text--including texts composed entirely of commentary. 

save-command 

title 

SYNTAX 

.. - 6 title 6 = 6 <formula I lines> 

name 6 <nothing I (all» 
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Note: There is syntactic ambiguity between some numeric fonnulas and some 

line numbers.. In a save command, in such cases, the lines number 

interpretation will prevail. And if, for some strange reason, the 

programmer wants to save the integers 1 to 100 rather than lines 1 

to 100, he must use parentheses; e.g., (1 to 100). 

Examples: 

~EXPLANATION.OF.SAVE = 'A SAVE COMMAND SERVES TO STORE AND CATALOG, 

UNDER A USER SUPPLIED TITLE, THE CURRENT 

save JONES.PROGRAM.EPHEMERIDES.03 = all 

save D.7 = to 132.8 

Used as a title in a save~ show, or get command, a name exhibits a hierarchic 

structure, with the embedded periods delimiting the various levels. A varie~y 

of names can be given to the different levels. Library-file-section-shelf­

volume-book-chapter-page-paragraph might be one such (improbable) sequence, 

so that A.B.C.D.E.F.G.H.I, as a title, would be interpreted: library A, file B, 

section C, shelf D, volume E, book F, chapter G, page H, paragraph I. A less 

improbable interpretation of one of the preceding ,examples might be: Jones' 

library, program file, Ephemerides routine, 3rd vers~on. The point of all this 

is that an abbreviated title, say JONES.PROGRAM, refers to all the routines 

in the program file of Jones' library. 

A save command may replace an existing element in a library or add a new ele­

ment (or even a new library) to the system, depending on whether or not an 

element cataloged under that title already exists in the system. In either 

case, the saved element will be cataloged in the appropriate place in the 

hierarchy. 
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Whenever a name is used in a title that refers to an existing element that is 

not at the bottom level of its hierarchy--i.e., the name refers to a number of 

bottom level elements--the primitive all must be added in parentheses after 

the name as part of the title, to make it less likely that unintentional re­

placement or purging of whole files will occur. Any other safeguards to pre­

vent unauthorized or unintentional replacement, purging, or access to saved 

elements are implementation defined. 

Any bottom level element, say Jones' program, Ephemerides, version 03, may be 

purged (along with its name) by a save command like the following: 

~ JONES. PROGRAM. EPHEMERIDES. 03 null 

Any bottom level element or collection of bottom level elements, say all 

versions of Jones' program, Ephemerides (with their .names) may be purged with 

a save command like the following: 

save JONES.PROGRAM.EPHEMERIDES (all) = null 

It is a useful end relatively simple and straightforward practice for the user 

to construct and maintain an index--with save commands--for any level of a 

library hierarchy. The system does not, however, do this automatically. 

7.8.3 Get Commands 

A get command serves to retrieve any previously saved (and retained) data or 

lines of program text. 

SYNTAX 

get-command .. = .8!:.!.6 <variable L\ = A title , title> 
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Examples: 

~ JONES. PROGRAM. EPHEMERIDES. 03 

. ~ COMPOOL.21 (all) 

~ BETA = N1626.MATRIX (all) 

~ D.7 

Where a set command retrieves data, the effect is that of assignment to a 

variable. Thus: 

save Q = 1.693"'d~I sub (1 to N), ~ P = Q, save Q = null 

has exactly the same effect as: 

Where a get command retrieves lines of program text, the effect is exactly the 

same as if the lines of text were input or entered--any commands in the 

retrieved text will be obeyed. The line numbers of the retrieved text, 

however, will all be prefixed with the line number of the get command itself. 

Thus, 

61.13 ~ SYSTEM.SUBROUTINE.OBOE 

The lines of system subroutine OBOE would be inserted as 61.13.1, 61.13.2, 

61.13.3, etc. And if for some reason this is not desired, for example, because 

of the existence of another line 61.13.1 that is to be tetained, the following 

commands could be. used: 

61.13. edit 61.13.0 is ~ SYSTEM. SUBROUTINE. OBOE 

so that OBOE would be inserted as 61.13.0.1, 61.13.0.2, 61.13.0.3, and so on. 
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Where a get command retrieves several separate sets of program text, as in 

17. ~ COMPOOL.21 (all) 

the line numbers in each set are prefixed with a unique serial number for the 

set, before being prefixed by the get command's line number. Thus, in the 

above example, the line numbers for the first part of COMPOOL.21 would be 

17.1.1, 17.1.2, 17.1.3, and so on, and for the ith part" they would be 17.i.1, 

17.i.2, etc. 

7.9 BUILT-IN FUNCTIONS 

Extended SPL contains a number of built-in functions in addition to those 

described for basic SPL. 

7.9.1 Functions 

7.9.1.1 Minimum and Maximum Functions. The minimum and maximum functions 

are used to specify the minimum and maximum scalar value in a (nonsca1ar) formula. 

7.9.1.2 Remainder Function. The remainder function specifies the remainder, 

after division, of the real scalar dividend x by the real divisor y. The re­

mainder function may be generally defined as: x rem y = x-y * floor (x/y). 

Complex arguments of the remainder function are converted to real mode by dis­

regarding their imaginary parts. Nonscalar arguments specify identically 

structured nonscalar results. 

7.9.1.3 Conjugate Function. The conjugate function, for any complex 

scalar argument (a+b*l!), specifies (a-b*li). Real arguments of the complex 

conjugate function are converted to complex mode by assuming imaginary parts 

of zero. Nonscalar arguments specify identically-structured nonscalar results. 

7.9.1.4 Floor Function. The floor function, for any integer or real 

scalar argument x, specifies the largest integer not exceeding x. Complex 

arguments of the floor function are converted to real mode by disregarding their 

imaginary parts. Nonscalar arguments specify identically-structured nonscalar 

results. 
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7.9.1.5 Ceiling Function. The ceiling function t for any integer or real 

scalar argument X t specified the smallest integer not exceeded by x. Complex 

arguments of the ceiling function are converted to real mode by disregarding 

their imaginary parts. Nonscalar arguments specify identically-structured 

nonscalar results. 

7.9.1.6 Hyperbolic Functions. The hyperbolic functions sinh t cosh, and 

tanh specifYt for any real scalar argument x, the hyperbolic sine, cosine, and 

tangent of x. Complex arguments of these functions are converted to real mode 

by disregarding their imaginary parts. Nonscalar arguments specify identically­

structured nonscalar results. 

7.9.1.7 Identity Matrix. The identity-matrix function specifies an m by 

n numeric matrix whose elements have the value one along the main diagonal and 

zero elsewhere. The number of rows in the identity matrix is specified by the 

scalar numeric-formulal , the number of columns by the scalar numeric-formula
2

• 

Either or both arguments may be omitted where the number of rows or columns can 

be determined by compatibility considerations of context. 

The elements of the identity matrix may be d~fined as follows: 

id sub (I,J) == if I ~ J then 1 else O. 

7.9.1.8 Determinent Function. The determinent function specifies, for 

any square n by n numeric matrix A, the determinent of A. 

7.9.1.9 Size Function. The size function specifies, for any k-dimen-

sional formula F, the number of elements along each of the dimensions of F. 

The size function, for a k-dimensional formula, specifies an index value-­

an integer-valued k-element vector (integer k array). For a rectangular, 

nonsca1ar formula, ~ sub 1 specifies the number of rows, size, sub 2 the 

number of columns, ~sub 3 the number of planes, and so on (assuming the 
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number of dimensions exceeds 3). For a nonrectangular, nonscalar formula, 

the number of elements along any given dimension may vary. Here, the 

corresponding element of the size specified vector is the maximum number. For 

a scalar argument, the si~ function specifies the value one and for a null 

argument, for example, a text of length zero, the size function specifies zero. 

7.9.1.10 Origin Function. The origin function specifies, for any pair of 

formulas X al!d Y, where the value of X is an element of the value of Y, the 

index of the first origin--first in the sequence (1,1, .•. ,1) to (Y size)--of 

X in Y. Where the value of X is not an element of the value of Y, the origin 

function specifies the value zero. Where X is an element of k-dimensional Y, 

the origin function specifies an index value--an integer-valued k-element 

vector. Also, X ~ Y sub «X origin Y) to (X origin Y + X size». 

7.9.1.11 Coordinate Transformations. The coordinate transformation 

functions specify the transformations among real-valued 3-vectors represent­

ing Polar, Cartesian, and direction cosine coordinates in 3-space (syntax 

unspecified). 
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s. LISTING OF SYNTAX EQUATIONS 

8.1 ALPHABET, VOCABULARY AND PROGRAM STRUCTURE (Ref. Section 2) 

character ::= letter digit mark 

letter ::= ABC D E F G H I J K I L I 
M N 0 P Q R STU V W" X I y I Z 

digit ::= 0 I 1 I 2 I 3 I 4 I 5 I 6, / 7 I 8 I 9 

mark :: = space I ( I ) I + / - I ,,< I I I . I , , I I = I $ 

symbol: := name J primitive I c'>.~~_:a~t _ ., __ ------' 
"-'r.&me--:'i-~-<ietter"l-nam~~"<n~thing I letter digit I .letter I .digit> 

primitive ::= delimiter / operator / descriptor 

delimiter :: = . I , I I / $ I ( I ) I ' I·" I begin I end I ~ I program 

operator ::= catenation-operator I repetition-operator Iconditional-operator 

arithmetic-operator I define-operator /logical-operator , 

relational-operator I assignment-operator I functional-operator 

discrimination-operator I sequential-operator / input-output-operator j 

location-operator I editing-operator I compile-operator 

a~ithm;;i~-~op~~;to;-~'~-~---=-T+--r- * r I / ,'<-Ie 

logical-operator ::= not / and 1££ 
relational-operator ::=~. /gs I B£' Is I ~ I ~ I eguiv 

conditio,nal-operator :: = if I then I else 

assignment-operator = I set 

repetition-operator : := times I~ Iwhile / until I for 

catenation-operator ::= II ill 

i ! when I _on I,call lentry lexit i10r id() 
sequcntial-operator ::= gotoi stoP! 

input-output-operator ::= open J~ I read I ~ I assign I status Iposition 
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location-operator ::= store I at 

editing-operator ::= out I is I all 

compile-operator ::= optimize 'count 

to thru 

define-operator ::= execute' where' then /. names f ~ 
-- --- 0 -terms'" 

functional operator ::= log.e 10g.10 I sin I ~ I ~ I abs 

descriptor ::= integer / real' pointer / boolean /array , mode /procedure , 

function' pattern I file I dec I oct I hex Ibit , text / fixed 

float I cell I ~ I false I ready , busy I error I addr I 
item 'minimum I digit I maximum / signed I unsigned /round 

$tuncate , group' compool' full I ~yeady I value result 

recursive / reentrant time' space I ~ 
constant - numeric-constant 

boolean-constant 

textual-constant pointer-constant 

numeric-constant ::= number I real-constant I binary-constant 

decimal-constant' hexadecimal-constant 

numeral ::= digit <nothing I numeral> 

signed ::= + I -

number ::= numeral <nothing e numeral> 
-xponent-base-lO 

octal-constantl 

real-constant :: = <numeral' • ,. nume·.cal numeral • numeral> <nothing I 
e . numeral 
-xponent-base-10 

e signed numeral> 
-xponent-base-10 

binary-constant .. - <name. I nothing> ~ ·bit ' binary-string • 

binary-string ::= <0 I 1> <nothing I binary-string> 

octal-constant ::= <name. I nothing> ~ oct' octal-string' 

octal-string ::= <0 , 1 , 2 I 3 I 4 I 5 I 6 I 7> <nothing I octal-string> 

decimal-constant <name. ~ nothing> ~ <nothing I dec> ' numeral ' 

hexadecimal-constant ::= <name. I nothing> ~ hex' hexadecimal-string' 

hexadecimal-string ::= <numeral I A I BCD I ElF> <nothing 

hexadecimal-string> 

* Listing of terms in Section 7. 
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textual-constant ::== <name. nothing> <nothing I text> ' character string r 

character string :.: = character <nothing character-string> 

point~r-coristant ::=cell 6 name I addr 6 name 

boolean-constant ::-~ I false 

statement ::= simple-statement compound statement 

compound-statement ::= <name. I nothing> IJ. begin IJ. statement-string IJ. end 

<name I nothing> 

statement-string .. -.. - statement I declaration I command <statement-string I 

declaration .. -
nothing> 

data-declaration I subroutine-declaration I file-declaration 

simple statement ::= simple-control-statement I input-output-staternent 

procedure-call-statement' assignment-statement 

comment .. - "character-string" 

program .. = program IJ. name.~statement-string IJ. ~ <name Inothing> 

8.2 DATA DEFINITIONS (Ref. Section 3) 

data-declaration ::= item-declaration array-declaration group-declaration I 
storage-declaration mode-declaration 

item-declaration :: == <item I nothing> IJ. name-st.ring IJ. item-description!::. <nothing , 

initial-value-string> 

name-string ::= name. IJ. <nothing I name-string> 

initial-value-string ::= litem-value IJ. <nothing initial value string> 

item-value ::= numeric-constant I pointer-constant I textual-constant I 
boolean-constant 

item-description ::= numeric-item-dcscription 

pointer-item-description 

textual-item-description 

boolean-item-description 

numeric-item description ::= full-integer-item-description 

descriptioil 

full-real-item-
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full-integer-item-description ::z integer ~ number l ~ <bit I digit> ~ <minimum 

nothing> ~ <nothing I number 2 ~ maximum> <nothing 

signed unsigned> ~ <nothing round I truncate> 

full-real-item-description real ~ number
l 

~ <bit I digit> ~ <not~ing 1 mini~um> 

~ <nothing I -> number
2 

<bit I digit> {j. <nothing 

float I' fixed> ~ <nothing 1 signed unsigned> ~ 

<nothing I round I truncate> 

textual-item-description .. - text b. <nothin,g.1 number b. character 
, ' 

name f . ~. b. character> 
o-~nteger..1~tem 

pointer-item-description .. = pointer 

boolean-item-description ::= boolean 

array-declaration ::= array 6 name-string 6 array-description 

array-description .. = <item-description I group-description> 6 dimension-string 

6 <initial-value-string I nothing> 
. -.... - .---- - .,- .. -. . _._, ... -... _-,., -..... - ~ 

dimension-string ::= <number I name f . t . t > 6 <nothing o -~n eger-l. em .£y L. dimension-

string> 

group-declaration :: = group 6 <nothing I name-string> 6 group-description 

group-description .. -

declaration-string : := 

mode-declaration ::-

begin 6 declar~tion-string 6 end 6 <nothing I (name) 

<item-declaration I array-declaration I group­

declaration I function-declaration' mode-declaration·1 

storage-declaration> 6 <nothing declaration-string> 

~ ~ <numeric-item-description 

f~ll- f i},e-d<:.~ c ri p tion> 

array-description I 

storage-declaration ::= ~ ~ block-description 6 at 6 pointer-formula 

block-description ::= nameof~l~.m~...Dt!::. <noth~ng I block-description> 

variable ::- name I subscripted-variable I conditional-variable 

catenated-variable I hardware-opexand i 
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subscripted-variable ::= variable «index-string) I b. sub b. index-string> 
I 

index-string ::= index 6 <nothing' <II , to> 6 index-string> t 
index :: III: <numeric-formula I index-string> 6 <nothing I index> I (index) 

catenated-variable :: = variable !J. <nothing r.ca'tenation-oper~~.0.r2. __ ~---.::v..ar.?:~~l~ __ ._ 
; 

COnditiOnal-variab .. l~. = '$' -namief 6. condition 6. .then 6. variable l -/1' <nothing I else f1 variablezl, 

har~ware-operan~ 

compool-declaration ::= compool 6 nameof_compool 

8.3 STATEMENTS (Ref. Section 4) 

assignment-statement ::= <~othing I ~ 6 variable 6 = 6 formula 

formula ::= numeric-formula 

boolean-formula 

textual-formula , pointer-formula I 
(formula) 

numeric-formula : :. constant function I variable I hardware-operand 

6 <nothing I arithmetic-operator> 6 <nothing 

numeric-formula> I n-ary-arithmetic-operator 6 numeric­

formula I numeric-formula 6 matrix-operator ~ 

numeric-formula' boolean-formula 

n-aryarithmetic-operator ::= (arithmetic-operator) 

matrix-operator ::= arithmetic-operatorl . arithmetic-operator2 

textual-formula ::=, textual-constant 6' <catenation-operator I subscription­

operator> 

pointer-formula :: == .. name ,b. <s~b 6 ~ndex-st'C'ing Inothing > I cell A sub ~ 

index-string I cell b. variable I bit ~ sub ~ 

index-string 

condition:: = boolean-formula 
boolean-formula .. - boolean-constant I'~ 6 boolean-formula I boolean­

formula 6 ~ I £! I equiv.> 6 boolean-formula I 

relational-formula I n-ary-logical-operator 6 boolean-

formula 
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relational-formula .. - <nothing I n-ary-relational-operator> 6 formula 

6<·nothing I relational-operator 6 relational-formula> 

n-ary-logical-operator ::= «and I £E. I equiv» 

n-ary-relati~nal-operator ::= (relational operator) 

direct-code-statement .. - $ name ~ (actual-parameter-string) of-hardware-operator 

control-statement ::= simple-control-statement I complex-control-statement 

simple-control-statement .. - transfer-statement I stop-statement I procedure­

call-statement 

complex-control-statement ::- repeated-statement 

parallel-statement 

chronic-statement 

conditional-statement 

delayed-statement I 

transfer-statement .. - <go ~ to I goto> ~ pointer-formula 

repeated-statement .. - for ~ repetition-clause ~ statement 

repetition-clause ::= variable ~ = ~ value-sequence 

value-sequence .. - formula I numeric-formulal ~ ~ ~ numeric-formula
2 

~ 

<while I until> ~ condition 

conditional-statement ::= if ~ condition ~ then ~ statement
l 

<nothing I 
~ else ~ statement 2> 

parallel-statement ::- do ~ statement 

stop-statement ::= stop 

delayed-statement ::= when ~ condition ~ statement 

chronic-statement ::= ~ ~ condition ~ statement 

input-output-statement ::= open-statement I close-statement I read-statement I 
write-statement 

file-declaration ::- file ~ name-string ~ file-description 

file-description ::= device-name ~ <nothing I $(character-string» ~ <nothing I 
dimension-string> ~ <nothing I code-name> 

device-name ::= name. I device-name. <nothing I number> !:J. <nothing I module-name. 
number> 
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code-name ::- <~ I ~ I ~ I ~ I text> 

assign-declaration ::- assign 6 name to 6 device-name 

open-statement : := open 6 device-name 6 <nothing I $( character-string> 6 <nothing 

dimension-string> 6 <nothing I code-name> ~ file-designation 

close-statement ::= close 6 <nothing ~ I ~ ~ module-name> ~ file-designation 

file-designation ::- nameof_file I .!.!.k 6 ~ 6 pointer-formula 

function ::- file-designation ~ <status I position> 

functional-variable ::- file-designation 6 position 

read~statement ::- read 6 variable 6 into a file-designation 
'--

write-statement ::= write a file-designation fl from 6 textual-formula 

8.4 PROCEDUgiS AND FUNCTIONS (Ref. Section 5) 

procedure-declaration ::= procedure-heading 6 <nothing I parameter-declaration­

string> 6 statement 

procedure-heading ::= procedure 6 name f 6 <nothing I (formal-o -procedure 

parameter-string» 6. <nothing I formal-parameter-strl.ng> 

formal~p~!:.~1ll:.eter-string ::= formal-parameter 6 <nothing I formal-parameter-string> 

formal-parameter ::= name 

parameter-declaration-string .. = parameter-declaration 6 <nothing I parameter­

declaration-string> 

parameter-declaration .. = <item-declaration I array-declaration I group-declaration> 

6 <nothing I value> 6 <nothing I result> <procpdure-

procedure-cali-statement 

heading I func tion.-heading· ·;'tQt;hL:-':~ 

~<C~.~it't \t·(·ffl- ~trl%'g;~ 'I !f1.11{'> ""de<: larat Lon 

: : = call 6 name ---- of-procedure 

6 <nothing I actual-parameter I (actual-parameter­

string» 
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actual-parameter-string ::= actual-parameter 6 <nothing I (actual-parameter­

string» 

actual-parameter - variable I formula I name 

entry-statement ::= name 6 entry «paramete,r-decla.ration) I nothing> 

exit-statement ::- exit 

function-declaration ::= function-heading 6 <~othing I parameter-declaration­

string> 6 <= 6 formula , complex-statement I compound­

statement> 

function-heading : : = function 6 <nothing formal-parameter I (formal-

Parameter-string» 6 name f ft' /::I <nothing I o - unc 10n 

formal-parameter I (formal-parameter-string» 6 <item-

description I array-description I group-description> 6 

,<nothing I recursive I reentrant> 

function ::= <sin I ££!. I tan I arctan > 6numeric-formula 
of-numeric-type 

function 
of-numberlc-type 

function 
of-numeric-type 

function 
of-numeric-type 

::- !£! 6 numeric-formula 

::- <!!2 J log,e> 6 numeric-formula 

: :- <10g.2 I log. 1» [). numeric-formula 

8.5 COMMANDS (Ref. Section 6) 

command ::= define-command I execute-command I debug-command I optimization­

command I count-command 

debug-command show [). <symbolic I nothing> location-identifier ~ <number i 
nothing> <thru I nothing> ~ <location-identifier nothing> 

location-identifier ::= <name I 5e11 '[). name> [). <code-name nothing> 

optimization-command ::-- optimize [). <time I space I none> [). statement 
----r 
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count-command ::- count ~ ~ ~<8tatement I declaration> 

define-command ::- <name. I nothing> ~ where II definition ~then 11 translation 11 

<end I define-command-string> 

definition ::= textual-formula I term I textual-pattern I not 

11 definition I definition /). < or ·1 and > /). definition 

define-command-string : := begin 6 define-command <nothing I define-command> 6 end 

pattern-declaration · .-· .- pattern b name b . definition 
of-pattern 

define b name f d f' d 
. 0 - e 1ne-comman 

define-command-call · .-

textual-pattern :: = pattern < (textual-'-constant) I (term) I (name-of-pattern» 

translation :: = declaration Istatement Icommand 

term .. character I letter I digit I name I null I constant I 

simple-statement I compound-stacement comment I item-declaration 

array-declaration I group-declaration storage-declaration 

variable I hardware-operand I formula 

execute-command ::- <name. I nothing> ~ where /). definition b execute 11 item­

declaration 6 formula 

B.6 EXTENDED SPL (Kef" Section 7) 

numeric-constant ::= imaginary-constant I number I real-constant I binary-

constant I octal-constant 

hexadecimal-constant 

decimal-constant I 

imaginary-constant ::- <number I real-constant> i 
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complex-item-description ::- complex 6. number
l 

6. minimum 6. <bit I digit I 
nothing> 6. <nothing I -> number 

. 2 of-fractional-

r r <bit I digit> 6. <nothing I float I o -exponen"" --

fixed> 6. <nothing 

round I trunc8~ 
signed unsigned> 6. <nothing 

code-declaration::= ~ 6 nameof_code ~ code-description 

code-description: :_= <nothing code-string> ~ number 6, «bit I digit 

/)., <nothing I Ie ft I r'ight> 
.... ~-.~---~--.-.----:----------~-~--- .... '--"- .. --_ ...... _ .. - ........... -.• 

code-string textual-constant ~ <nothing I is code> ~ <nothing 

code-string> 

code::= number textual-constant 

list-declaration list h name-string 1\ list-description 

list-description full-list-description 

character 

full-list-description <item-description I array-description I group­

description> ~ name-string 

list-processing-statement "= reference-statement I link-statement 

free-statement 

reference-statement::== see 6 list-element-reference 

list-element-reference :: = nameof-list 6. <nothing I ~. 6. pointer-formula> 

link-statement ::= link 6. <linkage-set name . > 
of-ltem-array-or-group 

linkage-set linkage A <nothing I linkage-set> 

linkage .. == <nothing I pointer-set L. f rom> I::::. 1. is t-el~IIH:'nt-ref L' n'IH:e 

pointer-set ::= name f' A <nothing I pointer-sel> 
o -polnter 

free-statement::- ~b, <linkage-set I name . > 
of-~tem-array-or-group 
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encode-decode-statement ::= <encode I decode> /). variable (j, = 6 formula A EY A 

format 

format ::= conversion-procedure-call I (/). format /).) I catenated-format I 

repeated-format I conditional-format 

conversion-procedure-call ::= name f d 11 <nothing I actual-parameter I o -proce ure 
( /). actual-parameter-string 11 ) > 

catenated-format ::= format 11 <nothing I catenation-operator> 11 format 

repeated-format ::= format 6 <nothing I catenation-operator> 11 ( 11 repetition­

clause 6) 

conditional-format ::= closed-conditional-format I open-conditional-format 

closed-conditional-format ::= if 6 condition 6 then/). format
l 

11 else 11 format
2 

open-conditional-f ormat ::= if_ 11~~ndition /). ~hen b. <format3 I open-conditional­

format I b. else 6 format
4

> 

algebraic-declaration ::- name-string 6 algebraic 6. <nothing I dimension-string 

6 array> 

algebraic-variable : : == nameof-algebraic-variable 6 <nothing I sub 

6 index-string> 

algebraic-formula ::= numeric-constant I algebraic-variable I atomic-operand I 
(6 algebraic-formula 6) <- I + > 6 algebraic-formula I 
algebraic-formula 6 <- I + I * I I I ** I ~> 

algebraic-formula-string 

6 algebraic-formula I<abs 

10g.2 I l2£.10 I sin I cos 

tanh> 6 algebraic-formula 

formula-string 6) 

I floor I ceiling I ~ I log.e 

I ~ I arctan I cosh I sinh I 
I<min I ~ > 6 (6 algebraic-

::= algebraic-formula 6 <nothing I algebraic-formula> 

atomic-operand-string ::= atomic-operand 6 <nothing atomic-operand-string> 

atomic-operand, ::- 'numeric-formula' I 'sign-string' textual-formula 
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algebraic-assignment-statement ::= <nothing I let> 6. algebraic-variable 

6= 6 <algebraic-formula 

function . > 
of-algebralc-type 

algebraic-operator ::= (.,) I + I - I * ** I / I abs I floor I 
ceiling I rem I exp I log.e I 1£&.2 I log.IO I sin 

~ I ~ I arctan I cosh I tanh I sinh I min I ~ 

functionof_numeric_type ::= ~~ algebraic-formula 

function 
of-textual-type : : == rep 6 algebraic-formula 

function 
of-Boolean-type ::= algebraic-formula 6 defined 

function . 
of-Boolean-type ::= algebraic-formula 6 ident 2, algebraic-formula 

functionof_Boolean_type : : = algebraic- formula £::. approx 6, «numeric-formula I 

algebraic-formula» 

function. ~ .. ~~.a.~~~~r.~i..~~~}1~~ ... ~~:_.~~~~~e 6 (al.~~~~~.~.~~ .. ~~~~ula !'J textual formula) 
function 00= expand D algebraic-formula 

of-algebraic type 

function 
o£-algebraic-type 

function of-algebraic-type 

: := slgebraic-formulal/!'J coeff 6. algebraic-formuls
2 

::= algebraic-formula 6 ~ 6. <algebraic-formula 

I (algebraic-formula-string» <nothing 

(where 6. dependencies» 

dependencies ::= atomic-operand ~ is ~ i (~ atomic-operand-string /:;) 

~ <nothin8 I dependencies> 

procedure-calI-statement ::- <nothing .£.!ll> t::.. <accept f'... variable 

display 6 formula> 

edit-command ::= edit 6. lines 6. <nothing , out , ~ 6. character-string 

lines .. = <all I line-number I to /\ line-number I line-number (\ to 

[\ line number> ~ <nothing I lines> 
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line-number""= number <nothing I line-number> 

save-command ::- 6 title 6 = 6 <formula' lines> 

title :: = name 6 <nothing I (all» 

get-conmand :: = ~6 <variable 6 =;:., title I title> 
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