MACHINE LANGUAGE PROGRAMMING
FOR THE '8 0 0 8°

(AND SIMILAR MICROCOMPUTERS)

AUTHORt NAT WADSWORTH

© COPYRIGHT 1975
SCELB!I COMPUTER CONSULTING, INC.
1322 REAR = BOSTON POST ROAD
MILFORD, CTe 86460

e« ALL RIGHTS RESERVED =

CHAPTER
CHRAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

CHAPTER

ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT

NINE

MACHINE LANGUAGE PROGRAMMING
FOR THE '8 0 0 &°
(AND SIMILAR MICROCOMPUTERS)
REREEEEEEREREEREELEREREEERERER
TABLE OF CONTENTS

BRRREEEERRRREEEEEEEERER KK Rk RK

INTRODUCTION

THE *8008°* CPU INSTRUCTION SET
INITIAL STEPS FOR DEVELOPING PROGRAMS
FUNDAMENTAL PROGRAMMING SKILLS

BASIC PROGRAMMING TECHNIQUES
MATHEMATICAL OPERATIONS

INPUT/0UTPUT PROGRAMMING

REAL=TIME PROGRAMMING

PROM PRQGRAHM!NG CONSIDERATIONS

CREATIVE PROGRAMMING CONCEPTS

INTRODUCTION

THIS MANUAL IS ON MACHINE LANGUAGE PROGRAMMING METHODS AND TECH=-
NIQUES FOR 8888 BASED COMPUTERS. WHILE MACHINE LANGUAGE PROGRAMMING
IS THE MOST FUNDAMENTAL TYPE OF COMPUTER PROGRAMMING POSSIBLE. IT IS
BY FAR THE MOST EFFICIENT METHOD, IN TERMS OF UTILIZATION OF THE MACH=-
INES'S CAPABILITIES, WITH WHICH TO PROGRAM OR SET UP A 8808 SYSTEM TO
PERFORM A JOB. MACHINE LANGUAGE PROGRAMMING IS, ON THE OTHER HAND,
THE MOST DEMANDING METHOD OF COMPUTER PROGRAMMING IN TERMS OF HUMAN
INDEAVOR AND SKILL. HOWEVER, THE FUNDAMENTAL SKILLS AND TECHNIQUES
NECESSARY FOR MACHINE LANGUAGE PROGRAMMING CAN BE APPLIED TO VIRTUALLY
ANY LEVEL OF COMPUTER PROGRAMMING. A CLEAR UNDERSTANDING OF MACHINE
LANGUAGE PROGRAMMING WILL GIVE ONE GREAT INSIGHT INTO ANY HIGHER LEVEL
LANGUAGE PROGRAMMING.

MACHINE LANGUAGE PROGRAMMING IS THE ACTUAL STEP-BY-STEP PROGRAM-
MING OF THE COMPUTER USING THE MACHINE CODES AND MEMORY ADDRESSES THAT
WILL BE USED BY THE COMPUTER DIRECTLY. IT IS CONSIDERABLY MORE DETAIL-
ED THAN PROGRAMMING IN A HIGH LEVEL LANGUAGE SUCH AS FORTRAN (RTM) OR
BASIC (RTM) - IT IS IN FACT, THE LEVEL OF PROGRAMMING FROM WHICH THOSE
HIGH LEVEL LANGUAGES ARE DEVELOPED. IN FACT, IF ONE KNOWS HOW TO DE-
VELOP PROGRAMS IN MACHINE LANGUAGE, ONE WILL HAVE THE BASIC SKILLS NEC-
ESSARY FOR DEVELOPING A HIGHER LEVEL LANGUAGE. (THAT IS A TREMENDOUS
ASSETT OVER ONE WHO ONLY KNOWS HOW TO PROGRAM IN HIGHER LEVEL LANGUAG-
ES.)

THE PRIMARY REASON FOR HAVING A MANUAL DEVOTED TO MACHINE LANGUAGE
PROGRAMMING FOR THE 8608 1S BECAUSE THIS METHOD IS BY FAR THE MOST
EFFICIENT METHOD FOR PACKING A PROGRAM INTO A SMALL AMOUNT OF MEMORY.

AS USER'S KNOV, MEMORY ELEMENTS COST A GOOD AMOUNT OF MONEY, AND THE
MORE ONE CAN PROGRAM INTO A GIVEN AMOUNT OF MEMORY, THE LESS MEMORY RE-
QUIRED FOR A GIVEN TASK - AND THE MORE ONE CAN DO WITH A LOW COST MACH-
INE. HIGH LEVEL LANGUAGES REQUIRE MUCH MORE MEMORY BECAUSE OF TWO MAJOR
REASONS. FIRST, A LARGE AMOUNT OF MEMORY MUST BE USED BY THE HIGH LEVEL
LANGUAGE ITSELF. SECOND, HIGHER LEVEL LANGUAGES MUST CONVERT USER
STATEMENTS OR COMMANDS TO MACHINE LANGUAGE CODES AND THEY GENERALLY CAN-
NOT DO THIS ANY WHERE NEAR AS EFFICIENTLY (MEMORY USAGE - WISE) AS A
TRAINED HUMAN PROGRAMMER! '

ANOTHER REASON FOR DISCUSSING MACHINE LANGUAGE PROGRAMMING AT
LENGTH 1S BECAUSE IT IS THE ONLY METHOD WHERE-BY MANY CAPABILITIES OF
THE MACHINE CAN BE TAKEN ADVANTAGE OF - THIS 1S PARTICULARLY TRUE FOR
*REAL-TIME"™ AND I1/0 OPERATIONS. MANY USERS WILL WANT TO UTILIZE THEIR
8608 MINICOMPUTERS FOR UNIQUE APPLICATIONS AND THE CONTENTS OF THIS
MANUAL WILL PRESENT MANY IDEAS AND CONCEPTS FOR THESE PEOPLE TO APPLY
T0O THEIR INDIVIDUAL APPLICATIONS.

MACHINE LANGUAGE PROGRAMMING IN GENERAL IS NOWHERE AS DIFFICULT TO
_LEARN AS MANY PEOPLE MIGHT TEND TO THINK WHEN FIRST INTRODUCED TO THE
SUBJECT. THIS IS ESPECIALLY TRUE FOR THE 806068 TYPE MINICOMPUTER. THERE
ARE MaNY FUNDAMENTAL CONCEPTS THAT CAN BE READILY LEARNED AND ONCE THIS
HAS BEEN ACCOMPLISHED THE NOVICE IS ON THE WAY TO DEVELOPING ORIGINAL

SOLUTIONS TO PROGRAMMING PROBLEMS THAT MAY BE OF UNIQUE INTEREST TO THE
INDIVIDUAL.

COMPUTER PROGRAMMING, AND MACHINE LANGUAGE PROGRAMMING IN PARTIC-
ULAR, 1S IN MANY RESPECTS AN ART, AND IN OTHER RESPECTS A VERY RIGID
SCIENCE. THE FUN PART, AND WHAT CAN BE CONSIDERED ARTISTIC, IS THAT
INDIVIDUALS CAN TAILOR OR FASHION SERIES OF INSTRUCTIONS TO ACCOMPLISH
A PARTICULAR TASK IN A VARIETY OF WAYS. THE SCIENTIFIC PART OF PROGRAM-

1 -1

MING INVOLVES ACQUIRING SOME BASIC SKILLS AND KNOWLEDGE ABOUT WHAT CAN
AND CANNOT BE DONE, AND AT A HIGHER LEVEL, PERHAPS, AN UNDERSTANDING

OF BASIC MATHEMATIC ALGORITHMS AND PROCEDURES THAT CAN BE READILY AP-
PLIED USING COMPUTER TECHNIQUES. SOME OF THE BASIC SKILLS INCLUDE KNOW~-
ING JUST WHAT THE AVAILABLE MACHINE INSTRUCTIONS ARE, AND SOME OF THE
MOST FREQUENTLY USED COMBINATIONS OF INSTRUCTIONS THAT WILL PERFORM
FREQUENTLY REQUIRED TASKS - THESE SKILLS ARE AS FUNDAMENTAL AS A PAINTER
KNOVING THE PRIMARY COLORS AND HOV TO COMBINE THEM TO CREATE THE COMMON-
LY USED SECONDARY COLORS. HOWEVER, LIKE THE PAINTER WHO COMBINES THE
BASIC PIGMENTS, BEYOND A CERTAIN POINT THE TASK OF COMPUTER PROGRAMMING
BECOMES A HIGHLY CREATIVE INDIVIDUALISTIC ART. AND, IT IS AN ART IN
WHICH ONE CAN CONSTANTLY GAIN NEW SKILLS AND ABILITY. A HIGH SCHOOL
STUDENT OR ‘A COLLEGE PROFESSOR CAN BOTH FIND EQUALLY REWARDING CHAL-
LENGES IN COMPUTER PROGRAMMING. THERE ARE OFTEN MANY DIFFERENT WAYS TO
PROGRAM A COMPUTER TO PERFORM A GIVEN TASK AND MANY “TRADE - OFFS" TO
CONSIDER WHEN DEVELOPING A PROGRAM (SUCH AS HOW MUCH MEMORY TO USE, WHAT
FUNCTIONS HAVE PRIORITY, HOW MUCH BURDEN TO PLACE ON THE HUMAN OPERATOR
WHEN THE PROGRAM IS OPERATING). EACH INDIVIDUAL SOON LEARNS TO CAPI-
TALIZE ON THE ASPECTS CONSIDERED MOST IMPORTANT FOR THE SPECIFIC APPLI-
CATION AT HAND AND WILL DEVELOP THEIR OWN PERSONAL METHODS FOR HAND-
LING VARIOUS TYPES OF PROGRAMMING TASKS.

REMEMBER AS YOU READ THIS MANUAL THAT THERE ARE MANY OTHER WAYS OF
PROGRAMMING A COMPUTER TO PERFORM MANY OF THE EXAMPLE PROGRAMS ILLUSTRA=-
TEDs DON'T BE AFRAID TO DEVELOP YOUR OWN SOLUTIONS FOR PRACTICE AS YOU
GO THROUGH THE MATERIAL. TRY OUT YOUR SOLUTIONS = SEE IF THEY WORK AS
PLANNED .- PRACTICE BEING A "“CREATIVE PROGRAMMER!" BY THE TIME YOU HAVE
- COMPLETED ABSORBING AND UNDERSTANDING THE CONTENTS OF THIS PUBLICATION
YOU SHOULD BE WELL EQUIPPED TO DEVELOP PROGRAMS OF YOUR OWN AND THUS BE
IN A POSITION TO REAP EVEN GREATER BENEFITS FROM YOUR 80808 BASED MICRO-
COMPUTER THAN JUST BEING ABLE TO OPERATE PROGRAMS THAT OTHER PEOPLE HAVE
PREPARED.

THE FIRST CHAPTER OF THIS MANUAL CONTAINS A DETAILED PRESENTATION
OF THE INSTRUCTION SET THAT THE 88068 CPU 1S CAPABLE OF PERFORMING. IT
GOES ALMOST WITHOUT SAYING, THAT THE FIRST STEP TOWARDS BECOMING A PRO-
FICIENT MACHINE LANGUAGE PROGRAMMER 1S TO BECOME THOROUGHLY FAMILIAR
WITH ALL THE TYPES OF INSTRUCTIONS THAT THE MACHINE CAN EXECUTE AND ES-
PECIALLY TO LEARN ABOUT ANY SPECIAL CONDITIONS THAT APPLY TO THE EXEC~-
UTION OF SPECIFIC TYPES OF COMMANDS. THE LEAD-OFF CHAPTER PRESENTS A
COMPREHENSIVE EXPLANATION OF ALL THE INSTRUCTIONS IN THE 8688 REPER-
TOIRE ALONG WITH THE MNEMONICS AND MACHINE CODES. THE READER SHOULD
BECOME QUITE FAMILIAR WITH THE INFORMATION PRESENTED THERE BEFORE GOING
FURTHER IN THIS MANUAL. (AT LEAST TO THE POINT WHERE ONE CAN RAPIDLY
LOCATE ANY CLASS OF INSTRUCTIONS IN THE CHAPTER IN ORDER TO REFRESH
ONE'S MEMORY ON JUST HOW AN INSTRUCTION OPERATES AND TO BE ABLE TO RAP-
IDLY LOCATE THE “MACHINE CODES" WHEN ONE IS PREPARING A PROGRAM)!

THE '8088°' CPU INSTRUCTION SET

THIS MINI-COMPUTER HAS QUITF A COMPRFHENSIVE INSTRUCTION SET
THAT CONSISTS OF 48 BASIC INSTRUCTIONS, WHICH, WHEN THE POSSIBLF

PERMUTATIONS ARE CONSIDFRED, RESULT IN A TOTAL SET OF ABOUT 170
INSTRUCTIONS.

THE INSTRUCTION SET ALLOWS THF USFR TO DIRECT THE COMPUTER TO
PERFORM OPERATIONS WITH MFMORY, WITH THE 7 BASIC REGISTERS IN THE
CPU, AND WITH INPUT AND OUTPUT PORTS.

IT SHOULD BE POINTED OUT THAT THF 7 BASIC REGISTFRS IN THE CPU
CONSIST OF ONE ACCUMULATOR - THAT IS A REGISTFR THAT CAN PERFORM
MATHEMATICAL AND LOGIC OPERATIONS, AND AN ADDITIONAL 6 REGISTERS
WHICH WHILF NOT HAVING THE FULL CAPABILITY OF THE ACCUMULATOR, CAN
PERFORM CERTAIN OPERATIONS (INCREMFNT AND DECREMFNT), CAN STORE
DATA, AND CAN OPFRATE WITH THE ACCUMULATOR. TWO OF THFE SIX REGISTERS
HAVE SPFCIAL SIGNIFICANCF BFCAUSF THEY MAY BF USED TO “POINT" TO AN
ADDRESS. IN MEMORY.

THE SEVFN CPU REGISTERS HAVE ARBITRARILY BFEN GIVEN SYMBOLS SO
THAT WE MAY REFER TO THEM IN A COMMON LANGUAGE. THE FIRST REGISTER
1S DESIGNATED BY THE SYMBOL "A" IN THE FOLLOWING DISCUSSION AND WILL
BE CONSIDERED THE ACCUMULATOR REGISTER. THE NFXT FOUR REGISTFRS VILL
BE REFFRRFD TO AS THF "B,'" "“C," "D," AND "E," REGISTERS, AND THE RE=-
MAINING TVO SPECIAL MEMORY POINTING REGISTFRS SHALL BE DESIGNATED
THE "H" (FOR THE HIGH PORTION OF A MEMORY ADDRESS) AND THE "L" (FOR
THE LOW PORTION OF A MEMORY ADDRESS) REGISTERS.

THE CPU ALSO HAS SFUFRAL FLIP-FLOPS WHICH SHALL BF REFERRED TO
AS “FLAGS." THESE FLIP-FLOPS ARF SFT AS THE RESULT OF CEFRTAIN OPERA-
TIONS AND ARE IMPORTANT BECAUSE THEY CAN BFE "TESTFD" BY MANY OF THE
INSTRUCTIONS AND THE INSTRUCTION'S MEANING CHANGED AS A CONSEQUENCE
OF THF FLAGS PARTICULAR STATUS AT THF TIME IT IS TESTED. THERE ARE
FOUR BASIC FLAGS VHICH WILL BE REFERRFD TO IN THIS MANUAL DESIGNATED
AS FOLLOWS:

THE “C" FLAG REFERS TO THF CARRY BIT STATUS. THE CARRY

BIT IS A | UNIT REGISTER WHICH CHANGES STATE WHEN THE ACCUM=-
ULATOR OVER-FLOWS OR UNDFR-FLOWS. THIS BIT CAN ALSO BF

SET TO A KNOWN CONDITION BY CERTAIN TYPES OF INSTRUCTIONS.

" THIS 1S IMPORTANT TO REMEMBER WHEN DEVFLOPING A PROGRAM BE-
CAUSE QUITE OFTEN A PROGRAM WILL HAUF A LONG STRING OF
INSTRUCTIONS WHICH DO NOT UTILIZE THE CARRY BIT OR CARE ABOUT
ITS STATUS, BUT WHICH WILL BE CAUSING THE CARRY BIT TO CHANGE
ITS STATUS FROM TIME TO TIME. THUS, WHEN ONF PREPARES TO DO
A SFRIFS OF OPERATIONS THAT WILL RFLY ON THE CARRY BIT, ONF
OFTEN DESIRES TO SET THE CARRY BIT TO A KNOVN STATE.

THE "“Z* FOR ZERO FLAG REFERS TO A 1| UNIT REGISTER THAT WHEN
DESIRED WILL INDICATE WHETHER THE VALUE OF THE ACCUMULATOR
1S EXACTLY FQUAL TO ZERO. IN ADDITION, IMMEDIATELY AFTER
AN INCREMENT OR DECREMENT OF THE B, C, D, E, H OR L REGIS-
TERS, THIS FLAG WILL ALSO. INDICATE VHETHER THE INCREMENT
OR DECREMENT CAUSED THAT PARTICULAR REGISTER TO GO TO ZFRO.

THE “S" FOR SIGN FLAG REFERS TO A | UNIT REGISTER THAT INDI-
CATES WHETHER THE VALUE IN THE ACCUMULATOR 1S A POSITIVE OR
NEGATIVE VALUE (BASED ON TW0'S COMPLEMENT NOMENCLATURE).
ESSENTIALLY, THIS FLAG MONITORS THE MOST SIGNIFICANT BIT IN
THE ACCUMULATOR AND 1S "SFT" WHEN IT IS A ONE.

1 -1

THE 'P" FLAG REFERS TO THE LAST FLAG IN THE GROUP WHICH
IS FOR INDICATING WHEN THE ACCUMULATOR CONTAINS A VALUE
WHICH HAS EVEN PARITY. PARITY IS USEFUL FOR A NUMBER OF
REASONS AND IS USUALLY USED IN CONJUNCTION WITH TESTING
FOR ERROR CONDITIONS ON WORDS OF DATA PARTICULARLY WHEN
INPUTTING DATA FROM EXTERNAL SOURCES. EVEN PARITY OCCURS
WHEN THE NUMBER OF BITS THAT ARE A "1" IN THE ACCUMU-
LATOR (OUT OF THE EIGHT POSSIBLE) IS AN EVEN VALUE, l.E.»
2, 4, 6, OR 85 REGARDLESS OF WHAT ORDER THEY MAY BE IN
THE ACCUMULATOR REGISTER.,

IT IS IMPORTANT TO NOTE THAT THE '"Z,'" "S,' AND "P" FLAGS (AS
WELL AS THE PREVIOUSLY MENTIONED *C* FLAG) CAN ALL BE SET TO KNOWN
STATES BY CERTAIN INSTRUCTIONS. IT IS ALSO IMPORTANT TO NOTE THAT
SOME INSTRUCTIONS DO NOT RESULT IN THE FLAGS BEING SET SO THAT IF
THE PROGRAMMER DESIRES TO HAVE THE PROGRAM MAKE "DECISIONS' BASED
ON THE STATUS OF FLAGS, THE PROGRAMMER SHOULD ENSURE THAT THE PROPER
INSTRUCTION, OR SEQUENCE OF INSTRUCTIONS IS UTILIZED. IT IS PARTIC-
ULARLY IMPORTANT TO NOTE THAT "LOAD REGISTER* INSTRUCTIONS DO NOT
BY THEMSELVES SET THE FLAGS. SINCE IT IS OFTEN DESIRABLE TO OBTAIN
A DATA WORD (l.E. LOAD IT INTO THE ACCUMULATOR) AND TEST ITS STATUS
FOR SUCH PARAMETERS AS WHETHER OR NOT THE VALUE IS ZERO, OR A NEG-
ATIVE NUMBER ETC., THE PROGRAMMER MUST REMEMBER TO FOLLOW A LOAD
INSTRUCTION BY A LOGICAL INSTRUCTION (SUCH AS THE NDA =~ '"AND THE
ACCUMULATOR") IN ORDER TO SET THE FLAGS BEFORE USING AN INSTRUCTION
THAT IS CONDITIONAL IN REGARDS TO THE FLAG STATUS.

THE DESCRIPTION OF THE VARIOUS TYPES OF INSTRUCTIONS AVAILABLF
WITH AN 8088 CPU UNIT WHICH FOLLOWS WILL PROVIDE BOTH THE MACHINE
LANGUAGE CODE FOR THE INSTRUCTION GIVEN AS 3 OCTAL DIGITS, AND ALSO
A MNEMONIC NAME SUITABLE FOR WRITING PROGRAMS IN SYMBOLIC TYPE LANG-
UAGE WHICH IS USUALLY EASIFER THAN TRYING TO REMEMBER OCTAL CODES! IT
MAY BE NOTED THAT THE SYMBOLIC LANGUAGE USED IS THE SAME AS THAT
SUGGESTED BY INTEL CORPORATION WHICH ORIGINALLY DEVELOPED THE 8608 *“CPU-
ON-A-CHIP" WHICH IS AT THE HEART OF 8@08 SYSTEMS, AND HENCE USERS VWHO
MAY ALREADY BE FAMILIAR WITH THE SUGGESTED MNEMONICS WILL NOT HAVE ANY
“RELEARNING" PROBLEMS AND THOSE LEARNING THE MNEMONICS FOR THE FIRST
TIME WILL HAVE PLENTY OF 'GOOD COMPANY.* IF THE PROGRAMMER IS NOT AL~
READY AWARE OF IT, THE USE OF MNEMONICS FACILITATES WORKING WITH AN
“ASSEMBLER' PROGRAM WHEN IT IS DESIRED TO DEVELOP RELATIVELY LARGE AND
COMPLEX PROGRAMS. THUS THE PROGRAMMER 1S URGED TO CONCENTRATE ON
LEARNING THE MNEMONICS FOR THE INSTRUCTIONS AND NOT WASTE TIME MEMORI-
ZING THE OCTAL CODES. AFTER A PROGRAM HAS BEEN WRITTEN USING THE
MNEMONIC CODES, THE PROGRAMMER CAN ALWAYS USE A LOOKUP TABLE TO CON=-
VERT TO THE MACHINE CODE IF AN ASSEMBLER PROGRAM IS NOT AVAILABLE.

ITS A LOT EASIER TECHNIQUE (AND LESS SUBJECT TO ERROR) THAN TRYING TO
MEMORIZE THE 178 OR SO 3 DIGIT COMBINATIONS WHICH MAKE UP THE MACHINE
INSTRUCTION CODE SET!

THE PROGRAMMER MUST ALSO BE AWARE, THAT IN THIS MACHINE, SOME
INSTRUCTIONS REQUIRE MORE THAN ONE "WORD" IN MEMORY. “IMMEDIATE"
TYPE COMMANDS REQUIRE TWO CONSECUTIVE WORDS AND JUMP AND CALL COM-
MANDS REQUIRE THREE CONSECUTIVE WORDS. THE REMAINING TYPES OF INS-
TRUCTIONS ONLY REQUIRE ONE WORD. THIS WILL BE PRESENTED IN DETAIL
IN THE DESCRIPTION FOR EACH TYPE OF INSTRUCTION.

THE FIRST GROUP OF INSTRUCTIONS TO BE PRESENTED ARE THOSE THAT
ARE USED TO "LOAD" DATA FROM ONE CPU REGISTER TO ANOTHER, OR FROM
A CPU REGISTER TO A WORD IN MEMORY, OR VICE-~-VERSA. THIS GROUP OF
INSTRUCTIONS REQUIRES JUST ONE WORD OF MEMORY. IT IS IMPORTANT TO
NOTE THAT NONE OF THE INSTRUCTIONS IN THIS GROUP AFFECT THE " FLAGS."

1 -2

LOAD DATA FROM ONE CPU REGISTFR TO ANOTHER CPU REGISTER

MNEMONIC MACHINE CODE
LAA 3080
LBA 310

L] L]
LAB 301

THE LOAD REGISTER GROUP OF INSTRUCTIONS ALLOWS THE PROGRAMMER
TO MOVE THE CONTENTS OF ONE CPU REGISTER INTO ANOTHER CPU REGISTER.
THE CONTENTS OF THE ORIGINATING (FROM) REGISTER IS NOT CHANGED. THF
CONTENTS OF THE DESTINATION (TO) REGISTER BECOMES THE SAME AS THE.
ORIGINATING REGISTER. ANY CPU REGISTFR CAN BF LOADED INTO ANY CPU
REGISTER. NOTE THAT FOR INSTANCE LOADING REGISTER *“A' INTO REGISTER
“A* IS ESSENTIALLY A 'NOP"™ (NO OPERATION) COMMAND. WHEN USING
MNEMONICS THE LOAD SYMBOL IS THE LETTER "L' FOLLOVED BY THE *TO"
REGISTER AND THEN THE “FROM" REGISTER. THE MNEMONIC “LBA' MEANS
THE THE CONTENTS OF REGISTER '"A"™ (THE ACCUMULATOR) IS TO BE LOADED
- INTO REGISTER “B." THE MNEMONIC “LAB" STATES THAT REGISTER "B" IS
TO HAVE ITS CONTENTS LOADED INTO REGISTER "A." IT CAN BE SEEN THAT
THIS BASIC INSTRUCTION HAS MANY VARIATIONS. THE MACHINE LANGUAGE
CODING FOR THIS INSTRUCTION IS IN THE SAME FORMAT AS THF MNFMONIC
CODE EXCEPT THAT THE LETTERS USED TO REPRESENT THE REGISTERS ARE
REPLACED BY NUMBERS THAT THE MACHINE CAN USE. USING OCTAL CODE, THE
7 CPU REGISTERS ARE CODED AS FOLLOVS:

REG "A" = @
REG “B” = 1
REG *C"” = 2
REG "D = 3
REG “E" = 4
REG "H" = 5
REG "“L" = €

ALSO SINCE THE MACHINE CAN ONLY UTILIZE NUMBERS, THE OCTAL NUMBER 3
IN THE MOST SIGNIFICANT LOCATION OF A WORD SIGNIFIES THAT THE COMP~-
UTER IS TO PERFORM A "LOAD'" OPERATION. THUS, IN MACHINE CODING, THF
INSTRUCTION FOR LOADING REGISTER "B* WITH THE CONTENTS OF REGISTFR
A" BECOMES: 3 1 & (IN OCTAL FORM) OR, IF ONE WANTED TO GET VERY
DETAILED, THE ACTUAL BINARY CODING FOR THE 8 BITS OF INFORMATION IN
THE INSTRUCTION WORD WOULD BE: .1 1 e a1 # @ 6. IT IS IMPORTANT
TO NOTE THAT THE LOAD INSTRUCTIONS DO NOT AFFECT ANY OF THE "“FLAGS."

LOAD DATA FROM ANY CPU REGISTER TO A LOCATION IN MEMORY
LMA 31780
LMB 371
LMC 372
LMD 373
LME 374
LMH 375
LML 376

THIS INSTRUCTION 1S VERY SIMILAR TO THE PREVIOUS GROUP OF
INSTRUCTIONS EXCEPT THAT NOV THE CONTENTS OF A CPU REGISTFR VILL BF
LOADED INTO A SPECIFIED MEMORY. LOCATION, THE MEMORY LOCATION THAT
WILL RECEIVE THE CONTENTS OF THE PARTICULAR CPU REGISTER IS THAT
WHOSE ADDRESS 1S SPECIFIED BY THE CONTENTS OF THE CPU "H" AND “'L*
REGISTERS AT THE TIME THE INSTRUCTION IS EXECUTED. THFE "H" CPU
REGISTER SPECIFIES THE “HIGH" PORTION OF THE ADDRESS DESIRED, AND
THE “L" CPU REGISTER SPECIFIES THE “LOV" PORTION OF THE ADDRESS

1 -3

INTO WHICH DATA FROM THE SELECTED CPU REGISTER IS TO BE LOADED.
-NOTE THAT THERE ARE 7 DIFFERENT INSTRUCTIONS IN THIS GROUP AS ANY
CPU REGISTER CAN HAVE ITS CONTENTS LOADED INTO ANY LOCATION IN

MEMORY. THIS GROUP OF INSTRUCTIONS DOES NOT AFFECT ANY OF THF
“FLAGS."

LOAD DATA FROM A MEMORY LOCATION TO ANY CPU REGISTER

LAM 38 7
LBM 317
LCMm 327
L.DM 337
LEM 3 47
LHM 357
LLM 3 617

THIS GROUP OF INSTRUCTIONS CAN BE CONSIDERED THE OPPOSITE
OF THE PREVIOUS GROUP. NOW, THE CONTENTS OF THE WORD IN MEMORY
WHOSE ADDRESS. 1S SPECIFIED BY THE "H" (FOR THE HIGH PORTION OF
THE ADDRESS) AND "L (LOV PORTION OF THE ADDRESS) REGISTERS VWILL
BE LOADED INTO THE CPU REGISTER SPECIFIED BY THE INSTRUCTION.
ONCE AGAIN, THIS GROUP OF INSTRUCTIONS HAS NO AFFECT ON THE
STATUS OF THE "FLAGS."

LOAD “IMMEDIATE" DATA. INTO A CPU REGISTER

LAl 6 8 6
LBI 616
LCI 8 2 6
LD1 a3 6
LEI @ 4 6
LHI 8 56
LLI e 6 6

AN “IMMEDIATE"™ TYPE OF INSTRUCTION RFQUIRES TWO WORDS IN ORDER
TO BE COMPLETELY SPECIFIED. THE FIRST WORD IS THE INSTRUCTION IT-
SELF, THE SECOND WORD, OR "IMMEDIATELY FOLLOWING"™ WORD, MUST CONTAIN
THE DATA UPON WHICH IMMEDIATE ACTION IS TAKEN. THUS, A LOAD “IMMED-
IATE" INSTRUCTION IN THIS GROUP MEANS THAT THE CONTENTS OF THE WORD
IMMEDIATELY FOLLOWING THE INSTRUCTION WORD IS TO BE LOADED INTO THE
SPECIFIED REGISTER. FOR EXAMPLE, A TYPICAL LOAD IMMEDIATE. INSTRUC-
TION WOULD BE: LAI @@01. THIS WOULD RESULT IN THE VALUE @81 BEING
PLACED IN THE "A'" REGISTER WHEN THE INSTRUCTION WAS EXECUTED. IT IS
IMPORTANT TO REMEMBER THAT ALL "IMMEDIATE" TYPE INSTRUCTIONS MUST BFE
FOLLOVED BY A DATA WORD. AN INSTRUCTION SUCH AS LDI ALONE WOULD
RESULT IN IMPROPER OPERATION BECAUSE THE COMPUTER WOULD ASSUME THF
NEXT WORD CONTAINED DATA, AND IF THE PROGRAMMER HAS MISTAKENLY LEFT
OUT THE DATA WORD, AND IN ITS PLACE HAD ANOTHER INSTRUCTION, THE
COMPUTER WOULD NOT REALIZE THE OPERATORS "MISTAKE" AND HENCE THE PRO-
GRAM WOULD BE "FOULED-UP!™ NOTE TOO, THAT THE LOAD "IMMEDIATE"
GROUP OF INSTRUCTIONS DOES NOT AFFECT THE “FLAGS."

LOAD “IMMEDIATE" DATA INTO A MEMORY LOCATION
LMI 8 76

THIS INSTRUCTION IS ESSENTIALLY THE SAME AS THE LOAD IMMEDIATE
- INTO THE CPU REGISTER GROUP EXCEPT THAT NOVW, USING THE CONTENTS OF

! - 4

THE 'H'" AND “L* REGISTERS AS "POINTERS" TO THE DESIRED ADDRESS IN
MEMORY, THE CONTENTS OF THE “IMMEDIATFLY FOLLOWING WORD" VILL BE
PLACED IN THE MEMORY LOCATION SPECIFIED. THIS INSTRUCTION DOES NOT
AFFECT THE STATUS OF THE "“FLAGS."

THE ABOVF RATHER LARGE GROUP OF “LOAD"™ INSTRUCTIONS PERMIT THE
PROGRAMMER TO DIRECT THE COMPUTFR TO MOVE DATA ABOUT. THEY ARE
USED TO BRING IN DATA FROM MEMORY WHERE IT CAN BE_OPERATED ON BY
THE CPU, OR TO TEMPORARILY STORE INTERMEDIATE RESULTS IN THE CPU
REGI STER DURING COMPLICATED AND EXTENDED CALCULATIONS, AND OF COURSE
ALLOW DATA, SUCH AS RESULTS, TO BE PLACED BACK INTO MEMORY FOR
LONG TERM STORAGE. SINCE NONE OF THEM VILL ALTFR THE COMTENTS OF
THE FOUR CPU FLAGS, THESE INSTRUCTIONS CAN BFE CALLED UPON T0, FOR
EXAMPLE, SET UP DATA, BEFOFRE INSTRUCTIONS THAT MAY AFFFCT OR UTILIZF
THE FLAGS' STATUS ARE EXECUTED. THE PROGRAMMER WILL USE INSTRUCTIONS
FROM THIS SET FREQUENTLY. THE MNEMONIC NAMES FOR THE INSTRUCTIONS
ARE EASY TO REMEMBER AS THEY ARE WELL ORDERED. THE MOST IMPORTANT
-ITEM TO REMEMBER ABOUT THE MNEMONICS IS THAT THE "TO' REGISTER IS
ALVAYS INDICATED FIRST IN THE MNEMONIC, AND THEN THE *FROM" RFEGISTER.
THUS “LBA' = “LOAD TO REGISTER *“B'" FROM REGISTER "A."

INCREMENT THE VALUE OF

>

CPU REGISTER BY |

INB
INC
IND
INF
INH
INL

R W

NN LWN -
TNV

THIS GROUP OF INSTRUCTIONS ALLOWS THE PROGRAMMER TO "“ADD 1 TO
THE PRESENT VALUE OF ANY OF THE CPU REGISTERS EXCFPT THF ACCUMULATOR.
(NOTE CAREFULLY THAT THE ACCUMULATOR CAN NOT BE INCRFMFNTED BY THIS
TYPE OF INSTRUCTION. IN ORDER TO *ADD 1" TO THE ACCUMULATOR A MATH=-
EMATICAL ADDITION INSTRUCTION, DESCRIBED LATER, MUST BE USED)>. THIS
INSTRUCTION FOR INCREMENTING THE DEFINED CPU REGISTERS IS VERY VAL~
UABLE IN A NUMBER OF APPLICATIONS. FOR ONE THING, IT 1S AN FASY
WAY TO HAVE THE "L" REGISTER SUCCESSIVELY "POINT"™ TO A STRING OF LOC~-
ATIONS IN MEMORY. A FEATURE THAT MAKES THIS TYPE OF INSTRUCTION FVEN
MORE POWERFUL, IS THAT THE RESULT OF THF INCREMENTED REGISTER VILL
AFFECT THE “Z,"™ "S," AND "P" FLAGS. (IT WILL NOT CHANGE THE "C" OR
"“"CARRY" FLAG). THUS, AFTER A CPU REGISTER HAS BEEN INCREMENTED BY
THIS INSTRUCTION, ONE CAN UTILIZF A “FLAG TEST" INSTRUCTION (SUCH AS
THE JUMP AND CALL INSTRUCTIONS TO BE DESCRIBED LATER) TO DETERMINE
WHETHER THAT PARTICULAR REGISTER HAS A VALUE OF ZERO ('Z" FLAG), OR
IF IT 1S A NEGATIVE NUMBER ("S" FLAG), OR EVEN PARITY (“P"™ FLAG).
IT IS IMPORTANT TO NOTE THAT THIS GROUP OF INSTRUCTIONS, AND THE
DECREMENT GROUP (DESCRIBED IN THE NEXT PARAGRAPH) ARE THE ONLY. INSTR-
UCTIONS WHICH ALLOW THE “FLAGS" TO BE MANIPULATED BY OPERATIONS THAT
ARE NOT CONCERNED WITH THE ACCUMULATOR ("A") REGISTER.

DECREMENT THE VALUE OF

>

CPU REGISTER BY 1

DCB
DCC
DCD
DCE
DCH
DCL

SIS es

NN E W N -
- S e s et s

THE DECREMENT GROUP OF INSTRUCTIONS IS SIMILAR TO THE INCREMENT
GROUP EXCEPT THAT NOW THE VALUE | WILL BE SUBTRACTED FROM THE SPECI-
FIED CPU REGISTER. THIS INSTRUCTION WILL NOT AFFECT THE “C" FLAG
BUT IT DOES AFFECT THE "“Z," "S,' AND "P" FLAGS. IT SHOULD ALSO BE
NOTED THAT THIS GROUP, AS WITH THE INCREMENT GROUP, DOES NOT INCLUDE
THE ACCUMULATOR REGISTER. A SEPARATE MATHEMATICAL INSTRUCTION
MUST BE USED TO SUBTRACT | FROM THE ACCUMULATOR.

ARITHMETIC INSTRUCTIONS USING THE ACCUMULATOR

THE FOLLOWING GROUP OF INSTRUCTIONS ALLOV THE PROGRAMMER TO
DIRECT THE COMPUTER TO PERFORM ARITHMETIC OPERATIONS BETVEEN OTHFR
CPU REGISTERS AND THE ACCUMULATOR, OR BETWEEN THE CONTENTS OF WORDS

- IN MEMORY AND THE ACCUMULATOR. ALL OF THE OPERATIONS FOR THE DES-
CRIBED ADDITION, SUBTRACTION, AND COMPARE INSTRUCTIONS AFFECT THE
STATUS OF THE *FLAGS."

ADD THE CONTENTS OF A CPU REGISTFR TO THE ACCUMULATOR

ADA 200
ADB 201
ADC 208 2
ADD 203
ADE 20 4
ADH 20 5
ADL 2 0 6

THIS GROUP OF INSTRUCTIONS WILL SIMPLY ADD THE PRESENT CONTENTS
OF THE ACCUMULATOR REGISTER TO THE PRESENT VALUE OF THE SPECIFIED
CPU REGISTER AND LFAVE THE RESULT IN THE ACCUMULATOR. THE VALUE OF
THE SPECIFIED REGISTER. IS UNCHANGED EXCEPT IN THE CASE OF THE “ADA"
- INSTRUCTION. NOTE THAT THE "ADA™ INSTRUCTION ESSENTIALLY ALLOWS THE
PROGRAMMER TO DOUBLE THF VALUE OF THE ACCUMULATOR (WHICH IS THE A"
REGISTER)! IF THE ADDITION CAUSES AN "“OVER-FLOW" OR “UNDER-FLOV'
THEN THE “CARRY"™ ("C" FLAG) WILL BE AFFECTED.

ADD THE CONTENTS OF A CPU REGISTER PLUS THE VALUE OF THE
CARRY FLAG TO THE ACCUMULATOR

ACA 210
ACB 211
ACC 212
ACD 213
ACE 21 4
ACH 215
ACL 21 6

THIS GROUP IS IDENTICAL TO THE PREVIOUS GROUP EXCEPT THAT NOW
THE CONTENT OF THE CARRY FLAG IS CONSIDFERED AS AN ADDITIONAL BIT
(MSB) IN THE SPECIFIED CPU REGISTER AND THE COMBINED VALUE OF THE
CARRY BIT PLUS THE CONTENTS OF THE SPECIFIED CPU REGISTER ARE ADDED
TO THE VALUE IN THE ACCUMULATOR. THE RESULTS ARE LEFT IN THE ACCUM-
ULATOR. AGAIN, WITH THE EXCEPTION OF THE "ACA"™ INSTRUCTION, THE
CONTENTS OF THE SPECIFIED CPU REGISTER IS LEFT UNCHANGED. AGAIN T0O,

THE CARRY BIT ("C*" FLAG) VWILL BE AFFECTED BY THE RESULTS OF THE OPER=
ATION.

SUBTRACT THF CONTENTS OF A CPU REGISTER FROM THE ACCbMULATOR

SUA 220
SUB 2 21
suc 222
SUD 223
SUE 2 2 a
SUH 225
SUL 22 6

THIS GROUP OF INSTRUCTIONS WILL CAUSE THE PRESENT VALUE OF THE
SPECIFIED CPU REGISTER TO BE SUBTRACTED FROM THE VALUE IN THE ACCUMU-
LATOR. THE VALUE OF THE SPECIFIED REGISTER IS NOT CHANGED EXCFPT IN
THE CASE OF THE "SUA'" INSTRUCTION. (NOTE THAT THE "SUA* INSTRUCTION
IS A CONVENIENT INSTRUCTION WITH WHICH TO *"CLEAR" THE ACCUMULATOR).

THE CARRY FLAG WILL BE AFFECTED BY THE RESULTS OF A SUBTRACT INSTRUC-
TION.

SUBTRACT THE CONTENTS OF A CPﬂ REGISTER AND THE VALUF OF THE
CARRY FLAG FROM THE ACCUMULATOR

SBA 2 3¢9
SBB 2 31
SBC 2 32
SBD 2 33
SBE 2 3 4
SBH 2 35
SBL 2 3 6

THIS GROUP 1S IDENTICAL TO THE PREVIOUS GROUP EXCEPT THAT NOWV
THE CONTENT OF THE CARRY FLAG IS CONSIDERED AS AN ADDITIONAL BIT
(MSB) IN THE SPECIFIED CPU REGISTER AND THE COMBINED VALUE OF THE
CARRY BIT PLUS THE CONTENTS OF THE SPECIFIED CPU REGISTER ARE SUB-
TRACTED FROM THE VALUE IN THE ACCUMULATOR. THE RESULTS ARE LEFT IN
THE ACCUMULATOR, AND THE CARRY BIT ("C" FLAG) IS AFFECTED BY THE
RESULT OF THE OPERATION. WITH THE EXCEPTION OF THE "SBA"™ INSTRUC=-
TION THE CONTENTS OF THE SPECIFIED CPU REGISTER IS LEFT UNCHANGED.

COMPARE THE VALUE IN THE ACCUMULATOR AGAINST
THE CONTENTS OF A CPU REGISTER

CPA 2 780
CPB. 2 71
CPC 2 72
CPD 2 73
CPE 2 7 4
CPH 2 75
CPL 2 76

THE "“COMPARE"™ GROUP OF INSTRUCTIONS ARE A UVERY POWERFUL AND
SOMEWVHAT UNIQUE SET OF INSTRUCTIONS. THEY DIRECT THE COMPUTER TO
COMPARE THE CONTENTS OF THE ACCUMULATOR AGAINST ANOTHER REGISTER
AND TO SET THE “FLAGS"™ AS A RESULT OF THE COMPARING OPFRATION.

IT IS ESSENTIALLY A SUBTRACTION OPERATION WITH THE VALUE OF THE
SPECIFIED REGISTER BEING SUBTRACTED FROM THE VALUE OF THE ACCUMU-
LATOR EXCEPT THAT THE VALUE OF THE AGCUMULATOR IS NOT AGTUALLY
ALTERED BY THE OPERATION. HOWEVER, THE "FLAGS" ARE SET IN THE SAME
MANNER AS THOUGH AN ACTUAL SUBTRACTION OPERATION HAD OCCURED. THUS,
BY SUBSEQUENTLY TESTING THE STATUS OF THE VARIOUS FLAGS AFTER A COM-

1 -7

PARE INSTRUCTION HAS BEEN EXECUTED, THE PROGRAM CAN DFTERMINE WHETHER
THE "COMPARE" OPERATION RESULTED IN A MATCH, OR NON-MATCH, AND IN THE
CASE OF A NON-MATCH WHETHER THE COMPARED REGISTER CONTAINED A VALUE
GREATER OR LESS THAN THAT IN THE ACCUMULATOR. THIS WOULD BF ACCOMP-
LISHED BY TESTING THE *Z" FLAG AND "C*" FLAG RESPECTIVELY UTILIZING

A “JUMP'" OR "CALL" FLAG TESTING INSTRUCTION (WHICH WILL BF DESCRIBED
LATER) .

ADDITION, SUBTRACTION, AND COMPARE INSTRUCTIONS THAT USE
WORDS IN MEMORY AS OPFRANDS

THE FIVE TYPES OF MATHEMATICAL OPERATIONS: ADD, ADD WITH CARRY,
SUBTRACT, SUBTRACT WITH CARRY, AND THE COMPARF; WHICH HAVE JUST
BEFN PRESENTED FOR PERFORMING THE OPFRATIONS WITH THE CONTENTS OF
THF CPU REGISTERS, CAN ALL ALSO BE PERFORMED WITH WORDS THAT ARFE IN
MEMOFY. AS WITH THE "LOAD" INSTRUCTIONS WITH MFMORY, THE '"H"™ AND "L"
REGISTERS MUST CONTAIN THF ADDRESS OF THE WORD IN MEMORY THAT IT IS
DESIFED TO ADD, SUBTRACT, OR COMPARE TO THE ACCUMULATOR. THF SAME
CONDITIONS FOR THE OPERATIONS AS WAS DETAILFD WHEN USING THE CPU RFGIS-
TERS APPLY. THUS, FOR MATHEMATICAL OPERATIONS WITH A WOPD IN MEM=-
ORY, THE FOLLOWING INSTRUCTIONS ARF USED:

ADD THE CONTENTS OF A MEMORY WORD TO THE ACCUMULATOR
ADM 20 17
ADD THE CONTENTS OF A MEMORY WORD PLUS THF VALUE OF THE
CARRY FLAG TO THE ACCUMULATOR
ACM 21 7
SUBTRACT THE CONTENTS OF A MEMORY WORD FROM THE ACCUMULATOR
SUM 2277
SUBTRACT THE CONTENTS OF A MEMORY WORD AND THE UVALUE OF THE
CARRY FLAG FROM THE ACCUMULATOR
SBM 2 37
COMPARE THE VALUE IN THF ACCUMULATOR AGAINST
THE CONTENTS OF A MEMORY WORD

CPM 277

"IMMEDIATE" TYPE ADDITIONS, SUBTRACTIONS, AND COMPARE INSTRUCTIONS

THE S TYPES OF MATHEMATICAL OPERATIONS DISCUSSED CAN ALSO BF PFR-
FORMED WITH THE OPERAND BEING THE WORD OF DATA IMMEDIATELY AFTER THE
- INSTRUCTION. THIS GROUP OF INSTRUCTIONS IS SIMILAR IN FORMAT TO THE
PREVIOUSLY DESCRIBED "LOAD IMMEDIATE"™ INSTRUCTIONS. THE SAME CONDI-
TIONS FOR THE MATHFMATIC OPERATIONS AS DISCUSSED FOR THE OPERATIONS
WITH THE CPU REGISTERS APPLY.

ADD “IMMEDIATE"™

ADI 08 4

ADD WITH CARRY “IMMFDIATE"

ACl 21 4

SUBTRACT " IMMEDIATE"

sul P2 a

SUBTRACT WITH CARRY "IMMEDIATE"

SBI B 3 4

COMPARE "IMMEDIATE"

CPl1 6 7 4

LOGICAL INSTRUCTIONS WITH THE ACCUMULATOR

THERE ARE SEVERAL GROUPS OF INSTRUCTIONS WHICH ALLOV BOOLEAN
LOGIC OPERATIONS TO BE PERFORMED BETWEEN THE CONTENTS OF THE CPU
REGISTERS AND THE 'A' OR ACCUMULATOR REGISTER, AS VELL AS BETVEEN
CONTENTS OF LOCATIONS IN MEMORY AND THF “A*" REGISTER. IN ADDITION
THERE ARE LOGIC "IMMEDIATE" TYPE INSTRUCTIONS. THE BOOLEAN LOGIC
OPERATIONS ARE VALUABLE IN A NUMBER OF PROGRAMMING APPLICATIONS.
THE INSTRUCTION SET ALLOWS THREE BASIC BOOLEAN OPERATIONS TO BE PFR-
FORMED. THESE ARE THE: "“LOGICAL AND:"™ “LOGICAL OR3*" AND "EXCLUSIVE
OR" OPERATIONS. EACH TYPE OF LOGIC OPERATION IS PERFORMED ON A "BIT-
BY-BIT" BASIS BETWEEN THE ACCUMULATOR REGISTER AND THE CPU REGISTER
OR MEMORY LOCATION SPECIFIED BY THE INSTRUCTION. A DETAILED EXPLANA-
TION OF EACH TYPE OF LOGIC OPERATION, AND THE APPROPRIATF INSTRUCTIONS
FOR EACH TYPE 1S PRESENTED BELOW. THE LOGIC INSTRUCTION SET IS ALSO
VALUABLE BECAUSE ALL OF THEM WILL CAUSFE THF CARRY (“C'") FLAG TO BFE
SET TO THE "@* CONDITION. THIS 1S IMPORTANT IF ONE IS GOING TO PER-
FORM A SFQUENCE OF INSTRUCTIONS THAT WILL EVENTUALLY USE THE STATUS
OF THE "“C" FLAG TO ARRIVE AT A DECISION AS IT ALLOWS THE PROGRAMMER
TO SET THE "C"™ FLAG TO A KNOWN STATE AT THE START OF THF SEQUENCE.
ALL OTHER “FLAGS" ARE SET IN ACCORDANCF WITH RESULT OF THE LOGIC OPER-
ATION AND HENCE THE GROUP OFTEN HAS VALUE WHEN THE PROGRAMMER DESIRES
TO DETERMINE THE CONTENTS OF A REGISTER THAT HAS JUST BEFN “LOADED"
-INTO A REGISTER (SINCE THE "LOAD" INSTRUCTIONS DO NOT AFFECT THE STATF
OF THE “FLAGS').

THE BOOLEAN *“AND*" OPERATION AND INSTRUCTION SET

WHEN THE BOOLFAN "AND"™ INSTRUCTION IS EXECUTED, EACH BIT OF THE
ACCUMULATOR WILL BE COMPARED WITH THE CORRESPONDING BIT IN THE REGISTER
OR MEMORY LOCATION SPECIFIED BY THE INSTRUCTION. AS FACH BIT IS
COMPARED A LOGIC RESULT VILL BE PLACED IN THE ACCUMULATOR FOR EACH
BIT COMPARISON. THE LOGIC RESULT IS DETFRMINED AS FOLLOWS: IF BOTH
THE BIT IN THE ACCUMULATOR AND THE BIT IN THE REGISTER WITH WHICH THE
OPERATION IS BEING PERFORMED ARE A "1," THEN THE ACCUMULATOR BIT

1 -9

VILL BE LEFT AS A "l." FOR ALL OTHER POSSIBLE COMBINATIONS (I.E.,
THE. ACCUMULATOR BIT = @ AND THE OTHER REGISTER'S BIT = 1, OR IF

THE ACCUMULATOR BIT = 1 AND THF OTHER REGISTER'S BIT = 8, OR 1F BOTH
THE ACCUMULATOR AND THE OTHER REGISTER HAVE THE PARTICULAR BIT = 8),
THEN THE ACCUMULATOR BIT WILL BE SET TO "“@." AN EXAMPLE WILL ILLUS~
TRATE THE LOGICAL "“AND" OPERATION: ’

INITIAL STATE OF THE ACCUMULATOR: 1106101 @6
CONTENTS OF OPERAND REGISTER: 112801100
FINAL STATE OF THE ACCUMULATOR: 1 0001 @066

THERE ARE 7 LOGICAL "AND" INSTRUCTIONS THAT ALLOW ANY CPU REGISTER
TO BE USED AS THE 'AND" OPERAND. THEY ARE AS FOLLOWS:

NDA 2 40
NDB 2 41
NDC 2 a2
NDD 2 4 3
NDE 2 4 4
NDH 2 45
NDL 2 4 6

THE CONTENTS OF THE OPFRAND REGISTFER IS NOT ALTERED BY AN "“AND"
LOGICAL INSTRUCTION.

THERE IS ALSO A LOGICAL "AND" INSTRUCTION THAT ALLOWS A VWORD IN
MEMORY TO BE USED AS AN OPERAND. THF ADDRESS OF THE WORD IN MEMORY
THAT WILL BE USED 1S “POINTED TO' BY THE CONTENTS OF THE “H*" AND "L*™
CPU REGISTERS.

NDM 2 477

AND FINALLY THERE IS ALSO A LOGICAL 'AND*" “IMMEDIATE" TYPE OF
INSTRUCTION THAT WILL USE THE CONTENTS OF THE WORD IMMEDIATELY FOLLOV-
. ING THE INSTRUCTION AS THE OPERAND.

NDI 8 4 4

THE NEXT GROUP OF BOOLEAN LOGIC INSTRUCTIONS DIRECT THE
COMPUTER TO PERFORM THE LOGICAL *"OR*" OPERATION ON A “BIT-BY=-BIT" BACFIS
WITH THE ACCUMULATOR AND THE CONTENTS OF A CPU REGISTER OR_A WORD IN
MEMORY. THE LOGICAL "OR"™ OPFRATION VWILL RESULT IN THE ACCUMULATOR
HAVING A BIT SET TO "1" IF EITHER THAT BIT IN THE ACCUMULATOR, OR
THE CORRESPONDING BIT IN THE OPERAND REGISTER 1S A *"l.'" SINCE
THE CASE WHERE BOTH THE ACCUMULATOR BIT AND THE OPERAND BIT IS A “1*
ALSO SATISFIES THE RELATIONSHIP, THAT CONDITION WILL ALSO RESULT IN
THE ACCUMULATOR BIT BEING A "1." IF NEITHFR RFGISTER HAS A ONE
-IN THE BIT POSITION, THEN THE ACCUMULATOR BIT REMAINS "@#." AN
EXAMPLE ILLUSTRATES THE RESULTS OF A LOGICAL *OR' OPERATION:

INITIAL STATE OF THE ACCUMULATOR: 181061018
CONTENTS OF THE OPERAND REGISTER: 11601180628
FINAL STATE OF THE ACCUMULATOR: 111811180

THERE ARE 7 LOGICAL *“OR*" INSTRUCTIONS THAT ALLOV ANY CPU REGIS=-
TER TO BE USED AS THE “OR" OPERAND. THEY ARE:

ORA 2 680
ORB 2 61
ORC 2 62
ORD 2 63
ORE 2 6 4
ORH 2 65
ORL 2 6 6

AND, BY USING THE "H" AND *"L" REGISTERS AS "POINTERS* ONE CAN
ALSO USE A WORD.IN MFMORY AS AN "OR' OPERAND:

ORM 2 617
THERE 1S ALSO THE LOGICAL "OR' " IMMEDIATE" INSTRUCTION:
ORI B 6 4

AS WITH THE LOGICAL '"AND* GROUP OF INSTRUCTIONS, THE LOGICAL °‘'OR"™
INSTRUCTION DOES NOT ALTER THE CONTENTS OF THE OPERAND REGISTER.

THE LAST GROUP OF BOOLEAN LOGIC INSTRUCTIONS IS A VARIATION OF
THE LOGIC '"OR."™ THE VARIATION IS TERMED THE LOGICAL "EXCLUSIVE
OR." THE *"EXCLUSIVE OR' OPERATION IS SIMILAR TO THE '"OR' EXCEPT THAT
WHEN THE CORRESPONDING BITS IN BOTH THE ACCUMULATOR AND THE OPERAND
REGISTER ARE A "1 THEN THF ACCUMULATOR BIT WILL BE SET TO *"@." THUS,
THE ACCUMULATOR BIT WILL BE A 1" AFTER THE OPFRATION ONLY IF JUST
ONE OF THE REGISTERS (ACCUMULATOR REGISTER OR OPERAND REGISTER) HAS
A 1" IN THE BIT POSITION. (AGAIN, THE OPERATION IS PERFORMED ON A
BIT-BY-BIT BASIS). AN EXAMPLE PROVIDES CLARIFICATION:

INITIAL STATE OF THE ACCUMULATOR: 1910610186
CONTENTS OF THE OPERAND REGISTER: i1 19606118680
FINAL STATE OF THE ACCUMULATOR: 711926110

THE 7 INSTRUCTIONS THAT ALLOW THE CPU REGISTERS TO BE ﬁSED AS
OPERANDS ARE:

XRA 25890
XRB 2 51
XRC 2 52
XRD 2 53
XRE 2 5 4
XRH 2 55
XRL 2 5 6

THE INSTRUCTION THAT USES REGISTERS "H" AND "L"™ AS POINTERS TO A
MEMORY LOCATION IS:

XRM 2 5 7 .
AND THE "EXCLUSIVE OR" “IMMEDIATE" TYPE. INSTRUCTIOM IS:

XRI 8 5 4

AS. IN THE CASE OF THE LOGICAL '"OR" OPERATION, THE OPFRAND REGISTER
- 1S NOT ALTERED EXCEPT FOR THE SPECIAL CASE WHFN THF "“XRA" INSTRUCTION
.18 USFDe THIS INSTRUCTION, WHICH DIRECTS THF COMPUTER TO “EXCLUSIVE
OR" THE ACCUMULATOR (CPU REGISTER “A*") VWITH ITSFLF, VILL CAUSE THF
OPERAND REGISTER - SINCE IT IS ALSO THE ACCUMULATOR, TQ HAVE ITS CON=-
TENTS ALTERED (UNLESS IT IS ZFRO AT THE TIME THE INSTRUCTION IS ISS~-
UED). THIS IS BECAUSE, REGARDLESS OF WHAT VALUE 1S IN THE ACCUMU-
LATOR, IF IT IS "EXCLUSIVE-ORED'" WITH ITSELF, THE RFSULT WILL ALWAYS
BE ZERO! THE EXAMPLE ILLUSTRATES:

ORIGINAL VALUE OF THE ACCUMULATOR: 18101061202
“EXCLUSIVE OR" VWITH ITSELF: 10161061606
FINAL VALUE OF THE ACCUMULATOR: P 00O 06000

TH1S ONLY OCCURS WHEN THE LOGICAL “EXCLUSIVE OR*" 1S PERFORMED
ON THE ACCUMULATOR ITSELF. IT CAN BE SHOWN THAT THF RESULTS OF PFR-
FORMING THE LOGICAL "OR"™ OR LOGICAL "AND" BETWEEN THE ACCUMULATOR
AND. ITSELF WILL RESULT. IN THFE ORIGINAL ACCUMULATOR VALUE BEINGC
RETAINED.

INSTRUCTIONS FOR ROTATING THE CONTENTS OF THE ACCUMULATOR

IT IS OFTEN DESIRABLE TO BE ABLE TO "SHIFT'" THE CONTENTS OF THE
ACCUMULATOR EITHER RIGHT OR LEFT. IN A FIXED LENGTH REGISTER, A SIM-
PLE SHIFT OPERATION WOULD RESULT IN SOME INFORMATION BEING LOST BE=-
CAUSE WHAT WAS IN THE MSB OR LSB (DEPENDING ON IN WHICH DIRECTION THE
SHIFT OCCURED) WOULD JUST BE SHIFTED RIGHT OUT OF THE REGISTER! THERF=-
FORE, INSTEAD OF JUST SHIFTING THE CONTENTS OF A REGISTER, AN OPFRATION
TERMED *“ROTATING® IS UTILIZED. NOW, INSTEAD OF JUST SHIFTING A BIT
OFF THE END OF THE REGISTER, THF BIT. 1S BROUGHT AROUND TO THE OTHER
END OF THE REGISTER. FOR INSTANCE, IF THE REGISTER IS "“ROTATED" TO
THE RIGHT, THE LSB (LEAST SIGNIFICANT BIT) WOULD BE BROUGHT ARQOUND TO
THE POSITION OF THE MSB (MOST SIGNIFICANT BIT) IN THE REGISTER WHICH
WOULD HAVE BEEN VACATED BY THE SHIFTING OF ITS ORIGINAL CONTENTS TO THE
RIGHT. OR, IN THE CASE OF A SHIFT TO THE LEFT, THE MSB WOULD BE
BROUGHT ARQOUND TO THE POSITION OF THE LSB.

SINCE THE CARRY BIT (CARRY OR *“C*" FLAG) CAN BE CONSIDFRED AS AN
EXTENSION OF THE ACCUMULATOR REGISTER, 1T IS OFTEN DESIRED THAT THE
CARRY BIT BE CONSIDERED AS PART OF THE ACCUMULATOR (THE MSB) DURING
A ROTATE OPERATION. THE INSTRUCTION SET FOR THIS MACHINE ALLOVS TWO
TYPES OF ROTATE INSTRUCTIONS. ONE CONSIDERS THE CARRY BIT TO BE PART
OF THE ACCUMULATOR REGISTER FOR THE ROTATE OPERATION, AND THE OTHER
TYPE DOES NOT. . IN ADDITION, EACH TYPE OF ROTATE CAN BE DONE EITHER
TO THE RIGHT, OR TO THE LEFT.

. IT SHOULD BE NOTED THAT THE ROTATE OPERATIONS ARE.PARTICﬁLARLY
VALUABLE VHEN. IT IS DESIRED TO MULTIPLY A NUMBER BECAUSE SHIFTING THE
CONTENTS OF A REGISTER TO THE LEFT. IS A QUICK WAY TO MULTIPLY A BINARY"

NUMBER BY POWERS OF TWO., AND SHIFTING TO THE RIGHT PROVIDES THE INVERSE
OPERATION.

ROTATING THE ACCUMULATOR LEFT

RLC 0 6 2

1 - 12

ROTATATING THE ACCUMULATOR LFFT WITH THE "RLC" INSTRUCTION MFANS
THE MSB OF THE ACCUMULATOR WILL BE BROUGHT AROUND TO THE LSB POSITION
AND ALL OTHER BITS ARE SHIFTED ONE POSITION TO THE LEFT. WHILE THIS
. INSTRUCTION DOES NOT SHIFT THROUGH THE CARRY BIT, THF CARRY BIT VILL
BE SET BY THE STATUS OF THE MSB OF THE ACCUMULATOR AT THE START OF
THE ROTATE OPERATION. (THIS FEATURE ALLOWS THF PROGRAMMER TO DETER~
MINE WHAT THE MSB WAS PRIOR TO THE SHIFTING OPERATION BY TESTING THE
*C' FLAG AFTER THE ROTATE INSTRUCTION HAS BEEN EXECUTED).

ROTATING THE ACCUMULATOR LEFT THROUGH THE CARRY BIT
RAL B 22

THE "RAL" INSTRUCTION VWILL CAUSE THE MSB OF THE ACCUMULATOR TO GO
INTO THE CARRY BIT. THE INITIAL VALUE OF THE CARRY BIT VWILL BE SHIFT-
ED AROUND TO THE LSB OF THE ACCUMULATOR. ALL OTHER BITS ARE SHIFTED
ONE POSITION TO THE LEFT.

ROTATING THE ACCUMULATOR RIGHT
RRC g1 2

THE "RRC'" INSTRUCTION IS SIMILAR TO THE “RLC*" INSTRUCTIOM EXCFPT
THAT NOW THE LSB OF THE ACCUMULATOR 1S PLACFD IN THE MSB OF THE AC-
CUMULATOR AND ALL OTHER BITS ARE SHIFTED ONF POSITION TO THE RIGHT.
ALSO, THF CARRY BIT WILL BE SET TO THF INITIAL VALUE OF THE LSB OF THF
ACCUMULATOR AT THE START OF THE OPERATION.

ROTATING THE ACCUMULATOR RIGHT THROUGH THE CARRY BIT
RAR a3 2

HERE, THE LSB OF THE ACCUMULATOR IS BROUGHT AROUND TO THE CARRY
BIT AND THE INITIAL VALUE OF THE CARRY BIT 1S SHIFTED TO THE MSB OF
THE ACCUMULATOR. ALL OTHER BITS ARE SHIFTED A POSITION TO THE RIGHT.

IT SHOULD BY NOTED THAT THE "C' FLAG IS THE ONLY FLAG THAT CAN BF
ALTERED BY A ROTATE INSTRUCTION. ALL OTHER FLAGS REMAIN UNCHANGED.

JUMP INSTRUCTIONS

THE INSTRUCTIONS DISCUSSED SO FAR HAVE ALL BEEN SORT OF “DIRECT
ACTION" INSTRUCTIONS. THE PROGRAMMER ARRANGES A SEQUENCE OF THESE
TYPES OF INSTRUCTIONS IN MEMORY AND WHEN THE PROGRAM 1S STARTED THF
COMPUTER PROCEEDS TO EXECUTE THE INSTRUCTIONS IN THE ORDER IN WHICH
THEY ARE ENCOUNTERED. THE COMPUTER AUTOMATICALLY READS THE CONTENTS
OF A MEMORY LOCATION, EXECUTES THE INSTRUCTION IT FINDS THERE, AND
THEN AUTOMATICALLY INCREMENTS A SPECIAL ADDRESS REGISTFR CALLED A
“PROGRAM COUNTER" THAT WILL RESULT IN THE MACHINE READING THE INFOR-
MATION CONTAINED IN THE NEXT SEQUENTIAL MEMORY LOCATION. HOVEVER, IT
IS OFTEN DESIRABLE TO PERFORM A SERIES OF INSTRUCTIONS LOCATED IN ONF
SECTION OF MEMORY., AND THEN SKIP OVER A GROUP OF MEMORY LOCATIONS AND
START EXECUTING INSTRUCTIONS IN ANOTHER SECTION OF MEMORY. THIS ACT-
ION CAN BE ACCOMPLISHED BY A GROUP OF INSTRUCTIONS THAT VILL CAUSF A
NEW ADDRESS VALUE T0 BE PLACED IN THE "PROGRAM COUNTER."™ THIS VILL
CAUSE THE COMPUTER TO GO TO A NEW SECTION OF MEMORY AND TO CONTINUE
EXECUTING INSTRUCTIONS SEQUENTIALLY FROM THE NEW MEMORY LOCATION.

1 - 13

THE “JUMP" INSTRUCTIONS IN THIS COMPUTER ADD CONSIDERABLE POWER
TO THE MACHINE'S CAPABILITIES BECAUSE THERE ARE A SERIES OF "CONDI-
TIONAL' JUMP INSTRUCTIONS AVAILABLE. THAT IS, THE COMPUTER CAN BE
DIRECTED TO TEST THE STATUS OF A PARTICULAR FLAG ("C," "Z," "S,*
OR "P'") AND IF THE STATUS OF THE FLAG IS THE DESIRED ONE, THEN A
"JUMP" WILL BE PERFORMED. IF IT IS NOT, THE MACHINE WILL CONTINUE
TO EXECUTE THE NEXT INSTRUCTION IN THE CURRENT SEQUENCE. THIS CAPA-
BILITY PROVIDES A MEANS FOR THE COMPUTER TO "MAKE DECISIONS' AND TO
MODIFY ITS OPERATION AS A FUNCTION OF THE STATUS OF THE VARIOQUS
FLAGS AT THE TIME THAT THE PROGRAM IS BEING FXECUTED.

IN A MANNER SIMILAR TO "IMMEDIATE" TYPES OF INSTRUCTIONS, THE
"JUMP" INSTRUCTIONS REQUIRE MORE THAN ONE WORD OF MEMORY. A JUMP
INSTRUCTION REQUIRES THREE WORDS TO BE PROPERLY DEFINED. (REMEMBER
THAT "IMMEDIATE" TYPE INSTRUCTIONS REQUIRED TWO WORDS). THE "JUMP"
INSTRUCTION ITSELF IS THE FIRST WORD. THE SECOND WORD MUST CONTAIN
THE °''LOW ADDRESS'™ PORTION OF THE ADDRESS OF THE WORD IN MEMORY THAT
THE "PROGRAM COUNTER"™ IS TO BE SET FOR - IN OTHER WORDS, THE NEW LOC-
ATION FROM WHICH THE NEXT INSTRUCTION IS TO BE TAKEN. THE THIRD WQORD
MUST CONTAIN THE "HIGH ADDRESS'" (PAGE) OF THE MEMORY ADDRESS THAT THE
“"PROGRAM COUNTER" WILL BE SET TO, HENCE, THE “PAGE" OR HIGH ORDER POR-
TION OF THE ADDRESS THAT THE COMPUTER WILL "“JUMP TO' TO OBTAIN ITS
NEXT INSTRUCTION.

THE UNCONDITIONAL JUMP INSTRUCTION
JMP 1 X 4
NOTE: THE MACHINE CODE 1 X 4 INDICATES THAT ANY CODE FOR THE
SECOND OCTAL DIGIT OF THE MACHINE CODE IS VALID. IT IS RECOMMENDED
AS A STANDARD PRACTICE THAT THE CODE @ BE USED THUS THE TYPICAL
MACHINE CODE WOULD BE 1 @ 4.
REMEMBER, THE JUMP INSTRUCTION MUST BE FOLLOWED BY TW0O MORE

WORDS WHICH CONTAIN THE LOW, AND THEN THE HIGH (PAGE) PORTION OF THE
ADDRESS THAT THE PROGRAM IS TO "“JUMP"™ TO!

JUMP IF THE DESIGNATED FLAG IS TRUE (CONDITIONAL JUMP)

JTC 1 40
JTZ 1 5@
JTS 1 6 @
JTP 1 70

AS WITH THE UNCONDITIONAL JUMP INSTRUCTION, THE CONDITIONAL JUMP
INSTRUCTIONS MUST BE FOLLOWED BY TWO0 WORDS OF INFORMATION - THE LOW
PORTION, THEN THE HIGH PORTION, OF THE ADDRESS THAT PROGRAM FXECUTION
IS TO CONTINUE FROM IF THE JUMP IS EXECUTED. THE "JUMP IF TRUE"

GROUP OF INSTRUCTIONS WILL ONLY JUMP TO THE DESIGNATED ADDRESS IF THE
CONDITION OF THE APPROPRIATE FLAG IS TRUE (LOGICAL *1"). THUS THE
“JTC'" INSTRUCTION STATES THAT IF THE CARRY FLAG (“C*") IS A LOGICAL *i*
(TRUE) THEN THE JUMP IS TO BE EXECUTED. IF IT IS A LOGICAL "@" (FALSE)
THEN PROGRAM EXECUTION IS TO CONTINUE WITH THE NEXT INSTRUCTION IN THE
CURRENT SEQUENCE OF INSTRUCTIONS. IN A SIMILAR MANNER THE "JTZ"
INSTRUCTION STATES THAT IF THE ZERO FLAG IS TRUE THEN THE JUMP 1S TO

BE PERFORMED. OTHERWISE THE NEXT INSTRUCTION IN THE PRESENT SEQUENCE
1S EXECUTED. LIKEWISE FOR THE '"JTS'" AND “JTP'" INSTRUCTIONS.

JUMP IF THE DESIGNATED FLAG IS FALSF (CONDITIONAL JUMP)

JFC 1 860
JFZ 110
JFS 120
JFP 1 380

AS WITH ALL JUMP INSTRUCTIONS THESE INSTRUCTIONS MUST BF FOLLOVED
BY THE LOW ADDRESS THEN HIGH ADCRESS OF THE MEMORY LOCATION THAT PRO-
GRAM EXECUTION 1S TO CONTINUE FROM IF THE JUMP 1S EXECUTED. THIS
GROUP OF INSTRUCTIONS IS THE OPPOSITE OF THE JUMP IF THE FLAG IS TRUE
GROUP. FOR INSTANCE THE “JFC" INSTRUCTION COMMANDS THE COMPUTER TO
TEST THE STATUS OF THE CARRY (“C*") FLAG. IF THE FLAG IS "FALSE," 1.F.
A LOGIC "0, THEN THE JUMP 1S TO BE PERFORMED. IF IT IS “TRUE"™ THEN
PROGRAM EXECUTION IS TO CONTINUE WITH THE NEXT INSTRUCTION IN THE CUR-
RENT SEQUENCE OF INSTRUCTIONS. THE SAME PROCEDURE HOLLCS FOR THE '"JFZ,"
"JFS,*" AND "JFP" INSTRUCTIONS.

SUBROUTINE CALLING INSTRUCTIONS

OUITE OFTEN WHEN A PROGRAMMER IS DEVELOFING COMPUTER PROGRAMS THF
PROGRAMMER WILL FIND THAT A PARTICULAR ALGORITHM (SEQEUNCE OF INSTRUC-
TIONS FOR PERFORMING A FUNCTION) CAN BE USED MANY TIMES IN DIFFERENT
PARTS OF THE PROGRAM. RATHER THAN HAVE TO KEEP ENTERING THE SAME
SEQUENCE OF INSTRUCTIONS AT DIFFERENT LOCATIONS IN MEMORY ~ WHICH
WOULD NOT ONLY CONSUME THE TIME OF THE PROGRAMMER BUT WOULD ALSO RE=-
SULT IN A LOT OF MEMORY BEINCG USED TO PERFORM ONE PARTICULAR FUNCTION,
~IT 1S DESIRABLE TO BE ABLE TO PUT AN OFTEN USED SEQUENCE OF COMMANDS

. IN ONE LOCATION IN MEMORY. THEN, WHENEVER THE PARTICULAR ALGORITHM

- 1S REQUIRED BY ANOTHER PART OF THE PROGRAM, IT WOULD BE CONVENIENT TO
“"JUMP*" TO THE SECTION THAT CONTAINED THE OFTEN USED ALGORITHM, PERFORM
THE SEQUENCE OF INSTRUCTIONS, AND THEN RETURN BACK TO THE "MAIN" PART
OF THE PROGRAM. THIS 1S A STANDARD PRACTICE IN COMPUTER OPERATIONS.
THE FREQUENTLY USED ALGORITHM CAN BE DESIGNATED AS A '"SUBROUTINE."™ A
SPECIAL SET OF INSTRUCTIONS ALLOVWS THE PROGRAMMER TO “CALL' - IN OTHER
WORDS SPECIFY A SPECIAL TYPE OF “JUMP TO," A SUBROUTINE. A SECOND
TYPE OF INSTRUCTION IS USED TO TERMINATE A SEQUENCE OF INSTRUCTIONS
THAT 1S TO BE CONSIDERED A SUBROUTINE. THIS SPECIAL TERMINATOR VILL
CAUSE THE PROGRAM OPERATION TO REVERT BACK TO THE NEXT SEQUENTIAL LOC=-
ATION IN MEMORY FOLLOWING THE INSTRUCTION THAT *CALLED"™ THE “SUB=-
ROUTINE." A GREAT DEAL OF COMPUTER POWER IS PROVIDED BY THE INSTRUC-
TION SET IN THIS MACHINE FOR “CALLING"™ AND "RETURNING" FROM SUBROUTINES.
THIS IS BECAUSE, IN A MANNER SIMILAR TO THE CONDITIONAL JUMP INSTRUC-
TIONS, THERE ARE A NUMBER OF "CONDITIONAL CALLING" COMMANDS AND A NUM-
BER OF *CONDITIONAL RETURN' COMMANDS. IN THE INSTRUCTION SET.

LIKE THE "JUMP'" INSTRUCTIONS, THE "CALL" INSTRUCTIONS ALL REQUIRE
THREE WORDS IN ORDER TO BE FULLY SPECIFIED. THE FIRST WORD IS THE
*"CALL' INSTRUCTION ITSELF. THE NEXT TW0 WORDS MUST CONTAIN THE LOWV
AND HIGH PORTIONS OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS
BEING “CALLED." '

WHEN A "“CALL'. INSTRUCTION 1S ENCOUNTERED BY THE COMPUTER, THE
“CPU" VWILL ACTUALLY SAVE THE CURRENT VALUE OF ITS PROGRAM COUNTER BY
STORING. IT IN A SPECIAL "“PROGRAM COUNTER PUSH-DOWN STACK.'" THIS STACK
. 1S CAPABLE OF HOLDING 7 ADDRESSES PLUS THE CURRENT OPERATING_ADDRESS.
WHAT THIS MEANS IS THAT THE MACHINE IS CAPABLE OF "NESTING" UP TO 7
SUBROUTINES AT ANY ONE TIME. THUS ONE CAN HAVE A SUBROUTINE, THAT IN
TURN CALLS ANOTHER SUBROUTINE - THAT IN TURN CALLS ANOTHER ONE, UP
TO 7 LEVELS AND THE MACHINE WILL BE ABLE TO "RETURN" TO THE INITIAL

l - 15

LOCATION. THE PRQGRAMMER MUST ENSURE THAT SUBROUTINES ARE NOT “NEST=-
ED" AT MORE THAN 7 LEVELS OTHERVISE THE '"PROGRAM COUNTER PUSH~-DOWN
STACK* WILL “PUSH" THE ORIGINAL CALLING ADDRESS(ES) COMPLETELY OUT

OF THE "PUSH-DOWN STACK" AND THE PROGRAM COULD NO LONGER AUTOMATICALLY
RETURN TO THE INITIAL “CALLING" ROUTINE.

THE "RETURN®" INSTRUCTION WHICH TERMINATES A SUBROUTINE ONLY RE-
QUIRES ONE WORD. WHEN THE CPU ENCOUNTERS A “RETURN" INSTRUCTION IT
CAUSES THE “"PROGRAM COUNTER PUSH-DOWN STACK"™ TO "POP'" UP ONE LEVEL.
THIS EFFECTIVELY CAUSES THE ADDRESS "SAVED" IN THE STACK BY THE CALLING
ROUTINE TO BE TAKEN AS THE NEW “PROGRAM COUNTER" AND HENCE PROGRAM
EXECUTION RETURNS TO THE CALLING ROUTINE.

THE UNCONDITIONAL CALL INSTRUCTION
CAL 1 X 6

THIS INSTRUCTION FOLLOWED BY TWO WORDS CONTAIMNING THE LOW AND THFN
THE HIGH ORDER OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS TO BE
EXECUTED 1S AN UNCONDITIONAL *CALL." THE SUBROUTINE VWILL BE EXECUTED
REGARDLESS OF THE STATUS OF THE “FLAGS.'" THE NEXT SEQUFNTIAL ADDRESS
AFTER THE *“CAL" INSTRUCTION IS SAVED IN THE “PROGRAM COUNTER PUSH-DOWN
STACK."

THE UNCONDITIONAL RETURN INSTRUCTION
RET e X 7
THIS INSTRUCTION DIRECTS THE CPU TO UNCONDITIONALLY "POP" THE

"PROGRAM COUNTER PUSH-DOWN STACK" UP ONE LEVEL. THUS PROGRAM EXECU=-

TION WILL CONTINUE FROM THE ADDRESS SAVED BY THE SUBROUTINE CALLING
INSTRUCTION.

CALL A SUBROUTINE IF THE DESIGNATED FLAG IS TRUE

CTC 1 42
CTZ 1 52
CTS 1 6 2
CTP 1 72

IN A MANNER SIMILAR TO THE CONDITIONAL *"JUMP IF TRUE" INSTRUCTIONS
THESE INSTRUCTIONS (WHICH MUST ALL BE FOLLOWED BY THE LOV AND HIGH
PORTIONS OF THE CALLED SUBROUTINE'S STARTING ADDRESS) WILL ONLY PER-
FORM THE *CALL" IF THE DESIGNATED FLAG IS IN THE TRUE (LOGICAL *"1')
STATE. IF THE DESIGNATED FLAG IS FALSE THEN THE "CALL" INSTRUCTION IS

IGNORED AND PROGRAM EXECUTION CONTINUES VITH THE NEXT SEQUENTIAL IN-
STRUCTION.

RETURN FROM A SUBROUTINE IF THE DESIGNATED FLAG IS TRUE

RTC @ 43
RTZ 2 53
RTS @ 63
RTP 673

THESE ONE WORD INSTRUCTIONS VWILL CAUSE A SUBROUTINE TO BE TERMI-
NATED ONLY. IF THE DESIGNATED FLAG IS IN THE LOGICAL *"1" (TRUE) STATE.

1 - 16

CALL A SUBROUTINE IF THE DESIGNATED FLAG IS FALSE

CFC 1 0 2
CFzZ 11 2
CFS 1 22
CFP 1 32

THESE INSTRUCTIONS ARE THE OPPOSITE OF THE PREVIOUS GROUP OF
CALLING COMMANDS. THE SUBROUTINE IS CALLED ONLY. IF THE DESIGNATED
FLAG IS IN THE FALSE (LOGICAL @) CONDITION. REMEMBER, THESE INSTRUC-
TIONS MUST BE FOLLOVED BY TW0 WORDS WHICH CONTAIN THE LOV AND THEN
HIGH PART OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS TO BE
EXECUTED IF THE DESIGNATED FLAG IS FALSE. IF THE FLAG 1S TRUE, THE
SUBROUTINE WILL NOT BE CALLED AND PROGRAM OPERATION WILL CONTINUE
VITH THE NEXT INSTRUCTION IN THE CURRENT SEQUENCE.

RETURN FROM A SUBROUTINE IF THE DESIGNATED FLAG IS FALSE

RFC @ 8 3
RFZ 613
RFS g 23
RFP @ 3 3

THESE ONE WORD. INSTRUCTIONS WILL TERMINATE A SUBROUTINE (PQP THE
"PROGRAM COUNTER STACK" UP ONE LEVEL) IF THE DESIGNATED FLAG.!S FALSE.
OTHERWISE THE INSTRUCTION 1S IGNORED AND PROGRAM OPERATION IS CONTIN-
UED WITH THE NEXT INSTRUCTION IN THE SUBROUTINE.

THE SPECIAL “RESTART" SUBROUTINE CALL. INSTRUCTIONS

THERE 1S A SPECIAL PURPOSE INSTRUCTION AVAILABLE THAT EFFECTIVELY
SERVES AS A ONE WORD SUBROUTINE CALL (REMEMBER THAT IT NORMALLY RE-
QUIRES THREE WORDS TO SPECIFY A SUBROUTINE CALL). THIS SPECIAL IN=-
STRUCTION ALLOWS THE PROGRAMMER TO CALL A SUBROUTINE THAT STARTS AT
ANY ONE OF EIGHT SPECIALLY DESIGNATED MEMORY LOCATIONS. THF EIGHT
SPECIAL MEMORY LOCATIONS ARE AT LOCATIONS: 000, 010, 020, 030, 646,
P58, 260 AND @878 ON PAGE ZERO. THERE ARE EIGHT VARIATIONS OF THE RE=-
START INSTRUCTION - ONE FOR EACH OF THE ABOVE ADDRESSES. THUS, THE
ONE WORD INSTRUCTION CAN SERVE TO “CALL" A SUBROUTINE AT THE SPECI-
FIED STARTING LOCATION (INSTEAD OF HAVING TWO ADDITIONAL WORDS TO SPEC-
- 1FY THE STARTING ADDRESS OF THE SUBROUTINE.) IT IS OFTEN CONVENIENT
TO UTILIZE A RESTART COMMAND AS A QUICK “CALL"™ TO AN OFTEN USFD SUB-
ROUTINE, OR AS AN EASY WAY TO CALL SHORT “STARTING" ROUTINES FOR LARGE
PROGRAMS - HENCE THE NAME FOR THE TYPE OF INSTRUCTION. THE EIGHT
RESTART INSTRUCTIONS - ALONG WITH THE STARTING ADDRESS OF THE SUBROUT-

- INE THAT EACH WILL AUTOMATICALLY "CALL"™. IS AS FOLLOVS:

INSTRUCTION MACHINE SUBROUTINE
(MNEMONIC) CODE STARTING ADDRESS
RST @ @ es nee eea
RST 1 215 000 010
RST 2 g 25 0d0 @20
RST 3 8 35 60e @39
RST 4 P 45 6668 640
RST 5 P55 P02 050
RST 6 P 65 0ee oe@
RST 7 8 75 200 670

—
]
L
~

INPUT INSTRUCTIONS

IN ORDER TO RECEIVE INFORMATION FROM AN EXTERNAL DEVICE THE comM-~
PUTER MUST UTILIZE A GROUP OF SPFCIAL SIGNAL LINFS. THE TYPICAL 8098
COMPUTER IS DESIGNED TO HANDLE UP TO EIGHT GROUPS (FACH GROUP HAVING
EIGHT SIGNAL LINES) OF INPUT SIGNALS. A GROUP OF SIGNALS IS ACCEPTED
AT THE COMPUTER BY WHAT IS REFFRRED TO AS AN "INPUT PORT." THE
COMPUTER CONTROLS THE OPFRATION OF THE “INPUT PORTS." UNDER PROGRAM
CONTROL, THE COMPUTER CAN BE DIRECTED TO OBTAIN THE INFORMATION THAT
IS ON THE GROUP OF LINES COMING IN TO ANY "INPUT PORT" AND BRING IT
INTO THE ACCUMULATOR. VARIOUS TYPES OF FXTERNAL FQUIPMENT - SUCH
AS A KEYBOARD - CAN BE CONNECTED TO THE INPUT PORT(S). WHEN IT IS
DESIRED TO HAVE INFORMATION OBTAINED FROM A SPFCIFIC "INPUT PORT" AN
INPUT INSTRUCTION MUST BE USED. THE INPUT INSTRUCTION SIMPLY IDENTI -
FIES WHICH INPUT PORT IS TO BE OPERATED AND WHEN EXECUTED CAUSES THE
SIGNAL LEVELS ON THE SELECTED INPUT PORT TO BE BROUGHT INTO THE "A"

CPU REGISTER (ACCUMULATOR). UP TO & INPUT PORTS MAY BE PROVIDED ON A
TYPICAL 8008 SYSTFM DESIGNATED PORTS @ - 7. (NOTE THAT THE MACHINE CODE
FOR AN INPUT PORT INCRFASES BY A FACTOR OF TWO FOR FACH AVAILABLF PORT).

INP 0 1 91
INP 1 1 6 3
INP 6 115
INP 7 117

AN INPUT INSTRUCTION ONLY REQUIRES ONE MACHINF CODE WORD. IT IS
ALSO IMPORTANT TO NOTE THAT AN INPUT INSTRUCTION - WHICH BRINGS NEW
DATA INTO THE ACCUMULATOR - DOES NOT AFFECT THE STATUS OF ANY OF THE
CPU FLAGS.

OUTPUT INSTRUCTIONS

IN ORDER TO OUTPUT INFORMATION TO AN EXTERNAL DEVICE THE COMPUTER
UTILIZES ANOTHER GROUP OF SIGNAL LINFS WHICH ARE REFERRED TO AS "OUT~-
PUT PORTS.'" A TYPICAL 8008 SYSTEM MAY BE FQUIPPED TO SERVICE UP TO
24 "OUTPUT PORTS.'" (EACH OUTPUT PORT ACTUALLY CONSIST OF EIGHT
SIGNAL LINES). AN OUTPUT INSTRUCTION CAUSFS THE CONTENTS OF THE CPU
“A'" REGISTER (ACCUMULATOR) TO BE TRANSFERRED TO THE SIGNAL LINES OF THE
DESIGNATED OUTPUT PORT. THE OUTPUT PORTS ARE NORMALLY DESIGNATED PORTS
16 - 37. (NOTE AGAIN THAT THE MACHINE CODE INCREASES BY A FACTOR OF TWO
FOR FACH DESIGNATED PORT).

oOUT 10 1 21
ouT 11 1 23
OUT 21 1 41
OUT 36 1 75
OUT 37 1 77

AN OUTPUT INSTRUCTION ONLY REQUIRES ONE MACHINF CODE WORD. 1IT
DOES NOT AFFECT THE STATUS OF ANY OF THE CPU FLAGS. OUTPUT PORT(S)
ARE CONNECTED TO EXTERNAL DEVICES - SUCH AS AN OSCILLOSCOPE DISPLAY
SYSTEM» AND PROVIDE CAPABILITY FOR THE COMPUTER TO DISPLAY INFORMATION
OR OTHERWISE CONTROL THE OPERATION OF EXTERNAL DEVICES.

1 - 18

THE HALT INSTRUCTION

THERE IS ONE MORE INSTRUCTION FOR THE COMPUTER'S INSTRUCTION SET.
THIS INSTRUCTION DIRECTS THE CPU TO STOP ALL OPERATIONS AND TO REMAIN
IN THAT STATE UNTIL AN "INTERRUPT" SIGNAL IS RECEIVED. IN A TYPICAL
80088 SYSTEM AN "INTERRUPT" SIGNAL MAY BE GENERATED BY AN OPERATOR
PRESSING A SWITCH OR BY AN EXTERNAL PIECE OF FQUIPMENT. THIS INSTRUCT=-
ION IS NORMALLY USED WHEN THE PROGRAMMER DESIRES TO HAVE A PROGRAM BE
TERMINATED, OR WHEN IT IS DESIRED TO HAVE THE MACHINE WAIT FOR AN
OPERATOR TO SET UP EXTERNAL CONDITIONS. THERE ARE THREE MACHINE
CODE INSTRUCTIONS THAT MAY BE USED FOR THE HALT COMMAND:

HLT 0 a0
HLT g 0 1
HLT 37717

THF. HALT INSTRUCTION DOES NOT AFFECT THE STATUS OF THE CPU FLAGS.
IT IS A ONE WORD INSTRUCTION.

INFORMATION ON INSTRUCTION EXECUTION TIMES

WHEN PROGRAMMING FOR REAL-TIME APPLICATIONS IT IS IMPORTANT TO KNOW
HOW MUCH TIME EACH TYPE OF INSTRUCTION REQUIRES TO BF EXECUTED. WITH
THIS INFORMATION THE PROGRAMMER CAN DEVELOP "TIMING LOOPS' OR DETER=-
MINE WITH SUBSTANTUAL ACCURACY HOW MUCH TIME 1T TAKES TO PERFORM A PART-
ICULAR SERIES OF INSTRUCTIONS. THIS INFORMATION IS ESPECIALLY IMPORTANT
WEN DEALING WITH PROGRAMS THAT CONTROL THE OPERATION OF EXTERNAL DE=-
VICES WHICH REQUIRE EVENTS TO OCCUR AT SPECIFIC TIMES.

THE FOLLOWING TABLE PROVIDES THE NOMINAL INSTRUCTION EXECUTION TIME
FOR EACH CATEGORY OF INSTRUCTION USED IN A 80048 SYSTEM. THFE PRFCISE
TIME NEEDED FOR EACH INSTRUCTION DEPENDS ON HOW CLOSE THE MASTER CLOCK
HAS BEEN SET TO THE NOMINAL VALUE OF 500 KHZ. THE TABLE SHOWS THE NUM-
BER OF CYCLE STATES REQUIRED BY THE TYPE OF INSTRUCTION FOLLOWED BY THE
NOMINAL TIME REQUIRED TO PERFORM THE ENTIRE INSTRUCTION. SINCE EACH
STATE EXECUTES IN 4 MICROSECONDS (U'SECS) THE TOTAL TIME REQUIRED TO
PERFORM THE INSTRUCTION AS SHOWN IN THE TABLE IS OBTAINED BY MULTIPLYING
THE NUMBER OF STATES BY 4 MICROSECONDS. BY KNOWING THE NUMBER OF STATES
REQUIRED FOR EACH INSTRUCTION THE PROGRAMMER CAN OFTEN REARRANGE AN
ALGORITHM OR SUBSTITUTE DIFFERENT TYPES OF INSTRUCTIONS TO PROVIDE PRO-
GRAMS THAT HAVE SPECIFIC EVENTS OCCURRING AT PRECISELY TIMED INTERVALS.

INSTRUCTION EXECUTION TIME TABLF

TYPE OF INSTRUCTION # OF STATES TOTAL EXECUTION TIME

LOAD DATA FROM ONE CPU
REGISTER TO ANOTHER CPU 5 286 U'SECS
REGISTER

9O 0 060 80 06060 0006000000 000000500 PO O PE OSSN OO C P PS OO OSOO OO0 N NSO DN OIS DSNDS OO

LOAD DATA FROM A CPU

REGISTER TO A LOCATION 7 28 U'SECS
IN MEMORY

- INSTRUCTION EXECUTION TIME TABLE

TYPE OF INSTRUCTION # OF STATES TOTAL EXECUTION TIME

LOAD DATA FROM A .
LOCATION IN MEMORY 8 32 U'SECS
TO A CPU REGISTER

® 0 0 00 08 000 0 G OGO OO0 OO OO OO N P L OIS ESONOENINNOS 0N LTSNSO N GOSN O MNPSOS

LOAD *IMMEDIATE"™ DATA & 32 U*SECS
INTO A CPU REGISTER

® 6 6 0 8 00600 G000 OGP S OE OGO O OSSN0 OSESL NSO OOO RSN OO SO0 NN E NS EeOOSSEN SO OESNGE PSS

LOAD “IMMEDIATE® DATA
INTO A LOCATION IN 9 36 U'SECS
MEMORY

0 @ 0 60 00 090 0 00 00 SO O C OO OLE LB P OCOOE S0P OOOB OO LON N0 OO H O OHOCEO 0TS OESSPODS

INCREMENT OR DECREMENT 5 20 U'SECS
A CPU REGISTER

G 0 0. 000 00000 0 00000 OPOEDE G EL OO T OONTOLEN D C S OSES SO OOOODPENONOENPOONNSTSEETOSOSEE

ARITHMETIC INSTRUCTION
BETWEEN THE ACCUMULATOR 5 20 U'SECS
AND A CPU REGISTER

® 0 00 8600600006060 060060060600 06006000 0008800800600 060 0060006006000 0 0000060660600 0600 09090900

COMPARE BETWEEN THE
ACCUMULATOR AND A] 28 U‘*SECS
CPU REGISTER

9 0 06 00 006060600 0069 T 0600608060660 06 8000600600008 00006606 ¢ 060606000 ¢ 0006060608000 0s6s00cs00s

ARITHMETIC OR COMPARE

INSTRUCTION BETWEEN 8 32 U'SECS
THE ACCUMULATOR AND A

WORD IN MEMORY

© 2 0 0 0 00 0G0 TP 00O OGO OO0 COEPPIE OO OO O EB 0GP OO0 COOB OG0 0000060000000 00se0esss

"IMMEDIATE" TYPE
ARITHMETIC AND COMPARE 8 32 U'SECS
INSTRUCTIONS

90 9 9 0 00 0O OO N OOO G OO OU N OO OPOENO OO PSPES OO0 NCPD SO0 E SNBSS eSS e

BOOLEAN MATH OPERATIONS
BETWEEN ACCUMULATOR AND 5 28 U'SECS
CPU REGISTERS

6060 0800600080000 0060800000038 08000000 0000080000000 000000600008000006800a00000se

1 - 20

INSTRUCTION EXECUTION TIME TABLE

TYPE OF INSTRUCTION # OF STATES TOTAL EXECUTION TIME

- . W . G WP G M R B D G S N R G G G D SR NP W GRS R G NP R N W T A I G G AP R AR SO W R G S GRS NS PGP N S R W R B 5 SRS R R S G

BOOLEAN MATH OPERATIONS
BETWEEN ACCUMULATOR AND 8 32 U'SECS
A LOCATION IN MEMORY

2 0 0000000000000 P 0CO S0 0000000060080 0000600800000 8060008069000 06000060s000000s00

BOOLEAN "IMMEDIATE" 8 32 U'SECS
INSTRUCTIONS

R EEEEEEEEEEE ey w I I N NI I AN I N NN NN RN SN IR N I B IR R BB R R B A A KR B B B BB AN)

ACCUMULATOR ROTATE 5 20 U'SECS
INSTRUCTIONS

00 0 00 0P VOGSO OODVOOOOTFOIEOO OO OO 0002 0000 B OB LOILINIRCOCEB 000000080003 00600000

UNCONDITIONAL JUMP OR : 1t 44 U*SECS
CALL INSTRUCTIONS '

00 0 00 0 0060000000 OOSOECO 00 CO0 0000006006000 06060680 0000006068000 0600¢ 0008068000000 0000

CONDITIONAL JUMP OR CALL
INSTRUCTIONS WHEN CONDI- 9 36 U'SECS
TION IS NOT SATISFIED

AND CONDITIONAL JUMP
OR CALL INSTRUCTIONS WHEN 11 44 U'SECS
CONDITION IS SATISFIED

....‘.....‘...............Q...O...........'..‘.....‘....‘....QC.OC......

UNCONDITIONAL RETURN 5 ’ 280 U'SECS
INSTRUCTION

00 0 0 000G 06000000 00 00080000000 V220 000000080 060680060050600000 08080600000 e08000000se0

CONDITIONAL RETURN
INSTRUCTION WHEN CONDI- 3 12 U'SECS
TION IS NOT SATISFIED

CONDITIONAL RETURN
INSTRUCTION WHEN CONDIl~- 5 28 U'SECS
TION IS SATISFIED

90 0 G G 0L O G B O DO OO OO OO EOOOLN OO ST EPROODPOOON OO CEOSLIPOPEOPSOEN OSSO IOITOETS

RESTART INSTRUCTION 5 20 U'SECS

00 000 OB 0O OGO ESOLOOOED PO OCONLOEPETOIPODBOENRB OO0 P OOSNOOLOCTOOOIIOEREROSIENNOIEIPOSEOSIOTETDTITOETOSTDE

OUTPUT INSTRUCTION 6 24 U'SECS

00 000000006 000000060000 006000006000 00060060000 0000630000000 086060606000 00000008000s0

INPUT INSTRUCTION 8 32 U'SECS

® O 8 06008006000 5800060000800 00N 0HOOOOOEPISOOD 0000000000000 QCOINNPONBIBSELSOSEOINOSEPOTEPETSIODN

HALT INSTRUCTION 4 16 U'SECS

OO 8 OB GO SO E OO PSSO OELIELN PSP OOLOSEOPPEP OISO POPEEOE NG ENSOOEN OSSN OSEILIOINNOSIECETS

1 - 21

INITIAL STEPS FOR DFVELOPING PROGRAMS

THE FIRST TASK THAT SHOULD BE DONE PRIOR TO STARTING TO WRITE THE
INDIVIDUAL INSTRUCTIONS FOR A COMPUTER PROGRAM 1S TO DECIDE FXACTLY
WHAT IT IS THAT THE COMPUTER IS TO PERFORM AND TO WRITE THE GOAL(S)
"DOWN ON PAPER! VWHILE THIS STATEMENT MIGHT SEEM UNNECESSARY TO SOME
BECAUSE IT IS SUCH AN OBVIOUS ONE, IT 1S STATED, AND WILL BE RESTATED
BECAUSE THE MAJORITY OF PEOPLE LEARNING TO DEVELOP PROGRAMS WILL SOON
COME TO REALIZF THE SIGNIFICANCFE OF THE ABOVF STATEMENT WHEN THFY DIS-
COVER HALFWAY THROUGH THE WRITING OF THE MACHINE LANGUAGE INSTRUCTIONS
THAT THEY LEFT OUT A VITAL STEP - AND OFTEN HAVE TO PRACTICALLY START
WRITING THE PROGRAM ALL OVER. THE PRACTICE OF WRITING DOWN JUST WHAT
TASKS A PRTICULAR PROGRAM 1S TO PERFORM AND THE STEPS IN WHICH THEY ARFE
TO BE DONE WILL SAVFE A LOT OF WORK IN THE LONG RUN. THE WRITTEN DES-
CRIPTION SHOULD BE AS COMPLETE AND DETAILED AS NECEFSSARY FOR THE INDIVI=-
DUAL TO ENSURE THAT EXACTLY EACH STFP OF THE PROGRAM VWILL BE CLFAR TO
THE PERSON WHEN ACTUALLY WRITING THE PROGRAM IN MACHINE LANGUAGE. IT IS
GENERALLY WISE FOR A NOVICE PROGRAMMFR TO TAKE PAINS TO BF QUITE DETAIL-
ED IN THF INITIAL DESCRIPTION.

THE ACT OF ACTUALLY WRITING DOWN THE PROPOSED OPERATION OF THE PRO-
GRAM SERVES SEVERAL VALUABLE PURPOSES. FIRST, IT FORCES ONE TO CARE-
FULLY REVIEW WHAT 1S PLANNED AND OFTEN VIVIDLY REVEALS FLAWS IN ORIG~
INAL MENTAL IDEAS. SECONDLY, IT SERVES AS A GUIDE AND A CHECK LIST AS
THE MACHINE LANGUAGE PROGRAM IS DEVFLOPED. REMEMBER, 1T WILL OFTEN TAKE
A NUMBER OF HOURS TO COMPLETELY WRITE A FAIR SIZED PROGRAM - AND THESF
HOURS MIGHT BE SPREAD OVFR SEVERAL DAYS OR WEEKS. IN THIS PFRIOD OF
TIME THE HUMAN MIND CAN EASILY FORGFET ORIGINAL INTFNTIONS AND PLANS IF
THE HUMAN "“MEMORY" CANNOT BFE REFRESHED BY WRITTEN NOTES. A PROGRAM THAT
1S NOT KEPT CAREFULLY ORGANIZED AS IT IS DEVELOPED CAN BECOME A REAL
MESS IF ONF KFEEPS FORGETTING KEY CONCEPTS OR HAS TO CONSTANTLY ADD IN
“"FORGOTTEN'" ROUTINES. THE TIME WASTED BY SUCH SLOPPY PROCEDURES CAN BE
AVOIDED IF PROPER WORK HABITS ARE DEVELOPED RIGHT FROM THE BEGINNING.

ONCE ONE HAS WRITTEN A DFSCRIPTION OF THE GENERAL TASK(S) TO BE PER-
FORMED, AND HAS ASCERTAINED THAT THERE ARE NO FLAWS TO THE OVER~-ALL CON-
CEPTS OR IDEAS, IT IS A GOOD IDFA TO DRAW UP A SET OF “FLOW CHARTS® FOR
THE PROPOSED PROGRAM. THE FLOW CHARTS ARE MORF DETAILFD WRITTEN AND
SYMBOLIC DESCRIPTIVE DIAGRAMS OF THE “FLOVW' OF OPERATIONS THAT ARE TO
OCCUR AS THE PROGRAM 1S OPERATED. THEY ALSO SHOW THE INTER-RFLATION-
SHIPS BETWEEN DIFFERENT PORTIONS OF THE PROGRAM.

OVER THE YEARS A VARIETY OF SYMBOLS AND METHODS HAVE BEEN DEVFLOPED
FOR PRODUCING FLOW CHARTS. ALL OF THE VARIETIES HAVE THE SAME BASIC
PURPOSE AND MOST OF THE DIFFERENCES ARE THE RESULT OF EDUCATIONALIST
PUSHING THEIR OWN PREFERENCES. MOST PFOPLF CAN DO ADMIRABLY WELL USING
JUST A FEW BASIC SYMBOLS TO DONOTE BASIC TYPES OF OPFRATIONS IN A COM-
PUTER PROGRAM. THE SMALL GROUP TO BE PRESENTED HERE WILL FNABLE MOST
8668 PROGRAMMERS TO DEVELOP FLOW CHARTS RAPIDLY, WITH LITTLE CONFUS~-
ION, AND WITHOUT HAVING TO LFARN A HOST OF "“SPECIAL' SYMBOLS.

A CIRCLE CAN BE USED AS A GENFRAL PURPOSE SYMBOL TO SPECIFY THE
ENTRY OR EXIT POINT TO A ROUTINE OR SUBROUTINE. INFORMATION MAY BE
PRINTED INSIDE THE CIRCLE AND MIGHT DENOTE WHERE THE ROUTINE IS COMING
FROM OR GOING TO (SUCH AS THE PAGE NUMBER AND LOCATION ON A PAGE FOR A
PROGRAM THAT REQUIRES SEVERAL SHEETS OF PAPFR TO RE FLOW CHARTED) OR IT
CAN CONTAIN TRANSFER INFORMATION OR DENOTE STARTING OR STOPPING POINTS

WITHIN A PROGRAM. SOME TYPICAL EXAMPLES OF THE CIRCLE SYMBOL ARE IL-
LUSTRATED ON THE NEXT PAGE.

OO©®®G

CLR THE ACC

STORE THE
INCOMING
MESSAGE

SET

FLAGS

A SQUARE OR RECTANGEL CAN BE USED TO DENOTE A GENERAL OR SPFCIFIC
OPERATION. THE TYPE OF OPERATION CAN BE DESCRIBED INSIDE THE BOXED
AREA SUCH AS IN THE EXAMPLES ON THE LOWER HALF OF THE PREVIOUS PAGE.

A DIAMOND FORM MAY BE USED TO SYMBOLIZE A DECISION OR BRANCHING
POINT IN A PROGRAM. THE DETERMINING FACTOR(S) FOR THE DECISION OR
BRANCHING OPERATION MAY BE INDIGCATED INSIDE THE SYMBOL AND THE TWO SIDE
POINTS OF THE TRIANGLE USED TO ILLUSTRATE THE PATH TAKEN WHEN A DECI~
SION HAS BEEN MADE. THE DIAMOND SYMBOL IS ILLUSTRATED BELOW.

NO YES

INFO
READY ?

NO YES

LINES WITH ARROWS MAY BE USED TO INTER-CONNECT THE THREE TYPES OF
SYMBOLS JUST PRESENTED. IN THIS WAY, THE SYMBOLS MAY BE CONNECTED TO
FORM READILY UNDERSTOOD “FLOW CHARTS" OF OPERATIONS THAT ARE TO OCCUR
IN- A PROGRAM AND TO SHOW HOW VARIOUS OPERATIONS RELATE TO EACH OTHER.
FLOW CHARTS ARE EXTREMELY VALUABLE REFERENCES WHEN DEVELOPING PROGRAMS
AS WFLL AS WHEN WANTS TO UPDATE OR EXPAND A PROGRAM AND NEFDS TO QUICK-
LY REVIEW THE OPERATION OF A PARTICULAR PROGRAM.

BELOW IS AN EXAMPLE OF A FLOW CHART FOR A RELATIVELY SIMPLFE PRO GRAM
THAT 1S TO ACCEPT CHARACTERS FROM AN ASCII TELETYPE MACHINF AND SEND
OUT THE EQUIVELANT GCHARAGTER TO A BAUDOT TELETYPE UNIT. IN THIS ILLUS-
TRATION IT IS ASSUMED THAT THE 1/0 INTERFACES TO THE TELETYPE MACHINFS
ARF. “"PARALLEL" INTFRFACES (VERSUS BIT-SERIAL) SO THAT COMPLEX TIMING
OPERATIONS DO NOT HAVE TO BE DISCUSSED IN THE EXAMPLE. A WRITTEN DE-
SCRIPTION OF THE EXAMPLE PROGRAM COULD BE STATED AS FOLLOWS:

THE 8@@6& UNIT IS TO MONITOR BIT "B7" OF INPUT PORT &1, WHICH 1S THE
“CONTROL'™ PORT FOR AN INTERFACE TO AN ASCII TELETYPE MACHINE. VHENEVER
BIT *“B7" ON INPUT PORT #1 GOES LOW (LOGIC #) IT INDICATES A NF¥ CHARAC-
TER IS WAITING IN PARALLEL FORMAT FROM THE TFLETYPE AT INPUT PORT @0.
THE COMPUTER 1S TO IMMEDIATELY OBTAIN THE CHARACTER THAT 1S WAITING AT
INPUT PORT 9@ AND AS SOON AS IT HAS OBTAINED THE DATA IT IS TO SEND A
LOGIC 1| (HIGH) SIGNAL TO BIT "B&" OF OUTPUT PORT 11 TO SIGNAL THE ASCII
INTERFACE THAT THE CHARACTER HAS BEEN ACCEPTED BY THE COMPUTER. (THE
RECEIPT OF THIS SIGNAL BY THF ASCII INTERFACE WILL THEN CAUSE THE ASCIlI
INTERFACE TO RESTORE THE CONTROL SIGNAL ON BIT "B7" OF INPUT PORT @1 TO
A HIGH (LOGIC 1) CONDITION).

WHENEVER A CHARACTER HAS BEEN RECEIVED FROM THE ASCI1 TELETYPE ON
INPUT PORT @8, THE COMPUTER IS TO COMPARE THE CHARACTER JUST RECEIVED
AGAINST AN ASCII TO BAUDOT "LOOK-UP" TABLE WHICH IS STORED IN THE COM-
PUTER'S MEMORY UNTIL IT FINDS A MATCH. WHEN IT FINDS A MATCH IT WILL
THEN OBTAIN THE EQUIVELANT BAUDOT CHARACTER FROM THE CONVERSION TABLE
AND SEND THE BAUDOT CODE FOR THE CHARACTER IN BIT POSITIONS "B5" THROUGH
“B@'* OF OUTPUT PORT 1@#. BIT "BS" WILL SERVE TO INDICATE TO THE BAUDOT

2 -3

INTERFACE WHETHER THE CODE IN BITS “Ba“ THROUGH “B@*" 1S TO BE PROCESSED
BY THE TELETYPE WHEN IT IS IN THE "LETTERS" OR "FIGURES" MODE. IT IS ‘
ASSUMED THAT THE CHARACTER RATE (BUT NOT NECESSARILY THE BAUD RATE) IS
THE SAME FOR BOTH MACHINES SO THAT THE EXAMPLE MAY BE SIMPLIFIED BY
ELIMINATING THE REQUIREMENT FOR CHARACTER BUFFERING OR STACKING" IN THE
MEMORY OF THE COMPUTER. HOWEVER, IN PRACTICAL APPLICATIONS SUCH CAPA-
BILITY MIGHT BE REQUIRED AND THE FFATURE COULD BE ADDED TO THE PROGRAM.
BUT, FOR THIS CASE, AS SOON AS THE BAUDOT CODE HAS BEEN TRANSMITTED (IN
PARALLEL FORMAT) TO THE BAUDOT INTERFACE, THE COMPUTER WILL SIMPLY 60
BACK TO WAITING FOR THE NEXT CHARACTER TO COME IN FROM THE ASCII MACH-
.INE. THE WRITTEN DESCRIPTION PROVIDED HERE COULD BE REPRESENTED QUITE
CLEARLY BY THE FLOW CHART SHOWN BELOWV.

START

VR 4

NO 1S B7 YES
OF INP PORT @l

A LOGIC & 2

N

y

GET ASCII
CHARACTER
FROM INPUT
PORT @@

A

SEND A LOGIC 1 ON B@
OF OUTPUT PORT 11 TO
CLEAR THE ASCII
INTFRFACE

50 TO LOOK-UP TABLE
ROUTINE AND FIND
THE EQUIVELANT BAUDOT
CHARACTER

h 4

SEND THE BAUDOT CODE
TO OUTPUT PORT 1@ IN
BITS BS THROUGH B@

THE FLOW CHART OF THF PROGRAM AS SHOWN ON THE PREVIOUS PAGE COULD
BE CONSIDERED AS AN "OUTLINE" OF THE PROGRAM. PORTIONS OF THAT FLOW
CHART COULD BE EXPANDED INTO MORE DETAILED FLOW CHARTS TO PRESENT A
DETAILED VIEW OF SPECIAL OPERATIONS. FOR INSTANCE THE RECTANGLF LABEL-
ED "GO TO LOOK-UP TABLE ROUTINFE AND FIND THE FAUIVALENT BAUDOT CHARAC-
TER'" REALLY REFERS TO A PORTION OF THE PROGRAM THAT CONSISTS OF A NUM~
BER OF OPERATIONS. THESE OPERATIONS COULD BE DESCRIBED IN A SEPARATE
‘FLOW CHART AS ILLUSTRATED BELOW.

INITIALIZE POINTERS TO
START QOF LOOK~-UP TABLF

N
,\/
COMPARE THE CONTENTS OF THE
CURRENT LOCATION IN THE LOOK -
UP TABLE AGAINST THE CHARACTFR

PRFESENTLY IN THE ACCUMULATOR

ARE THEY |
THE SAME ?

4
h HAVE FOUND THE DESIRED
ADVANCE THF CHARACTFR. ADVANCF THE
TABLF POINTER POINTFR TO THE NEXT WORD
BY TWO WORDS. IN THE TABLE AND FETCH
THE BAUDOT FQUIVFLANT.

N

THE READER CAN SEE THAT THE AROVE FLOW CHART READILY ILLUSTRATES
THE OPERATION OF THE "TABLE LOOK-UP ROUTINE." WITH A LITTLE STUDY ONE
COULD DISCERN THAT THE LOOK~-UP TABLF CONSIST OF AN AREA IN MEMORY THAT
HAS AN ASCII CHARACTER CODE IN ONF WORD, FOLLOWED IN THE NEXT WORD BY
THE SAME CHARACTER IN THE BAUDOT CODE. THIS SEQUENCE CONTINUES FOR ALL
THE POSSIBLE CHARACTERS AS SHOWN ON THE TOP OF THE NEXT PAGE. THE FLOW
CHART ILLUSTRATES HOW THE DATA IN THF LOOK~-UP TABLE IS SCANNED BY SKIP-
PING OVER EVERY OTHER MEMORY LOCATION (WHICH CONTAINS THE BAUDOT CODES)
UNTIL THE PROPER ASCI1 CHARACTFR 1S LOCATED. WHEN THAT 1S LOCATED, THE
ROUTINE SIMPLY EXTRACTS THE PROPER BAUDOT CODE FROM THE NEXT MEMORY LO=
CATION IN THE TABLE. THE FLOW CHART MAKES THE SEQUENCE FASIFR TO FOLLOW
AND UNDERSTAND THAN A PURELY VERBAL EXPLANATION OF THE ROUTINE.

2 -5

ADDRESS ' MEMORY CONTENTS

PAGE: XX LOC: 1 ASCI1 CODE FOR LETTER “A"

PAGE: XX LOC: Z+1 BAUDOT CODE FOR LETTER "A"

PAGE: XX LOC: Z+2 ASC1I CODE FOR LETTER "B"
[L] L4

PAGE: XX LOC: Z+3 BAUDOT CODE FOR LETTER *B"

PAGFE: XX LOC: Z+2(N=-1) ASCII CODE FOR "N"TH CHARACTER
PAGE: XX LOC: Z+2(N-1)+1 BAUDOT CODE FOR "N"TH CHARACTER

ILLUSTRATION OF LOOK-UP TABLE ORGANIZATION FOR EXAMPLE PROGRAM

IT 1S STRONGLY RECOMMENDED THAT BEGINNING PROGRAMMERS DEVELOP THE
HABIT OF FIRST WRITING DOWN THE FUNCTION(S) OF THE DESIRED PROGRAM AND
THEN DRAWING UP FLOW CHARTS AS DETAILED AS THE INDIVIDUAL FEELS 1S NEC-
ESSARY TO CLEARLY SHOW THE INTENDED OPERATIONS OF THE PROGRAM THAT IS TO
'BE DEVELOPED. A NOVICE PROGRAMMER WILL BE WISE TO PREPARF QUITF DETAIL-
ED FLOW CHARTS. MORE EXPFERIENCED PROGRAMMERS MAY PREFER TO LEAVE OUT
DETAILS OF OPERATIONS THAT THEY THOROUGHLY UNDERSTAND. THE FLOW CHARTS
SHOULD SFRVE AS READY REFERENCES WHEN THE PROGRAMMER GOES ON TO ACTUAL-
LY DEVELOP THE STEP-BY-STEP MACHINE LANGUAGE INSTRUCTION SEQUENCES FOR
THE COMPUTER.

FLOW CHARTS ARE ALSO AN EXCELLENT METHOD FOR COMMUNICATING PROGRAM-
MING CONCEPTS TO FELLOW COMPUTER PROGRAMMFRS. IT 1S THE COMMON LANG-
UAGE OF COMPUTER TECHNOLOGISTS. (REMEMBFR - GFNFRAL FLOW CHARTS DO NOT
HAVE TO BE MACHINE SPECIFIC!) LEARNING HOW TO PREPARE AND READ FLOW
CHARTS 1S AN IMPORTANT (YET FEASY) SKILL FOR ALL COMPUTER PROGRAMMERS TO
ACQUIRE. IT CAN ALSO BE FUN AND A CREATIVF PROCESS AS ONE CAN VIEW THE
OVER-ALL OPERATION OF A PROGRAM UNDER DEVELOPMENT AND GAIN NEW INSIGHTS
INTO WHERE TO INTER-CONNECT ROUTINES, USE COMMON "LOOPS,' TO SAVE MEM-
ORY SPACE, OR OTHERWISE DETECT WAYS TO ENHANCE THF PROGRAM'S CAPABILITY.

FUNDAMENTAL PROGRAMMING SKILLS

BEFORE ONE CAN EFFECTIVELY DEVELOP MACHINE LANGUAGE PROGRAMS FOR THE
8868 CPU ONE MUST BE THOROUGHLY FAMILIAR WITH THE INSTRUCTION SET FOR
THE MACHINE. 1IT 1S ASSUMED FOR THE REMAINDER OF THIS MANUAL THAT THE
READER HAS STUDIED THE DETAILED INFORMATION FOR THE INSTRUCTION SET OF
THE 8008 CPU WHICH WAS PROVIDED IN THE FIRST CHAPTER. THE PROGRAMMER
SHOULD BECOME INTIMATELY FAMILIAR WITH THE MNEMONICS (PRONOUNCED “KNEE-
MONICS™) FOR EACH TYPE OF INSTRUCTION. (MNEMONICS ARE EASILY REMEMBERED
SYMBOLIC REPRESENTATIONS OF MACHINE LANGUAGE INSTRUCTIONS. THEY ARE FAR
EASIER TO WORK WITH THAN THE ACTUAL NUMERIC CODES USED BY THE COMPUTER
WHEN THE PROGRAMMER IS DEVELOPING A PROGRAM. THE MNEMONICS USED TO RE-~
PRESENT THE INSTRUCTIONS AVAILABLE IN AN 8808 SYSTEM WERE PRESENTED IN
THE PREVIOUSLY MENTIONED FIRST CHAPTER OF TH1S 8008 PROGRAMMERS MANUAL.
WHILE THE PROGRAMMER WILL DEVELOP PROGRAMS AND "THINK" IN TERMS OF THE
MNEMONICS, THE PROGRAMMER MUST EVENTUALLY CONVERT THE MNEMONICS TO THE
MACHINE CODES USED BY THE COMPUTER. THIS, HOWEVER, 1S ALMOST PURELY A
"LOOK-UP* PROCEDURE, AND IN FACT, AS WILL BE SEEN SHORTLY, THIS TASK CAN
ITSELF BE PERFORMED BY THE COMPUTER THROUGH THE USE OF AN "ASSEMBLER"
PRO GRAM.

MACHINE LANGUAGE PROGRAMMERS SHOULD ALSO BE FAMILIAR WITH MANIPU-
LATING NUMBERS IN BINARY AND OCTAL FORM. IT IS ASSUMED THAT READERS ARE
FAMILIAR WITH REPRESENTING NUMBERS AS BINARY VALUES, HOWEVER, THERE MAY
BE A FEW READERS WHO ARE NOT USED TO THE CONVENTION OF REPRESENTING BIN-
ARY NUMBERS BY THEIR OCTAL EQUIVALENT. THE TECHNIQUE 1S QUITE SIMPLE AS
IT CONSIST MERELY OF GROUPING BINARY DIGITS INTO GROUPS OF THREE AND
REPRESENTING THEIR VALUE AS AN OCTAL NUMBER. THE OCTAL NUMBERING SYSTEM
ONLY USES THE DIGITS @ THROUGH 7, WHICH IS EXACTLY THE RANGE THAT A
GROUP OF THREE BINARY D1GITS CAN REPRESENT. THE OCTAL NUMBERING SYSTEM
MAKES IT A LOT EASIER TO MANIPULATE BINARY NUMBERS - FOR INSTANCE MOST
PEOPLE FIND IT CONSIDERABLY MORE CONVENIENT TO REMEMBER AS THREE DIGIT
NUMBER SUCH AS | @ &4 THAN THE BINARY FQUIVALENT @ | 0 @ 6 1 @ 8. AN
OCTAL NUMBER 1S EASILY EXPANDED TO A BINARY NUMBER BY SIMPLY PLACING
THE OCTAL VALUE IN BINARY FORM USING THREE BINARY DIGITS.

THE INFORMATION IN AN EIGHT BIT BINARY REGISTER CAN BE EASILY CON-
VERTED TO AN OCTAL NUMBER BY GROUPING THE BITS INTO GROUPS OF THREE
STARTING WITH THE LEAST SIGNIFICANT BITS. THE TWO MOST SIGNIFICANT BITS
IN THE REGISTER WHICH FORM THE LAST GROUP WILL ONLY BE ABLF TO REPRESENT
THE OCTAL NUMBERS 08 TO 3. THE DIAGRAM BELOW ILLUSTRATES THE CONVENTION.

EIGHT CELL REGISTER

L
[] ®
.
® 0860000600000 0000%00000 00 0000006800000 00% 0000
. L]

o0 e e o BN A 00 R R K AR R R R R K

. * *] »* * | * * »
e B8 = @ x 1 t P x @ x @6 + 1 x @ x B x
. * x t * * t * * *

0 o o o o AR AN A0 HE R a0 R o o o o o
L] [] [
1 e 1
CONVERTING AN 8 B1T REGISTER FROM BINARY TO OCTAL NUMBERS

3 -1

NOTE IN THE DIAGRAM HOW AN IMAGINARY ADDITIONAL BINARY DIGIT WITH A
VALUE OF ZERO WAS ASSIGNED TO THE LEFT OF THE MOST SIGNIFICANT BIT S0
THAT THE OCTAL CONVENTION FOR THE TWO MOST SIGNIFICANT BITS COULD BE
MAINTAINED.

A TABLE ILLUSTRATING THE RELATIONSHIP BETWEEN THE BINARY AND OCTAL
SYSTEMS 1S PROVIDED FOR REFERENCE BELOW.

BINARY PATTERN REPRESENTATIVE OCTAL ¢
e o o 8
8 0 1 1
e 1 o 2
g 1 1 3
1 @ o A
1 8 1 . 5
1 1 @ 6
1 11 7

A PERSON WHO DESIRES TO DEVELOP MACHINE LANGUAGE PROGRAMS FOR THE
8088 CPU SHOULD ALSO BECOME FAMILIAR WITH SOME STANDARD CONVENTIONS
USED WHEN DEALING WITH “CLOSED" REGISTERS (GROUPS OF BINARY CELLS OF
FIXED LENGTH SUCH AS A MEMORY WORD OR CPU REGISTER). ONE VERY SIMPLE
POINT TO REMEMBER, AS A STARTER, 1S THAT WHEN A GROUP OF CELLS IN A REG-
ISTER IS IN THE ALL ONES CONDITION:

11 111 P11

AND THE COUNT OF 1 IS ADDED TO THE REGISTER, THE REGISTER GOES TO THE
VALUE:

OR, IF THE COUNT OF: 1 @ (BINARY) WAS ADDED TO A REGISTER THAT CON-
TAINED ALL ONES, THE NEW VALUE IN THE REGISTER WOULD BE AS SHOWN:

11 1 11 111
+ 089 6 00 g1 6

00 2 00 8 e\

SIMILARLY, GOING THE OPPOSITE WAY, I1F ONE SUBTRACTS A NUMBER SUCH AS

1 80 (BINARY)? FROM A REGISTER THAT CONTAINS SOME LESSER VALUE, SUCH AS
@1 8 (BINARY) THE THE REGISTER WOULD CONTAIN THE RESULT SHOWN IN THE
FOLLOWING ILLUSTRATION:

09 U o190
- 069 000 1 860

! 1 111 110

IT SHOULD BE NOTED THAT IF ONE USES ALL THE BITS IN A FIXED LENGTH
REGISTER ONE CAN REPRESENT MATHEMATICAL VALUES OF AN ABSOLUTE MAGNITUDE
FROM ZERO TO THE QUANTITY TWO TO THE NTH POWER MINUS ONE FROM THE QUAN-
TITY (B TO (2*N - 1)) WHERE "N" IS THE NUMBER OF BITS IN THE REGISTER.
HOWEVER, IF ALL THE BITS IN A REGISTER ARE USED TO REPRESENT THE MAGNI-
TUDE OF A NUMBER, AND IT 1S ALSO DESIRED TO REPRESENT THE MAGNITUDE AS
BEING EITHER POSITIVE OR NEGATIVE IN SIGN, THEN SOME ADDITIONAL MEANS

3-¢

MUST BE AVAILABLE TO RECORD THE SIGN OF THE MAGNITUDE. GENERALLY, THIS
WULD REQUIRE USING ANOTHER RFGISTER OR MEMORY LOCATION SOLELY FOR THE
PURPOSE OF KEEPING TRACK OF THE SIGN OF A NUMBER.

HOWEVER, IN MANY APPLICATIONS IT 1S DFSIRABLE TO FSTABLISH A CON-.
VENTION THAT WILL ALLOW ONE TO MANIPULATE POSITIVE AND NEGATIVE NUMBERS
WITHOUT HAVING TO USE ADDITIONAL REGISTFR(S) TO MAINTAIN THE SIGN OF A
NUMBER OR OTHERWISE PLACE RESTRICTIONS ON OPERATIONS. ONE WAY THIS MAY
BE DONE IS TO SIMPLY ASSIGN THE MOST SIGNIFICANT BIT IN A REGISTER (OR
THE MOST SIGNFICANT BIT IN A GROUP OF BITS) TO BE A "SIGN'" INDICATOR.
THE REMAINING BITS REPRESENT THE MAGNITUDE OF THF NUMBER REGARDLESS OF
WHETHER IT IS POSITIVE OR NFGATIVE. ‘NATURALLY, WHFEN THIS IS DONE, THFN
THE MAGNITUDE RANGE FOR AN "N CFLL RFGISTFR BECOMES @& TO (21 (N-1)-1)
RATHER THAN @ TO (2tN) - 1. THF CONUFNTION NORMALLY USFD IS THAT IF
THE MSB (MOST SIGNIFICANT BIT) IN THE REGISTER IS A ONE (1), THEN THE
NUMBER REPRESENTED BY THE REMAINING BITS 1S "NEGATIVE" IN SIGN. IF THE
MSR 1S ZERO (@) THEN THE REMAINING BITS SPECIFY THFE MAGNITUDE OF A POSI-
TIVE NUMBER. THIS CONVENTION ALLOWS COMPUTFR PROGRAMMERS TO MANIPULATE
MATHEMATICAL QUANTITIES IN A FASHION THAT MAKES IT FASY FOR THE COM-
PUTER TO KEEP TRACK OF THE SIGN OF A NUMBER. SOME EXAMPLES OF BINARY
NUMBERS IN AN FIGHT BIT REGISTFR SUCH AS THOSE USED IN AN 8088 SYSTEM
ARE SHOWN BELOW.

BINARY REPRESENTATION OCTAL DECIMAL
\ % | 1B I a1 @ + 8
1 @ 7 | b oo 210 - ¥
2 l‘ 111 111 1 77 +127
11 111 1 11 317 -127
o9 060 2 a1 a4 1 + 1
1 @ 3 a @ 0,0 1 201 - 1

WHILE THE SIGNED BIT CONVENTION ALLOWS THE SIGN OF A NUMBER TO BE
STORED IN THE SAMF REGISTER (OR WORD) AS THE MAGNITUDE, SIMPLY USING
THE "SIGNED BIT'" CONVENTION ALONF CAN STILL BE A SOMEWHAT CLUMSY METHOD
TO USE IN A COMPUTER BECAUSE OF THE METHOD IN WHICH A COMPUTER MATHE-
MATICALLY ADDS THE CONTENTS OF TWO BINARY REGISTERS IN THE ACCUMULATOR.
SUPPOSE FOR EXAMPLE THAT THF COMPUTFR WAS TO ADD TOGFTHER A POSITIVE AND
A NEGATIVE NUMBER THAT WERFE STORFD IN REGISTERS IN THE SIGNED BIT FOR-
MAT JUST DESCRIBED.

%) (+ 8 DECIMAL)

00 6?1 o
PLUS 1 @ 0 a1 0 ay (- 8 DECIMAL)
EQUAL 1 0 210 Q00 (THIS IS NOT A1)

THE RESULT OF THE OPERATION AS ILLUSTRATED WOULD NOT BE WHAT THE
PROGRAMMER INTENDED! IN ORDER FOR THE OPERATION TO BE PFRFORMED COR-
RECTLY IT 1S NECESSARY TO ESTABLISH A METHOD OF PROCESSING THE NEGATIVE
NUMBER CALLED THE *“TwW0'S COMPLEMENT' CONVENTION. IN THE "TWO'S COMPLE-
MENT' CONVENTION A NEGATIVE NUMBER 1S RFPRESENTED BY COMPLEMENTING WHAT
THE VALUE FOR A POSITIVE NUMBER WOULD BE (COMPLEMENTING IS THE PROCESS
OF REPLACING ALL BITS THAT ARE "@" WITH A 1" AND THOSE THAT ARE '"l"
WITH A “@*) AND THEN ADDING THE VALUE ONE (1) TO THE COMPLEMENTED VALUE.

3 -3

AS AN EXAMPLE, THE NUMBER MINUS EIGHT (- 8) DECIMAL WOULD BE DERIVED
FROM THE NUMBER PLUS EIGHT (+ &) BY THE FOLLOWING OPERATIONS.

60 081 @ 8 @ (ORIGINAL + 8)

11 116 111 (COMPLEMENTED)
@@ @@@ B8 1 (NOWADD + 1)
1

1 111 @ @@ (2'S COMPLEMENT FORM OF - 8)
SOME EXAMPLES OF NUMBERS EXPRESSED IN TWO'S COMPLEMENT NOTATION
WITH THE "SIGNED BIT" CONVENTION RETAINED ARE SHOWN BELOW.

BINARY REPRESENTATION OCTAL DEC IMAL

66 @061 02080 @10 + 8
11 111 @08 3780 - 8
g1 111 11 177 +127
1@ @800 001 201 -127
60 000 001 291 + 1
RS WS N TS R TS B 3177 -1
ee @000 0800 20 0 + @
iIe ©80 0680 200 -128

NOTE THAT WHEN USING THE TVW0'S COMPLEMENT METHOD ONE MAY STILL RE-
TAIN THE CONVENTION OF HAVING THE MSB IN THE REGISTER ESTABLISH THE
“GIGN" NOTATION. IF THE MSB = 1, AS IN THE ABOVE ILLUSTRATION, THE NUM-
BER IS ASSUMED TO BE NEGATIVE. HOWEVER, SINCE THE NUMBER IS IN THE
TWO0'S COMPLEMENT FORM THE COMPUTER CAN READILY ADD A “POSITIVE" AND A

“NEGATIVE" NUMBER AND COME UP WITH A RESULT THAT IS READILY INTERPRETED.
LOOK!1

80 0 01 @ @6 (+ B DECIMAL)
11 111 @ @0 (-8 DECIMAL AS 2°'S COMPLEMENT)

o0 2@ © 068 (CORRECT ANSWER OF ZERO!)

ANOTHER ESTABLISHED CONVENTION IN HANDLING NUMBERS WITH A COMPUTER
IS TO ASSUME THAT "@" 1S A “POSITIVE" VALUE. BECAUSE OF THIS CONVEN=-
TION THE MAGNITUDE OF THE LARGEST NEGATIVE NUMBER THAT CAN BE REPRESENT-
ED IN A FIXED LENGTH REGISTER IS ONE MORE THAN THAT POSSIBLE FOR A POSI-
TIVE NUMBER. :

THE VARIOUS MEANS OF STORING AND MANIPULATING THE SIGNS OF NUMBERS
AS JUST DISCUSSED HAVE ADVANTAGES AND DRAWBACKS AND THE METHOD USED DE-
PENDS ON THE SPECIFIC APPLICATION. HOWEVER, FOR MOST USER'S THE TWO'S
COMPLEMENT METHOD COUPLED WITH THE *SIGNED BIT" CONVENTION WILL BE THE
MOST CONVENIENT AND MOST OFTEN USED METHOD. THE PROSPECTIVE MACHINE
LANGUAGE PBOGRAMMER SHOULD MAKE SURE THAT THE CONVENTION IS WELL UNDER-
STOOD. '

ANOTHER AREA THAT THE MACHINE LANGUAGE PROGRAMMER MUST HAVE A THOR=-

3-a

OUGH KNOWLEDGE OF IS THE CONVERSION OF NUMBFRS BETWEEN THE DECIMAL NUM=-
BERING SYSTEM THAT MOST PFOPLE WORK WITH ON A DAILY BASIS AND THE BIN=-
ARY AND OCTAL NUMBERING SYSTEM UTILIZED BY COMPUTER TECHNOLOGISTS. PRO-
GRAMMERS WORKING WITH THE 8088 CPU VWILL GENERALLY FIND THE OCTAL NUMBER-
ING SYSTEM MOST CONVENIENT BECAUSE THE CONVERSION FROM OGTAL TO BINARY
IS SIMPLY A MATTER OF GROUPING BINARY BITS INTO GROUPS OF THREE AS DIS-
CUSSED AT THE START OF THIS CMAPTER ON FUNDAMENTAL PROGRAMMING SKILLS.
IT IS EASIER TO REMEMBER OCTAL CODES THAN LONG STRINGS OF BINARY DIGITS
BUT ONE CAN READILY EXPAND THE OCTAL CODES INTO BINARY DIGIT STRINGS.

OF COURSE, MOST PEOPLE ARE USED TO THINKING IN DECIMAL TERMS, WHICH THE
COMPUTER DOES NOT USE AT THE MACHINE LANGUAGE LEVEL, AND SO IT IS NEC~-
ESSARY TO BE ABLE TO CONVERT BACK AND FORTH BETWEEN THE VARIOUS NUMBER~
ING SYSTEMS AS PROGRAMS ARFE DEVELOPED.

THE CONVERSION PROCESS THAT 1S GENERALLY MORE TROUBLESOME FOR PEOPLE

TO LEARN (THAN THE OCTAL TO BINARY TRANSLATION) 1S FROM DECIMAL TO RIN=-
ARY OR DECIMAL TO OCTAL (AND VICE-VERSA)! 1IT IS PROBABLY A BIT EASIER
FOR MOST PEOPLE TO LEARN TO CONVERT FROM DECIMAL TO OCTAL AND THEN USE
THE SIMPLE OCTAL TO BINARY FXPANSION TECHN1QUE, THAN TO CONVERT DIRECT-
LY FROM DECIMAL TO BINARY AND SO THE FASIER METHOD WILL BE PRESENTED

HERE. SINCE IT IS ASSUMED THAT THE READER IS ALREADY FAMILIAR WITH GO~
IN@ FROM OCTAL TO BINARY (AND VICE~-VERSA) ONLY THE CONVERSIONS BETWEEN
DECIMAL AND OCTAL (AND THE REVERSE) VILL BE PRESENTED IN THESE PAGES.

A DECIMAL NUMBER MAY BE READILY CONVERTED TO ITS OCTAL EQUIVALENT
BY THE FOLLOWING METHOD:

DIVIDE THE DECIMAL NUMBER BY 8. RECORD THE REMAINDER (NOTE THAT 1S
TE R EMA I NDER !!) AS THE LFAST SIGNIFICANT DIGIT OF THE OCTAL
NUMBER BEING DERIVED. TAKE THE QUOTIENT JUST OBTAINED AND USE IT AS THE
NEV DIVIDEND. DIVIDE THE NEW DIVIDEND BY 8. THE REMAINDER FROM THIS
OPERATION BECOMES THE NEXT SIGNIFICANT DIGIT OF THE OCTAL NUMBER. THE
QUOTIENT IS AGAIN USED AS THE NEW DIVIDEND. THE PROCESS IS CONTINUED
UNTIL THE QUOTIENT BECOMES @é. THE NUMBER OBTAINED FROM PLACING ALL THE
REMAINDERS (FROM EACH DIVISION) IN INCREASING SIGNIFICANT ORDER (FIRST
REMAINDER AS THE LEAST SIGNIFICANT DIGIT, LAST REMAINDER AS THE MOST
SIGNIFICANT DIGIT) IS THE OCTAL NUMBER EQUIVALENT OF THF ORIGINAL DECI-
MAL NUMBER. THE PROCESS 1S ILLUSTRATED BELOW FOR CLARITY.

THE OCTAL EQUIVALENT OF 1234 DECIMAL IS:

- , QUOTIENT REMAINDER
ORIGINAL NUMBER 1234 7

8 = 154 2

LAST QUOTIENT .
BECOMES NEW DI1VIDEND 154 7 8 = 19 2 .
LAST QUOTIENT o
BECOMES NEW DIVIDEND 19 7 8 = 2 3 «
LAST QUOTIENT * o
BECOMES NEW DIVIDEND 2 /7 8 = - 2 ¢ o o

” .

THUS THE OCTAL EQUIVALENT OF 1234 1IS: 2 322

THE ABOVE METHOD IS QUITE EASY AND STRAIGHT FORWARD. -SINCE A MAJ-~

3-8

ORITY OF THE TIME THE USER WILL BE INTERESTED IN CONVERSIONS OF DECIMAL
NUMBERS LESS THAN 255 (THE MAXIMUM DECIMAL NUMBER THAT CAN BE EXPRESSED
IN AN EIGHT BIT REGISTER) ONLY A FEW DIVISIONS ARE NECESSARY:

THE OCTAL EQUIVALENT OF 255 DECIMAL IS:

QUOTIENT REMAINDER

ORIGINAL NUMBER 255 / 8 = 31 7
LAST QUOTIENT : .
BECOMES NEV DIVIDEND 31 s/ 8 = 3 7.
LAST QUOTIENT . .
BECOMES NEW DIVIDENT 3 7/ 8 - - 3. .
THUS THE OCTAL EQUIVALENT OF 255 1S: 377

FOR NUMBERS LESS THAN 63 DECIMAL (AND SUCH NUMBERS ARE USED FREQ-
UENTLY TO SET COUNTERS IN *"LOOP'" ROUTINES) THE ABOVE METHOD REDUCES TO
ONE DIVISION WITH THE REMAINDER BEING THE LSD AND THE QUOTIENT THE MSD.
THIS IS A FEAT MOST PROGRAMMERS HAVE LITTLE DIFFICULTY DOING IN THEIR
HEAD!

THE OCTAL EQUIVALENT OF 63 DECIMAL 1S:

' ' QUOTIENT REMAINDER
ORIGINAL NUMBER 63 / 8

= 7 7

LAST QUOTIENT .
BECOMES NEW DIVIDEND 7 /7 8 = - T o
THUS THE OCTAL EQUIVALENT OF 63 1IS: ‘ 7 7

GOING FROM OCTAL TO DEGCIMAL IS QUITE EASY TOO. THE PROCESS CONSIST
OF SIMPLY MULTIPLYING EACH OCTAL DIGIT BY THE NUMBER 8 RAISED TO ITS
POSITIONAL (WEIGHTED) POWER AND THEN ADDING UP THE TOTAL OF EACH PRO-
DUCT FOR ALL THE OCTAL DIGITS:

»

2322 O0OCTAL =

. .2 X (8180 = (2X 1) = | 2
. .2 X (811) = (2 X 8) - ' 1 6
.3 X (8t2) = (3 X 64) = 192
2 X (813) = (2 X 512) = 102 a

THUS THE DECIMAL EQUIVALENT OF 2322 OCTAL IS: 1 234

3 -6

. BESIDES THE BASIC MATHFMATICAL SKILLS INVOLVED WITH USING OCTAL
AND BINARY NUMBERS, THERE ARE SOME PRACTICAL '"BOOK KFEEPING'" CONSIDER-
'ATIONS THAT MACHINE LANGUAGE PROGRAMMERS MUST LEARN TO DEAL WITH AS THEY

DEVELOP PROGRAMS. THESE "BOOK KEEPING" MATTERS HAVE TO DO WITH MEMORY
USAGE AND ALLOCATION.

AS THE USER WHO HAS READ CHAPTER ONE IN THIS MANUAL NOW KNOVS,
EACH TYPE OF INSTRUCTION USED IN THE 80068 CPU REQUIRES ONE, TWO0O OR
THREE WORDS OF MEMORY. AS A GENFRAL RULE SIMPLF RFGISTER TO REGISTER
OR REGISTER TO MEMORY COMMANDS REQUIRE BUT ONE MEMORY WORD. ' IMMED-
IATE" TYPE COMMANDS REQUIRE TWO MEMORY LOCATIONS (THE INSTRUCTION CODFE
FOLLOWED IMMEDIATELY BY THE "DATA* OR OPERAND). JUMP OR CALL INSTRUC-
TIONS REQUIRE THREE WORDS OF MEMORY STORAGF. ONE WORD FOR THE INSTRUC-
TION CODE AND TWO MORE WORDS FOR THE ADDRESS OF THE LOCATION SPECIFIED
BY THE INSTRUCTION. THE FACT THAT DIFFERENT TYPES OF INSTRUCTIONS RF-
QUIRE DIFFERENT AMOUNTS OF MEMORY 1S IMPORTANT TO THE PROGRAMMER.

AS PROGRAMMERS WRITE A PROGRAM IT IS OFTEN NECESSARY FOR THEM TO
KEEP TABS ON HOW MANY WORDS OF MEMORY THE ACTUAL OPFRATING PORTION OF
THE PROGRAM WILL RFQUIRE (IN ADDITION TO CONTROLLING THE ARFAS IN MFMORY
T™AT WILL BE USED FOR DATA STORAGE.) ONE REASON FOR MAINTAINING A COUNT
OF THE NUMBER OF MEMORY WORDS A PROGRAM RFEQUIRES IS SIMPLY TO FNSURE
THAT THE PROGRAM WILL "FIT" INTO THE AVAILABLF MFMORY SPACE.

OFTEN A PROGRAM THAT IS A LITTLE TOO LONG TO BE STORED IN AN AVAIL-
ABLE AMOUNT OF MEMORY WHEN FIRST DEVELOPED CAN BE RE-WRITTFN AFTER SOME
THOUGHT TO FIT IN THE AVAILABLE SPACE. GENERALLY, THE TRADE-OFF BETWEEN
WRITING "COMPACT'" PROGRAMS VERSUS NOT-SO-COMPACT ROUTINES IS SIMPLY THE
PROGRAMMER'S DEVELOPMENT TIME. HASTILY CONSTRUCTED PROGRAMS TEND TO RE-
QUIRE MORE MEMORY STORAGE AREA BECAUSE THE PROGRAMMER DOES NOT TAKE THF
TIME TO CONSIDER MEMORY CONSERVING INSTRUCTION COMBINATIONS.

HOWEVER, EVEN IF ONE IS NOT CONCERNED ABOUT CONSERVING THE AMOUNT OF
MEMORY USED BY A PARTICULAR PROGRAM, ONE STILL OFTEN NEEDS TO KNOW HOW
MUCH SPACE A GROUP OF INSTRUCTIONS WILL CONSUME IN MEMORY SO THAT ONF
CAN TELL WHERE ANOTHER PROGRAM MIGHT BE PLACED WITHOUT INTERFFRING WITH
THE FIRST PROGRAM.

FOR THESE REASONS, PROGRAMMERS OFTEN FIND IT ADVANTAGEOUS TO DEVELOP
THE HABIT OF WRITING DOWN THE NUMBER OF MEMORY WORDS UTILIZED BY EACH
INSTRUCTION AS THEY WRITE THE MNEMONIC SEQUENCES FOR A ROUTINF, AND TO
ALSO MAINTAIN A COLUMN SHOWING THE TOTAL NUMBER OF WORDS REQUIRED FOR
“STORAGE OF THE ROUTINE. AN EXAMPLE OF A WORK SHEFT WITH THIS PRACTICF
BEING FOLLOWED IS ILLUSTRATED HERF:

MFMORY TOTAL
WORDS WORDS
THIS ' THIS |
INSTR. ROUTINE MNEMONICS COMMENTS
2 2 LAl @80 /PLACE @88 IN ACCUMULATOR
2 4 LHI @@l /SET REGISTER "H'" TO |
2 6 LLI 150 /AND REGIS “L*" TO 15@
1 7 ADM /ADD THE CONTENTS OF MEMORY
| 8 INL /LOCATIONS 154 & 151 ON PAGE |
1 9 ADM /ADDING SECOND NUMBER' TO FIRST
1 10 RET /END OF SUBROUTINE

IN THE EXAMPLE THE TOTAL NUMBER OF WORDS USED COLUMN WAS KEPT USING

3=~ 7

DECIMAL NUMBERS. MANY PROGRAMMERS PREFFR TO MAINTAIN THIS COLUMN USING
OCTAL NUMBERS BECAUSF OF THE DIRECT CORRELATION BETWFEN THE TOTAL NUM-
BER OF WORDS USED AND THF ACTUAL MEMORY ADDRESSES USED BY THE 8088.

THE EXAMPLE JUST PRESENTED CAN BF USED TO INTRODUCE ANOTHER CONSID-
ERATION DURING PROGRAM DEVELOPMENT - MFMORY ALLOCATION AND THE DISTINC-
TION BETWEEN PROGRAM STORAGE AREAS IN MFMORY AND AREAS USED TO HOLD
DATA THAT 1S OPERATED ON BY THE PROGRAM. NOTE THAT THE SAMPLE SUBROUT-
INE IS DESIGNED TO HAVF THE COMPUTER ADD THE CONTENTS OF MEMORY LOCA-
TIONS 158 AND 151 ON PAGE @1. THUS, THOSE TWO LOCATIONS MUST BE RESFRU-
ED FOR DATA. ONE MUST ENSURE THAT THOSE SPECIFIC MEMORY LOCATIONS ARE
NOT INADVERTANTLY USED FOR SOME OTHER PURPOSE. IN A TYPICAL PROGRAM ONF
MAY HAUF MANY LOCATIONS IN MEMORY ASSIGNFD FOR HOLDING OR MANIPULATING
DATA. IT IS IMPORTANT THAT ONF MAINTAIN SOME SORT OF .SYSTEM OF RECORD~-
ING WHERE ONE PLANS TO STORF BLOCKS OF DATA AND WHERF VARIQUS OPFRATING

PGILOC| RTN NOTES

¢! |e@p| 4D ADO =# 5 @ 150 €/5/ (Poo-#1)
g1
g2
P3¢
40
o508
géd
@7p
|80
1
/128
/136
/148
/5@ | 7 sTorACE| (150, I151)
6@
174
299
2/8
22¢
234
24¢
25¢
268
27¢
3¢¢
3¢
32¢
33p
344
35¢
36¢
r |378

MEMORY USAGE MAP

3-8

ROUTINES WILL RESIDE AS A PROGRAM IS DFVFLOPFD. THIS CAN BE RFADILY AC-
COMPLISHED BY SETTING UP AND USING "MEMORY USAGF MAPS'* (OFTEN COMMONLY
REFERRED TO ALSO AS "CORE MAPS'). AN EXAMPLF OF A MFMORY USAGE MAP RBF-

ING STARTED FOR THE SUBROUTINE JUST DISCUSSFD IS SHOWN ON THE PREVIOUS
PAGE. :

THE SAME TYPE OF FORM MAY ALSO BF USFD AS A PROGRAMMING DFVFLOPMENT
SHEET AS SHOWN BELOW. WHEN THEY ARF USED FOR THIS PURPOSE, THF "RTN"
COLUMN MAY BE USED FOR THE "LABELS" OR NAMES OF ROUTINES, AND THE MNE-
MONICS AND COMMENTS PLACED IN THE “NOTES" COLUMN. THF RFADER SHOULD
NOTICF HOW SPACES ARE LEFT BETWFEN INSTRUCTIONS THAT OCCUPY MORE THAN

ONE WORD IN MEMORY SO THAT THE ACTUAL ADDRFSSES USED CAN BE DFTERMINFED
AS THE ROUTINE 1S DEVFLOPED.

PGILOC| RTN NOTES

gl gsp| ALY, LAL PpZ /PP8 —ACC
!

LHLE @B/ TH > 2

LeLTL /52 /jte —> /S&

AW |pi|n

ADM /m=> A
INVL / Adv. PNTR
o1 ADmM /JA+m=p’
'y RET / END SUBRTN
12
13
4+
!5
’é
17
p2g
21
22
23
24
25
26
27
¢3¢
3/
32
33
34
35
3é

~N

PROGRAM DEVELOPMENT WORK SHEET

- e i

MEMORY USAGE MAPS ARE EXTREMELY VALUABLE FOR KEEPING LARGE PROGRAMS
ORGANIZED AS THEY ARE DEVELOPED OR FOR DISPLAYING THE LOCATIONS OF A
VARIETY OF PROGRAMS THAT ONE MIGHT DESIRE TO HAVE RESIDING IN MEMORY AT
THE SAME TIME. THE SAME FORM IS ALSO USEFUL AS A PROGRAM DEVELOPMFNT
WORK SHEET. IT 1S SUGGESTED THAT THE PERSON INTENDING TO DO EVEN A MOD-
ERATE AMOUNT OF MACHINE LANGUAGE PROGRAMMING MAKE UP A SUPPLY OF SUCH
FORMS (USING A DITTO OR MIMEOGRAPH MACHINE) TO HAVE ON HAND.

THERE ARE SOME IMPORTANT FACTORS ABOUT MACHINE LANGUAGE PROGRAMMING
THAT SHOULD BE POINTED OUT AS THEY HAVE CONSIDERABLE IMPACT ON THE TOTAL
EFFICIENCY AND SPEED AT WHICH ONE CAN DEVELOP SUCH PROGRAMS AND GET THEM
OPERATING CORRECTLY. THE FACTORS RELATE TO ONE SIMPLE FAGCT - PEOPLE
DEVELOPING MACHINE LANGUAGF PROGRAMS (ESPECIALLY BEGINNERS) ARE VERY
PRONE TO MAKING PROGRAMMING MISTAKES! REGARDLESS OF HOW CAREFULLY ONE
PROCEEDS, IT ALWAYS SEEMS THAT ANY FAIR SIZED PROGRAM NEEDS TO BE "RE- ‘
VISED" BEFORE A PROPERLY OPERATING PROGRAM IS ACHIEVED. THE IMPACT THAT
CHANGES IN A PROGRAM HAVE ON THE DEVELOPMENT (OR REDEVELOPMENT) EFFORT
VARY ACCORDING TO WHERE IN THE PROBRAM SUCH CHANGFS MUST BE MADE. THE
REASON FOR THE SERIOUSNESS OF THE PROBLEM 1S BECAUSE PROGRAM CHANGES
GENERALLY RESULT IN THE ADDRESSES OF THE INSTRUCTIONS IN MEMORY BEING
ALTERED. REMEMBER, IF AN INSTRUCTION IS ADDED, OR DELETED, THEN ALL THE
REMAINING INSTRUCTIONS IN THE ROUTINE BEING ALTERED MUST BE MOVED TO
DIFFERENT LOCATIONS! THIS CAN HAVE *“MULTIPLYING" EFFECTS IF THE INSTR-
UCTIONS THAT ARE MOVED ARE REFERRED TO BY OTHER ROUTINES (SUCH AS CALL
AND JUMP COMMANDS) BECAUSE THEN THE ADDRESSES REFERRED TO BY THOSE TYPES
OF COMMANDS MUST BE ALTERED TOO! TO ILLUSTRATE THE SITUATION, A CHANGE
WILL BE MADE TO THE SAMPLE PROGRAM PRESENTED SEVERAL PAGES AGO. SUPPOSE
IT WAS DECIDED THAT THE SUBROUTINE SHOULD PLACE THE RESULT OF THE ADDIT~
" ION CALCULATION IN A WORD IN MEMORY BEFORE EXITING THE SUBROUTINE iIN~-
STEAD OF SIMPLY HAVING THE RESULT IN THE ACCUMULATOR. THE ORIGINAL PRO-
GRAM, FOR EXAMPLE, COULD HAVE BEEN RESIDING IN THE LOCATIONS SHOWN ON
THE PROGRAM DEVELOPMENT WORK SHEET ON THE PREVIOUS PAGE. GHANGING THE
PROGRAM WOULD RESULT IN IT OCCUPYING THE FOLLOWING MEMORY LOGATIONS?

MEMORY

PAGE LOC CONTENTS MNEMONICS COMMENTS

21 417 806 LAl @ef /PLACE @60 IN ACCUMULATOR

a1l eel 280 ‘

a1 ge2 2856 LHI @81 = /SET REG “H"™ TO 1

a1 203 2a1

g1 004 66 LL1 150 /SET REG "L TO 150

a1 285 150

a1 pae6 207 ADM /ADD CONTENTS OF MEMORY

at 007 260 INL /LOCATIONS 158 & 151

21 219 . 2087 ADM ' /ADD 2ND TO 1ST

a1 211 B66 LLI 160 /SET REG "L” TO 160
*x @1 g12 160
*%x 01 213 370 LMA /SAVE ANSWER @ |60
*x%x @1 P14 887 RET Z/END OF SUBROUTINE

THE =x*x LOCATIONS DENOTE THE ADDITIONAL MEMORY LOCATIONS REQUIRED
BY THE MODIFIED SUBROUTINE. 1IF THE PROGRAMMER HAD ALREADY DEVELOPED A
ROUTINE THAT RESIDED IN LOCATIONS @12, @13 OR @l4, THE CHANGE WOULD RE-
QUIRE THAT IT BE MOVED!

1F ONE WAS USING A PROGRAM DEVELOPMENT WORK SHEET, ONE WOULD HAVE
HAD TO ERASE THE ORIGINAL "RET" INSTRUCTION AT THE END OF THE ROUTINE
AND THEN WRITTEN IN THE TWO NEW COMMANDS AND ADDED THE "RET" INSTRUCTION

3 - 108

AT THE END. THE EFFECTS WOULD NOT BE TOO DEVESTATING SINCE THFE CHANGE
WAS INSERTED AT THE END OF THE SUBROUTINE - BUT SUPPOSE A SIMILAR CHANGE
WAS NECESSARY AT THE START OF A SUBROUTINE THAT HAD 5@ INSTRUCTIONS IN
IT? THE PROGRAMMER WOULD HAVE TO DO A LOT OF ERASING!

THE EFFECTS OF CHANGES IN PROGRAM SOURCE LISTINGS WAS RECOGNIZFED
EARLY AS A PROBLEM IN DEVELOPING PROGRAMS AND SO PEOPLE DEVELOPED PRO-
GRAMS CALLED “EDITORS'" THAT WOULD ENABLE THE COMPUTER TO ASSIST PEOPLE
IN THE TASK OF CREATING AND MANIPULATING SOURGCE LISTINES FOR PROGRAMS.
AN “EDITOR"™ IS A PROGRAM THAT WILL ALLOW A PERSON TO USE THE COMPUTER AS
A “TEXT BUFFER."™ SOURCE LISTINGS CAN BE ENTEFRED FROM A KEYBOARD OR
OTHER INPUT DEVICE AND STORED IN THE COMPUTER'S MFMORY. INFORMATION
THAT IS PLACED IN THE “TEXT BUFFER" 1S KEPT IN AN ORGANIZED FASHION, US-
UALLY BY "LINES* OF TEXT. AN EDITOR PROGRAM GENERALLY HAS A VARIETY OF
COMMANDS AVAILABLE TO THE OPERATOR TO ALLOW THE INFORMATION IN THE TEXT
BUFFER TO BE MANIPULATED. FOR INSTANCE, LINES OF INFORMATION STORED IN
THE TEXT BUFFER MAY BE ADDED, DELETED, MOVED ABOUT OR INSERTED BEFORE
OTHER LINES, AND SO FORTH. NATURALLY, THE INFORMATION IN THE BUFFER CAN
BE DISPLAYED TO THE OPERATOR ON AN OUTPUT DEVICE SUCH AS A CATHODE RAY
TUBE OR ELECTRIC TYPING MACHINE. USING THIS TYPE OF PROGRAM, A PROGRAM~
MER CAN RAPIDLY CREATE A SOURCE LISTING AND MODIFY IT AS NEGESSARY.

WHEN A PERMANENT COPY 1S DESIREDs THE CONTENTS OF THE “TEXT BUFFER"™ CAN
BE PUNCHED ONTO PAPER TAPE OR WRITTEN ONTO A MAGNETIC TAPE CASSETTE. 1IT
TURNS OUT THAT THE COPY PLACED ON PAPER TAPE OR A CASSETTE CAN OFTEN BE
FURTHER PROCESSED BY ANOTHER PROGRAM TO BE DISCUSSED SHORTLY WHICH IS
TERMED AN ASSEMBLER. HOWEVER, AN IMPORTANT REASON FOR MAKING A COPY OF
THE TEXT BUFFER ON PAPER TAPE OR MAGNETIC CASSETTE TAPE IS BECAUSE IF IT
1S EVER NECESSARY TO MAKE CHANGES TO THE SOURCE LISTING, THEN THE OLD
LISTING CAN BE QUICKLY RELOADED BACK INTO THE COMPUTER, CHANGES RAPIDLY
IMPLEMENTED USING AN EDITOR PROGRAM, AND A NEW "CLEAN' LISTING OBTAINED
IN A FRACTION OF THE TIME REQUIRED TO ERASE AND RE-¥RITE A LARGE NUMBER
OF LINES USING PENCIL AND PAPER!

RELATIVELY SMALL PROGRAMS CAN BE DEVELOPED USING MANUAL METHODS -
THAT 1S BY WRITING THE SOURCE LISTINGS WITH PENCIL AND PAPFR -~ RBUT ANY-
ONE THAT 1S PLANNING ON DOING EXTENSIVE PROGRAM DEVELOPMENT WORK SHOULD
OBTAIN AN EDITOR PROGRAM IN ORDER TO SUBSTANTUALLY INCREASE THEIR OVER-
ALL PROGRAM DEVELOPMENT EFFICIENCY. BESIDES, AN EDITOR PROGRAM CAN BE
PUT TO A LOT OF GOOD USED BESIDES MAKING UP SOURCE LISTINGS! SUCH AS
-ENABLING ONE TO EDIT CORRESPONDENCE OR PREPARE WRITTEN DOCUMENTS THAT
ARE NICE AND NEAT IN LESS THAN HALF THE TIME REQUIRED BY CONVENTIONAL
METHODS.

CHANGES IN SOURCE LISTINGS NATURALLY RESULT IN CHANGES TO THE MACH~
INE CODES (WHICH THE MNEMONICS SIMPLY "SYMBOLIZE"). EVEN MORE IMPORT-
ANTLY, THE ADDRESSES ASSOCIATED WITH INSTRUCTIONS OFTEN MUST BE CHANGED
DUE TO ADDITIONS OR DELETIONS OF WORDS" OF MACHINE CODE. FOR INSTANCE,
IN THE EXAMPLE ROUTINE BEING USED IN THIS SECTION, MEMORY ADDRESS PAGE
@1 LOCATION 211 ORIGINALLY CONTAINED THE CODE FOR A “RET" (RETURN) IN-
STRUCTION WHICGH IS @@87. WHEN THE SUBROUTINE WAS CHANGED BY ADDING SEV-
ERAL MORE INSTRUCTIONS (SO THE ANSWER WOULD BE STORED IN A MFMORY LOCA-
TION) THE "RET" INSTRUCTION WAS SHIFTED DOWN TO THE ADDRESS PAGE 9!
LOCATION @14. THE ADDRESS WHERE IT FORMERLY RESIDED WAS CHANGED TO HOLD
ME CODE FOR THE FIRST PART OF THE “LLI 16@' INSTRUCTION WHICH IS @&é6.
HAD CHANGES BEEN MADE EARLIER IN THE ROUTINE, THEN MANY MORE MFMORY
LOCATIONS WOULD NEED TO BE ASSIGNED DIFFERENT MACHINE CODES. HOWEVER,
THE CHANGES CAUSED BY ADDING ON TO THE SAMPLE PROGRAM PREVIOUSLY DISCUS-
SED ARE NOT QUITE AS FAR REACHING AS THOSE THAT WOULD OCCUR IF CHANGES
WERE MADE TO A PROGRAM SUCH AS THE ONE PRESENTED ON THE FOLLOWING PAGE,
WERE THE CHANGES RESULT IN THE ADDRESSES OF SUBROUTINES REFERRED TO BY
OTHER ROUTINES BEING CHANGED - SO THAT IT IS THEN NECESSARY TO GO BACK

2 - 11

AND MODIFY THE MACHINE CODES IN ALL OF THE ROUTINES THAT REFER TO THE
SUBROUTINE THAT 1S CHANGED!

MEMORY
PAGE LOC CONTENTS LABELS/MNEMONICS COMMENTS

a9 a00 a26 OVER, LCl 180 /LOAD REG 'C*' WITH (06

80 201 100 \

80 202 106 CAL NEWONE /CALL A NFW SUBROUTINE

Y] 203 213 1 '

80 P04 e

(T 205 196 CAL LOAD /AND THEN ANOTHER

20 @006 323

1) A7 - A48

aa 218 164 JMP OVER /JUMP BACK & REPEAT SEQUENCE
T 211 200

20 212 a0e

1) 813 856 NEWONE, LHI @0é /LOAD REG 'H' WITH @°'S

00 914 200

a0 é1s XY LL1I 200 Z/AND ‘L' WITH 200

00 dle 200 ‘

20 017 317 LBM /FETCH MEMORY CONTENTS TO °'B°
89 220 g1 INB /INCREMENT THE VALUE IN °'R°
22 921 371 LMB /PLACE °'B' BACK INTO MEMORY
T, 922 007 ~ RET /EX1IT SUBROUTINE

1 823 256 LOAD, LHI @63 /SET 'H' TO 883 (PAGE)

Y 824 203

T 225 36! LLB /PLACE REG °*B*' INTO °'L°

29 826 370 LMA /PLACE ACC INTO MEMORY

Y] 027 a21 ‘ ' pce /DECREMENT VALUE IN REG °'C°
T 2304 213 RFZ /JRETURN IF *'C* NOT = Aad

a9 a3l 200 HLT /STOP IF 'C*' = @40#&

SUPPOSE IT WAS DECIDED TO INSERT A SINGLE WORD INSTRUCTION RIGHT

AFTER THE "“LCI 1@0' COMMAND IN THE ABOVE PROGRAM. THF NEV PROGRAM WOULD
APPEAR AS SHOWN BELOWV.

MEMORY

PAGE LOC CONTFNTS LABELS/MNEMONICS COMMENTS

a0 2na 226 OVER, LCl 109 /LOAD REG °‘C* WITH 104

20 231 190

T’ 202 250 XRA /CLEAR THE ACCUMULATOR

*30 203 196 CAL NEWONE /CALL A NEW SUBROUTINE

30 A04 =xxpl4

*A9 905 200

*00 886 196 CAL LOAD /AND THEN ANOTHER

=20 807 **x024 :

*00 210 ane

*@3 211 104 JMP OVER /JUMP BACK & RFPFEAT SFQUENCE
*@39 BE-] 200

*A @ 613 200

=20 Ala 256 NEWONE, LHI 0d@ " /JLOAD REG 'H' WITH 6°'S

*AQ a1s 0A6 ,

*@0 g16 B 66 LLI 200 /AND ‘L' WITH 200

*30 ° 617 200 :

=08 220 317 LBM /FETCH MEMORY CONTENTS TO 'R’
*3@ a2t a1 INB /INCREMENT THF VALUE IN 'B°

3-12

*A0 e22 371 LMB /PLACE 'B' BACK INTO MEMORY

*@3 0 923 87 . RET /JEXIT SUBROUTINE

*Ad a2a #56 LOAD, LHI @3 /SET 'H®' TO 0083 (PAGF)

*3Q az2s 883

*@ 0 826 361 LLB /PLACE REG 'B' INTO ‘L'

*@ ne7 376 LMA /PLACE ACC INTO MFEMORY

*@ @ 030 a21 DCC /DECRFMENT VALUF IN REG °'C°'
*B0 ¥31 P13 RFZ /RETURN IF *'C*' NOT = @00
*Q0 232 280 HLT /STOP IF *'C' = 069

NOTE IN THE ILLUSTRATION HOW NOT ONLY THE ADDRESSES OF ALL THF IN-
STRUCTIONS BEYOND LOCATION 062 (DENOTED BY THE *) CHANGE, BUT EUFN MORE
IMPORTANT, THAT PARTS OF THE INSTRUCTIONS THEMSELVES (THE ADDRESS POR-
TION OF THE *CAL" INSTRUCTIONS - DENOTED BY THE **) MUST NOW BE ALTERFD.
THE ESSENTIAL POINT BEING MADE HERE IS THAT IF THE STARTING ADDRESS OF
A ROUTINE OR SUBROUTINE THAT IS REFERRED TO BY ANY OTHFR PART OF THF
PROGRAM 1S CHANGED, THEN EACH AND EVERY REFFRENCE TO THAT ROUTINFE MUST
BE LOCATED AND THE ADDRESS PORTION CORRECTED! THIS CAN BE AN EXTREMELY
FORMIDABLE, TIME CONSUMING, TEDIOUS, AND DOWN RIGHT FRUSTRATING TASK IF
ALL THE REFERENCES MUST BE FOUND AND CORRECTED BY MANUAL MEANS IN A
LARGE PROGRAMI

FORTUNATELY., THIS TYPE OF PROBLEM BECAME VIVIDLY APPARFNT TO FARLY
COMPUTER TECHNOLOGIST AND THEY SOON FOUND A METHOD TO FASF THE TASK OF
MAKING SUCH CORRECTIONS BY DEVELOPING A TYPE OF PROGRAM CALLED AN
“ASSEMBLER®" THAT WOULD UTILIZE THE COMPUTER TO DO SUCH TASKS. *ASSEM=-
BLER" PROGRAMS ARE TYPES OF PROGRAMS THAT ARE ABLF TO PROCESS " SOURCE
LISTINGS" WRITTEN IN MNEMONIC (SYMBOLIC) FORM AND THEN TRANSLATE THEM
INTO THE “OBJECT' (ACTUAL MACHINE LANGUAGE) CODE THAT 1S UTILIZED DIR=-
ECTLY BY THE COMPUTER. AN ASSEMBLER ALSO KEEPS TRACK OF ASSIGNING THE
PROPER ADDRESSES TO REFERENCES TO ROUTINFS (THROUGH A PROCESS INITIAT-
ED BY ASSIGNING *"LABELS" TO ROUTINFS IN THE SOURCE LISTING). ONE CAN
NOW SEE THAT THE COMBINATION OF AN EDITOR AND AN ASSEMBLER PROGRAM CAN
GREATLY EASE THE TASK OF DEVELOPING MACHINE LANGUAGE PROGRAMS OVER THAT
OF THE PURELY MANUAL METHOD WHICH BECOMES UNWIELDY AND NEXT TO IMPOS-
SIBLE WHEN THE PROGRAM SIZE BECOMES LARGE. ONE RFEASON THE COMBINATION
IS S0 VALUABLE IS BECAUSE IF A MISTAKE IN PROGRAMMING IS MADE, ONE CAN
USE THE RELATIVELY QUICK METHOD.OF UTILIZING AN EDITOR PROGRAM TO REVISE
THE SOURCE LISTING, AND THEN USE THE ASSEMBLER PROGRAM TO PROCESS THE
CORRECTED SYMBOLIC LISTING AND PRODUCE A NEW VFRSION OF THE MACHINE CODF
ASSIGNED TO THE APPROPRIATE ADDRESSES.

FOR QUITE SMALL PROGRAMS - SAY LESS THAN 104 INSTRUCTIONS, THE USE
OF EDITOR AND ASSEMBLER PROGRAMS ARE NOT MANDATORY. IN FACT, EVEN IF
ONE USES THESE AIDS FOR SMALL PROGRAMS, ONE SHOULD KNOW HOW TO CONVERT
MNEMONIC LISTINGS TO OBJECT (MACHINE CODE) AS IT WILL OCCASIONALLY BF
BENEFICIAL TO BE ABLE TO MAKE MINOR PROGRAM CHANGES ("PATGHES®) WITHOUT
HAVING TO GO THROUGH THE PROCESS OF USING AN EDITOR AND ASSEMBLER. THIS
IS PARTICULARLY TRUE WHEN ONE IS "“DFBUGGING" LARGE PROGRAMS AND WANTS
TO ASCERTAIN WHETHER A MINOR CORRECTION WILL OPFRATE AS PLANNED. THE
PROCESS OF CONVERTING FROM A MNEMONIC LISTING TO ACTUAL MACHINE CODE IS
NOT DIFFICULT IN CONCEPT. MANY READERS WILL HAVE DISCERNED THE PROCFSS
FROM THE EXAMPLES ALREADY PROVIDED. HOWEVFR, FOR ANY WHO ARE IN DOURT
THE PROCESS WILL BE REVIEWED FOR THE SAKE OF CLARITY AT THIS TIME.

SUPPOSE A PERSON DESIRED TO PRODUCE A SMALL PROGRAM THAT WOULD SET
THE CONTENTS OF ALL THE WORDS IN PAGE @1 OF MEMORY TO #0d (OCTAL). THFE
PROGRAMMER WOULD FIRST DEVELOP THE ALGORITHM AND WRITE IT DOWN AS A MNE-
MONIC (SOURCE) LISTING. SUCH AN ALGORITHM MIGHT BE AS FOLLOWS.

3 -13

MNEMONIC COMMENTS

LHI 2021 "/SET THF HIGH ADDRESS RFGISTER TO PAGE 1
LLI @00 /SET THE LOW ADDRESS REGISTER TO THE FIRST
/LOCATION ON THE PAGE ASSIGNED BY REG. ''H"
AGAIN, LMI @00 /LOAD THE CONTFNTS OF THE MEMORY LOCATION
: /SPECIFIED BY REGISTERS “H" & "L TO 800
INL /ADVANCE REGISTER "L TO THE NEXT MEMORY
/LOCATION (BUT DO NOT CHANGE THE PAGE)
JFZ AGAIN . /1F THE VALUE QOF REGISTER "L" IS NNOT Adq

/AFTER IT HAS BEEN INCRFMENTED THEN JUMP
/BACK TO THE PART OF THE PROGRAM DFNOTED RY
/THE LABEL '"AGAIN' AND REPEAT THE PROCESS

HLT /1F THE VALUE OF REGISTER "L" IS TRULY @a@
/THEN HAVE THE PROGRAM STOP

TO CONVERT THE SOURCE LISTING TO MACHINE (OBJECT) CODE THF PROGRAM-
MER MUST FIRST DECIDE WHERE THE PROGRAM IS TO RESIDE IN MEMORY. IN THIS
PARTICULAR CASE IT WOULD CERTAINLY NOT BF WISE TO PLACE THE PROGRAM ANY-
“HERE ON PAGE ©¥1 AS THE PROGRAM WOULD SOON ' SELF DESTRUCT!' HOWEVER,
THE PROGRAM COULD SAFELY BE PLACED ANYWHERE ELSE AND FOR THE SAKE OF THE
DEMONSTRATION LET US ASSUME THAT IT IS TO RESIDE ON PAGE @82 STARTING AT
LOCATION 1@26. TO CONVERT THE SOURCE LISTING TO MACHINE CODE THE PRO-
GRAMMER WOULD SIMPLY MAKE A LIST OF THE ADDRESSES TO BE OCCUPIED BY THF
PROGRAM AND THEN SIMPLY LOOK UP THE MACHINE CODE CORRESPONDING TO THE
MNEMONIC FOR EACH INSTRUGTION AND PLACE THIS NUMBER NFXT TO THE ADDRESS
IN WHICH IT WILL RESIDE. THE MACHINE CODE FOR FACH MNEMONIC USED BY THE
8608 CPU 1S PROVIDED IN THE FIRST CHAPTER AS THE READER VILL RECALL.
SINCE SOME INSTRUCTIONS ARE "LOCATION DEPENDENT" IN THAT THFY REQUIRE
THE ADDRESS OF REFERENCED ROUTINES, IT 1S OFTEN NECESSARY TO ASSIGN THF
MACHINE CODE IN TWO PROCESSES. THE FIRST PROCESS CONSIST OF ASSIGNING
THE MACHINE CODES TO SPECIFIC MEMORY ADDRFSSES WHERE-EVFR POSSIBLF.
WHEN THE MACHINE CODE REQUIRES AN ADDRESS THAT HAS NOT YET BEEN DETER-
MINED, THE MEMORY LOCATION 1S LEFT BLANK. THE SECOND PROCESS CONSIST OF
GOING BACK AND FILLING IN ANY BLANKS ONCE THF ADDRESSES OF REFERENCED
ROUTINES HAVE BEEN DETERMINED. IN THE EXAMPLE BEING ILLUSTRATED, ONLY
ONE PROCESS IS REQUIRED BECAUSE THE ADDRESS SPECIFIED BY THE LABEL
“AGAIN" 1S DEFINED BEFORE THE LABEL (ADDRESS) IS REFERENCED BY THE “JFZ"
INSTRUCTION. THE SAMPLE PROGRAM CONVERTED TO MACHINE LANGUAGE WOULD
APPEAR AS FOLLOWS.

ORIGINAL - MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS
LH1 @01 22 100 As5é6 /MACHINE CODF FOR "LHI"™
p2 101 a81 /"IMMEDIATE" PART OF *LHI"™
LLI @aa az2 1082 P66 /MACHINE CODE FOR 'LLI*
o2 1@3 a0 /" IMMEDIATE™ PART OF *“LLI"
AGAIN, LMI 004 2 104 276 /MACHINE CODE FOR *“LMI*"
' /NOTE THAT THE LABEL "AGAIN“
/NOW DEFINES AN ADDRESS OF
/LOCATION 184 ON PAGE @2
82 105 000 /"IMMEDIATE" PART OF 'LMI"
INL | a2 106 060 /INCREMENT LOW ADDRESS
JFZ AGAIN g2 187 110 /MACHINE CODE FOR "JFZ"
62 119 184 /LOV ADDRESS PORTION OF THE

/CONDITIONAL JUMP INSTRUCTION
/DEFINED BY LABEL "AGAIN"

3~ 14

g2 111 paz /PAGE ADDRESS PORTION OF THE
/CONDITIONAL JUMP INSTRUCTION
/DEFINED BY LABEL "AGAIN"
HLT . @2 112 377 /ALTERNATELY, THE CODE 002 OR
/7831 COULD HAVE BFEN USED HERE
/FOR THE °*'STOP'" INSTRUCTION

ONCE THE PROGRAM HAS BEEN PUT IN MACHINE LANGUAGE FORM THE ACTUAL
MACHINE CODE MAY BE PLAGED IN THE ASSIGNED LOCATIONS IN MEMORY AND THE
PROGRAMMER MAY PROCEED TO VERIFY THE ALGORITHM'S VALIDITY. FOR SMALL
PROGRAMS SUCH AS THE EXAMPLE JUST ILLUSTRATED THE MACHINE CODE CAN SIM-
PLY BE LOADED INTO THE CORRECT MEMORY LOCATIONS USING MANUAL METHODS
TYPICALLY PROVIDED ON 8808 SYSTEMS. SUCH SMALL PROGRAMS CAN THEN BE
EASILY CHECKED OUT BY *"STEPPING" THROUGH THE PROGRAM.

1F THE PROGRAM 1S RELATIVELY LARGE THEN A SPECIAL LOADER PROQGRAM
WHICH IS TYPICALLY AVAILABLFE WITH AN ASSEMBLER PROGRAM WOULD BE USED TO
LOAD IN THE MACHINE CODE.

CHECKING OUT AND “DEBUGGING" LARGE PROGRAMS CAN SOMETIMES BE DIFFI-
CULT IF A FEW SIMPLE RULES ARE NOT FOLLOWED. A GOOD RULE OF THUMB IS
TO FIRST TEST OUT EACH SUBROUTINE INDEPENDENTLY. ONE CAN CHOOSE TO
"STEP" THROUGH A SUBROUTINE, OR ELSE TO PLACE “HALT" INSTRUCTIONS AT
THE END OF EACH SUBROUTINE AND VERIFY THAT DATA WAS MANIPULATED PROPER-
LY BY THAT SUBROUTINE BEFORE GOING ON TO THE NEXT SFCTION. THE USE OF
STRATEGICALLY LOCATED "HALT*" INSTRUCTIONS IN A PROGRAM INITALLY BFING
TRIED OUT 1S AN IMPORTANT METHOD FOR THE USER TO REMEMBER. WHEN A HALT
1S ENCOUNTERED THE USER CAN CHECK THE CONTENTS OF MEMORY LOCATIONS AND
EXAMINE THE CONTENTS OF CPU REGISTERS TO DETERMINE IF THEY CONTAIN THE
PROPER VALUES AT THAT POINT IN THE PROGRAM (USING THE MANUAL OPERATOR
CONTROLS AND INDICATOR LAMPS TYPICALLY PROVIDED ON 8888 DEVELOPMENT OR
GENERAL PURPOSE SYSTEMS). IF ALL 1S WELL AT THE HALT CHECK POINT THEN
THE PROGRAMMER CAN REPLACE THE HALT INSTRUCTION WITH THE ACTUAL INSTRUC-
TION FOR THAT POINT AND CONTINUE CHECKING THF NPERATION OF THE PROGRAM
AFTER MAKING CERTAIN THAT ANY REGISTFRS THAT VWFRE ALTERED BY THE EXAMI-
NATION PROCEDURE (TYPICALLY °'H'' AND 'L*") HAVE BEEN RESET TO THE DESIRED
VWALUE IF THEY WILL EFFECT OPERATION OF THE PROGRAM AS IT CONTINUES!

IT IS OFTEN HELPFUL TO USE A UTILITY PROGRAM KNOWN AS A "MEMORY
DUMP" PROGRAM TO CHECK THE CONTENTS OF MEMORY LOCATIONS WHEN CREATING
A NEW PROGRAM. THE MEMORY DUMP PROGRAM IS A SMALL UTILITY PROGRAM THAT
WILL ALLOW THE CONTENTS OF AREAS OF MEMORY TO BE DISPLAYED ON AN OUTPUT
DEVICE. NATURALLY, THE MEMORY DUMP PROGRAM MUST BE PLACED IN AN ARFA
OF MEMORY OUTSIDE THAT BEING USED BY THE PROGRAM BEING DEVELOPED. BY
USING THIS TYPE OF PROGRAM THE OPERATOR CAN EASILY VERIFY THE CONTENTS
OF MEMORY LOCATIONS - SAY BEFORE AND AFTER A SPECIFIC OPERATION OCCURRED
T0 SEE IF THEIR CONTENTS ARE AS EXPECTED. A MEMORY DUMP PROGRAM IS ALSO
A VALUABLE AID IN DETERMINING THAT A PROGRAM HAS BEEN PROPFRLY LOADED OR
THAT A PORTION OF A PROGRAM IS STILL PRESENT, PERHAPS AFTER A PROGRAM
UNDER TEST HAS GONE ERRANT!

ONE WILL FIND THAT HAVING FLOW CHARTS AND MEMORY MAPS AT HAND DURING
T™E "DEBUGGING* PROCESS 1S ALSO VERY HELPFUL AS A REFRESHER ON WHERF

ROUTINES ARE SUPPOSED TO BE IN MEMORY AND WHAT THF ROUTINES ARE SUPPOSFD
TO BE DOING.

1F MINOR CORRECTIONS ARE NECESSARY OR DESIRED, THEN ONE CAN OFTEN
MAKE PROGRAM CORRECTIONS - OR “PATCHES" AS THEY ARE COMMONLY REFERRED TO
BY SOFTWARE PEOPLE, TO SEE IF THE CORRECTIONS BELIEVED NECESSARY WILL
WRK AS PLANNED. AN EASY WAY TO MAKE A "PATCH" TO A PROGRAM IS TO RE-

3-18%

PLACE A "CALL'" OR *"JUMP' INSTRUCTION WITH A "CALL'" TO A NEW SUBROUTINE
THAT CONTAINS THE NECESSARY CORRECTIONS (PLUS THE ORIGINAL 'CALL" OR
“JUMP' INSTRUCTION IF NECESSARY)>! 1F A “CALL' OF “JUMP*" INSTRUCTION IS
NOT AVAILABLE IN THE VICINITY OF THE AREA WHERE A CORRECTION MUST BE
MADE THEN ONE CAN. REPLACE THREE WORDS OF INSTRUCTIONS WITH A "CALL"
PATCH PROVIDED THAT ONE IS VERY CAREFUL NOT TO SPLIT UP A MULTI-WORD IN-
STRUCTION, OR, IF THIS CANNOT BE AVOIDED, THAT THE RFMAINING PORTION OF
A SPLIT UP MULTI-WORD INSTRUCTION IS REPLACED WITH A "NO OPFRATION® IN-
STRUCTIONS SUCH AS "LAA.' ONF MUST ALSO MAKE CERTAIN THAT THF INSTRUC-
TIONS DISPLACED BY THE INSERTED "CALL"™ INSTRUCTION ARE PLACED IN THE
“PATCHING'" SUBROUTINE (PROVIDED THAT THEY ARE NOT BEING REMOVED PURPOSE-
LY)! AN EXAMPLE OF SEVERAL PATCHES BFING MADE TO THE SMALL SAMPLE PRO-
GRAM JUST DISCUSSED WILL BE ILLUSTRATED BELOW.

SUPPOSE, IN THE EXAMPLE JUST DISCUSSED, THAT THE OPERATOR DFCIDED
NOT TO CLEAR (SET TO #@#8) ALL THE WORDS IN PAGE @&! OF MEMORY, BUT RATHER
TO ONLY CLEAR THE LOCATIONS @¢® TO 177 ON THE PAGE. THFE PROGRAM COULD
BE MODIFIED BY REPLACING THE "JFZ AGAIN"™ INSTRUCTION STARTING AT LOCA-
TION 187 OF PAGE 92 WITH THE COMMAND "CAL @60 @03 (CALL THE SUBROUTINEF
STARTING AT LOCATION 90@ ON PAGE @3 VHICH WILL BE THE “PATCH"). NOW AT
LOCATION 00@ ON PAGE @3 ONE COULD PUT:

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS
LAl 280 a3 o00a P 6 /PUT VALUE 24¢ INTO
63 001 200 /THE ACCUMULATOR

/NOTE VALUE OF 26@ USED BE-
/CAUSE CONTENTS OF REGISTER
/"L'" ALREADY INCREMENTED!
CPL 83 @é2 276 /COMPARE CONTFNTS OF THF
' /ACCUMULATOR WITH THE CON-
/TENTS OF REGISTER *L"

JFZ AGAIN a3 003 110 /1F ACCUMULATOR AND "L DO
p3 004 104 /NOT MATCH THEN CONTINUE THE
3 @65 ee2 /O0RIGINAL PROGRAM

RET 3 @é6 aa7 /END OF "PATCH" SUBROUTINE

SUPPOSE INSTEAD OF FILLING EVERY WORD ON PAGE &1 WITH 640 THFE PRO-
GRAMMER DECIDED TO FILL EVERY OTHER WORD? A PATCH COULD BE MADE BY RE-
PLACING THE '""LMl @@@'* COMMAND AT LOCATIONS 184 AND 14S, PLUS THE "INL"
COMMAND AT LOCATION 186 OF PAGE @2 AND AGAIN INSERTING A '"CAL 600 @03"
TO A PATCH SUBROUTINE THAT MIGHT APPEAR AS:

MEMORY MEMORY :
MNEMONIC ADDRESS CONTENTS COMMENTS
LMI 0066 63 o028 876 /KFEP THE *“LMI" INSTRUC-
: 23 681 00 /AS PART OF THE PATCH
INL 83 @8e 6o /ORIGINAL *INL"
INL 3 883 aed /PLUS ANOTHER TO SKIP.
/EVERY OTHER WORD

RET .33 064 a7 /EXIT FROM PATCH

FINALLY, TO ILLUSTRATE A PATCH THAT SPLITS A MULTI-WORD COMMAND,

3~ 16

CONSIDER A HYPOTHETICAL CASE WHERE THE PROGRAMMER DECIDED THAT PRIOR TO
DOING THE CLEARING ROUTINE, IT WOULD BE IMPORTANT TO SAVE THE CONTENTS
OF REGISTER "H'" BEFORE SETTING IT TO PAGE @l1. IF A THREE WORD *"CALL"
ROUTINE IS PLACED STARTING AT LOCATION 180 ON PAGE 62 IN THE ORIGINAL
ROUTINE TO SERVE AS A PATCH, IT CAN BE SEFN THAT THE SECOND HALF OF THE
"LLI #@@" INSTRUCTION WOULD CAUSE A PROBLEM WHEN THE PROGRAM RETURNED
FROM THE PATCH. (THE VALUE OF #0060 AT LOCATION 103 ON PAGE 62 IN THE FX-
AMPLE WOULD BE INTREPRETED AS A "HLT" COMMAND BY THE COMPUTER WHEN IT
RETURNED FROM THE PATCH SUBROUTINE)! 1IN ORDER TO AVOID THIS PROBLEM THE
PROGRAMMER COULD PLACE A "LAA"™ (EFFECTIVELY A ''NO OPERATION" COMMAND) AT
LOCATION 183 ON PAGE #2 AFTER PLACING THE "CAL 009 903" INSTRUCTION BE~
GINNING AT LOCATION 1828 ON PAGE 82 TO SERVE AS THE PATCH. THE ACTUAL
PATCH SUBROUTINE MIGHT APPEAR AS SHOWN:

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS

LFH A3 008 345 /SAVE "“H" IN REGISTER "E“

LHI @@l 83 091 256 /NOW SFT REGISTER *“H'" TO
83 Qa2 ao 1 /POINT TO PAGE @l

LLI 0606 83 a3 866 /AND SET THE LOW ADDRESS
83 0804 200 /POINTER TO LOCATION 060

RET 83 0as 667 /END OF PATCH SUBROUTINE

IN THE BALANCE OF THIS MANUAL NUMEROUS TECHNIQUES FOR DFUFLOPING
MACHINE LANGUAGE PROGRAMS WILL BE PRESENTED AND DISCUSSED. MANY OF THE
EXAMPLES USED WILL BE PRESENTED AS SUBROUTINES THAT THE READER CAN USE
DIRECTLY WHEN DEVELOPING CUSTOM PROGRAMS. IT IS IMPORTANT FOR THE NEW
PROGRAMMER TO LEARN TO THINK OF PROGRAMS IN TERMS OF ROUTINES OR SUB-
ROUTINES AND THEN LEARN TO COMBINE SUBROUTINES INTO LARGER PROGRAMS.
THIS PRACTICE MAKES IT FASIER FOR THE PROGRAMMER TO INITIALLY DEVELOP
PROGRAMS AS IT IS GENERALLY MUCH EASIFR TO CREATF SMALL ALGORITHMS AND
THEN COMBINE THEM, IN THE FORM OF SUBROUTINES, INTO THE LARGER ROUTINES.
REMEMBER, SUBROUTINES ARE SEQUENCES OF INSTRUCTIONS THAT CAN BE CALLED
BY OTHER PARTS OF THE PROGRAM. THEY ARE TERMINATED BY "RET" OR CONDI-
TIONAL RETURN COMMANDS. IT IS ALSO WISE WHEN DEVELOPING PROGRAMS TO
LEAVE SOME ROOM IN MEMORY BETWEEN SUBROUTINES SO THAT PATCHES CAN BE IN=-
SERTED OR ROUTINES LENGTHENED WiTHOUT HAVING TO RE-ARRANGE THE CONTENTS
OF A LARGE AMOUNT OF MEMORY. FINALLY, WHILE SPEAKING OF SUBROUTINES,
IT WILL BE POINTED OUT THAT THE USER WOULD BE WISE TO KEEP A NOTE BOOK
OF SUBROQUTINES THAT THE INDIVIDUAL DEVELOPS IN ORDER TO BUILD UP A REF=-
ERENCE "LIBRARY' OF PERTINENT ROUTINES. IT TAKES TIME TO THINK UP AND
CHECK OUT ALGORITHMS - AND ITS AWFUL EASY TO FORGET JUST HOW ONE HAD
SOLVED A PARTICULAR PROGRAMMING PROBLEM SIX MONTHS AFTFR ONE INITIALLY
ACCOMPLISHED THE GOAL. SAVE YOUR ACCRUED EFORTS - THE MORE ROUTINES
YOU HAVE TO UTILIZE - THE MORE VALUABLE YOUR MACHINE BECOMES, BECAUSE

THE POWER OF THE MACHINE IS ALL DETERMINED BY WHAT YOU PUT IN ITS MEM-
ORY!

BEFORE GOING ON TO THE NEXT SECTION, THE ESSENTIAL STEPS IN THE
PROCESS OF CREATING A PROGRAM WILL BE PRESENTED AS A. SUMMARY FOR READY
REFERENCE ON THE FOLLOWING PAGE.

3 - 17

REVIFW OF THE PROCESS OF CRFATING A MACHINF LANGUAGF PROGRAM

1.) FIRST, THE PROGRAMMER SHOULD CLFARLY DEFINF AND WRITF DOWN ON
PAPFR EXACTLY WHAT THF PROGRAM IS TO ACCOMPLISH.

2.) NEXT, FLOW CHARTS TO AID IN THE COMPLFX TASK OF WRITING THF
MNEMONIC (SOURCE) LISTINGS ARE PREPARED. THFY SHOULD RE AS

DETAILED AS NECESSARY FOR THE PROGRAMMFR'S LFVFL OF FXPFERIFNCE
AND ABILITY. '

3.) MEMORY MAPS SHOULD BE USED TO DISTRIBUTF AND KEEP TRACK OF
PROGRAM STORAGFE ARFAS AND DATA MANIPULATING REGIONS IN AVAIL-
ABLE MFMORY.

4.) USING THE FLOW CHARTS AND MFEMORY MAPS AS GUIDES, THF ACTUAL
SOURCE LISTINGS OF THE ALGORITHMS ARFE WRITTEN USING THE SYM-
BOLIC REPRESFNTATIONS OF THE INSTRUCTIONS. AN FDITOR PROGRAM
1S FREQUENTLY USED TO GOOD ADUANTAGE AT THIS TIME.

S.) THE MNEMONIC SOURCE LISTINGS ARF CONVERTED INTO THE ACTUAL
MACHINE LANGUAGE NUMERICAL CODES ASSIGNFD TO SPFCIFIC ADDRES-
SFS IN MEMORY. AN ASSEMBLER PROGRAM MAKES THIS TASK QUITF
EASY AND SHOULD BE USFD FOR ALL RUT THF SMALLEST PROGRAMS.

€+.) THE PREPARED MACHINF CODE 1S LOADED INTO THE APPROPRIATE
ADDRESSES IN THE COMPUTER'S MEMORY AND OPERATION OF THF PRO-
GRAM IS VERIFIED. OFTFN THFE INITIAL CHECK OUT IS DONE USING
THE "STEP" MODE OF OPERATION, OR BY EXERCISING INDIVIDUAL
SUBROUTINES. THE JUDICIAL USE OF INSFRTED “HALT" INSTRUC-
TIONS AT KEY LOCATIONS WILL OFTFN BE OF VALUE DURING THF IN-
ITIAL TESTING PHASF.

7.) IF THE PROGRAM IS NOT PERFORMING AS INTFNDED THFN PROBLEM
AREAS MUST BE ISOLATED. PROGRAM “PATCHES'" MAY BE UTILIZFD
TO MAKE MINOR CORRECTIONS. IF SFRIOUS PROBLEMS ARF FOUND
IT MAY BE NECESSARY TO RETURN TO STEP #3, OR EVEN STEP #1.

3 - 18

BASIC PROGRAMMING TECHNIQUES

THE FIRST SECTION OF TH1S CHAPTER WILL BE DEVOTED TO ILLUSTRATING A
NUMBER OF SIMPLE INSTRUCTIONS AND SFQUENCES OF INSTRUCTIONS THAT MAY BE
"USED TO ACCOMPLISH COMMONLY REQUIRED FUNCTIONS. NOVICE PROGRAMMERS NEED
T0 BUILD UP A REPERTOIRE OF SUCH ROUTINES IN THEIR MIND SO THAT THEY CAN
LEARN TO THINK IN TERMS OF THE FUNCTIONS THEY PERFORM AS THEY PREPARF TO
DEVELOP PROGRAMS OF THEIR OWN. ALTFRNATIVE WAYS OF PFRFORMING FUNCTIONS
WILL SOMETIMES BE PRESENTED TO ILLUSTRATE ADVANTAGES AND DISADVANTAGES
OF ONE METHOD OVER ANOTHER. THFRE WILL OFTFN BE MANY OTHER WAYS OF PER-
FORMING THE DESIRED FUNCTION OTHFR THAN THAT PRESENTED AND THF READER
SHOULD FFEL FREE TO THINK OF OTHFR WAYS AND LOOK AT POSSIBLE ADUANTAGES
AND NEGATIVE ASPECTS OF SUCH ALTFRNATIVES.

CLEARING THE ACCUMULATOR

IT IS OFTEN DESIRABLE TO SET THE CONTENTS OF THE ACCUMULATOR (ACC
FOR ABREUVIATION IN THIS TEXT) TO ZFRO BEFORFE STARTING AN OPFRATION,
SUCH AS A MATHEMATICAL CALCULATION. ONE OBVIOUS WAY TO DO THIS 1S TO
USE AN “LAI @00* INSTRUCTION. A LESS OBVIOUS WAY IS TO USE AN "XRA"
(EXCLUSIUE OR THE CONTENTS OF THE ACC WITH ITSELF)! THE *“XRA' METHOD
ONLY REQUIRES ONE WORD, WHEREAS THE "LAI 200" REQUIRES TW0. ALSO, THF
“XRA" METHOD WILL SET ALL THE CPU “FLAGS'"™ TO KNOWN STATES AS ANY BOOL-
EAN LOGIC INSTRUCTION CAUSES THE "Z," *S,' AND "P*" FLAGS TO BE AFFFCTED .
AND THE '"C" FLAG TO BE SET TO THF ZFRO STATE. (WHENEVER NECESSARY THF
READER SHOULD REFER TO THE APPROPRIATF SECTION IN CHAPTER ONE OF THIS
8006 PROGRAMMING MANUAL TO REVIEW THE DETAILED FUNCTION(S) OF EACH
TYPE OF INSTRUCTION AVAILABLE IN AN 80888 BASED MINI-COMPUTFR). SINCE
THE "XRA" INSTRUCTION WILL SET THE ACC TO ALL @°'S, THEN THE *Z' AND "P"
FLAGS WILL BE PLACED IN THE "' CONDITION, AND THE "S" FLAG TO THE "“@"
STATE AT THE CONCLUSION OF THE INSTRUCTION'S EXFCUTION. IT IS IMPORT-
ANT TO REMEMBER THE TYPES OF INSTRUCTIONS THAT AFFECT THE OPERATION OF
THE CPU FLAGS BECAUSE IT 1S OFTEN NECESSARY TO USE THE STATUS OF A FLAG
OR FLAGS TO CONTROL THE OPERATION OF A PROGRAM - OR TO SEE IF A FLAG'S
STATUS HAS CHANGED - AND TO DO THIS, ONE MUST AT SOMF TIME “KNOW" WHAT
THE CONDITION OF A FLAG WAS - AND THAT 1S OFTEN ACHIFVED BRY USING AN
INSTRUCTION SUCH AS THE *“XRA" THAT WILL *"FORCE" THEM TO DESIRED STATES.
ON THE OTHER HAND, WHILE THE "LAl @40* METHOD OF CLFARING THE ACC RF-
QUIRES TWO MEMORY WORDS, THE EXECUTION OF AN "LAI A@@d* INSTRUCTION
DOES NOT AFFECT THE STATUS OF THE CPU FLAGS, AND THIS FACT SHOULD BF RF-
MEMBERED BECAUSE THERE MAY BE TIMES WHEN IT IS DESIRABLF TO SET THF ACC
T0 THE @°'S CONDITION WITHOUT ALTERING THE CPU FLAGS!

SETTING THF ACCUMULATOR TO ALL 1°'S

THIS FUNCTION CAN BE ACCOMPLISHED WITH SEVFRAL TYPES OF INSTRUCTIONS
SUCH AS THE "“LAI 377" OR "ORI 377.* WHILF BOTH THESE INSTRUCTIONS RE-
QUIRE TWO WORDS OF MEMORY, IT SHOULD BE NOTED AGAIN THAT THE "“LAI 377"
TYPE WILL NOT AFFECT THE STATUS OF THE CPU FLAGS, WHILE THFE ORIl 377"
ONE WILL RESULT IN THE "C'" AND “Z* FLAGS BEING SET TO THE '"@" STATE AND
THE "S" AND “P" FLAGS SET TO THE "1 CONDITION. IF A PARTICULAR PRO-
GRAM REQUIRES THE ACCUMULATOR TO0 BF SFT TO THE ALL 1'S STATE FREQUEN-
TLY THEN IT MAY BE WORTHWHILE TO SET UP A CPU REGISTER TO CONTAIN 377
AND THEN USE A ONE WORD INSTRUCTION SUCH AS "LAX"™ (X = A CPU REGISTER)
OR AN °'*ORX' DEPENDING ON WHETHER OR NOT ONE WANTS TO SAVE THE STATUS OF
THE CPU FLAGS.

COMPLEMENTING THE ACCUMULATOR

"OFTEN IT 1S DESIRABLE TO “COMPLEMENT" THE VALUE IN THE ACCUMULATOR..
THAT IS TO CHANGE ALL THE BITS SET TO A 1" TO BE "@" AND VICE-VERSA.
THIS CAN BE READILY ACCOMPLISHED BY USING AN *“XRI 377" INSTRUCTION.

" AGAIN, IF THE FUNCTION MUST BE PERFORMED OFTEN IN A ROUTINE IT MAY BE
WORTHWHILE TO KEEP THE VALUE 377 IN A CPU REGISTER AND USE A "XRX" IN-
STRUCTION TO PERFORM THE OPERATION AND REDUCE THE COMMAND TO A ONE WORD
INSTRUCTION. THE COMPLEMENT FUNCTION 1S OFTEN UTILIZED WHEN PERFORMING
MATHEMATICAL OPERATIONS USING "“SIGNED NUMBERS®" (AS EXPLAINED IN THE PRF-~
VIOUS CHAPTER) IN ORDER TO OBTAIN THE "TW0'S COMPLEMENT'" FORM OF A NUM-
BER. THE "“TWO'S COMPLEMENT" OF A NUMBER IS OBTAINED BY FIRST COMPLE~-
MENTING THE VALUF AND THEN ADDING ONE TO THE COMPLEMENTED VALUE. THUS
THIS FUNCTION COULD BE OBTAINED BY PERFORMING TWO KINDS OF INSTRUCTIONS
IN SEQUENCE - FIRST AN "XRI 377" AND THEN AN "ADI @@1'" COMMAND.

FORMING BIT "MASKS"

WHEN UTILIZING A COMPUTER IT IS FREQUENTLY DESIRABLE NOT TO USE ALL
THE BIT POSITIONS WITHIN A WORD - OR TO ISOLATE AND DETERMINE THF STATUS
OF A PARTICULAR BIT WITHIN A REGISTER. THIS TECHNIQUE FOR EXAMPLE, CAN
BE USED TO QUICKLY DETERMINE WHETHER A NUMBER IN A REGISTER IS ODD OR
EVEN (BY EXAMINING JUST THE LEAST SIGNIFICANT BIT), OR WHETHFR A NUMBER
HAS REACHED A CERTAIN SIZE (BY SAMPLING THE MOST SIGNIFICANT BIT OF IN-
TEREST)» OR WHETHER PERHAPS, SOME PARTICULAR EXTERNAL EVENT HAS OCCURED
(BY CHECKING A SPECIFIC BIT ON AN INPUT PORT).

THE PROCESS OF RIDDING A REGISTER OF UNWANTED DATA IN SELECTED BIT
POSITIONS IS COMMONLY REFERRED TO BY COMPUTER TECHNOLOGISTS AS *MASK-
ING." MASKING CAN BE ACCOMPLISHED IN SEVERAL WAYS DEPENDING ON WHAT THE
PROGRAMMER DESIRES. SUPPOSE, FOR INSTANCE, THAT ONF DESIRED TO DETER-
MINE WHETHER A NUMBER IN THE ACCUMULATOR WAS ODD OR EVEN. ONE wWAY TO DO
THIS WOULD BE TO SIMPLY EXECUTE AN "NDI @01'" INSTRUCTION AND THEN TEST
TO SEE IF THE ACCUMULATOR WAS ZERO (USING A “JTZ" OR "JFZ* COMMAND).
SUPPOSE THE ORIGINAL NUMBER IN THE ACCUMULATOR HAD BEEN 251 (REMEMBER
THAT THIS TEXT IS USING OCTAL NUMBERS UNLESS OTHERWISE STATED!) THE RE-
SULTS OF PERFORMING THE LOGIC AND OPERATION BETWEEN THE ACCUMULATOR CON-
TAINING 251 AND THE NUMBER 0@! 1S ILLUSTRATED BELOV.

ACCUMULATOR = 1 @8 1 61 @881 = OCTAL 251
AND IMMEDIATE WiTH 601 = @6 & ©6 6 @6 @ 8 1 = OCTAL @01
RESULT LEFT IN ACC = @0 0 @606 @ @1 = O0CTAL @8]l

IT CAN BE OBSERVEDP THAT ALL THE BIT POSITIONS '"ANDED' WITH A & WILL
GO TO THE @ CONDITION REGARDLESS OF WHETHER THEY ARE A "1' OR A "@."
THUS», THE SEVEN MOST SIGNIFICANT BIT POSITIONS IN THE EXAMPLE HAVE BEFEN
EFFECTIVELY ELIMINATED. HOWEVER, A BIT POSITION "ANDED* AGAINST A *"i*
WILL BE A *"1*" IF, AND ONLY IF, THE POSITION UNDER TEST CONTAINS A 'l.™
IN THE ABOVE CASE, A 1" WAS PRESENT IN THE *"TEST" POSITION AND THUS
THE RESULT WAS A "l.” A "“JTZ' INSTRUCTION WOULD QUICKLY DIRECT THE PRO~-
GRAM TO PROCEED ON THE BASIS THAT THE ORIGINAL NUMBER IN THE ACC HAD
BEEN AN ODD NUMBER.~

NOTE THAT THE ABOVE PARTICULAR MASKING METHOD WAS DESTRUCTIVE TO THE
ORIGINAL VALUE IN THE ACCUMULATOR. HAD IT BEEN IMPORTANT, THE ORIGINAL
NYUMBER COULD HAVE BEEN SAVED IN A CPU REGISTER OR A MEMORY LOCATION.

4 -2

A SLIGHTLY DIFFERENT APPROACH COULD HAVE BEEN TAKEN. THE NUMBER TO BE
“MASKED" COULD BE PLACED IN A MEMORY LOCATION, OR A CPU REGISTER. THEN
THE ACCUMULATOR COULD BE FILLED WITH THE APPROPRIATE "MASK."™ FINALLY,
A SIMPLE ONE WORD “NDM'" OR 'NDX*" INSTRUCTION COULD BE UTILIZED. THF RE~
SULT OF THE MASKING OPERATION WOULD BE LEFT IN THE ACCUMULATOR AFTER THE
" EXECUTION OF THE INSTRUCTION AND THE ORIGINAL NUMBER WOULD BE AVAILARBRLF
FOR FURTHER MANIPULATION. THIS DIFFERENT APPROACH IS POINTED OUT AS AN
EXAMPLE OF HOW A PROGRAMMER SHOULD LOOK FOR THE BEST METHOD TO APPROACH
A PARTICULAR PROBLEM. THE COMPUTER, WITH ITS VARIETY OF INSTRUCTIONS,
PROVIDES MANY DIFFERENT METHODS TO CHOOSE FROM FOR SUCH PROBLEMS.

MASKING IS MOST EFFECTIVE WHEN THERE ARE SEVERAL BITS IN A REGISTER
TO BE 1SOLATED, OR WHEN A BIT OF INTEREST IS IN THFE MIDDLE OF A WORD, OR
WHEN IT MAY NOT BE EXPEDIENT TO BRING A PlECE OF DATA INTO THE ACCUMU-
LATOR. FOR, IF ONE DESIRES TO EXAMINE THE STATUS OF A BIT IN THE ACC
THAT IS AT EITHER END OF THE REGISTER, ONE CAN D0 THIS BY USING A ROTATE
INSTRUCTION SUCH AS *RAL'" OR "RAR" TO PUT THE BIT OF INTEREST INTO THE
*CARRY'" POSITION OF THE ACC (REPRESENTED BY THE CARRY FLAG) AND THEN USE
A “JTC" OR "JFC'" INSTRUCTION TO DETERMINE THE STATUS OF THE BIT. NATU-
RALLY, 1F THE PROGRAMMER WANTED TO RETAIN THE ORIGINAL SFTTING OF THE
ACCUMULATOR AFTER THE TEST THE PROGRAM WOULD HAVE T0O EXFCUTE THE REVFRSE
ROTATE INSTRUCTION (TO THE ONE ORIGINALLY USED) TO BRING THF ACC BACK TO
ITS ORIGINAL PATTERN.

SETTING UP POINTERS AND GOUNTERS

IN MANY APPLICATIONS IT IS DESIRABLE TO PERFORM A PARTICULAR SEQ~
UENCE OF OPERATIONS A PRECISE NUMBER OF TIMES. THE NUMBER OF TIMES AN
OPERATION IS PERFORMED CAN BE CONTROLLED IN A ROUTINE BY FORMING A "PRO-
GRAM LOOP.*'* A PROGRAM LOOP IS ESTABLISHED BY SETTING UP A COUNTER SYS-
TEM THAT KEEPS TRACK OF HOW MANY TIMES AN OPERATION IS PERFORMED AND IN-
CLUDING A PROGRAM TEST TO ASCERTAIN WHEN A PARTICULAR VALUE HAS BFEN
REACHED SO THAT THE PROGRAM CONTROL CAN BE "BRANCHED'" QUT OF THE "LOOP."

IN AN 8008 SYSTEM CPU REGISTERS MAKE HANDY LOOP COUNTFRS AS THEY NOT
ONLY CAN BE DIRECTLY INCREMENTEDP OR DECREMENTED BY ONE WORD COMMANDS,
BUT THEY ALSO DIRECTLY AFFECT THE STATUS OF THE "Z," "S,'" AND "P'" CPU
FLAGS AFTER EACH INCREMENT OR DECREMENT, MAKING IT AN EASY MATTER TO USE
ANY ONE OF THE CONDITIONAL TYPE INSTRUCTIONS IMMEDIATELY FOLLOWING A CPU
REGISTER INCREMENT OR DECREMENT, TO SEF IF A CRITICAL VALUE HAS BEEN
REACHED!

FOR INSTANCE, SUPPOSE REGISTER “B* 1S INITIALLY SET TO THE VALUE g1z
(18 DECIMAL)> BY A “"LRBI 912" INSTRUCTION PRIOR TO EXFECUTION OF THF FOL=-
LOWING *PROGRAM LOOP."

o

MORE, LMA YLOAD CONTENTS OF ACC INTO MEMORY

INL 7ADVANCE MEMORY POINTER

bCB /DECREMENT THE LOOP COUNTER

JFZ MORE /1F REG "B" 1S NOT = @03, CONTINUE LOOP
DONE., HLT /EX1IT SUBROUTINE WHEN COUNTER = @@a

AS CAN BE OBSERVED, THE ABOVE SUBROUTINE WOULD “LOOP"™ UPON ITSELF
AND LOADP DATA INTO CONSECUTIVE WORDS IN MEMORY UNTIL THE VALYE PLACED
IN REGISTER *"B" (PRIOR TO STARTING THE SUBROUTINE) REACHED ZFRO. IN THE
ABOVE EXAMPLE 'B' WAS LOADED WITH ©12 SO 12 OCTAL (10 DECIMAL) LOCATIONS
IN MEMORY WOULD HAVE BEEN LOADED WITH DATA. (IT CAN BE ASSUMED THAT THE

a4 -3

“CALLING" ROUTINE SET UP REGISTERS "H" & “L" TO POINT TO THE PROPER MEM-
ORY LOCATIONS AND PLACED THE CORRECT DATA INTO THE ACCUMULATOR!)

TO ILLUSTRATE HOW POWERFUL THE SIMPLE CONCEPT OF A PROGRAM LOOP IS,
A SECOND EXAMPLE WILL BE USED TO ILLUSTRATE HOW SUCH A LOOP TECHNIQUE
“CAN BE USED TO PERFORM MULTIPLICATION OF SMALL NUMBERS. (THFRE ARE MUCH
MORE EFFICIENT PROGRAMMING TECHNIQUES AVAILABLE FOR USE WITH LARGFE NUM-
BERS.) SINCE MULTIPLICATION 1S REALLY JUST REPFATED ADDITION, ONE COULD
MULTIPLY TWO NUMBERS, DESIGNATED "X" AND "Y,' BY PFRFORMING THE FOLLOW=-
ING OPERATIONS. ASSUME “X* IS THE MULTIPLICAND AND IT HAS BEEN LOADED
INTO CPU REGISTER “Ce! THE NUMBER "Y" 1S THE MULTIPLIER AND IT HAS
BEEN PLACED IN REGISTER *“B.'" THF FOLLOWING ROUTINE CONTAINING A PRO GRAM
LOOP WILL "MULTIPLY" THE TWO NUMBERS.

START, XRA /CLFAR THE ACCUMULATOR
CONTIN, ADC /ADD CONTENTS OF REGISTER *"C' TO ACC
DCB /DECREMENT VALUE OF THE MULTIPLIFR
JFZ CONTIN /REPFAT ADDITION IF MULT. IS NOT = ZERO
EXIT, RET /EXIT SUBRTN WITH MULT. ANSWER IN ACC

AS READERS KNOW, THE CPU REGISTERS "“H" AND "L WHILE BEING ABLE TO
SERVE AS ORDINARY CPU REGISTERS, ALSO HAVE THE SPFCIAL FUNCTION OF REING
ABLE TO "POINT" TO ADDRESSFS IN MEMORY WHENEVER “MEMORY REFERENCE"™ IN=-
STRUCTIONS ARE USED. THE “H" REGISTER HOLDS THE HIGH ADDRESS OR '"PAGE"
PORTION OF THE POINTER AND THE '"L" REGISTER HOLDS THE LOW ADDRESS OR
LOCATION ON A PAGE. NATURALLY, WHEN ONF DESIRES TO OPERATE ON DATA AT
A LOCATION IN MEMORY VIA A MEMORY REFERENCE COMMAND, ONF MUST FIRST SET
U THE "H' AND “L" REGISTERS TO CONTAIN THE DESIRED ADDRESS. THIS IS
READILY DONE WITH A "LHI XXX AND "LLI YYY" COMBINATION OF INSTRUC-
TIONS. HOWEVER, MANY TIMES IT IS DESIRABLE TO DO A WHOLE SEQUENCE OF
OPERATIONS THAT OPERATE UPON SEQUENTIAL LOCATIONS IN MEMORY. IN THIS
CASE, ONCE THE INITIAL STARTING ADDRFSS HAS REEN LOADED INTO THE MEMORY
POINTER REGISTERS, ALL THAT IS NEFDED IS A SUBROUTINE THAT CAN BF REFER-
ED TO, THAT WILL INCREMENT THE ADDRESS HELD IN THE TWO0 REGISTERS. A
SIMPLE SUBROUTINE TO ACCOMPLISH THAT OBJECTIVE IS PRESFENTED HERE.

ADV, INL /INCREASE VALUE OF REGISTER "L BY {
RFZ /EXIT SUBRTN IF NOT GOING TO NEW PAGE
INH /INCREMENT “H" BY | IF ON NEVW PAGE
RET) /EXIT SUBRTN

THE ABOVE SUBROUTINE TAKES CARE OF THE CASE WHFRE THE ADDRESS CROSS~
ES "PAGE'" BOUNDARIES. FACK TIME REGISTER "L" 1§ ADUVANCED, THE 'RFZ* IN-
STRUCTION IS USED TO TEST WHETHER OR NOT REGISTER L' WENT TO @0@. THIS
WULD 0CCUR IF THE LAST VALUF IN THE REGISTFR HAD BEEN 377, WHICH IS THE
LARGEST OCTAL ADDRESS THAT CAN BE REPRESENTED IN AN 8 BIT REGISTER, AND
CONSEQUENTLY THE HIGHEST ADDRESS THAT CAN BE ASSIGNED ON A "PAGE"™ OF
MEMORY. IF THE "RFZ'" INSTRUCTION 1S EXECUTED (BECAUSF THE CONTENTS OF
“L* DID NOT GO TO 608> THEN THE ROYTINE 1S IMMEDIATELY FXITED. HOWFVER,
IF THE "RFZ" COMMAND 1S NOT FOLLOWED, THEN THE SUBROUTINE CONTINUES TO
ADVANCE THE CONTENTS OF REGISTER “H' TO UPDATE THE POINTER TO A NEW
PAGE. IN SOME CASES, WHERE THE PROGRAMMER IS GOING TO LIMIT ALL THE
MANIPULATIONS OF DATA TO JUST ONE PAGE OF MEMORY, THE ABOVE SUBROUTINE

COULD BE SHORTENED TO JUST TWO INSTRUCTIONS = "INL" FOLLOWED BY A “REFT®
COMMAND.

FINE. BUT WHAT ABOUT THE OPPOSITE CASE WHEN A PROGRAMMER MIGHT DE~-

a - A

SIRE TO PROCESS ARFAS OF MEMORY IN DFESCENDING ORDER? WELL, A SIMILAR
SUBROUTINE TO DECREMENT THE MEMORY POINTER REGISTERS COULD BE USED BUT
NOV THE PROGRAMMER WILL HAVE TO BE CAREFUL WHEN GOING TO A NEW PAGE.

IN THE PREVIOUS CASE, WHEN THE "L' REGISTER WAS ADVANCED BEYOND LOCA-
TION 377 TO @806, IT WAS AN EASY MATTER TO CHFCK FOR THE #@@ CONDITION
TO SEE IF IT WAS NECFESSARY TO ADVANCE THF *"H'" REGISTER TOO. NOVW, HOW-
EVER, WHEN THE "L" REGISTER GOFES FROM @88 TO 377 IT WILL BE NECESSARY
T0 DECREMENT THE “H" REGISTER TO THE NEXT LOWER PAGE. TESTING FOR THIS
CONDITION IS NOT QUITE AS EASY. REMFMBER, THE STATUS OF THE CPU FLAGS
ARE SET BY THE CONDITIONS IN THE REGISTER IMMEDIATELY AFTER THEY HAVE
BEEN INCREMENTED OR DECREMENTED - NOT BEFORFE. AND, WHILE ONE CAN USE

A "JTZ" OR "RFZ" TYPE OF INSTRUCTION TO QUICKLY DETERMINE IF A REGISTER
WENT TO @80, THE CASE WHERE IT DID NOT GO TO @08, DOES NOT MEAN IT IS
NECESSARILY AT 377 - IT COULD BE AT ANY NON-ZERO VALUE. HOVWEVER, THE
CASE CAN BE HANDLED. ONE WAY TO HANDLE THE PROBLEM WOULD BE WITH THE
SUBROUTINE SHOWN BELOW.

DEC, XRA /CLEAR ACC TO 06@
CPL /COMPARE CONTFENTS OF ACC WITH *"L*
JTZ DECH /1F BBG@ NOW, THEN DECR BOTH "H* & "L*
DCL /OTHERWISE JUST DECREMENT "L*
RET /AND EXIT SUBROUTINE

PECH., DCL /FOR TH1S CASE DECREMENT *L*

' DCH /AND RFGISTFR "H"

RET /THEN EXIT SUBROUTINE

WHILE THE ABOVE SUBROUTINE WILL ACCOMPLISH THF OBJECTIVE, IT DOES
HAVE SEVERAL MINOR FLAWS THAT THF PROGRAMMER MIGHT WANT TO CONSIDER.
FIRST, IT ALTERS THE CONTENTS OF THE ACCUMULATOR. RFMEMBER, THAT THF
ABOVE SUBROUTINE MIGHT OFTEN BE USED IN A PROGRAM THAT IS MANIPULATING
DATA BETWEEN THE ACCUMULATOR AND MEMORY. THE ABOVE SUBROUTINE WOULD RE-
QUIRE THAT THE PROGRAMMER MAKE SURE ANY VALUABLE DATA IN THE ACCUMULATOR
IS "SAVED" ELSEWHERE BEFORE THE SUBROUTINE IS CALLED. THIS IS ONE MORE
“BURDEN" ON THE PROGRAMMFER WHO IS DEVFLOPING A LARGF PROGRAM AND MAY
HAVE A LOT OF OTHER DETAILS TO THINK ABOUT. SECONDLY, THE ABOUF ROUTINF
REQUIRES 14 DECIMAL MEMORY STORAGE LOCATIONS. IT IS ALWAYS A GOOD PRAC-
TICE TO TRY AND DEVFLOP ROUTINES THAT OPFRATE IN A MINIMUM AMOUNT OF
MEMORY. LETS TAKE A LOOK AT ANOTHFR SUBROUTINE THAT ACCOMPLISHES EXAC-

" TLY THE SAME OBJECTIVE, THAT SAVES 28 PERCENT OF MEMORY SPACE, AND THAT
VILL NOT INTFRFFRE WITH THE ORIGINAL CONTENTS OF THE ACCUMULATOR.

DECR, DCL /DECREMENT CONTENTS OF "L"
INL /NOW CHECK TO SEE IF IT HAD BEFN #84@
JFZ NOT@ /1F NOT @@ THEN NOT GOING TO NEW PAGE
DCH /1F @90 THEN DECR “H" TO NEXT LOWER PAGE
NOT@., PCL /DECREMENT L' TO COMPLETE SUBROUTINE
RET /7EXIT SUBROUTINE

THE ABOVE SUBROUTINE USED A LITTLE PROGRAMMING CREATIVITY TO COME UP
WITH A METHOD OF ACCOMPLISHING THE DESIRED OBJECTIVE. REGISTER "L' WAS
DECREMENTED AND THEN INCREMENTED BACK TO ITS ORIGINAL VALUE. THE PRO-
CESS OF INCREMENTING IT BACK TO ITS ORIGINAL VALUE WOULD CAUSE THE CPU
FLAGS TO BE SET SO THAT A FLAG TESTING INSTRUCTION COULD BE USED TO SEE
IF THE ORIGINAL VALUE WAS @80@8. IF THAT WAS THE CASE, DECREMENTING IT
WYOULD CAUSE IT TO 60 TO 377, AND THUS REGISTER 'H" SHOULD BE DECREMENTED
TO THE NEXT LOWEP PAGE. THAT IS DONE IF NECESSARY, AND THEN REGISTER
“L* 1S DECREMENTED TO ITS FINAL VALUE WHETHER OR NOT THE ADDRESS IS GO-

4 -5

ING TO A NEW PAGE!

14

WHILE REGISTERS "H" AND “L" ARE THE ONLY REGISTERS THAT CAN BE USED
T0 POINT TO MEMORY LOCATIONS WHEN USING MEMORY REFERENCE INSTRUCTIONS,
IT IS OFTEN NECESSARY TO USE OTHER CPU RFEGISTERS TO TEMPORARILY HOLD
MEMORY ADDRESSES. IT MAY BE DESIRABLE, FOR INSTANCE, TO TRANSFER BLOCKS
OF DATA FROM ONE AREA IN MEMORY TO ANOTHER. THIS MUST BE DONE ONE WORD
AT A TIME. FIRST A WORD MUST BE EXTRACTED FROM MEMORY LOCATION "M" BY
SAY A “LAM" INSTRUCTION WITH REGISTERS “H' AND "L™ POINTING TO ADDRESS
“M,* AND THEN "H" AND "L' MUST BE ALTERED TO AN ADDRESS, LETS CALL IT
“N," WHERE THE DATA IS TO BE DEPOSITED. AN "LMA'" INSTRUCTION COULDP THEN
BE USED TO PLACE THE DATA IN THE NFW MEMORY LOCATION. OFTEN A STRING OF
DATA WORDS MIGHT BE TRANSFERRED IN SUCH A FASHION. IT WOULD BE RATHER
CUMBERSOME IF ONE HAD TO KEEP USING 'LHI MMM'" AND *“LLI MMM' COMMANDS
FOLLOWED BY *“LHI NNN' AND "LLI NNN* INSTRUCTIONS IN ORDER TO KEEP ALTER-
ING THE MEMORY POINTER REGISTERS BETWEEN THE TWO DIFFERENT ARFAS IN MEM-
ORY. HOWEVER, 1F “H* AND *“L* WERE INITIALLY SET TO POINT TO MEMORY LOC-
ATION "M,'"™ AND CPU REGISTFRS *D" (SAY FOR THE PAGE ADDRESS) AND “E" (FOR
THE ADDRESS ON THE PAGE) WERE SET TO POINT TO MEMORY LOCATION 'N,'" THEN
A "SWITCHING" PROGRAM TO EXCHANGE THE CONTENTS OF "H'" WITH "D" AND "L*
WITH "E" COULD BE DEVELOPED TO CONSIDERABLY FEASE THE TASK. SUCH A SUB-
ROUTINE MIGHT BE AS FOLLOWS.

SWiTCH, LCH /LOAD CONTENTS OF "H™ INTO 'C" TEMPORARILY
LHD /NOW LOAD D' INTO 'H"
LDC /MOVE ORIGINAL *H'" FROM “C*' INTO "D"
LCL /SIMILARLY LOAD L™ INTO "C* TEMPORARILY
LLE /PUT “E" INTO "L*
LEC /AND STORE ORIGINAL "L' IN "E"
RET /EXIT SUBROUTINE

NOW, BY SIMPLING CALLING THE SUBROQUTINE TO *SWITCH" THE GCONTENTS OF
THE REGISTERS, THE PROGRAMMER HAS A MEANS OF CHANGING THE MEMORY POINTER
REGISTERS BETWEEN TWO DIFFERENT AREAS IN MEMORY. TO ILLUSTRATE HOW
QUICKLY A LIBRARY OF SMALL SUBROUTINES STARTS DEVELOPING INTO RFAL POT-
ENTIAL, TWO SUBROUTINES ILLUSTRATED ON THE LAST SEVERAL PAGES WILL BE
USED IN A SMALL PROGRAM TO ACCOMPLISH THE TASK JUST DISCUSSED - THAT OF
MOVING DATA FROM ONE AREA OF MEMORY TO ANOTHER. LETS ASSUME THAT A
PROGRAMMER DESIRED TO MOVE THE DATA IN 188 (OCTAL!) WORDS OF MEMORY
STARTING AT LOCATION @20 ON PAGE @2 UP TO AN AREA STARTING AT LOCATION
200 ON PAGE A3. THE FOLLOWING PROGRAM WILL DO THE JOB NICELY.

SETUP, LHI 082 /SET UP "H" TO PAGE OF 1ST MEMORY AREA
LLI 0@8 ZAND “L*" TO STARTING LOCATION OF IST AREA
LDl @@3 /SET D" TO PAGE OF 2ND MEMORY AREA
LEl 200 /AND “E" TO STARTING LOCATION OF 2ND AREA
LB1 100 /SET UP A COUNTER IN CPU REGISTER "“B"
MOVIT, LAM /GET CONTENTS OF WORD FROM 1ST MEM AREA
CAL ADV /ADVANCE MEMORY POINTER (IN 1ST AREA)
CAL SWITCH /CHANGE "H" & "L™ TO POINT TO 2ND AREA
LMA /DEPOSIT WORD IN 2ND AREA
CAL ADV /ADUANCE MEMORY POINTER (IN 2ND AREA)
CAL SWITCH /CHANGE BACK TO POINT TO !ST MEMORY ARFA
DCB /DECREMENT COUNTER
JFZ MOVIT /IF COUNTER NOT = 000, THEN CONTINUE MOVING
RET ZEXIT RTN (OR "HLT" OR 'JMP" ETG.)

USING MEMORY LOCATIONS TO STORE POINTERS AND COUNTERS

WHILE CPU REGISTERS MAKE IDFAL STORAGE PLACES FOR POINTERS AND
COUNTERS BECAUSE THEY CAN BE DIRECTLY INCREMENTED AND DECREMENTED, THERE
ARE SIMPLY NOT ENOUGH OF THEM TO STORE ALL THE POINTERS AND COUNTERS
THAT MIGHT BE USED IN A FAIR SIZED PROGRAM. IT THEN BECOMES NECESSARY
TO HOLD THE VALUES ‘OF COUNTERS AND POINTERS IN MFMORY LOCATIONS SO THAT
THE CPU REGISTERS CAN BE OPENED UP FOR OTHER USES. THIS PRACTICE DOES
HAVE A DRAWBACK. SINCE THE CONTENTS OF MFMORY LOCATIONS CANNOT BE DIR-
ECTLY INCRFMENTED, THE CONTENTS MUST FIRST BE LOADED INTO A CPU REGIS~
TER, THEN THE INCREMENT OR DECREMENT PERFORMED, THEN THE NEW VALUE PUT
BACK INT0O ITS MEMORY :STORAGE LOCATION. THIS TAKES A LOT OF EXTRA IN-
STRUCTIONS OVER THAT REQUIRED IF THE COUNTER OR POINTER CAN BE KEPT PER-
MANENTLY IN A CPU REGISTER - ESPECIALLY SINCE TO EVEN OBTAIN THE COUNTER
FROM MEMORY IT WILL ALWAYS BE NECESSARY TO FIRST SET UP THE "H" & "L"
REGISTERS TO POINT TO THE MEMORY LOCATION WHERE THE COUNTFR OR POINTER
1S STORED! HOWEVER, SINCE THAT IS WHAT HAS TO BE DONE IN ALL BUT SMALL
PROGRAMS, THE BEST THING TO DO IS TO TRY AND ORGANIZE THE PROCESS USING
SUBROUTINES THAT WILL REDUCE THE AMOUNT OF MEMORY USED BY THE OPERATING
PROGRAM.

PERHAPS THE FIRST ITEM TO CONSIDER IS WHFRE TO STORE THE COUNTERS
AND POINTERS FOR A PROGRAM. WELL, IT IS GENERALLY A GOOP IDEA TO SET
ASIDE A SECTION OF MEMORY TO BE USED EXCLUSIVELY FOR STORING COUNTERS
AND POINTERS FOR THE PROGRAM. PREFERABLY THIS SHOULD BE ON ONE PAGE OF
MEMORY (VERSUS CROSSING PAGE BOUNDARIES). WHILE ESSENTIALLY ANY PAGE
CAN BE USED, IT MAY BE THAT FOR LARGE PROGRAMS, HAVING THE POINTERS AND
COUNTERS ON PAGE #9 WILL SAVE A BIT OF PROGRAMMING ROOM. THIS IS BE-
CAUSF WHENEVER THE PROGRAM NFEEDS TO REFER TO A COUNTER, REGISTER "H" (AS
WELL AS "L") MUST BE SET UP TO POINT TO THE PAGE WHERE THE COUNTER IS
STORED. IT SEEMS THAT THERE 1S GFTEN A "ZERO'" REGISTER (ONE SET TO 490)
AROUND AMONG THE CPU REGISTERS AND THUS A "LHX"™ ONE WORD INSTRUCTION CAN
BE USED TO SET '"H" TO THE PAGE INSTEAD OF HAVING TO USE A "LHI XXX" COM-
MAND AS WILL GENERALLY BE THE CASE IF THE POINTERS AND COUNTERS ARE NOT
STORED IN AN AREA ON PAGE @4.

ONCE ONE HAS DECIDED WHERF PARTICULAR COUNTERS ARE TO BE STORED., A
SUBROUTINE TO RETRIEVE ANY ONE OF THEM AND INCREMENT OR DECREMFNT THE
VALUE, THEN RESTORE IT BACK TO MFMORY IS QUITFE STRAIGHT-FORWARD.

CNTUP, LCM /FETCH CNTR INDICATED BY *“H"™ & “L"
INC /INCREMENT VALUE OF THE COUNTER IN REG "C"
LMC /RESTORE NEW COUNTER VALUE TO MEMORY
RET /EXIT SUBROUTINE
CNTDWN, LCM /FETCH COUNTER
BCC /DECREMENT VALUE
LMC /RETURN COUNTER TO STORAGE
RET /EXIT SUBROUTINE

THE TW0 SUBROUTINES JUST ILLUSTRATED CAN BE CALLED AS DESIRED TO 0B-
TAIN A COUNTER AND INCREMENT OR DECREMENT THE VALUE ONCE REGISTERS 'H"
AND *"L" HAVE BEEN LOADED VWITH THE ADDRESS OF THE COUNTER. NOTE TOO,
THAT THE SUBROUTINE WOULD ALSO ALLOW THE RESULT OF THE INCREMENT OR DEC-
REMENT TO BE TESTED BY A CONDITIONAL INSTRUCTION AFTER THFE SUBROUTINE IS
FINISHED BECAUSE THERE ARE NO INSTRUCTIONS AFTER THE "INC'"™ OR "DCC'" THAT
AFFECT THE STATUS OF THE CPU FLAGS!

a-7

STORING POINTERS IN MEMORY IS GENERALLY A LITTLE MORE COMPLICATFD
THAN STORING COUNTERS BECAUSE POINTFRS GFNFRALLY REQUIRF TW0 STORAGE
LOCATIONS. ONE WORD FOR THE PAGE ADDRESS AND ONE FOR THF LOCATION ON
THE PAGE. IN ADDITION, SINCE THE “H* & L' REGISTERS WILL HAVE TO BF
USED TO POINT TO WHERE THE POINTFRS ARF STORED IN MFMORY, AND SINCE THFE
POINTERS STORED IN MEMORY CANNOT BE USED AS POINTFERS UNTIL THEY ARE
PLACED IN THE '"H' & "L'" RFGISTERS, A METHOD OF FIRST OBTAINING THE NEW
POINTER INTO UNUSED CPU REGISTERS, THEN SWAPPING IT WITH THE °*H" & *L*
REGISTFRS, MUST BE USED. THE PROCESS IS NOT SO DIFFICULT IF USE 1S5 MADE
OF SOME OF THE SUBROUTINES (SUCH AS SWITCH) WHICH HAVE ALREADY BEFN PRE-
SENTED IN THIS CHAPTER.

THE EXAMPLE ILLUSTRATED NFXT SHOWS A GFNFRAL SUBROUTINF THAT WILL
OBTAIN A TWO WORD POINTFR STORED IN MEMORY, THEN USE THF POINTER OBTAIN-
ED TO PUT THE CONTENTS OF THE ACCUMULATOR INTO A MEMORY LOCATION SPECI-
FIED BY THE POINTER JUST OBTAINED. NFXT IT WILL INCRFEMENT THE POINTER
AND THEN RESTORE IT BACK TO ITS STORAGF PLACF IN MEMORY. THFE ROUTINF
ASSUMES THAT THE "H' & "L* REGISTFRS WILL BF SET TO THE PAGE ADDRESS OF
THE LOCATION WHERE THE POINTER IS STORFD BY THE CALLING PROGRAM, AND
THAT THE POINTFR IS STORED IN TWO CONSECUTIVE WORDS - FIRST THE PAGF AND
THEN THE LOCATION ON THE PAGE.

POINTI, LDM /FETCH POINTER PAGF ADDPR INTO REG "D"
INL /ADVANCE TO PICK UP CONTENTS OF NFXT WORD
LEM /GET LOCATION ADDR INTO REGISTER "“E"
CAL SWITCH /PUT NFW POINTER INTO *H*' & *L"
LMA /PUT ACC INTO MEM INDICATED BY NFEW POINTER
CAL ADV /INCREMENT THE NFW POINTER
CAL SWITCH /RESTORE NFW POINTFR STORAGE ADDRESS
LME /DEPOSIT POINTFR LOCATION ADDR IN MEM
PCL /DECREMENT BACK TO PAGE ADDR STORAGE WNORD
LMD /DEPOSIT POINTFR PAGFE ADDR IN MEM
RET /EXIT SUBROUTINE

THE READER SHOULD NOTF A NICE FEATURE OF THE ABOVE SURROUTINE. WHEN
THE SUBROUTINE IS FINISHED THE CONTENTS OF “H*" & L' ARE SET TO POINT TO
THE STORAGE ARFA OF THE POINTER STORFD IN MEMORY. THUS, THE SUBROUTINE
COULD NOW BF CALLED AGAIN 1F DESIRED WITHOUT HAVING TO SET UP THE *H*
AND *L* REGISTFRS AGAIN. FURTHERMORE, WHEN THE ROUTINF IS EXITED, CPU
REGISTERS D' & "E" WILL CONTAIN THF LATEST VALUFE OF THE POINTER STORED
IN.MEMORY, WHICH MIGHT BE VALUABLE IN MANY CASFS WHFRF FURTHER PROCFSS-

ING WAS TO BE DONE IN THE SECTION OF MEMORY WHERE THE STORED POINTER WAS
OPERATING. v

\

FXAMINE THF SMALL PROGRAM ILLUSTRATED HERE.

BUFFIN, LHI 00@ /SET PAGE WHERE BUFFER POINTER STORED
LL1 2490 /SET LOCATION ON PAGF OF BUFFER POINTFR
INAGN, CAL INPUT /GET A CHARACTER FROM INPUT DEVICE
CAL POINT! /PUT THE CHARACTER INTO MEM BUFFER APEA

CPl1 215 /SEE 1F CHAR WAS ASCI1 CODF FOR °'CR’
JFZ INAGN /1F NOT, GFT ANOTHFR CHARACTFR
RET /EXIT RTN WHEN FIND A °*CR*' CHARACTER

THE ABOVE PROGRAM, AS SHORT ANDP SIMPLF AS IT LOOKS, 1S REALLY QUITE
POWFRFUL. THE READER SHOULD BE ABLF T0O SEE THAT IT IS A PROGRAM THAT
WILL STORE A STRING OF CHARACTERS RECEIVED FROM AN INPUT DEVICE INTO A

4 - 8

“"BUFFER" AREA IN MEMORY. IT WILL CONTINUE PLACING CHARACTERS INTO THE
MEMORY BUFFER ARFA UNTIL IT DETECTS A 'CR' (CARRIAGF-RETURN) CHARACTER.
THE LOCATION OF THE MEMORY BUFFER AREA IS STORED IN A POINTER THAT IS
LOCATED AT LOCATIONS 24 (PAGE) AND 241 (LOCATION ON THE PAGE) ON PAGE
#8. OF COURSE, BEFORE THE ABOVE ROUTINE WAS USFD, THE PROGRAMMER WOULD
WANT TO PUT THE PROPER ADDRESS FOR THE BUFFER AREA INTO THOSE LOCATIONS.
THE ABOVE ROUTINE IS REALLY A GENERAL PURPOSE ROUTINE TO ACCEPT "TEXT
SENTENCES"™ AND STORE THEM IN A MEMORY BUFFER. TO EXPAND THE ABOVE SUB-
ROUTINE INTO A COMPLETE PROGRAM RFAUIRES VERY LITTLE ADDITIONAL EFFOPT.

DATAIN, LHI 0208 /SET PAGE WHERE "“POINTI1' POINTFR STORED
LLI 240 /AND ADDRESS ON THE PAGF FOR POINTI"
LM1 @@3 /SET START OF MEMORY BUFFFR AREA (PAGE)
INL /7ADUVANCE TO NEXT WORD
LMI 000 /SET START OF MEM BUFF ARFA (LOC ON PAGE)
LL1 25@ /ADDRESS OF A “LINE COUNTER"™
LMI o112 /SET LINE COUNTER TO 104 DECIMAL

MORIN, CAL BUFFIN /GET A LINFE OF TEXT
LHI @040 /SET UP STORAGE ADDR OF LINF COUNTER
LLI 256 / " " " " " " .0

CAL CNTDWN /DECREMENT LINE COUNTER VALUFE
JFZ MORIN /IF NOT 18 (DEC) LINES, GET ANOTHER LINFE
HLT /FND OF PGM (COULD USE RET, JMP ETC.)

THE ABOVE PROGRAM FIRST "INITIALIZES" THE STARTING LOCATION OF THFE
“"TEXT BUFFER" TO PAGE 03 LOCATION @00 BY SETTING THOSF VALUFS INTO THE
“POINTL1* MEMORY STORAGE WORDS. IT ALSO INITIALIZES A COUNTER STORED IN
MEMORY TO A VALUE DETERMINED BY THE PROGRAMMER. THEN THE SUBROUTINE
THAT INPUTS LINES OF TEXT IS CALLED. EACH TIME A LINE OF TEXT IS OB~
TAINED, THE "LINE COUNTER" IS DECRFMFNTED AND A DECISION MADE AS TO
WHETHER OR NOT ANOTHER LINE OF TEXT SHOULD BE OBTAINFD. WHEN A PRE-
DETERMINED NUMBER OF LINES HAVE BEEN OBTAINED, THE PROGRAM STOPS. IN-
STEAD OF STOPPING, HOWEVER, THE PROGRAM COULD HAVE BEEN DIRECTED TO PRO-
CEED ELSEWHERE BY USING A "JMP" COMMAND, OR, THE ENTIRE PROGRAM COULD
HAVE BEEN MADE A SUBROUTINE ITSELF BY USING A "RET" AS THE LAST INSTRUC-
TION!

IT IS HOPED THAT THF READFR IS RAPIDLY BEGINNING TO UNDERSTAMD HOW
QUICKLY SMALL, GENFRAL PURPOSE SUBROUTINES, START DEVELOPING TREMENDOUS
POTENTIAL AS THEY ARE TEAMED WITH OTHER ROUTINES. ALSO, THE READER
SHOULD BEGIN T0 SFE HOW THE USE OF MEMORY AUGMENTS THE CAPABILITY OF THE
CPU REGISTERS - BY USING MEMORY LOCATIONS TO STORE POINTERS AND COUNTERS
THE PROGRAMMER OPENS A WHOLE NFW DIMENSION TO THE WORLD OF PROGRAMMING.
IT IS HOPED THE BEGINNING PROGRAMMER BECOMES A LITTLE BIT EXCITED AS
THESE CONCEPTS ARE GRASPED AND UNDERSTOOD - FOR THESE CONCEPTS ARE JUST
THE BEGINNING! AND EXCITEMENT STIMULATES THE IMAGINATION AND GIVES ONE
INCENTIVE TO GO FORWARD AND INVESTIGATE AND LFARN MORE!

BEFORE GOING FURTHER, HOWEVFR, IT MIGHT BE WISE TO SLOW THINGS DOWN
FOR JUST A BIT AND RE-ITERATE THE IMPORTANCE OF KEEPING A PROGRAM ORGAN-
IZED AS IT IS DEVELOPED. IN THE LAST SEVERAL PAGES, A NUMBER OF SUB-
ROUTINES WERE PRESENTED, AND THEN COMBINED TO FORM LARGFR SUBROUTINES.,
AND FINALLY THE “TEXT BUFFER INPUT" PROGRAM JUST PRESENTED. THE PROGRAM
PRESENTED USES MEMORY STORAGE IN A VARIETY OF WAYS. FIRST THE PROGRAM
ITSFLF MUST BE STORED IN MEMORY. SECONDLY, OPERATIONAL PORTIONS OF THE
PROGRAM REQUIRE MEMORY STORAGE AREAS FOR POINTERS AND COUNTERS. AND,
LAST BUT NOT LEAST, THE PROGRAM REQUIRES THE USE OF MEMORY FOR "DATA"™
MANIPULATION IN THE FORM OF THE TEXT BUFFER. FURTHERMORE, THE "TEXT
BUFFER INPUT'" PROGRAM REALLY CONSIST OF A WHOLE GROUP OF SMALLER SUB-

4 -9

ROUTINES. SUBROUTINFS THAT MAY BF STORFD IN DIFFFRENT ARFAS IN MFEMORY.
WHAT IS NFEDED, AS HAS BEEN DISCUSSED IN THE PREVIOUS CHAPTFR, IS A MEM-
ORY MAP TO HELP THF PROGRAMMFR PLAN THF ALLOCATION OF MFMORY. IT MIGHT
BE A GOOD IDEA FOR THE READER TO DFUFLOP A MEMORY MAP FOR THF ABOVUF PRO-
GRAM AS PRACTICE. A GOOD MFTHOD TO FOLLOW WOULD BF TO SET ASIDF ROOM
FOR THE MAIN PART OF THF PROGRAM (PFRHAPS LFAVING A GOOD AMOUNT OF SPACF
FOR FXPANDING THE PROGRAM IF DESIRED). THEN THE VARIOUS SUBRAUTINES CAN
BE ASSIGNFD TO ARFAS, POSSIRLY LFAVING A BIT NR RONM RETWFFN FACH ONF IN
T™HF FUENT FUTURE MODIFICATIONS ARF DESIRFD. ONF CAN USF A SFPARATE MAP
FOR FACH PAGF OF MFMORY WHERE ROUTINES ARE STORFN. FOR ARFAS SHOWING
THE LOCATIONS OF COUNTERS AND POINTFRS, THF MAPS MAY BFE '"FEXPANDFD" TO
SHOW INDIVIDUAL ADDRESSES.

PG|LOC[RTN NOTES

28| 24@| BUFFER | P6 ADDR oF PNTR FoR "8uFFIN”
241 | POINTER| Loc ~rAproR 0 " ’"
242
243
244
245
246
247
25@| COUNTER | USED AS TEXT "Line coonTer ”
251
252
253
254
255
256
257
2é6¢
26!
262
263
264
265
266
267
27¢
271
272
273
2749
275
276
Yiaz?7

EXPANDED MAP SHOWING LOCATIONS OF COUNTERS
AND POINTERS FOR THE TEXT BUFFFR INPUT PROGRAM

4 - 10

PGILOC| RTN NOTES

02| @SB DATAIN, | INPUT I Dec. Lines of Text
10 ynTO0 BUFFER ARESR oN PE @3
29 OrRIG Version ReguriRes ¥ 3
3¢ (ocTAL) Locs — Leave Room FOR
Yo/ EXPANSION
S¢
(14
7¢
1¢¢
1@
12¢
/130
149
5@
/6P
178
2P| BUFFIN, | INPUT 2 LINE Tex? -'CR’
21¢ ENDS LINE (2@ cocs)
22¢
23p|POINTAL, |FeTch PRTR L OCS IN mMEM
24 DESICNATED BY CALLNG RTN —
25¢ DEP ACC > MEM, ADV PNTR, RESTIRE
268|SWITCH |Exchange HeL with DEE
2728 ADYV, TNCR VRLUE N MHE L
34P|CNTDWN, DECR. CNTR ST2RED IN mMEM
31¢
324
334
344
35¢
364
[| 374

SAMPLE MAP OF TEXT BUFFER INPUT PROGRAM
WITH MAIN ROUTINE AND SUBROUTINES ASSIGNFD ON PAGE 0°?

THE SAMPLE MAPS SHOWN HFRE ILLUSTRATE ONE WAY THE PROGRAM COULD BFE
ASSIGNED TO MFMORY LOCATIONS ON PAGF #2. NOTE HOW THE USE OF THE MAPS
GIVES COHERFNCE TO THE PROGRAM THAT IS NOT FASILY DISCERNED BY A PURELY
MENTAL IMAGE! (PAGE @3 1S ASSUMFD TO BE USFD SOLELY AS A "TEXT BUFFFR"
AREA AND A MEMORY MAP FOR THE AREA IS NOT SHOWN).

ONCE THFE MEMORY MAPS HAUF BEEN MADE UP AND THF STARTING ADDRFSSES OF
ALL THE SUBROUTINES ASSIGNED, IT IS AN EASY MATTER TO CONUVERT THE MNE-
MONICS TO MACHINE CODE. AN ASSEMBLER PROGRAM MAY BF USED IF AVAILARBLE.
FOR PRACTICE, THE READER MIGHT WANT TO TRY DPEVFLOPING THE MACHINE CODFE
BY HAND. FOR COMPARISON PURPOSES THE OBJECT CODE FOR THE PROGRAM WOULD
APPFAR AS SHOWN HERE IF THE SUBROUTINES ARE ASSIGNED TO THF ADDRESSES

a4 - 11

AS SHOWN IN THE EXAMPLE MEMORY MAP.

02
22
a2
a2
a2
a2
a2
02
02
22
A2
o2
g2
a2
o2
a2

9ve
ez
a2
o2
o2
a2

CODE

256
k08
P66
240
076
@83
060
276
1517
266
250
76
B12
186
200
002
psSeé
haa
Née6
250
1906
360
g2
110
o15
paz
209

256
2151%
266
240
186
XXX
XXX
106
2302
naz
74
218
11@
284
ae2
a7

337
060
347
186
260
a2

 MNEMONIC

DATAIN,

MORIN,

BUFFIN,

INAGN,

POINTI!,

LHI1

LLI

LMl

INL
LMl

LLI

LMI

caL

LHI1

LLI

CAL

JFZ

HLT

LHI

LLI

CAL

CAL

CPI

JFZ

RET

LDM
INL
LEM

5121

240

#03

aaa

250

g12

-BUFFIN

A00

250

CNTDWN

MORIN

1%

244

INPUT

POINTI

215

INAGN

COMMENTS

/SET PAGE WHERE "POINTI" POINTER STORED
/AND ADDRESS ON THE PAGE FOR "POINTI"
/SET START OF MEMORY BUFFER AREA (PAGE)

/ADUVANCE TO NEXT WORD
/SET START OF MEM BUFF ARFEA (LOC ON PG&)

/ADDRESS OF A “LINE COUNTER"
/SET LINE COUNTER TO 16 DECIMAL

/GET A LINE OF TEXT

/SET UP STORAGE ADDR OF LINE COUNTER

/ " 1 . (1] " " "

/DECREMENT LINE COUNTER VALUE

/1F NOT 1@ (DEC) LINES, GET ANOTHFR LINFE
/END OF PGM (COULD USE RET, JMP ETC.)
/SET PAGE WHERE BUFFER POINTER STORED

/SET LOCATION ON PAGF OF BUFFER POINTER

/GET A CHARACTER FROM INPUT DEVICFE
/PUT THE CHARACTER INTO MEM BUFFER AREA

/SEE 1F CHAR WAS ASCII CODE FOR ‘CR'

/1F NOT» GET ANOTHFR CHARACTER

/EXIT RTN WHEN FIND A *'CR®' CHARACTER

‘/FETCH POINTER PAGE ADDR INTO REG "Dh*

/ADV TO PICK UP CONTENTS OF NEXT WORD
/GET LOGCATION ADDR INTO REGISTER “E"

CAL SWITCH /PUT NEW POINTER INTO *“H" & "L"

4 - 12

ADDR CODE MNEMON1C COMMENTS

L I Y - - - L X R R M N G R G W D WD TS AP S e G e W W W s E W A

82 236 379 LMA /PUT ACC INTO MEM INDICATED BY NEW PNTR
g2 237 146 CAL ADV /INCREMENT THE NEW POINTER

v2 248 279

02 241 @@2 :

82 242 106 CAL SWITCH /RESTORE NEW POINTER STORAGF ADDRESS

B2 243 260

2 2448 002

a2 245 374 LME /DEPOSIT POINTER LOCATION ADDR IN MFM

a2 246 06l DCL /DECR BACK TO PAGF ADDR STORAGE WORD
we 257 373 LMD /DEPOSIT POINTER PAGE ADDR IN MFM
w2 250 047 RET /EXIT SUBROUTINE

A2 268 325 SWITCH, LCH /LOAD CONTENTS OF "H" INTO '"C' TFMP
@2 261 353 LHD /NOW LOAD "D" INTO "H"

a2 262 339 LDC /MOVE ORIG "H' FROM “C' INTO “D"

w2 263 326 LCL /SIMILARLY LOAD "L" INTO “C' TEMP
B2 264 364 LLE /PUT “E" INTO "L*

w2 265 342 LEC /AND STORFE ORIGINAL *“L* IN "E"

a2 266 007 RET ZEXIT SUBROUTINE

82 270 @68 ADV, INL /INCREASE VALUE OF REG '"L' BY 1|

w2 271 @13 RFZ: /EXIT SUBRTN IF NOT GOING TO NEW PG
¥e 272 950 INH /INCRFMFENT “H' BY | IF ON NEW PAGF
a2 273 @47 RET /7EXIT SUBROUTINE

@2 388 327 CNTDWN, LCM /FFTCH COUNTER

a2 391 @21l DCC /DECREMENT VALUFE

n2 382 372 LMC /RETURN COUNTER TO STORAGFE

k2 303 4da7 RET /EXIT SUBROUTINE

ORGANIZING AND MANIPULATING TABLES

A VERY POWERFUL FFATURE OF A DIGITAL COMPUTER IS ITS ABILITY TO
STORE DATA AND TO PROCESS IT AS THE PROGRAMMER DESIRES - PERHAPS BY AR-
RANGING IT IN SOME SPECIFIC KIND OF ORDFR, OR BY PERFORMING MATHEMATICAL
OPERATIONS, SUCH AS OBTAINING AN AVERAGE, OR CONDENSING THE DATA IN SOME
MANNER. THE COMPUTER IS ALSO SUITED FOR RAPIDLY EXTRACTING INFORMATION
OF INTEREST FROM STORAGE BY PERFORMING SUCH FUNCTIONS AS "MATCHING" SIM-
ILAR TYPES OF DATA, AND AS A '"CONUFERTING" MACHINE - WHERE DATA IN ONE
TYPE OF CODE CAN BE QUICKLY CHANGED TO A DIFFERENT REPRESENTATION. 1IN
SUCH APPLICATIONS, IT IS FREQUENTLY NECESSARY TO DEVELOP PROGRAMS THAT
ORGANIZE DATA INTO “TABLES" OR TO PROCESS INFORMATION STORED IN “"TABLFE~
LIKE" FORMAT.

THERE ARE A VARIETY OF WAYS TO ORGANIZE TABLES FOR COMPUTER PROCFS~-
SING. THE READER HAS ALREADY, WHETHER IT HAS BEEN REALIZED OR NOT, BEEN
INTRODUCED TO SEVERAL TYPES OF “TABLES'" IN THIS MANUAL. IN THE FIRST
CHAPTER MENTION WAS MADE OF USING A "LOOK-UP'" TABLE TO CONVFRT BETWEEN
ASCI1 AND BAUDOT CODES USED IN VARIOUS KINDS OF ELECTRIC TYPING MACH~-
INES. AND, IN THIS CHAPTER, THE DISCUSSION AND PROGRAMMING CONSIDERA-
TIONS FOR A "TFEXT BUFFER" WFRE ACTUALLY CONCERNED WITH A *"FREE~FORM"
TYPE OF TABLE.

4 - 13

FOR THE PURPOSES OF THE FOLLOWING DISCUSSION, TWO BASIC TYPES OF
TABLE ORGANIZATIONS WILL BE DISCUSSED. ONE VWILL BE RFFERRED TO AS
“FIXED~FORMAT" AND THE OTHER AS “FREF-FORMAT." THE FIXFD-FORMAT TYPE OF
TABLE REFERS T0 TABLES THAT ARE FIXED BY PROGRAMMING CONSIDERATIONS INTO
STRICT, UNCHANGING PATTERNS OF ORGANIZATION. THE FREE-FORMAT KIND USE
DIFFERENT PROGRAMMING TECHNIQUES TO ALLOVW THE STORAGE OF DATA IN RANDOM
LENGTH SECTIONS OF MEMORY. THERF ARE ADVANTAGES AND DISADVANTAGES TO
EACH FORMAT AND THE CHOICE OF WHICH ONE TO USE 1S GENERALLY A FUNCTION
OF THE TYPE OF TASK THAT IS TO BE PERFORMED. FREE-FORMAT ORGAN1ZATION
1S GENERALLY MORE SUITABLE TO TEXT HANDLING TASKS. FIXED FORMAT ORGANI-
ZATION IS GENERALLY THE CHOICE FOR '"CONVERSION" TABLES. THERE ARE ALSO
CASES WHERE THE CHOICE IS A RELATIVELY MINOR ONF AND IT BECOMES A MATTER
OF THE PROGRAMMER'S PREFERENCE.

TO BEGIN DELVING INTO THFE SUBJECT, A TABLE WITH MANY PRACTICAL AP-
PLICATIONS WILL BE DISCUSSED. PROGRAMMING CONDIDERATIONS FOR DEVELOPING
IT IN BOTH TYPES OF FORMATS WILL BE PRESENTED. IN MANY SITUATIONS, IT
1S DESIRABLE FOR A COMPUTER PROGRAM TO HAVE A "CONTROL"™ TABLE. THAT IS
A TABLE THAT WILL INTERPRET COMMANDS FROM AN INPUT DEVICE, AND DEPENDING
ON WHAT IS RECEIVED, PERFORM A SPECIFIC TYPF OF FUNCTION. FOR THE PUR-
POSES OF THI1S ILLUSTRATION IT WILL BE ASSUMED THAT AN OPERATOR WILL TYPE
IN COMMANDS FROM A KEYBOARD. THE COMMANDS WILL BF IN THE FORM OF WORDS
THAT MAY VARY IN LENGTH FROM 2 TO € CHARACTERS. WHENEVER A "VORD" HAS
BEEN INPYUTTED TO THE COMPUTER, THE COMPUTER WILL CHECK TO SEE IF THE
“CONTROL TABLE" CONTAINS A MATCHING WORD, AND IF SO, THE COMPUTER WILL
OBTAIN THE ADDRESS OF A ROUTINE THAT IT IS TO PERFORM AND EXFCUTE THE
FUNCTION. WHEN IT IS THROUGH PERFORMING THE ROUTINE, OR IF A “MATCH"
FOR THE COMMAND WAS NOT FOUND, THE PROGRAM WILL RETURN TO THE *COMMAND"
MODE AND WAIT FOR A NEW KEYBOARD ENTRY AFTER SENDING A RESPONSE ON AN
OUTPUT DEVICE TO NOTIFY THE OPERATOR IT IS READY FOR A NEW ENTRY. FOR

THIS EXAMPLE, THE OUTPUT DEVICE WILL BE ASSUMED TO RE AN ELECTRIC TYPE-
WRITER.

FOR A HYPOTHETICAL EXAMPLE, IT WILL BE PROPOSED THAT THE '"CONTROL"
WORDS WILL CONSIST OF THE FOLLOWING: *GO." . "LIST." "MEDIAN." "AVG."
“COUNT.'" "ERASE." THESE CONTROL WORDS MIGHT BE ASSOCIATED WITH A PRO-
GRAM THAT IS TO BE USED BY A SCIENTIST CONDUCTING SOME TYPE OF EXPERI-
MENT. SUYPPOSE THE CONTROL COMMAND ' GO" INDICATED THE COMPUTER WAS TO
START A 10 SECOND TIMING LOOP. AT THE START OF THE 18 SECOND TIME PER-
I0D THE PROGRAM WOULD SEND A "RESET" PULSE TO SOME SORT OF EXTERNAL
COUNTING DEVICE THAT WAS COUNTING THE “EVENTS'" THAT OCURRED IN SOME KIND
OF EXPERIMENT. WHEN THE 10 SECOND PERIOD WAS OVER, THE COMPUTER WOULD
IMMEDIATELY OBTAIN THE VALUE REGISTERED BY THE EXTERNAL COUNTER AND
STORE THE NUMBER OBTAINED IN A "DATA BUFFER." THE "LI1ST* COMMAND MIGHT
DIRECT THE COMPUTER TO PRINT OUT ALL THE DATA VALUES STORED IN THE “DATA
BUFFER"™ (PERHAPS SO THE SCIENTIST COULD LOOK FOR PATTERNS OR JUST HAVE
A COPY OF THE RAV EXPERIMENTAL DATA). THE “MEDIAN" COMMAND COULD DIRECT
THE COMPUTER TO DETERMINE THE MEDPIAN OR MIDDLE VALUE OUT OF ALL THE
VALUES STORED IN THE DATA BUFFER AND PRINT OUT THAT NUMBER. SIMILARLY,
THE "AVYG'" DIRECTIVE COULD S1GNIFY THAT THE PROGRAM WAS TO EXECUTE A
ROUTINE TO CALCULATE THE AVERAGE VALUE OF THE DATA. THE "COUNT" COM-
MAND MIGHT BE USED TO HAVE THE COMPUTER INDICATE HOW MANY 1@ SECOND EX-
PERIMENTS HAD BEEN CONDUCTED. AND, THE "ERASE"™ COMMAND COULD SIGNIFY

THAT THE “"DATA BUFFER"™ WAS TO BE "CLEANED OUT"” FOR A NEV SET OF EXPERI-
MENTS .

THE CONTROL TABLE NEEDS TG BE CONSTRUCTED SO THAT THE PROGRAM CAM
“SEARCH" FOR A “WQRD'" THAT IS THE SAME AS THAT ENTERED ON THE KEYBOARD
AND IF A "MATCH"™ 1S FOUND, THEN THE TABLE VOULD CONTAIN INFORMATION (AN
ADDRESS) THAT WOULD DIRECT THE COMPUTER TO THE PROPER ROUTINE TO BE EX-

4 - 14

ECUTED. THE CONTROL TABLE COYLP BE CONSTRUCTED BY SETTING ASIDE AN AREA
IN MEMORY THAT CONTAINED THF PROPER CODE FOR THE LETTERS IN EACH *“CON-
TROL WORD" FOLLOWED BY TWO MFMORY WORDS CONTAINING THE PAGE AND LOV AD-
DRESS WHERE -THE APPROPRIATE ROUTINE RESIDED. IF THE CONTROL TABLE WAS
EONSTRUCTED IN "FIXED-FORMAT" IT MIGHT APPFAR AS FOLLOWS.

1]

FIXED-FORMAT CONTROL TABLE

ADDRESS CONTENTS REMARKS

2 204 307 /CODE FOR LETTER "G"

02 ﬂgl 31 7 / ” " e 'OOII

82 @92 (5117 /NOT USED FOR THIS COMMAND

82 063 08 /NOT USED FOR THIS COMMAND

a2 004 0ae /NOT USED FOR THIS COMMAND

82 @es 200 /NOT USED FOR THIS COMMAND

22 @ade6 281 /PAGF WHFRE “GO' ROUTINE STARTS
n2 Ba7 100 /LOC ON PG WHERE ''GO'" STARTS

62 61v 314 /CODBE FOR LETTER "L“

@2 gll 3!] / e 1 1] *"” !'1'0

”2 alz 323 / "” " (1] OOS"

”2 a l 3 32“ / (1] " " ||T|O

a2 Pla 289 /NOT USED FOR THIS COMMAND

02 @15 aA0a /NOT USED FOR THIS COMMAND

a2 al1e a1 /PG WHERE "LIST" ROUTINE STARTS
2 817 14@ /7LOC ON PG WHERE "LIST" STARTS
02 020 315 /CODE FOR LETTER "M"

62 521 365 / ” ” " " Ell

82 822 304 /7 " " "D

@2 @23 311 /7 " " " B

ﬂ? aea 3@‘ / " " (1] '!A.‘

62 625 31 6 / " " " "N'I

22 @26 a1 /PG WHERE "MEDIAN'" RTN STARTS
a2 @27 2090 /LOC ON PAGE FOR “MEDIAN"

22 @30 341 /CODE FOR LETTER “A"

92 ﬁsl 326 / ” " (1] IIVOO

@2 @32 307 yaRl " " el

82 833 200 /NOT USED FOR THIS COMMAND

P2 034 200 /NOT USED FOR THIS COMMAND

22 B3s 090 /NOT USED FOR THIS COMMAND

92 036 261 /PG WHERE "AYG'" ROUTINE STARTS
82 037 249 /LOC ON PAGE WHERE '"AUG" STARTS
02 QBa0 383 /CODE FOR LETTER *C*

62 4 ﬁa l 3 l 7 , " " " QUO!I

a2 642' 325 /7 " . " sygee

gz 6‘3 3 l 6 / e (1] e !’N!l

Be B“a 32“ / " " 12} O'T”

22 @as 209 /NOT USED FOR THIS COMMAND

2 @46 a1 /PG WHERE "COUNT" RTN STARTS

92 @47 360 /LOC ON PG WHERE “COUNT'" STARTS
02 050 385 /CODE FOR LETTER “E"

92 ﬂsl 322 / "” " " '1“00

62 652 35! Y AR L] ” NA"

22 853 323 7 " ' ' nse

62 65“ 365 / " . L OIEIO

82 @ss o0 /NOT USED FOR THIS COMMAND

02 @656 091 /PG WHERE “FRASE" RTN STARTS

62 @57 340 /LOC ON PG WHERF “ERASE" STARTS
02 @69 1) /%%END OF TABLE MARKERx*x

IT CAN BE NOTED THAT THE FIXED-FORMAT TABLE OCCUPIFS MFMORY FROM
LOCATION 4060 TO @60 (INCLUDING AN '"END OF TABLE MARKER" WHICH WILL BE
DISCUSSED LATER). OBSERVATION OF THE TABLF SHOWS THAT THFRE IS A LOT
OF "WASTED" SPACE WHERE MFMORY LOCATIONS ARE FILLED WITH ZEROS AS THE
"COMMAND"™ WORD DID NOT REQUIRE SIX CHARACTERS. MORE CHARACTERISTICS
OF THE ABOVE FORMAT WILL BE PRESFNTED SHORTLY. FIRST, TW0 SIMILAR
"FREE-FORMAT" VERSIONS FOR THE SAMF "CONTKOL" TABLF WILL BE ILLUVSTRATED.

FREE-FORMAT CONTROL TABLF - UFRSION #1

ADDRESS
g2 009
a2 001
82 Qo2
22 403
2 004
ae aes
B2 0ae
az ea7
02 ¢1o
g2 o011
o2 o012
¥v2 V13
g2 4la
a2 015
82 016
g2 917
a2 20
g2 821
82 622
a2 023
P2 @24
2 @825
02 @26
a2 @27
42 @39
82 @3\
a2 032
82 @33
22 @34
@2 a3s
22 836
a2 037
82 040
82 04l
B2 0a2
B2 @43
P2 Daa
A2 aas
82 Qa6
02 o447
82 @50
02 051
#2 052
p2 053

CONTENTS

387
317
171
el

180
31a
311

323
324
ave
pal

149
318
3@5
304
311

301

316
o0e
a1

200
301

326
387
101"
ho1

240
363
317
325
316
324
000
a1

308
345
322
381

323
345
(4T
Vel

349
400

"

REMARKS

/CODE FOR LETTER "G”

/ (1] " L1} "0.'

/*END OF COMMAND WORD MARKER=*
/PAGE WHERE '"GO' ROUTINE STARTS
/LOC ON PG WHERE "GO'" STARTS
/CODE FOR LFTTER "L

VAR " X ve g
/ ve (1] (1] (1) S"
VAR [3 " T

/*FND OF COMMAND WORD MARKER=*
/PG WHERE "LIST*" ROUTINE STARTS
/LOC ON PG WHERE "“LIST" STARTS
/CODE FOR LETTER "M

/ " . (1] (1] EI'
/ (2] " T . D!'
, (1] (1) (1] " IO'
, (1 ‘ " (1] 'IAOI
/ 1 (1} (1] IlNll

/*END OF COMMAND WORD MARKER=x*
/PG WHERE °*“MEDIAN'" RTN STARTS
/LOC ON PAGE FOR ""MEDIAN"

/CODE FOR LETTER "A"

/ " . (2] 1" Vl.

/ " " (4] (1] G!l

/*END OF COMMAND WORD MARKFERx
/PG WHERE "AVUG" ROUTINE STARTS
/LBC ON PAGF WHERE "AUG"™ STARTS
/CODE FOR LETTER *C*

/ i1} " " "0"
/ " " (1] D'U"
/ L] " (1) Q'N.l
, " " " ‘.T.'

/*END OF COMMAND WORD MARKERx
/PG WHERE "COUNT' RTN STARTS
/LGC ON PG WHERE "COUNT'" STARTS
/CODE FOR LETTER "E™

/ L 14 " e " Rll
/ (1] L1 ”"” ..A "
/ ”"” ”"” " " SI'
/ " " " " F"

/*END OF COMMAND WORD MARKER»
/PG WHERE "ERASE" STARTS

/LOC ON PG WHERE "ERASF" STARTS
/*%*END OF TABLE MARKFRxx :

FREE-FORMAT CONTROL TABLE - VERSION #2

ADDRESS CONTENTS REMARKS

62 @60 3817 /CODE FOR LETTER "G"

22 001 317 ;s " " . "o"

a2 @02 8ot /PAGE WHERE "GO*™ ROUTINE STARTS
@2 083 100 /LOC ON PG WHERF "GO STARTS
82 @04 314 /CODE FOR LETTER "L"

22 @05 311 /o " o vy

02 046 323 /" " . vee

02 007 324 7 " " 3

92 010 201 /PG WHERE "LIST" ROUTINE STARTS
82 all 140 /LOC ON PG WHERE “LIST" STARTS
@2 @12 315 /CODE FOR LETTER “M"

a2 a13 38s VARL " " (D Al

@2 214 304 L " - "p

92 415 31 /" " v vy

7P A1é 331 /" (1] " npee

22 817 316 ’ " " N

82 020 281 /PG WHERE "MEDIAN" BTN STARTS
g2 a2l 200 /LOC ON PAGE FOR "MEDIAN"

@2 peo2 301 /CODE FOR LETTER "A"

92 @23 326 ;" " " A

P2 0824 307 ;" v " "G"

02 @a2es 0ol /PG WHERE "AVG" ROUTINE STARTS
P2 @26 240 /LOC ON PAGE WHERE "“AUG"™ STARTS
02 827 363 /€ODE FOR LETTER “C*

@2 #38 317 VARL (1] " u)ee

ﬂe @31 325 VAL . *” nuu

ﬂg 632 31 6 / s " 114 !lN.'

@ao a33 324 VAL 1] " T

B2 @34 8al /PG WHERE "COUNT" RTN STARTS

82 935 388 /LOC ON PG WHERE "“COUNT' STARTS
2 @36 305 /CODE FOR LETTER “E"

92 037 322 / L 1] " " IR

a2 A4y 331 VAR [[A

a2 A4l 323 VARL " " g

a2 Q42 365 /" (1] (1] R

22 fa3 291 /PG WHERE "ERASE'" STARTS

P2 B44 344 /LOC ON PG WHERE “ERASE" STARTS
82 0as gae /**END OF TABLE MARKER*x

THE READER CAN IMMEDIATELY NOTICE THAT BOTH OF THE FREE-FORMAT OR~-
GANIZATIONS TAKE LESS MEMORY STORAGE FOR THE TABLF ITSELF THAN THE

FIXED-FORMAT ARRANGEMENT.

THIS IS GENERALLY THE CASE WHEN THERE ARE

LARGE VARIATIONS IN THE LENGTH OF THE DATA (NUMBER OF MEMORY WORDS TO A

“FIELD'" SUCH AS THE “CONTROL WORDS"
FOR FIXED-FORMAT TABLES,

TABLE.

EACH *“BLOCK*

IN THE TABLES) THAT 1S HELD IN THE
(IN THE EXAMPLE BEING DIS~-

CUSSFD A BLOCK WOULD BE 8 MEMORY WORDS) MUST BE LONG ENOUGH TO CONTAIN
THE LARGEST POSSIBLE FIELDS THAT COULD BE ENGOUNTERED IN THE APPLICA-

TION.
THE "CONTROL WORD"

(IN THE PRESENT ILLUSTRATION,
FIELD AND THE "ADDRESS" FIELD.
WORD" FIFLD REQUIRES & MEMORY WORDS.

“FIELDS*" IN A "BLOCK"
THE LARGEST
ALL THE "ADDRESS'" FIELDS REQUIRE

2 WORDS - SO EACH BLOCK MUST HAVE 8 MEMORY LOGATIONS AVAILABLE).
THAT A FIXFD FORMAT TABLE MAY NOT REQUIRE MORE ROOM THAN A FREE-FORMAT

TABLE OF THE TYPE SHOWN IN UERSION #1
IN THE LENGTH OF DPATA WITHIN FIELD(S).

A

FOR INSTANCE,

WOULD BE
"CONTROL

NOTE

IF THERE IS NOT A LARGE VARIATION
HAD ALL OF THE

CONTROL WORDS BFEN SELECTED TO BF & AND ¢ LETTERS IN LFNGTH, THEN VUFR-
SION #1 WOULD HAVF ACTUALLY REQUIRFD MORF MFMORY SPACE FOR THE TABLE
THAN THF FIXFD=-FORMAT CONFIGURATION!

HOWFVER, THE AMOUNT OF MEMORY SPACE OCCUPIFD RY THF TABLF ITSELF IS
NOT THF ONLY PROGRAMMING POINT TO BE CONSIDERFD WHFN CHOOSING THE TABLFE
FORMAT TO BE USFD IN A PARTICULAR PROGRAM. ONF MUST ALSO LOOK AT SOMF
OTHER PARAMFTERS THAT WILL ALSO HAVF AN EFFECT ON THF TOTAL SIZF OF THF
PROGRAM. ONE SUBTLE PARAMETER, FOR INSTANCF, IS HOW WILL THE INPUTTED
CHARACTER STRING FOR A *“CONTROL WORD" BF “DFLIMITFD.' SUPPOSF, FOR FX-
AMPLE, THAT A "CONTROL WORD" CHARACTFR STRING IS INPUTTFD VIA AN ASCIl
KEYBOARD SUHROUTINF AND STORED IN A SMALL HUFFFR ARFA IN MFMORY. ONF
CAN ASSUME THAT THE ACTUAL INPUT STRING WAS "DFLIMITED" (FNDED) RY A
SPECIAL CHARACTFR SUCH AS A “CARRIAGF-RETURN." THF “"CARRIAGF~=RFTURN"
WOULD INFORM THE INPUT ROUTINFE TO CFASF ACCFPTING CHARACTFRS AND RFTIRN
T THF “CALLING" PROGRAM. HOWFUFR, SINCF THF CHARACTFR STRING THAT IS
RECFIVFD MUST ALSO BF USED BY SOMF OTHFR ROUTINF (WVHFN SEARCHIN(G THF
CONTROL TABLF FOR A MATCH), AND SINCF THF CHARACTFR STRING CAN VARY 1IN
LENGTH, THFN SOMF MEANS MUST BE PROVIDFD FOR TELLING THF TABLF SFARCH
ROUTINE JUST HOW MANY CHARACTERS ARF IN THF PARTICULAR STRING OF CHAR-
ACTFRS STORFD IN THF BRUFFER!

THIS CAN BF DONF IN SEUFRAL DIFFFRFNT WAYS., ONF WAY WOULD BF TO
HAVE THE "CARRIAGF=-RETURN" CODF RFCEIVED BY THE ASCII INPUT ROUTINF
STORED AS THF LAST CHARACTFR IN THF CHARACTFR STRING BRUFFER. THF TABLF
SEARCH ROUTINF COULD USE THF "C-R" SYMBOL AS A "DFLIMITFR" TO SIGNIFY
THE FND OF THF CHARACTFR STRING. THF CHARACTFR STRING RUFFFR WOULD
THEN CONTAIN INFORMATION STORED AS SHOWN HERF:

ADDRFESS LOCATION CONTENTS
WORD #1 CODF FOR CHARACTFR #1
WVORD #2 CODF FOR CHARACTFF #2
WORD #N CODF FOR CHARACTER #N
WORD #N+1 CODE FOR CARRIAGE-RFTURN

NOTF, THFN, THAT THF CHARACTER BUFFER WOULD HAVF TO BF A BLOCK OF
LOCATIONS IN MEMORY LONG FNOUGH TO HOLD (N + 1) CHARACTFRS WHFRE “N* 1S
THE MAXIMUM NUMBER OF CHARACTERS ALLOWED IN A CONTROL WORD.

A SECOND WAY TO DFLIMIT THFE CHARACTFR STRING IN THF BUFFFR WOULD RF
T SET UP A COUNTER THAT INCRFASED IN VALUF FACH TIMF A CHARACTFR WAS
ACCFPTED INTO THF BUFFFR. THE VALUF IN THE COUNTFR WOULD THFN BF USED

BY THF TABLE SFARCH ROUTINF TO INDICATF HOW LONG THE CHARACTFR STRINR
WAS.

STILL ANOTHFR TECHNIQUE WOULD BF TO UTILIZF A BUFFFR ADDRFSS POINTFR

THAT WOULD POINT TO THE ACTUAL ADDRFSS 0OF THF LAST CHARACTFR IN THF RUF=-
FER.

THE SFCOND AND THIRD SCHEMES ALLOW THF CHARACTER BUFFFR TO RF JUST
"N' CHARACTFRS IN LENGTH C(INSTFAD OF N + 1). HOWFUVFR, THE SAVINGS IN
BUFFFR SPACE IS HARDLY ENOUGH TO BF CONCFRNED WITH, PARTICULARLY SINCF
SOME OTHER LOCATION(S) WOULD HAVE TN RF SFT ASIDF FOR STORING THF VALUF
OF THE COUNTFF OR BUFFFR ADDRESS POINTFR.

THFE DIFFFRENT METHODS APE MENTIONFD, HOVEVEPR, TO DFMONSTRATF THF IM=-

4 - 18

PORTANT FACT THAT THFRE IS MORF THAN ONF WAY TO APPROACH THF PROBLEM AND
THF PROGRAMMFR MUST DFUFLOP THE PRACTICF OF FXAMINING ALTERNATIVUF WAYS.
WHILF THE DIFFFRFNCES ARF OFTEN SUBTLF, CFRTAIN CHOICFS MAY BF OF PARTI-
CULAR VALUF IN CERTAIN APPLICATIONS. ’

AN IDEA THAT SHOULD BF MFNTIONFD AT THIS POINT CONCFRNS THE PRACTICF
OF TRYING TO DEVELOP PROGRAMS THAT ARF “GONF-PROOF" - OR "HUMAN-ENGINE=-
FRFD." THF IMPORTANCF OF THIS FACTOR SHOULD NOT RF OVFR-LOOKFD. FOR,
THOSE THAT DO WILL OFTFN FIND THEMSFLUFS SPFNDING MANY HOURS “RFWORKING"
PROGRAMS THAT HAVF SUDDENLY "GONF BESERK" WHILF IN OPFRATION. THE ABI-
LITY TO PLAN PROGRAMS THAT TAKE THIS IMPORTANT PARAMETFR INTO CONSIDFRA-
TION GENFRALLY DISTINGUISHFS THF NOVICF FROM THF FXPFRIFNCED PROGRAMMFR.
WHAT IS MFANT BY 'HUMAN-FNGINFFRING' CAN BF CLFARLY DEMONSTRATFD RY THF
FOLLOWING DISCUSSION.

SUPPOSFE FOR THF FXAMPLF BFING DFUFLOPFD HERF THAT THF PROGRAMMFR FL-
FCTED TO DFVFLOP THF CHARACTFR STRING INPUT ROUTINF USING SCHEME #1 PRF-
SENTFD ABOVE EY SETTING ASIDF A CHARACTFR BUFFFR N + 1 WORDS IN LFNGTH
(WHICH WOULD RF 7 IN THIS CASF AS THF MAXIMUM SIZF OF A CONTROL WORD IN
THE EXAMPLE IS & CHARACTERS). NOW, A NOVICF, OR UNWARY BFGINNFR MIGHT
PROCEED TO DEUFLOP THF ROUTINF ALONG THF FOLLOVING LINES.

MNEMONIC COMMFNTS

INCTRL, LHI XXX /SET PAGF ADDR OF START OF CHAR BUFFFR
LLI YYY /SFT LOC ON PAGF 0OF START OF CHAR RUFFER

INCHAR, CAL INPUT /GFT A CHARACTFR FROM INPUT SUBRNUTINF
LMA - /STORF IN CHARACTFR STRING RUFFER
CPI 2158 /SFF IF CHARACTFR WAS A “C-R"
RTZ /EXIT SUBROUTINF IF *C~R"
CAL ADV /ADUVANCE BUFFFR POINTFR

JMP INCHAR /L0NOP TO GFT NEXT CHARACTFR

AN EXPERIFNCFD PROGRAMMFR VOULD MORF LIKFLY HAUF THF SUBROUTINE
APPEAR SOMETHING LIKF:

MNFMONIC) COMMFNTS

INCTRL, LHI XXX /SET PAGF ADDR OF START OF CHAR RUFFER
LLI YYY /SFT LOC ON PAGF OF START OF CHAR BUFFFR
LBl @d6 /SFT “SAFETY" COUNTER

INCHAR, CAL INPUT /GET A CHARACTFR FROM INPUT SUBROUTINF
CPl 215 /SEF IF CHARACTFR VAS A “C=R"
JFZ CHECK /1F NOT "C-R" GO TO SAFFTY CHECK ROUTINF
LMA /1F "C-R" THFN STORF IN BUFFFR
RET /AND FXIT SUBROUTINE

CHECK, INB /EXERCISE REGISTER B TO SFT FLAGS
DCB /FOR ITS ORIGINAL CONTENTS
JTZ INCHAR /IF "B WAS 000, IGNORF PRFSFNT CHARACTER
DCB /0OTHFRWISE, DECREMFNT VALUF OF "R"
LMA /STORF. CHARACTFR IN RUFFER
CAL ADV /ADVANCE BUFFFR POINTER

JMP INCHAR /AND LOOP TO GFT NFXT CHARACTFR

WHAT DOES THE SECOND SUBROUTINF DO THAT THF FIRST DID NOT? IT GUAR-

4 - 19

ANTEES THAT IF SOMEBODY TYPES IN A CHARACTFR STRING MORF THAN SIX CHAR-
ACTERS LONG THAT THF *BUFFER" WILL NOT '"EXPAND" BFYOND ITS INTFNDFD
LENGTH AND POSSIBLY RFSULT IN CHARACTFRS BRFING LOADFD INTO PORTIONS OF
MEMORY THAT POSSIBLY CONTAIN PROGRAM INSTRUCTIONS OR OTHFR DATA, THF
ALTFRING OF WHICH MIGHT FUFNTUALLY RFSULT IN A PROGRAM *"BLOW-UP!"

STILL ANOTHFR WAY TO DELIMIT AN INPUT CHARACTER BUFFFR, AND A METHOD
PARTICULARLY SUITED TO DFALING WITH A FIXED FORMAT TABLF, IS T0O "CLFAR
OUT* THE BUFFER PRIOR TO THE START OF ENTFRING A CHARACTFR STRING, BY
FOR INSTANCE, INSERTING ALL 'ZERO"™ VORDS INTO THF BUFFFR. WHEN USING
THIS METHOD IT IS NOT DESIRABLE TO INSERT A "C~-R™ AT THF END OF THF
STRING, BUT RATHER TO SIMPLY ALLOW THE PRESFNCF OF A “ZERO" WORD DFNOTE
THF END OF THE CHARACTFR STRING. :

ONCE THE INPUT CHARACTER BUFFFR HAS RFCEIUFD A CHARACTFR STRING AND
A METHOD OF DELIMITING THE STRING BEEN SFLECTED, ONFE CAN PROCFFD TO DF=-
VELOP METHODS TO *"SFARCH® THF CONTROL TABLF FOR A “CONTROL WORD' THAT
MATCHFS THE CHARACTER STRING IN THE BUFFFR. THF SFARCH ROUTINF WILL REF=-
FLFCT THE METHOD USFD TO ORGANIZF THE TABLF AS WFLL AS THFE DFLIMITING
FORMAT USFL IN THF CHARACTER STRING BUFFER. THF VARIOUS RAMIFICATIONS
OF WHAT IS MEANT BY THIS CAN PFRHAPS BFST BF CLARIFIFD BY CONSIDERING A
FFW PROGRAMMING FXAMPLES.

EXAMINF THF FOLLOWMING PORTION OF A “SFARCH" ROUTINF DESIGNFD TO LNNK
FOR A MATCH BETWFEN THF CHARACTERS IN A BUFFFR (TEFRMINATED BY A ZFRO
WNRD) AND THE CHARACTERS CONTAINED IN THE "CONTROL VWORD'" FIELDS OF THF
BLOCKS MAKING UP THF TARLE.

MNFEMONIC COMMFNTS

SFARCH, LDI 9@2 /SET POINTERS TO STARTING ADDR OF TABLF
LEI 660 / " ”"” " " (1] " L1

INITBF, LHI XXX " /SET POINTFRS TO START OF CHAR BUFFER
LL I YYY / " " e L) 1 1] " (1]
LBI Q3¢ /SFT CONTROL WORD FIELD SIZE COUNTER

CMATCH, LAM /GFT CHAR FM BUFFFR (FOFM CHAR MATCH LOOP)
CAL ADvV /SUBROUTINF TO ADVANCF BUFFFR POINTFR
CAL SWITCH /EXCHANGE BUFFFR PNTR FOR TABLF POINTFR
CPM /SEE 1F HAUF A MATCH CONDITION
JFZ NXWORD /IF NO MATCH, GO TO NFXT RLOCK IN TARLFE
DCC /1F MATCH, DECR FIFLD SIZE COUNTFR

*% JTZ FOUNDW /ALL CHARS IN FIELD MATCHED IF CNTR = @

CAL ADV /CHAR MATCH BUT NOT FINISHED, ADU PNTR

CAL SWITCH /FXCHANGFE TABLE PNTR FOR BUFFFR POINTFR
JMP CMATCH /LOOP TO SEE IF NEXT CHARACTFR MATCHES

NXWORD, DCB /DFCR FIFLD SIZFE CNTR TO FIND END OF
JTZ SFTNXW /CURRENT CONTROL WORD FIELD, JMP WHEN FND
CAL ADV /0THERWISE ADUVANCE TABLE POINTER
JMP NXWORD /AND LOOP TO LOOK FOR END OF CW FIFLD
SETNXW, CAL ADV /AT FND OF CONTROL WORD FIFLD NEED TO
CAL ANV /ADVANCFE PNTR OVFR THF "ADDRESS" FIFLD
CAL ADV /TO THE START OF NFEXT CONTROL WORD FIlELD
e CAL SWITCH /AND THEN EXCHANGF TABLE FOR BUFFFR PNTR

JMP INITBF /AND FORM LOOP TO CHECK NFXT RLOCK IN TBL

REMEMBER, THF ABOVF ROUTINF ASSUMFS THAT THF INPUT CHARACTFR RUFFFR
IS ""CLFARED" BEFORF A NEW INPUT CHARACTFR STRING IS ACCFPTED. THUS, THE
INPUT BUFFER WOULD CONTAIN *“ZFROS"™ IN THE LOCATIONS FROM "N + " TO THF

4 - 20

END OF THF BUFFFR (WHFRF *N'" 1S THF LAST CHARACTFR OF THF INPUT STRING).
IF, FOR EXAMPLF, THE INPUT BUFFER CONTAINED THF FOLLOWING:

BUFFFR WORD # CONTFNTS

CODF FOR "G"
CONF FOR "O"
(ddy
nao
nAd
o6

NADLDWN -

THFN THF ROQUTINE JUST PRESENTED WOULD FIND A MATCH IN THF FIRST *“BLOCK"
OF THE FIXED FORMAT TABLE DESCRIBED SFUFRAL PAGFS FARLIFR. WHFN THF
MATCH WITH THE CONTROL WORD IN THF TABLF WAS FOUND, THF ROUTINF WNULD
JUMP TO THF AS YFT UNDEFINED "FOUNDW" ROUTINE TO FXTRACT THFE ADDRFSS

OF THE "GO0 ROUTINE FROM THF TABLF. HOWFUER, HAD THF INPUT CHARACTER
BUFFER CONTAINFD:

BUFFFR WORD # CONTENTS

CODF FOR “A"
CODE FOR *ye
CODF FOR "G*

200

ARa

Aa0

AN WN -

THEN THF ROUTINF WOULD FAIL TO FIND A MATCH IN THF FIRST "CONTROL WORD*®
FIELD. WHFN THF MATCH FAILED. IT WOULD JUMP TO THF *NXWORD" PORTION OF

THF PROGRAM TN ADVANCE THE TABLE POINTFR TO THF START OF THF NEXT ''CON-
TROL WORD'" FIFLD IN THF TARLF, AND THEN JUMP RACK TO THF “INITEF" POR-

TION TO INITIALIZF THF CHARACTFR BRUFFFR POINTFR AND PROCFFD TO LNOK FOR
A MATCH IN THF NFXT BLOCK OF THF TABLF. THIS LOOP WOULD CONTINUF UNTIL
™E MATCHING CONTROL WORD 'AUG"™ WAS FOUND AROUT HALF-VAY DOWN THF TABLF.

HAD SOMF *SMART ALFCK" OPFRATOR KEYFD IN THF FOLLOWING TO THF INPUT
CHARACTER BUFFER:

BUFFFR WORD # CONTENTS
1 CODF FOR 'S"
2 CODF FOR "I*
3 CODF. FOR *"L"
4 CODFE FOR "L"
5 CODE FOR Y™
6 240
THEN THE PROGRAM WOULD FVFNTUALLY “BOMB!' RFASON? (HERF COMFS HUMAN

FNGINEERING AGAIN!) SIMPLY THAT THF ABOUVF ROUTINF HAS NO WAY 0OF DFTFR-
MINING WHFRF THF END OF THF TABLF FXISTS IN MFMORY. THF HANDLING NF
THAT PROBLEM WILL ERF DISCUSSFD SHORTLY AFTFR SOMF MORF FXAMPLFS RFLATED
TO THFE CURRENT TOPIC HAVF PFFN PRESENTED. THF RFADFR SHOULD NOTF HFRF
THAT THE =*%%x MARK NFAR THF FND OF THF ROUTINF DFNOTFS A POINT WHFRF AN

.

4 - 21

“END OF TARLF" TFST MIGHT BF INSERTED IN THF AROVF ROUTINF.

IT IS DESIRABLF AT THIS POINT TO ILLUSTRATF SFUFRAL OTHFR ' SFAPCH"
ROUTINES TO DEMONSTRATE HOW THEY ARE AFFECTFD RY THF TAFLF OFRGANIZATION
AND THF METHOD USED TO DFLIMIT THFE INPUT CHARACTER BUFFFR. SUPPOSFE ONF
IS STILL USING THF FIXFD=-FORMAT TABLF BUT INSTEAD OF CLFARING OUT THE
INPUT BUFFFR REFORF ACCFPTING A NEW CHARACTER STRING (SO THAT IT IS DF=-
LIMITED BY LOCATIONS CONTAINING ZFROS), ONF USES AN INPUT ROUTINE THAT
DFLIMITS THF BUFFFR BY USING A "C=-R" SYMBOL. THE ROUTINF TO LOOK FOR
A MATCH BETWEEN THE CONTENTS OF THF BUFFFR AND A "CONTROL WORD' IN THF
TARLF MIGHT APPEAR AS FOLLOWS.,

MNEMONIC COMMFNTS
SFARCH, LDl @@2 /SET POINTER TO STARTING APDR OF TABLF
LEI Qg@ / " " " " " " ”"
INITBF, LHI XXX /SFT POINTFRS TO START OF CHAR RUFFFFR
LL! YYY / " " *"” ”"” .o " "
LBl @0é /SET CONTROL WORD FIELD SIZF COUNTER
CMATCH, LAM /GET CHAR FM BUFFFR (FORM CHAR MATCH LOOP)
CPI 215 /SFF IF SYMBOL FOP "C-R"
JTZ LCHAR /1F SO0, GO TO LAST CHARACTER ROUTINF
CAL ADV /OTHERWISE, ADVANCF RUFFFR POINTER
CAL SWITCH /FXCHANGF EUFFFR PNTR FOR TABLF POINTFR
CPM /SEF 1F HAVF MATCH CONDX IN TAELF
JFZ NXWORD /IF NO MATCH, GO TO NFXT BLOCK IN TABLF
CAL ADV /1F MATCH, ADUANCE TABLF POINTFR
CAL SWITCH /EXCHANGF TARLF POINTFR FOR BUFFFR PNTR
DCR /DECREMENT COUNTFR VALUF (FOF NXWORD RTN)
JMP CMATCH /LOOP TO SFF IF NFXT CHARACTFR MATCHES
LCHAR, XRA /1F "C-R" IN BUFFFR, CLFAR ACCUMULATOR
CAL SVITCH /EXCHANGE BUFFFR POINTER FOR TABLF PNTR
CPM /AND SFF IF HAUF 980 CODF IN TABLE
* % JTZ FOUNDW /I1F SO, ALL CHARS IN FIFLD MATCHFD
INB /1F NOT, SEF IF COUNTER IS AT 0@0@
DCB /INDICATING MAX CONTROL WORD FIFLD
* % JTZ FOUNDW /ENCOUNTFRED SO HAVE CONTROL WORD MATCH
NXWORD, DCB /1F NOT, DFCR FIFLD SIZF COUNTER
JTZ SETNXW /IF CNTR = @, AT FEND OF “CONTROL WORD"™ FLD
CAL ADV /1F NOT, ADVANCF TABLF POINTFR
JMP NXWORD /AND LOOP TO LOOK FOR FND OF FIFLD
SETNXW, CAL ADV /AT FND OF CONTROL WORDN FIFLD NFED TO
CAL ADV /ADUANCE PNTR OUFR THE "ADDRESS" FIFLD
CAL ADV /TO THF START OF NFXT CONTROL WORD FIFLD
* %% CAL SWITCH /AND THEN FXCHANGFE TABLE FOR BUFFER PNTR

JMP INITBF /AND FORM LOOP T0 CHFCK NFXT BLOCK IN TBL

" THE ABOVFE ROUTINFE IS A BIT MORF COMPLICATED THAN THF PREVIOUS ONF
BFCAUSE ONE MUST STILL KEFP TRACK OF THE NUMBFR OF CHARACTFRS THAT HAVF
BFEN FXAMINED WITHIN A “CONTROL WORD FIFLD" IN THF TABLF SFCTION (FOR
USE. BY THE “NXWORD'" ROUTINE), AND ALSO MAKE AN ADDITIONAL TEST FOR THE
END OF THE CHARACTFR STRING IN THE INPUT BUFFFR WHICH IS SIGNIFIFD BY
THE CODE FOR A CARRIAGE-RETURN. IT IS ASSUMED IN THF ABOVE ROUTINF
THAT THE ROUTINE THAT ACCEPTS A CHARACTFR STRING INTO THF INPUT BUFFFR
LIMITS THE STRING TO A MAXIMUM OF SIX CHARACTFRS. NOTF THAT ONF MUST
ALSO MAKE SPECIAL PROVISIONS FOR THF CASF WHFN THF CHARACTFR STRING IS
SIX CHARACTERS IN LENGTH BY TESTING THF COUNTFR IN THE “LCHAR'" PORTION
OF THE ABOVF ROUTINF.

4 - 22

THF COMRINATION OF USING A "C-R" TERMINATED BUFFFR AND A FFRFE-FORMAT
TABLF (SUCH AS THE FRFE-FORMAT VFRSION #1 ILLUSTRATED EARLIFR) IS LFSS
COMPLICATFD TO "SFARCH' BFCAUSF ONF CAN DROP THF MAINTENANCF OF THF
TRBLF CONTROL WORD FIFLD COUNTFR AND INSTEAD TFST FOR THE END OF RUFFFR
MARKER (C-R) AND USF THE END OF FIFLD MARKFR (@@@) IN THF TARLF WHFN
A MATCH FAILS AND 1T IS NFCESSARY TO ADUANCF TO THF NFXT CONTROL WORD
IN THE TABLF. THIS SFARCH ROUTINF IS ILLUSTRATED NFXT.

MNFMONIC COMMFNTS
SEARCH, LDI1 @e?2 /SET POINTER TO STARTING ADDR OF TARLF
LEI g@e / (1] (1] L1 (1] LU [T} "
INITBF, LH1 XXX /SET POINTFR TO START OF CHAR BUFFFR
LLI YYY / " " " " " " (1]
CMATCH, LAM /GET CHAR FM BUFFER (FORM CHAR MATCH LOOP)
CPI 215 /SEF IF SYMRBROL FOR "C-R"
JTZ LCHAR /1F SO0, GO TO LAST CHARACTFR ROUTINF
CAL ADV /ADUVANCE BUFFFR POINTFR
CAL SWITCH /FXCHANGF BUFFFR PNTR FOR TABLE POINTER
CPM /SEE 1F HAVF MATCH CONDITION IN TABLF
JFZ NXWORD /IF NOT, GO TO NEXT BLOCK IN TABLE
CAL ADV /IF YES, ADUANCF TABLF POINTER

CAL SWITCH /FXCHANGE TABLF PNTRF FOR BUFFFR POINTFP
JMP CMATCH " /LOOP TO TEST NFXT CHARACTFR

LCHAR, XRA /CLFAR ACCUMULATOR 1F HAVE "C-PF" IN BUFF
CAL SWITCH /EXCHANGE BUFFFR POINTFR FOR TABLF PNTR
CpPM /SFF IF ALSO HAVF FND OF FIFLD MARKFR
* % JTZ FOUNDW /I1F SO, HAVE FOUND MATCHING CONTROL WORD
NXWORD, LAM /1F NOT, SFE IF HAUF FND OF FIFLD MARKFR
NDA /*%xTRICK TO SFT FLAGS AFTFR A LOAD OPxxx%
JTZ SETNXW /FOUND MARKFR, GO T0O NEXT BLOCK
CAL ADV /MARKFR NOT FOUND, ADUVANCFE TABLE POINTFR
JMP NXWORD /AND CONTINUF LOOKING FOR MARKFR
SFTNXW, CAL ADV /AFTFR MARKFR FOUND, ADUVANCF TABLF PNTR
CAL ADVU /O0VER THFE "ADDRFESS" FIFLD TO THF START
CAL ADV /0F THF NEFXT CONTROL WORD FIFLD
* K CAlL. SWITCH /EXCHANGF TARLF PNTR FOR BUFFFR POINTFR

JMP INITBF /AND FORM LOOP TO CHFCK NFXT BLACK IN TBL

AT FIRST GLANCE, DEVELOPING A SFARCH ROUTIMF FOR THE FIXED-FORMAT
TARLE - VERSION #2, WOULD APPEAR RATHFR DIFFICULT BFCAUSE THFERE IS NO
APPARFNT END OF CONTROL WORD FIELD MARKER! HOWEUFR, THAT TABLFE WAS OR-
GANIZFD TO TAKE ADUANTAGE OF A PARTICULAR FACT THAT THF DEVELOPFR WAS
AWARF OF THAT WOULD FNABLF THFE FIRST PART OF THF 'ADDRFESS' FIFELD TO RE
USED AS AN END OF CONTROL WORD FIFLD MARKFR. THIS FACT IS THAT ALL OF
THE CHARACTER CODFS THAT MIGHT BF USED IN THE CONTROL WORD FIFLD (WHICH
CONSIST OF °*ASCII" FORMATTED SYMBOLS) HAVF A ™1" BIT IN ONF OR BROTH O0OF
THE TWO MOST SIGNIFICANT BITS WITHIN A MFMORY WORD THAT CONTAINS THF
CHARACTFR. ADDITIONALLY, IT IS KNOWN THAT THF MAXIMUM PAGE ADDRFSS THAT
CAN BE UTILIZFD IN A TYPICAL 88@8 SYSTEM IS 877 (OCTAL) WHICH MFANS
THAT A MEMORY WORD CONTAINING A MEMORY PAGFE ADDRESS CANNOT HAVF A 'I"
CONDITION IN FITHFR ONE OF THE TWO MOST SIGNIFICANT BITS OF THE MFMORY
WORD THAT HOLDS THFE PAGE ADDRESS! THUS, BY MAKING A SIMPLF TEST, USING
A "MASKING" OPFRATION DFSCRIBED FARLIFR IN THIS SECTION, A ROUTIMF CAN
BE DEVELOPED THAT CAN SAFFLY UTILIZE THF PAGF ADDRESS PART OF THE AD-
DRESS FIELD TO SFRVE AS AN FND OF A "CONTROL WORD" FIFLD! THUS, T0
SEARCH VERSION #2 OF THF FRFE-FORMAT TABLF, ONF COULD RFPLACFE THF ROUT-
INES "LCHAR'" AND '"NXWORD" USED ABOVE WITH THE FOLLOWING SUBSTITUTES

4 - 23

MNFMONIC COMMENTS

LCHAR, CAL SWITCH /EXCHANGF BUFFFR POINTFR FOR TABLF PNTR

LAM /TFST FOR FND OF CONTRNL FIFLD

NDI 3@ /BY SFEEING IF TWO MSR'S ARF BOTH “@é*

JTZ FOUNDW /I1F SN, HAUF FOUND MATCHING COMTROL WORD
NXWORD, LAM /TEST FOR FND OF CONTROL FIFLD

NDI 340 " /BY SFFING IF TWw0o MSR'S ARF BROTH “a»

JTZ SFTNXW /1IF S0, HAVF MARKFR, GO T0O NFXT BLOCK

CAL ADV /0THFRWISFE ANDVANCF TARLF POINTER

JMP NXWORD /AND CONTINUF LOOKING

AS MENTIONFD FARLIFR, SOMF MFANS OF DFTFRMINING WHFN THF FNTIPF
TARLF HAS BFFN SFARCHFD IN THF FUFNT A NON-EXISTENT TFRM IS PLACFD IN
THF INPUT BUFFFR MUST RF INCORPORATFD IN THF SFARCH ROUTINF. AGAIN,
THIS TASK CAN RF ACCOMPLISHFD IN SFUFRAL DIFFFRFNT WAYS. ONF WAY WAULD
BF TO SFT A COUNTER AT THF START OF THF SFARCH ROUTINF THAT CONTAINFD
THF TOTAL NUMRER OF '"RBLOCKS' IN THE TARLF AND DFCREMFMT IT FACH TIMF A
HLOCK WAS CHECKFDe THF COUNTEFR COULD RF TFSTFD FOR A ZFRO CONDITION TO
SIGNIFY THAT THF TABLF HAD BFFN SFARGCHFD. ANOTHFR WAY TO ACCNOMPLISH THF
OHJECTIVF WOULD BFE TO TEFST THF VALUFE 0OF THF TARLF POINTFR TO SFF IF IT
HAD RFACHFD A SPFCIFIC VALUEF WHICH WOULD DENOTF THF FND 0OF THF TARLF¥.
THFSF TWO METHODS HAUVF SFUFRAL DRAWBACKS. ONF IS THAT THF COUNTFR MFTH-
O WOULD RFQUIRF STORAGF SPACE. A CPU REGISTFP COULD BE USFD, RUT MORF
THAN LIKFLY ONE WOULD HAUVF TO RFSORT TN MAINTAINING A COUNTFR IN A MFM-
ORY LOCATION IN ORDFR TO CONSFRUF CPU RFGISTFRS - THIS WOULD RFQUIRF A
SOMFWHAT MORF LFNGTHY ROUTINF TO HANDLF THF UPDATIMG AND TESTING OF THF
COUNTER. TFSTING TO SFF IF THF TABLF POINTFER ADDRFSS HAD RFACHFD A CFR-
TAIN UALUF COULD RF DONF WITH AN "IMMFDIATFE' TYPF COMPARISON THUS AVOID-
ING THF MAINTENANCFE OF A STORAGE LOCATION RUT THF MFTHOD, ALONG WITH THF
COUNTFR MFETHOD, IS MORF COMBFRSOMF IF THE PROGRAMMFR DFCIDFS TO FXPAND
THE SIZF OF THF TABLF AT SOMF FUTURE TIMF. THIS IS BFCAUSF THE PROGRAM
WOULD HAUF TO BF MODIFIFD AT TWO DIFFFRFNT POINTS - THE TABRLE ITSELF,
AND THF PORTION OF THE ROUTINE THAT SIGNIFIES THF FND OF THF TARLF,
FITHFR THE COUNTER VALUF, OR THF ADDRESS POINTER VALUE.

A METHOD THAT IS GFNFRALLY MORF CONUFNIFNT IS T0O PLACE A “ZFRO WORD"
AT THF END OF THF TABLE AS VAS SHOWN FOR THF FXAMPLF TARLFES. THFN, AT
THFE START OF FACH NFW BLOCK, THF SFARCH ROUTINF CAN CONDUCT A SIMPLF
TEST TO SFE IF A ZFRO WORD IS PRFESENT INDICATING THF FND DOF THF TABLF.
(NATURALLY, IN SPFCIAL CASES WHFRF FOR INSTANCF A DATA BLOCK MIGHT CON-
TAIN A “ZFRO WORD*" AT THE FIRST LOCATION IN A BLOCK, THF MFTHOD WOULD
NOT BE APPROPRIATE AND ONE COULD RFSORT TO ONF DF THF ABOUF TFCHNIQUES).
THE METHOD OF USING A “ZFRO WORD"™ ALSO MAKFS IT FASY TO FXPAND THF SIZE
OF THE TABLF WITHOUT HAVING TO MODIFY ANY PART OF THF SFARCH ROUTINF.
MORE "RLOCKS' CAN SIMPLY BE ADDFD (REPLACING THFE FORMFR “ZFRO WORD") AND
A NFW ZERO WORD ADDFD AFTFR THE ADDITIONAL BLOCKS. THF SFARCH ROUTINF,
USING THF ALGORITHM PRESFNTED BRFLOW, WOULD THFN AUTOMATICALLY RF ABLF T0
FIND THF NEW “FNDING POINT' OF THF TABLF. THF FOLLOWING INSTRUCTIONS
COULD SIMPLY BE INSERTED AT THE POINT INDICATFED BY THF THRFEF ASTFRI SKS
IN THE SEARCH ROUTINES PRFSENTFD FARLIER.

MNFMONIC COMMFNTS
LAM /FFTCH FIRST CHARACTFR IN NFW RLOCK
N DA /*%%xTRICK TO SFT FLAGS AFTER LOAD OP*xx

JTZ NOSUCH /I1F ZFRO, END OF TEL, NO MATCH FOUND

4 - 24

THE ROUTINF “NOSUCH' RFFFRRED TO BY THE FEND OF TABLE TEST MIGHT BF
A SMALL ROUTINF TO DISPLAY A MFSSAGF TO THE OPFRATOR INDICATING THAT
THFRE WAS NO SUCH COMMAND IN THF TABLF. OR, THF JTZ INSTRUCTION MIGHT
BE REPLACED BY AN “RTZ'" INSTRUCTION THAT WOULD RFTURN THF PROGRAM TO:
THF CALLINR ROUTINF WHICH MIGHT SIMPLY DIRFCT THE PROGRAM BACK TO THF
ROUTINE WHICH FFTCHES A NFW STRING OF CHARACTFRS INTN THF INPUT BUFFFR.

ONE OTHFER PORTION OF THF SFARCH ROUTINE THAT HAS NOT BFFN TOUCHED
UWON 1S WHAT THF PROGRAM WOULD DO ONCF A MATCH WAS FOUND BFTWFFN THF
CHARACTERS IN THF INPUT BUFFFR AND A CONTROL WORD FIFLD IN THF TABLF.
THIS PORTION OF THE ROUTINF WAS RFFFRRFD TO AS "FOUNDW" IN THF PRFUVIQUS
EXAMPLES. “FOUNDW* WOULD SIMPLY BE A ROUTINF THAT WOULD ADVANCF THF
TABLF POIMTFR TN THF FND OF THF CURRFNT CONTROL WORD FIFLD (WHFRF THF
MATCH OCCURFD) AND THEN EXTRACT THE ADDRESS FROM THE ALDRFSS FIFLD TO
EINABLE THE PROGRAM TO JUMP TO THF LOCATION GIUFN RY THF ADDRFSS AND
PROCFED TO PFRFORM A SPECIFIC FUNCTION. THF ROUTINF "FOUNDW" AS GIVUFN
IN THE EXAMPLF THAT FOLLOWS CONTAINS AN INTRIGUEING PORTION THAT ILLUS-
TRATES ONF OF THF POWFRFUL ASPECTS ABOUT A COMPUTER. THAT IS, A PROGRAM
CAN RE DFSIGNEFD TO ALTFR THE FEXFCUTION OF THF PROGRAM ITSFELF! THIS IS
DONE IN THF EXECUTION OF THE "FOUNDW" ROUTINF WHFN THF PROGRAM EXTRACTS
THE "ADDRFSS' FROM THE TABLFE AND INSFRTS IT IN A PORTION OF THE PROGRAM
FOR THF ADDRFSS PORTION OF A “JUMP" INSTRUCTION WHICH THF PROGRAM THEN
PROCFEDS TO EXECUTF! CARF MUST BF TAKFN WHFN DFUFLOPING SUCH A PROGRAM
TO ENSURE THAT FEXACTLY THF RIGHT LOCATIONS ARF MODIFIFD BY THF PROGRAM.
THIS WILL BF APPARFNT AFTFR FXAMINATION 0F THF FOLLOWING ROUTINF.

MNFMOMIC COMMFNTS
FOUNDW, INR /CHFCK TO SFF 1F THF FIFLD CNTR 1S A4
DCR /INDICATING END OF THF CONTROL VWARD FIFLD
FNDFND, JTZ SETJMP /1F *@,*" SFT UP THF JUMP ADDRESS
CAL ADV /0THERWISE ADUVANCF TARLE POINTER
DCB /DECRFMENT FIFLD COUNTER
JMP FNDEND /AND KFEP LOOKING FOR FND OF FIFLD
SETJMP, CAL ADV /ADUVANCF PNTR TO 1ST PART (PACGE) OF ADDR
LDM /AND EXTRACT PAGFE ADDRFSS & STORF TFMP
CAL ADV ./NOW ADUVANCE PNTR TO LOC ON PG ADDRESS
LEM . /AND STORE IT TEMPORARILY :
LHI MMM /NOV SFT MFM PNTR (H & L) TO POINT TO THE
LLI NNN /2ND BYTE OF THE JUMP INSTR. COMING UP
LMF /PUT THF LOV ORDFR ADDR IN BYTE 2
INL /ADVANCF THE MEMORY POINTER
LMD /AND THE PAGF ADDR IN BYTE 3 OF THF JMP
JMP NNNMMM /NOW JUMP TO THF ADDR JUST LOADFD INTO
NNN AAA ~ /THESE TW0 (LOW ADDR)
MMM HBR ‘ /BYTES (PAGF ADDR)

THE ABOVE "FOUNDW"™ ROUTINE WAS FOR THE CASFE WHFRE THE TARLFE VAS IN
THE FIXED~FORMAT ORGANIZATION AND A GCOUNTFR USFD TO FIND THE END OF THE
CONTROL WORD FIFLD. HAD THF FRFF-FORMAT TABLE BEFN USFD, THEN THE BE-
GINNING PORTION OF “FOUNDW" WOULD BF APPROPRIATFLY MODIFIFD TO FIND THF
FND OF THE CONTROL WORD FIFLD USING THF TFCHNIQUFS ILLUSTRATFD IN THF
*NXWORD' PORTION OF THE PREUVIOUSLY ILLUSTRATED ROUTINES FOR THAT TYPF OF
TABLE.

SINCE THE DISCUSSION OF HANDLING TABLFS HAS FXTENDFD OVFER QUITE A
FEW PAGES OF TEXT AND A VARIFTY OF ROUTINES HAVE BEEN PRESENTED SHOVWING
VARIOUS PARTS OF THF PROCESS, IT MIGHT BE BENEFICIAL TO THF READER TO

4 - 25

PRESENT A NICFLY PACKAGFD SUMMARY RY PRESENTING TWO TABLF SFARCH 'ROUT-
INES. ONF USING THF FIXFD-FORMAT TABLE COUPLEFD WITH AN INPUT CHARACTER
STRING BUFFER (THAT IS CLFARED PRIOR TO ACCFPTING A NEW CHARACTFR STR-
ING). THE OTHFR USING A FRFF-FORMAT TABLF (UERSION #?) COUPLFD WITH AN
INPUT BUFFER THAT 1S DELIMITED BFY A CARRIAGF-RFTURN. (THF ACTUAL ROUT-
" INE THAT ACCEPTS CHARACTFRS FROM AN I1/0 DFVICF WILL SIMPLY BF NOTFD AS
A SUBROUTINFE CALL IN THF FOLLOWING FXAMPLFS. THAT ROUTINF WNULD BF A
FUNCTION OF THF 1/0 DEVICF USED AND TYPICAL ROUTINFS WILL RE CONSIDNERFD
IN THE CHAPTFR ON 1/0 PROGRAMMING IN THIS MANUAL).

MNEMONIC COMMFNTS

/MAIN PROGRAM CALLING SFQUFNCF
NEXCMD, CAL CLEARB /CLFAR THF INPUT CHAR STRING BUFFFR
CAL INCTRL /FFTCH THF COMMAND STRING FM 'INPUT DFVICF
CAL SEARCH /SFARCH TARLF @& PFRFORM COMMAND INPUTTED
JMP NEXCMD /RFPEAT LOOP FOR NFXT COMMAND BY OPFRATOR

/
/CLEAR INPUT BUFFFR SUBROUTINF
CLEARB, LHI 903 /SET PAGF PNTR TO START OF RUFFFR
LLI 372 /ASSUMMFD TO BF AT LOC 377 ON PAGF Aa3
‘LBI @AAe /SFT CLFARING COUNTEFR
, XRA /CLFAR THFE ACCUMULATOPR
CLFARN, LMA /PUT AA@ INTO BUFFFR POSITION
INL /ADUANCE BUFFER POINTFR
DCR /DFCRFMFNT COUNTER
JFZ CLFARN /IF NOT THROUGH, PUT #4Ad IN NFXT LOCATION
RET /WHFN THROUGH RFTURN TO CALLING ROUTINF
/
YFFTCH INPUT COMMAND STRING
INCTRL, LHI @@3 /SFT PAGF ADDR OF START OF CHAR BUFFFR
LLI 372 /SET LOC ON PAGF OF START 0OF CHAR BUFFFR
LBl Ade¢ /SET CNTR FOR MAXIMUM SIZF OF BUFFFR
INCHAR, CAL INPUT /CALL SUBROUTINF TO INPUT CHARACTER FM 1/0
CPI 21¢ /SEF 1F CHARACTER WAS A "C-R"
RTZ ' /1F S0, MAKF NO ENTRY
CHECK, INR /EXFRCISFE RFGISTER B (CNTR) TO SFT FLAGS
DCR /ACCORDING TO NRIGINAL CONTFNTS
: JTZ INCHAR /IGNORFE NEW CHARACTER IF CNTR WAS Q4@
! DCB /0THERVWISFE DFCRFMENT VALUFE OF CNTR
LMA / /AND STORF CHARACTER IN RUFFER
CAL ADV /ADUANCE BUFFFR POINTFR
JMP INCHAR /AND LOOP TO FETCH NFXT CHARACTFR FROM 1/0
/

/TABLF SFARCH ROUTINF - CNOMPARFS CHARACTFR
/STRING IN INPUT BUFFFR AGAINST FNTRIFS IN
/THF CONTROL WORD FIFLDS OF FIXFD-FNRMAT
/TABLF (SIX LNCATIONS IN THF FIFLD)

SEARCH, LDI 042 /SFT POINTFRS TO STARTING ADPDPR OF TARLF
) LEI GG“ / L1} " 1 1) " " " "
INITBF, LHI @a3 /SET POINTFRS TO START OF CHAR BUFFFR
\ LLI 372 / (1) (1] (1] *" (1] ”"” "
LBl @@6 /SET CONTROL WORD FIELD SIZF COUNTFR
CMATCH, LAM /GET CHAR FM BUFFER (FORM CHAR MATCH LOOP)
CAL ADV /SUBROUTINF TO'ADUANCE BUFFER POINTER
CAL SWVITCH /FXCHANGF BUFFFR PNTR FOR TABLF POINTFR
CPM /SEF 1F HAVE A CHARACTFR MATCH CONDX

JFZ NXWORD /IF NO MATCH, GO TO NEXT BLOCK IN TABLF

4 - 26

MNFMONIC COMMENTS

DCH /1F MATCH, DECR FIELD SIZF COUNTER :
JTZ FOUNDW /I1F CNTR = #, ALL CHARS IN FIFLD MATCHFD
CAL ADV /CHAR MATCH BUT NOT FINISHED, ADV PNTR

CAL SWITCH /FEXCHANGF TABLFE PNTR FOR BUFFFR POINTFR
JMP CMATCH /LOOP TO SEE IF NFXT CHARACTFR MATCHES

NXWORD, DCB /DFECR FIELD SIZE CNTR TO FIND FND OF
JTZ SETNXW /CURRENT CONTROL WORD FIFLD, JMP WHEN FND
CAL ADV /0THFRWISFE ADUANCE TABLF POINTER
JMP NXWORD /AND LOOP TO LOOK FOR END OF CW FIFLD
SFTNXW, CAL ADV /AT END OF CONTROL WORD FIELD NFFD TO
CAL ADV /ADUANCE PNTR OUFR THE "ADDRESS'" FIELD
CAL ADV /TO THE START OF NFXT CONTROL WORD FIELD
. LAM /AND THEN FFTCH 1ST CHAR IN NEW BLOCK
NDA /SET THE FLAGS AFTER THE LOAD OPFRATION
RTZ /RETURN IF END OF TABLE (NO MATCH FOUND)

CAL SVITCH /OTHERWISE FXCHANGE TABLF PNTR FOR BUFF
JMP INITBF /AND FORM LOOP . TO CHECK NFXT BLOCK IN TBL

FOUNDW, CAL ADV /ADUANCE PNTR TO 1ST PART (PAGE) OF ADDR

L DM /AND FXTRACT PAGE ADDRESS T0O STORE TEMP
CAL ADV /ADUANCE PNTR TO LOC ON PG ADDRESS
LEM /AND STORE IT TEMPORARILY
LH1 MMM /NOW SET MEM PNTR (H & L) TO POINT TO THE
LLI NNN /2ND BYTFE OF THE JUMP INSTR. COMING UP
LME /PUT THE LOV ORDER ADDR IN BYTF 2
INL /ADUANCE THF MEMORY POINTER
LMD /AND THE PAGE ADDR IN BYTE 3 OF THE JMP
JMP NNNMMM /NOW JUMP TO THE ADDR JUST LOADED INTO

NNN AAA ' /THESE TW0 (LOV ADDR)

MMM BBB /BYTES -(PAGE ADDR)

/

/AT THE CONCLUSION OF THE ROUTINE THAT
/THE “SEARCH'" ROUTINF JUMPS TO WHFN A
/MATCH 1S FOUND, A "RFT'" INSTRUCTION
/SHOULD BE EXECUTFD TO RETURN THE PROGRAM
/TO THE MAIN CALLING ROUTINF

/

THE SUBROUTINFS *SWITCH* AND *"ADV" HAVE BFEN DETAILED FARLIER IN
-THIS CHAPTER AND ARFE NOT REPEATFD IN THE ABOVF FXAMPLEF.

THE NFXT EXAMPLE IS FOR THF CASF WHERE THF INPUT BUFFER IS DFLIMITFD
BY A CARRIAGE~RFTURN AND A FREF-FORMAT TABLE (OF THE TYPFE ILLUSTRATED AS
VERSION #2) IS USED.

MNFMONIC COMMENTS

/
/MAIN PROGRAM CALLING SFQUENCF
NEXCMD, CAL INCTRL /FETCH THF COMMAND STRING FM INPUT DEVICF
CAL SEARCH /SFARCH TABLE & PFRFORM COMMAND INPUTTED
JMP NEXCMD /RFEPEAT LOOP FOR NEXT COMMAND BY OPFRATOR

/
/FETCH INPUT COMMAND STRING |
INCTRL, LHI @@3 /SFT PAGE ADDR OF START OF CHAR BUFFER
LLI 371 /SET LOC ON PG OF START OF BUFF (N+1)

4 - 27

NNN
MMM

MNEMONIC

" LBI

INCHAR,

CHECK,

SEARCH,
INITBF,

CMATCH,

LCHAR,

NXVORD,

SFTNXW,

FOUNDW,

CAL
CPI
JFZ
LMA
RET
INB
DCB
JTL
DCRB
LMA
CAL
JMP

LDI1
LEI
LHI
LLI
LAM
CPl
JTZ
CAL
CAL
cPM
JFZ
CAL
CAL
JMP
cAL
LAM
NDI
JTZ
LAM
NDI
JTZ
CAL
JMP
CAL
CAL
LAM
NDA

RTZ

CAL
JMP
L™
CAL
LEM
LHI
LLI
LMF
INL
LMD
JMP
ARA
BBB

006
INPUT
218
CHECK

INCHAR

ADV
INCHAR

eee
aea
903
371

215
LCHAR
ADV
SWITCH

NXWORD
ADV

SWITCH
CMATCH
SWITCH

300
FOUNDW

300
SETNXW
ADV
NXWORD
ADV
ADU

SWITCH
INITBF

ADV

MMM
NNN

NNNMMM

COMMENTS

N R R R R R

-/SET CNTR FOR MAX # USABLF CHARACTERS

/CALL SUBROUTINE TO INPUT CHARACTFR FM 1/0
/SEE IF CHAR WAS A "“C-R"

/1F NOT, CHECK FOR BUFFFR OVERFLOW

/1F YES, STORE "C-R" AS LAST CHAR IN BUFF

/AND RETURN TO CALLING ROUTINF

/EXFRCISE RFGISTFR B (CNTR) TO SET FLAGS
/ACCORDING TO ORIGINAL CONTENTS

/1GNORF NFVW CHARACTFR IF CNTR WAS Aa@
/O0THERVISE DECRFMENT VALUE OF CNTR

/AND STORE CHARACTER IN BUFFER

/ADUVANCE BUFFER POINTFR

/AND LOOP TO FETCH NFXT CHARACTER FROM 1/0
/

/TABLE SEARCH ROUTINE

/SET POINTERS TO STARTING ADDR OF TABLF

/7 " " " ww (1] " *e
/SET POINTERS TN START OF CHAR BUFFFR
VARL (1] " . " (3 "

/GET CHAR FM BUFFFR (FNRM CHAR MATCH LOOP)
/SEE 1F SYMBOL FOR *C-R"

/1F SO0, GO TO LAST CHARACTFR ROUTINF
/O0THERWISE ADUANCF BUFFFR PNINTER
/EXCHANGE BUFFFR POINTER FOR TAELE PNTR
/SEE IF HAVE MATCH CONDITION IN TABLF
/1F NOT, GO TO NEXT BLOCK IN TABLF

/1F YES, ADVANCE TABLF POINTER

/EXCHANGE TABLF PNTR FOR BUFFFR POINTFR
/LOOP TO TEST NFXT CHARACTER

/EXCHANGF BUFFFR POINTFR FOR TABLFE PNTR
/TEST FOR END OF CONTROL FIFLD

/BY SFFING IF TWO MSE'S ARE BOTH “@"

/1F S0, HAVF FOUND MATCHING CONTROL WORD
/TEST FOR END OF CONTROL FIFLD

/BY SEFEING IF TWO MSRB'S ARF BOTH "a*

/1F S0, HAVF MARKFR, GO TO NEXT BRLOCK
/0THERWISE, ADVANCE TABLE POINTER

/AND CONTINUE LOOKING

/AT FND OF CONTROL WORD FIFLD NFFD TO
/ADUANCE PNTR OVER THE “ADDRESS" FIFELD
/AND THEN FETCH 1ST CHAR IN NFW BLOCK
/SET THE FLAGS AFTFR THE LOAD OPFRATION
/RETURN IF FND OF TABLF (NO MATCH FOUND)
/0THERWISFE EXCHANGE TABLE PNTR FOR BUFF
/AND FORM LOOP TO CHFCK NFXT BRLOCK IN TBL
/EXTRACT PAGFE ADDRESS AND STORF TFMP
/ADVANCF TABLE POINTER

/STORE LOC ON PAGF TEMPORARILY

/NOW SET MEM PNTR (H & L) TO POINT TO THF
/2ND BYTE OF THE JtMP INSTR. COMING UP
/PUT THF LOV OFPDER ADDR IN BYTE 2

/ADUVANCE THE MEMORY POINTFR

/AND THE PAGE ADDR IN BYTE 3 OF THF JMP
/NOVW JUMP TO THE ADDR JUST LOADED INTO
/THESE TW0 (LOW ADDR) '

/BYTES (PAGE ADDR)

/

7AFTER PROCESSING CMND, RETURN TO MAIN RTN

4 - 28

SORTING OPFRATIONS

ANOTHFR PARTICULARLY POWFRFUL CAPABRILITY OF A MINI-COMPUTFR IS ITS
ABILITY TO RAPIDLY MANIPULATF AND ORGANIZF INFORMATION. A TYPICAL OP-
"FRATION IS TO SORT DATA INTO SOMF DESIRED FORM SUCH AS TO ARRANGF A LIST
OF NAMES INTO ALPHARETICAL ORDFR, OR PNSSIBLY TO ARRANGF A LIST OF AD-
DRESSES BY ZIP CODF ZONF NUMBFRS.

THE KFY INGREDIENT IN DFUFLOPING& A PROGRAM TO PFRFORM SORTING OPFR-
ATIONS IS TO PLAN THF ORGANIZATION OF THF STORAGF OF THF DATA IN MFMORY
SN THAT THE OPFRATING PORTION OF THF PFOGRAM 1S RFLATIUFLY SIMPLF. A
SIMPLF TECHMIQUF INUVOLVFS JUSTIFYING THE DATA INTO FIFLDS SO THAT SIMPLF
COMPARING ALGORITHMS CAN RF UTILIZFD.

AN AN EXAMPLF OF A SORTING PROGRAM, ASSUME ONF HAD A LIST OF NAMFS
THAT ONE WISHED TO HAUF THF COMPUTFR PLACF IN ALPHABFTICAL ORNFR. A HY-
POTHETICAL LIST MIGHT CONSIST OF THE FOLLOWING NAMES:

JONES, R. M,
SMITH, C.
WILLIAMS, P. K.
PAVIS, Z. T.
THOMPSON, A. R.
THOMAS, F.
ALLISON, A. B.
SMITH, T. P.

IT CAN RF SUPPOSFD THAT THE NAMFS WILL BF INPUTTED AND STORFD IN
THE COMPUTFR IN THF ORDFR SHOWN ARQUF. THF FIRST ORBJFCTIVF NF THF PRO-
GRAM WOULD BF TO HAVE THE fNCOMING NAMFS BE STORFD IN A MANNFR THAT
WOULD RF FASY FOR THE SORT ROUTINF TN OPERATF ON. A GOOD TFCHNIQUE TO
USE WOULD BE TN SFT UP “FIFLDS" FOR THF INFORMATION RFING STORFD. IN
THIS CASE ONF WOULD WANT TO SFT UP THRFFE FIFLLCS. ONF FOR THF LAST NAMF,
ONF FOR THE FIRST INITIAL, AND ONE FOR THE MIDDLF INITIAL. THF SIZF OF
FACH FIFLD WOULD NEFD TO BF DETERMINFD. FOR THF FXAMPLF LIST SHOWN
ABQUE THF LONGEST LAST NAME FNCOUNTFRFD HAS FIGHT LFTTERS SO THF FIFLD
FOR THF LAST NAMFS MUST HAUF SPACFE FOF AT LFAST FIGHT CHARACTFRS, SINCFE
ONF COMPUTER "WORD™ IN MEMORY WILL STORF THE CODF FOR ONF LETTFR IN THF
NAMF. HOWEVEFK, IN ORDFR TO MAKF THF PROGRAM BF MNRF GENFRAL PURPOSE,
ONE COULD SELFCT A LONGER FIELD LFNGTH TO ALLOW LONGER NAMFS TO BF STOR-
FD. FOR ILLUSTRATIVEF PURPOSES, A LAST NAMF FIFLD OF 14 (DFCIMAL) UNITS
WILL EBE PLANNFD. (NOTF THAT THIS IS A PURFLY ARBITRARY SFLFCTION.) THF
FIFLD LFNGTH FOR FACH INITIAL WOULD NONLY HAUVF TO BF 1| MFMORY WORD. THUS
THE TOTAL LFNGTH OF THE THREE FIFLDS MAKING UP A "BLOCK' WOULD RF 1é
(DFCIMAL) OP 2@ OCTAL MFMNRY WORDS. NOTE THAT IN SELFCTING THF FIFLD
LFNGTHS FOR THIS FXAMPLE, SPACE WAS NOT INCLUDED FOR THF COMMA (,) SIGN
AFTER THE LAST NAMF, OR THF PFRIODS (.) AFTFR FACH INITIAL. THIS IS BF-
CAUSE SINCE THESE SIGNS ARF REPITITIOUS ONE CAN SAVE VALUABLE MEMORY
SPACF BY DFLETING THESE MARKS DURING THF INPUT OPFERATION, AND THEN SIM-
PLY ADD THEM BACK IN AT THF APPROPRIATF POINT WHFN THF DATA IS DISPLAYED
BY THE OUTPUT DEVICE. :

THF INPUT ROUTINF WOULD NFFD TN ALWAYS START INSFRTING CHARACTFRS AT
THE BEGINNING OF A FIFLD- AND THEN INSFRT SPACFS OR SOMF SPFCIAL CODF
(SUCH AS A #@® WORD) IN ALL OF THF UNUSFD MFEMORY WORDS IN A FIFLD SO
THAT THE NAMES COULD BE CONSIDERFD AS BEING "LFFT JUSTIFIED" IN EACH
FIFLD. THE REASON FOR THIS WILL BF MADF CLFAR SHORTLY.

THF. FOLLOWING ROUTINF MIGHT BF USFD TO ACCFPT INFORMATION FROM A
KEYROARD DEVICE AND STORE THFE NAMES IN MFMORY IN THE DESIRFD FORMAT.

4 - 29

MNEMONIC

ACCEPT,

NOTFND,

CKPAGE,

FNDEND,

NOTDON,

& NEXTIN,

HAVECR,

RAVECM,

NEXBLK,

ss FULFLD,

LH1
LLI
LAM
NDA
JTZ
LAZ
ADL
LLA
€TZ
LAl
€PH
JTZ
JMP
LBl
CAL
€P1
JFZ
XRA
LMA
RET
CPl
JT2
€P1
JTZ
32 ¢
JTZ
LMA
DEB
INL
€AL
ePl1
JTZ
€Pl
JTZ
LMA
INL
DEB
JTZ
JNP
XRA
LNA
LAL
NDI
CPl
JTZ
INL

0a4
11

FNDEND
220

INCRH
e10

TOMUCH
NOTFND
816
INPUT
252
NOTDON

218
FNDEND
256
FNDEND
2%4
FNDEND

INPUT
218
RAVEER
254
HAVECHM

FULFLD
NEXTIN

e17
817
NEXBLK

HAVECGR

FULFLD
HAVECH

EKPAGE
INPUT
254
FULFLD
218

COMNENTS
/INITIALIZE NAMES STORAGE AREA PNTR
/TO START OF STORAGE AREA
/NOV FETER 1ST LOCATION IN A BLOEK
/SET FLAGS AFTER LOAD OPERATION
/AND TEST FOR END OF STORAGE AREA
/1F NOT END, THEN ADVANCE POINTER
/TO NEXT BLOCK BY ADDING 20 OCTAL
/TO MEM PNTR ADDRESS & RESTORE PNTR
/ADVANCE PAGE ADDR OF PNTR 1IF REQ®D
/NOW TEST TO SEFE IF STILL
/1IN STORAGE AREA (PAGES @4 - @7 0CTAL)
/0PTIONAL DISPLAY MSG IF STORAGE FILLED
/KEEP LOOKING FOR END OF STORAGE AREA
/SETUP LAST NAMES FIFLD €OUNTER
/AND FETER A CHARACTER FROM INPUT RTN
/CHECK FOR #® CODE (FINISRED INDICATOR)
/PROCEED IF NOT = CODE
/1F &« CODE, THEN PLACE A 000 WORD AT
/START OF BLOCK AS AN ENDING MARKER
/AND EXIT ROUTINE
/TEST FOR CARRIAGE=RETURN CODE
/AND IGNORE IF 1ST CHAR IN FIELD
/TEST FOR PERIOD (e) CODE
/AND 1GNORE I!F 1ST €RAR IN FlELD
/TEST FOR COMMA (,) CODE
/AND 1GNORE IF IST €CHAR IN FIFLD
/1F NONE OF ABOVE, PUT €HAR IN FIELD
/DECREMENT THE FIELD SIZE C€OUNTER
/ADVANCE TRE STORAGE POINTER
/AND FETEH THE NEXT CHAR IN LAST NAME
/TEST FOR GARRIAGE~RETURN
/FINISHED BLOCK IF HAVE €=R HERE
/TEST FOR GOMMA
/FINISHED LAST NAME FIELD IF RAVE COMMA
/0THERVISE PLACE CHAR IN LAST NAME FIELD
/ADVANCE THE STORAGE POINTER
/DECREMENT LAST NAMES FIELD SIZE €NTR
/ARD SEE IF FIELD IS FILLED
/1F NOT, GET NEXT CHARACTER 1IN LAST NAME
/1F HAVE €=R, PUT A 008 IN MEM WORDS
/FOR REST OF CURRENT BLOCK
/ FETCH MEMORY POINTER TO ACCUMULATOR
/MASK OFF 4 MOST SIGNIFICANT BITS
/TEST FOR END OF BLOECK
/PREPARE FOR NEXT BLOGK 1F DONE
/OTHERVISE ADVANCE POINTER
/AND CONTINUE PUTTING 068 WORDS IN BLOCEK
/1F¥ HAVE COMMA, PUT 080 WORDS IN REST
/0F "LAST NAME™ FIlELD
/ADVANECE FIELD POINTER
/DECREMENT “LAST NAMES™ FIELD CNTR
/G0 PROCESS INITIALS WHEN DONE
/ELSE GONTINUE TO CGLEAR REST OF FIELD

. /ADVANCE MEM PNTR TO START OF NEXT BLOCK

/AND PREPARE FOR NEXT NAME ENTRY

/GET CHARAGTER FOR 1ST INITIAL OF NANME
/TEST FOR COMMA o

/1GNORE COMMA AT TRIS POINT

/TEST FOR €=R

4 = 30

JFZ SAVINI /IF NOT €-Rs, STORE CHARACTER

XRA /BUTs 1F €=R, PUT IN 800 WORD
LMA /FOR BOTH INITIAL FlELDS
INL /BY ABOVE INSTRUCTION, TREN ADVANCING PNTR
JNP SAVIN2 /AND THEN FOLLOVING THIS JUMP COMMAND
SAVIN1, LMA /STORE 1ST INITIAL IN 1ST INITIAL FIELD
INL /THEN ADVANCE STORAGE POINTER
¢s INITF2, GAL INPUT /7L00X FOR 2ND INITIAL
EP1 256 /CHRECK FOR PERIOD
JTZ INITF2 /IGNORE A PERIOD
€Pl 218§ /TEST FOR €eR :
JFZ SAVIN2 /IF NOT €=R THEN STORE 2ND INITIAL
XRA /BUT 1F WAS €-R, PLACE 986 WORD IN MEM
SAVIN2, LMA /STORE THE CHARACTER OR 006 SUBSTITUTE
INL /ADVANCE POINTER TO NEV BLOCK
JMP CKPAGE /AND CONTINUE LOADING IN NAMES
INGRHs INH /SUBROUTINE TO INCREMENT REGISTER “H*™
RET /AND RETURN TO CALLING ROUTINE

THE ABOVE ROUTINE HAS A NUMBER OF SPECIAL FACTORS INCLUDED IN IT TO
ILLUSTRATE CONSIDERATIONS THAT PROGRAMMERS MUST LFARN TO TAKE INTO A€~
COUNT WREN DEVELOPING SUCH PROGRAMSe. SOME OF THESE FACTORS ARE POINTED
OUT IN THE FOLLOVING DISCUSSION OF THE ABOVE ROUTINE.

TRE FIRST FUNCTION THE ABOVE ROUTINE PERFORMS IS TO LOOK FOR THE
“END™ OF THE NAME STORAGE AREAes THIS IS DONE BY TESTING THE FIRST CHARe
ACTER IN EACH "BLOEK™ TO SEE IF IT CONTAINS A 088 WORDe AS SHOWN LATER
"IN THE ROUTINE, A 660 WORD WILL BE ENTERED AT THAT LOCATION WHRENEVER THE
OPERATOR HAS FINISHED ENTERING A SERIES OF NAMES THAT VILL BE SORTED,

IT SHOULD BE NOTED THAT WHENEVER IT IS DESIRED TO "INITIALIZE™ THE NAME
STORAGE AREA SO THAT 1T APPEARS TO THE PROGRAM THAT THE STORAGE AREA 1S
EMPTYs A SUBROUTINE THAT VILL PLACE A 606 WORD AT PAGE 64 LOCATION 000
SHOULD BE EXEGUTEDe (THAT SIMPLE SUBROUTINE 1S NOT SHOWN ABOVE)s THE
ABOVE ROUTINE ALSO MAXKES A TESTs EACK TIME THE MEMORY POINTER IS ADVAN-
€ED TO A NEV BLOCK, TO DETERMINE WHETHER THE POINTER 1S STILL IN THE
ALLOTED NAMES STORAGE AREAes FOR THIS EXAMPLE THE STORAGE AREA WAS PLAN-
NED TO RESIDE IN LOCATIONS FROM PAGE @4 LOCATION @60 TO PAGE 87 LOCATION
377« SHOULD THRE ROUTINE GO BEYOND THE DESIGNATED STORAGE AREA BEFORE AN
END OF “TABLE™ MARKER 1S FOUND, THE ROUTINE WOULD JUMP TO A ROUTINE
TERMED “TOMUCH™ WHICH MIGHT PRINT OUT A MESSAGE TO THE OPERATOR INDICA-
TING THAT THE STORAGE AREA WAS ALREADY FILLED WITH NAMESs (THAT ROUTINE
‘1S NOT INCLUDED IN THE EXAMPLE ABOVE)s THE REFERENCE TO THRE ROUTINE
“TOMUCHR™ 1S NOTED BY AN ASTERISX IN THE ABOVE PROGRAM SOURCE LISTING.

WHEN THE ROUTINE HAS FOUND THE END OF THE NAMES STORAGE ARFA, INDl-
CATING WHERE ADDITIONAL INCOMING NAMES CAN BE STORED (PROVIDED THE STORe
AGE AREA HAS NOT BEEN EXNAUSTED) THE ROUTINE THEN PROCEEDS TO ACCEPT
DATA FROM AN INPUT SUBROUTINEs THE FIRST CHARACTER ACCEPTED AT THE
START OF A NEV NAME (BLOCX) 1S TESTED TO SEE IF IT IS A SPECIAL GODE
(AN ASTERISK IN THIS €ASE) THAT THE OPERATOR WOULD USE TO SIGNIFY TO THE
PROGRAM THAT ALL THE DESIRED NAMES HAD BEEN ENTEREDe IF THIS CODE VAS
"'RECEIVED THEN A 608 CODE WOULD BE PLACED IN THE FIRST MEMORY WORD FOR
THE "BLOCK™ FOR THE END OF “TABLE™ MARKER AS MENTIONED ABOVE. THE ROUTe
'INE VOULD THEN EXIT THE ABOVE ROUTINE:

I1F¥ THE FIRST CHARACTER IN A NEV BLOCK 1S NOT THE SPECIAL “END™ CODE,
A CHECX IS MADE TO SEE IF IT IS A CARRIAGE-RETURNs COMMA, OR PERIOD
S16Ns ANYONE OF THOSE GODES WOULD BE IGNORED AS THE FIRST GHARACTER IN
A BLOCK FOR THE FOLLOWING REASONS., ' THE REGEIPT OF A CARRIAGE-RETURN OR
COMMA WOULD OBVIOUSLY BE INVALID AT'THIS POINT BEGAUSE NO LETTERS FOR A
NAME HAVE BEEN ENTERED AND THE ACCEPTANGE OF EITHER OF THOSE OPERATORS

4 - 31

VOULD CAUSE THE LAST NAME FIELD TO BE COMPLETELY FILLED WITH @088 WORDS =
INCLUDING THE FIRST LOCATIONs THIS ACTION WOULD RESULT IN AN EFFECTIVE
END OF STORAGE ARFA MARKER BEING PLACED AT THE LOCATION OF THE CURRENT

" BLOGKe THE RECEIPT OF A PERIOD SIGN WOULD MOST LIKELY BE THE PERIOD
SIGN FROM THE LAST INITIAL FIELD ENTERED (VKICK 1S TO BE IGNORED) AND

- CERTAINLY WOULD NOT BE A VALID LETTER FOR THE BEGINNING OF A LAST

NAMEs, THE INCORPORATION OF THESE CHFCKS ACT AS SAFEGUARDS FOR HUMAN OPe
FRATOR FRRORS AND ARE ANOTHER EXAMPLE OF “HUMAN ENGINFERING™ FACTORS IN
THE DEVFLOPMENT OF A PROGRAM,

IF THE FIRST CHARACTER IS NOT ONE OF THE ABOVE IT IS STORED IN THE
FIRST LOCATION IN THE "LAST NAME FIlFLDe" AFTER THE FIRST CHARACTER HAS
BFEN STORED, EACH CHARACTER RECEIVED FROM THE INPUT ROUTINE IS TESTED TO
SEF. IF IT 1S A CARRIAGE-RETURN OR COMMA, IF IT IS A COMMA, SIGNIFYING
THE END OF THE "LAST NAME FIELD,"™ ANY UNFILLED LOCATIONS IN THE FIELD
ARE FILLED VITH ZEROS AND THE PROGRAM PROCEEDS TO THE "INITIAL®™ FIELDS.
HOVEUVER, IF A CARRIAGE=RETURN IS NOTED, THE PROGRAM FILLS THKE ENTIRFE REe
MAINDER OF THE CURRENT BLOCK, INCLUDING THE "INITIAL" FIELDS WITK ZERO
WORDS AS A CARRIAGE-RETURN SIGNIFIES THE COMPLETION OF A NAME FENTRY,

AN ADDITIONAL SAFEGUARD IS BUILT INTO THE ROUTINE IN THIS SECTION TO
PREVENT TOO MANY CHARACTERS FROM BEING ENTERED INTO THE LAST NAME FIELD.
WHEN THME FIELD KAS BEEN FILLED, THE POINTER 1S NOT ADUVANCED UNTIL A.
CARRIAGE=RETURN OR COMMA IS RECE!VED.

ONCE THE LAST NAME FIELD HAS BEEN PROCESSED, THE ROUTINE WILL ACCEPT
ANY MORE CHARACTERS AS INITIALS, BUT IGNORES THE PERIOD SIGNS AFTFR THE
INITIALSe WHEN AN ENTIRE NAME HAS BEEN PROCESSED THE PROGRAM THEN LOOPS
TO ACCEPT ANOTHER NAME BLOCK AFTER CHECKING TO MAKE SURF THE STORAGE
AREA IS NOT FILLED AND REPFATS THE PROCESS DESCRIBED.

THE ABOVE ROUTINE COULD BE MODIFIED TO INCLUDE AN OPERATOR CONVENe~
IENCE -« THE ABILITY TO ERASE A CURRENT ENTRY IF THE OPERATOR MADE A MISe
TAKE WHILE TYPING IN A NAME. THIS COULD BE DONE BY EXECUTING A ROUTINE
IMMEDIATELY AFTER THE POINTS DESIGNATED IN THE PROGRAM BY A DOUBLE ASTe
ERISK (%), THE ROUTINE COULD BE USED TO GCHFCK FOR A SPFCIAL "ERASE"
CODEe™ 1IF THIS CODE WAS DETECTEDs, THE PROGRAM COULD RESET THE POINTERS
TO THE START OF THE CURRENT NAME BLOECK AND ALLOW RE=-ENTRY OF THE NAME,
SUCH A ROUTINE MIGHT BF AS SHOWN HERES

MNFMONIC COMMENTS

ERRORTs CPl 377 /CHECK FOR A “RUBOUT" CODE
JFZ AWVAY /EXIT ROUTINE IF NOT A “RUBOUT"
LAL /1F HRAVE A "RUBOUT™ THEN FETCH POINTER
NDl 360 /JREMOVE 4 LEAST SIGNIFICANT BITS
LLA /AND RESTORE POINTFR TO START OF BLOCK
JMP FNDEND /JUMP TO RE=-ENTFR NAME

AVAY, L4 2 /%%% NEXT INSTRUCTION IN CURRENT SEQUENCE

WHILE THE PREVIOUS ROUTINE SEEMS A BIT LONG AT FIRST GLANCE, ONE
MUST REMEMBER THAT IT IS DOING QUITE A FEV FUNCTIONS AND IS QUITE GENe
ERAL PURPOSE IN OVER-ALL DESIGN. THF PROGRAM ALLOVS ONE TO BUILD UP A
LIST OF NAMES IN A DESIGNATED ARFA OF MEMORY, PLACING THE DATA IN FOR=
MATTED FIELDS, CHECKS FOR SELECTED OPERATOR ERRORS, AND BOUNDS OR LIMITS
THE STORAGE AREAe THE PROGRAM, USING THE BASIC CONCEPTS PRESENTED, CAN
BE MODIFIED TO SERVE AS A BASIC STRUCTURE FOR INPUTTING A VARIETY OF
TYPES OF DATA INTO JUSTIFIED FIELDS OF DATAe TO PROVIDE A CLEAR MENTAL
PICTURE OF HOW THE LIST OF NAMES GIVEN SFUERAL PAGES FARLIER WOULD AP«
PEAR WHEN INPUTTED TO MEMORY USING THE PROGRAM ILLUSTRATED, A DIAGRAM

4 =« 32

SHOWING MEMORY LOCATIONS AND THFIR CONTENTS 1S PROVIDFD BFLOV SHOWING
HOW THE DATA WOULD LOOK WHEN ORGANIZED BY THF AROUF PROGRAM. THE DIAG-

RAM SHOWS APDRESSFS (ON PAGE @4) WITH THE CONTENTS OF THF MFMORY LOCA-
TION SHOWN BENFATH 1T, FOLLOWFD RY THF ALPHABFTICAL RFPRESFNTATION FOF
T™HFE CODPF WHFRF APPLICARLF.

ADDR: @09 @01 AA2 P03 004 BOS GO PA7 A1V A1l A12 @13 Als AL A1E @17
CONT: 312 317 316 305 323 000 000 0G0 APd AR GGG PO PAA AAA 29D 3%
LETRt J 0 N F S = =« = o o 4 < o 4 p M

ADDR: @20 @21 #22 023 0#24 A25 G2& A27 A3@ AR] A2 @33 @A3a A3% AR A3
CONT: 323 315 311 324 310 009 020 P00 A0 WA ARD ARA AAD AR 3A3 a0a
LETR: S M I T H - - - - - - - - - C -

ADDR: @40 A4l @42 043 Q44 GBS BHE ALT ASA @S] @S2 PR3 AGL @GS as; As7
CONT: 327 311 314 314 311 301 315 3723 900 00V AGA AAQ ARG 204 320 313
LFTR: W I L L 1 A ™ S - - - - - - P K

ADPR: (€A A€l DE2 BE3 V64 PES V66 BET 378 871 72 A3 B74 AT ATR aT77
CONT: 304 3@1 326 311 323 000 0P@ ARG BRAA ARG AAA AAA ARA AAP 332 324
LFTR: n A \ I S - - - - - - - - - Z T

ADDR: 10 101 102 103 104. 105 106 107 118 111 112 113 114 115 116 117
CONT: 324 310 317 315 320 323 317 316 GGG G004 000 000 QAR AN 3ny 392
LFETR: T H 0 M P S 0 N - - - - - - A R

ADDFR: 120 121 122 123 124 125 126 127 13@ 131 132 133 134 135 136 137
CONT: 324 31@ 317 315 381 323 00Q 203 P0G NAA AAN AGY ABA KAV AR AR
LETR: T H 0 M & S =« =« =« « o o o - F o2

ADDR¢ 14@ 141 142 143 a4 145 146 147 183 |8] &2 |83 | &4 | && 186 157

CONT: 3#1 314 314 311 323 317 31¢ 009 492 000 RO A0A A pAK 31 3a42
LE TR: A L L 1 S 0 N - - - - - - ~ A R

ADDR: 1608 161 162 163 164 165 166 167 1780 171 172 173 174 175 176 177
CONT: 323 315 311 324 310 600 000 GG MGG AAA GAG AAA AU ABA 3P4 303
LETR: S M I T H = =« « « « o o o -4 T p

ADDR: 204 281 202 283 204 245 206 287 210 211 212 213 214 215 216 217
CONT: VOO *¥%x xokk kkk Aok kokk KKK NN KoKk Rk Rk dokk AR MK Kk oKk
LFTR: - seeeees DON*T CARE ABOUT MFMORY CONTFNTS RFYOND HFRFeooooes

ONCF THF DATA HAS BFFEN ORGANIZFD IN A SUITABLF MANNFR IN MFMORY, ONF
CAN PROCEFD TO DEVELOP A RELATIVELY SIMPLF SORT ROUTINE TO ARRANGF THF
NAMFES IN ALPHABETICAL ORDFR. THF TFCHNIQUF TO RF ILLUSTRATFD CONSIST OF
COMPARING THF LETTFRS, STARTING WITH THF LFFT-MOST POSITION IN A BLNCK
(AS SFFN IN THF MEMORY DIAGRAM ABOVF) AGAINST THE LFTTFR IN THF. SAMF
POSITION IN THF NFXT BLOCK IN MFMORY. RY “LETTFR"' WHAT IS ACTUALLY
MEANT IS THE ASCII CODF (IN THIS FXAMPLFE) FOR A LFTTFR. IT SO HAPPFNS
THAT THF ASCII CODE 1S ARRANGFD SUCH THAT THF ALPHABFT GOFS IN AN ASCFN-
DING NUMFRICAL ORDFR. THF LETTFR A IS RFPRFSENTFD AS 3A1, THF LETTFR B
AS 302, C AS 343, AND SO FORTH ON UP TO THE LFTTFR Z WVHICH HAS AN OCTAL
REPRESENTATION OF 332. HOW CONVENIFNT! THIS MFANS THAT IF THF VALUF
IN A MFMORY WNORD (REPRESFNTING A LETTFR IN ASCII FORMAT) 1S COMPARFD
AGAINST ANOTHFR MEMORY WORD CONTAINING AN ASCII CODFD LFTTFR, THAT THF
LOWER VALUF LOCATION CONTAINS A LOWFR ,0RDFR LFTTFR IN THF ALPHARFT.

WITH THIS INFORMATION ONF CAN QUICKLY DISCFRN THAT ONF CAN QUITE
EASILY DEUFLOP AN ALGNRITHM TO ARRANGF NAMFS ALPHARFTICALLY. IF THE

4 - 33

VALUE OF MFMORY LOCATION IN THF FIRST POSITION OF SAY THFE FIRST BLOCK
(THFE NTH BLOCK) IS COMPARED AGAINST THE VALUE OF THF FIRST POSITION IN
THE NEXT BLOCK (N+l BLOCK) AND FOUND TO RF GRFATFR IN VALUF, THAN THE
FIRST (NTH) BLOCK HAS A NAME THAT IS HIGHFR ALPHABETICALLY THAN THE NAME
IN THE SFCOND (N+!) BLOCK AND THUS ONF CAN IMMFDIATFLY PROCFED TO FX-
'CHANGE THF CONTFNTS OF THF TWO BLOCKS TO ARRANGE THE NAMES IN ASCENDING
ALPHABETICAL ORDFR. 1IF, HOWEVFR, THF CODF IN THF FIRST BLOCK IS LESS IN
WLUF THAN THE SECOND BLOCK, THEN THE PRFSENT ORDFR IS CORRECT AND THE
PROGRAM CAN PROCFED TO CHECK THF SECOND BRLOCK AGAINST THE THIRD ONE.

IF THF LETTERS IN THF FIRST POSITION CHFCKED ARE EQUAL IN VALUE, THEN
ONE CANNOT YFT MAKF A DECISION AROUT THF ALPHABRETICAL ORDFR, RUT RATHFFR

MUST G0 ON TO COMPARF THF VALUFS OF THE SFCOND LETTFR WITHIN THF TVO
H.OCKS! ' '

TO FURTHER COMPLETE THF ALGORITHM ONE MUST ALSO CONSIDFR THF POSSI-
BILITY THAT WHEN ONE FXCHANGES THE CONTENTS OF BLOCKS °*N* AND *N+1"
THAT THE NEW CONTENTS OF “N'" WILL NOY RF OF LFSSFR ORDFR THAN THAT CON-
TAINED IN BLOCK "N-l." THUS, WHENFUER ONF PFRFORMS AN EXCHANGFE OF TWO
BLOCKS ONE MUST HAVE THE PROGRAM GO BACK AND DO A COMPARISON BETWEEN
THE *'N'* AND “N-1'" BLOCKS. ONF CAN ENVISION THF ALGORITHM AS PROCFFDING
IN A “SFE-SAW'" MANNER - COMPARING THF "NTH" BLOCK AGAINST THE "N+|¥
BLOCK UNTIL AN FXCHANGF 1S NECESSARY, THFN SWITCHING TO COMPAFF RETWEEN
THE “NTH" AND “N~1*" BLOCK UNTIL AN FXCHANGF 1S NOT NECESSARY. AT THAT
POINT THF PROCESS REVERTS BACK TO COMPARING THF "NTH" AND '"N+1" BLOCKS
INTIL ANOTHER EXCHANGE IS REQUIRFD. LOOKFD AT ANOTHFR WAY, THE DATA
BLOCKS COULD EE VIFWED AS "RIPPLING" UPWARDS OR DOWNWARDS IN MFMORY AS
THF PROCESS PROCEEDS. HIGHFR ORDFRFD NAMES GETTING SHOVFD TO HIGHFR AD-

DRESSED BLOCKS, LOWFR ORDERFD NAMFS BFING PUSHFD TO LOWER ADDRESSED
BLOCKS.

TH1S TYPE OF ALGORITHM IS NOT THE ONLY WAY ONF COULD PROCEFD TO SORT
THF. DATA. THFRE ARE OTHFR TYPFS OF ALGORITHMS THAT CAN PFRFORM THF SAME
JOB, SOMF OF WHICH ARF FASTFR WHFN LARGE DATA BASFS ARF INVOLVED (BUT
MORE COMPLICATFD PROGRAMMING-WISE). SUCH ALGORITHMS GFNFRALLY HAVE CON-
SIDERABLE VALUF ON LARGE MACHINFS. HOWEUVER, THF AROVE ALGORITHM IS
QUITE SUITABLE FOR TYPICAL SORTING JOBS THAT A 80686 UNIT MIGHT BE CALLED
UPON TO PFRFORM. FOR THOSE WHO MIGHT WANT TO INVESTIGATE OTHFR ALGO-
RITHMS THEY MIGHT CONSIDER THE CONCFPT OF HAVING A PROGRAM THAT IMMFD-

IATELY CLASSIFIFS A NAME INTO, SAY, THE FIRST, SECOND, OR THIRD SECTION
OF THE ALPHABET.

A PROGRAM FOR THE “RIPPLE"™ SORTING ALGORITHM DISCUSSFD ABOVE IS PRE-
SFNTED BELOWV.

MNEMONIC COMMENTS

SORT, LHI 004 /INITIALIZF POINTFR TO START

' LLI @08 /0F NAMES BLOCK STORAGF ARFA

INITBK, LBI 828 /SET BLOCK LFNGTH COUNTFR
LCM /GFT IST CHAR FM RLOCK *"N" INTO "C" RFGIS
LAL /FETCH *N' BLOCK POINTFR
ADl 02@ /ADVANCE POINTFER TO BLOCK *N+1*
LLA /RESTORE POINTER
CPI @29 /CHECK TO SFF IF GOING TO NFW PAGF
CTS INCRH /ADUANCF PAGF PNTR IF RFQUIRFD
LAM /GFT 1ST CHAR FM BLOCK *"N+1" INTO ACC
NDA /SET FLAGS AFTER LOADING OPFRATION
RTZ /END OF STORAGE - SORT OPS COMPLETED
CPC /COMPARF 'N+1* LETTER TO "N LETTER

4 - 34

CKNFEXT,
BACKER,

NOTFIN,

FINEND,
XCHANG.,

NOTYET,

MNEMONIC

JTS
JTZ
JMP
DCR
JFZ
SuUl
JMP
LAL
NDA
sul
LLA
cTC
LCM
LAL
ADI1
LLA
CP1
CTS
LAM
CPC
JTS
JTZ
DCE
JTZ
INL
JMP
LAL
NDI
LLA
LBI
LCM
LAL
NDA
sul
LLA
CTC
L DM
LMC
LAL
ADI
LLA
CP1
CTS
LMD
INL
DCB
JFZ
LAL
NDA
Ssul
LLA
CTC
LAH
CPI
JFZ
JMP

XCHANG
CKNEXT
INITBK
NOTFIN
217

INITBK
a1

DECRH

@20
020
INCRH
XCHANG
CKNEXT
BACKER
FINEND
360

nee

n2e

DECRH

oz2a

aen
INCRH

NOTYET

P40
DECRH
P03

INITBK
SORT

COMMENTS

/ZYN" » "N+|I" SO FXCHANGE BLOCK CONTENTS
/"N = *N+1" SO CHFCK NEXT LETTFR IN BLOCK
/YN < “N+1" SO ORDFR 0.K., DO NFEXT BLOCK
/DECRFMFNT BLOCK LFNGTH COUNTFR

/CONTINUF IF NOT FINISHED BLOCK

/JPNTR FOR LAST OF *N+i" BECOMES 1ST OF *N"
/BACK TO COMPARE NEXT BLOCK

/FFTCH *N+1" BLOCK POINTER

/CLEAR THF CARRY FLAG WITH THIS "NO-OP*
/DFCREASE POINTER TO "N*' BLOCK

/RESTORE POINTER

/1F UNDEFRFLOW THFN DECRFMFNT PAGE POINTFR
/FETCH CHARACTER FROM “N" BLOCK TO REG “C*
/FETCH “N'" BLOCK POINTER

/INCREASF POINTFR TO "N+1* BLOCK

/RESTORE POINTER

/CHECK TO SEF IF GOING TO NFEV PAGE
/ADVANCFE PAGE PNTR IF RFAUIRED

/GET CHARACTER FROM "N+l BRLOCK

/COMPARF "N+1' LETTFR TO "N" LETTFR

/N » “N+1' SO EXCHANGE BLOCK CONTENTS
/YN = “N+1'" SO CHFCK NFXT LFTTFR IN BLOCK
/"N" < “N+1" SO ORDER 0.K., DO NFXT BLOCK
/AT END OF BLOCK *N+1" RESET PNTR FOR *N*
/ADUANCE POINTFP

/AND LOOP TO LOOK FOR END OF BRLOCK

/FFTCH "N+1" POINTFR

/MASK OFF LSE'S TO RESTORE POINTER

/TO START OF *N+1'" BLOCK

/SET BLOCK LENGTH COUNTER

/FETCH *N+1" INTO REGISTER *“C*"

/FETCH "N+1' POINTER TO ACCUMULATOR

/CLFAR THE CARRY FLAC

/DFCRFASFE POINTER TO "N' BLOCK

/RESTORFE POINTER ,

/DECRFMFNT PAGF POINTER IF REQUIRED

/FETCH ¥"N* INTO REGISTFR 'D"

/PLACE FORMFR "N+ INTO "N"

/FFTCH “N* POINTER TO ACCUMULATOF
/INCREASF POINTER TO *"N+1*' BLOCK
/RESTORE POINTER

/CHECK TO SFF IF GOING TO NFW PAGE
/INCRFMFNT PAGF POINTFR IF REQUIRED
/PLACE FORMFR "N INTO ®N+I"™

/ADVANCE "N+1" POINTFR

/DECREMFNT BLOCK LENGTH COUNTEFR
/CONTINUEF IF NOT FINISHED EXCHANGING

/1F FINISHFD EXCHANGING FETCH "N+l' PNTR
/CLEAR CARRY FLAG '

/BACK POINTFR FROM 'N+1" TO "N-1' BLOCK
/RESTORE POINTER

/DECREMENT PAGE POINTER IF REQUIRED
/FETCH CURRENT PAGF

/MAKF SURF STILL IN STORAGE ARFA

/YES - DO AN EFFECTIVE '"N-1" TO "N TEST
/VWENT BACK TOO FARP - GO TO STARTING BLOCK!

4 - 35

THF "INCRH" REFERRED TO BY THE SORT ROUTINF WAS PRESENTED FARLIFR
AS PART OF THE ROUTINE THAT ACCEPTFD NAMES INTO THF STORAGF AREA. THF
“DECRH" ROUTINF NOT SHOWN SHOULD RF A SNAP FOR ANYONE WHO HAS RFACHED
THIS POINT IN THF MANUAL. (IF IT IS NOT, FOR HFAVENS SAKE GO BACK!)

IF ONE MENTALLY PROCEEDS THROUGH THE SORT ROUTINE WHILF REFERRING
T0 THE DIAGRAM GIVFN SFUFRAL PAGFS FARLIFR SHOWING THE NAMES AS ORIGI-
NALLY STORED IN MEMORY, ONF SHOULD BF ABLF TO CLEARLY DISCERN THE OPFR-
ATION OF THE SORT PROGRAM. FOR EXAMPLE, FOR THE FIRST THRFF NAMFS THF
PROGRAM ENCOUNTERS IN THE ORIGINAL EXAMPLE SETUP, THF PROGRAM WILL NNLY
HAVE TO TEST THE FIRST LETTFR IN FACH BLOCK. WHFN THF NAMF IN THF 4TH
HLOCK IS FXAMINED, AN EXCHANGE WILL HAVUF TO MADF WITH THF NAME IN THF
THIRD BLOCK, THEN THF PROGRAM WILL FIND WHFN CHFCKING THE *N-1" BLOCK
(MHICH WAS THF ORIGINAL SFCOND BLOCK) THAT THF NAME “DAVIS, Z. T." HAS
T0 BE EXCHANGED AGAIN, AND THIS WILL HAPPEN ONE MORF TIME UNTIL THF
NAMF "DAVIS, Z.T." ARRIUFS AT THF FIRST BLOCK IN THF STORAGE AREA. AT
THIS POINT THE PROGRAM GOFS BACK TO CHFECKING AGAINST THF "N+1'" BLOCK.
T™HF NAMES WOULD NOW APPFAR IN MEMORY IN THF FOLLOWING ORDFR.

BLOCK #1: DAVIS, Z. T.
BLOCK #2: JONES, R. M.
BLOCK #3: SMITH, C. : .
BLOCK #4: WILLIAMS, P. K.
. BLOCK #5: THOMPSON, A. R.
BLOCK #¢6é: THOMAS, F.
BLOCK #7: ALLISON, A. B.
BLOCK #8: SMITH, T. P.

NOW THE PROGRAM WOULD GFT DOWN TO BLOCK FIVE BFFORF IT FOUND IT NFC-
ESSARY TO EXCHANGF BLOCK FIVF WITH BLOCK FOUR. THF NFXT "N-1" TFST
WOULD FAIL, HOWFUER, AND THE PROGRAM WOULD PROCFFD BACK UP TO BLOCK SIX
WHERE IT WOULD FIND THE NAMF *"THOMAS, F." AND HAVE TO FXCHANGF IT WITH
“WILLIAMS, P. K.'" AND THFN EXCHANGF IT AGAIN WITH "THOMPSON, A. R."™ AT
THIS POINT THE NAMES STORAGE ARFA WOULD APPFAR AS:

BLOCK #1: DAVIS, Z. T.
BLOCK #2: JONFS, R. M.
BLOCK #23: SMITH, C.

BLOCK #4: THOMAS, F.
BLOCK #%: THOMPSON, A. R.
BLOCK #6é: WILLIAMS, P. K.
BLOCK #7: ALLISON, A. B.
BLOCK #8: SMITH, T. P.

AT THIS POINT THFE PROGRAM WOULD GET UP TO BLOCK NUMEER SEVEN WHFRF
IT WOULD FIND “ALLISON, A. B."™ AND IT WOULD THFN HAVF TO FXCHANEF
NAMES ALL THF WAY BACK DOWN THE LINF TO GET IT INTO BLOCK NUMBER ONF.
FINALLY, THE PROGRAM WOULD FIND THAT "SMITH, T. P." HAD TO BF MOVED BACK
ENDING UP IN BLOCK NUMBFR FIUF. ALL OF THE ABOVE WOULD HAVFE HAPPENED
IN A MERE FRACTION OF A SFECOND AS THF 8888 CPU EXECUTED THE INSTRUC-
TIONS AT MICRO-SFCOND SPFEDS - RFSULTING IN THF NAMES ORGANIZFD IN THE
FOLLOWING DESIRED MANNFR.

BLOCK #1: ALLISON, A. B.
BLOCK #2: DAVIS, Z. T.
BLOCK #3: JONES, R. M.
BLOCK #4: SMITH, C.

BLOCK #%: SMITH, T. P.
BLOCK #6: THOMAS, F.
BLOCK #7: THOMPSON, A. R.
BLOCK #&: WILLIAMS, P. K.

4 - 36

SIMILAR TYPES OF SORTING OR ARRANGING OPERATIONS CAN ALSO BE DONE

VITH NUMBERS IN EITHER ASCII, BCD, OR BINARY FORM OR WITH OTHER TYPES OF
DATA.

ONE COULD COMBINE A "CONTROL TABLE" USING ONE OF THE TYPES DISCUS-
SED EARLIER IN THIS CHAPTER WITH THE NECESSARY INPUT, FORMATTING, AND
SORT SUBROUTINE ADDRESSES STORED IN THE TABLE, AND THUS MAKE UP A POV-

FRFUL YET FASY TO USE PROGRAM PACKAGE SUITED TO THE USER'S SPECIFIC RE-
QUIREMENTS.

BY UTILIZING THE CONCEPTS (AS WELL AS POSSIBLY SOME OF THE SPECIFIC
ROUTINES) PRESENTED IN THIS SECTION, THE READER SHOULD BE ABLE TO SEE
THE WAY TOWARDS DEVELOPING SOPHISTICATED PROGRAMS CAPABLE OF PERFORMING
FUNCTIONS TAILORED TO THE INDIVIDUAL'S OWN REQUIREMENTS.

MORE INFORMATION ON HANDLING 170 ROUTINES WILL BE PRESENTED IN A
LATER CHAPTER. FOR THOSE INTERESTED IN UTILIZING THE MATHEMATICAL CAPA-
BILITIES OF THE DIGITAL COMPUTER (PERHAPS COMBINING SUCH OPERATIONS WITH
SOME OF THOSE JUST DISCUSSED) SIMPLY PROCEED ON TO STUDY THE NEXT CHAP-
TER WHICH IS DEVOTED TO JUST THAT SUBJECTI!

4 - 37

MATHEMATICAL OPERATIONS

THE ABILITY OF A DIGITAL COMPUTER TO BE ABLE TO HANDLE MATHEMATICAL
OPERATIONS COUPLED WITH IT'S ABILITY TO MANIPULATE TEXT GIVES THE MACH=-
INE A UNIQUE COMBINATION OF FUNCTIONALITY THAT ACCOUNTS FOR IT'S GROV-
ING POPULARITY. PROGRAMMING A COMPUTER USING MACHINE LANGUAGE TO PER~
FORM MATHEMATICAL FUNCTIONS IS PERHAPS A BIT MORE COMPLICATED THAN HAV-
ING IT PERFORM ROUTINE TEXT MANIPULATIONS, BUT IT IS NOT AS DIFFICULT
AS SOME PBEOPLE TEND TO THINK BEFORE BEING INTRODUCED TO THE SUBJECT.
LIKE MOST OTHER PROGRAMMING TASKS, THE KEY TO SUCCESS IS ORGANIZATION
OF THE PROGRAM INTO SMALL ROUTINES THAT CAN BE BUILT UPON TO FORM MORE
POWERFUL COMBINATIONS.

THE INSTRUCTION SET OF THE 8008 CPU CONTAINS A NUMBER OF PRIMARY
MATHEMATICAL INSTRUCTIONS THAT ARE THE BAS!S FOR DEVELOPING MATHEMATI-
CAL PROGRAMS. THE GROUPS USED MOST OFTEN INCLUDE THE ADDITION, SUB-
TRACTION AND “ROTATE" INSTRUCTIONS. (DO YOU RECALL THAT ROTATING A
BINARY NUMBER TO THE LEFT EFFECTIVELY DOUBLES, OR MULTIPLIES THE ORIG-
INAL VALUE BY TWO, AND ROTATING IT TO THE RIGHT ESSENTIALLY DIVIDES
THE ORIGINAL VALUE IN HALF?)

DEALING WITH NUMBERS OF SMALL MAGNITUDE USING A 8008 CPU 1S SIM-
PLICITY ITSELF. FOR INSTANCE, IF ONE WANTED TO ADD, SAY THE NUMBERS
2 AND 7, ONE COULD LOAD ONE NUMBER INTO REGISTER “B" IN THE CPU AND
LOAD THE OTHER INTO THE ACCUMULATOR. THE SIMPLE DIRECTIVE:

ADB

WULD RESULT IN THE VALUE @11 (OCTAL!) BEING LEFT IN THE ACCUMULATOR.
SUBTRACTION IS JUST AS EASY. 1IF ONE PLACED 7 IN THE ACCUMULATOR AND 2
IN REGISTER “B'" AND EXECUTED A:

SUB
THE VALUE S5 WOULD BE LEFT IN THE ACCUMULATOR.

MULTIPLICATION, WITH SMALL NUMBERS, CAN BE READILY ACCOMPLISHED US-
ING A SIMPLE ALGORITHM OF ADDING THE MULTIPLICAND TO ITSELF THE NUMBER
OF TIMES DICTATED BY THE MULTIPLI1ER. SUPPOSE ONE DESIRED TO HAVE THE
COMPUTER MULTIPLY 2 TIMES 3. PLACING THE VALUE 2 IN REGISTER “B" AND
3 IN REGISTER ™C*" AND EXBCUTING THE FOLLOVING INSTRUCTION SFQUENCE?

START, XRA
MULTIP, ADB
DCC

JFZ MULTIP
STOP, HLT

WULD RESULT IN THE VALUE 6 ENDING UP IN THE ACCUMULATOR. AS SHALL BE
DISCUSSED FURTHER ON, THE ABOVE ALGORITHM IS NOT VERY EFFICIENT WHEN THE
NUMBERS BECOME LARGE. MORE EFFICIENT MULTIPLICATION ALGORITHMS ARE
BASED ON ROTATE OPERATIONS WHICH EFFECTIVELY MULTIPLY A NUMBER BY A POV~
ER OF TWO. FOR INSTANCE, MULTIPLYING A NUMBER BY 32 (DECIMAL) WOULD RE=-
QUIRE 32 (DECIMAL) LOOPS THROUGH THE ABOVE ROUTINE, BUT ONLY 5 ROTATE
LEFT OPERATIONS! HOWEVER, THE ABOVE ROUTINE ILLUSTRATES HOWV A NUMBER
CAN BE MULTIPLIED EVEN THOUGH THE COMPUTER DOES NOT HAVE A SPECIFIC
MULTIPLY" INSTRUCTION.

ONE CAN ALSO DIVIDE SMALL VALUED NUMBERS THAT HAVE INTEGER RESULTS
USING A SIMILARLY SIMPLE ALGORITHM THAT SUBTRACTS INSTEAD OF ADDS. FOR

S = 1

INSTANCE, A REVERSE OF THE PREVIOUS EXAMPLE WOULD BE TO DIVIDE THE NUM=-
BER 6 BY THE VALUE 2. THE SUBTRACTION ALGORITHM WOULD APPEAR AS:

START, LCI1 @060
DIVIDE, NDA
JTZ STOP
SUB
INC
JMP DIVIDE
STOP, HLT

IN THE ABOVE ALGORITHM, THE ROUTINE STARTS WITH THE NUMBER 6 IN THE
ACCUMULATOR. THE DIVISOR IS IN REGISTER "B.'" REGISTER "C*" 1S USED AS
A COUNTER TO COUNT HOW MANY TIMES THE VALUE IN “B*" CAN BE SUBTRACTED
WTIL THE CONTENTS OF THE ACCUMULATOR IS EQUAL TO ZERO. AS POINTED

OUT PREVIOUSLY, THE ALGORITHM ONLY WORKS IF THE RESULT IS AN INTEGER
VALUE. DIVISION IS PERHAPS THE MOST DIFFICULT BASIC MATHFMATICAL FUNC-
TION TO PERFORM ON A DIGITAL COMPUTER BECAUSE OF MATHEMATICAL PECUL-
IARITIES (INVOLVING THE MANIPULATION OF FRACTIONAL VALUES). HOWEVER, AS
WILL BE ILLUSTRATED LATER, THERE ARE WAYS AROUND THE ABOVE LIMITATION.
THE ABOVE ILLUSTRATION IS MERELY TO GIVE THE NOVICE ENCOURAGEMENT BY IL=-
USTRATING THAT SUCH OPERATIONS ARE POSSIBLE EVEN THOUGH A SPECIFIC *DIV=-

IDE' COMMAND IS NOT A PART OF THE TYPICAL DIGITAL COMPUTER'S INSTRUCTION
SET!

THE DISCUSSION SO FAR HAS BFEN LIMITED TO NUMBERS OF RELATIVELY
SMALL MAGNITUDE. SPECIFICALLY, NUMBERS SMALL ENOUGH TO BE CONTAINED
IN A SINGLE EIGHT BIT BINARY REGISTER OR MFMORY LOCATION IN A 6068 UNIT.
MANY USER'S WHO WANT TO USE THE DIGITAL COMPUTER TO PERFORM MATHEMATICAL
OPERATIONS SEEM TO GET "STUMPED" WHEN FIRST COMING ACROSS A REQUIREMENT
TO MANIPULATE NUMBERS THAT ARE TO0 LARGE IN MAGNITUDE TO FIT IN ONE MEM-
ORY WORD OR CPU REGISTER. WITH A 8088 BASED MACHINE, AND INDEED MOST
MINI-COMPUTERS, SUCH A REQUIREMENT TYPICALLY ARRIVES SHORTLY AFTER ONE
HAS STARTED OPERATING THEIR MACHINE! THE REASON IS SIMPLY THAT THE
LARGEST VALUED NUMBER THAT CAN BE PLACED IN AN '"N=-BIT" REGISTER IS THE
WLUE (2tN)=1. SINCE THE 8@#@8 CPU USES BUT 8 (DECIMAL) BITS IN A WORD,
THE LARGEST NUMBER THAT CAN BE REPRESENTED IN A SINGLE WORD IF ALL THE
BITS ARE USED IS A MERE 255 (DECIMAL). IF ONE DESIRES TO MAINTAIN THE
“SIGN*" (WHETHER IT 1S "PLUS"™ OR “MINUS'") AND USES ONE BIT IN A WORD FOR
THAT PURPOSE, THEN THE LARGEST NUMBER THAT CAN BE REPRESENTED IN A SIN=-
GLE WORD IS A PALTRY 127 (DECIMAL) - HARDLY ENOUGH TO BOTHER USING A
COMPUTER TO MANIPULATE SUCH LIMITED MAGNITUDES!

BUT, THE SECRET TO RAPIDLY INCREASING THE MAGNITUDES OF THE NUMBERS
THAT CAN BE HANDLED BY A DIGITAL COMPUTER IS HELD IN THAT FORMULA JUST
PRESENTED - (2tN)-1l. FOR THAT FORMULA SAYS THAT THE SIZE OF THE NUMBER
THAT CAN BE STORED IN A BINARY REGISTER ESSENTIALLY DOUBLES FOR EVERY
BIT ADDED TO THE REGISTER. THUS, IF ONE WERE TO STORE A NUMBER USING
THE AVAILABLE BITS IN TWO REGISTERS OR MEMORY WORDS IN A &@@8 SYSTEM,
ONE WOULD BE ABLE TO REPRESENT NUMBERS AS LARGE AS (2t16)=-1 OR &5,53%
(DECIMAL). 1IF ONE OF THOSE 16 BITS WERE RESERVED FOR A "SIGN" INDICATOR
THE MAGNITUDE WOULD BE LIMITED TO (2t15)=1 OR 32,767 THAT 1S CERTAIN=-
LY A LOT MORE THAN THE VALUE OF 127 THAT CAN BE HELD IN JUST ONE WORD!
BUT, WHY STOP AT HOLDING A NUMBER IN TWO WORDS? THERE IS NO NEED TO,
ONE CAN KEEP ADDING WORDS TO BUILD UP AS MANY BITS AS DESIRED. THREE
WORDS OF 8 BITS, LEAVING ONE BIT OUT FOR A SIGN INDICATOR WOULD ALLOW
NUMBERS UP TO (2t23)-1 OR 8,388,607 (DECIMAL). FOUR WORDS, WOULD ALLOW
REPRESENTING A SIGNED NUMBER UP TO (2t31)-]1 WHICH IS APPROXIMATELY
1,107,483,647! ONE COULD ADD STILL MORE WORDS IF REQUIRED. GENERALLY,
HOWVEVER, ONE SELECTS THE NUMBER OF “SIGNIFICANT DIGITS" THAT WILL BE IM-
PORTANT IN THE CALCULATIONS TO BE PERFORMED AND USES ENOUGH WORDS TO

5=-2

ENSURE THAT THE "PRECISION,'" OR NUMBER OF SIGNIFICANT DIGITS REQUIRED
FOR THE OPERATIONS CAN BE REPRESENTED IN THE TOTAL NUMBER OF BITS AVAIL-
ABLE WITHIN THE "GROUPED" WORDS. THE USE OF MORE THAN ONE COMPUTER WORD
OR REGISTER TO STORE AND MANIPULATE NUMBERS AS THOUGH THEY WERE IN ONE
LARGE CONTINUOUS REGISTER IS COMMONLY REFFRRED TO AS “MULTIPLE-PRECIS=-
ION'" ARITHMETIC. ONE OFTEN HFARS COMPUTER TECHNOLOGISTS SPFAKING OF
“DOUBLE-PRECISION'" OR "TRIPLE-PRECISION' ARITHMETIC. THIS SIMPLY MEANS
THAT THF MACHINE IS USING TECHNIQUES (GENERALLY PROGRAMMING TECHNIQUES)
THAT ENABLE IT TO HANDLE NUMBFRS STORED IN TWO OR THRFE REGISTERS AS
THOUGH THEY WERE ONE NUMBER IN A VERY LARGE REGISTER.

THE 8088 CPU IS CAPABLE OF MULTIPLE-PRECISION ARITHMETIC. IN FACT
IT DOES IT QUITE NICELY BECAUSE THE DESIGNERS OF THE INTEL 8&0@& CPU CHIP
TOOK PARTICULAR CARE TO INCLUDE SOME SPECIAL INSTRUCTIONS FOR JUST SUCH
OPERATIONS., (SUCH AS THE ADD AND SUBTRACT WITH CARRY INSTRUCTIONS.)
MULTIPLE-PRFCISION ARITHMETIC IS NOT DIFFICULT - IT TAKES A LITTLE EXTRA
CONSIDERATION IN THE AREA OF ORGANIZING THE PROGRAM TO HANDLE AND STORE
NUMBERS THAT ARE CONTAINED IN MULTIPLE WORDS IN MEMORY, BUT WITH THE USE
OF EFFECTIVE ''SUBROUTINING" OR SO CALLED *CHAINING" OPERATIONS THE TASK
MAY BE HANDLED WITH RELATIVE EASE.

IN ORDER TO EFFECTIVELY DEAL WITH MULTIPLE-PRECISION ARITHMETIC ONE
MUST ESTABLISH A CONVENTION FOR STORING THE SECTIONS OF ONE LARGE NUM=-
BER IN SEVERAL REGISTERS. FOR THE PURPOSES OF THE CURRENT DISCUSSION,
IT WILL BE ASSUMED THAT "TRIPLE-PRECISION" ARITHMETIC IS TO BE PER=-
FORMED. NUMBERS WILL BFE STORED IN THREE CONSECUTIVE MEMORY LOCATIONS
ACCORDING TO THE FOLLOWING ARRANGEMENT.

MEMORY LOCATION *N* = LFEAST SIGNIFICANT & BITS
MEMORY LOCATION *N+1' = NEXT SIGNIFICANT & BITS
MEMORY LOCATION *"N+2' = MOST SIGNIFICANT 7 BITS + SIGN BIT

THUS, THE THREF WORDS IN MEMORY COULD BE MENTALLY VIEWED AS EEING ONE
CONTINUOUS LARGE RFEGISTER CONTAINING 23 BINARY BITS PLUS A SIGN BIT AS
SHOWN IN THE DIAGRAM BELOWV.,

MEM LOCATION "N+2" MEM LOCATIDN 'N+1" MEM LOCATION “N*
ke e 20 ke e 3 e e e e e e o o ke ok o o 3¢ 2 o 3 e e e o ok ok 3 ok ok ok ok oK oK ke ke k6 o K 8 3 ek 0 6 0 3 ok ok o o
*5 X X X X X X X% *X X X X X X X X% *X X X X X X X Xx
4 00 e e o 2 3 2 2 e e o ok ok o o oK 3K ke 6 3 3 20 K 3 oK o 2 3 3 ok o oK k2 e 3 e e o e e e R 3 o 3K K K K

MOST SIGNIFICANT BITS NEXT SIGNIFICANT BITS LEAST SIGNIFICANT BITS

OF COURSE, ONE COULD REVERSE THE ABOVE SEQUENCE, AND STORE THE LEAST
SIGNIFICANT BITS IN MEMORY LOCATION "N," THE NEXT GROUP IN *N+1," AND
THE MOST SIGNIFICANT BITS PLUS SIGN BIT IN MEMORY LOCATION "“N+2,.," IT
MAKES LITTLE DIFFERENCE AS LONG AS ONE REMAINS CONSISTENT WITHIN A PRO-
GRAM. HOWEVER, THE CONVENTION ILLUSTRATED WILL BE THE ONE USED FOR THE
DISCUSSION IN THIS SECTION.

ALSO, AS HAS BEFN POINTED OUT, IT IS NOT NECESSARY TO LIMIT THE
STORAGE TO JUST THREE WORDS - ADDITIONAL WORDS MAY BE USED IF ADDITIONAL
PRECISION IS RFQUIRED. FOR MOST OF THE DISCUSSION IN THIS CHAPTER,
THREE WORDS WILL BE USED FOR STORING NUMBERS. USING THREE WORDS IN THE
ABOVE FASHION WILL ALLOW NUMBERS UP TO A VALUE OF &,388,647 IN MAGNITUDE
T0O BE STORED. THIS MEANS THAT 6 TO 7 SIGNIFICANT DIGITS CAN BE MAIN-
TAINED IN CALCULATIONS.

THE FIRST MULTIPLE-PRECISION ROUTINE TO BE ILLUSTRATED VWILL BE AN
ADDITION ROUTINE THAT WILL ADD TOGETHER TWO0 MULTIPLE-PRECISON NUMBERS
AND LEAVE THE RESULT IN THE LOCATION FORMERLY OCCUPIED BY ONE OF THE
NUMBERS. THE ROUTINE TO BE PRESENTED HAS BEEN DEVELOPED AS A “GENERAL
PURPOSE" ROUTINE IN THAT, BY PROPERLY SETTING UP MEMORY ADDRESS POINTERS
AND LOADING A CPU REGISTER WITH A "PRECISION®" VALUE PRIOR TO '"CALLING"
THE ROUTINE, THE SAME ROUTINE CAN BE USED TO HANDLE MULTIPLE-PRECISION
ADDITION OF NUMBERS VARYING IN LENGTH FROM "1 TO N'" REGISTERS €¢AS LONG
AS THE REGISTERS CONTAINING A NUMBER ARE IN CONSECUTIVE ORDER IN MEMORY,
AND WITH THE RESTRICTION THAT ALL THE REGISTERS CONTAINING A NUMBER ARE
ON ONE PAGE - LIMITING 'N" TO 255 (DECIMAL WORDS), WHICH IS A LIMITATION
FEW PROGRAMMERS WOULD FIND CUMBERSOME)!

THE KEY ELEMENT IN THE ADDITION ROUTINE TO BE ILLUSTRATED IS THE USE
OF THE "ACM,'" OR “ADD WITH CARRY'" INSTRUCTION. THE ESSENTIAL DIFFERENCE
BETWEEN AN “ADD WITH CARRY" (ACM) INSTRUCTION, AND AN “ADM" (ADD WITHOUT
CARRY) COMMAND IS AS FOLLOWS:

AN "ADM" INSTRUCTION SIMPLY ADDS THE CONTENTS OF THE ACCUMULATOR
AND THE CONTENTS OF THE MEMORY LOCATION POINTED TO BY THE “H & L“
REGISTERS. DURING THE ADDITION PROCESS, THE STATUS OF THE CARRY
FLAG IS IGNORED. HOWEVER, IF AT THE END OF THE PROCESS, AN “QVER=-
FLOW' HAS OCCURED, THE CARRY FLAG WILL BE SET TO A "1' CONDITION
FOR EXAMPLE, ADDING THE FOLLOWING BINARY NUMBERS WOULD YIELD:

191 010
210 101

CARRY = B8 : 11 111 111
AND ADDING THE NEXT TWO NUMBERS WOULD YIELD:

11 111 111
e V06 001

CARRY = 1 ¢+ 06 0 @6 00 0060

REGARDLESS OF THE CONDITION OF THE CARRY FLAG AT THE START OF THE
ADDITION OPERATION.

AN "ACM" COMMAND, ON THE OTHER HAND, EXAMINES THE CONTENTS OF

THE CARRY FLAG PRIOR TO THE START OF THE ADDITION OPERATION AND
CONSIDERS IT AS AN OPERATOR ON THE LEAST SIGNIFICANT BIT POSITION.
AT THE END OF THE PROCESS, THE CARRY FLAG IS SET OR CLEARED DE-
PENDING ON WHETHER OR NOT AN "OVERFLOW" OCCURED, AS IN THE "“ADM"
CLASS OF INSTRUCTION. FOR EXAMPLE, ADDING THE FOLLOWING BINARY
NUMBERS YIELDS RESULTS THAT ARE DEPENDENT ON THE INITIAL STATUS
OF THE CARRY FLAG.

CASE #lA 106 101 @ t @ = CARRY BIT AT START
1

CARRY = 9 2 11 111 1

CASE #1B 18 10861 0618 131 1 = CARRY BIT AT START
a1 @190 101

D DS G A BN SD S S0 WS WS WS as s ap W

CARRY = 1 ¢+ @0 0 000 00660

CASE #2A 11 111 111 ¢ @ =CARRY BIT AT START
B8 000 001

CARRY = | ¢+ 0 0 000 000

CASE #2B I'1 111 111 ¢ 1 = CARRY BIT AT START
Ve 6060 001

CARRY =1 : 00 0060 001

IN SUMMARY, ONE CAN SEE THAT AN "ACM" TYPE OF INSTRUCTION MAKES
MULTIPLE-PRECISION ADDITION EXTREMELY EASY BECAUSE THE CARRY BIT ACTS
AS A LINK BETWEEN ANY "CARRY" FROM THE MOST SIGNIFICANT BIT OF ONE
ADDITION OPERATION INTO THE LEAST SIGNIFICANT BIT OF THE NEXT ADDITION
OPERATION = JUST AS THOUGH THE ADDITION PROCESS WAS PFRFORMED IN ONE
LONG REGISTER. FOR COMPARISON, EXAMINE THE EXAMPLE BELOW WHICH FIRST
ILLUSTRATES AN ADDITION OPERATION IN A HYPOTHETICAL 16 (DECIMAL) BIT
REGISTER, AND THEN SHOWS THE SAME RESULT WHEN TWO '"ACM" OPFRATIONS ARE
PERFORMED ON TWO 8 BIT REGISTERS.

HYPOTHETICAL 16 BIT REGISTER: 1 1 1 11 111 10 161 o1
66 0006 ©00 i1 8610 16

CARRY = 1 : 0 0 0060 800 a1 111 111

0
1

FIRST ACM OPERATION: 1 ¥ 1 81 © 1 @ : 0 = ASSUMED FOR CARRY
11 1o 1o1 BIT AT START

CARRY = 1 ¢+ ¢ 1 111 111

LSB'S IN MEM LOC *“N*

11 111 111 ¢ 1 = CARRY STATUS FROM
6O 6006 oo OPERATION ABOVE

CARRY = | ¢+ 0 0¥ 0006 000

MSB'S IN MEM LOC '"N+1"

PLACING THE RESULTS OF THE TWO 8 BIT REGISTFRS SIDE-BY-SIDE AFTER
USING THE '"ACM" TYPE OF INSTRUCTION YIELDS THE SAME RESULT AS THOUGH THE
OPERATION HAD BEEN PERFORMED IN A SIXTEEN BIT REGISTER. THE CONCEPT CAN
BE APPLIED TO AS MANY 8 BIT REGISTERS AS NECESSARY!

ARMED WITH THE KNOWVLEDGE OF HOW THE POWERFUL "“ACM" TYPE OF INSTRUC~-

TION OPERATES, ONE CAN PROCEED TO DEVELOP A “N'TH PRECISION" ADDITION
SUBROUTINE. EXAMINE THE FOLLOWING ROUTINE.

MNEMONIC ‘ COMMENTS

ADDER, NDA /ALWAYS CLEAR CARRY FLAG AT RTN ENTRY
ADDMOR, LAM y /GET FIRST NUMBER INTO ACCUMULATOR
CAL SWITCH /CHANGE POINTERS TO SECOND NUMBER
. ACM /PERFORM "ADDITION WITH CARRY"
LMA /PLACE RESULT BACK INTO MEMORY
DCB /DECREMENT THE "PRECISION'" COUNTER

RTZ /EXIT ROUTINE WHEN COUNTER REACHES 600

5$~5

MNEMONIC COMMENTS

INL /ADVANCE SECOND NUMBFR ' POINTER
CAL SVITCH /CHANGE POINTFR BACK TO FIKST NUMBER
INL /ADVANCE FIRST NUMBER POINTER

JMP ADDMOR /REPFAT PROCESS FOR NEXT PRFCISION

NOTE THAT THE ABOVE "ADDER" SUBROUTINE REQUIRES THAT A NUMBER OF
THE CPU REGISTERS BE "SET UP" PRIOR TO CALLING THF ROUTINE. THE "H & L"
REGISTFRS MUST CONTAIN THE ADDRESS OF THE LEAST SIGNIFICANT BITS IN THE
FIRST MULTI-WORD NUMBER. REGISTERS "D & E" SIMILARLY MUST BE SET UP TO
CONTAIN THE ADDRESS OF THE LFAST SIGNIFICANT PART OF THE SECOND MULTI=-
PRECISION NUMBER THAT, IS TO BE ADDED TO THE FIRST. FINALLY, REGISTER
"B MUST BF INITIALIZED TO THE “PRECISION," OR NUMBER OF MEMORY WORDS
USED TO CONTAIN THE MULTI-PRECISION NUMBER. SUPPOSE, FOR FXAMPLE, THAT
A NUMBER IN “TRIPLE=-PRECISION" FORMAT IS STORED IN THREE WORDS STARTING
AT LOCATION 100 ON PAGE @@ AND THAT A SECOND NUMBER IN SIMILAR FORMAT IS
STORED AT LOCATION 20# ON PAGE @1. THE FOLLOVING INSTRUCTIONS WOULD BE
USED TO SFT UP THE CPU REGISTFRS PRIOR TO CALLING THE '"ADDER" SUBRQUT=-
INE.

MNEMONIC COMMENTS
INIT, LHI 00y /SET PAGE FOR LSW QF FIRST NUMBER
LLI 166 /SET LOCATION ON PAGE FOR LSW OF 1ST #
LDI @v1l /SET PAGE FOR LSW OF SFCOND NUMBER
LEI 200 /SET LOCATION ON PAGE FOR LSW OF 2ND #
LBl 043 - /SET PRECISION VALUE (3 WORDS)

CAL ADDER /CALL THE N°'TH PRECISION ADDITION RTN

e /USER ROUTINES TO PROCESS THE ANSWER

NOTE TOO, THAT THE "ADDER" SUBROUTINE IS “DESTRUCTIVE" TO THE ORIG=-
INAL VALUE OF THE SECOND NUMBFR THAT IS ADDED BECAUSF THE ANSWFR 1S LEFT
.IN THAT LOCATION. IF, FOR SOME REASON, THE USER WANTED TO SAVE THE
ORIGINAL SECOND NUMBER, THEN IT WOULD HAVE TO BF "SAVED" ELSEWHERFE 1IN
MEMORY PRIOR TO PERFORMING THE ADDITION.

JUST AS THERE ARE TWO CLASSES OF INSTRUCTIONS FOR PERFORMING ADDI-
TION VITH THE 8@@88 CPU, ONE OF WHICH (ACM CATEGORY) IS SUITED FOR MUL -
TIPLE-PRECISION ARITHMETIC, THERE ARE TWO CLASSFES OF SUBTRACT COMMANDS.
THE '"'SUM" (SUBTRACT WITHOUT CARRY) AND THE "SBM" (SUBTRACT WITH CARRY -
OR MORE APPROPRIATELY "BORROW"). THE "SBM" TYPE WORKS SIMILAR TO THE
"ACM" TYPE IN THAT THE CPU FIRST CHECKS THE STATUS OF THE CARRY FLAG BE-
FOR PERFORMING THE SUBTRACTION OPFRATION MAKING IT AN FASY MATTER TO
PROCESS MULTIPLE-PRECISION SUBTRAGTION OPERATIONS. IN FACT, ONE CAN
SET UP AN ALMOST IDENTICAL ROUTINE TO THE ONE USED FOR ADDITION THAT
WILL ALLOV PROCESSING “N'TH PRECISION'" SUBTRACTION OPERATIONS. AS IN
THE PREVIOUS EXAMPLE, ONE WOULD FIRST SET UP CPU REGISTERS AS POINTERS
TO THE LEAST SIGNIFICANT PORTIONS OF THE MULTIPLE-PRECISION NUMBERS IN
MEMORY AND LOAD REGISTER "“B" WITH THE NUMBER OF MEMORY WORDS OCCUPIED
BY A “N*'TH PRECISION" NUMBER.

WHILE THE ROUTINES PRESENTED HERE ONLY UTILIZE THE °''ACM" OR *"'SBM"
INSTRUCTIONS - BECAUSE THE ALGORITHMS HAVE BEEN DEVELOPED AS GENERAL

s -6

PURPOSE ROUTINES TO HANDLE STRINGS OF NUMBERS IN MEMORY, THE READER IS
REMINDED THAT THERE ARE A WHOLE GROUP OF INSTRUCTIONS THAT HAVE SIMILAR
CAPABILITY FOR WORKING WITH DATA IN CPU REGISTERS (SUCH AS 'ACB,"™ "ACC,"
AND THE OTHER CPU REGISTERS PLUS "IMMEDIATE" OPERATIONS). THE READER
SHOULD REVIEW CHAPTER ONE OF THIS 908 PROGRAMERS MANUAL FOR A SUMMARY
OF THE POSSIBLE VARIATIONS.

MNEMONIC » COMMENTS
SUBBER, NDA /ALWAYS CLEAR CARRY FLAG AT START OF RTN
SUBTRA, LAM /GET FIRST NUMBER INTO ACCUMULATOR
CAL SWITCH /CHANGE POINTERS TO SECOND NUMBER
SBM /SUBTRACT 2°'ND FROM 1'ST WITH BORROV
LMA /PLACE RESULT BACK INTO MEMORY
DCB /DECREMENT THE PRECISION COUNTEH
RTZ ZEXIT ROUTINE WHEN COUNTER = ¥ud
INL /ADVANCE SECOND NUMBER POINTER
CAL SWITCH /CHANGE POINTER BACK TO FIRST NUMBER
INL /ADVANCE FIRST NUMBER POINTER

JMP SUBTRA /REMPEAT PROCESS FOR NEXT PHECISION

ONE THING A USER DEALING WITH MATHEMATICAL FUNCTIONS ON A COMPUTER
WILL SOON HAVE TO BE CONCERNED WITH IS WHAT HAPPENS WHEN A LARGER NUM-
BER 1S SUBTRACTED FROM A SMALLER NUMBER. THE ANSWER IS NATURALLY A
MINUS OR NEGATIVE NUMBER. AS WAS INITIALLY DISCUSSED IN THE CHAPTER ON
FUNDAMENTAL PROGRAMMING SKILLS, THE 6688 CPU PROCESSES NEGATIVE NUM-
BERS UTILIZING THE "TWO'S COMPLEMENT' CONVENTION. THE READER MAY WANT
TO REVIEW THE FIRST FEVW PAGES OF THAT SECTION AT THIS TIME.

FOR INSTANCE, IF USING SINGLE PRECISION ARITHMETIC, THE NUMBER 8§
(DECIMAL) WAS SUBTRACTED FROM 6, THE RESULT WOULD APPEAR IN THE ACCUMU-
LATOR AS SHOWN HERE:

6 DECIMAL = © ¥ © 0 @ 1 1 06 IN A BINARY REGISTER
8 DECIMAL = 0 0 @06 81 © 0 06 1IN A BINARY REGISTER
WHICH IS = 11 111 11 @& WHEN SUBTRACTED

NOTE THAT THE MOST SIGNIFICANT BIT IN THE REGISTER CONTAINING THE
MINUS ANSWER IS A "l." BY ESTABLISHING A TWO'S COMPLEMENT CONVENTION
AND ALWAYS ENSURING THAT THE MAGNITUDE OF ANY NUMBERS HANDLED DO NOT
INTERFERE WITH THE MOST SIGNIFICANT BIT, ONE CAN QUICKLY DETERMINE
WHETHER A NUMBER IN A REGISTER (OR SERIES OF REGISTERS IN THE CASE OF
MULTIPLE-PRECISION FORMATTING) IS POSITIVE OR NEGATIVE BY TESTING TO SEE
IF THE MOST SIGNIFICANT BIT IS A 1 (FOR A NEGATIVE) OR 8 (FOR A POSI=-
TIVE) VALUE. THIS IS READILY DONE IN A &@08 CPU BY TESTING THE '"SIGN"
FLAG WITH A "JFS,*" “CTS'" OR SIMILAR INSTRUCTION.

ALSO REMEMBER THAT A NUMBER CAN BE SUBTRACTED FROM ANOTHER NUMBER BY
FORMING THE TwW0'S COMPLEMENT OF THE NUMBER TO BE SUBTRACTED AND PERFORM-
ING AN ADDITION OPERATION. THUS:

+ 8 DECIMAL = @0 6 @4 01 0@ @ IN A BINARY REGISTER

IT*S TWO'S COMPLEMENT IS. = 11 111 @¢@ INA BINARY REGISTER

S -1

AND CONSEQUENTLY:

6 DECIMAL = @0 @

e @ 1 18 IN A BINARY REGISTER
TWO'S COMPLEMENT OF 8 = | 1 | 1
1

@ 88 IN A BINARY REGISTER

1 1 16 WHEN ADDED!

o
1
WHICH 1S = 1 1 |

IT IS OFTEN DESIRABLE TO PERFORM A STRAIGHT "“TWO'S COMPLEMENT" OP-~
ERATION ON A NUMBER IN ORDER TO CHANGE IT FROM A POSITIVE TO A NEGATIVE
NUMBER OR THE REVERSE. ONE EASY WAY TO ACCOMPLISH THIS IN A 8808 UNIT
1S TO SIMPLY SUBTRACT THE NUMBER FROM A VALUE OF ZERO. FOR MULTIPLE~-
PRECISION WORK ONE COULD SIMPLY LOAD ONE STRING OF MEMORY LOCATIONS (THE
FIRST NUMBER) WITH ZEROS AND PLACE THE NUMBER TO BE NEGATED IN THE SEC-
OND STRING OF MEMORY LOCATIONS (THE SECOND NUMBER) AND CALL THE PREV-
IOUSLY ILLUSTRATED "SUBBER"™ ROUTINE. HOWEVER, THERE MAY BE CASES WHERE
ONE DOES NOT WANT TO DISTURB VALUES IN MEMORY LOCATIONS OR PERFORM THE
TRANSFER OPERATIONS NECESSARY TO SET UP THE NUMBERS FOR THE “SUBBER"
ROUTINE. WHAT 1S DESIRED IS A “TWO'S COMPLEMENT" ROUTINE THAT WILL OP~-
ERATE ON A VALUE IN THE LOCATION(S) IN WHICH IT RESIDES. THE FOLLOVING
ROUTINE WILL ACCOMPLISH THAT OBJECTIVE, AND CAN HANDLE “N°'TH PRECISION"
NUMBERS .

MNEMONIC COMMENTS
COMPLM, LAM /GET LEAST SIGNIFICANT BITS (1ST WORD)
XRI 377 /EXCLUSIVE "“OR"™ = PURE COMPLEMENT
ADl @81 /NOW ADD | TO FORM TWO'S COMPLEMENT
MORCOM, LMA /7RETURN 2'S COMPLEMENT VALUE TO MEMORY
RAR /GET THE CARRY BIT INTO THE ACCUMULATOR
LDA /AND SAVE THE CARRY BIT STATUS
DCB /NOW DECREMENT THE “PRECISION™ COUNTER
RTZ /FINISHED WHEN COUNTER = 000
INL /1F NOT DONE, ADVANCE MEMORY POINTER
LAM /AND FETCH THE NEXT GROUP OF BITS
XR1 377 /PRODUCE A PURE COMPLEMENT
LEA /SAVE PURE COMPLEMENT TEMPORARILY
LAD /GET PREVIOUS CARRY BACK INTO ACCUMULATOR
RAL /AND SHIFT IT BACK OUT TO THE CARRY FLAG
LAl 0@e@ /D0 A LOAD SO DOES NOT DISTURB CARRY
ACE /ADD COMPLEMENTED VALUE WITH ANY CARRY

JMP MORCOM /GO ON TO DO NEXT WORD IN STRING

NOTICE THAT IN THE ABOVE ROUTINE IT WAS NECESSARY TO SAVE THE STATUS
OF THE CARRY FLAG (BIT) IN A CPU REGISTER BECAUSE AN "XRI™ OR ANY BOOL-
EAN LOGIC INSTRUCTION AUTOMATICALLY “CLEARS" THE CARRY FLAG TO ZERO AND
WULD DESTROY ANY PREVIOUS *1" CONDITION. (ANY READERS WHO FORGOT THAT
MIGHT BE WISE TO SPEND A LITTLE MORE TIME STUDYING CHAPTER ONE OF THIS
MANUAL'!

AS VITH THE “ADDER" AND "“SUBBER" ROUTINES IT IS ALSO NECESSARY TO
‘00 SOME PRELIMINARY SETTING UP BEFORE CALLING THE “COMPLM" SUBROUTINE.
THE "H & L" REGISTERS MUST BE SET TO THE FIRST WORD (LEAST SIGNIFICANT
BITS) OF THE MULTI-PRECISION NUMBER AND REGISTER “B™ MUST INDICATE HOW
MANY WORDS ARE OCCUPIED BY THE NUMBER.

IT WILL ALSO BE POINTED OUT HERE, THAT AS THE PROGRAMMER GETS INTO

5 -8

DEVELOPING MORE AND MORE COMPLICATED ROUTINES, THAT UTILIZE A LOT OF
SUBROUTINES, THE PROGRAMMER MUST MAINTAIN STRICT CONTROL OVER WHICH CPU
REGISTERS ARE AFFECTED AND MAKE SURE THAT THE USE OF SELECTED CPU REGI-
STERS BY ONE ROUTINE (ESPECIALLY WHEN IT “CALLS'" ANOTHER ROUTINE)> DO NOT
INTERFERE WITH THE OVER-ALL OPERATION OF A PROGRAM. THE BEST RULE OF
THUMB IS TO TRY AND LEAVE A SUBROUTINE WITH ALL THE CPU REGISTERS, EX-
CEPT THOSE TRANSFERRING INFORMATION TO THE NEXT ROUTINE, IN A "FREE" OR
"DON*'T CARE" STATE. THIS IS NOT ALWAYS POSSIBLE, AND WVHEN IT IS NOT,
THE PROGRAMMER MUST KEEP TRACK OF WHICH REGISTERS ARE BEING USED FOR A
SPECIFIC PURPOSE AND NOT ALLOW THEM TO BE UNINTENTIONALLY ALTERED. FOR
INSTANCE, THE ABOVE "COMPLM™ ROUTINE REQUIRES THAT THREE OF THE CPU REG-
ISTERS BE SET UP PRIOR TO ENTRY = THE "H," "L," AND "B REGISTERS. WHEN
IT LEAVES THE ROUTINE THOSE ROUTINES ARE ESSENTIALLY FREE FOR USE BY THE
NEXT ROUTINE. IT ALSO USES THE "A,'" *D' AND "“E" CPU REGISTERS FOR OPER~
ATIONS THAT IT PERFORMS. IT DOES NOT CARE ABOUT THE STATUS OF THOSE
REGISTERS WHEN IT STARTS OPERATIONS BECAUSE IT *"LOADS*'" THEM ITSELF. IT
ALSO LEAVES THOSE REGISTERS ESSENTIALLY "“FREE" WHEN THE ROUTINE IS EXIT-
ED. (ALL THE IMPORTANT OPERATIONS ARE DONE WITH LOCATIONS IN MEMORY).
HOWEVER, THE FACT THAT THE ROUTINE USES CERTAIN CPU REGISTERS - SUCH AS
REGISTERS "D & E," IS VERY IMPORTANT TO REMEMBER IF ONE WAS USING OTHER
ROUTINES THAT MAINTAINED, SAY, MEMORY POINTERS IN REGISTERS "D & E."

THE NOVICE PROGRAMMER (AND A LOT OF TIMES THE “NOT=-SO-NOVICE' ONES) WILL
OFTEN FIND SOME VERY STRANGE OPERATIONS OCCURING IN A NEWLY DEVELOPED
PROGRAM BECAUSE OF PROBLEMS RELATED TO JUST THIS ASPECTI!

THE ABOVE ROUTINES COULD BE USED BY THEMSELVES TO HANDLE ADDITION
AND SUBTRACTION OF LARGE NUMBERS. HOWEVER, A RESTRICTION ON THE TYPES
OF NUMBERS THEY COULD HANDLE WOULD BE THAT THE NUMBERS WOULD HAVE TO BE
WVHOLE NUMBERS. ALSO, AS THE MAGNITUDES OF THE NUMBERS TO BE HANDLED
INCREASED, THE NUMBER OF WORDS USED TO STORE A VALUE IN MULTI-PRECISION
FORMAT WOULD HAVE TO BE INCREASED. AS WAS POINTED OUT EARLIER, USUALLY,
WHEN ONE STARTS DEALING WITH NUMBERS OF LARGE MAGNITUDE, ONE 1S PRIMAR=-
ILY CONCERNED WITH A CERTAIN NUMBER OF *"SIGNIFICANT* DIGITS IN A CAL~
CULATION. FOR INSTANCE, ONE COULD REPRESENT THE VALUE ONE MILLION AS
1,000,080. TO STORE THIS NUMBER IN MULTI-PRECISION FORMAT REQUIRES THE
USE OF THREE MEMORY WORDS IN A 40908 UNIT. HOWEVER, THE NUMBER 1,000,000
ONLY CONTAINS ONE SIGNIFICANT DIGIT. THE NUMBER COULD JUST AS EASILY BE
REPRESENTED AS 1 RAISED TO THE 6TH POWER OF 18, OR | E+6 IN WHAT 1S OF-
TEN TERMED FLOATING POINT FORMAT. NOTE THAT IF THE NUMBER WAS STORED
IN SUCH A FORMAT, ONE WOULD ONLY NEED TO USE ONE MEMORY REGISTER (FOR
THE *1" AS THE SIGNIFICANT DIGIT, AND ANOTHER REGISTER TO HOLD THE POVER
TO WHICH THE SIGNIFICANT DIGIT WAS TO BE RAISED. FLOATING POINT FORMAT
ALSO ENABLES ANOTHER PROBLEM TO BE READILY HANDLED - THAT OF PROCESSING
FRACTIONAL NUMBERS. UP TO THI1S POINT, NO DISCUSSION ON REPRESENTING
NON-INTEGER NUMBERS HAS BEEN PRESENTED. THIS WILL BE DONE SHORTLY, HOW-
EVER, AS AN INTRODUCTION, NOTE THAT THE DECIMAL NUMBER @.1 COULD BE REP-
RESENTED IN FLOATING POINT FORMAT AS | RAISED TO THE MINUS 1| POWER OF
16, OR 1 E-1l.

THE READER HAS NOW BEEN INTRODUCED TO MULTI-PRECISION ARITHMETIC AND
HOPEFULLY HAS AN UNDERSTANDING OF HOV LARGE NUMBERS CAN BE STORED IN
SEVERAL SMALL REGISTERS. THE TERM LARGE NUMBERS CAN BE INTERPRETED AS
NUMBERS CONTAINING MORE THAN A COUPLE OF S1GNIFICANT DIGITS. THE READER
SHOULD UNDERSTAND THAT INCREASING THE NUMBER OF SIGNIFICANT DIGITS RE=-
QUIRES AN INCREASE IN THE NUMBER OF BINARY BITS NEEDED TO STORE A NUMBER
AND HENCE INCREASES THE NUMBER OF MEMORY WORDS REQUIRED WHEN THE NUMBER
IS STORED IN MULTI-PRECISION FORMAT. ALSO, WHEN THE FORMAT DESCRIBED
UP TO NOV 1S USED, INCREASING THE MAGNITUDE OF A NUMBER (BY ADDING ZEROS
T0 THE RIGHT OF THE SIGNIFICANT DIGITS) RAPIDLY INCREASES THE NUMBER OF
WORDS OF MEMORY REQUIRED TO HOLD A NUMBER. FINALLY, JUST STORING A NUM-
BER IN A REGISTER, WITHOUT REGARD TO A “DECIMAL POINT" LOCATION, MAKES

5=~-9

IT IMPOSSIBLE TO PROPERLY MANIPULATE FRACTIONAL NUMBERS.

HOVEVER, THE IDEA THAT NUMBERS CAN BE REPRESENTED AS A SERIES OF
SIGNIFICANT DIGITS RAISED TO A POWER PRESENTS A SOLUTION TO THE LIMITA-
TIONS MENTIONED. HANDLING NUMBERS IN SUCH A FASHION 1S GENERALLY TERM-
ED “FLOATING-POINT" ARITHMETIC. THE REMAINDER OF THIS CHAPTER WILL BE
DEVOTED TO DEVELOPING ROUTINES FOR A “FLOATING-POINT™ MATHEMATICAL PRO -
GRAM FOR GENERAL PURPOSE APPLICATIONS.

HOWEVER, BEFORE PROCEEDING INTO THE DEVELOPMENT OF FLOATING-POINT
ROUTINES, IT WILL BE NECESSARY TO DISCUSS A MATTER THAT HAS BEEN LEFT
ASIDE UP TO THIS POINT - REPRESENTING FRACTIONAL NUMBERS UTILIZING THE
LANGUAGE OF THE DIGITAL COMPUTER - BINARY ARITHMETIC.

IN THE DECIMAL NUMBERING SYSTEM WHICH VIRTUALLY EVERYONE HAS BEEN
EDUCATED IN, FRACTIONS OF A NUMBER ARE REPRESENTED BY DIGITS PLACED TO
THE RIGHT OF A DECIMAL POINT. FEACH POSITION TO THE RIGHT OF SUCH A
POINT REPRESENTS UNITS OF DECREASING POWERS OF 18. THUS THE NUMBER:

g .1 25 (DECIMAL)
ACTUALLY REPRESENTS:

| S TENTH (1718 OR 16 TO THE -1 POWER)
PLUS: 2 . HUNDREDTHS (OR 18 TO THE -2 POVER)
PLUS: 5 THOUSANDTHS (OR 18 TO THE -3 POVER)

THE CONCEPT IS EXACTLY THE SAME FOR BINARY ARITHMETIC EXCEPT THAT
NOV EACH POSITION TO THE RIGHT OF THE DECIMAL POINT REPRESENTS UNITS OF
DECREASING POVERS OF 2! THUS THE NUMBER3

g . 111 (BINARY)

REPRESENTS
1 o o HALF (1/2 OR 2 TO THE -1 POWER)
PLUS?: 1 . QUARTER (OR 2 TO THE -2 POVER)
PLUS: 1 EIGHTH (OR 2 TO THE -3 POVER)

THUS THE ABOVE BINARY NUMBER #.111 REPRESENTS A FRACTIONAL NUMBER
WHICH WHEN CONVERTED TO DECIMAL 1S EQUAL TO3

172 + 174 + 1/8 = 7/8 OR .875 (DECIMAL)

THE MANNER IN WHICH FRACTIONAL BINARY NUMBERS ARE REPRESENTED BRINGS
OUT AN INTERESTING POINT WHICH MANY READERS MAY HAVE HEARD OF, BUT NOT
TRULY UNDERSTOOD - THE INTRODUCTION OF ERRORS INTO CALCULATIONS DONE
WITH A DIGITAL COMPUTER DUE TO THE MANIPULATION OF FRACTIONS THAT CAN
NOT BE "FINALIZED." AS AN ANALOGY, THERE ARE SIMILAR CASES IN DECIMAL

ARITHMETIC, SUCH AS THE CASE WHEN THE NUMBER 1 IS DIVIDED BY 3. THE
ANSWER 1St

8.33333333333333333333¢sc0cee

OR A NON-ENDING SERIES OF 3'S AFTER THE DECIMAL POINT. THE ACCURACY OR
“"PRECISION™ WITH WHICH A CALCULATION INVOLVING SUCH A NUMBER CAN BE CAR-
RIED OUT 1S DETERMINED BY HOW MANY "SIGNIFICANT" DIGITS ARE USED IN
FURTHER CALCULATIONS INVOLVING THE FRACTIONs FOR INSTANCE, THEORETICAL-
LY, IF THE NUMBER 1 1S DIVIDED BY 3 AND THEN MULTIPLIED BY 3, ONE WOULD
GET BACK | AS A RESULT. HOWEVER, IF THE RESULT OF THE DIVISION 1S5 AC-
TUALLY MULTIPLIED BY 3, THE ANSWER IS NOT ACTUALLY ONE, BUT APPROACHES

5~-18

THAT VALUE AS THE NUMBFR OF SIGNIFICANT DIGITS USFD IN THE CALCULATION
1S INCRFASED. OBSERVF.,

#.3 (ONF SIGNIFICANT DIGIT USED)
X 3

»9 (ANSWFR IS OFF BY 10%)

.33 (TWO SIGNIFICANT DIGITS USED)
X 3

«99 (ANSVER IS OFF BY 1%

#.333 (THRFF SIGNIFICANT DIGITS USFD)
X 3

«999 (ANSVFR IS OFF BY 8.1%2)

A SIMILAR SITUATION EXISTS VWITH BINARY ARITHMETIC EXCFPT THERF ARF
NOW MANY MORF CASFS WHERFE THF *“NON-FNDING" FRACTION SITUATION CAN OCCUR.
FOR INSTANCF, THF VALUF @.1 IS TRULY REPRFSENTED IN THFE DFCIMAL SYSTFM,
BUT IN THE BINARY SYSTFM, THE DECIMAL VALUE @.1 CAN ONLY BF APPROXIMAT-
FD - AND SIMILARLY TO THF ABOVE, THE MORE BINARY DIGITS USED, THF CLOSER
THE VALUF APPROACHES THE TRUF VALUF OF #.1. OBSFRVF,

USING 4 BINARY DIGITS = 9.,0001 = /16 = ,A625 (OFF 37.5%)
9 DIGITS = @.000110011 = 1/16 + 1/32 + 1/256 + 1/512 = .08996 (OFF .4%)
NOTE TOO, THAT THE BINARY REPRESENTATION IS A NON-ENDING SFRIFS:

@.1 DECIMAL = 0.000110011001100110011004110011088... (BINARY)

AND CAN NOT RFACH THF THFORETICAL TRUE VALUE OF @.1 AS IN THE DFCIMAL
SYSTEM. THUS, IF @.1 AS REPRFSFNTED IN THE BINARY SYSTEM IS MULTIPLIED
BY, SAY 18, (VHICH CAN BF TRULY RFPRESENTFD IN THF BINARY SYSTFM!) THE
THEORETICAL VALUE OF 1.0 CAN ONLY BF APPROACHFD, AND THF MORF BITS USFD
TO HOLD THE BINARY EQUIVELANT, THE CLOSER ONE CAN APPROACH THF TRUF ANS-
WFR. THUS, ONE CAN SEE ANOTHER RFASON FOR USING MULTIPLE~PRFCISION
ARITHMETIC IN A DIGITAL COMPUTER EVEN IF ONF DOFS NOT WANT TO HANDLE BIG
NUMBERS! THIS IS BECAUSF THE MORE BITS AVAILABLE TO STORE A FRACTIONAL
NUMBFR - THE MORE "PRECISION* ONE CAN MAINTAIN IN PERFORMING CALCULA~-
TIONS. ONF SHOULD NOW ALSO RFALIZFE, THAT THE MORE COMPLEX A SERIES OF
MATHFMATICAL OPERATION BECOMES, IN OTHER WORDS, THF MORF TIMFS A NUMBEFR
THAT CAN NOT TRULY BF REPRESENTED IS MULTIPLIED OR DIVIDED, THE WIDER
WILL BECOME THE MARGIN OF ERROR IN THE FINAL ANSWER!

NOW THAT ONE HAS A GRASP OF HOW BINARY NUMBFRS CAN RFPRFSFNT FRAC-
TIONAL NUMBERS WHFN PLACED TO THE RIGHT OF A DECIMAL POINT, ONF CAN PRO~-
CFED TO INVESTIGATE *"FLOATING=POINT" ARITHMETIC USING A DIGITAL COM=-
PUTER.

FLOATING~POINT ARITHMETIC

JUST AS ONE CAN REPRFSFNT DECIMAL NUMBERS IN FLOATING-POINT FORMAT,
I.F.» A STRING OF SIGNIFICANT DIGITS RAISED TO A POWER OF 18, ONE CAN
ALSO TRFAT BINARY NUMBFRS IN A SIMILAR MANNFR AS A STRING OF BINARY
DIGITS RAISED TO A POWER OF 2,

5« 11

WHEN HANDLING NUMBERS IN FLOATING-POINT FORMAT THE NUMBER 1S - REPRE-
SENTED AS TWO PARTS. THE "SIGNIFICANT DIGITS' PORTION 1S REFERRED TO AS
THE "MANTISSA" AND THE POVWFR TO WHICH THE NUMBER 1S TO BE RAISED IS RE-
FERRED TO AS THE "FXPONENT.” IN DECIMAL FLOATING-POINT FORMAT THE NUM-
BER *5" COULD BE EXPRESSED AS:

S.4 E+8 = 5 X 1 = 5

OR s8.® E-1 = 5@ X 1/16 = 5

OR 8.5 E+1l = #g.5 X 10 = 5

WHILE IN BINARY FLOATING-POINT FORMAT THE SAME NUMBER COULD BE FXPRESSED
AS:

101.8 E+@ = S5 X 1 = 5
OR 101008.6 E-3 = 40 X 1/8 = 5

OR #.101 E+3 = 5/8 X 8 = 5

NOTE THAT THE '"MECHANICS'" OF THE CORRESPONDENCE BETWEEN THE EXPONENT
AND THE LOCATION OF THE DECIMAL POINT IN THE MANTISSA IS THE SAME FOR
BOTH NUMBERING SYSTEMS. IF THE SIGNIFICANT DIGITS ARE MOVED TO THE
RIGHT OF THE DECIMAL POINT THEN THE EXPONENT IS INCREASED A UNIT FOR
FACH POSITION THE MANTISSA IS SHIFTED. IF THE DIGITS IN THE MANTISSA
ARE SHIFTED TO THE LEFT, THEN THE EXPONENT IS DFCRFASED. THE ONLY DIFF-
FRENCE BETWEEN THE TWO SYSTEMS 1S THAT THE EXPONENT IN THE DECIMAL SYS-
TEM 1S SPFCIFIED FOR POWERS OF 108, WHILE IN THE BINARY SYSTEM IT IS FOR
POWERS OF 2.

THE READFR SHOULD NOW SEE THAT IT CAN BE QUITE A SIMPLE MATTER TO
HANDLE BINARY NUMBERS USING A FLOATING-POINT FORMAT 1F ONE SIMPLY AR~
RANGES TO KEEP TABS ON THE "EXPONENT" PORTION IN ONE REGISTER (OR REGIS-
TERS) AND MAINTAINS THE "MANTISSA* PORTION IN ANOTHER RFEGISTER (OR SEV-
FRAL REGISTERS FOR MORE PRECISION). FURTHERMORE, A VERY SIMPLE RELA-
TIONSHIP CAN BE MAINTAINED BETWEEN THE MANTISSA AND THE EXPONENT TO
FACILITATE KEFPING TRACK OF A "DECIMAL" POINT. ONCE ONE HAS SELECTED
A GIVEN POSITION AS A REFERENCE JUNCTION IN THE MANTISSA PORTION., ONE
HAS ONLY TO OBSFRVE THE FOLLOWING PROCEDURE FOR MANIPULATING THE NUMBER
AND KEEPING TRACK OF THE "DECIMAL' POINT:

FACH TIME THE MANTISSA IS SHIFTED TO THE RIGHT - INCREMENT THE EXPONENT!

FACH TIME THE MANTISSA IS SHIFTED TO THE LEFT - DECREMENT THE EXPONENT!

FOR THE REMAINDER OF THIS CHAPTER, A CONVENTION FOR STORING NUMBERS
IN FLOATING-POINT FORMAT WILL BE ESTABLISHED. NUMBERS WILL BE STORED IN
FOUR CONSECUTIVE WORDS IN MEMORY. THE FIRST WORD IN A GROUP WILL BE
USED TO STORE THE "“EXPONENT" WITH THE MOST SIGNIFICANT BIT IN THE WORD
USED TO REPRESENT THE *SIGN" OF THE EXPONENT. A "1 IN THE MOST SIGNI-
FICANT BIT POSITION MEANS THE NUMBER 1S “NEGATIVE." THE NEXT THREE
WORDS WILL THEN HOLD THE *"MANTISSA' PORTION IN TRIPLE-PRECISION FORMAT,
WITH THE FIRST BIT IN THE FIRST WORD OF THE MANTISSA BEING USED AS THE
“SIGN" BIT. THE REMAINING BITS IN THAT WORD WILL BE THE MOST SIGNIFI-

s - 12

CANT BITS OF THE NUMBFR. THE REMAINING TWO WORDS IN A GROUP WILL HOLD
THE LESS SIGNIFICANT BITS OF THE MANTISSA. FURTHERMORE, THERE WILL BE
AN IMPLIED “DECIMAL" POINT IMMEDIATELY TO THE RIGHT OF THE *SIGN" BIT
IN THE MANTISSA. THE FORMAT IS ILLUSTRATED HERE:

ee e EXPONENT s 0o e OQ...0"5"0..0000.0.000MANTISSA...Q.OOOQ...I.LSV...COO
* t t *
SEEETETETESTE Se MMMMMMM MMMMMMMM MMMMMMMM
t * 4 1 b 4 * 4 t
MEM LOC ""N+3" MEM LOC “N+2" MEM LOC “N+1©v MEM LOC *“N*"

NOTE THE ORDER OF THE MEMORY ADDRESSES ASSIGNED TO THE STORAGE OF A
NUMBER. AS IN THE PAST, THE ORDER OF STORAGE 1S AN ARBITRARY ASSIGNMENT
BUT ONCE IT HAS BEEN ASSIGNED IT MUST BE ADHERED TO WITHIN A PROGRAM.
THE ORDER SHOWN IS THE ONE THAT WILL BE USED IN THE DISCUSSION AND PRO-
GRAM EXAMPLES USED FOR THE REMAINDER OF THIS SECTION.

NOTE T0O, THAT A CONVENTION HAS BEEN ESTABLISHED THAT WILL CONSIDER
A “DECIMAL POINT' (ACTUALLY, PERHAPS IT SHOULD BE TERMED A "“BINARY"
POINT) TO BE LOCATED TO THE RIGHT OF THE DESIGNATED *SIGN" BIT FOR THE
MANTISSA. THIS MEANS THAT ALL NUMBERS STORED IN FLOATING~-POINT FORMAT
WILL BE REPRESENTED AS A FRACTIONAL NUMBER! ALSO, THE READER CAN SEE
THAT WITH ONE BIT OUT OF THE THREE WORDS USED TO STORE THE MANTISSA USED
TO HOLD THE "SIGN' OF THE MANTISSA, THAT 23 (DBECIMAL) BITS ARE LEFT TO
HOLD THE ACTUAL MAGNITUDE OF THE MANTISSA. SIMILARLY, THE EXPONENT HAS
7 BITS WITH WHICH TO REPRESENT THE MAGNITUDE OF IT'S VALUE. FURTHER-
MORE, AN EXPONENT MUST BE AN INTEGER VALUE AS THERE WILL BE NO IMPLIED
“DECIMAL POINT'" IN THE EXPONENT REGISTER.

FLOATING=-POINT NORMALIZATION

“NORMALIZATION" CAN BE CONSIDERED AS A “STANDARDIZING" PROCESS THAT
WILL PLACE A NUMBER INTO A FIXED POSITION AS A REFERENCE POINT FROM
WHICH TO COMMENCE OPERATIONS. FOR THE PURPOSES OF THIS DISCUSSION, THE
TERM "NORMALIZATION" WILL MEAN TO PLACE A NUMBER INTO ITS STORAGE REGI~-
STERS SO THAT THE "MANTISSA"™ WILL HAVE A VALUE THAT IS GREATER THAN OR
FRUAL TO "1/2" BUT LESS THAN "1." PUT ANOTHER WAY, THIS MEANS THAT ANY
NUMBER TO BE MANIPULATED BY A "FLOATING=-POINT ROUTINE" WILL FIRST BE
SHIFTED SO THAT THE MOST SIGNIFICANT BINARY DIGIT IS NEXT TO THE IMPLIED
“BINARY" POINT IN THE MOST SIGNIFICANT WORD OF THE MANTISSA STORAGE REG-
ISTERS. FOR INSTANCE IF A BINARY NUMBER SUCH AS:

101.8 E+@ (DECIMAL 5)

WAS RECEIVED BY AN INPUT ROUTINE TO A FLOATING-POINT PROGRAM, THE NUMBER
WOULD BE "NORMALIZED" WHEN IT WAS PLACED IN THE FORM:

@.161 E+3 (WHICH IS 5/8 X 8 = 5 DECIMAL!)

SIMILARLY, IF AFTER SAY A BINARY DIVISION OPERATION IN WHICH THE NUMBER
1 HAD BEEN DIVIDED BY 18 (DECIMAL) AND ONE HAD THE ANSVER:

0.000119011001108... E+@ (DECIMAL B.1)
THE NUMBER WOULD BE CONSIDERED NORMALIZED WHEN IT WAS IN THE FORMAT:

$.1100110011001106.. E-3 (DECIMAL 0G.1)

§ - 13

NOTE THAT *NORMALIZING" A NUMBFR-IS A PRETTY FASY MATTFR. IN THE
FIRST EXAMPLE ABOVE THF NUMBFR WAS NORMALIZED BY SHIFTING THE ORIGINAL
NUMBFR TO THE RIGHT UNTIL THF MOST SIGNIFICANT BIT WAS JUST TO THE RIGHT
OF THE DFCIMAL POINT, WHILF INCREMENTING THE 'EXPONENT" FOR EACH SHIFT
OPFRATION. IN THE SFCOND FXAMPLE, THE NUMBER IS SHIFTED IN THE REVFRSE
DIRECTION WHILF DECREMENTING THE EXPONENT.

THFRF ARF SFUFRAL REASONS FOR WANTING TO '"NORMALIZE" A NUMBFR WHFN
WORKING WITH A FLOATING-POINT PROGRAM. THE FIRST HAS TO DO WITH THE
FACT THAT GENFRALLY NUMBERS WILL ORIGINATE FROM A HUMAN WHO WILL BE US~-
ING THE COMPUTER TO MANIPULATE NUMBFRS IN DECIMAL FORMAT AND THEREFORE
THE COMPUTER WILL HAVE TO CONVERT NUMBFRS FROM SAY, A DECIMAL FLOATING=-
POINT FORMAT, TO THF BINARY FORMAT USED BY THF COMPUTER. THERF WILL BE
MORF DISCUSSION ON THIS MATTER LATEFR IN THIS CHAPTFR AFTER A NUMBER OF
BINARY FLOATING-POINT OPERATIONS HAVE BEEN PRESFNTED. THE SECOND RFASON
FOR NORMALIZING NUMBFRS, AND A VFRY IMPORTANT ONE, 1S BFCAUSE THE PROC-
ESS WILL ALLOW MORE SIGNIFICANT BINARY DIGITS TO BF RETAINED IN A FIXED
LENGTH REGISTFR. THIS CAN BE SEEN BY OBSFRVING IN THE ABOVE EXAMPLE OF
THE CASE WHERE @.1 DFCIMAL IS NORMALIZED, THAT SHIFTING THE BINARY NUM-
BFR TO THE LEFT THREE PLACES WOULD ALLOW SEVFRAL MORF LEAST SIGNIFICANT
BITS TO BE PLACED IN A FIXED LENGTH REGISTER FOR THF NON-ENDING BINARY
SFRIES OF "0.110011001100..." AND THUS ALLOW MORE ACCURACY IN THE BINARY
CALCULATIONS THAT MIGHT FOLLOW!

A ROUTINE FOR "NORMALIZING" BINARY NUMBERS WILL BE PRESENTED SHORT=-
LY. IN THE ROUTINE FOR "NORMALIZING" NUMBERS, AND VARIOUS OTHER MATH-
EMATICAL ROUTINFES IN THIS CHAPTFR, VARIOUS LOCATIONS ON PAGE 908 WILL BE
USED FOR STORING NUMBFRS THAT ARE TO BE MANIPULATED BY THF ROUTINFS AS
WELL AS HOLDING '*COUNTERS"™ AND "POINTERS" IN MEMORY LOCATIONS. A LIST
OF THE LOCATIONS USED WILL BE PROVIDED LATER. ALSO, BFFORF GETTING IN-
TO THE ACTUAL BINARY FLOATING-POINT ROUTINES, THE RFADFR SHOULD BE IN=-
FORMED THAT IN THF FOLLOWING ROUTINES, REFFRENCES WILL BE MADE TO A
“FLOATING=-POINT ACCUMULATOR" AND 'FLOATING-POINT OPFRAND.'" THE FLOAT-
ING-POINT ACCUMULATOR AND OPFRAND WILL BE SEPARATE GROUPS CONSISTING OF
FOUR CONSECUTIVE MEMORY WORDS ON PAGE 8@ USFD TO STORE THE "ACTIVE" NUM-
BERS THAT ARF MANIPULATED BY THE FLOATING-POINT ROUTINES. THEY WILL, OF
COURSE, BE ARRANGFED IN THE FORMAT DESCRIBED FARLIER OF A SINGLE MEMORY
WORD "EXPONENT' AND A TRIPLE-PRECISION "MANTISSA." THE "FLOATING-POINT
ACCUMULATOR" WILL BE THE FOCAL POINT FOR ANY FLOATING-POINT ROUTINE AS
ALL THE RESULTS OF FLOATING-POINT CALCULATIONS WILL BE PLACED THERE.
THE “FLOATING=-POINT OPFRAND" WILL BE USED PRIMARILY FOR HOLDING AND MAN-
IPULATING THE NUMBER THAT THE FLOATING-POINT ACCUMULATOR OPFRATES ON.
FOR BRFVITY IN FURTHER DISCUSSIONS, THE FLOATING=-POINT ACCUMULATOR WILL
BE ABBREVIATED AS "FPACC" AND THE FLOATING-POINT OPERAND AS ‘' FPOP."

MNEMONIC COMMENTS
FPNORM, LAB /CHFCK REGISTER *B'" FOR SPECIAL CASE
NDA /SET FLAGS AFTER LOAD OPFRATION
JTZ NOEXCO /IF *“B* WAS @, DO STANDARD NORMALIZATION
LLI 127 /O0THERWISE SET EXPONENT OF FPACC
LMB /TO VALUF FOUND IN “B" AT START OF RTN
NOEXCO, LLI 126 /SET POINTER TO MSW OF FPACC MANTISSA
LAM /AND GET MSW OF FPACC MANTISSA INTO ACC
LLI 109 /CHANGE POINTER TO '"SIGN" STORAGF ADDRESS
NDA /SET FLAGS AFTER PREVIOUS *"LAM'" OPFRATION
JTS ACCMIN /SEE IF MSB IN MSW = |, YES = MINUS #
XRA /1F MSB = 0, HAVE POSITIVE VALUE MANTISSA
LMA /750 SET "SIGN'" STORAGE TO 080

5 - 14

MNEMONIC COMMENTS

JMP ACZERT /PROCEED TO SEE IF FPACC = ZERO

ACCMIN, LMA /O0R1G FPACC = NEG #, PUT DATA IN "SIGN"
LBI 064 /SET PRECISION CNTR TO 4 (USE EXTRA WORD)
LLI 123 /AND PNTR TO FPACC LSW-1 (USE EXTRA WORD)
CAL COMPLM /TW0O'S COMPLEMENT FPACC + 1 EXTRA MEM WORD
ACZERT, LLI 126 /CHECK TO SEE IF FPACC CONTAINS ZERO
LBl @064 /SET A COUNTER
LOOK8, LAM /GET A PART OF FPACC
NDA /SET FLAGS AFTER LOAD OPERATION

JFZ ACNONZ /IF FIND ANYTHING THEN FPACC IS NOT ZERO

DCL /OTHERWISE MOVE POINTER TO NEXT PART

DCB /DECREMENT THE LOOP COUNTER

JFZ LOOK®@ /AND 1F NOT FINISHED CHECK NEXT PART

LLI 127 /1F REACH HERE FPACC WAS ZERO

XRA /S0 MAKE SURE EXPONENT OF FPACC 1S ALSO

LMA /ZERO BY PUTTING ZERO IN IT!

RET /CAN THEN EXIT THE NORMALIZATION ROUTINE
ACNONZ, LLI 123 /71F FPACC HAS VALUE, SET UP POINTERS

LBl 204 /AND "PRECISION" VALUE (P = 4 TO HANDLE

CAL ROTATL /SPECIAL CASES) AND ROTATE FPACC L EF T

LAM /THEN GET MSB OF MSW IN MANTISSA

NDA /SET FLAGS AFTER LOAD OPERATION

JTS ACCSET /1F MSB = 1, HAVE FOUND MSB IN FPACC

INL /1F NOT, ADUVANCE PNTR TO FPACC EXPONENT

CAL CNTDWN /AND DECREMENT THE VALUE OF THE EXPONENT
JMP ACNONZ /THEN CONTINUE IN THE ROTATING LEFT LOOP

ACCSET, LLI 126 /COMPENSATE FOR LAST ROTATE LEFT WHEN MSB

LBl @03 /FOUND TO LEAVE ROOM FOR '"SIGN" IN MSB OF
CAL ROTATR /FPACC MANTISSA BY DOING ONE ROTATE RIGHT
., LLI 160 /SET POINTER TO ORIGINAL *"SIGN' STORAGE
LAM /GET ORIGINAL "SIGN" INDICATOR

NDA /SET FLAGS AFTER LOAD OPERATION

RFS /FINISHED AS VALUE IN FPACC IS POSITIVE
LLI 124 /0RIG "SIGN*" NEGATIVE, SO SET PNTR TO LSW
LBl 083 /0F FPACC AND SET PRECISION COUNTER

CAL COMPLM /TWO'S COMPLEMENT THE NORMALIZED FPACC

RET /THAT'S ALL FOR "NORMALIZATION"

THERE ARE SEVERAL ITEMS IN THE ABOVE ROUTINE THAT MIGHT CONFUSE THE
READER IF NOT EXPLAINED. FIRST OF ALL, THE ROUTINE FIRST CHECKS CPU
REGISTER “B" WHEN IT 1S ENTERED. IF "B* CONTAINS ©0€@ THEN THE ROUTINE
WILL PROCEED ON TO THE NEXT PART OF THE PROGRAM. IF "B" CONTAINS SOME
NON-ZERO VALUE, THEN THAT VALUE WILL BE PLACED IN THE EXPONENT PORTION
OF THE FPACC. THIS WAS DONE SO THAT THE " FPNORM" SUBROUTINE COULD HAN-
DLE NUMBERS THAT WERE NOT IN FLOATING-POINT FORM. FOR INSTANCE, WHEN A
NUMBER IS FIRST RECEIVED FROM AN INPUT DEVICE IT WILL GENERALLY BE IN A
FORM SUCH AS THE EXAMPLE FOR THE BINARY EQUIVELENT OF 5 (DECIMAL) AS
ILLUSTRATED:

00 000 000 00 006 Gﬂﬂk 00 000 101}

WHEN IN TRIPLE-PRECISION FORMAT. NOW THE ABOVE FORMAT COULD BE CONVERT=-
ED TO THE DESIRED FLOATING-POINT FORMAT BY ASSUMING A “BINARY" POINT
EXISTED TO THE RIGHT OF THE LEAST SIGNIFICANT BIT, AND SHIFTING THE EN-
TIRE NUMBER TO THE RIGHT WHILE INCREMENTING THE BINARY EXPONENT REGI~
STFR. HOWEVER, THE TECHNIQUE WOULD CAUSE A SLIGHT PROBLEM. HOW COULD
ONE TELL WHERE THE MOST SIGNIFICANT BIT OF THE BINARY NUMBER WAS? A WAY

5 =15

AROUND THAT PROBLEM IS TO SIMPLY SHIFT THE REGISTERS TO THE LEFT UNTIL
THE FIRST "1* (MOST SIGNIFICANT BIT) IS IN THE DESIRED POSITION. IF
THIS 1S DONE, ONE MUST FIRST SET THE “EXPONENT" TO THE HIGHEST POSSIBLE
VALUE THAT COULD BE CONTAINED IN THE REGISTERS AND THEN DECREMENT THAT
VALUE FOR EACH SHIFT TO THE LEFT., REMEMBERING EARLIER THAT THERE ARE
23 (DECIMAL) BITS AVAILABLE FOR STORING THE MANTISSA WHEN TRIPLE-PRECI-
SION FORMATTING IS BEING USED (AS ONE BIT 1S RESERVED FOR THE *SIGN" OF
THE NUMBER) THEN ONE WOULD SIMPLY LOAD REGISTER "“B' WITH 27 (OCTAL WHICH
IS 23 DECIMAL) BEFORE CALLING THE *“FPNORM" ROUTINE IF THE NUMBER TO BE
NORMALIZED WAS NOT IN FLOATING-POINT FORMAT. THE FOLLOWING ILLUSTRA=-
TIONS SHOULD CLARIFY THE MATTER.

ORIGINAL NUMBER WHICH IS NOT IN FLOATING~-POINT FORMAT
20 ﬁﬂﬁ 000 00 980 000 00 000 101
DESIRED FLOATING=-POINT FORMAT
SE EEE EEE S.M MMM MMM MM MMM MMM MM MMM MMM
ORIGINAL NUMBER PLACED IN FPACC AND EXPONENT SET TO 27 (OCTAL)
00 2106 111 0.0 000 000 e 000 000 00 000 060
ORIGINAL NUMBER 1S THEN NORMALIZED BY ROTATING LEFT

.86 008 211 6.1 2010 000 02 000 000 09 000 000

SINCE THE EXPONENT WAS DECREMENTED EACH TIME THE NUMBER WAS ROTATED LEFT
THE FINAL EXPONENT VALUE IS THE SAME AS IF THE NUMBER HAD BEEN ROTATED
TO THE RIGHT TO ACCOMPLISH THE NORMALIZATION!

THE READER SHOULD ALSO NOTE THAT THE ' FPNORM" ALSO CHECKS TO SEE IF
THE NUMBER TO BE NORMALIZED IS NEGATIVE. 1IF IT IS, THE ROUTINE KEEPS
TRACK OF THAT FACT AND MAKES THE NUMBER POSITIVE IN ORDER TO ACCOMPLISH
THE NORMALIZATION PROCEDURE. IF IT DID NOT, THE NORMALIZATION ROUTINE
WOULD NOT WORK AS CAN BE SEEN WHEN ONE RECALLS WHAT A NUMBER SUCH AS
MINUS S5 APPEARS LIKE IN IT'S TWO'S COMPLEMENT FORM:

11 111 111 11 111 111 11 111 @11

AFTER THE NUMBER HAS BEEN NORMALIZED IN IT'S POSITIVE FORM, IT IS CON=~
VERTED BACK TO THE NEGATIVE FORM SO THAT THE NUMBER MINUS 5 WOULD APPEAR
WHEN NORMALIZED AS:

00 000 011 1.0 116 000 00 000 VOO 0o 000 0080

THE READER SHOULD WORK THROUGH THE PROCEDURE USING PENCIL AND PAPER TO
MAKE SURE THE PROCESS IS UNDERSTOOD FOR HANDLING NEGATIVE NUMBERS AS IT
CAN BE CONFUSING AT FIRST GLANCE. NOTE THAT THE NORMALIZED MINUS VALUE
HAS THE MOST SIGNIFICANT BIT POSITION IN THE MANTISSA SET TO A "1" TO
INDICATE A NEGATIVE VALUE!

ANOTHER POINT OF INTEREST IN THE "“FPNORM" ROUTINE IS THAT THE ROUT~-
INE TESTS TO SEE IF THE FPACC CONTAINS ZERO. NOTE THAT IF THIS TEST WAS
NOT MADE AND APPROPRIATE ACTION TAKEN TO EXIT THE ROUTINE, THAT THE
ROUTINE WOULD BECOME "HUNG-UP*" IN THE ROTATE LEFT LOOP AS IT WOULD FAIL
TO EVER SEE A '"1' APPEAR IN THE MOST SIGNIFICANT BIT POSITION! WHEN A
ZERO CONDITION 1S FOUND IN THE MANTISSA, THE ROUTINE SETS THE EXPONENT

5« 16

PART OF THE FPACC TO ZERO AS AN ADDITIONAL MEASURE.

FINALLY, THE READER WILL NOTE THAT THE FIRST PART OF THE NORMALIZA-
TION ROUTINE ASSUMES THE MANTISSA USES FOUR MEMORY WORDS - THIS WAS DONE
SO THAT THE ROUTINE COULD HANDLE SOME SPECIAL CASES THAT CAN OCCUR AFTER
OPERATIONS SUCH AS MULTIPLICATION WHERE IT IS NECESSARY TO HAVE SOME AD-
DITIONAL "PRECISION."” IN CASES WHERE THE FEATURE IS NOT NEEDED, THE EX-
TRA MEMORY WORD SHOULD BE SET TO 280 BEFORE USING THE " FPNORM" ROUTINE.

THE "ROTATL" AND "ROTATR" SUBROUTINES CALLED BY " FPNORM" ARE SHORT
ROUTINES THAT HAVE BEEN SET UP FOR "NTH-PRECISION" OPERATION AS WITH
OTHER ALGORITHMS DISCUSSED IN THIS CHAPTER. BEFORE ENTERING THE ROUT-
INES THE CALLING PROGRAM SETS THE STARTING ADDRESS OF THE STRING OF MEM-
ORY WORDS TO BE PROCESSED IN THE "H & L REGISTERS AND THE NUMBER OF
WORDS IN THE STRING IN REGISTER "B." THE TWO ROUTINES ARE SHOWN BELOV.

MNEMONIC COMMENTS
ROTATL, NDA /CLEAR CARRY FLAG AT THIS ENTRY POINT
ROTL., LAM /FETCH WORD FROM MEMORY
RAL /ROTATE LEFT (WITH CARRY)
LMA /RESTORE ROTATED WORD TO MEMORY
;s DCB /DECREMENT "PRECISION" COUNTER
RTZ /RETURN TO CALLING ROUTINE WHEN DONE
INL /O0THERWISE ADVANCE PNTR TO NEXT WORD
JMP ROTL /AND ROTATE ACROSS THE MEM WORD STRING
ROTATR, NDA /CLEAR CARRY FLAG AT THIS ENTRY POINT
ROTR, LAM /FETCH WORD FROM MEMORY
RAR /ROTATE RIGHT (WITH CARRY)
LMA /RESTORE ROTATED WORD TO MEMORY
DCB /DECREMENT "“PRECISION* COUNTER
RTZ. /RETURN TO CALLING ROUTINE WHEN DONE
DCL /GOING OTHER WAY SO DECREMENT MEM PNTR
JMP ROTR /AND ROTATE ACROSS THE MEM WORD STRING

FLOATING~-POINT ADDITION

FLOATING-POINT ADDITION IS QUITE STRAIGHT FORWARD, AND IN FACT ONE
CAN USE THE “ADDER" ROUTINE ALREADY DEVELOPED EARLIER IN THIS CHAPTER
FOR THE MANTISSA PORTION OF A SET OF FLOATING-POINT NUMBERS. HOWEVER,
THERE ARE A FEW OTHER PARAMETERS THAT MUST BE CONSIDERED IN DEVELOPING
THE OVER=-ALL ROUTINE.

WHEN TWO NUMBERS ARE TO BE ADDED IT WILL BE ASSUMED THAT THEY HAVE
BEEN POSITIONED IN THE “FPACC™ AND THE “FPOP" MEMORY STORAGE AREAS. A
FEV ITEMS THAT SHOULD BFE CONSIDERED IN DEVELOPING THE BASIC FLOATING-
POINT ADDITION ROUTINE INCLUDE THE FOLLOWING.

SUPPOSE EITHER THE "FPOP" OR “FPACC" CONTAIN ZERO? OR THEY BOTH
CONTAIN ZERO? IN THE LATTER CASE THE ROUTINE COULD BE IMMEDIATELY EXIT-
ED AS THE ANSWER IS SITTING IN THE “FPACC." IF THE "FPACC" IS ZERO, BUT
THE " FPOP" IS NOT, THEN ONE HAS MERELY TO PLACE THE CONTENTS OF THE
“FPOP" INTO THE “FPACC" (AS THE CONVENTION WAS ESTABLISHED EARLIER THAT
THE "RESULT" OF AN OPERATION WOULD ALWAYS BE LEFT IN THE "FPACC"). AND,
FOR THE CASE WHERE THE "FPACC" CONTAINS A VALUE, BUT THE "FPOP" IS ZERO,
ONE CAN AGAIN IMMEDIATELY EXIT THE ROUTINE.

5 - 17

BUT, AS WILL MORE LIKELY BE THE CASE WHEN THE FLOATING-POINT ADD
ROUTINE IS CALLED, BOTH THE "FPACC' AND THE "FPOP" WILL CONTAIN SOME
NON-ZERO VALUE, AND THUS ONE COULD IMMEDIATELY PROCEED TO PERFORM THE
ADDITION OPERATION, RIGHT? WRONG! SINCE FLOATING-POINT OPERATIONS AL~
LOW THE MANIPULATING OF LARGE MAGNITUDES OF NUMBERS, BECAUSE OF THE EX~-
PONENT METHOD OF MAINTAINING MAGNITUDES, IT IS QUITE POSSIBLE THAT AN
OPERATOR MIGHT ASK FOR AN ADDITION OF A VERY SMALL NUMBER TO A VERY
LARGE NUMBER (OR THIS MIGHT OCCUR IN THE MIDDLE OF A VERY COMPLEX CALCU-
LATION WHERE AN OPERATOR DOES NOT SEE THE INTERMEDIATE RESULTS). HOW-
EVER, READERS KNOW THAT IF THE DIFFERENCE BETWEEN THE TWO NUMBERS TO BE
ADDED 1S $0 GREAT THAT THERE CAN BE NO CHANGE IN THE “SIGNIFICANT" DIG~
ITS IN THE CALCULATION (THE VALUE STORED IN THE MANTISSA) THEN THERE 1S
NJ USE IN PERFORMING THE ADDITION PROCESS! SO, THE NEXT STEP IN THE
FLOATING-POINT ADDITION ROUTINE WOULD BE TO CHECK 70 SEE WHETHER OR NOT
THE MAGNITUDES OF THE NUMBERS ARE WITHIN "SIGNIFICANT" RANGE OF ONE AN-
OTHER. IF THEY ARE NOT, THEN THE LARGEST VALUE SHOULD BE PLACED IN THE
“FPACC'' AS THE ANSVWER! '

IF THE MAGNITUDES OF THE TWO NUMBERS ARE WITHIN “SIGNIFICANT" RANGE
THEN THE TW0 NUMBERS MAY BE ADDED BUT BEFORE THIS CAN BE DONE, THEY MUST
FIRST BE "ALIGNED" BY SHIFTING ONE OF THE NUMBERS UNTIL THE * EXPONENT"
IS EQUAL IN MAGNITUDE WITH THE SECOND NUMBER. THE “ALIGNMENT'" IS ACCOM~-
PLISHED BY FINDING OUT WHICH EXPONENT IS THE SMALLEST AND SHIFTING THE
MANTISSA OF THAT NUMBER TO THE RIGHT (WHILE INCREMENTING THE EXPONENT
FOR EACH SHIFT) UNTIL IT IS PROPERLY ALIGNED. THE SHIFTING PROCEDURE IS5
QUITE STRAIGHT-FORWARD SINCE IT CAN BE HANDLED BY A “"NTH-PRECISION'" REG-
ISTER ROTATE OPERATION. HOWEVER, THERE IS ONE SPECIAL CONSIDERATION FOR
THE CASE OF A NEGATIVE NUMBER BEING SHIFTED TO THE RIGHT - ONE MUST IN-
SERT A 1" INTO THE MOST SIGNIFICANT BIT POSITION EACH TIME A SHIFT 1S
MADE IN ORDER TO MAINTAIN THE "MINUS" VALUE PROPERLY (AND KEEP THE SIGN
BIT IN IT'S PROPER STATE). THIS CAN BE ACCOMPLISHED EASILY AS THE READ-
R WILL SEE IN THE "FPADD" ROUTINE BY INSERTING A wlv INTO THE CARRY BIT
AND THEN CALLING THE "ROTR" SUBROUTINE WHICH IS SIMPLY ANOTHER ENTRY
POINT TO THE "ROTATR'.SUBROUTINE PRESENTED EARLIER (AVOIDING THE 'NDA"
ENTRY POINT IN THE ROUTINE WHICH WOULD CAUSE THE CARRY BIT TO BE SET TO
A @' CONDITION IF EXECUTED).

ONE MORE CONSIDERATION THAT THE READER WILL NOTE IN THE FOLLOWING
“EFPADD'" ROUTINE IS THAT THE TWO NUMBERS TO BE ADDED ARE SHIFTED TO THE
RIGHT ONCE BEFORE THE ADDITION IS PERFORMED SO THAT ANY OVER-FLOW FROM
THE ADDITION WILL STAY WITHIN THE "FPACC' THUS ALLOWING "NORMALIZATION"
T0 BE HANDLED BY THE PREVIOUSLY PRESENTED ROUTINE INSTEAD OF HAVING TO
BE CONCERNED WITH THE STATUS OF THE CARRY FLAG AT THE END OF THE OPERA~-
TION. BECAUSE OF THIS SHIFTING OPERATION, AN ADDITIONAL MEMORY WORD IS
USED BY BOTH THE "FPACC' AND “FPOP" AND THE ADDITION 1S PERFORMED USING
“QUAD-PRECISION." AT THE END OF THE ADDITION PROCESS THE RESULT IS
NORMALIZED AND LEFT IN THE “FPACC."

MNEMONIC COMMENTS
FPADD, LLI 126 /SET POINTER TO MSW OF FPACC
LBI 0063 /SET LOOP COUNTER
CKZACC, LAM /FETCH PART OF FPACC
NDA /SET FLAGS AFTER LOADING OPERATION
JFZ NONZAC /FINDING ANYTHING MEANS FPACC NOT ZERO .
DCB /1F THAT PART = @, DECREMENT LOOP COUNTER
JTZ MOVOP /1F FPACC = @, MOVE FPOP INTO FPACC
DCL /NOT FINISHED CHECKING, DECREMENT PNTR

JMP CKZACC /AND TEST NEXT PART OF FPACC

s - 18

MNEMONIC - COMMENTS

MOVOP, CAL SWITCH /SAVE POINTER TO LSW OF FPACC

LHD /SET "H* = @00 FOR SURE
LLI 134 /SET POINTER TO LSW OF FPOP
LBl 004 /SET A LOOP COUNTER
CAL MOVEIT /MOVE FPOP INTO FPACC = ANSVER
RET /EXIT FPADD
NONZAC, LLI 136 /SET POINTER TO MSW OF FPOP
LBI 863 /SET LOOP COUNTER
CKZOP, LAM /GET MSW OF FPOP
NDA /SET FLAGS AFTER LOAD OPERATION
JFZ CKEQEX /IF NOT © THEN HAVE A NUMBERI
DCB /1F 0, DECREMENT LOOP COUNTER
RTZ /EXIT RTN IF FPOP = ZERO
DCL /ELSE DECREMENT PNTR TO NEXT PART OF FPOP
JMP CKZOP /AND CONTINUE TESTING FOR ZERO FPOP
CKEQEX, LLI 127 /CHECK FOR EQUAL EXPONENTS
LAM /GET FPACC EXPONENT
LLI 137 /CHANGE POINTER TO FPOP EXPONENT
CPM /COMPARE EXPONENTS
JTZ SHACOP /IF SAME CAN SET UP FOR ADD OPERATION
XR1 377 /IF NOT SAME, TW0'S COMPLEMENT THE VALUE
ADI 001 /0F THE FPACC EXPONENT
ADM /AND ADD IN FPOP EXPONENT
JFS SKPNEG /1F + GO DIRECTLY TO ALIGNMENT TEST
XR1 377 /1F NEGATIVE PERFORM TWO'S COMPLEMENT
ADI @81 /0N THE RESULT
SKPNEG, CPl1 930 /NOV SEE IF RESULT GREATFR THAN 27 OCTAL
JTS LINEUP /I1F NOT CAN PERFORM ALIGNMENT
LAM /1F NOT ALIGNABLE GET FPOP EXPONENT
LLI 127 /SET POINTER TO FPACC EXPONENT
"SUM /SUBTRACT FPACC EXPONENT FROM FPOP EXP
RTS /FPACC EXP GREATER SO JUST EXIT RTN
LLY 124 / FPOP WAS GREATER, SET PNTR TO FPACC LSV
JMP MOVOP /GO PUT FPOP INTO FPACC & THEN EXIT RTN
LINEUP, LAM /ALIGN FPACC AND FPOP, GET FPOP EXP
LLI 127 /CHANGE POINTER TO FPACC EXP
SUM /SUBRTRACT FPACC EXP FROM FPOP EXP
JTS SHIFTO /FPACC GREATER SO GO TO SHIFT OPERAND
LCA / FPOP GREATER =~ SAVE DIFFERENCE
MORACC, LLI 127 /POINTER TO FPACC EXP
CAL SHLOOP /CALL SHIFT LOOP
DCC /DECREMENT DIFFERENCE COUNTER

JFZ MORACC /CONTINUE ALIGNING IF NOT DONE
JMP SHACOP /SET UP FOR ADD OPERATION

SHIFTO0, LCA /SHIFT FPOP RTN, SAVE DIFF CNT (NEG VAL)
MOROP, LLI 137 /SET POINTER TO FPOP EXPONENT
CAL SHLOOP /CALL SHIFT LOOP
INC /INCREMENT DIFFERENCE COUNTER
JFZ MOROP /SHIFT AGAIN IF NOT DONE
SHACOP, LL1 127 /SHIFT FPACC RIGHT ONCE - SET POINTER
CAL SHLOOP /CALL SHIFT LOOP
LLI 137 /SHIFT FPOP RIGHT ONCE - SET POINTER
CAL SHLOOP /CALL SHIFT LOOP :
LDH ' /SET UP POINTERS - “D" = @ FOR SURE
LEI 123 /POINTER TO LSW OF FPACC
LBI 0804 /SET PRECISION COUNTER
CAL ADDER /ADD FPACC TO FPOP QUAD-PRECISION
LBl 000 /SET *B" FOR STANDARD NORMALIZATION

S - 19

MNEMONIC COMMENTS

CAL FPNORM /NORMALIZE THE RESULT OF THE ADDITION

RET ZEXIT FPADD RTN WITH RESULT IN FPACC
SHLOOP, LBM /SHIFTING LOOP FOR ALIGNMENT

INB /FETCH EXPONENT INTO *B" AND INCREMENT IT

LMB /RETURN INCREMENTED VALUE TO MEMORY

DCL /DECREMENT THE POINTER

LBl 004 /SET A COUNTER

CAL FSHIFT /CALL SPECIAL SHIFT ROUTINE

RET /EXIT "SHLOOP"
FSHIFT, LAM /GET MSW OF FLOATING-POINT NUMBER

NDA /SET FLAGS AFTER LOADING OPERATION

JTS BRING! /1F # IS MINUS, NEED TO SHIFT IN A ™1"
CAL ROTATR /OTHERWISE PERFORM NTH=-PRECISION ROTATE

RET /EXIT "FSHIFT"
BRING1, RAL /SAVE "1*" IN CARRY BIT
CAL ROTR /D0 ROTATE WITHOUT CLEARING CARRY BIT
RET /EXIT “FSHIFT"
MOVEIT, LAM /FETCH A WORD FROM MEMORY STRING "A"
INL /ADVANCE "A* STRING POINTER
CAL SWITCH /SWITCH POINTERS TO STRING "B"
LMA /PUT WORD FROM STRING "A*" INTO STRING *B"
INL /ADVANCE "B'" STRING POINTER
CAL SWITCH /SVWITCH POINTERS BACK TO STRING "A"™
DCB /DECREMENT COUNTER
RTZ /RETURN TO CALLING RTN WHEN COUNTER = @

JMP MOVEIT /OTHERWISE CONTINUE MOVING OPERATION
FLOATING=POINT SUBTRACTION

NOW THAT ONE HAS A FLOATING-POINT ADDITION ROUTINE, FLOATING-POINT
SUBTRACTION IS A "SNAP." ALL ONE REALLY HAS TO DO IS NEGATE THE NUMBER
IN THE “FPACC" AND JUMP TO THE FLOATING-POINT APDITION ROUTINE!

MNEMONIC COMMENTS
FSUB, LLI 123 /SET POINTER TO LSW OF FPACC
' LBI 0064 /SET PRECISION COUNTER

CAL COMPLM /PERFORM TWO'S COMPLEMENT OF FPACC
JMP FPADD /SUBTRACTION ACCOMPLISHED NOW BY ADDING!

FLOATING=-POINT MULTIPLICATION

FLOATING-POINT MULTIPLICATION CAN BE ACCOMPLISHED BY UTILIZING A
“SHIFTING AND ADDING" ALGORITHM FOR THE MANTISSA PORTION OF THE NUMBERS.
AS POINTED OUT EARLIER, SHIFTING A BINARY NUMBER TO THE RIGHT SERVES TO
ESSENTIALLY "DOUBLE"” IT'S VALUE. AN ALGORITHM THAT TAKES ADVANTAGE OF
THAT FACT CAN BE DESCRIBED AS FOLLOVWS.

CONSIDER THE TWO NUMBERS AS A “MULTIPLIER" AND A “MULTIPLICAND."
EXAMINE THE LEAST SIGNIFICANT BIT OF THE “MULTIPLIER.™ IF IT IS A "i,"
ADD THE CURRENT VALUE OF THE "MULTIPLICAND" TO A THIRD REGISTER (WHICH
INITIALLY STARTS WITH A VALUE OF ZERO). NOW, SHIFT THE MULTIPLICAND ONE

§ - 20

POSITION TO THF LFFT. FXAMINF THF NFXT RIT TO THF LEFT OF THF L¥AST
SIGNIFICANT BIT IN THF MULTIPLIFR, IF IT IS A "1, ADD THF CURRFNT
VALUFE OF THF "MULTIPLICAND" TO THF THIRD REGISTFK (WHICH COULD BF CAL-
LED THE "PARTIAL=-PRODUCT' REGISTER). SHIFT THE MULTIPLICAND TO THE RIGHT
AGAIN. CONTINUF THFE PROCFSS BY FXAMINING ALL THF BITS IN THF MULTIPLIFF
FOR A 1" CONDITION. WHFNEUFR THF MULTIPLIFE CONTAINS A "1" ADD THF
CURRENT VALUF OF THF MULTIPLICAND TO THF¥ PARTIAL-PKODUCT REGISTER. AFTFR
FACH EXAMINATION OF A BIT IN THF MULTIPLIFR (AND ADDITION OF THF MULTI-
PLIFR TO THF PARTIAL-PRODUCT REGISTFR IF A "I1'" WAS OBSFRVED) SHIFT THF
MULTIPLICAND RIGHT. CONTINUF UNTIL ALL BITS.IN THE MULTIPLIFR HAVF BFEN
EXAMINFD. THF RFSULT OF THF MULTIPLICATION WILL BF IN THE PARTIAL-PKO-
DUCTS RFGISTFR AT THF COMPLFTION OF THE ABOVE PHOCESS. THE ALGOKRITHM
CAN PFRHAPS BF SFFN A LITTLF MORF CLFARLY BY STUDYING THF FLOW-CHART
PRFSFNTFD BFLOW,

CHFCK NFXT BIT
OF MULTIPLIFR

NO YFS
S ITA1l?

L v ~_
;

ADD MULTIPLICAND
TO PARTIAL~-PRODUCT

SHIFT MULTIPLI-
CAND RIGHT

-4

THE RFADFR CAN UFRIFY THF ALGORITHM BY FOLLOWING THF FXAMPLF BFLOW
MR TWO SMALL NUMBFERS - THE NUMBER 3 (DFCIMAL) AS THF MULTIPLICAND
AND THF NUMBFR 5 AS THF MULTIPLIER.

va boe a1l (MULTIPLICAND AT START OF OPFRATIONS)
A6 voe 101 (MULTIPLIER)
o A08 08 (PARTIAL PRODUCT BFFORF OPFRATIONS START)

5 - 21

00 000 @11 (MULTIPLICAND WHEN 1ST BIT OF MULTIPLIER
1S EXAMINED)

00 000 101 (LEAST SIGNFICANT BIT OF MULTIPLIER = 1)
00 00a 011 . (MULTIPLICAND 1S ADDED TO PARTIAL-PRODUCT)
08 000 110 (MULTIPLICAND IS SHIFTED TO THE RIGHT BE-
FORE SECOND BIT OF MULTIPLIER EXAMINED
00 00606 101 (SECOND BIT OF MULTIPLIER 1S ZERO)
008 068 011 (SO NOTHING 1S ADDED TO PARTIAL-PRODUCT)
00 001 100 (MULTIPLICAND IS SHIFTED TO RIGHT AGAIN
BEFORE NEXT BIT OF MULTIPLIER IS EXAMINED
00 006 101 (THIRD BIT OF MULTIPLIER IS A 1)
80 001 111 (SO MULTIPLICAND'S CURRENT VALUE IS ADDED

INTO THE PARTIAL-PRODUCT REGISTER. SINCE
ALL THE REMAINING BITS IN THE MULTIPLIER
ARE "@" NOTHING MORE WILL BE ADDED TO THE
PARTIAL-PRODUCT REGISTER WHICH THUS HOLDS
THE FINAL ANSWER!)

WHILE THE ABOVE ALGORITHM WAS PRESENTED FOR HANDLING NUMBERS IN REG=
ULAR FORMAT, WITH JUST A LITTLE VARIATION, THE BASIC PROCEDURE CAN BE
IMPLEMENTED FOR MULTIPLYING THE MANTISSA PORTION OF NUMBERS STORED IN
FLOATING-POINT FORMAT. A FLOW CHART OF THE MANTISSA MULTIPLYING PORTION
OF THE " FPMULT" ROUTINE TO BE PRESENTED SHORTLY 1S SHOWN ON THE NEXT
PAGE. NOTE THAT IT IS FASY TO TEST EACH BIT OF THE “"MULTIPLIER" BY SIM-
PLY ROTATING IT RIGHT AND TESTING THE STATUS OF THE CARRY FLAG AFTER THE
ROTATE OPERATION!

HANDLING THE EXPONENT PORTION WHEN MULTIPLYING TWO NUMBERS STORED IN
BINARY FLOATING-POINT FORMAT 1S ACCOMPLISHED THE SAME WAY ONE WOULD HAN-
DLE EXPONENTS IN DECIMAL FLOATING-POINT FORMAT. THE EXPONENTS ARE SIM=-
PLY ADDED TOGETHER.

THERE ARE SEVERAL OTHER PARAMETERS TO CONSIDER WHEN MULTIPLYING NUM-
BERS. FIRST, THE ALGORITHM PRESENTED MAY ONLY BE USED WHEN THE NUMBERS
ARE POSITIVE IN VALUE. THUS, ANY NEGATIVE NUMBERS MUST FIRST BE '"NEGA-
TED' BEFORE USING THE ALGORITHM. FURTHERMORE, THE READER KNOWS THAT IF
TWO NUMBERS OF THE SAME "SIGN' ARE MULTIPLIED TOGETHER THE ANSWER WILL
BE A POSITIVE VALUE, BUT IF THE "SIGNS" ARE DIFFERENT, THE ANSWER WILL
BE A NEGATIVE NUMBER. THEREFORE, ONE MUST KEEP ACCOUNT OF THE INITIAL
“SIGNS" OF THE NUMBERS BEING MULTIPLIED, AND IF THE ANSWER DICTATES, THE
FINAL VALUE MUST BE NEGATED AFTER USING THE ALGORITHM. AS THE READER
WILL OBSERVE IN THE “FPMULT" ROUTINE, HANDLING THIS TASK IS5 QUITE EASY.

SECONDLY, THE ALERT READER MAY HAVE OBSERVED THAT SINCE THE MULTI-
PLICAND IS SHIFTED IN THE ABOVE ALGORITHM (THE PARTIAL-PRODUCT REGISTER
1S SHIFTED IN THE FLOATING-POINT ALGORITHM TO ACCOMPLISH THE SAME PUR-
POSE) ONE POSITION FOR EACH BIT IN THE MULTIPLIER, THEN IT 1S NECESSARY
TO MAINTAIN "WORKING" REGISTERS THAT ARE TWICE AS LONG AS THE ORIGINAL
NUMBERS TO BE MULTIPLIED. THUS, THE FINAL ANSWER MAY CONTAIN MORE BITS
OF PRECISION THEN THE OVER=-ALL PROGRAM 1S DESIGNED TO HANDLE. IN THE
“FPMULT" ROUTINE, THE MULTIPLICATION OF THE MANTISSAS 1S ACCOMPLISHED
USING SIX MEMORY WORDS PER REGISTER. BUT, AT THE CONCLUSION OF THE ROU-
TINE, THE 23RD BINARY BIT IS "ROUNDED" OFF (DEPENDING ON THE STATUS OF

5 - 22

THE 24TH LEAST SIGNIFICANT BIT) AND THE ANSWER 1S NORMALIZED BACK TO A
23 BIT BINARY NUMBER WHICH 1S THE LARGEST NUMBER THE PACKAGE BEING DIS-
CUSSED 1S DESIGNED TO HANDLE. THE METHOD ALLOWS MAXIMUM PRECISION TO BE

MAINTAINED DURING THE MULTIPLICATION PROCESS.

SHIFT MULTIPLIFF
RIGHT (INTO CAWRKY)

NO YFS
CARRY = 1 ?

ADPD MULTIPLICAND
TO PAFTIAL-PFODUICT

y

SHIFT PARTIAL=-
PRODUCT KIGHT

CHFCKFD
ALL BITS IN
MULTIPLIFR?

YFS

NO

ANSUWFH IS STOKED IN
THF PARTIAL-FHOADUCT
RFEGISTER.

FLOATING-POINT MULTIPLICATION ALGORITHM FLOW CHART

MNEMONIC COMMENTS

FPMULT, CAL CKSIGN /SET UP ROUTINE AND CHECK SIGN OF #°'S

ADDEXP, LLI 137 /SET POINTER TO FPOP EXPONENT
LAM /FETCH FPOP EXPONENT INTO ACCUMULATOR
LLI 127 /SET POINTER TO FPACC EXPONENT
ADM /ADD FPACC EXP TO FPOP EXP

5 -~ 23

MNEMONIC

SETMCT,

MULTIP,

EXMLDV,

ADI
LMA
LLI1
LMl
LL1
LBI1
CAL
CTC
LLI
LBI
CAL
LLI
CAL
JFZ
LLI
LBI
CAL
LLI
LAM

RAL

RAL
NDA
CTS
LLI
CAL
LHD
LLI
LBl
CAL
LBl
CAL
LLI
LAM
NDA
RFZ
LLI
LBI

.CAL

CKSIGN,

OPSGNT,

NEGFPA,

RET
CAL
LLI
LMI
LLI
LAM
NDA
JTS
LLI
LAM
NDA
RFS
LLI
CAL
LLI
LB1
CAL
RET
LLI
CAL

001

182
0217
126
P03
ROTATR
ADOPPP
146
B0 6
ROTATR
182
CNTDWN
MULTIP
146
826
ROTATR
143

MROUND
123
SWITCH

143
oe4
MOVEIT
1010
FPNORM
161

124
003
COMPLM

CLRWRK
181
vol
126

NEGFPA
136

101
CNTDWN
134
603
COMPLM

101
CNTDWN

COMMENTS

/ADD ONE FOR ALGORITHM COMPENSATION
/STORE RESULT IN FPACC EXPONENT

/SET BIT COUNTER STORAGE POINTER

/SET BIT CNTR TO 23 DECIMAL (27 OCTAL)
/BASIC "X ALGORITHM - PNTR TO MSW FPACC
/SET PRECISION COUNTER

/ROQTATE MULTIPLIER RIGHT INTO CARRY FLAG
/1F CARRY=1, ADD M'CAND TO PARTIAL-PROD
/SET PNTR TO PARTIAL-PRODUCT MSW

/SET PRECISION COUNTER

/SHIFT PARTIAL~-PRODUCT RIGHT

/SET POINTER TO BIT COUNTER

/DECREMENT VALUE IN BIT COUNTER

/1F BIT CNTR NOT ZERO, REPEAT ALGORITHM
/SET POINTFR TO PARTIAL-PRODUCT MSW

/SET PRECISION COUNTER - ROTATE P/P ONCE
/MORE TO MAKE ROOM FOR POSSIBLE ROUNDING
/SET PNTR TO ACCESS 24TH BIT IN P/P
/FETCH 24TH BIT

/POSITION IT TO MSB POSITION

/ " " " " ”

/SET FLAGS AFTER ROTATE OPERATION

/1F 24TH BIT = 1, DO ROUNDING PROCEDURE
/NOVW SET PNTR TO FPACC

/SAVE FPACC POINTER

/ENSURE “H" IS 000

/SET POINTER TO PARTIAL-PRODUCT

/SET PRECISION COUNTER

/MOVE ANSWER FROM P/P INTO FPACC

/SET "B" FOR STANDARD NORMALIZATION
/NORMALIZE THE ANSWER

/SET POINTER TO "SIGNS'" INDICATOR

/FETCH *SIGNS" INDICATOR

/SET FLAGS AFTER LOAD OPERATION

/1F "SIGNS*" HAS VALUE, RESULT IS +, EXIT
/BUT IF *"SIGNS* = 8, SET FPACC LSW PNTR
/AND PRECISION COUNTER

/AND NEGATE THE ANSWER

/BEFORE EXITING " FPMULT" ROUTINE

/CLEAR WORKING LOC'S FOR MULTIPLICATION
/SET POINTER TO *SIGNS*" STORAGE

/PLACE THE INITIAL VALUE *"1" IN “SIGNS"

/SET POINTER TO MSW OF FPACC

/FETCH MSW OF FPACC

/SET FLAGS AFTER LOAD OPERATION

/1F # 1S MINUS, NEED TO DO 2'S COMPLEMENT
/SET POINTER TO MSW OF FPOP

/FETCH MSW OF FPOP

/SET FLAGS AFTER LOAD OPERATION

/IF # 1S +, RETURN TO CALLING ROUTINE
/1F ¢ MINUS, SET POINTER TO *"SIGNS"
/DECREMENT VALUE IN “SIGNS"™

/SET POINTER TO LSV OF FPOP

/SET PRECISION COUNTER

/PERFORM TW0'S COMPLEMENT OF # IN FPOP
/GO BACK TO CALLING ROUTINE

/SET POINTER TO "SIGNS" STORAGE
/DECREMENT VALUE OF "SIGNS"

s - 24

LLI 124 /SET POINTEFR TO LSW OF FPACC
LBt €83 /SET PRECISION COUNTER

CAL COMPLM /NEGATE THRE WVALUE IN THE FPACC
JNP OPSGNT /@0 CHEEX SIGN OF FPOP

CLRWRK, LL1 146 /CLEAR PART=PROD®S WORK ARFA (148-147)
LBl #16@ /SET POINTER AND COUNTER
XRA /SET ACCUMULATOR = @88
CLRNEX, LMA /DEPOSIT ACCUMULATOR CONTENTS INTO MEM
DCB /DECREMENT COUNTER
JTZ CLROPL /WNEN DONE G0 TO NEXT ARFA
INL /ELSE CONTINUE CLEARING P/P VORKING AREA
JNP CLRNEX /BY STUFFING 606 IN NEXT MEM LOCATION
CLROPL, LBl 004 /CLEAR ADDITIONAL ROOM FOR MULTIPLICAND
LLI 130 /AT 130 TO 133 « SET COUNTER & POINTER
CLRNX1, LMWA /PUT 008 IN MEMORY
DeCB /DECREMENT COUNTER
RTZ /RETURN TO CALLING PROGRAM VNEN DONE
INL /ELSE ADVANCE POINTER
JMP CLRNX1 /AND CONTINUE CLEARING OPERATIONS
ADOPPP, LEl 14l /POINTER TO LSV OF PARTIAL-PRODUCT
LDX /0% PG 063 1IN "D & E
LLI 131 /PHTR TO LSV OF MULTIPLICAWD
LBI @666 /SET PRECISION GCOUNTER
CAL ADDER /PERFORM APDITION
RET
MROUND, LBl 063 /SET PRECISION GOUNTER
LAl 100 /ADD ®1*" TO 23°RD BIT OF PARTIAL-PROD
ADM /RERE
CROUND, LMA /RESTORE TO MEMORY
INL /ADVANCE POINTER
LAl @oe /CLEAR ACC VITHOUT DISTURBING CARRY
ACNM /AND PROPOGATE ROUMDING
DEB /1IN PARTIAL-PRODUCT
JFZ CROUND /FINISNED WHEN CNTR = 803
LMA /RESTORE LAST WORD OF P~P
RET

FLOATING-POINT DIVISION

IN A MANNER TNAT IS SORT OF THE REUVERSE OF MULTIPLICATION (WMICH US-
ED ADDITION AND ROTATE OPERATIONS) OME €AN PERFORM DIVISION USING AN AL~
GORITHEM THAT UTILIZES SUBTRACTION AND ROTATE OPERATIONSe THE ALGORITHM
VILL BE PRESENTED DIRFCTLY IN THRE FORM USED IN FLOATING-POINT OPERATIONS
BECAUSE IN TMIS CASE IT 1S SIMPLER THAN DESCRIBING IT FOR NUMBERS TNAT
ARE NOT IN FLOATING-POINT FORMs MOVEVER, THE ALFRT RFADER SHOULD HAVE
LITTLE DIFFICULTY OBSFRVING THAT THE ALGORITHM COULD BE USED FOR NUMBERS
THAT ARE NOT IN FLOATING-POINT FORMAT IF OME FIRST ALIGNED THE MOST SI6-
NIFICANT BITS OF TME DIVISOR AND DPIVIDEND, AND TOOK APPROPRIATE ACTION
TO NANDLF THF LOCATION OF A "BINARY™ POINT FOR CASES WHERE THE RESULT
VAS NOT A PURE INTEGER,

IN RANBLING ENSLISH, THNE AL@ORITHEM COULD BF STATED AS FOLLOWSs SUB-
TRACT THE VALUE OF TRE DIVISOR FROM TNE UVALUE OF THRE ORIGINAL DIVIDEND.
TEST THE RESULT OF THE SUBTRACTION, I!F THE RESULT IS NEGATIVE, NEANING
THE ENTIRE DIVISOR COULD NOT BE SUBTRACTED, PLACE A "#% IN TRE LEAST
SIGNIFICANT BIT OF A REGISTER TERMED TRE “QUOTIENT."™ LEAVE THE €CURe
RENT DIVIDEND ALONE, IF TNE RESULT OF THE SUBTRACTION 1S POSITIVE, OR
ZERO, INDICATING THE DIVIDEND WAS LARGER TMAN THE DIVISOR, PLACE A 1%
IN THE LEAST SIGNIFICANT BIT OF THE “QUOTIENT™ RFGISTER AND CHANGE THE
DIVIDEND TO BE THE VALUE OF TRE “REMAINDER™ (OR RESULT) OF THE SUBTRAC-
TION OPERATION, NEXT, ONCE THE APPROPRIATE ACTION MAS BEFN TAKEN AS A

s - 28

FUNCTION OF TRE RESULT OF THE SUBTRACTION OPERATION, ROTATE THE CONTENTS
OF TRE DIVIDEND (WHETHER IT*S ORIGINAL VALUE OR THE NEV “"REMAINDER™) ONE
POSITION TO THE RIGHT, AND SIMILARLY ROTATE THE QUOTIENT ONCE TO THE
RIGET TO ALLOV ROOM FOR THE NEXT LEAST SIGNIFICANT BITe NOV REPFAT THEY
ENTIRE PROCEDURE UNTIL ONE HAS PERFORMED THE ABOUF OPFRATIONS AS MANY
TINES AS THERE ARE BIT POSITIONS IN THE REGISTFR USED TO HOLD THE OR1@6l~
NAL DIVIDEND! (TRAT WOULD BE 23 (DECIMAL) TIMES FOR THE FLOATING-POINT
PACKAGE BEING DISCUSSED HERE.)

TRE ALGORITHM MAY BE VISUALIZED A LITTLF MORE CLFARLY BY STUDYING
THE FLOV CHART PRESENTED BFLOWe ADDITIONALLY, A STEP«BY«STFP PRESEN-
TATION ILLUSTRATING THE ALGORITHM BEING USFD TO DIVIDF THF BINARY EQUlVe
ALENT OF 15 (DEGIMAL) BY S IS PRESENTED ON THF NEXT PAGF, THE LENGTH
OF THE REGISTERS HAVE BEEN REDUCED TO SHORTEN THF ILLUSTRATIONe. REMEM-
BER, THE ALGORITHM SHOWN 1S FOR TRE MANTISSA PORTION OF NUMBERS ALREADY
STORED IN "NORMALIZED™ FLOATING-POINT FORMAT,

SUBTRACT DIVISOR
FROM DIVIDEND

IS
RESULT
® OR +

YES

Y

PLACE 1" IN LSE
OF QUOTIENT

PLACE "@" IN LSB
OF QUOTIENT

PLACE REMAINDER AS
+ NEW DIVIDEND

T_¢

ROTATE CURRENT
DIVIDEND LEFT

I

ROTATE WUOTIENT
" TO THE LEFT

NO Y ES
ANSWVER 1IN
QUOTIENT

8 =« 26

g . 1111 ORIGINAL DIVIDEND AT START OF ROUTINE.

g .1010 DIVISOR (NOTE FLOATING-POINT FORMAT!)

2 .0108.1 RESULT OF FIRST SUBTRACTION OPERATION
THIS IS THE "REMAINDER" FROM THE SUB-
TRACTION OPERATION. SINCE RESULT WAS
“POSITIVE" A "1" 1S PLACED IN THE LSB
OF THE QUOTIENT REGISTER:

@ . 8 01 QUOTIENT AFTER IST LOOP

NOW BOTH QUOTIENT AND DIVIDEND (NEW REMAINDER) ARE ROTATED LEFT

g . 101080 NEV DIVIDEND (WHICH IS THE LAST REMAIN-
DER ROTATED ONCE TO THE LEFT)

0 .1018 DIVISOR (DOES NOT CHANGE DURING ROUTINE)

e . e ep RESULT OF THIS SUBTRACTION IS ZERO AND

THUS QUALIFIES TO BECOME NEW DIVIDEND.
QUOTIENT LSB GETS A *1" FOR THIS CASE!

@ . #0811 QUOTIENT AFTER 2ND LOOP

AGAIN BOTH QUOTIENT AND DIVIDEND (NEVW REMAINDER) ARE ROTATED LEFT

o . 000080 NEV DIVIDEND (WHICH IS THE LAST REMAIN-
DER ROTATED ONCE TO THE LEFT)

g .108180 DIVISOR - STILL SAME OLD NUMBER

1 .06 110 RESULT OF THIS SUBTRACTION IS A MINUS

NUMBER (NOTE THAT THE *"SIGN"™ BIT CHANG-
ED!) THUS, OLD DIVIDEND STAYS IN PLACE
AND QUOTIENT GETS A @™ IN LSB POSITION.
® . 1 1 6 QUOTIENT AFTER 3RD LOOP

NOW BOTH QUOTIENT, AND IN THIS CASE THE OLD DIVIDEND ARE ROTATED LEFT

g .0000 OLD DIVIDEND ROTATED ONCE TO THE LEFT
e .1010 SAME OLD DIVISOR
1 « 3116 RESULT OF THIS SUBTRACTION 1S AGAIN A

MINUS. OLD DIVIDEND STAYS IN PLACE.
QUOTI ENT GETS ANOTHER “@" IN LSB.

6 .11 886 QUOTIENT AFTER 4TH LOOP

SINCE THERE WERE JUST 4 BITS IN THE MULTIPLICAND REGISTER, THE ALGO~-
RITHM WOULD BE COMPLETED AT THE END OF THE FOURTH LOOP AND THE ANSWER
WOULD BE THAT SHOWN. IN THE QUOTIENT. REMEMBER, THAT SINCE FLOATING-
POINT FORMAT. 1S BEING USED, THAT THERE WOULD BE BINARY EXPONENTS INVOLV-
ED. SIMILAR TO THE WAY ONE WOULD HANDLE EXPONENTS IN DECIMAL FLOATING-
POINT NOTATION, ONE SUBTRACTS THE EXPONENTS FOR THE TW0O NUMBERS (DIVISOR
EXPONENT FROM THE DIVIDEND EXPONENT) TO OBTAIN THE EXPONENT VALUE FOR A
DIVISION OPERATION. IN THE ABOVE EXAMPLE, THE MULTIPLICAND WOULD HAVE
HAD THE BINARY EXPONENT A (DECIMAL) TO REPRESENT THE NORMALIZED STORING
OF 15 AND THE DIVISOR WOULD HAVE HAD A BINARY EXPONENT OF 3. THE ABOVE
ALGORITHM REQUIRES A COMPENSATION FACTOR OF + | AFTER SUBTRACTING THE

5 - 27

EXPONENTS (CAN THE READER THINK OF WAYS IN WHICH THIS COULD BE AVOIDED?)
IN ORDER TO HAVE THE CORRECT FLOATING-POINT RESULT. IN THE SAMPLE IL-
LUSTRATED ABOVE, (4 - 3) + 1 = 2, AND INDEED IF THE ANSVER SHOWN WAS
MOVED TWO PLACES TO THE LEFT (OF THE IMPLIED "BINARY POINT"™) ONE CAN
VERIFY THAT THE RESULT IS THE BINARY FQUIVELANT OF 3 (DECIMAL)! THE
READER MIGHT WANT TO TRY USING OTHER SMALL VALUED NUMBERS TO TEST THE
WALIDITY OF THE ALGORITHM AND DEVELOP A THOROUGH UNDERSTANDING OF THE
PROCESS. A GOOD CASE TO EXAMINE IS ONE WHERE THE RESULT 1S "NON-ENDING"
SUCH AS THE NUMBER 1 DIVIDED, SAY, BY 3. '

JUST AS IN THE MULTIPLICATION ROUTINE, THERE ARE SEVERAL OTHER PARA-
METERS THAT MUST BE CONSIDERED IN DEVELOPING THE DIVISION ROUTINE. FOR
INSTANCE, THERE IS AGAIN THE MATTER OF THE SIGNS OF THE NUMBERS. THE
ALGORITHM REQUIRES THAT THE NUMBERS BE IN POSITIVE FORMAT SO AGAIN ONE
MUST KEEP TRACK OF THE SIGNS OF THE ORIGINAL NUMBERS AND CONVERT ANY
NEGATIVE ONES TO POSITIVE FOR THE ROUTINE. IF THE SIGNS OF THE TWO
NUMBERS INVOLVED ARE IDENTICAL, THE RESULT MUST BE POSITIVE, IF THEY ARE
DIFFERENT, THEN THE PROGRAM MUST NEGATE THE ANSWER OBTAINED FROM THE AC~-
TUAL DIVISION PROCESS. AND, BECAUSE SOME CALCULATIONS WILL RESULT IN A
NON-ENDING SERIES FOR AN ANSWER, SOME "ROUNDING' CAPABILITY MUST BE IN=-
CLUDED IN THE PROGRAM. THEN, THERE 1S A SPECIAL CASE IN DIVISION THAT
ONE MUST CHECK FOR: DIVISION BY ZERO! IN THAT CASE THE PROGRAM MIGHT
BRANCH OFF TO TELL THE OPERATOR A THING OR TWO. THE FLOATING-POINT
DIVISION ROUTINE SHOWN BELOW CONSIDERS THESE MATTERS AS THE READER WILL
OBSERVE.

MNEMONIC COMMENTS

FPDIV, CAL CKSIGN /SET UP REG*'S AND CHECK SIGN OF NUMBERS

LL1I 126 /SET POINTER TO MSW OF FPACC (DIVISOR)

LAl @80 /CLEAR ACCUMULATOR

CPM /SEE 1F MSW OF FPACC = ZERO

JFZ SUBEXP /IF FIND ANYTHING - PROCEED TO DIVIDE

DCL /DECREMENT POINTER

CPM /SEE IF NSW OF DIVISOR = ZERO

JFZ SUBEXP /IF FIND ANYTHING - PROCEED TO DIVIDE

DCL /DECREMENT POINTER

cPM /SEE IF LSW OF DIVISOR = ZERO

JTZ DERROR /IF DIVISOR = ZERO, TELL SOMEBODY!
SUBEXP, LLI 137 /SET POINTER TO DIVIDEND (FPOP) EXPONENT

LAM /FETCH DIVIDEND EXPONENT

LLI 127 /7SET POINTER TO DIVISOR (FPACC) EXPONENT

SUM /SUBTRACT DIVISOR EXP FM DIVIDEND EXP

AD]1 001 /COMPENSATE FOR DIVISION ALGORITHM

LMA /STORE EXPONENT RESULT IN FPACC EXP
SETDCT, LLI 102 /SET POINTER TO BIT COUNTER STORAGE

LMI 827 /SET IT TO 27 OCTAL (23 DECIMAL)

DIVIDE, CAL SETSUB /MAIN DIVISION RTN - SUB DIVIS FM DIVID
JTS NOGO /1F RESULT 1S NEGATIVE - PUT @ IN QUOT

LEI 134 /1F ¢+ OR 8, MOVE REMAINDER INTO DIVIDEND
LLI 131 /SET POINTERS
LBl 083 /AND PRECISION COUNTER
CAL MOVEIT /AND MOVE REMAINDER INTO DIVIDEND
LAl 061 /PUT A "1" INTO ACCUMULATOR
RAR /AND MOVE IT INTO THE CARRY BIT
JMP QUOROT /PROCEED TO ROTATE IT INTO THE QUOTIENT
‘NOGO ., LAl 086 /VHEN RESULT 1S NEG, PUT “@%" INTO ACC
RAR /AND MOVE IT INTO CARRY BIT
QUOROT, LLI laa /SET POINTER TO LSV OF QUOTIENT

5 - 26

MNEMONIC COMMENTS

L E T L 2 T XX X X X 1 X X 2 L L X L R 2 4

LBl 043 /SET PRECISION COUNTER

CAL ROTL /7MOVE CARRY BIT INTO LSB OF QUOTIENT
LL1I 134 - /SET POINTER TO DIVIDEND LSW

LBl #8863 /SET PRECISION COUNTER

CAL ROTATL /ROTATE DIVIDEND LEFT

LLI 182 /SET POINTFR TO BITS COUNTER

CAL CNTDWN /DECREMENT BITS COUNTER

JFZ DIVIDE /IF NOT FINISHED - CONTINUE ALGORITHM
CAL SETSUB /DO ONE MORE DIVIDE FOR ROUNDING OPS
JFS DVEXIT /2A4TH BIT = B8, NO ROUNDING

LLI 144 /24TH BIT = 1, SET PNTR TO QUOTIENT LSW
LAM /FETCH LSW OF QUOTIENT
ADI 001} /ADD *1* TO 23RD BIT
LMA /RESTORE LSV
LAl 000 /CLEAR ACCUMULATOR WHILE SAVING CARRY
INL /ADVANCE POINTER TO NSW OF QUOTIENT
ACM - /ADD WITH CARRY
LMA /RESTORE NSV
LAl 009 /CLEAR ACCUMULATOR WHILE SAVING CARRY
INL /ADVANCE POINTER TO MSVW OF QUOTIENT
ACM /ADD WITH CARRY
LMA /RESTORE MSVW
JFS DVEXIT /IF MSB OF MSW = 8, PREPARE TO EXIT
LBl 003 /OTHERVISE SET PRECISION COUNTER
CAL ROTATR /MOVE QUOT RIGHT TO CLFAR SIGN BIT
LLI 127 /SET POINTER TO FPACC EXPONENT
LBM / FETCH EXPONENT
INL /INCREMENT IT FOR ROTATE RIGHT OP ABOVE
LMB /RESTORE EXPONENT ‘
DVEXIT, LLI 144 /SET POINTERS TO TRANSFER
LEl 124 /QUOTIENT TO FPACC
LBI 863 /SET PRECISION COUNTER
JMP EXMLDV /EXIT THRU FPMULT RTN AT "EXMLDV
SETSUB, LLI 131 /SET PNTR TO LSW OF WORKING REGISTER
CAL SWITCH /SAVE POINTER
LHD /SET H = @ FOR SURE
LLI 124 /SET POINTER TO LSV FPACC
LBl 003 /SET PRECISION- COUNTER
CAL MOVEIT /MOVE FPACC VALUE TO WORKING REGISTER
LEI 131 /RESET PNTR TO WORKING REG'S LSW (DIVISOR)
LLI 134 /SET PNTR TO LSW OF FPOP (DIVIDEND)
LBl 663 /7SET PRECISION COUNTER
CAL SUBBER /SUBTRACT DIVISOR FROM DIVIDEND
LAM /GET MSVW OF RESULT FROM SUBTRACTION OPS
NDA /AND SET FLAGS AFTER LOAD OPERATION
RET /BEFORE RETURNING TO CALLING ROUTINE

DERROR, CAL DERMSG /*xUSER DEFINED ERROR ROUTINE FOR ATTEMPT-
JMP USERDF /ING DIVISION BY @ - EXIT AS DIRECTED*x

THE FIVE FUNDAMENTAL FLOATING-POINT ROUTINES, *FPNORM,*" "FPADD,"
“FPSUB," “FPMULT" AND "FPDIV," WHEN ASSEMBLED INTO OBJECT CODE WILL
FIT WITHIN THREE PAGES OF MEMORY IN AN 8808 SYSTEM. ADDITIONALLY, THE
ROUTINES AS PRESENTED IN THIS CHAPTER USE SOME SPACE ON PAGE 80 FOR
STORING DATA AND COUNTERS. NEEDLESS TO SAY, THE PROGRAMS AS DEVELOP-
ED FOR DISCUSSION COULD BE MODIFIED TO USE OTHER MEMORY LOCATIONS WITH
LITTLE DIFFICULTY. FOR REFERENCE PURPOSES, THE LOCATIONS USED ON PAGE
@3 BY THE FUNDAMENTAL FLOATING-POINT ROUTINES JUST PRESENTED ARE LISTED

5 - 29

HERE:

LOCATION(S) USAGE
100 SIGN INDICATOR
181 SIGNS INDICATOR (MULT & DIVIDE)
102 BITS COUNTER
123 FPACC EXTENSION
124 FPACC LEAST SIGNIFICANT WORD
125 FPACC NEXT SIGNIFICANT WORD
126 FPACC MOST SIGNIFICANT WORD
127 FPACC EXPONENT
130 - 133 WORKING AREA
134 FPOP LEAST SIGNIFICANT WORD
135 FPOP NEXT SIGNIFICANT WORD
136 FPOP MOST SIGNIFICANT WORD
137 FPOP EXPONENT
1406 - 147 WORKING AREA

THE FUNDAMENTAL FLOATING=-POINT ROUTINES WHICH HAVE BEEN PRESENTED
AND DISCUSSED ARE EXTREMELY POVWERFUL ROUTINES WHICH SHOULD BE OF CONSID-
FRABLE VALUE TO ANYONE DESIRING TO MANIPULATE MATHEMATICAL DATA WITH AN
8368 SYSTEM. THE ROUTINES IN THE FORM PRESENTED FOR ILLUSTRATIVE PUR-
POSES ARE CAPABLE OF HANDLING BINARY NUMBERS THAT ARE THE DECIMAL FEG-
UIVALENT OF 6 TO 7 SIGNIFICANT DIGITS RAISED TO APPROXIMATELY THE PLUS
OR MINUS 38TH POWER OF TEN! THE ROUTINES CAN BE USED TO SOLVE A VIDE
WARIETY OF MATHEMATICAL FORMULAS BY SIMPLY CALLING THE APPROPRIATE SUB~-
ROUTINES AFTER LOADING THE "“FPOP" AND “FPACC* REGISTERS WITH THE VALUES
THAT ARE TO BE MANIPULATED (WHEN THEY ARE IN NORMALIZED FLOATING-POINT
FORMAT). FURTHERMORE, THE BASIC ROUTINES ILLUSTRATED CAN BECOME THE
FUNDAMENTAL ROUTINES IN MORE SOPHISTICATED PROGRAMS THAT MIGHT BE DEVE-
LOPED TO CALCULATE SUCH FUNCTIONS AS “SINES"™ AND “COSINES" USING NUMER-
ICAL TECHNIQUES THAT CLOSELY APPROXIMATE THOSE FUNCTIONS BY TECHNIQUES
SUCH AS "EXPANSION SERIES"™ FORMULAS.

THE INTERESTED PROGRAMMER SHOULD HAVE LITTLE DIFFICULTY IN MODIFYING
THE ROUTINES ILLUSTRATED TO UPGRADE THEIR CAPABILITY TO PROVIDE MORE
SIGNIFICANT DIGITS (BY INCREASING THE LENGTH OF THE MANTISSA) OR TO EX=-
TEND THE “EXPONENTS" CAPABILITY BY PROVIDING DOUBLE OR TRIPLE=-PRECISION
REGISTERS FOR THE EXPONENT PORTION. FOR MANY APPLICATIONS, HOVEVER, THE
USER MAY BE WELL SATISFIED WITH THE CAPABILITY PROVIDED BY THE ROUTINES
AS THEY HAVE BEEN PRESENTED FOR EDUCATIONAL PURPOSES.

THE FLOATING-POINT ROUTINES WHICH HAVE BEEN PRESENTED CAN BE USED TO
MANIPULATE NUMBERS ONCE THEY ARE IN BINARY FORMAT. IN SOME APPLICATIONS
SUCH AS WHEN FORMULAS ARE BEING SOLVED BY THE COMPUTER TO CONTROL THE
OPERATION OF A MACHINE, OR TYPES OF APPLICATIONS WHERE THERE 1S LITTLE
OR NO NEED TO COMMUNICATE WITH HUMANS, THE ABOVE ROUTINES COUPLED WITH
SOME 170 ROUTINES AND WHATEVER OTHER OPERATING PROGRAMS ARE DICTATED BY
THE APPLICATION WOULD BE SUFFICIENT FOR HANDLING THE MATHEMATICAL OPERA-
TIONS. HOWEVER, IN PROBABLY THE MAJORITY OF APPLICATIONS, AT SOME TIME
OR OTHER IT VWILL BE DESIRABLE FOR HUMANS TO COMMUNICATE VITH THE COMPU-
TER AND FOR THE COMPUTER TO PRESENT INFORMATION BACK TO HUMANS. NOW, IT
SEEMS THAT THE VAST MAJORITY OF PEOPLE PREFER TO MANIPULATE MATHEMATICAL

5 - 30

DATA USING DECIMAL NOTATION AND WOULD NOT WANT TO CHANGE THEIR WAYS BY
WRKING IN FLOATING-POINT BINARY NOTATION. S0, MOST PROGRAMMERS WOULD
FIND IT BENEFICIAL T0 HAVE SOME CONVERSION ROUTINES THAT WOULD CONVERT
NUMBERS FROM DECIMAL FLOATING-POINT NOTATION TO BINARY FLOATING-POINT
NOTATION AS WELL AS THE REVERSE., THE NEXT SECTION OF THIS CHAPTER IS
DEVOTED TO DISCUSSING AND DEVELOPING ROUTINES THAT ACCOMPLISH SUCH A
WORTHWHILE OBJECTIVE!

CONVERTING FLOATING-POINT DECIMAL TO FLOATING=POINT BINARY

MOST USER'S OF A COMPUTER FOR MATHEMATICAL FUNCTIONS WOULD PROBABLY
DESIRE TO INPUT DATA IN THE FORM:

1234.567
OR
1.234 E+15

USING AN INPUT DEVICE SUCH AS A KEYBOARD OR TELETYPE MACHINE. IN ORDER
TO ACCEPT DATA IN SUCH FORMAT ONE NEEDS TO DEVELOP A PROGRAM THAT WILL
FIRST CONVERT THE INFORMATION FROM THE DECIMAL MANTISSA AND EXPONENT
FORM OVER TO THE BINARY EQUIVALENT. THE PROCESS 1S FAIRLY STRAIGHT=-FOR~
WARD CONCEPTUALLY. »

FIRST, ONE NEEDS TO DEVELOP A METHOD FOR BREAKING DOWN THE MANTISSA
FORTION INTO A “DECIMAL NORMALIZED" FORMAT. THIS CAN BE DONE QUITE
READILY BECAUSE:

1234.567 = 1234567.80 E-3
AND
1.234 E+15 = 1234.0 E+12

THUS, TO EFFECTIVELY "NORMALIZE" A DECIMAL NUMBER ONE HAS TO SIMPLY KEEP
TRACK OF WHERE THE DECIMAL POINT IS PLACED BY THE OPERATOR IN THE MANT-
ISSA AND COMPENSATE FOR THAT FACTOR BY REMOVING THE DECIMAL POINT (MAK-
ING THE MANTISSA AN INTEGER VALUE) AND CHANGING THE EXPONENT PORTION TO
ACCOUNT FOR THE REMOVAL OF THE DECIMAL POINT!

NEXT, ONE NEEDS TO CONVERT THE MANTISSA PORTION OF THE NUMBER FROM
DECIMAL TO ITS BINARY BQUAL. THAT CONVERSION PROCESS CAN ACTUALLY BE
ACCOMPLISHED AS EACH DECIMAL NUMBER 1S INPUTTED BY THE OPERATOR BY USING
THE ALGORITHM DESCRIBED BELOV.

DECIMAL TO BINARY CONVERSIONt FEACH TIME A DIGIT IS RE~-
CEIVED IN DECIMAL FORM, IMMEDIATELY CONVERT IT TO IT'S

- BINARY EQUIVELANT. IN MANY CASES THIS CONSISTS OF SiM-
PLY "MASKING OFF" EXTRA BITS TO LEAVE A VALUE IN BCD
FORMAT. NEXT, IN ORDER TO COMPENSATE FOR THE POVERS OF
TEN DENOTED BY THE POSITIONAL VEIGHT OF DECIMAL NUMBERS.,
MULTIPLY ANY PREVIOUS NUMBER(S) THAT ARE ALREADY STORED
IN BINARY FORM BY MULTIPLYING THEM BY 18 (DECIMAL).
THEN ADD IN THE BINARY EQUIVALENT OF THE NUMBER THAT HAS
JUST BEEN RECEIVED.

THE ALGORITHM CAN BE ILLUSTRATED BY CONSIDERING THE FOLLOVWING EXAM-
PLE WHERE AN OPERATOR ENTERS THE DECIMAL NUMBER "63" BY FIRST ENTERING

5 - 31

THE NUMBER "6" AND THEN “3* FROM AN INPUT DEVICE SUCH AS AN ASCIl CODED
KEYBOARD?¢

28 0060 000 INPUT REGISTER INITIALLY CLEARED

OPERATOR INITIALLY TYPES IN THE CHARACTER FOR A 6.
THIS IS IMMEDIATELY CONVERTED TO ! 1 @ AS IT'S BINARY
EQUIVALENT. SINCE IT IS THE FIRST CHARACTER RECEIVED
IT IS NOT NECESSARY TO MULTIPLY TME PRESENT VALUE OF
THE STORAGE REGISTER BY TEN. THE BINARY VALUE 1 | @
CAN SIMPLY BE PLACED IN THE INPUT REGISTER GIVING:

66 666 1160 INPUT REGISTER AFTER 1ST # RECEIVED

THE OPERATOR THEN ENTERS THE CHARACTER FOR A "3.v ONCE
AGAIN THIS IS IMMEDIATELY CONVERTED TO @ 1 1 AS IT'S
BINARY EQUIVALENT. BUT, BEFORE THIS NEW DIGIT IS ADDED
TO THE BINARY STORAGE REGISTER, TME CONTENTS OF THE
REGISTER MUST BE MULTIPLIED BY TEN TO ACCOUNT FOR THE
POSITIONAL VALUE OF THE PREVIOUS DIGIT. A SIMPLE WAY
TO MULTIPLY A BINARY REGISTER BY TEN IS TO PERFORM THE
FOLLOWING STEPS:

00 6060 110 INPUT REGISTER CONTAINS IST # “6."
60 0061 16060 ROTATE LEFT = MULTIPLY BY 2
860 011 0660 ROTATE LEFT = MULTIPLY BY 4
8 611 1168 ADD IN ORIGINAL VALUE = MULT BY 5§
g8 111 1028 ROTATE LEFT = MULTIPLY BY lé

VITH THE PREVIOUS VALUE OF "6" NOW MULTIPLIED BY TEN TO
REPRESENT "6€" IN THE BINARY REGISTER, THE NEW VALUE OF
**3" CAN NOW BE ADDED. IN TO YIELD:

06 111 111 BINARY EQUIVELANT OF "63" DECIMAL.

- THE ABOVE ALGORITHM IS THUS REPEATED FACH TIME AN ADDITIONAL DECI-
MAL CHARACTER IS RECEIVED TO MAINTAIN THE BINARY EQUIVALENT. NATURAL~-
LY THE ALGORITHM IS VALID FOR MULTIPLE~-PRECISION STORAGE OF NUMBERS.

FINALLY, IT 1S NECESSARY TO CONVERT THE DECIMAL EXPONENT VALUE
(WHICH AGAIN IS IMMEDIATELY CONVERTED TO A BINARY NUMBER AS IT IS RE=-
CEIVED FROM THE INPUT DEVICE) TO REPRESENT THE BINARY NUMBER RAISED
TO AN EQUIVALENT VALUE. CONVERSION AT THIS POINT MAY BE ACCOMPLISHED
BY FIRST CONVERTING THE BINARY REPRESENTATION OF THE MANTISSA TO IT'S
“NORMALIZED"” FORMAT (USING THE SPECIAL CAPABILITY OF THE “FPNORM" ROUT-
INE TO CONVERT THE REGULAR FORMATTED BINARY NUMBER TO IT'S NORMALIZED
FORM) AND THEN MULTIPLYING THE NORMALIZED FLOATING~-POINT BINARY NUMBER
BY 10 (DECIMAL) FOR EACH UNIT OF A POSITIVE DECIMAL EXPONENT OR MULTI=-
PLYING IT BY @.1 FOR EACH UNIT OF A MINUS DECIMAL EXPONENT. THIS CAN
BE ACCOMPLISHED BY USING TME “FPMULT" ROUTINE PREVIOUSLY DESCRIBED!

THE DECIMAL TO BINARY INPUT PROGRAM TO BE PRESENTED SHORTLY HMANDLES
THE ABOVE CONSIDERATIONS PLUS ALLOWS SEVERAL OTHER FUNCTIONS TO BE PER~-
FORMED. THME ROUTINE WILL ALLOW AN OPERATOR TO SPECIFY THE SIGN OF THE
DECIMAL MANTISSA AND EXPONENT AND TAKES APPROPRIATE ACTION TO NEGATE

§ - 32

NUMBERS DESIGNATED AS BEING MINUS IN VALUE. IT ALSO ALLOWS FOR ERASURE
OF THE CURRENT INPUT STRING BY TYPING A SPECIAL CHARACTER. THE ROUTINE
ASSUMES THAT CHARACTERS ARE RECEIVED FROM AN INPUT DEVICE THAT USES
ASCI1l CODE AND THMAT AN OUTPUT DEVICE USING ASCII CODE IS USED TO *"ECHO"™
INFORMATION RECEIVED BACK TO THE OPERATOR. NEITHER THE ACTUAL INPUT OR
OUTPUT ROUTINES ARE SHOWN IN THE SAMPLE PROGRAM. (INFORMATION ON ACTUAL
Ir0 ROUTINES WILL BE PRESENTED IN A LATER CHAPTER). THE ROUTINE ALSO
ASSUMES THAT CERTAIN LOCATIONS ON PAGE 60 VWILL BE USED FOR STORAGE OF
NUMBERS RECEIVED AND FOR MAINTAINING COUNTERS AND INDICATORS. A LIST-
ING OF THE LOCATIONS USED WILL BE PROVIDED LATER. ADDITIONALLY, THE
PROGRAM CALLS ON OTHER ROUTINES PREVIOUSLY DETAILED IN THIS MANUAL SUCH
AS "FPNORM* AND “FPMULT."

MNEMONIC COMMENTS
DINPUT, LHI1 000 7SET POINTERS TO INPUT
LLI 150 /STORAGE REGISTERS
XRA /CLEAR ACCUMULATOR
LBI 010 /SET A COUNTER
CLRNX2, LMA /AND CLEAR MEMORY LOCATIONS 150 - 157
INL /BY DEPOSITING ©0'S AND ADVANCING PNTR
DCB /AND DECREMENTING LOOP COUNTER
JFZ CLRNX2 7UNTIL FINISHED
LLI 103 /SET POINTERS TO CNTR/INDICATOR STORAGE
LBI @0a /SET A COUNTER
CLRNX3, LMA /AND CLEAR MEMORY LOCATIONS 103 - 1086
INL /IN A SIMILAR FASHION BY DEPOSITING @°'S
DCB /AND DECREMENTING LOOP COUNTER

JFZ CLRNX3 /UNTIL FINISHED
CAL INPUT /NOW BRING IN A CHARACTER FROM I/0 DEVICE

CPl1 253 /TEST TO SEE IF IT IS A “+" SIGN

JTZ SECHO /IF YES, GO TO ECHO AND CONTINUE

CP1 255 /1F NOT “+* SEE IF "=" SIGN

JFZ NOTPLM /IF NOT "+" OR "-" TEST FOR VALID CHAR
LLI 163 /1F MINUS, SET POINTER TO "INPUT SIGN"
LMA /AND MAKE IT NON=-ZERO BY DEPOSITING CHAR

SECHO, CAL ECMO /0UTPUT CHAR IN ACC AS ECHO TO OPERATOR
NINPUT, CAL INPUT /FETCH A NEW CHARACTER FROM 1/0 DEVICE

NOTPLM, CPl 377 /SEE IF CHARACTER 1S CODE FOR *"RUBOUT"
JTZ ERASE /1F YES, PREPARE TO START OVER
CPI 256 /1F NOT, SEE IF CHARACTER 1S A PERIOD "."
JTZ PERIOD /IF *.* PROCESS AS DECIMAL POINT
CP1 365 /1F NOT, SEE 1F CHAR IS “E" FOR EXPONENT
JTZ FNDEXP /I1F “E" PROCESS AS EXPONENT INDICATOR
CP1 260 /1F NOT, SEE 1F CMAR A VALID NUMBER
JTS ENDINP 71F NONE OF ABOVE, TERMINATE INPUT STRING
CP1 272 /STILL CHECKING FOR VALID NUMBER
JFS ENDINP /IF NOT, TERMINATE INPUT STRING
LLI 156 /MAVE A #, SET PNTR TO MSW OF INPUT REG'S
LBA /SAVE CHARACTER IN REGISTER "B"
LAl 370 /FORM A MASK AND CHECK TO SEE IF INPUT
NDM /REG'S CAN ACCEPT LARGER NUMBER
JFZ NINPUT 7/IF NOT, IGNORE PRESENT INPUT
LAB /1F 0.K., RESTORE CHARACTER TO ACC
CAL ECHO /AND ECHO ¢ BACK TO OPERATOR
LLI 185 /SET POINTER TO DIGIT COUNTER
LCM /FETCH DIGIT COUNTER
INC /7 INCREMENT IT*'S VALUE
LMC /AND RESTORE IT TO STORAGE

5 - 33

PERIOD,

ERASE,

MNEMONIC

CAL
JMP
LBA
LLI
LAM
NDA
JFZ
LL1
LMA
INL
LMB
LAB
CAL
JMP
LAl
CAL
LAl

- CAL

FNDEXP,

EXECHO.,»
EXPINP,
NO EXPS,

ENDINP,

CAL
JMP
CAL
CAL
CPl1
JTZ
CP1
JFZ
LLI
LMA
CAL
CAL
CPI
JTZ
CPI
JTS
CP1
JFS
NDI1
LBA
LLI
LAl
CPM
JTS
LCM
LAM
NDA
RAL
RAL
ADC
RAL
ADB
LMA
LAl
-ADB
JMP
LLI
LAM
NDA
JTZ

DECBIN
NINPUT

186

ENDINP
185

ECHO
NINPUT
274
ECHO
240
ECHO
ECHO
DINPUT
ECHO
INPUT
253
EXECHO
255
NO EXPS
104

ECHO
INPUT
377
ERASE
260
ENDINP
272
ENDINP
817

157
203

EXPINP

260

EXECHO
183

FININP

COMMENTS

/PERFORM DECIMAL TO BINARY CONVERSION
/GET NEXT CHARACTER FOR MANTISSA

/7SUBRTN TO PROCESS *"."™ - SAVE IN "B"
/SET POINTER TO "." STORAGE INDICATOR
/FETCH CONTENTS

/SET FLAGS AFTER LOAD OPERATION

71F "." ALREADY PRESENT, END INPUT STRING
/0THERVWISE SET PNTR TO DIGIT COUNTER
/AND RESET DIGIT COUNTER TO @

/ADVANCE POINTER BACK TO "." STORAGE
/AND PUT A "." THERE

/RESTORE *".* TO ACCUMULATOR

/AND ECHO IT BACK TO OPERATOR

/GET NEXT CHARACTER IN NUMBER STRING
/PUT ASCI1 CODE FOR "<" IN ACCUMULATOR
/DISPLAY IT

/PUT ASCII1 CODE FOR "SPACE"™ IN ACC

/AND LEAVE A COUPLE OF SPACES

/BEFORE GOING BACK TO

/START THE INPUT STRING OVER

/SUBRTN TO PROCESS EXPONENT, ECHO "E"
/GET NEXT PART OF EXPONENT

/TEST FOR A "+" SIGN

/1F YES, PROCEED TO ECHO IT

71F NOT, TEST FOR A - SIGN

/1F NOT, SEE IF A VALID CHARACTER

/1F HAVE "-" THEN SET PNTR TO *EXP SIGN"
/SET "EXP SIGN" MINUS INDICATOR

/ECHO CHARACTER BACK TO OPERATOR

/GET NEXT CHARACTER FOR EXPONENT PORTION
/SEE IF CODE FOR 'RUBOUT"

71F YES, PREPARE TO RE=-ENTER ENTIRE STRING
7OTHERWISE CHECK FOR VALID DECIMAL NUMBER
71F NOT, END INPUT STRING

/STILL TESTING FOR VALID NUMBER

/1F NOT, END INPUT STRING

/HAVE VALID #, FORM MASK AND STRIP ASCII
/CHARACTER TO PURE BCD, SAVE IN REG "B*"
/SET PNTR TO INPUT EXPONENT STORAGE LOC
/SET ACCUMULATOR = 3

/SEE IF 1ST EXPONENT # WAS GREATER THAN 3
/71F YES, IGNORE INPUT (LIMITS EXP TO < 48)
7IF 0.K., SAVE PREV EXP VALUE IN “C"

/AND ALSO PLACE IT IN ACCUMULATOR

/CLEAR THE CARRY BIT

/MULT X 10 ALGORITHM, 1ST MULT X 2

/MULT X 2 AGAIN

/ADD IN ORIGINAL VALUE

/MULT X 2 ONCE MORE

/ADD IN NEW ¢ TO COMPLETE THE DECIMAL TO
/BINARY CONV FOR EXP AND RESTORE TO MEMORY
/RESTORE ASCI! CODE BY ADDING "268"

/TO BCD VALUE OF THE NUMBER

/7AND ECHO # THEN LOOK FOR NEXT INPUT

/SET POINTER TO MANTISSA "SIGN' INDICATOR
/FETCH SIGN INDICATOR

/SET FLAGS AFTER LOAD OPERATION

/1F NOTHING IN INDICATOR, # IS POSITIVE

5 - 34

FININP,

POSEXP,

EXPOK.,

EXPFIX,

FPX10,

MINEXP,

FPDI18,

MNEMONIC

LLI
LBI
CAL
LLI
XRA
LDA
LMA
LEI
LBI
CAL
LBI
CAL
LLI
LAM
NDA
LLI
JTZ
LAM
XR1
ADI
LMA
LLI
LAM
NDA
JTZ
LLI
XRA
SUM
LL1
ADM
LMA
JTS
RTZ
caL
JFZ
RET
LEI
LDH
LLI
LBI
CAL
LLI
LMI
DCL
LMI
DCL
XRA
LMA
DCL
LMA
CAL
LLI
CAL
RET
CAL
JFZ
RET
LEl

154
863
COMPLM
153

123
004
MOVEIT
627
FPNORM
164

157
PO SEXP

377
eol

186

EXPOK
165

157

MINEXP

FPX10
EXPFIX

134

124
804
MOVELT
127
oea

120

FPMULT
157
CNTDWN

FPD18
MINEXP

134

COMMENTS

/SET PNTR TO LSV OF INPUT MANTISSA

/SET PRECISION

/PERFORM 2°'S COMPLFMENT TO NEGATE NUMBER
/SET PNTR TO INPUT STORAGE LSV=-1

/CLEAR ACCUMULATOR

/CLEAR REG "D"

/CLEAR INPUT STORAGE LOC LSW-1

/SET PNTR TO FPACC LSUW-1

/SET PRECISION COUNTER

/MOVE INPUT & LSW-1 TO FPACC & LSV-1
/SET SPEC FPNORM MODE BY SETTING BIT CNT
/1IN REG "B" AND CALL NORMALIZATION ROUTINE
/SET POINTER TO EXPONENT SIGN INDICATOR
/FETCH EXPONENT SIGN INDICATOR TO ACC
/SET FLAGS AFTER LOAD OPERATION

/SET POINTER TO DECIMAL EXP STORAGE

/1F EXP POSITIVE, JUMP AHFAD

/1F EXP NEGATIVE, FETCH IT INTO ACC

/AND PERFORM TWO'S

/COMPLEMENT

/THEN RESTORE TO STORAGE LOCATION

/SET POINTER TO PFRIOD INDICATOR

/FETCH CONTENTS TO ACCUMULATOR

/SET FLAGS AFTER LOAD OPERATION

/1F NOTHING, NO DECIMAL POINT INVOLVED
/1F HAVE DECIMAL POINT, SET PTR TO DIGIT
/COUNTER THEN CLEAR ACCUMULATOR
/SUBTRACT DIGIT CNTR FROM @ TO GIVE NEG
/SET POINTER TO DECIMAL EXPONENT STORAGE
/ADD IN COMPENSATION FOR DECIMAL POINT
/RESTORE COMPENSATED VALUE TO STORAGE
/1F COMPENSATED VALUE MINUS, JUMP AHEAD
/1F COMPENSATED VALUE ZEROt FINISHED!
/COMPEN DEC EXP IS +, MULT FPACC X 180
/LOOP TIL DECIMAL EXPONENT = ©

/EXIT WITH CONVERTED VALUE IN FPACC
/JMULT FPACC X 18 RTN, SET PNTR TO FPOP LSW
/SET D = @ FOR SURE

/SET PNTR T0 FPACC LSV

/SET PRECISION COUNTER

/MOVE FPACC TO FPOP (INCLUDING EXPONENTS)
/SET PNTR TO FPACC EXPONENT

/PLACE FP FORM OF 18 (DECIMAL) IN FPACC

” " ” " ’” " " ”
" ” L 1) L1 (1] " (1] (1]
”" " *"” L] ” L1 " L)
" " " " ” L) " "
" " (2] ” LU ” " ."”
" L L L1 ” ” " " ’”

" " [1) "” " ” ” "

/NOW MULTIPLY ORIG BIN ¢ (IN FPOP) X 10
/SET POINTER TO DECIMAL EXPONENT STORAGE
/DECREMENT DEC FXP VALUE

/JRETURN TO CALLING PROGRAM

/COMPEN DEC EXP IS -, MULT FPACC X @.l

NNN NN

/LOOP TIL DECIMAL EXPONENT = @

/EXIT WITH CONVERTED VALUE IN FPACC
/MULT FPACC X 8.1 RTN, PNTR TO FPOP LSV

5 - 35

WNENONIC COMMENTS

LT Y XY X X L L XX ¥ 4 X3 rr L L T X X ¥ X 1 1 2 2 4

LDR /SET D = 8 FOR SURE
LLI 124 /SET POINTER TO FPACE
LB1 804 /SET PRECISION COUNTER
CAL MOVEIT /MOVE FPAGE TO FPOP (INCLUDING EXPONENT)
LLI 127 /SET POINTER TO FPACC EXPOMENT
LM1 37S /PLACE FP FORM OF @1 (DECIMAL) IN FPACC
CAL FPMULT /NOW MULTIPLY ORIG BIN # (IN FPOP) X 8l
LLI 187 /SET POINTER TO DECIMAL EXPONENT STORAGE
LBM /¥ETER VALUE
1B /INCREMENT IT
L¥B /RESTORE IT TO MEMORY
RET /RETURN TO CALLING PROGRAM
DECBIN, LLI 183 /DEC TO BIN CONV, SET PNMTR TO TEMP STORAGE
LAB /RESTORE CHARAGTER TO ACCUMULATOR
ND! 817 /MASX OFF ASCII BITS TO LEAVE PURE BED #
LMA /PLACE CURRENT BCD # IN TEMP STORAGE
LEI 156 /SET POINTER TO VORKING AREA LSV
LLY 1S4 /SET ANOTNER PNTR TO LSB OF INPUT REB®S
LD /SET D = 8 FOR SURE
LBI @83 /SET PRECISION COUNTER |
CAL MOVEIT /MOVE ORIGINAL WALUE TO WORKING AREA
LLI 154 /SET PNTR T@ LSV OF INPUT STORAGE
LB! 003 /SET PRECISION COUNTER |
CAL ROTATL /ROTATE LEFT (X 2) (TOTAL = X 2)
LLI 1S4 /SET PNTR TO LSV AGAIN
LBl 2803 /SET PREGISION COUNTER
CAL ROTATL /ROTATE LEFT (X 2) (TOTAL WOV = X)
LEl 1S4 /SET PNTR TO LSV OF ROTATED VALUE
LLl 13@ /AND AMOTEER TO LSV OF ORIGINAL VALUE
LBl 883 /SET PRECISION COUNTER
€AL ADDER /ADD ORIG TO ROTATED (TOTAL MOV = X S)
LL1 1S4 /SET PNTR T® LSV AGAIN
LBl €83 /SET PRECISION COUNTER
€AL ROTATL /ROTATE LEFT (X 2) CTOTAL WOV = X 18)
LLI 152 /SET POINTER TO CLEAR WORKING AREA
XRA /ELEAR AECUMULATOR
LMA /DEPOSIT IN NSV OF VORKING AREA
peL /DECRENENT PNTR TO NSW
LMA /PUT ZFRO TKERF TOO
LL? 183 /SET PNTR TO CURRENT DIGIT STORAGE
LAN /¥YETCH LATEST BCD NUMBER
LLI 150 /SET PNTR TO LSV OF WORKING ARFA
Lea /DEPOSIT LATEST BCD NUMBER IN LSV
LEI 184 /SET UP POINTER
LBI 063 /SET PRECISION COUMTER
CAL ADDER /ADD IN LATEST # TO COMPLETE DECBIN CONV
RET /RETURN TO CALLING PROGRAM

CONVERTING FLOATING=-POINT BINARY TO FLOATING-POINT DECIMAL

THE FOLLOVING PROGRAM VILL COMUVERT BINARY NUMBERS STORED IN FLOAT-
ING=POINT FORNAT TO DECIMAL FLOATING~POINT FORMAT AND DISPLAY THNEM ON AN

5 -~ 36

OUTPUT DEVICE SUCH AS A TELETYPE MACHINE IN THE FOLLOWING FORMAT:
+0.1234567 E+87

THE ROUTINE WHICH IS SHOWN BELOV OPERATES ESSENTIALLY IN THE REVERSE
MANNER TO THE INPUT ROUTINE. FIRST THE FLOATING-POINT BINARY NUMBER IS
CONVERTED TO A REGULARLY FORMATTED BINARY NUMBER, AND THEN THE NUMBER IS
CONVERTED TO A DECIMAL NUMBER USING A MULTIPLY BY TEN ALGORITHM. SINCE
THE READER SHOULD NOW BE QUITE ADEPT AT FOLLOVING THE OPERATION OF A
PROGRAM FROM THE COMMENTED SOURCE LISTING, THE FLOATING-POINT BINARY TO
FLOATING=-POINT DECIMAL CONVERSION ROUTINE WILL BE PRESENTED WITHOUT FUR-
THER DISCUSSION AT THIS POINT. IT SHOULD BE REMEMBERED THAT THE ROUTINE
ILLUSTRATED ASSUMES AN ASCII CODED OUTPUT DEVICE 1S BEING UTILIZED. IN
ADDITION, SEVERAL SUBROUTINES USED BY THE PREVIOUSLY ILLUSTRATED. INPUT
PROGRAM ARE CALLED BY THE ROUTINE.

MNEMONIC COMMENTS

FPOUT, LLI 157 /SET POINTER TO DECIMAL EXPONENT STORAGE
LMl 0060 /CLEAR DECIMAL EXPONENT STORAGE LOCATION
LLI 126 /SET POINTER TO MSW FPACC MANTISSA
LAM /FETCH MSV FPACC MANTISSA TO ACCUMULATOR
NDA /SET FLAGS AFTER LOAD OPERATION
JTS OUTNEG /I1F MSB = | HAVE NEGATIVE NUMBER
LAI 253 /OTHERWISE ¢ 1S POS, SET ASCII CODE FOR +
JMP AHEAD! /GO TO DISPLAY *+" SIGN

OUTNEG, LLI 124 /JHAVE NEG #, SET PNTR TO LSW FPACC MANT
LBl @83 /SET PRECISION COUNTER
CAL COMPLM /PERFORM TWO'S COMPLEMENT ON FPACC
LAl 255 /SET ASCI1 CODE FOR "~ SIGN

AHEAD], CAL ECHO /DISPLAY SIGN OF MANTISSA
LAl 260 /SET ASCI1 CODE FOR "@"
CAL ECHO /DISPLAY “@"
LAl 256 /SET ASCI1 CODE FOR "."
CAL ECHO /DISPLAY ™.
LLI 127 /SET POINTER TO FPACC EXPONENT
LAl 377 /PUT -1 IN ACCUMULATOR
ADM 7EFFECTIVELY SUBTRACT "1 FROM EXPONEN
LMA /RESTORE COMPENSATED EXPONENT

DECEXT, JFS DECEXD /I1F COMPEN EXP @ OR POS, MULT MANT X 8.1
LAl 0804 71F COMPEN EXP NEGATIVE
ADM /ADD “4% (DECIMAL) TO THAT VALUE

JFS DECOUT /I1F EXPONENT @ OR POS NOW, OUTPUT MANTISSA
CAL FPX10 /O0THERWISE, MULT MANTISSA BY 10

DECREP, LLI 127 /SET POINTER TO FPACC EXPONENT
LAM /GET EXPONENT AFTER MULTIPLICATION RTN
NDA /SET FLAGS AFTER LOAD OPERATION

. JMP DECEXT /REPFAT ABOVE TEST FOR 8 OR POS CONDITION
DECEXD, CAL FPDI1#® /MULTIPLY FPACC X 8.1
. JMP DECREP /CHECK STATUS OF FPACC EXP AFTER MULTIP

DECOUT, LEI 164 /SET POINTER TO LSW OF OUTPUT REGISTERS
LDH /JMAKE D = & FOR SURE
LLI 124 /SET POINTERS TO LSW OF FPACC
LBI 8063 /SET PRECISION COUNTER
CAL MOVEIT /MOVE FPACC TO OUTPUT REGISTERS
LLI 167 /SET PNTR TO MSW+1 OF OUTPUT REGISTER
LMl 8006 /AND CLEAR THAT LOCATION
LLI le64A /NOV SET POINTER TO LSW OF OUTPUT REG'S

LBl 063 /SET PRECISION COUNTER - PERFORM ONE

5 - 37

COMPEN,

oUTDIG.

OUTDGS.,

DECRDG.,

ZERODG.,

0UTX18,

MNEMONIC

CAL
CAL
LLI
LBM
INB
LMB
JTZ
LLI
LBI
CAL
JMP
LLI
LMl
LLI
LAM
NDA
JTZ

LLI.

LAl
ADM

CAL.

LLI
CAL
JTZ
CAL
JMP
LLI
CAL
LL1
LAM
NDA
JFZ
DCL
LAM
NDA
JFZ
DCL
LAM
NDA
JFZ
LLI
LMA
JMP
LL1
LMl
LL1
LDH
LEl
LBI
CAL
LLI
LBI
CAL
LLI
LBI
CAL
LL1
LEI

ROTATL
OUTX16
127

OUTDI1G
167
004
ROTATR
COMPEN
107
807
167

Z ERODG
167
260

ECHO
187
CNTDWN
EXPOUT
ouUTX16
OUTDGS
157
CNTDWN
166

DECRDG

DECRDG

DECRDG
157

DECRDG
167
88e
164

1608
o0
MOVEIT
164
004
ROTATL
16A
gea
ROTATL
160
164

COMMENTS

/ROTATE OP TO COMPEN FOR SPACE OF SIGN BIT
/MULT OUTPUT REG X 18, OVERFLOW INTO MSW+l
/SET PNTR TO FPACC EXPONENT

/COMPENSATE FOR ANY REMAINDER IN BINARY
/EXPONENT BY PERFORMING A ROTATE RIGHT ON
/0UTPUT REG'S UNTIL BIN EXP BECOMES ZERO
/G0 TO OUTPUT DIGITS WHEN COMPEN DONE
/BIN EXP COMPENSATION ROTATE LOOP

/SET PNTR TO OUT MSW+1 AND SET COUNTER
/PERFORM COMPENSATING ROTATE RIGHT OP
/REPEAT LOOP UNTIL BIN EXP = @

/SET PNTR TO OUTPUT DIGIT COUNTER

/SET DIGIT COUNTER TO "7" TO INITIALIZE
/SET PNTR TO MSD IN OUT REG MSW+l

/FETCH BCD FORM OF DIGIT TO BE DISPLAYED
/SET FLAGS AFTER LOAD OPERATION

/SEE IF 1ST DIGIT WOULD BE A “@"

/1F NOT, SET PNTR TO MSW+1 (BCD CODE)
/FORM ASCII NUMBER CODE BY ADDING 260

/7TO BCD CODE

/AND DISPLAY THE DECIMAL NUMBER

7SET POINTER TO OUTPUT DIGIT COUNTER
/DECREMENT VALUE OF OUTPUT DIGIT CNTR
/WHEN = @, GO DO EXPONENT OUTPUT RTN
/0THERVISE MULT OUTPUT REG'S X 190

/AND OUTPUT NEXT DECIMAL DIGIT

/IF 1ST DIGIT = @, SET PNTR TO DEC EXP
/DECR VALUE TO COMPEN FOR SKIPPING DISPLAY
/O0F 1ST DIGIT, THEN SET POINTER TO MSW
/0F OUTPUT REG'S - FETCH CONTENTS

/SET FLAGS AFTER LOAD OPERATIONS

7CHECK TO SEE IF ENTIRE MANTISSA 1S "@"

) “w oo» " " "
. . “w " o " " "
»” " " u " " " "
. " "w o oon " " " "
Y T " " " »" " "
" " w e " " o o

" ” " ”"” ” 1] " "

NNNNNNNN

" " L1 L1 " " ” e

/1F ENTIRE MANTISSA 1S ZERO, SET PNTR TO
/DECIMAL EXPONENT STORAGE AND SET IT TO O
/BEFORE PROCEEDING TO FINISH DISPLAY
/MULTIPLY OUTPUT REG°'S BY 18 TO PUSH OUT
/BCD CODE OF MSD, 1ST CLEAR OUTPUT MSW+l
/SET PNTR TO LSW OF OUTPUT REGISTERS
/MAKE SURE D = @

/SET ANOTHER PNTR TO UORKING AREA

/SET PRECISION COUNTER

/MOVE ORIGINAL VALUE TO WORKING AREA
/SET POINTER TO ORIGINAL VALUE LSV

/SET PRECISION COUNTER

/START MULT X 18 ROUTINE (TOTAL = X 2)
/RESET PNTR
/7AND COUNTER
ZJMULT X 2 AGAIN (TOTAL = X 4)

/7SET POINTER TO LSW OF ORIG VALUE
/AND ANOTHER TO LSW OF ROTATED VALUE

5 - 38

MNEMONIC COMMENTS

LBl 884 /SET PRECISION COUNTER
€AL ADDER /ADD OR1@ VALUE TO ROTATED (TOTAL = X S)
LL1. 164 /RESET PNTR :
LBl 08a /AND COUNTER
€AL ROTATL /MULT X 2 ONCE MORE (TOTAL = X 10)
RET /FINISNED MULT OUTPUT REG®S X 180

EXPOUT, LAl 308 /SET ASCIl CODE FOR “E™
CAL FCRO /DISPLAY "E® FOR “EXPONENT®
LLI 157 /SET POINTER TO DFCIMAL EXP STORAGE LOC
LA /FETCR DECIMAL EXPONENT TO ACC
NDA /SET FLAGS AFTER LOAD OPERATION
JTS EXOUTN /1F NMSB = 1, VALUE IS NEGATIVE
LAl 282 /71¥ UVALUE IS POS, SET ASCII CODE FOR %e®
JMP ANEAD2 /G0 TO DISPLAY SIE@N

EXOUTN, XRI 377 /FOR WEG EXP, PERFORM TWO°*S COMPLEMENT
ADl 001 /71N STANDARD MANNER
LMA /AMD RESTORE TO STORAGE LOCATION
LAl 258 /SET ASC1l CODE FOR “-*

AREAD2, CAL FENO /DISPLAY SIGN OF EXPONENT
LBl 680 /CLEAR REGISTER "B" FOR COUNTER
LAN /FPETCE DECIMAL EXPONENT VALUE

SUB12s SUL 12 /SUBTRACT 16 (DECIMAL)
JTS TOMUGCH /LOOK FOR NEGATIVE RESULT
LA /RESTORE POS RESULT, MAINTAIN COUNT OF HOW
INB /JMANY TIMES 18 (DECIMAL) CAN BE SUBTRACTED
JNP SUB12 /TO OBTAIN MOST S1@ DIEIT OF EXPONENT

TONMUCKs LAl 268 /FORM ASCII CHRAR FOR MSD OF EXPONENT BY

' ADB /ADDING 260 TO GOUNT IN RFGISTER “B®

€AL ECHO /AND DISPLAY MOST SIGNIFICANT DI1GIT OF EXP
LAM /FETCX REMAINDER IN DEC EXP STORAGE LOC
AD1 268 /AND PORM ASGIl GHAR FOR LSD OF EXPONENT
CAL ECHO /DISPLAY LEAST SIGNIFICANT DIGIT OF EXP
RET /EXIT *FPOUT™ ROUTINE

ONCE ONE MAS A DECIMAL TO BINARY INPUT ROUTINE, AND BINARY TO DECI~
MAL GUTPUT ROUTINE TO WORK WITE TKE FUNDANENTAL FLOATING-POINT ROUTINES
IT IS A RELATIVELY SINPLE MATTER TO TIE THEM ALL TOGETNER TO FORN AN
“OPERATING PACKAGE™ THAT WOULD ALLOV AN OPERATOR TO SPECIFY NUMERICAL
VALUES IN FLOATING-POINT DECINAL NOTATION AND INDICATE VEETHEER ADDITION,
SUBTRACTION; MULTIPLICATION OR DIVISION WAS DESIRED, TREM OBTAIN AN ANS~
VER FROM TKE CONPUTERe AN ILLUSTRATIVE “OPERATING PROGRAM™ THAT UTILL~
LES ALL THE DEMONSTRATION ROUTINES PRESENTED IN THIS SECTION IS SHOWN
BELOWe TNE PROGRAM WVILL ALLOV AN OPERATOR TO NAKE ENTRIES AND RECEIVE
RESULTS IN TKE FORMAT SHOVN NERE:

¢33.0E¢3 X <4 = <@,1320000E¢+6

NNEMONIC COMMENTS

FPCONT, CAL CRLF2 /DISPLAY A FEW €R & LF°*S FOR 1/0 DEVICE
€AL DINPUT /LET OPERATOR ENTER A FP DECIMAL NUNMBER
CAL SPACES /DISPLAY A FFW SPACES AFTER NUMBER

LLI 124 /SET PNTR TO LSV OF FPAEC

LDH /SET D = 8 FOR SURE

LEl 170 /SET PETR TO TENP # STORAGE AREA
LBl @004 /SET PRECISION €OUNTER

s -39

NVALID,

OPERAL,
OPERA2,
OPERA3,

OPERAA,

MNEMONIC

CAL
CAL
LBI
CPl
JTZ
CP1
JTZ
CPl
JTZ
CP1
JTZ
CPI1
JFZ
JMP
DCB
DCB
DCB
DCB
DCB
DCB
LCA
LAl
ADB
LLI
LMA
LAC

- CAL

CRLF2,

CAL

CAL .

CAL
LAl
CAL
CAL
LLI
LDH
LEI
LBl
CAL
LLI
LLM
LH1
LEM
INL
LDM
LLI
LME

MOVEIT
INPUT
200
253
OPERA!
255
OPERA2
330
OPERA3
257
OPERAA
377
NVAL1D
FPCONT

L L2

110

ECHO
SPACES
DINPUT.
SPACES
275
ECHO
SPACES
176

134
eoaA
MOVEIT
110

XXX

Z+1

INL -

LMD
LHI
LDH
JMP
LAl
CAL
LAl
CAL
LAl
CAL
LAl

000

RESULT
215
ECHO
212
ECHO
215
ECHO
212

COMMENTS

/MOVE FPACC TO TEMP STORAGE AREA
/FETCH “OPERATOR* FROM INPUT DEVICE
/CLEAR REGISTER "B"

/TEST FOR "+" SIGN

/GO SET UP FOR *+'" SIGN

/1F NOT *“+," TEST FOR "~ SIGN

/GO SET UP FOR "-" SIGN

/1F NOT ABOVE, TEST FOR "X" (MULT) SIGN
/GO SET UP FOR *"X* SIGN

/1F NOT ABOVE, TEST FOR "/* (DIV) SIGN
/GO SET UPF FOR "/ SIGN

/1F NOT ABOVE, TEST FOR "RUBOUT"

/1F NONE OF ABOVE, IGNORE INPUT

/1F “"RUBOUT" START NEV INPUT SEQUENCE
/SET UP REGISTER “B" BASED ON ABOVE

/ " ” ” L L] L 1] L 2) "
, " ”"” " ” ” " "
, ” " o " " L 1) ”"”
/ »” " " ” " " "

/ L 1] ” " " " " ”

/SAVE “OPERATOR" CHARACTER IN REG “C"
/%%% = NEXT TO LAST LOC IN "LOOKUP" TABLE
/MODIFY *xx%" BY CONTENTS OF *“B"

/SET PNTR TO “LOOKUP* TABLE ADDR STORAGE
/PLACE “LOOKUP" ADDR IN STORAGE LOCATION
/RESTORE "OPERATOR" CHARACTER TO ACC

'/DISPLAY THE "OPERATOR" SIGN

/DISPLAY FEW SPACES AFTER “OPERATOR"™ SIGN
/LET OPERATOR ENTER 2ND FP DECIMAL NUMBER
/PROVIDE FEW SPACES AFTER 2ND NUMBER
/PLACE ASC11 CODE FOR “=" IN ACCUMULATOR
/DISPLAY v»=" SIGN

/DISPLAY FEW SPACES AFTER "=" SIGN

/SET POINTER TO TEMP NUMBER STORAGE AREA
/7SET D = & FOR SURE

/SET ANOTHER POINTER TO LSW FPOP

/SET PRECISION COUNTER

/MOVE 1ST NUMBER INPUTTED TO FPOP

/SET PNTR TO "LOOKUP" TABLE ADDR STORAGE
/BRING IN LOV ORDER ADDR OF "LOOKUP" TABLE
/XXX = PAGE THIS PROGRAM LOCATED ON
/BRING IN AN ADDR STORED IN "LOOKUP" TABLE
/RESIDING ON THIS PAGE (XXX) AT LOCATIONS
/"kxx + BY AND "*%%x + B + 1' AND PLACE IT
/1IN REGS "D & E* THEN CHANGE PNTR TO ADDR
/PART OF INSTRUCTION LABELED "RESULT" BE~
/LOVW AND TRANSFER THE “LOOKUP" TABLE CON-
/TENTS TO BECOME THE ADDRESS FOR THE IN-
/STRUCTION LABELED “RESULT." THEN RESTORE
/REGISTERS “D" AND “H" BACK TO "@"

/NOW JUMP TO COMMAND LABELED “RESULT"
/SUBRTN TO PROVIDE CR & LF'S

/PLACE ASCII CODE FOR CR IN ACC & DISPLAY
/PLACE ASCI1 CODE FOR LINE FEED IN ACC
/AND DISPLAY ‘

/D0 ‘1T AGAIN - CODE FOR CR IN ACC
/DISPLAY. IT

/CODE FOR LF

5 - a8

MNEMONIC COMMENTS

'CAL ECHO /DISPLAY IT
RET /RETURN TO CALLING ROUTINE

SPACES, LAl 24a¢ /SET UP ASCI! CODE FOR SPACE IN ACC
CAL ECHO /DISPLAY A SPACE
LAl 240 /DO IT AGAIN - CODE FOR SPACE IN ACC
CAL ECHO /DISPLAY SPACE
RET /RETURN TO CALLING ROUTINE

ALY RESULT, CAL DUMMY /CAL RTN AT ADDRESS IN NEXT TW0o BYTES!

CAL FPOUT /DI1SPLAY RESULT
JMP FPCONT /GO BACK AND GET NEXT PROBLEM!

“LOOKUP TABLE" AAA /LOW ADDRESS FOR START OF *FPADD" RTN
BBB /PAGE ADDRESS FOR START OF ' FPADD" RTN
cccC /LOW ADDRESS FOR START OF "FPSUB" RTN
DDD /PAGE ADDRESS FOR START OF " FPSUB" RTN
EEE /LOW ADDRESS FOR START OF "FPMULT" RTN
FFF /PAGE ADDRESS FOR START OF “FPMULT"” RTN

* k% GGG /LOV ADDRESS FOR START OF "FPDIV" RTN
HHH /PAGE ADDRESS FOR START OF "FPDIV' RTN

THE THREE ROUTINES, “FPINP,” “FPOUT," AND "FPCONT" AS PRESENTED
WOULD REQUIRE ABOUT THREE PAGE OF MEMORY FOR STORAGE. HOWEVER, AS WILL
BE DISCUSSED SHORTLY, THF ROUTINES COULD BE MODIFIED TO FIT INTO A CON-
SIDERABLY LESS AMOUNT OF MEMORY. THE DEMONSTRATION ROUTINES ALSO USED
CERTAIN LOCATIONS ON PAGE 8@ FOR STORAGE OF TRANSIENT DATA AND THESE
ARE LISTED BELOV FOR REFERENCE. NATURALLY, THE ROUTINES COULD BE EASI -
LY ALTERED TO USE OTHER TEMPORARY STORAGE LOCATIONS. :

LOCATION(S) USAGE
1863 INPUT MANTISSA SIGN STORAGE
164 INPUT EXPONENT SIGN STORAGE
185 INPUT DIGIT COUNTER
1906 INPUT “PERIOD" INDICATOR
187 OUTPUT DIGIT COUNTER
110 TEMP STORAGE FOR CONTROL *OPERATOR"
156 - 1S3 INPUT WORKING AREA
154 - 156 INPUT STORAGE REGISTERS (FOR DECBIN CONWV)
157 INPUT EXPONENT (DECIMAL PQUIVELANT)
160 - 163 OUTPUT WORKING AREA ‘
164 - 167 OUTPUT STORAGE REGISTERS (FOR BINDEC CONV)
176 - 173 TEMPORARY NUMBER STORAGE

TECHNIQUES FOR SHORTENING LENGTHY PROGRAMS

THE "FPINP,*" "“FPOUT,"” AND "FPCONT" ROUTINES DESCRIBED PREVIOUSLY
MIGHT APPEAR SOMEWHAT LENGTHY TO THE READER. INDEED THEY ARE BECAUSE
MANY OF THE SECTIONS WERE DEVELOPED IN A MANNER THAT WOULD ENABLE ONE
TO MORE EASILY FOLLOW THE LOGIC OF THE PROGRAM RATHER THAN TO SAVE MEM-
ORY SPACE IN A COMPUTER SYSTEM. AS READERS KNOW, HOVEVER, IT IS OFTEN
DESIRABLE TO REDUCE PROGRAMS TO FORMS THAT USE LESS MEMORY STORAGE.
BUT, THERE ARE TRADE-OFFS TO CONSIDER. DESIGNING A PROGRAM TO MINIMIZE
THE AMOUNT OF MEMORY USED GENERALLY REQUIRES SIGNIFICANTLY MORE HUMAN

5 - al

PROGRAM DEVELOPMENT TIME, AND IT GENERALLY MAKES THE PROGRAM MORE "COM-~
PLEX" OR DIFFICULT FOR SOMEONE ELSE TO UNDERSTAND, BECAUSE ONE OF THE
FUNDAMENTAL TECHNIQUES IN REDUCING A PROGRAM'S LENGTH 1S TO CAPITALIZE
ON MAKING AS MANY "SUBROUTINES' OUT OF DIFFERENT SECTIONS OF THE PROGRAM
AS POSSIBLE. THERE 1S ALSO ANOTHER PARAMETER THAT CAN BE AFFECTED BY
DESIGNING A PROGRAM TO USE LESS MEMORY - THE SPEED AT WHICH THE PROGRAM
IS EXECUTED IS GENERALLY DECREASED BECAUSE A LOT OF EXTRA TIME IS SPENT
EXECUTING TIME CONSUMING "CALL" INSTRUCTIONS. MORE DISCUSSION ON THE
CONSIDERATIONS OF A PROGRAM'S OPERATING SPEED WILL BE PRESENTED IN A
LATER CHAPTER.

PERHAPS THE FIRST RULE OF THUMB TO APPLY TOWARDS REDUCING THE AMOUNT
OF MEMORY A PROGRAM REQUIRES IS TO MAXIMIZE THE AMOUNT OF SUBROUTINING
UTILIZED PROVIDED THAT THE SUBROUTINING MEETS THE FOLLOWING SIMPLE MATH-
FMATICAL RELATIONSHIP:3 :

BXN > 3XN+B=+

WHEREt “B" = THE NUMBER OF BYTES IN A REPEATED INSTRUCTION SEQUENCE
AND: "N" = THE NUMBER OF TIMES THE SEQUENCE 1S USED IN THE PROGRAM

EXAMINING THE FORMULA ABOVE WILL SHOW THAT IT DOES NO GOOD IN TERMS OF
CONSERVING MEMORY SPACE TO CALL A ROUTINE THAT UTILIZES ONLY 3 BYTES OF
MEMORY. THIS 1S BECAUSE A "CAL" INSTRUCTION ITSELF REQUIRES 3 BYTES OF
MEMORY! HOVEVER, ONCE AN INSTRUCTION SEQUENCE EXCEEDS 3 BYTES OF MEMORY
THE POINT AT WHICH SUBROUTINING BECOMES PROFITABLE FOR CONSERVING MEMORY
SPACE 1S A FUNCTION OF “N,* THE NUMBER OF TIMES THE INSTRUCTION SEQUENCE
NEEDS TO BE REPEATED IN A PROGRAM. FOR EXAMPLE, IF "B" = 4, ONE STARTS
SAVING MEMORY SPACE BY SUBROUTINING WHEN "N" = 6. THE ABOVE FORMULA
SHOWS THAT THE VALUE OF "N REQUIRED TO MEET THE CONDITION WHERE MEMORY
PACE 1S SAVED BY SUBROUTINING DROPS QUITE RAPIDLY AS “B" 1S INCREASED
SO THAT BY THE TIME ONE IS DEALING WITH INSTRUCTIONAL SEQUENCES WHICH
USE 8 OR MORE BYTES OF MEMORY, ONE CAN SAVE MEMORY SPACE BY FORMING A
SUBROUTINE IF THAT SAME SFQUENCE 1S USED MORE THAN ONCE IN A PROGRAM!

A SUMMARY OF THE MINIMUM VALUES OF "B" AND "N" THAT WILL RESULT IN MEM-
ORY SPACE BEING SAVED BY SUBROUTINING BASED ON THE ABOVE FORMULA 135 PRO-
VIDED BELOV.

B=4 AND N = 6
B=5 AND N =5
B=6 AND N =3
B=8 AND N = 2

THE AMOUNT OF MEMORY SPACE THAT ONE SAVES BY APPROPRIATE SUBROUTIN-
ING CAN BE CHECKED BY REARRANGING THE ABOVE FORMULA:

BXN - (3XN+B+1) = Z

AND SOLVING FOR “Z," THE AMOUNT OF BYTES SAVED. FOR EXAMPLE, IF “B"
1S 8 AND "N* 1S 3, THEN "Z" 1S3 ’

8 X3 = (3X3+8+1) = 6

WHEN DEVELOPING SUBROUTINES, ONE CAN OFTEN USE ONE ROUTINE TO SERVE
SEVERAL FUNCTIONS BY ALLOWING FOR MULTIPLE ENTRY POINTS TO THE SUBROUT-
INE. AN EXAMPLE OF THIS METHOD WAS USED IN THE FLOATING=POINT PACKAGE
DISCUSSED WHERE TWO ENTRY POINTS TO THE ROTATE SUBROUTINES WERE PROVI-
DED, SUCH AS THE "ROTATL"™ SUBROUTINE WHICH HAD A SECOND ENTRY POINT LAB <%
ELED “ROTL" WHICH ALLOVED ONE TO ENTER THE ROUTINE BY "SKIPPING" THE
“NDA" INSTRUCTION WHICH RESIDED. IN THE LOCATION LABELED “ROTATL."

5 - 42

-

ANOTHER WAY TO OFTEN SAVE SIGNIFICANT AMOUNTS OF MEMORY IS BY CARE~-
FUL ORGANIZATION OF THE PROGRAM AND ASSIGNMENT OF DATA STORAGE AREAS IN
MEMORY. FOR EXAMPLE, THE READER MAY HAVE NOTED THAT ALL THE NUMERICAL
DATA STORAGE AREAS USED. IN THE FLOATING-POINT ROUTINES ALONG WITH THE
COUNTERS AND INDICATORS STORED IN MEMORY WERE LOCATED ON PAGE 80. THIS
WS DONE TO MINIMIZE THE RESETTING OF THE PAGE POINTER (REGISTER “H").
SCATTERING DATA ON DIFFERENT PAGES OF MEMORY IN A LARGE PROGRAM CAN RE-
SULT IN QUITE A BIT OF WASTED MEMORY BECAUSE REGISTER "H" MUST BE FREQ-
UENTLY ALTERED (WHICH REQUIRES A TWO BYTE INSTRUCTION) TO CHANGE THE
MEMORY POINTER ADDRESS. CAREFUL ORGANIZATION OF DATA STORAGE CAN EVEN
BE HELPFUL IN MINIMIZING THE AMOUNT OF TIMES THAT REGISTER '"L"™ MUST BE
LOADED WITH A NEW ADDRESS (REQUIRING A TWO BYTE INSTRUCTION) BY LOCAT-
ING STORAGE AREAS IN ACCORDANCE WITH HOW THEY ARE ACCESSED IN A PRO-
GRAM SEQUENCE SO THAT AN "INL"™ OR "DCL'" (ONE BYTE COMMAND) MAY BE USED
T0O ACCESS A STORAGE LOCATION RATHER THAN AN "LLI XXX* INSTRUCTION.

IN LINE WITH THE ABOVE CONSIDERATIONS IS THE SIMPLE RULE TO MAIN-
TAIN POINTERS AND COUNTERS AND OTHER FREQUENTLY USED “INDICATORS'" IN CPU
REGISTERS AS MUCH AS POSSIBLE. THIS CONSIDERABLY REDUCES THE NUMBER OF
TIMES THAT THE "H & L' REGISTERS HAVE TO BE CHANGED TO "POINT" TO LOCA-
TIONS THAT CONTAIN SUCH INFORMATION AND THEN CHANGED BACK TO HANDLE THE
CURRENT DATA THAT IS BEING MANIPULATED.

ANOTHER GENERAL RULE OF THUMB TO FOLLOW FOR REDUCING PROGRAM MEMORY
USAGE IS TO CAPITALIZE ON "LOOPS." A FORMULA FOR DETERMINING WHEN ONE
CAN SAVE MEMORY SPACE BY USING A “LOOP" (ASSUMING THE LOOP COUNTER IS
STORED IN A CPU REGISTER") IS PRESENTED HERE:

BXN > B + 6

WHERE: “B*" = THE NUMBER OF BYTES FORMING THE “REPEATED'" PORTION OF
THE SEQUENCE THAT MUST BE CONSECUTIVELY REPEATED.
AND: "N = THE NUMBER OF TIMES THE SEQUENCE MUST BE CONSECUTIVELY
REPEATED.

THUS, BY USING THE FORMULA, ONE CAN SEE THAT IF A PROGRAMMER HAS A FOUR
BYTE INSTRUCTION THAT MUST BE CONSECUTIVELY REPEATED THE PROGRAMMER CAN
SAVE MEMORY BY SETTING UP A *"LOOP"™ IF THE SEQUENCE MUST BE CONSECUTIVELY
REPEATED THREE OR MORE TIMES. IF "B" IS ONLY TWO, THEN A “LOOP"™ CONSER-
VES MEMORY IF IT MUST BE CONSECUTIVELY PERFORMED FIVE OR MORE TIMES.
(THE ABOVE FORMULA 1S DERIVED FROM THE FACT THAT IT REQUIRES SIX BYTES
TO SET UP A "COUNTER,' INCREMENT OR DECREMENT THE COUNTER EACH TIME A
“LOOP" 1S COMPLETED, AND MAKE A "CONDITIONAL®" BRANCHING TEST).

A SUBTLE CONCEPT THAT CAN SAVE MEMORY SPACE INVOLVES THE POSSIBILI=-
TY OF INCLUDING A FEW CAREFULLY CHOSEN INSTRUCTIONS IN SUBROUTINES TO
INCREASE THEIR GENERAL USEFULNESS. FOR EXAMPLE, CONSIDER THE SUBROUT=-
INE ILLUSTRATED BELOW:

SAMPLE, LCH /SAVE VALUE OF "H" IN 'C"
LHI XXX /SET PNTR TO "DATA' PAGE
LAM /FETCH A BYTE OF "DATA"
LHC /RESTORE ORIG VALUE OF *'H"
NDA /SET FLAGS FOR ACC CONTENTS
RET

SUCH A SUBROUTINE MIGHT BE EXTREMELY VALUABLE IN A LARGE PROGRAM WHERE
"DATA™ WAS STORED ON ONE PAGE, BUT "COUNTERS" AND "INDICATORS"™ HMAD TO
BE STORED ON ANOTHER. BEFORE CALLING THE ABOVE ROUTINE, THE PROGRAM
WOULD HAVE SET REGISTER “L" TO THE APPROPRIATE ADDRESS ON THE PAGE
WHERE "DATA" WAS TO BE OBTAINED. SUPPOSE THAT SOMETIMES THE MAIN PRO=-

5 - 43

GRAM NEEDED TO SIMPLY TRANSFER DATA FROM ONE LOCATION TO ANOTHER, AND
AT OTHER TIMES IT MADE “TESTS"™ ON THE DATA 1T OBTAINED. THE SIMPLE IN-
CLUSION OF THE "NDA" INSTRUCTION IN THE ABOVE ROUTINE DOES NO HARM IN
CASES WHERE DATA 1S TO BE SIMPLY TRANSFERRED, BUT IT CAN SAVE VALUABLE
MEMORY STORAGE IF THERE ARE TWO OR MORE TIMES IN WHICH THE DATA MUST BE
“TESTED" IN THE MAIN PROGRAM BY HAVING THE "NDA" IN THE SUBROUTINE!
FOR, THE “NDA" SETS UP THE FLAGS ALLOVING ONE TO IMMEDIATELY EXECUTE A
CONDITIONAL BRANCHING INSTRUCTION UPON RETURN FROM THE SUBROUTINE WHEN
DESIRED BASED ON THE “DATA" LOADED INTO THE ACCUMULATOR BY THE SUBROUT-
INE. TO PUSH THE POINT BEING MADE ONE STEP FURTHER - ADDING ONE MORE
INSTRUCTION TO THE ABOVE SUBROUTINE - AN "INL" PLACED JUST BEFORE THE
"“NDA" INSTRUCTION COULD MAKE THE ROUTINE EVEN MORE "GENERAL PURPOSE."
FOR INSTANCE, IN A TYPICAL DATA MANIPULATING PROGRAM ONE MIGHT BE SEQ-
UENTIALLY ACCESSING LOCATIONS IN THE “DATA" STORAGE AREA WHILE POSSI-
BLY SEARCHING FOR A CERTAIN “CODE." AT OTHER TIMES ONE MIGHT BRANCH OFF
T0 PERFORM WORK IN ANOTHER AREA OF MEMORY IN WHICH CASE ONE WOULD PRO-
BABLY HAVE TO PERFORM AN “LLI XXX" INSTRUCTION. THUS, THE INCLUSION OF
THE “INL™ COMMAND IN THE SUBROUTINE TAKES CARE OF ALL THE TIMES THAT ONE
NEEDS TO ACCESS THE NEXT LOCATION IN THE “DATA" AREA, YET DOES NO HARM
IF THE PROGRAM WILL BE DIRECTED TO A DIFFERENT MEMORY AREAl (NOTE, HOW-
EVER, THAT ONE WOULD HAVE TO EXAMINE CAREFULLY, HOV OFTEN THE MAIN PRO-
GRAM MIGHT BE REQUIRED TO ACCESS THE EXACT SAME LOCATION AGAIN, THUS RE-
QUIRING A COMPENSATING *"DCL' INSTRUCTION IN THE MAIN PORTION OF THE PRO-
GRAM!)

HOWEVER, ONE OF THE MOST POWERFUL MEMORY SAVING TECHNIQUES FOR 8068
SYSTEMS 1S BASED ON THE USE OF A CLASS OF INSTRUCTIONS THAT MANY NOVICE
PROGRAMMERS COMPLETELY OVERLOOK! THIS CLASS OF INSTRUCTIONS IS THE
"RESTART" (RST XXX) GROUP. FOR, WHILE THE MNEMONIC FOR A “RESTART" IN-
STRUCTION 1S SHOWN AS CONSISTING OF TWO PARTS, THE ACTUAL COMMAND IS AN
EFFECTIVE ONE BYTE “CALL" INSTRUCTION! WHILE THE "RST" COMMANDS WERE
INCLUDED IN THE 8008 INSTRUCTION SET TO FACILITATE IMPLEMENTING "START=-
P" OPERATIONS IN CONJUNCTION WITH THE "INTERRUPT" FACILITY ON TYPICAL
8008 SYSTEMS, THEY MAY ALSO BE PUT TO EXTREMELY EFFECTIVE USAGE IN GEN-
ERAL PROGRAMMING APPLICATIONS. THE REASON 1S EASY TO UNDERSTAND ONCE
IT HAS BEEN POINTED OUT - BEING ABLE TO "CALL" A SUBROUTINE WITH A ONE
BYTE INSTRUCTION INSTEAD OF A THREE BYTE INSTRUCTION CAN SAVE A LARGE
AMOUNT OF MEMORY SPACE IF A ROUTINE HAS TO BE "CALLED" FREQUENTLY IN A
PROGRAM.

THE READER SHOULD REVIEW THE MATERIAL ON PAGE 17 OF THE CHAPTER
WHICH EXPLAINS THE 8088 INSTRUCTION SET IN THIS MANUAL PERTAINING TO
THE “RESTART" INSTRUCTIONS. SINCE THERE ARE 8 "RESTART" LOCATIONS ON
PAGE 60, THAT MEANS THAT ONE CAN HAVE UP TO EIGHT DIFFERENT SUBROUTINES
IN A PROGRAM THAT CAN BE ACCESSED WITH BUT A ONE BYTE CALL! WHILE THE
"RESTART"” LOCATIONS ARE SPACED BUT 8 (DECIMAL) LOCATIONS APART, ONE CAN
STILL USE THE "RESTART" LOCATIONS FOR REACHING THE DESIRED OBJECTIVE
OF SAVING MEMORY SPACE EVEN 1F THE DESIRED SUBROUTINE WILL NOT FIT IN
THE 8 LOCATIONS BY SIMPLY HMAVING A “JUMP" INSTRUCTION AT A RESTART LOC-
ATION THAT DIRECTS THE PROGRAM T0 THE ACTUAL SUBROUTINE!

TO SEE THE IMPORTANCE OF USING "RSTY COMMANDS. IN LARGE PROGRAMS CON
SIDER THE FACT THAT IT MAY OFTEN BE NECESSARY TO CALL A PARTICULAR SUB-
ROUTINE 3@ OR 4@ (DECIMAL) TIMES. USING A ONE BYTE "RESTART" INSTRUCT-
ION INSTEAD OF A THREE BYTE “CAL" COMMAND CAN THUS SAVE 6@ TO 88 (DECI-
MAL) MEMORY LOCATIONS. THAT 1S ROUGHLY ONE-FOURTH OF A "PAGE" OF MEM-
ORY IN AN 8008 SYSTEM! MULTIPLY THAT BY A FACTOR OF & - THE NUMBER OF
RST LOCATIONS AVAILABLE - AND ONE CAN SEE A VERY CONSIDERABLE SAVINGS
IN MEMORY USAGE! THE PERSON WHO HAS DEVELOPED FAIRLY DECENT SIZED PRO~-
GRAMS FOR AN 8088 SYSTEM WITHOUT TAKING ADVANTAGE OF THE "RST" COMMANDS
70 CONSERVE MEMORY IS OFTEN AMAZED WHEN SUCH PROGRAMS ARE RE-WRITTEN TO

5 = a4

UTILIZE THE TECMNIQUE AND THE PROGRAMMER FINDS MEMORY USAGE CUT BY A
CONSIDERABLE PERCENTAGE!

AS A CHALLENGE TO THE READER WHO IS INTERESTED IN DOING A LITTLE
CREATIVE “TRIMMING" OF A PROGRAM, WHY NOT GO TO WORK ON REDUCING THE
SIZE OF THE “FPINP,*" "FPOUT," AND “FPCONT"” ROUTINES PRESENTED IN THIS
CHAPTER? USING THE TECHNIQUES DESCRIBED IN THE LAST SEVERAL PAGES.,
ONE SHOULD BE ABLE TO WORK THOSE ROUTINES DOWN FROM THE ROUGHLY THREE
PAGES OF MEMORY THEY REQUIRE AS PRESENTED, TO WITHIN ABOUT TWO PAGES!

5 - 48

INPUT7OUTPUT PROGRAMMING

THIS CHAPTER VILL BE CONCERNED WITH DISCUSSING PROGRAMMING TECHNI-~
QUES FOR TRANSFERRING. INFORMATION TO AND FROM THE COMPUTER AND EXTERNAL
DEVICES. EXTERNAL DEVICES ARE CONNECTED TO THE COMPUTER IN AN 8868
SYSTEM VIA PHYSICAL CONNECTIONS WHICH CARRY ELECTRONIC SIGNALS. SINCE
.I1T 1S OFTEN DESIRABLE TO MAVE A NUMBER OF DIFFERENT DEVICES CONNECTED
T A SYSTEM AT ONE TIME, A HARDVARE ARRANGEMENT. IS GENERALLY PROVIDED
THAT ENABLES A NUMBER OF DEVICES TO BE CONNECTED AT ONE TIME, BUT ONLY
ONE SUCH DEVICE MAY ACTUALLY “COMMUNICATE™ VITH THE COMPUTER AT ANY Glv-
™ INSTANT OF TIME. TO ALLOV CONTROL OF WHICH DEVICE IS ABLE TO COMMU-
NICATE VWITH THE COMPUTER, AN ELECTRONIC ARRANGEMENT. 1S PROVIDED THAT
ALLOVS "SOFTWARE® SELECTION OF INPUT AND OUTPUT “PORTS."™ AS FAR AS A
PROGRAMMER IS CONCERNED, A “PORT™ CONSISTS OF EIGHT SEPARATE ELECTRONIC
SIGNALS THAT CAN BE IN A "1™ OR “@™ STATE. THE EIGHT SIGNALS CORRES~
POND T0 THE EIGMT BIT POSITIONS AVAILABLE IN THE ACCUMULATOR OF THE CPU.
AN “INPUT" PORT ACCEPTS INFORMATION FROM AN EXTERNAL DEVICE AND PRESENTS
_IT TO THME ACCUMULATOR OF AN 8668. AN "OUTPUT"™ PORT TAKES INFORMATION
FROM THE ACCUMULATOR AND PASSES IT TO AN OUTPUT DEVICE. THE SELECTION
OF A PARTICULAR INPUT OR OUTPUT PORT IS SPECIFIED BY THE PROGRAMMER
WEN UTILIZING AN 170 COMMAND. TME READER MAY DESIRE TO REVIEV THE DIS~-
CUSSION OF TME 170 INSTRUCTIONS PRESENTED ON PAGE 18 OF THME CHAPTER DE-
SCRIBING TME INSTRUCTION SET FOR THE 8608 CPU AT THIS TIME.

NOTE¢ FOR THE PURPOSES OF THE DISCUSSION. IN TMIS CHAPTER,
ALL 170 OPERATIONS WILL BE ASSUMED TO TAKE PLACE BETWVEEN
THE 170 "PORTS™ AND THE ACCUMULATOR OF THE CPU. VNILE SOME
READERS MAY BE AWARE TMAT IT IS POSSIBLE TO COMMUNICATE
WITH A COMPUTER VIA TECMNIQUES KNOWN AS "DIRECT MEMORY AC~-
CESS, WHEREBY AN EXTERNAL DEVICE PLACES DATA DIRECTLY.INTO
AREAS IN MEMORY, OR VICE-VERSA, SUCM CAPABILITY IS RARELY
FOUND ON 8688 BASED SYSTEMS. FURTHERMORE, SUCH TRANSFER
TECHMNIQUES ARE ESSENTIALLY "MARDWARE CONTROLLED™ AND ARE
OUTSIDE THE PURELY PROGRAMMING REALM TO WHICM THIS MAN-
UAL IS DEVOTED.

TME BASIC CONCEPT BEMIND COMMUNICATING WITH A COMPUTER LIES. IN PRO-
VIDING SOME FORM OF SYSTEMATIC SYSTEM FOR ENCODING. INFORMATION FROM AN
EXTERNAL DEVICE TMAT WILL ALLOV A PROGRAM TO DECODE TME INFORMATION AND
TAKE APPROPRIATE ACTION, AND TO ALLOV A PROGRAM TO SEND CODES TO AN EX-
TERNAL DEWICE TMAT WILL DIRECT. IT TO PERFORM IN A PRESCRIBED MANNER.

SUCH A SYSTEM CAN BE CREATED ENTIRELY BY TNE PROGRAMMER. INDEED.
. IN MANY SPECIAL APPLICATIONS, SUCH AS CONTROLLING A UNIQUE PIECE OF
MACHINERY, TMAT 1S JUST THE APPROACN TAKEN. FOR EXAMPLE, SUPPOSE SOME
MANUFACTURER NAD A MACHMINE THAT WAS TO BE CONTROLLED BY THE COMPUTER.
THE MACHINE COULD BE CONSTRUCTED SO TMAT WMEN. IT WAS PERFORMING A CER~-
TAIN TYPE OF FUNCTION IT WOULD CLOSE A PARTICULAR ELECTRICAL SWITCHN.
THERE MIGMT BE A NUMBER OF SUCH SWITCMES ON TME MACMINE AND EACH ONE
COULD BE CONNECTED TO AN INPUT LINE, REPRESENTING ONE "BIT" OF AN. INPUT
PORT. FOR TME SAKE OF DISCUSSION, SUPPOSE A MACHMINE MAD EIGHT SUCH. IN-
PUT SVITCHES, ONE CONMNECTED TO EACH POSSIBLE LINE MAKING UP AN INPUT
PORT. WNEN THE SWITCH VAS "CLOSED™ A 1% COMDITION WOULD BE PLACED ON
THE LINE AND VMEN. IT WAS "OPEN™ TME LINE WOULD REPRESENT A "8% CONDI-
TION. FOR THE SAKE OF SIMPLICITY, IT COULD ALSO BE ASSUMED THAT ONLY
ONE SWITCNH COULD BE CLOSED AT ANY GIVIN TIME.

WOV, ASSUME TNE COMPUTER WAS TO MONITOR TME STATUS OF TME SWITCHES

6 -1

BY PERIODICALLY EXECUTING AN INPUT INSTRUCTION FOR THE INPUT PORT TO
WHICH THE SWITCHES VERE ATTACHED. THEN, DEPENDING ON WHICH SWITCH WAS
IN THE CLOSED CONDITION, THE COMPUTER WOULD. DIRECT. INFORMATION TO BE
OUTPUTTED ON AN OUTPUT PORT, SAY, TO DIRECT ANOTHER PART OF THE MACHINE
70 PERFORM A SPECIFIC OPERATION. A PROGRAMMER MIGHT MAKE UP AN "INPUT"
PROGRAM IN THE FOLLOWING MANNER.

MNEMONIC COMMENTS

INCTRL, INP X - 7READ DATA FROM PORT X INTO ACCUMULATOR
NDA 7SET FLAGS. AFTER INPUT OPERATION
JTZ INCTRL 7NO SWITCHES CLOSED - KEEP LOOKINE
CcPl @61 r1S. 1T SWITCH #17
JTZ START1 /YES, DO REQUIRED ROUTINE
CPl @02 £1S. 1T SWITCH #2?
JTZ START2 /YES, DO RERUIRED ROUTINE
CPl1 864 71S. IT SWITCH #3?
JTZ START3 /sYES, DO REQUIRED ROUTINE
CPl 010 71S 1T SWITCH #4?

JTZ STARTA /YES, DO REQUIRED ROUTINE

X .

CPl1 208 71S. 1T SVITCH #87

JTZ START8 /YES, DO REQUIRED ROUTINE

JMP ERROR 71F PROGRAM EVER GETS HERE SOMETHING WRONG

THE ABOVE INPUT ROUTINE. IS QUITE SIMPLE AND LACKS A TECHNICAL CONSI~
DERATION THAT MIGHT BE NECESSARY. IN A REAL SYSTEM (HOW CAN THE ROUTINE
TELL VMETHER A READING. INDICATES A “NEW™ SWITCH CLOSURE OR A "PREVIOUS”
CONDITION STILL PRESENT?) HOVEVER, IT DOES. ILLUSTRATE THE CONCEPT OF
_INPUTTING INFORMATION AND HAVING THE COMPUTER INTERPRET THAT INFORMA-
TION.

IN A SIMILAR MANNER TO THE INPUT ROUTINE, ONE COULD CONNECT, SAY,
THE COILS OF ELECTRONIC RELAYS TO THE OUTPUT LINES OF A SPECIFIC OUTPUT
PORT. EACH OF THE EIGHT POSSIBLE LINES CONNECTED TO AN OUTPUT PORT
COULD ACTIVATE THE ASSOCIATED RELAY WMEN A “1" CONDITION VAS PRESENT,
BUT NOT VHEN A “@" CONDITION EXISTED. SINCE EACH LINE CORRESPONDS TO
ONE “BIT". IN TME ACCUMULATOR, ONE COULD EASILY. DEVELOP A PROGRAM TO CON-
TROL THE OPERATION OF THE RELAYS BY PLACING APPROPRIATE CODES IN THE AC-
CUMULATOR OF THE CPU AND THEN EXECUTING AN "OUT Z% INSTRUCTION WHERE "Z®
REPRESENTED THE OUTPUT PORT WHOSE LINES WERE CONNECTED TO THE RELAYS.

IN THE ABOVE EXAMPLE INPUT PROGRAM TO MONITOR THE STATUS OF A SET OF
SUITCHES IT WAS ASSUMED THAT ONLY ONE SWITCH COULD BE CLOSED AT A GIVEN
TIME. THUS, THERE VERE ONLY NINE POSSIBLE SIGNAL CONDITIONS THAT COULD
BE RECEIVED BY THE COMPUTER - ANY OME OF THE EIGHT SWITCHES, EACH REPRE-
SENTED BY THE STATUS OF A PARTICULAR BIT. IN THE ACCUMULATOR., COULD BE
*ON,” OR NONE OF THEM VERE ACTIVATED. THUS, THE PARTICULAR CODING TECH-
NIQUE FOR THE EXAMPLE VAS REALLY QUITE LIMITED. HAD. IT BEEN STATED THAT
/Y NUMBER OF THE SWITCHMES COULD BE “ON* AT ANY GIVEN TIME, THEN THERE
WOULD BE 256 DIFFERENT CODES POSSIBLE ON THE 8 INPUT LINES AT ANY GIVEN
TIME! SUCH AN ENCODING SCHEME WOULD ALLOV QUITE A LOT MORE INFORMATION
70 BE CONVEYED TO THE COMPUTER ON ONE INPUT PORT. ONE COULD READILY
MVISION COMING UP WITH A SYSTEM VMEREBY AN EXTERNAL MACHINE COULD USE
TME 256 POSSIBLE STATES AVAILABLE ON ONE INPUT PORT TO PROVIDE A LOT OF
INFORMATION TO THE COMPUTER. BY ASSIGMING DIFFERENT CODES TO REPRESENT
DIFFERENT "ARTIFACTS” ONE COULD EASILY COME UP WITK A DEVICE THAT COULD
FSSENTIALLY ENCODE ALL THE LETTERS OF THE ALPHABET., TME NUMBERS @ - 9,

6 - 2

AND A LOT OF SPECIAL SYMBOLS AND STILL HAVE UNUSED STATES! WELL, AS THE
READER UNDOUBTABLY KNOWS, PFOPLE DEVELOPED SUCH ENCODING SYSTEMS QUITE
SOME TIME AGO. IN FACT, A NUMBER OF DIFFERENT “STANDARDIZED" ENCODING
SYSTEMS HAVE BEEN DEVELOPED OVER THE YEARS. ONE OF THE MOST POPULAR EN-
CODING SYSTEMS, ONE THAT IS USED ON MANY KINDS OF MACHINES SUCH AS ELEC-
TRONIC KEYBOARDS, TYPEWRITER, NUMBERICAL CONTROL MACHINES AND IN A VAR-
. IETY OF COMMUNICATION DEVICES, IS5 COMMONLY ABBREVIATED AND REFERRED TO
AS TME "ASCII* CODE. ™“ASCII" IS THE ABBREVIATION FOR "AMERICAN STANDARD
CODE FOR INFORMATION INTERCHANGE.™ “ASCI1* CODE ITSELF IS ACTUALLY DE-
SIGNED TO USE JUST 7 BITS OF INFORMATION ¢THUS ALLOWING FOR THE ENCOD-
ING OF 128 DIFFERENT "SYMBOLS"™), HOWEVER, "ASCIlI" CODE IS OFTEN USED IN
DEVICES THAT USE 8 BITS BECAUSE THE LAST BIT OF DATA CAN BE USED TO TEST
FOR TRANSMISSION ERRORS BY SFERVING AS A “PARITY" INDICATOR. MORE WILL
BE SAID ABOUT "PARITY" A LITTLE LATER,

WHILE THE ENTIRE "ASCII" CODE 1S BASED ON THE DIFFERENT PATTERNS
THAT WILL FIT IN SEVEN BITS OF A REGISTER, THUS YIELDING 128 (DECIMAL)
DIFFERENT "CODES,* A COMMONLY USED "SUBSET"™ OF THE ASCI1 CODE IS OFTEN
UTILIZED. TME “SUBSET"” DOES NOT USE EVERY POSSIBLE PATTERN BUT ONLY
THOSE PATTERNS DESIRED. THE “SUBSET* REFERRED TO 1S FREQUENTLY USED IN
“ASCI1" CODED KEYBOARDS, TELETYPE MACMINES, AND OTHER DEVICES. IN THE
LISTING SHOWN BELOY, THE 8°'TH BIT NOT USED BY THE “ASClI*™ CODE VWILL BE
SHOWN AS A 1% CONDITION AND TME CODES WILL BE PRESENTED AS THEY COULD
APPEAR 1IN THE REGISTERS OF AN 8088 CPU.

CHARACTERS BINARY OCTAL CHARACTERS BINARY OCTAL
SYMBOLIZED CODE REP SYMBOLIZED CODE REP
A 11 080 @81 . 381 ! 186 100 0601 241
B 11 000 810 382 v 10 100 210 242
c 11 600 011 303 ' ¢ 18 1066 081} 243
D 11 06e¢ 100 384 s 10 100 100 244
E 11 80606 181 385 3 190 106 1061 245
F 11 0006 110 306 & 10 100 110 246
G 11 ¢80 111 387 ' 16 1808 111 247
H 11 901 8006 310 (16 181 @00 250
1 11 601 @0l 311) 16 161 001 25}
J 11 201 010 312 * 16 1081 @18 252
K 11 881 211 313 + 16 181 @811 253
L 11 o2l 100 3la , 10 101 108 254
™ 11 eal 181 318 - 18 1061 101 255
N 11 80t 116 316 . 16 101 118 256
0 11 @éo1 111 317 ’ 16 161 111 257
P 11 610 0800 320 0 16 110 000 268
Q 11 618 001 321 1 18 110 801 261
R 11 210 010 322 2 10 110 o016 262
S 11 616 a11 323 3 16 110 011 263
T 11 810 100 324 A 19 110 180 264
U 11610 101 325 S 16 110 161 265
v 11 @610 110 326 6 16 110 1160 266
| J 11 810 111 327 7 10 110 111 267
X 11 811 @80 330 8 10 111 699 270
Y 11 811 @01 331] 19 111 @01 271
z 11 011 @610 332 t 10 111 @186 272
C 11 811 @811 333 3 16 111 811 273
\ 11 811 1006 334 < 16 111 108 274
] 11 611 161 338 = 1 111 101 275
t 11 @11 11@ 336 > 19 111 110 276
- 11 811 111 337 ? 10 111 111 277
SPACE 11 1008 0080 248 o 11 000 0080 360

THE SUBSET OF TME “ASCii* CODE JUST PRESENTED HAS SEVERAL NICE FEA-
TURES WORTHM NOTENG. FOR ENSTANGE, TNE 26 LETTERS OF TMNE ALPMABET ARE
ALL ENCODED. &N A SEAUENCE STARTANG WEITM 381 (OCTAL) AND ENDING WITN 332
©OCTAL). TNUS ONE CAN EASEILY CMEGK DATA, FOR EXAMPLE, BEING INPUTTED
BY AN OPERATOR TO SEE &F THE CODE BEING RECEIVED REPRESENTS A LETTER OF
THE ALPMABET BY PERFORMENG A "RANGE TEST” AS SLLUSTRATED BELOVW.

MNEMONIC COMMENTS
CKALFA, INP X FAGCEPT A CHARACTER FROM INPUT DEVICE
CPI 381 #SEE 1F INPUT IN RANGE FROM 381
JTS CKALFA rT0 332, 4F T 1S NOT, 1GNORE THE
ePg 333 ¥ENPUT, 4F 1T 1S WITHIN THE RANGE
JFS CKALFA FTHEM KAVE AN ALPHABETICAL CHARACTER
4SALFA, +.0 FTO PROCESS AS DESIRED

THE READER MAY NOTE TMAT THE NUMBERS @ THROUGM 9 ARE ALSO GROUPED
TOGETMER AN TNE SEAUENCE FROM 266 TO 27} AND THE PROGRAMMER CAN THUS
READILY. PERFORM A SEMSLAR RANGE TEST TO ONLY ACCEPT NUMBERS.

THERE ARE SEVERAL OTHMER “CHARAGTERS™ TMAT ARE USED BY MANY MAGMINES
THAT OPERATE WiTH ASCil CODE TMAT WiLL BE MENTIONED FOR REFERENCE. TME
PUNCTEONS “GARRIAGE-RETURN™ ¢2185), "LINE-FEED" (212), “BELL" (287) AND
"ROUBOUT™ €377)» ARE MOST OFTEN. FOUND ON TELETYPE MACRINES WHICH MAKE
VERY NECE {70 DEVICES FOR A COMPUTER.

. WHEN AN INPUT EINSTRUCTION 1S EXECUTED, TME COMPUTER WILL RECEIVE
FIGHNT BITS OF INFORMATION SIMULTAINEOUSLY - CORRESPONDING TO THE EIGHT
POSSIBLE LINES OF AN. INPUT PORT WHECH ARE FED INTO THE ACCUMULATOR. IN
OTNER WORDS, THE DATA S ACCEPTED. §N PARALLEL. LIKEWISE, WHEN AN OUT-
PUT INSTRUCTION. iS EXECUTED, TME COMPUTER WILL SEND ALL EIGHT BITS OF
THE ACCUMULATOR OUT TO TME APPROPREATE OUTPUT PORT SIMULTAINBOUSLY.
MOWEVER, SOME DEVICES WHICH ONE DESIRES TO OPERATE WITH TNE COMPUTER MAY
NOT BE "PARALLEL” DEVICES. TMEY MAY. INSTEAD BE “SERIALLY" OPERATED
WIECH MEANS THEY DO NOT TRANSMIT. INFORMATION OVER A GROUP OF WIRES, BUT
PATHFR SEMD THE ENFORMATION “ONE BIT AT A TIME" OVER A SINGLE WIRE.

SUCH DEVICES MAY, MOWEVER, STILL BE CONNECTED TO AN 8868 SYSTEM SINCE
ONE MAY SIMPLY “*DISCARD™ TNE DNUSED BITS CORRESPONDING TO UNUSED LINES
OF AN 170 PORT. 4N SUCN CASES, THE PROGRAMMER MUST KNOW WNICH LINE OF
A PORT. 1S THE “ACTIVE™ LINE AND TAKE CARE TO ENSURE TMAT THE PROGRAM
MANZPULATES BITS OF. INFORMATION SO THAT TNEY APPEAR ON THAT LINE AT THE
FROPFR TIME. VWNETNER A PARTICURAR DEVICE CONNECTED TO A COMPUTER 3
“SERIAL™ OR "PARARLEL"™ IN OPERATION ¢AS FAR AS THE COMPUTER IS CONCERN-
ED) §9 OFTEN A FUNCTEON OF THE TYPE OF NARDWARE ANTERFACE PROVIDED FOR
THE EXTERNAL DEVEICE. FOR INSTANCE, TELETYPE MACMINES ARE ESSENTIALLY
“SPRIAL™ DEVICES SINCE TMEY ACT ON. INFORMATION ONE BT AT A TIME. HOV-
EVER, WKEN ACTUALLY CONNECTED TO A COMPUTER ONE CAN ELECT TO HAVE A
*MARDWARE™ INTERFACE TEAT CONVERTS {NFORMATION RECEIVED FROM THE MACHINE
. 8N SFRiIAL FORM AND PLACES. T IN A "PARALLEL™ REGISTER BEFORE PASSING TNE
PATA TO TME COMPUTER, AND G0ENG. iN THE OTMER DIiRECTION, MAVE THE COMPUT-
R SEND. DATA &N PARALLFL FORM TO TME {NTERFACE WHRICM BILL THEN PASS IT
Of TG THE MACNINE IN BIT-SERIAL FASKION. SUCM AN INTERFACE CAN SAVE

A LOT OF COMPUTER TEIME BECAUSE THE EXTERNAL NMARDWARE INTERFACE IS ABLE
T0 MANDLE THE TIME CONSUMING SEREAL TO PARALLEL AND PARALLEL TO SERiAL
TASKS. MOVEVER, SUCK MARDWARE COSTS MONEY, AND. IN MANY APPLICATIONS ONE
MAY DESIRE TO MAVE TME COMPUTER DO THE SERIAL T0 PARALLEL CONVERSION AND
VICE-VERSA. THNIS CAN BE ACCOMPLISMED @UITE READILY WITH A SUITABLE PRO-
@RAM THAT ACTUALLY UTILIZES TME COMPUTER'S OWN TIMING TO DETERMINE WHEN

6= 4

0 “LOOK™ OR "SAMPLE™ FOR TNE NEXT BIT OF INFORMATION FROM TME SERIAL
DEVICE OR WHEN TO SEND TME NEXT BIT OF INFORMATION TO TME SERIAL DEVICE.
W(ILE TME DETAILS OF CAREFULLY CONTROLLING TME TIMING FOR SUCH A PROGRAM
WLL BE DISCUSSED. N TME NEXT CMAPTER, TME CONCEPT OF MAVING THE COM-
PUTER PERFORM PARALLEL TO SERIAL OR SERIAL TO PARALLEL CONVERSION WILL
BE DEMONSTRATED WITHM SEVERAL ROUTINES AT TMIS POINT. TME TECHNIQUE CON-
S1ST OF USING ACCUMULATOR “ROTATE" INSTRUCTIONS TO SHIFT TME SERIAL DATA
IN OR OUT OF THE COMPUTER.

IN TME PARALLEL TO SERIAL ROUTINE SMOWN NEXT, IT WILL BE ASSUMED
TMAT A DEVICE THAT ACCEPTS SERIAL DATA IS CONNECTED TO THE LEAST SIGNI-
FICANT BIT LINE OF OUTPUT PORT "X" AND THAT THE REMAINING LINES AVAIL-
ABLE ON TME PORT ARE UNUSED. TME DEVICE VILL BE ASSUMED T0 BE A UNIT
TMAT OPERATES WITM. "ASCII™ CODE AND BEFORE THE ILLUSTRATED ROUTINE IS
"CALLED” TMAT TNE CODE FOR A CHARACTER MAS BEEN PLACED. IN THE ACCUMULA-
TOR.

MNEMONIC COMMENTS
PARSER, LCI @18 YSET UP REGISTER “C™ AS A BIT COUNTER
NEXOUT, OUT X 7OUTPUT DATA IN ACC TO PORT X, ONLY THE
RRC ZDATA IN LSB USED, NOW ROTATE ACC RIGHT
DCC 7I1GNORE CARRY TMEN DECREMENT BIT COUNTER
JFZ NEXBIT 7DO NEXT BIT 1F CNTR NOT ZERO
RET 7EXiT RTN WHEN ALL 8 BITS TRANSMITTED

IN THE FOLLOWING SERIAL TO PARALLEL ROUTINE IT IS ASSUMED TMAT DATA
IS ARRIVING AT TME MOST SIGNIFICANT BIT POSITION OF AN INPUT PORT AND
TMAT IT IS TO BE ASSEMBLED INTO AN EIGHMT BIT FORMAT.

"MNEMONIC _ COMMENTS
SERPAR, XRA 7CLEAR ACCUMULATOR AND ALSO CLEAR
LBA ' Z/REGISTER "B"™ AT START OF ROUTINE
LCI #16 7SET A BIT COUNTER
NEXTIN, INP X /BRING. IN DATA FROM INPUT PORT X
NDI 200 - 7SINCE ONLY MSB MAS. IMPORTANT DATA, MASK
RAL JOFF OTNER BITS & CLR CARRY, NOW ROTATE
ADB JLEFT TO SAVE NEV BIT, TNEN ADD IN ANY
RAR /PREVIOUS BITS FROM “B™ AND ROTATE RIGKT
LBA /TO ADD ON LATEST BIT, STORE IN "B"
pce 7DECREMENT BIT COUNTER
JFZ NEXTIN 71F NOT FINISMED, GET NEXT BIT
RET 7EXIT RTN WHNEN 8 BITS RECEIVED & STORED

ANOTHER POPULAR “STANDARDIZED" CODE FOR OPERATING 170 DEVICES 1S
IOWN AS "BAUDOT"™ CODE. BAUDOT GODE IS A *S LEVEL™ CODE IN THAT IT RE-
QUIRES FIVE BITS TO SPECIFY A PARTICULAR CMARACTER. THUS, THNERE ARE
THEORETICALLY 32 DIFFERENT PATTERNS TNAT CAN BE REPRESENTED WNEN USING
PAUDOT CODE. NOW, BAUDOT CODE NAS LONG BEEN USED IN A VARIETY OF TELE-
. TYPES AND OTHER COMMUNZCATION DEVICES AND TME CODE 1S OF INTEREST TO
MANY COMPUTER OWNERS BECAUSE OLDER MODEL TELETYPE MACHINES, PAPER TAPE
PUNCHES AND PAPFR TAPE RFADERS CAN OFTEN BE OBTAINED FROM SECOND NAND
SOURCES AT QUITE REASONABLE PRICES, AND USED AS AN 1r0 DEVICE FOR A COM-
PUTER. WNILE BAUDOT CODE CAN ONLY REPRESENT 32 DIFFERENT BIT PATTERNS,

6=5

TMESE MACHMINES CAN PRINT ALL TME LETTERS OF THE ALPHABET, TME NUMBERS
@ THROUGH 9, AND A VARIETY OF PUNCTUATION SYMBOLS! THAT IS A LOT MORE
THAN 32 DIFFERENT CHARACTERS! MOV IS IT DONE?

. WELL, THE DESIGNERS OF TMOSE MACHINES USED A LITTLE INGENUITY TO
BNABLE TME MACMINE TO HANDLE ALMOST DOUBLE TME NUMBER OF CHARACTERS
THAT COULD BE RFPRESENTED BY A FIVE BIT CODE BY USING SEVERAL OF THE
CODES TO “SHIFT" THE MACHINE BETWEEN TWO MODES, SO TMAT IN ONE MODE IT
WOULD INTERPRET THE CODES TO MEAN ONE SET OF CHMARACTERS AND IN THE OTMER
MODE IT VOULD INTERPRET THE CODES TO REPRESENT A DIFFERENT SET OF CHAR-
ACTERS. 1IN ONE MODE, TERMED TME "LETTERS” MODE, ALL TNE LETTERS OF THE
ALPHABET MAY BE PRINTED. IN THE “FIGURES™ MODE, NUMBERS AND PUNCTUAT-
_I0N ARE PRINTED. THE “BAUDOT" CODE 1S PRESENTED BELOW.

CHARACTERS 5 LEVEL CODE OCTAL
LC uc, BIT POSITION CODES

Vo3
031

P16
a1l

001

p1S
832
024
206
213
L7
na22
B34
ol4
830
026
027
V12
0os
020
BwoT
a36
823
835
825
p21

004
al1e
a02
b0
833
837

NI NIDUOCZXTXAL XA OOWE D
w .
30!\(0"40&&"@0'0vn.a‘h‘-wmnﬂl

SPACE
CARe RETe
LINE FEED

NULL

FIGURES

LETTERS

v—.—&&&@—-—.—-——&.—sS-———Q—-.—QQQ—-QQQQ-—&
——-Q&-—&QQo—&u—&QQ——&&—-——&——&Q—.—Q.—-——Q

—-o—-&o—&Q&QQ———o—&@o——-—@&@—-———&—&@@-—@—
——_ D E OO e e Q== S~ SR =S E == ® -

IN THE BAUDOT TABLE SHOWN ABOVE THE OCTAL CODES COLUMN WAS SHOWN
ASSUMING TMAT TME CODES WERE STORED IN THME LEAST SIGNIFICANT BIT POSI-
TIONS OF AN 8008 REGISTER WITH THE THREE MOST SIGNIFICANT BITS SET TO 8.
TME READER CAN NOW SEE TMAT 26 OF THE POSSIBLE 32 CODES CAN REPRESENT
T90 DIFFERENT CHARACTERS DEPENDING ON WHICH MODE THE MACHNINE IS IN. THE
FUNCTIONS “SPAGE," “CARRIAGE-RETURN," “LINE-FEED,"™ AND “NULL"™ MEAN TNME
SAME REGARDLESS OF WHICH MODE THE MACHINE IS IN, AND TWO CODES “FIGURES™
AND “LETTERS™ ARE USED TO SWITCM TNE MODE OF THE MACMINE. WNILE EVERY-
THING MAY SEEM FINE AT THIS POINT, IT IS IMPORTANT TO DISCUSS HANDLING

6= 6

THE CODE AS PART OF AN 1/0 ROUTINE BECAUSE THERE IS A SUBTLE FACTOR THAT
CAN BE OVER~-LOOKED BY SOME BEGINNING PROGRAMMERS!

IN ACTUAL OPERATION, A BAUDOT TELETYPE OPERATES IN THE “MODE" THAT
IT WAS LAST PLACED IN BY A “FIGURES"™ OR "LETTERS" KEY AND REMAINS IN
THAT MODE UNTIL THE OPPOSITE MODE CODE 1S RECEIVED. THUS, A MECHANICAL
ARRANGEMENT ACTUALLY SERVES TO “REMEMBER" A "BIT" OF INFORMATION. THE
FACT THAT AN EXTERNAL MECHANICAL LINKAGE IS USED TO HOLD A “BIT"™ OF IN-
FORMATION MUST BE TAKEN IN ACCOUNT IF A COMPUTER PROGRAM IS TO PROCESS
THE CODE WITH PRACTICAL RESULTS!

FOR INSTANCE, IF ONE HAD AN INPUT ROUTINE THAT SIMPLY LOOKED FOR A
FIVE BIT PATTERN FROM A BAUDOT DEVICE ONE COULD GET THAT PATTERN IN MANY
INSTANCES FROM TWO POSSIBLE CONDITIONS OF THE TELETYPE MACHINE. FOR IN-
STANCE WHEN THE OPERATOR TYPED AN “A" OR AN "~ MARK. IF THE PROGRAM
WS DESIGNED TO PERFORM A CERTAIN FUNCTION ON RECEIPT OF THE LETTER "A"
IT WOULD ALSO PERFORM IT IF THE PUNCTUATION *"-" WAS RECEIVED! TO AVOID
THAT HAPPENING, ONE MIGHT INFORM THE HUMAN OPERATOR TO ALVAYS ENTER IN-
FORMATION DURING THAT PART OF THE PROGRAM WITH MACHINE IN THE “"LETTERS"
MODE, BUT THAT 1S NOT THE SAFEST WAY IN WHICH TO DESIGN A PROGRAM.

INSTEAD, ONE WQULD BE BETTER OFF TO ADD A BIT TO THE BAUDOT CODE
WHEN IT WAS MANIPULATED IN THE COMPUTER THAT WOULD SERVE TO DIFFERENT=-
IAT BETWEEN "LETTERS" AND “FIGURES." FOR INSTANCE, THE CODE 800011
COULD BE USED TO INDICATE THE LETTER "A"™ AND 1068011 TO INDICATE THE
PUNCTUATION "= MARK. IN ORDER TO INSTITUTE THIS METHOD, ONE WOULD
HAVE TO HAVE A PROGRAM THAT KEPT TRACK OF WHICH MODE THE TELETYPE MACH-
INE WAS OPERATING IN WHENEVER IT WAS RECEIVING DATA FROM THE MACHINE,

BY “REMEMBERING™ THE LAST “LETTERS® OR "FIGURES" CODE RECEIVED. FURTH-
FRMORE, IN ORDER TO ENSURE THAT THE MODE WAS PROPERLY RECEIVED (SUCH AS
WHEN THE PROGRAM WAS FIRST STARTED OR POWER TURNED ON THE TELETYPE MACH-
INE), IT WOULD BE WISE TO HAVE THE COMPUTER OUTPUT A COMMAND THAT WOULD
PLACE THE MACHINE IN A KNOWN STATE SUCH AS WOULD BE ACCOMPLISHED BY OUT-
PUTTING A “LETTERS” OR "FIGURES* CODE AT THE START OF SUCH OPERATIONS.
THEN, FOR STORAGE AND MANIPULATION IN THE COMPUTER, THE INPUT ROUTINE
COULD SET A SIXTH BIT TO A *1" CONDITION WHENEVER A CODE WAS RECEIVED
WHILE THE MACHINE WAS IN, SAY, THE “FIGURES" MODE, AND LEAVE THE SIXTH
BIT AS A "@" VHEN CODES WERE RECEIVED IN THE “LETTERS" MODE. THE SIX
BIT CODES COULD THEN BE MANIPULATED AND STORED BY THE PROGRAM IN MUCH
THE SAME MANNER AS ONE MIGHT PROCESS “ASCII™ CODES WITH THE ABILITY TO
IMMEDIATELY RECOGNIZE THE CLOSE TO 6@ DIFFERENT CHARACTERS. WHEN IT WAS
DESIRED TO OUTPUT INFORMATION, THE SIXTH BIT WOULD BE USED TO INDICATE
WHETHER IT WAS NECESSARY TO FIRST OUTPUT A “FIGURES" OR “LETTERS" CODE
70 SET THE MACHINE IN THE PROPER MODE. (1T WOULD NOT BE NECESSARY TO
OUTPUT A “FIGURES™ OR "LETTERS" MODE COMMAND BEFORE EVERY CHARACTER WAS
SENT BECAUSE ONE COULD USE AN ALGORITHM THAT WOULD ONLY SEND A “MODE"
COMMAND WHEN THE “SIXTH BIT" WAS NOTED TO HAVE CHANGED FROM THAT PRESENT
WHEN THE PREVIOUS CHARACTER WAS TRANSMITTED).

TWO SAMPLE ROUTINES FOR PERFORMING SUCH A FUNCTION, ONE FOR INPUT-
TING DATA FROM A BAUDOT MACHINE, AND ONE FOR OUTPUTTING DATA TO SUCH A
MACHINE, WILL BE ILLUSTRATED BELOW.

MNEMONIC COMMENTS

X T X 2 2 T T 2 X T L X X J - on ED UE WR Gh T B W b G TS W o

BAUDIN, LAY @37 /LOAD "LETTERS" CODE INTO ACCUMULATOR
CAL OUTPUT /CALL ROUTINE TO SEND BAUDOT CHAR
CAL LETCOD Z/INITIALIZE REG "B" TO “LETTERS"™
INBAUD, CAL INPUT /NOW ACCEPT BAUDOT CHARS FM MACHINE

67

M ENONIC b COMMENTS

cPt 833 /SEE 1F “FIGURES"™ CODE
CTZ F1GCOD /60 SET UP "% AS SIXTH POSITION BIT
CcP1 637 /SEE 1¥ "LETTERS™ CODE
CTZ LETCOD /G0 SET UP *@" AS SIXTH POSITION BIT
, ADB /ADD IN STATUS OF SIXTH BIT POSITION
STORBD, CAL MANIP /USER SUBRTN TO PROCESS DATA
: JMP INBAUD /GET NEXT CHAR IN SEQUENCE IF APPLICABLE

F16COD, LBI 4@ . /SET SIXTH BIT IN "B" = 1|
RET * JRETURN TO MAIN ROUTINE
LETCOD, LBI 888 - /SET SIXTH BIT IN “B" = 8

- RET /RETURN TO MAIN ROUTINE

THE READER SHOULD NOTE THAT THERE ARE ACTUALLY TWO ENTRY POINTS TO
THE ROUTINE JUST PRESENTED. THE SUBROUTINE “BAUDIN" SHOULD BE CALLED
T0 INITIALIZE THE CONDITION OF THE BAUDOT MACHINE WHENEVER THE PROGRAM
1S FIRST STARTED OR AT OTHER TIMES WHEN THE "MODE" OF THE MACHINE IS NOT
CERTAIN. ONCE THE MACHINE AND ROUTINE HAS BEEN "INITIALIZED" THEN THE
PROGRAM. MAY BE CALLED AT "INBAUD™ AS LONG AS SOME OTHER ROUTINE DOES NOT
INTERFERE WITH THE STATUS OF REGISTER "B.* THE READER WHO IS INTERESTED
IN "LOGIC™ MIGHT NOTE THAT REGISTER “B* IN THE ABOVE PROGRAM ACTS AS A
“SLEP-FLOP® TO REMEMBER THE “MODE" IN WMICH THE TELETYPE 1S OPERATING.

THE ROUTINE SHOWN NEXT ALSO HAS TWO ENTRY POINTS. THE FIRST TERMED
“BAUDOT* IS USED WHEN THE FIRST CHARACTER OF A STRING OF CHARACTERS 1S
70 BE OUTPUTTED IN ORDER TO “INITIALIZE" THE BAUDOT MACHINE AND SET UP
REGISTER "C.” THE ENTRY POINT "OTBAUD"™ MAY THEN BE USED UNTIL- THE
“MODE™ MEMORY REGISTER ("C") IS INTERFERED WITH BY ANY OTHER EXTERNAL
ROUTINE. NOTE TOO, THAT. THE ROUTINE BELOV EXPECTS THE CHARACTER TO BE
OUTPUTTED TO BE RESIDING. IN REGISTER “B™ WHEN THE SUBROUTINE 1S CALLED!

MNEMONIC ' COMMENTS

" BAUDOT, LAl 837 /LOAD “LETTERS™ CODE INTO ACCUMULATOR
CAL OUTPUT /CALL ROUTINE TO SEND BAUDOT CHARACTER
LCI o8# /SET INDICATOR FOR “LETTERS". IN "C"
OTBAUD, LAB - /MOVE CHAR FM “B"™ TO ACCUMULATOR
NDI 940 /SEE 1F SIXTH BIT = 1, IF YES = "FIGURES"
JTZ LTCHAR /CHARACTER, IF NOT = “LETTERS" CHARACTER
NDC . /71F "Fi@” SEE IF LAST OUT ALSO "FI€"
JTZ LASLET /i1F @ HERE THEN LAST WAS A "LETTERS"™
OUTCOD, LAB /PUT PRESENT CHARACTER IN ACCUMULATOR
' ‘CAL OUTPUT /SEND THE BAUDOT CHARACTER i
. RET /RETURN TO CALLINE ROUTINE
LASLET, LAl #33 /SINCE LAST WAS “LTR™ PUT "FIG6" CODE
LASFiG, CAL OUTPUT /SEND CODE
. LCB /SAVE LATEST IN REG "C" FOR COMPARI SON
‘ JMP OUTCOD /SEND CURRENT CHARACTER
LTCHAR, LAl 640 /SET MASK & _SEE IF LAST VAS “LETTERS™
: NDC /BY CONPARISON OF SIXTH BIT POSITION
JTZ OUTCOD 71F 8 NERE, LAST WAS ALSO "LETTERS™
LAl 837 . /3F NOT, SEND "LETTERS™ CODE FIRST

Jmr LASFi@ /BY USING ABOVE RTN TO SEND "LETTERS™ CODE
IT 1S OFTEN DESIRABLE T0 HAVE {/0 ROUTINES THAT VILL CONVERT BETVEEN

i

"5‘6"3

ONE TYPE OF I/0 CODE AND ANOTHER, SUCH AS BETWEEN "ASCI1" AND “BAUDOT."
THIS MAY BE DESIRED FOR A NUMBER OF REASONS - FOR INSTANCE BECAUSE ONE
HAS ONE TYPE OF INPUT DEVICE USING ONE CODE AND A DIFFERENT OUTPUT DE-
VICE USING ANOTHER CODE. OR, ONE MIGHT DESIRE TO USE A PARTICULAR PRO-
GRAM THAT WAS WRITTEN TO USE ONE KIND OF CODE, WITH A MACHINE THAT USED
A DIFFERENT KIND OF CODE, WITHOUT HAVING TO MODIFY A LOT OF LOCATIONS

IN THE ORIGINAL PROGRAM THAT MIGHT HAVE BEEN TESTING FOR SPECIFIC 1/0
CODES FROM AN EXTERNAL DEVICE. IN SUCH CASES, THE COMPUTER'S CAPABILITY
T0 PERFORM CONVERSION FUNCTIONS IS READILY CAPITALIZED UPON BY CONSTRUC-
TING A "LOOKUP™ TABLE AND USING A SUITABLE PROGRAM TO CONVERT FROM ONE
CODE TO ANOTHER.

FOR EXAMPLE, SUPPOSE IT WAS DESIRED TO USE A "BAUDOT" MACHINE WITH
A PROGRAM THAT WAS DEVELOPED ORIGINALLY TO OPERATE WITH A MACHINE THAT
USED “ASCII™ CODE. ONE COULD PROCEED TO FIRST CONSTRUCT A "LOOKUP"
TABLE SIMILAR IN FORMAT TO THAT SHOWN HERE:

ADDR ESS CONTENTS COMMENTS
10 900 361 : "A" (ASC11I1)
16 001 @03 A" (BAUDOT)
16 002 302 *B" (ASCI1I1)
18 @63 231 "B* (BAUDOT)
16 076 240 “SPACE" (ASCII)
18 @77 264 “SPACE™ (BAUDOT)
190 100 241 g (ASCID)
18 181 a1s sy (BAUDOT)
. . ' . . .
18 174 2717 "2 (ASCII)
18 175 271 nee (BAUDOT)
18 176 386 e (ASCIID)
18 177 208 SUBSTITUTE *“NULL"™ (BAUDOT)

IN CONSTRUCTING THE TABLE, ONE COULD ELECT TO LEAVE OUT OR "IGNORE"
CHARACTERS THAT WERE NOT REPRESENTED BY BOTH CODES, OR TO SUBSTITUTE A
“SUBSTITUTE" CHARACTER WHEN ONE CODE DOES NOT HAVE AN ERUIVALENT CHAR-
ACTER. EITHER METHOD REQUIRES CONSIDERATION WHEN THE SEARCH ROUTINE IS
DEVELOPED. THE FORMER METHOD LEAVES THE POSSIBILITY THAT A HUMAN OPERA-
TOR MIGHT TYPE IN A CHARACTER THAT DID NOT EXIST IN THE TABLE AND SO THE
PROGRAMMER WOULD HAVE TO BE CAREFUL TO “LIMIT" THE TABLE SEARCH ROUTINE.
NOTE THAT IF EVERY POSSIBLE ENTRY EXIST IN THE TABLE, THEN THE TABLE
SEARCH ROUTINE WILL BE "SELF LIMITING" IN THAT A MATCH WILL ALWAYS BE
FOUND. ON THE OTHER HAND, THE LATTER CHOICE OF USING A SUBSTITUTE CHAR-
ACTER REQUIRES THAT THE TABLE BE ORGANIZED SO THAT THE “PREFERRED" CHAR~
ACTER FOR CASES OF MULTIPLE SUBSTITUTION VILL BE THE ONE FOUND “FIRST"
BY THE TABLE LOOKUP ROUTINE. FOR INSTANCE, THERE ARE SEVERAL CHARACTERS
. BESIDES THE "e" MARK, SUCH AS "1*" AND (" WHICH COULD BE INCLUDED IN THE

 ABOVE TABLE WHICH ARE REPRESENTED BY ASCI1 CODES BUT NOT BAUDOT CODES.
IF ONE DECIDED TO. INCLUDE THEM IN THE TABLE, BUT HAVE “NULL" CHARACTERS
AS THEIR CONVERSION FQUIVALENT, ONE CAN SEE THAT A PROBLEM ARISES WHEN
ONE USES THE SAME TABLE TO CONVERT FROM BAUDOT TO ASCI1 AS NOW THERE

6 =9

ARE SEVERAL PLACES IN THE TABLE THAT HAVE THE "NULL"™ CODE. AS VWILL BE
CLEAR SHORTLY, THE ROUTINE THAT CONVERTS FROM BAUDOT TO ASCII, WILL AL-
WAYS REPRESENT A "NULL" CHARACTER IN BAUDOT AS A "@" SYMBOL IN ASCIIl BE-
CAUSE THE BAUDOT ROUTINE “SEARCHES" THE TABLE FROM HIGHEST ADDRESS TO
LOWEST AND WILL FIND THE “NULL" TO “e* ENTRY FIRST. NATURALLY, THE TAB-
LE COULD BE RE-ORGANIZED SO THAT SOME OTHER “NULL®™ CONVERSION ENTRY WAS
LOCATED FIRST. OR, A DIFFERENT TYPE OF LOOKUP ROUTINE THAN THE ONE TO
BE PRESENTED CAN BE DEVELOPED. THESE FACTORS ARE SIMPLY BEING POINTED
OUT TO INCREASE.THE READER'S AVWARENESS AS TO THE TYPES OF FACTORS THAT
MUST BE CONSIDERED WHEN PERFORMING SUCH OPERATIONS.

A ROUTINE THAT WILL USE THE "LOOKUP"” TABLE TO CONVERT “ASCII" CHAR~-
ACTERS TO “BAUDOT* IS ILLUSTRATED NEXT. THIS PROGRAM, AND THE “BAUDOT"
ROUTINE DISCUSSED EARLIER COULD BE USED TO OUTPUT CHARACTERS FROM A
PROGRAM THAT WAS ACTUALLY DOING INTERNAL PROCESSING WITH ASCII CODES.

MNEMONIC , COMMENTS
ASBAUD, LHI 0180 /SET PAGE ADDR PNTR TO LOC OF TABLE
LLI @060 /SET LOW ADDR PNTR TO "“TOP" OF TABLE
FASC11, CPM /COMPARE (ASC1I) CODE IN ACC TO CONTENTS
: JTZ FNDBDO /OF TABLE, IF MATCH, DO CONVERSION
INL /0THERWISE ADVANCE LOW ADDR POINTER
- INL /TO NEXT *"ASCII" CODE LOCATION IN TABLE
: JMP FASCII /AND KEEP LOOKING FOR A MATCH
FNDBDO, INL /WHEN HAVE ASCII MATCH, ADV PNTR 1 LOC
LAM /AND FETCH BAUDOT EQUIVALENT INTO ACC
RET /EXIT LOOKUP ROUTINE

THE ABOVE ROUTINE ASSUMES THAT THE CODE (IN ASCII) FOR A CHARACTER
THAT EXISTS IN THE TABLE 1S IN THE ACCUMULATOR WHEN THE ROUTINE IS ENT-
FRED. NOTE THAT THE ROUTINE DOES NOT TEST FOR THE "END" OF THE TABLE
BECAUSE OF THAT ASSUMPTION. 1F FOR ANY REASON IT MIGHT BE POSSIBLE FOR
A CODE TO BE IN THE ACCUMULATOR THAT WAS NOT IN THE TABLE, THEN IT WOULD
BE NECESSARY TO ADD AN " END OF TABLE" TEST EACH TIME THE TABLE POINTER
WAS ADVANCED AND TO TAKE APPROPRIATE ACTION IF "NO MATCH" WAS FOUND IN
THE TABLE.

THE NEXT ROUTINE DOES ESSENTIALLY THE REVERSE PROCESS, USING THE
SAME TABLE, TO CONVERT BAUDOT CODES TO ASCI1 CODES. IT COULD BE USED
ALONG WITH THE PREVIOUSLY DESCRIBED "BAUDIN" ROUTINE TO ACCEPT CHARAC-
TERS FROM A BAUDOT MACHINE AND CONVERT THEM FOR USE IN A PROGRAM THAT
UTILIZED ASCII CODES. AS IN THE ABOVE ROUTINE, THE PROGRAM ASSUMES
THAT A VALID BAUDOT CODE 1S IN THE ACCUMULATOR WHEN THE ROUTINE 1S CAL-
LED. NOTE THAT THE ROUTINE STARTS SEARCHING THE TABLE IN THE OPPOSITE
DIRECTION THAN THE ROUTINE PRESENTED ABOVE.

MNEMONIC COMMENTS
coeseceowbeaccas . - e s W e e am e e
BAUDAS, LHI 018 /SET PAGE ADDR PNTR TO LOC OF TABLE
LLI 177 /SET LOW ADDR PNTR TO “BOTTOM™ OF TABLE
FBAUDO, CPM /COMPARE (BAUDOT) CODE IN ACC TO CONTENTS
JTZ FNDASC /OF TABLE, IF MATCH, DO CONVERSION
DCL /0THERVISE DECREMENT LOW ADDR POINTER
DCL /TO NEXT “BAUDOT" CODE LOCATION IN TABLE

JMP FBAUDO /AND KEEP LOOKING FOR A MATCH

6« 10

MNEMONIC ‘ - COMMENTS

FNDASC, DCL /WHEN HAVE BAUDOT MATCH, DECR PNTR 1 LOC
' LAM /AND FETCH ASCII EGUIVALENT INTO ACC
RET /EXIT LOOKUP ROUTINE

NATURALLY, THE TECHNIQUES ILLUSTRATED TO CONVERT BETWEEN “ASCII"™
AND “BAUDOT" CODES MAY BE APPLIED TO MANY OTHER TYPES OF CODES. INDEED.,
THE SMALL COMPUTER MAKES AN IDEAL DEVICE FOR “COUPLING" BETVEEN A VAR~
IETY OF 1/0 DEVICES, PARTICULARLY IN COMMUNICATION APPLICATIONS, THUS
ENABLING MACHINES OF DIFFERENT CHARACTERISTICS AND USING DIFFERENT CODES
T0O GOMMUNICATE WITH ONE ANOTHER.

\ A CONCEPT THAT WILL BE DISCUSSED MORE FULLY IN THE NEXT CHAPTER WILL
BE BRIEFLY MENTIONED AT THIS TIME TO POINT OUT AN IMPORTANT CONCEPT WHEN
DEALING WITH 1/0 DEVICES CONNECTED TO THE COMPUTER. AS THE READER UN-
DOUBTABLY KNOWS, MANY MACHINES THAT MIGHT BE CONNECTED TO A COMPUTER ARE
MUCH SLOWER IN OPERATION, IN FACT OFTEN TIMES ORDERS OF MAGNITUDE SLOW-
ER, THAN THE BASIC OPERATING CYCLE OF A COMPUTER. FOR INSTANCE, AN 8028
SYSTEM REQUIRES BUT A MERE 32 MILLIONTHS OF A SECOND IN A TYPICAL SYSTEM
T0 EXECUTE AN “INPUT" INSTRUCTION. THAT IS, IN THAT SHORT AMOUNT OF
TIME IT CAN “ACCESS"™ AN INPUT PORT AND BRING IN & PARALLEL BITS OF IN-
FORMATION INTO THE ACCUMULATOR OF THE CPU.

THE EXTREME SPEED OF THE COMPUTER CAN IN FACT CAUSE PROBLEMS VHEN
PERFORMING I/0 OPERATIONS IF STEPS ARE NOT TAKEN TO *"CONTROL®" THE SIT-
UATION. ASSUME FOR EXAMPLE, THAT A PERSON DESIRED TO CONNECT AN ELEC~-
TRONIC KEYBOARD UNIT, SIMILAR TO A TYPEWRITER, THAT WOULD PRESENT THE
ASCII CODE FOR THE KEY BEING DEPRESSED IN PARALLEL ON THE LINES OF AN
INPUT PORT. IF THE PERSON JUST CONNECTED THE KEYBOARD OUTPUT LINES TO
THE INPUT LINES OF AN INPUT PORT, AND WANTED TO DEVELOP A PROGRAM THAT
WOULD ACCEPT INFORMATION FROM THE KEYBOARD, THERE WOULD BE A NUMBER OF
RATHER TOUGH PROBLEMS, AND THEY WOULD BE RELATED TO THE SPEED AT WHICH
THE COMPUTER CAN OPERATE RELATIVE TO THE SPEED AT WHICH A HUMAN CAN DE-
PRESS THE KEYS ON A KEYBOARD.

SUPPOSE THAT THE KEYBOARD WAS DIRECTLY CONNECTED TO AN INPUT PORT
AND A PROGRAMMER TRIED TO DEVELOP A ROUTINE THAT WOULD SIMPLY READ THE
CODE BEING SENT BY THE KEYBOARD, STORE THE CHARACTER IN MEMORY, AND GO
ON TO READ THE NEXT CHARACTER. IN THE FIRST PLACE, HOW WOULD THE PRO-
GRAM BE ABLE TO EVEN TELL IF A KEY HAD BEEN DEPRESSED? TRUE, ONE COULD
ASSUME THAT IF NO KEYS WERE DEPRESSED, THAT THE CODE BEING RECEIVED
WOULD BE ALL ZEROS, AND A PROGRAM COULD CHECK FOR THAT CONDITION. BUT.,
EVEN 1IF THAT WAS DONE, THE PROGRAMMER WOULD SOON HAVE ANOTHER PROBLEM.
WHEN A KEY WAS ACTUALLY DEPRESSED AND A "NON-ZERO" CONDITION RECEIVED.
A SHORT PROGRAM TO PLACE THE CHARACTER IN MEMORY AND ADVANCE THE MEMORY
POINTER WOULD BE ACCOMPLISHED. IN THE ORDER OF A HUNDRED-MILLIONTHS OF
A SECOND. THE POOR HUMAN DEPRESSING THE KEY WOULDN'T HAVE A CHANCE OF
GETTING A FINGER OFF THE DEPRESSED KEY IN THAT AMOUNT OF TIME, AND IN
FACT IT WOULD TAKE ON THE ORDER OF SEVERAL TENTHS OF A SECOND FOR A PER-
SON TO REMOVE A FINGER FROM A KEY. IN THAT AMOUNT OF TIME, THE SIMPLE
INPUT ROUTINE COULD HAVE "READ"™ THAT SAME CHARACTER AND PACKED IT INTO
MEMORY LOCATIONS A FEV HUNDRED TIMES! NOT EXACTLY THE DESIRED RESULT.
WHAT NOW? WELL, ONE COULD DEVELOP THE INPUT ALGORITHM SO THAT, ONCE A
"NON-ZERO" CODE WAS RECEIVED, ONE WOULD NOT ACCEPT ANOTHER CHARACTER UN-
TIL A “ZERO" CODE WAS OBSERVED. THAT MIGHT IMPROVE THINGS SOMEWHAT, BUT
IT VOULD PRECLUDE ACTUALLY BEING ABLE TO RECEIVE A “ZERO“ CODE (THAT
MIGHT REPRESENT A VALID CONDITION) AND, BECAUSE OF TECHNICAL CONSID-
ERATIONS (SUCH AS "CONTACT BOUNCE" ON THE MECHANICAL SWITCHES OF THE

6= 11

KEYBOARD) IT WOULD NOT BE A VERY RELIABLE METHOD TO UTILIZE.

_INSTEAD, IT WOURD BE FAR BETTER TO PLACE AN "INTERFACE" BETWEEN THE
KEYBOARD AND THE COMPUTER INPUT PORT THAT WOULD ACCOMPLISH THE FOLLOV-
ING OBJECTIVES. WHENEVER A KEY ON THE KEYBOARD WAS DEPRESSED, THE IN-
TERFACE WOULD “LATCH" (HOLD) THE CODE REPRESENTED BY THE KEY IN AN ELEC-
TRONIC "BUFFER" THAT WAS CONNECTED TO THE LINES OF AN INPUT PORT. THE
“BUFFER"™ WOULD THUS HOLD “DATA™ FROM THE KEYBOARD. NEXT, WHEN THE KEY
" THAT HAD BEEN DEPRESSED WAS RELEASED, THE "INTERFACE" WOULD PRESENT A
SIGNAL TO AN INPUT LINE OF ANOTHER INPUT PORT - TERMED A "“CONTROL" PORT.
FINALLY, THE INTERFACE WOULD HAVE A LINE COMING FROM AN OUTPUT PORT OF
THE COMPUTER, THAT WOULD ALLOW THE COMPUTER TO SIGNAL TO THE INTERFACE
THAT IT HAD TAKEN APPROPRIATE ACTION. A DIAGRAM OF AN ELECTRONIC INTER-
FACE WITH THE CHARACTERISTICS DESCRIBED IS SHOWN IN THE NEXT ILLUSTRAT-
ION.

 — R
> S
I >
MACHINE 5 | - 7::2
QUTPUT S — -
> I
> LATCH | 5
STROBE +
. [_ CONTROL
NEW | ¥ INTO PORT ¥

CYCLE -54:>>
S1G NAL CLK o
COMTROL

4 oUT OF PORT 2

’

WITH SUCH AN INTERFACE, ONE COULD DEVELOP A MUCH MORE RELIABLE SYS-
TEM USING AN INPUT PROGRAM THAT WOULD PERFORM IN THE FOLLOWING MANNER:

MNEMONIC COMMENTS

MACHIN, INP Y /CHECK STATUS OF “CONTROL" FM MACHINE
. JFS MACHIN /IF DATA NOT READY - WAIT BY LOOPING

INP X /DATA READY NOW SO FETCH "DATA"

" LBA /SAVE “DATA" IN REGISTER “B"“

LAl 201 /PREPARE TO PULSE LINE ON PORT "Z"
OUT 2 /SEND LOGIC "1 ON PORT Z CONTROL LINE
XRA /CLEAR ACCUMULATOR

ouUT Z . /SEND LOGIC *@" ON PORT Z CONTROL LINE
LAB - /RESTORE "DATA" TO ACCUMULATOR

RET - /EXIT RTN WITH “DATA"™ IN ACCUMULATOR

THE ABOVE ROUTINE ASSUMED THAT THE "CONTROL" LINE FROM THE INTERFACE

6= 12

CAME INTO THE MOST SIGNIFICANT BIT OF THE ACCUMULATOR AND THAT THE CON~-
TROL LINE GOING TO THE INTERFACE ORIGINATED FROM THE LEAST SIGNIFICANT
BIT IN THE ACCUMULATOR. FURTHERMORE, WHILE THE ABOVE ROUTINE “WAITED"
FOR NEW DATA TO ARRIVE FROM THE EXTERNAL DEVICE BY MONITORING THE INPUT
CONTROL PORT CONTINUOUSLY, THE *“JFS MACHIN" INSTRUCTION COULD HAVE BEEN
REPLACED BY A DIRECTIVE TO HAVE THE COMPUTER PERFORM SOME OTHER FUNC-
TION(S) BEFORE TESTING INPUT PORT “Y" AGAIN INSTEAD OF WASTING TIME DO~
ING NOTHING!

" A SIMILAR TYPE OF INTERFACE, AND SIMILAR PROGRAMMING TECHNIQUES CAN
BE APPLIED TO A WIDE VARIETY OF DEVICES THAT MIGHT BE CONNECTED TO THE
COMPUTER. WHILE THE EXAMPLE SHOVED BUT ONE LINE BEING USED ON EACH CON-
TROL PORT, ONE SHOULD NOTE THAT WITH EIGHT LINES AVAILABLE ON ONE PORT.,
ONE CAN USE JUST A FEW "CONTROL'™ PORTS IN A SYSTEM TO MONITOR AND CON-
TROL A LARGE GROUP OF EXTERNAL INSTRUMENTS BY USING THE AVAILABLE BIT
POSITIONS.

TESTING FOR ERRORS DURING 1/0 OPERATIONS

IT IS OFTEN DESIRABLE TO TRANSMIT DATA TO AN EXTERNAL DEVICE THAT
WILL STORE THE DATA IN SOME SORT OF PERMANENT FORM, SUCH AS ON PAPER
TAPE OR MAGNETIC TAPE. THEN, AT SOME LATER TIME, READ THE DATA BACK
INTO THE COMPUTER. DURING SUCH A PROCESS IT IS POSSIBLE FOR ERRORS TO
OCCUR. THAT IS, BITS OF INFORMATION WITHIN A “WORD" MAY BE ALTERED BE-
CAUSE OF “NOISE" OR RANDOM ERRORS OCCURING IN THE 1/0 SYSTEM. WHILE
SUCH ERRORS ARE LIKELY TO OCCUR AT A VERY LOW RATE IN A WELL DESIGNED»
PROPERLY OPERATING 1/0 SYSTEM, IT 1S OFTEN DESIRABLE TO UTILIZE TECHNIQ-
UES THAT WILL AT LEAST INDICATE WHEN AN ERROR HAS OCCURRED. THERE ARE
A VARIETY OF ERROR CHECKING TECHNIQUES AVAILABLE, SOME SO SOPHISTICATED
THAT THEY CAN OFTEN “CORRECT" CERTAIN TYPES OF ERRORS THAT OCCUR DURING
170 OPERATIONS. TWO TECHNIQUES WILL BE DISCUSSED HERE. WHILE NEITHER
ONE OF THEM HAS “ERROR CORRECTING" CAPABILITY, THEY ARE CAPABLE OF DE-
TECTING THE MOST COMMON TYPE OF 1/0 ERROR WHICH IS FOR A BIT IN A WORD
CHANGING STATE.

THE FIRST METHOD TO BE DISCUSSED CONCERNS THE USE OF USING “PARITY"
TECHNIQUES TO DETECT TRANSMISSION ERRORS. THE TECHNIQUE CONSISTS OF
EXAMINING A GROUP OF BITS FOR THE NUMBER OF BITS THAT ARE IN THE 1"
CONDITION WHEN IT IS BEING READIED FOR "TRANSMISSION" AND THEN SETTING
A BIT SET ASIDE FOR THE PURPOSE TO THE STATE THAT VILL MAKE THE TOTAL
NUMBER OF BITS THAT ARE IN THE *“1" CONDITION EITHER AN "ODD" OR " EVEN"
COUNT (FOR THE ENTIRE GROUP). FOR INSTANCE, IT WAS MENTIONED EARLIER
THAT THE "ASCII* CODE.REQUIRED 7 BITS TO REPRESENT ALL THE POSSIBLE 128
CHARACTERS DEFINED BY THE CODE, BUT THAT MANY SYSTEMS EMPLOYED AN 8'TH
BIT FOR "PARITY" PURPOSES. THUS, THE "ASCII" CODE 1S IDEAL FOR USE IN
TYPICAL 8008 SYSTEMS BECAUSE THERE ARE EXACTLY 8 BITS TO A COMPUTER
WORD. . :

FURTHERMORE, THE 8088 CPU HAS AS PART OF IT'S INSTRUCTION SET, SPEC~-
IFIC INSTRUCTIONS TO FACILITATE THE USE OF PARITY TECHNIQUES. REMEMBER
THE "PARITY" FLAG THAT WAS DISCUSSED IN THE CHAPTER ON THE 8008 INSTRUC-
TION SET AND THE VARIOUS CONDITIONAL BRANCHING INSTRUCTIONS THAT USE THE
STATUS OF THE PARITY FLAG?

WHEN THE CODES FOR THE “ASCI1" SUBSET WERE DESCRIBED EARLIER, IT WAS
MENTIONED THAT THE EIGHTH BIT POSITION (MOST SIGNIFICANT BIT) IN THE
LISTING WAS ARBITRARILY SET TO THE "1" CONDITION AS THE "ASCII" CODE DID
NOT USE THAT BIT. HOWEVER, THAT BIT POSITION MAY BE USED TO SPECIFY THE
DESIRED “PARITY"” IN A SYSTEM WHERE PARITY CHECKING IS TO BE EMPLOYED.

6= 13

_FOR INSTANCE, IF ONE WANTED ‘TO ESTABLISH AN EVEN PARITY SYSTEM, ONE
WOULD PROCEED IN THE FOLLOWING MANNER. '

EXAMINE THE SEVEN BITS MAKING UP THE CODE FOR THE CHARACTER TO BE
TRANSMITTED C(ASSUMING “ASCII™ CODE FOR THIS EXAMPLE). IF THE NUMBER OF
BITS IN THE CHARACTER THAT ARE A LOGIC "1" ARE "“EVEN,"” THAT IS THERE ARE
@ 2, A OR 6 BITS IN THE "1* STATE, SET THE 8'TH BIT TO A "@." IF THE
NUMBER OF BITS ARE "ODD," THAT 1S THERE ARE 1, 3, 5 OR 7 BITS IN THE "1"
STATE, SET THE 8°'TH BIT TO A *“1" CONDITION SO THAT THE TOTAL NUMBER OF
BITS IN THE ENTIRE GROUP BECOMES AN EVEN NUMBER! SOME EXAMPLES ARE IL-
LUSTRATED BELOV.

ORIGINAL 7 BIT ASCII CODE 8 BIT "EVEN" PARITY CODE
@A) 1 8606 6901 21 0606 0601
(B) 1 9060 010 81 o606 061680
) 'l e @898 o611 11 06066 0611
(40 1 800 10860 21 060606 1060
(E) 1. 60606 16061 11 606 161
@) e 1106 06060 20 110 0660686
1) 2 110 001 18 110 061

ONE COULD ALSO ELECT TO USE AN *ODD"™ PARITY SYSTEM BY ESSENTIALLY
REVERSING THE SCHEME SO THAT THE 8°'TH BIT IS ALWAYS SET TO MAKE THE TOT-
AL NUMBER OF BITS IN A GROUP THAT ARE IN THE 1" STATE BE AN "ODD" NUM-
BER. "ASCII"™ CODE USING AN 8°'TH BIT TO PRODUCE AN *“ODD PARITY" SYSTEM
IS ILLUSTRATED BELOW FOR SEVERAL CHARACTERS.

ORIGINAL 7 BIT ASCII CODE .8 BIT “0DD" PARITY CODE

@) 1 - 90606 001 11 666 601
B) 1 8006 0160 11 0666 818
) ! e 06 611 21 060606 011
140 1 0960 1| 066 11 00606 10680
(E) 1 200 16061 61 6066 101
@) o 1106 8060 18 110 0060
S 6 1106 0681 60 1106 066061

ONCE ONE HAS SELECTED WHICH PARITY (ODD OR EVEN) TO USE WITH A SYS-
TEM ONE SIMPLY SENDS THE DATA IN THE DESIRED MODE TO THE 1/0 DEVICE.
THEN, WHEN THE DATA IS LATER READ INTO THE COMPUTER, A CHECK IS MADE ON
EACH "“VORD" OF DATA RECEIVED TO DETERMINE IF THE PARITY IS CORRECT. IF
IT IS NOT, THEN AN ERROR HAS OCCURRED. SAMPLE ROUTINES TO GENERATE
“EVEN" PARITY WORDS FOR AN OUTPUT ROUTINE, AND FOR CHECKING FOR " EVEN"
PARITY IN AN INPUT ROUTINE ARE SHOWN NEXT.

MNEMON1C \ | COMMENTS

SEVENP, NDA /ASSUME 7 BIT ASCII CODE IN ACC, 8'TH BIT
JTP GOUT /INIT @, IF PARITY EVEN AS IS, SEND DATA
XR1 200 /OTHERVISE SET MSB = 1 TO GET EVEN PARITY

GOUT, CAL OUTPUT /USER ROUTINE TO TRANSMIT DATA TO 1/0
RET /EXIT EVEN PARITY GENERATOR ROUTINE

6= 14

MNEMONIC COMMENTS

Y X R R X X g - P wn e S D ED R R

REVENP, NDA /ASSUME DATA FM 1/0 DEVICE IN ACCUMULATOR
RTP /SET FLAGS, 1F EVEN PARITY, ALL 0.K.
- JMP PERROR /1F NOT EVEN PARITY DO USFR ERROR ROUTINE

SIMILAR ROUTINES ARE EASILY DEVELOPED FOR UTILIZING “ODD'" PARITY.
THE PROGRAMMER SHOULD NOTE THAT “PARITY" TECHNIQUES CAN BE USED WITH
VIRTUALLY ANY CODING TECHNIQUE AS LONG AS ONE BIT IS SET ASIDE FOR THE
PARITY INDICATOR. FOR INSTANCE, ONE COULD EASILY ADAPT PARITY TECH-
NIQUES FOR THE BAUDOT CODE DISCUSSED EARLIER PROVIDED THAT THE 1/0 DE-
VICE COULD HANDLE THE EXTRA BIT. THAT MIGHT NOT BE POSSIBLE WITH A
BAUDOT TELETYPE MACHINE BUT IT MIGHT BE APPLICABLE, SAY, IF BAUDOT CODE
WAS BEING WRITTEN ON A MAGNETIC TAPE UNIT WHERE EXTRA BITS COULD BE AD-
DED TO THE CODE AND PROCESSED BY THE 170 UNIT.

THE READER SHOULD ALSO BE AWARE OF THE FACT THAT THE USE OF PARITY
CHECKING TECHNIQUES IS NOT INFALLIBLE. IT DOES DETECT ERRORS THAT RE-
SULT IN AN ODD NUMBER OF BITS CHANGING STATE WITHIN A GROUP, BUT NOT IF
AN EVEN .NUMBER OF STATE CHANGES OCCUR. IT IS THUS MOST USEFUL IN A SYS-
TEM VHERE THE EXPECTED PROBABILITY OF MORE THAN ONE ERROR OCCURRING IN A
GROUP OF EIGHT BITS 1S EXTREMELY LOV. THE PROGRAMMER MIGHT ALSO WANT TO
CONSIDER, WHEN USING A “PARITY" CHECKING SCHEME, THE POSSIBILITY OF
TRANSMITTING EACH GROUP OF BITS TWICE. THEN, WHEN DATA 1S READ BACK .
FROM THE 1/0 DEVICE, AN ALGORITHM THAT WILL SKIP THE SECOND GROUP IF THE
GROUP 1S RECEIVED CORRECTLY THE FIRST TIME, OR READ THE SECOND GROUP IF
AN ERROR WAS DETECTED IN THE FIRST GROUP, CAN BE UTILIZED. SUCH A FOR~-
MAT, WHILE REQUIRING A LONGER TRANSMIT AND RECEIVE TIME, CAN RESULT IN
HIGHLY RELIABLE 1/0 DATA HANDLING OPERATIONS.

ANOTHER ERROR CHECKING METHOD THAT 1S OFTEN USED WHEN PASSING DATA
T0O AND FROM 1/0 DEVICES 1S TERMED THE “CHECK=-SUM" TECHNIQUE. ' THE METHOD
1S QUITE SIMPLE IN APPLICATION YET REMARKABLY POWERFUL IN DETECTING ER-
RORS. THE TECHNIQUE CONSISTS OF SIMPLY MAINTAINING A ONE REGISTER SUM
OF ALL THE DATA TRANSMITTED WITHIN A "BLOCK." THAT 1S, AS EACH WORD IS
SENT OUT, IT 1S SUMMED VITH A REGISTER THAT CONTAINS THE SUM OF ALL PRE-
VIOUS DATA WORDS TRANSMITTED IN THE BLOCK. (OVER-FLOWS IN THE SUMMING
REGISTER ARE IGNORED). AT THE END OF A BLOCK OF DATA, THE TWO'S COMPLE-
MENT OF THE SUM THAT HAS BEEN COMPILED IS SENT AS THE FINAL PIECE OF
DATA IN THE BLOCK. :

WHEN THE BLOCK OF DATA 1S READ BACK INTO THE COMPUTER A SIMILAR SUM
IS FORMED AS FACH DATA WORD IS RECEIVED. THEN, WHEN THE LAST PIECE OF
DATA IS RECEIVED, WHICH IS THE TWO'S COMPLEMENT OF THE “CHECK=-SUM," THAT
VALUE 1S ADDED TO THE SUM OBTAINED FROM ALL THE PREVIOUS DATA WORDS IN
THE BLOCK. THE RESULT, IF NO TRANSMISSION ERRORS HAVE OCCURRED, WILL BE
ZERO - THE RESULT OF ADDING ANY NUMBER TO IT'S TWO'S COMPLEMENT. IF IT
IS NOT ZFRO, THEN A TRANSMISSION ERROR HAS OCCUREDe. THE METHOD 1S
SIMPLE AND QUITE RELIABLE. THE READER CAN READILY DETERMINE, THAT IF
ERRORS HAVE OCCURRED, IT WILL AFFECT THE VALUE OF THE SUM AS IT 1S FORM-
ED, AND THUS LIKELY RESULT IN A NON-ZERO VALUE AS A FINAL RESULT WHEN
THE CHECK-SUM AND IT'S TWO'S COMPLEMENT ARE ADDED. (NOTE: IT IS THEOR-
ETICALLY POSSIBLE FOR JUST THE RIGHT NUMBER OF ERRORS TO OCCUR WHEN
READING A BLOCK OF DATA TO RESULT IN A “ZERO" CONDITION BUT IT IS QUITE
SMALL - HARDLY ENOUGH TO LOSE SLEEP OVER)!

A ROUTINE FOR GENERATING A CHECK-SUM AND PLACING THE TWO*'S COMPLE-
MENT OF THAT VALUE AS THE LAST WORD SENT IN A BLOCK OF DATA, FOLLOWVED BY

6«15

MNEMONIC

COMMENTS

A ROUTINE THAT WILL READ BACK A BLOCK OF DATA USING A CHECK-SUM TECH-
NIQUE AND TEST TO SEE IF ANY ERRORS OCCURED IS SHOWN BELOV.

SCKSUM, LHI
LLI
LEI
LDI
NXCKSM, LAM
ADD
LDA
LAM
CAL
INL
DCE
JFZ
LAD
XR1
ADI1
CAL
RET

RCKSUM, LHI
LLI
LEI
LDI
INCKSM, CAL
LMA
ADD
LDA
INL
DCE
JFZ
CAL
ADD
RTZ
JMP

THE ABOVE ROUTINES.

XXX
YYY
YA A A
000

OUTPUT

NXCKSM

377
go1
OUTPUT

XXX
YYY
YAAA
200
INPUT

INCKSM
INPUT -

CKSMER

/SET PAGE ADDR WHERE BLOCK OF DATA STORED
/SET LOC ON PAGE FOR START OF DATA BLOCK
/SET # WORDS IN BLOCK COUNTER

/SET CHECK-SUM REGISTER TO @ AT START
/FETCH DATA WORD FROM MEMORY

/ADD PRESENT DATA TO CHECK-SUM VALUE
/SAVE NEW CHECK-SUM VALUE

/RESTORE ORIG DATA WORD FROM MEMORY
/0UTPUT THE DATA WORD TO 1/0 DEVICE
/ADVANCE MEMORY POINTER

/DECREMENT WORD COUNTER

/1F CNTR NOT @, FETCH NEXT DATA WORD
/PUT CHECK-SUM VALUE IN ACCUMULATOR
/FORM(TWO'S COMPLEMENT VALUE

/1IN STANDARD MANNER

/SEND 2°'S COMPLEMENT OF CK-SUM AS LAST
/WORD IN BLOCK AND EXIT ROUTINE

/SET PAGE ADDR WHERE BLOCK OF DATA GOES
/SET STARTING LOC ON PAGE FOR DATA

/SET # WORDS IN BLOCK COUNTER

/SET CHECK-SUM REGISTER TO @ AT START
/FETCH DATA FROM 1/0 DEVICE

/STORE DATA WORD IN MEMORY

/ADD NEW DATA TO CURRENT CHECK-SUM VALUE
/SAVE NEW CHECK-SUM VALUE

/ADUANCE MEMORY POINTER

/DECREMENT WORD COUNTER

/GET NEXT DATA WORD IF CNTR NOT @

/NEXT WORD FROM 1I/0 IS 2'S COMP OF CK-SUM
/ADD IT TO CHECK-SUM FORMED BY DATA

/1F RESULT IS @0, 0.K., EXIT ROUTINE
/0THERWISE GO TO USER ERROR ROUTINE

AS THE READER WILL NOTE, ASSUME THAT DATA BLOCKS

ARE ONE PAGE OR LESS IN LENGTH AND DO NOT CROSS PAGE BOUNDARIES. HOV-
EVER, BY THIS TIME THE READER SHOULD HAVE LITTLE DIFFICULTY WRITING A
CHECK=-SUM ROUTINE THAT COULD HANDLE LARGER BLOCKS.

THE NEXT CHAPTER WILL CONTAIN MORE INFORMATION OF INTEREST TO THOSE
DEVELOPING PROGRAMS FOR 1/0° OPERATIONS THAT REQUIRE CONSIDERATION OF
"REAL-TIME" PARAMETERS.

6=16

REAL-TIME PROGRAMMING

REAL-TIME PROGRAMMING AS DISCUSSED IN THIS MANUAL APPLIES TO THE DE-
VELOPMENT OF PROGRAMS WHOSE PROPER EXECUTION ARE DEPENDENT ON THE LENGTH
OF TIME IT TAKES FOR THE COMPUTER TO PERFORM AN OPERATION OR SERIES OF
INSTRUCTIONS. THE NEED FOR REAL-TIME PROGRAMMING IS INVARIABLY RELATED
T0 THE RECEIPT OF INFORMATION FROM DEVICES AT SPECIFIC TIMES OR THE CON~-
TROL OF DEVICES EXTERNAL TO THE COMPUTER WHOSE PROPER OPERATION DEPEND
UPON RECEIVING COMMANDS FROM THE COMPUTER AT SPECIFIC TIMES.

THE DISCUSSION OF THE SUBJECT OF REAL-TIME PROGRAMMING HAS BEEN DE-~-
FERRED TO THE LATTER PART OF THIS MANUAL AS REAL-TIME PROGRAMMING 15
GENERALLY MORE DIFFICULT THAN THE DEVELOPMENT OF PROGRAMS THAT ARE NOT
RESTRICTED BY EXECUTION TIMES. THE REASON IS SIMPLY THAT IN ADDITION TO
THE “LOGIC* AND "TECHNIQUE"™ FACTORS THAT THE PROGRAMMER MUST CONSIDER
WHEN DEVELOPING ANY PROGRAM, THE PROGRAMMER MUST NOW ADD IN THE FACTOR
OF HOW MUCH TIME IT WILL TAKE FOR THE COMPUTER TO EXECUTE VARIOUS IN-
STRUCTIONS AND INSTRUCTIONAL SEQUENCES. THE PROBLEM 1S REALLY ONE OF
“COMPLICATION."

HOVEVER, REAL-TIME PROGRAMMING IF OFTEN VITALLY NECESSARY IN CERTAIN
APPLICATIONS AND HENCE THE PROGRAMMER MUST BECOME AWARE OF SOME OF THE
CRITICAL ASPECTS OF SUCH PROGRAMMING. THE READER SHOULD NOT, HOWEVER,
BE OVER-WHELMED BY THE PROSPECTS OF SUCH COMPLICATIONS. FOR, ONCE ONE
HAS AN UNDERSTANDING OF STANDARD MACHINE LANGUAGE PROGRAMMING PROCEDURES
AND HAS GAINED A LITTLE EXPERIENCE, WHICH ONE SHOULD HAVE OBTAINED BY
THE TIME ONE IS DELVING INTO THIS SECTION, ONE SHOULD FIND THE ASPECTS
OF REAL-TIME PROGRAMMING SIMPLY "ONE STEP UP" AND AN EJOYABLE CHALLENGE.

AS WITH MANY OTHER ASPECTS OF PROGRAMMING, PROPER PREPARATION SUCH
AS CLEARLY DEFINING THE PROBLEM TO BE HANDLED, AND PROCEEDING IN AN OR-
DERLY FASHION, CAN GREATLY EASE THE OVER-ALL TASK OF DEVELOPING REAL-
TIME PROGRAMS. ')

THE LAST SEVERAL PAGES OF CHAPTER ONE PRESENTED THE TYPICAL EXECU-
TION TIMES FOR THE VARIOUS CLASSES OF INSTRUCTIONS AVAILABLE. THE TIMES
SHOWN ARE THOSE FOR AN 8008 UNIT WHOSE MASTER CLOCK HAS BEEN ADJUSTED TO
A NOMINﬁL FREQUENCY OF 500 KILOHERTZ. WHEN GETTING DOWN TO PRACTICAL
APPLICATIONS, ONE MUST REALIZE THAT ANY SYSTEM VILL HAVE SOME FINITE
DEVIATION FROM THE NOMINAL FREQUENCY. FOR INSTANCE, IF AN 8088 SYSTEM
HAS A CRYSTAL CONTROLLED MASTER CLOCK, THE POSSIBLE VARIATION FROM THE
NOMINAL FREQUENCY MIGHT BE IN THE ORDER OF 0.65 TO 8.1 PERCENT. SOME
8268 SYSTEMS MIGHT HAVE RESISTOR-CAPACITOR CONTROLLED MASTER CLOCKS AND
THE POSSIBLE VARIATION FROM THE NOMINAL COULD BE CONSIDERABLY WIDER -

P TO 4 OR S5 PERCENT. IN ANY EVENT, WHEN CONTEMPLATING THE DEVELOPMENT
OF REAL-TIME PROGRAMS, ONE MUST ALWAYS TAKE INTO ACCOUNT THE POSSIBLE
VARIATION FROM NOMINAL OF THE MASTER CLOCK FREQUENCY, AND IN FACT SHOULD
PLAN PROGRAMS TO OPERATE UNDER “WORST CASE" VARIATION CONDITIONS. THUS,
IF ONE WAS THINKING OF USING AN 8008 SYSTEM TO CONTROL A PROCESS THAT
REQUIRED TIMING ACCURACIES OF @.01 PERCENT, ONE COULD IMMEDIATELY STOP
CONSIDERING USING A COMPUTER THAT HAD A MASTER CLOCK ACCURATE TO ONLY
0.05 PERCENT! A SECOND CONSIDERATION ABOUT WHETHER TO USE A COMPUTER TO
CONTROL TIME-DEPENDENT EVENTS, INVOLVES HOW CLOSE TOGETHER EVENTS THAT
ARE TO BE CONTROLLED NEED TO OCCUR. IT CAN BE OBSERVED BY EXAMINING THE
INFORMATION AT THE END OF CHAPTER ONE, THAT ALMOST ALL THE INSTRUCTIONS
REQUIRE A MINIMUM OF 20 MICROSECONDS TO BE EXECUTED. THUS, ONE CANNOT
PLAN ON USING THE COMPUTER TO CONTROL EVENTS THAT ARE LESS THAN THAT FAR
APART IN TIME. IN FACT, BECAUSE 1/0 INSTRUCTIONS THEMSELVES TAKE 24 AND
32 MICROSECONDS, AND BECAUSE THOSE INSTRUCTIONS WOULD INVARIABLY BE RE-
QUIRED TO DEAL WITH EXTERNAL DEVICES, ALONG WITH THE FACT THAT ONE VILL

7 -1

ALMOST CERTAINLY VANT TO DO SOME OTHER INSTRUCTIONS BETWEEN 1/0 COM-
MANDS, IT IS A PRETTY GOOD RULE OF THUMB TO DISQUALIFY THE USE OF AN
8008 SYSTEM AS A REAL-TIME CONTROLLER IF ANY TWO EVENTS DEPENDENT UPON
TIMING FROM THE COMPUTER WILL OCCUR WITHIN 108 MICROSECONDS. A SECOND
RULE OF THUMB TO IMMEDIATELY REJECT THE USE OF SUCH A SYSTEM AS A TIME
DEPENDENT CONTROLLER, ONE THAT IS PRETTY MUCH DERIVED FROM EXPERIENCE,
IS 1F THE APPLICATION WILL REQUIRE MUCH MORE THAN 18060 1/0 OPERATIONS
PER SECOND. UNLESS, SUCH OPERATIONS ARE STRICTLY REPETITIVE AND THE
PREVIOUS RULE CAN BE MET. THIS SECOND RULE OF THUMB IS DERIVED FROM
PRACTICAL EXPERIENCE WITH *“PROGRAMMING OVERHEAD" WHICH RESULTS WHEN A
VARIETY OF TIME-DEPENDENT EVENTS MUST BE "“JUGGLED' IN A REAL-TIME PROG-
RAM.

THE PROSPECTIVE REAL-TIME PROGRAMMER SHOULD BECOME FAMILIAR WITH
THE LENGTHS OF TIME REQUIRED TO EXECUTE THE VARIOUS CLASSES OF INSTRUC-
TIONS. ONE OF THE FIRST NEV HABITS TO LEARN WHEN PREPARING REAL-TIME
PROGRAMS IS TO WRITE DOWN THE EXECUTION TIME REQUIRED FOR EACH INSTRUC-
TION ALONGSIDE THE MNEMONIC AS THE PROGRAM IS WRITTEN. IT THEN BECOMES
AN EASY MATTER TO FIGURE OUT “TOTALS" FOR VARIOUS PORTIONS OF THE ROUT-
INECS). ADDITIONALLY, IT IS OFTEN HELPFUL TO WRITE DOWN THE "TOTAL"
EXECUTION TIMES ALONG *“PATHS" AND "LOOPS* ON A FLOW CHART OF THE PROG-
RAM. REAL-TIME PROGRAMMING OFTEN REQUIRES A FAIR AMOUNT OF *"JUGGLING"
BETWEEN CHOICES OF INSTRUCTIONS USED AND ALTERNATE SEQUENCES OF COMMANDS
IN ORDER TO OBTAIN DESIRED PROGRAM EXECUTION TIMES. HAVING CRITICAL
TIMING INFORMATION ON HAND IN THE FORMS SUGGESTED CAN PROVIDE THE PRO-
GRAMMER WITH A QUICK VIEW OF HOW THE PROGRAM DEVELOPMENT EFFORT IS PRO-
CEEDING.

IN ANY PROGRAMMING APPLICATION, FLOW CHARTING IS5 AN EXTREMELY VAL-
UABLE AID TO ENABLING ONE OBTAIN AN "OVER-ALL"™ VIEW OF A PROGRAM'S OP-~-
ERATION. IN REAL-TIME PROGRAMMING ANOTHER TOOL OF EQUAL IMPORTANCE
SHOULD BE BROUGHT INTO USE. THAT TOOL IS A "TIMING DIAGRAM."™ A "TIM-
ING DIAGRAM" ILLUSTRATES THE RELATIONSHIP. IN TIME BETWEEN THE OCCUR-
ENCE OF SPECIFIC EVENTS OF INTEREST TO THE PROGRAMMER.

A TIMING DIAGRAM IS SHOWN ON THE TOP OF THE NEXT PAGE. THE DIAGRAM
ILLUSTRATES THE DESIRED STATUS OF A SIGNAL LINE AS A FUNCTION OF TIME
FOR AN ELECTRONIC SIGNAL THAT IS TO PROVIDE INFORMATION TO A “BAUDOT"
TFLETYPE MACHINE. THE DIAGRAM SHOWS THE SI1GNAL CONDITIONS REQUIRED TO
DIRECT THE MACHINE TO PRINT THE LETTER "Y" OR THE FIGURE ' 6" DEPENDING
ON WHICH MODE THE TELETYPE 1S OPERATING IN ("LETTERS'" OR "FIGURES'"™).
THIS DIAGRAM WVILL BE USED TO DEVELOP A SAMPLE PROGRAM FOR OPERATING A
TELETYPE PRINTER MECHANISM AS AN INTRODUCTION TO THE CONSIDERATIONS RE-
QUIRED WHEN DEALING WITH REAL-TIME PROGRAMMING.

IN ORDER TO CLARIFY THE DIAGRAM A BRIEF EXPLANATION OF THE OPERATION
OF A BAUDOT TELETYPE MACHINE WILL BE PRESENTED. A TELETYPE MACHINE IS
AN "ASYNCHRONOUS"™ DEVICE IN THAT IT REQUIRES *“START" AND "STOP"™ INFOR~-
MATION. ONCE THE MECHANISM IN THE TELETYPE HAS BEEN STARTED IN MOTION
BY A "START" SIGNAL, THE MACHINE "EXAMINES" THE STATUS OF A SIGNAL LINE
DURING SPECIFIC TIME PERIODS IN ORDER TO RECEIVE A 'CODE" THAT WILL EN-
ABLE IT TO PRINT A SPECIFIC CHARACTER. AT THE END OF THE PERIOD OF TIME
OCCUPIED BY THE “CODE SIGNALS™ THE MACHINE EXPECTS A *"STOP" SIGNAL SO
THAT VARIOUS MECHANICAL OPERATIONS MAY BE COMPLETED AND THE INTERNAL
MECHANISMS SET UP T0 BEGIN ANOTHER "CYCLE” OF OPERATION. WHEN DEALING
VITH TELETYPE MACHINES A “CYCLE" 1S OFTEN TERMED AS REQUIRING A CERTAIN
NUMBER OF "UNITS OF TIME." THE DIAGRAM ILLUSTRATES A “CYCLE" FOR CER=-
TAIN KINDS OF BAUDOT TELETYPE MACHINES. (THOSE THAT REQUIRE A *“STOP"
LENGTH OF TWO UNITS)! THE CYCLE 1S SHOWN DIVIDED INTO 8 EQUAL UNITS OF
TIME. THE FIRST UNIT OF TIME IS RESERVED FOR A "START" PULSE. BY DEFI-
NITION, THE START PULSE MUST BE A LOGIC "@" AS SHOWN IN THE DIAGRAM.

T2

| START | 1 | 2 I 3 | 4 | S | STOPL | STOP2 |

5 g

I
o
- a J,

TIMING DIAGRAM FOR SENDING BAUDOT CHARACTER."Y" OR *“6" TO PRINTER

THE NEXT 5 UNITS OF TIME ARE USED TO TRANSMIT THE *"BAUDOT" CODE FOR
WATEVER CHARACTER IS TO BE PRINTED BY THE MACHINE. THE LAST 2 UNITS OF
TIME MUST BE A LOGIC "1 TO PLACE THE MACHINE IN THE *"STOP' MODE AND AL-
LoV IT TO COMPLETE THE CYCLE. THE DIAGRAM ABOVE SHOWS A CYCLE IN UNITS
OF TIME. TO PUT THE DIAGRAM INTO PRACTICAL USE, ONE MUST DEFINE THE
WIT OF TIME. FOR INSTANCE, SUPPOSE ONE HAD A TELETYPE MACHINE THAT
USED THE CYCLE FORMAT ILLUSTRATED THAT WAS DESIGNED TO OPERATE CORRECT-
LY WHEN EACH UNIT OF TIME (THE LENGTH OF TIME NOTED BY THE ARROWS MARK-
ED "“A" ON THE ABOVE DIAGRAM) WAS 20 MILLISECONDS (NOMINALLY). AN EN-
TIRE CYCLE WOULD THUS REQUIRE 160 MILLISECONDS (FOR THE TIME SPAN MARK-
ED "B ON THE ABOVE DIAGRAM). '

IF IT WAS DESIRED TO HAVE THE COMPUTER SEND A SIGNAL ON AN OUTPUT
LINE THAT CLOSELY APPROXIMATED THE DESIRED SIGNAL PATTERN, ONE WOULD
HAVE TO DEVELOP A PROGRAM THAT WOULD CHANGE THE "STATE" OF THE LINE ON
AN OUTPUT PORT THAT WAS SUPPLYING THE SIGNAL TO THE MACHINE AT THE TIMES
INDICATED BY THE SHORT UPWARD POINTING ARROWS SHOWN UNDERNEATH THE DIA-
GRAM. THE RESULTING PROGRAM WOULD BE A "REAL-TIME" PROGRAM!

REAL-TIME PROGRAMMING FOR THIS TYPE OF APPLICATION IS RELATIVELY
STRAIGHT-FORWARD. FIRST OF ALL, THERE IS ONLY ONE SIGNAL LINE TO BE
CONCERNED WITH (IN MANY REAL-TIME APPLICATIONS THERE MAY BE A MULTITUDE
OF LINES TO CONTROL)>! SECONDLY, THE AMOUNT OF TIME BETWEEN “EVENTS" IS
QUITE LARGE SO THERE WILL NOT BE ANY REQUIREMENT FOR FANCY PROGRAMMING
STREAMLINED FOR SPEED OF OPERATION. IN FACT, ALL ONE REALLY HAS TO DO
IS MAKE SOME SIMPLE MATHEMATICAL CALCULATIONS AND DEVELOP SOME “TIMING
LOOPS" THAT WILL MAKE THE PROGRAM "WAIT" FOR THE DESIRED LENGTH OF TIME
BETWEEN SENDING "BITS" OF INFORMATION TO THE OUTPUT PORT THAT WILL CARRY
THE SIGNAL TO THE TELETYPE UNIT. THE PROGRAM BECOMES SIMPLY A LITTLE
FANCIER VERSION OF THE “"PARALLEL TO SERIAL" OUTPUT PROGRAM DISCUSSED IN
THE PREVIOUS CHAPTER. -

A SUITABLE PROGRAM 1S PRESENTED BELOW. A DISCUSSION WILL BE PRE=-
SENTED AFTER THE PROGRAM. NOTE NOW THAT THE EXECUTION TIMES HAVE BEEN
PROVIDED ALONGSIDE TIME-DEPENDENT PORTIONS OF THE PROGRAM.

MNEMONIC COMMENTS
BDOUT, LCI1 006 /SET BIT CNTR = ¢ BITS + |
NDA - /SET CARRY BIT = "@"
RAL /BRING "8" FM CARRY INTO LSB OF ACC

73

24 MORBDO, OUT X /SEND “START" OR “CODE"™ BITS TO MACHINE
20 RAR /POSITION NEXT BIT OF CODE
a4 + 19,848 CAL BDELAY /GIVE MACHINE ONE UNIT OF TIME
29 ~ pCcC . /SEE IF FINISHED START & CODE BITS
a8 s 36 ~ JFZ MORBDO /IF NOT, SEND NEXT BIT
32 LAl @0} /PREPARE TO SEND STOP BITS
24 : oUT X /SEND STOP BIT ¢1
a8 + 19,848 CAL BDELAY /GIVE MACHINE ONE UNIT OF TIME
a + 28 CAL DUMMY /PROVIDE LITTLE MORE TIME
an + 20 ' CAL DUMMY /PROVIDE LITTLE MORE TIME
24 oUT X /SEND STOP BIT #2
44 + 19,848 CAL BDFLAY /GIVE MACHINE ONE UNIT OF TIME
an + 20 CAL DUMMY /PROVIDE LITTLE MORE TIME
44 + 28 CAL DUMMY /PROVIDE LITTLE MORE TIME
: RET _ /EXIT OUTPUT A CHARACTER RTN
20 DUMMY, RET . /SHORT RTN TO EAT UP TIME
32 BDELAY, LDI 215 /SET TIMER LOOP COUNTER
24 ouUT 2 70UTPUT TO UNUSED PORT TO TRIM TIME
24 OUT Z /0UTPUT TO UNUSED PORT TO TRIM TIME
4a + 20 CAL DUMMY JUSE A LITTLE TIME BEFORE STARTING LOOP
aa + 20 MDELAY, CAL DUMMY /FOR A TIME CONSUMING LOOP
29 DCD /SEE IF TIME EXPIRED (CNTR = £)?
12 7 20 RTZ /EXIT BACK TO CALLING RTN WHEN FINISHED
a4

JMP MDELAY /OTHERWISE CONTINUE USING UP TIME

THE ABOVE ROUTINE ASSUMED THAT THE DATA TO THE TELETYPE MACHINE OR-
1GINATED FROM THE LEAST SIGNIFICANT BIT IN THE ACCUMULATOR.

THE READER SHOULD NOTE THAT FOR CASES WHERE THERE ARE TWO POSSIBLE
EXECUTION TIMES FOR AN INSTRUCTION, SUCH AS A CONDITIONAL INSTRUCTION,
THAT THE TIME REQUIRED FOR THE CONDITION "MOST OFTEN" TO OCCUR IN THE
- PROGRAM WAS SHOWN FIRST, FOLLOWED BY THE TIME REQUIRED WHEN THE OTHER
CONDITION OCCURED.

THE PROGRAM WAS INITIALLY DEVELOPED BY WRITING THE *MAIN" PORTION
WITH THE TIME REQUIRED FOR THE “BDELAY" SUBROUTINE CONSIDERED AS AN “UN-
KNOWN"™ FACTOR. WHEN THE BASIC FORMAT OF THE PROGRAM HAD BEEN DETERMINED
THE EXECUTION TIME OF THE "LOOP"™ STARTING AT THE LABEL "MORBDO' WHICH
INCLUDED THE FIVE INSTRUCTIONS:

MORBDO, OUT X
RAR
" CAL BDELAY
pCC
JFZ MORBDO

WAS CALCULATED - LEAVING OUT THE AS' YET UNDETERMINED TIME OF "BDELAY."
THE TIME REQUIRED BY THE FIVE INSTRUCTIONS WHEN "LOOPING" WAS FOUND TO
BE 152 MICROSECONDS. SINCE IT WAS KNOWN THAT A TOTAL OF 28,0008 MICRO-
SECONDS (28 MILLISECONDS) WAS DESIRED BETWEEN OUTPUTTING EACH BIT IN
THE “CODE" IT WAS THEN EASY TO CALCULATE THAT 28,000 - 152 = 19,848
MICROSECONDS DELAY WAS REQUIRED IN “BDELAY." -

THE SUBROUTINE “BDELAY™ 1S A TYPICAL EXAMPLE OF A TIMING DELAY LOOP.
THE MAIN PORTION OF THE DELAY LOOP STARTS AT “MDELAY" AND. INCLUDES THE
FOUR INSTRUCTIONS:

MDELAY, CAL DUMMY
DCD
RTZ
JMP MDELAY

THE THEORY BEHIND THE "BDELAY" SUBROUTINE WAS TO EXECUTE THE 'MDELAY"
LOOP THE REQUIRED NUMBER OF TIMES TO GET CLOSE TO A DELAY OF 19,848 MIC-
ROSECONDS AND THEN CLOSE ANY GAP BY THE "SET UP"™ INSTRUCTION FOR THE
“LOOP"™ AND PERHAPS A FEW “FILLER" INSTRUCTIONS.

THE TIME REQUIRED TO COMPLETE THE FOUR INSTRUCTIONS IN THE *MDELAY"
LOOP WHEN THE "RTZ" CONDITION IS NOT MET IS 140 MICROSECONDS. FINDING
OUT HOW MANY TIMES IT IS NECESSARY TO EXECUTE THE LOOP TO GET CLOSE TO
A DELAY OF 19,848 MICROSECONDS IS A SIMPLE MATTER OF DIVIDING. DOING SO
YIELDED A FIGURE OF ALMOST 142 (DECIMAL). TAKING INTO ACCOUNT THE FACT
THAT IT WAS NOT DESIRABLE TO GO OVER THE ALLOTED TIME, AND THE FACT THAT
SETTING UP THE LOOP WOULD TAKE SOME TIME, THE FIGURE OF 141 DECIMAL VWAS
CHOSEN - WHICH IS 215 OCTAL. ONE OTHER FACTOR HAD TO BE CONSIDERED.
WHEN THE COUNTER IN THE LOOP REACHED ZERO, THE "RTZ" INSTRUCTION WOULD
BE EXECUTED AND THE “JMP MDELAY" COMMAND WOULD NOT. THUS, THE FULL LOOP
WOULD ONLY BE EXECUTED 140 (DECIMAL) TIMES - THE LAST TIME THROUGH THE
*"MDELAY" ROUTINE WOULD ONLY TAKE 184 MICROSECONDS. THUS, AT THIS POINT
IT WAS POSSIBLE TO CALCULATE THE TOTAL DELAY CAUSED BY EXECUTING THE
*"MDELAY" LOOP THE SELECTED NUMBER OF TIMES: 140 X 140 = 19,600 PLUS 104
FOR A TOTAL OF 19,704 MICROSECONDS. THEN IT WAS AN EASY MATTER TO DE-
TERMINE HOVW MUCH TIME TO USE TO "SET UP" THE "MDELAY" ROUTINE. THE DE-
SIRED TOTAL DELAY OF 19,848 MINUS THE 19,784 MICROSECONDS CONSUMED BY
EXECUTING THE “MDELAY" ROUTINE 141 (DECIMAL) TIMES LEFT 144 MICROSECONDS
70 BE CONSUMED. THE "“LDI 215" AT THE START OF "BDELAY" ONLY REQUIRED
32 MICROSECONDS SO 112 MORE MICROSECONDS WERE CONSUMED BY ADDING THE
“FILLER" INSTRUCTIONS *“CAL DUMMY*" AND TWO "OUT X' COMMANDS. THE TO=-
TAL "BDELAY" SUBROUTINE THEN EQUALLED EXACTLY THE DESIRED DELAY TIME OF
19,848 MICROSECONDS!

AFTER SENDING THE START AND 5 CODE BITS IT WAS NECESSARY TO SEND
A “"TWO UNIT" STOP PULSE. SINCE THE STOP PULSE BY DEFINITION WAS TO BE
A LOGIC *1," IT WAS NECESSARY TO SET UP THE STOP BIT AS A "1" IN THE
ACCUMULATOR. THE READER CAN CALCULATE THAT THE ACTUAL DELAY BETWEEN
THE SENDING OF THE LAST CODE BIT AND THE FIRST "STOP*" UNIT IN THE ROUT-
INE COMES OUT TO BE 28,024~ MICROSECONDS. REMEMBER, IN MAKING THE CALC-
ULATION THAT THE “JFZ MORBDO" INSTRUCTION WILL ONLY REQUIRE 36 MICRO-
SECONDS ON THE FINAL EXECUTION OF THE “LOOP" THEREBY REDUCING THE LOOP
EXECUTION TIME TO 19,992 MICROSECONDS AND THE “LAl @@1" WILL ADD 32
MICROSECONDS TO THAT VALUE BEFORE THE NEXT "OUT X" INSTRUCTION CAN BE
EXECUTED. HOWEVER, FOR THE APPLICATION, THE VALUE OF 20,024 IS PLENTY
CLOSE ENOUGH TO 20,808 (OFF BY ABOUT 8.1 %) TO OPERATE A TELETYPE WHICH
CAN TYPICALLY OPERATE RELIABLY WITH THE TIMING OFF BY 18 TO 20 PERCENT!

THE DELAY BETWEEN THE FIRST STOP UNIT AND THE SECOND, AS WELL AS
THE FINAL DELAY TO COMPLETE THE SECOND STOP UNIT, WAS MADE TO COME OUT
NICELY TO 20,880 MICROSECONDS BY THE iNSERTION OF THE "CAL DUMMY"™ COM-
MANDS FOLLOWING THE "CAL BDELAY" INSTRUCTIONS.

THE ABOVE ROUTINE, AS THE READER CAN UNDOUBTABLY SEE, COULD BE MODI-
FIED TO SERVE TO OPERATE A VARIETY OF TELETYPE MACHINES OPERATING AT
DI FFERENT SPEEDS BY CHANGING THE "TIMING LOOPS." THE PROGRAM COULD ALSO
BE ‘MODIFIED FOR ASCII CODED MACHINES, OR OTHER TYPES OF CODES BY CHANG-
ING THE "BIT COUNTER" AND POSSIBLY ALTERING THE LENGTH OF THE "STOP"
PULSE DEPENDING ON THE TYPE OF MACHINE BEING DRIVEN. FURTHERMORE, THE
TECHNIQUES DEMONSTRATED CAN BE APPLIED TO MANY OTHER TYPES OF PROBLEMS.

7T=-5

A SIMILAR ROUTINE COULD BE DEVELOPED TO RECEIVE DATA FROM THE SAME
KIND OF BAUDOT MACHINE. HOWEVER, WHEN RECEIVING DATA FROM SUCH A UNIT
THERE ARE A FEW NEW CONCEPTS TO CONSIDER.

WHEN THE COMPUTER WAS SENDING INFORMATION TO THE TELETYPE PRINTER
IT HAD AN ADVANTAGE IT WILL NOT HAVE WHEN IT IS USED TO RECEIVE INFOR-
MATION FROM THE MACHINE. NAMELY, WHEN TRANSMITTING, THE COMPUTER HAD
“CONTROL" OF WHEN THE FXTERNAL MACHINE WOULD BF OPERATED. IN THE RE-
VERSE MODE, THE COMPUTER WILL HAVE NO "KNOWLEDGE' OF WHEN THE EXTERNAL
DEVICE WILL BEGIN TO OPERATE AND SEND DATA TO THE COMPUTER!

ADDITIONALLY, ONCE A '"CHARACTER" STARTS ARRIVING ON A LINE OF AN
INPUT PORT, THE “TOLERANCE" SITUATION REVERSES. WHAT 1S MEANT BY THIS
IS THAT WHEN THE COMPUTER SENT DATA TO THE PRINTER MECHANISM, IT WAS
POSSIBLE FOR THE COMPUTER TO BE MUCH MORE ACCURATE IN PROVIDING PROPER
TIMING TO THE MACHINE, THAN THE MACHINE REQUIRED TO OPERATE SUCCESS-
FULLY. THUS, IF THE TIME PERIOD FOR A "UNIT' OF TIME WAS OFF A FEW
TENTHS OF A PERCENT WHEN GENERATED BY THE COMPUTER, IT WOULD NOT AFFECT
THE OPERATION OF THE MACHINE. HOWEVER, WHEN THE COMPUTER IS RECEIVING
DATA FROM THE MACHINE, THE START OF EACH UNIT OF TIME MAY BE OFF BY AS
MUCH AS 10 PERCENT OR SO, BECAUSE OF THE LOOSE TOLERANCE OF THE ELECTRO=-
MECHANICAL MACHINERY INVOLVED. IF THE COMPUTER PROGRAM DOES NOT MAKE
PROPER ALLOWANCES FOR SUCH POSSIBLE VARIATIONS, THEN "INCORRECT' DATA
MAY BE RECEIVED.

FORTUNATELY, THE PROBLEMS RELATED TO THESE CONCEPTS ARE NOT TOO DIF-
FICULT TO OVERCOME. THE FIRST PROBLEM, DETERMINING WHEN THE EXTERNAL
MACHINE 1S STARTING TO SEND, CAN BE SOLVED BY PERIODICALLY CHECKING THE
INPUT LINE FOR THE PRESENCE OF A "@'" CONDITION INDICATING A “START" BIT.
(NOTE:t WHILE THERE IS ANOTHER MANNER IN WHICH ONE COULD DETECT THE BE-
GINNING OF AN EXTERNAL OPERATION IN PROPERLY EQUIPPED 8088 SYSTEMS,
THROUGH THE USE OF A HARDWARE GENERATED "INTERRUPT" SCHEME, SUCH A MET-
HOD IS MORE PROPERLY CONCERNED WITH HARDWARE CONSIDERATIONS WHICH ARE
NOT WITHIN THE INTENDED SUBJECT MATTER OF THIS MANUAL. IF SUCH A DET-
ECTION SCHEME WERE USED, THE REMAINDER OF THIS DISCUSSION ON HANDLING
THE RECEIPT OF THE INCOMING DATA WOULD STILL APPLY). NATURALLY, HOW OF-
TEN ONE CHECKED FOR THE PRESENCE OF A "START" BIT WOULD HAVE AN AFFECT
ON THE OVER-ALL ABILITY OF A REAL-TIME PROGRAM TO RECEIVE THE DATA. FOR
INSTANCE, ASSUMING A START BIT IS PRESENT FOR 28 MILLISECONDS AS IN THE
CASE FOR THE ‘TYPE OF MACHINE BEING DISCUSSED, IT WOULD BE FOOLISH TO
TEST FOR THE PRESENCE OF SUCH A *START" BIT AT PERIODS THAT WERE 21 MIL-
LISECONDS APART! 1IN FACT, BECAUSE OF OTHER CONSIDERATIONS, IT WOULD NOT
BE WISE TO CHECK FOR A “START" BIT MUCH LESS OFTEN THAN EVERY FEVW MILLI-
SECONDS .

THE SECOND PROBLEM OF DEALING WITH THE LOOSE TOLERANCE OF THE MACH-
INERY CAN BE EFFECTIVELY DEALT WITH BY ADJUSTING THE RECEIVE ROUTINE SO
THAT IT “SAMPLES" THE INCOMING SIGNAL AT THE THEORETICAL MIDDLE OF A
“UNIT" OF TIME RATHER THAN AT THE BEGINNING OR END OF A TIME PERIOD. OF
COURSE THE ABILITY TO DO THIS ALSO DEPENDS ON HOW CLOSELY ONE IS ABLE
TO DETECT THE ACTUAL “START" OF A CHARACTER FROM THE MACHINE.

A TIMING DIAGRAM SHOWING A "BAUDOT" CHARACTER BEING SENT BY A MACH-
INE IS ILLUSTRATED AT THE TOP OF THE NEXT PAGE. SHORT UPWARD POINTING
ARROWS ALONG THE BOTTOM OF THE DIAGRAM ILLUSTRATE THE TIMES AT WHICH A
*REAL-TIME"” PROGRAM WOULD NEED TO *SAMPLE" THE INCOMING LINE IN ORDER
TO CORRECTLY RECEIVE THE DATA. NOTE THAT PRIOR TO THE TIME A "START"
SIGNAL IS DETECTED, THE COMPUTER SHOULD SAMPLE THE LINE OFTEN IN ORDER
TO MINIMIZE THE PERIOD OF TIME IN WHICH A START SIGNAL MAY BE PRESENT
BUT UNDETECTED. NEXT, IT IS DESIRABLE TO ADJUST THE “SAMPLE" PERIOD SO
THAT IT COINCIDES WITH THE THEORETICAL MIDDLE OF A UNIT OF TIME, RATHER

76

ISTART | 12 | 2 | 3 | 4 | S5 |STOPL | STOP2 |

f— 4

1 t t t ¢ 0 it

T

TIMING DIAGRAM FOR RECEIVING BAUDOT CHARACTER “Y*" OR "é&*
'

THAN SAMPLE AT INTEGERS OF UNITS OF TIME AFTER THE START SIGNAL WAS DE-
TECTED. THIS METHOD COMPENSATES POR. THE “TOLERANCE™ PROBLEM MENTIONED
PREVIOUSLY.

FINALLY, AFTER THE 5°TH CODE BIT HAS BEEN RECEIVED, ONE CAN OBSERVE
THAT IT VWILL WOT BE NECESSARY TO START TESTING FOR A NEW "START" PULSE
FOR ABOUT 2 AND 1/2 TIME UNITS AS IT IS KNOWN THAT THE MACHINE VILL BE
USING THAT TIME TO COMPLETE IT'S OPERATION. THUS, THE COMPUTER WOULD BE
ABLE TO PERFORM SOME OTHER FUNCTIONS POR ABOUT S@ MILLISECONDS BEFORE
G0ING BACK TO THE “SAMPLE™ MODE TO LOOK FOR A NEW START BIT - THAT IS
BIOUGH TIME TO PERFORM A FEV THOUSAND. INSTRUCTIONS ON AN 8088 SYSTEM!

A SAMPLE ROUTINE FOR RECEIVING. INFORMATION FROM A DEVICE IN ACCORD-
ANCE VWITH THE ABOVE DIAGRAM, ASSUMING THAT THE TIME SPAN MARKED “C" IN
THE ABOVE DIAGRAM WAS 10 MILLISECONDS, AND THAT MARKED D" WAS 20 MILLI~-
SECONDS. IS ILLUSTRATED NEXT. THE READER MAY NOTE THAT IT IS ESSENTIALLY
AN EXPANDED VERSION OF A “SERIAL TO PARALLEL™ ROUTINE WITH INSTRUCTIONS
T0 CONTROL THE TIMING ADDED.

MNEMONIC ' COMMENTS
BDIN, LB1 888 /CLEAR. INCOMING FORMING & STORAGE REGISTER
LC1 083 /SET BIT COUNTER
32 STRTIN, INP X . /LOOK FOR "START™ BIT
32 NDI 200 /MASK OFF IRRELEVANT DATA
M/ 36 JTS STRTIN /IF NO START BIT, FORM “SAMPLING LOOP™
AL+ 9796 CAL HDELAY /IF FIND LOSIC @™ ASSUME START, DELAY
2 INP X /TO MIDDLE OF START UNIT & VERIFY RECEIPT
32 NDI 280 /0F A START BIT BY MAKING APPROPRIATE TEST
36 /7 A JTS STRTIN /IF NOT "9" HERE ASSUME FALSE START
+> 28 CAL DUMMY /STRETCH THE DELAY A LITTLE
JMP MORBDI /STRETCH THE DELAY A LITTLE MORE
+19748 MORBDI, CAL. IDELAY /MAIN DELAY LOOP = ALMOST | FULL TIME UNIT
INP X /GET NEXT BIT
NDI 2@¢ /TRIM TO JUST DESIRED DATA BIT
RAL ‘ /SAVE INCOMING BIT. IN CARRY FLAG
LAB ., /GET ANY PREVIOUS BITS :
RAR /ROTATE NEV BIT rROM CARRY INTO REGISTER
LBA /SAVE IN REGISTER "B™
DCC /DECREMENT BITS COUNTER
/7 36 JFZ MORBDI /DELAY & FETCH NEXT INCOMING BIT

PRTEBRRBREER

7T -7

MNEMONIC COMMENTS

20 RRC /HAVE ALL S BAUDOT BITS - RIGHT JUSTIFY
20 RRC /IN ACCUMULATOR BY ROTATES

20 RRC /BEFORE PREPARING TO EXIT RTN

M+ 9796 CAL HDELAY /OPTIONAL DELAY TO MAKE SURE INTO “STOP"
AN + 20 CAL DUMMY /PART OF OPTIONAL DELAY

a + 20 CAL DUMMY /PART OF OPTIONAL DELAY

2o RET /UN1TS AREA BEFORE EXITING ROUTINE

32 IDELAY, LD1 215 /SET TIME LOOP COUNTER

12 . RTS /TRIM TIME - CONDX NEVER MET

A + 28 RDELAY, CAL DUMMY /TIME CONSUMING LOOP

20 DCD /DECREMENT COUNTER

12 /7 28 RTZ /EXIT TO CALLING RTN WHEN CNTR = &

M JMP RDELAY /OTHERWISE CONTINUE USING UP TIME

32 HDELAY, LDI 106 /SET TIME LOOP COUNTER

ol . JMP RDELAY /GO USE UP ABOUT 1/2 A TIME UNIT

20 DUMMY, RET /SHORT RTN TO USE UP TIME

VHILE THE ABOVE ROUTINE IS SIMILAR IN MANY RESPECTS TO THE ONE DES~-
CRIBED EARLIER FOR TRANSMITTING DATA FROM THE COMPUTER, SEVERAL DIFFER-
ENT FEATURES VWILL BE HIGH-LIGHTED. FIRST, THE READER CAN NOTE THAT THE
PROGRAM EXPECTS DATA TO BE ARRIVING AT THE MOST SIGNIFICANT BIT POSITION
OF THE ACCUMULATOR (AS IN THE SERIAL TO PARALLEL ROUTINE IN THE PREVIOUS
CHAPTER) . ;

NEXT, THE READER SHOULD NOTE THAT THE THREE INSTRUCTIONS STARTING AT
THE LABEL “STRTIN™ FORM A "LOOP" TO TEST FOR A "START" BIT ARRIVING FROM
THE INPUT PORT. THE READER CAN SEE THAT THE LOOP REQUIRES 188 MICRO~-
SECONDS TO EXECUTE AND THUS IT IS POSSIBLE FOR A START UNIT TO HAVE BEEN
PRESENT FOR ALMOST THAT LENGTH OF TIME BEFORE IT IS DETECTED. FOR IN-
STANCE, IF THE START PULSE ACTUALLY STARTED JUST A MICROSECOND AFTER THE
“INP X' INSTRUCTION AT "STRTIN" WAS EXECUTED, THAT PULSE WOULD NOT BE
DETECTED UNTIL THE "INP X" INSTRUCTION VAS EXECUTED ON THE NEXT ROUND.
HOWEVER, IT 1S ALSO POSSIBLE FOR THE PROGRAM TO DETECT THE START BIT AT
JUST ABOUT THE INSTANT IT ACTUALLY HAPPENS -~ THUS, THERE CAN BE A VAR]l-
ATION IN DETECTING THE BEGINNING OF THE “START" TIME UNIT OF ABOUT 188
MICROSECONDS. NOW, THE ACTUAL DETECTION OF THE START PULSE IS USED AS
A REFERENCE FOR "DELAYING®” TO THE MIDDLE OF THE TIME UNIT IN ORDER TO
“SAMPLE"” THE REMAINING BITS. IN THE DESIRED REGION. ON THE AVERAGE, ONE
COULD ASSUME THAT THE START PULSE WAS DETECTED. IN ABOUT THE MIDDLE OF
THE POSSIBLE RANGE OF VARIATION, WHICH WOULD BE ABOUT 54 MICROSECONDS
AFTER THE PULSE ACTUALLY STARTED. THIS INFORMATION IS USED TO ESTABLISH
APPROXIMATELY HOV LONG THE "HDELAY"™ LOOP SHOULD BE IN ORDER TO GET
CLOSE TO THE THEORETICAL MIDDLE OF A TIME UNIT. THUS, IF ONE ASSUMES
THAT ON AN AVERAGE, THE START PULSE 1S DETECTED 54 MICROSECONDS AFTER IT
BEGAN, AND ONE ADDS 14A MICROSECONDS FOR THE EXECUTION OF THE INSTRUC-
TIONS FROM “STRTIN"™ TO THE “CAL HDELAY,™ ONE CAN DETERMINE THAT "HDELAY"
NEEDS TO CONSUME 9802 MICROSECONDS. THE VALUE 9796 ACTUALLY DEVELOPED
WAS A "CLOSE ENOUGH™ COMPROMISE FOR THE SITUATION.

ANOTHER AREA OF INTEREST NEAR THE END OF THE MAIN ROUTINE 1S MARK-
ED BY THE COMMENTS AS AN “OPTIONAL DELAY TO MAKE SURE INTO *STOP™ UNITS
AREA BEFORE EXITING ROUTINE.” AS POINTED OUT FARLIER, AFTER THE FIVE
DATA BITS HAVE BEEN SAMPLED THE COMPUTER HAS QUITE A BIT OF TIME - UP
TO ABOUT S@ MILLISECONDS IN WHICH TO PERFORM SOME QTHER FUNCTIONS BE-

7 - 8

CAUSE THE MODEL MACHINE WOULD BE UNABLE TO SEND A NEW “START" PULSE
INTIL IT HAD COMPLETED IT'S CYCLE DENOTED BY THE TWO STOP UNITS IN THE
DIAGRAM. HOVEVER, IN SOME INSTANCES, THE COMPUTER MAY NOT REQUIRE ANY
WHERE NEAR THAT LENGTH OF TIME TO PROCESS THE CHARACTER JUST RECEIVED.
IN SUCH CASES, THE PROGRAMMER WOULD WANT TO MAKE SURE THE PROGRAM DID
NOT START "LOOKING" FOR A NEV START BIT BEFORE THE LAST "DATA™ BIT HAD
BEEN COMPLETED. THE “OPTIONAL" HALF UNIT DELAY ENSURES IN SUCH A CASE
THAT THE MACHINE WOULD BE IN IT*'S “STOP UNITS" PHASE, WHICH BY PREV-
10US DEFINITION WOULD BE A LOGIC “1*" CONDITION., BEFORE IT BEGAN “LOOK-
ING™ FOR A NEV LOGIC "@" CONDITION SIGNIFYING A NEW START PULSE.

FINALLY, THE READER MIGHT TAKE NOTE OF AN INTERESTING "TRICK" TO GET
A RATHER SHORT ADDITIONAL DELAY BY THE USE OF THE “RTS" INSTRUCTION AS
THE SECOND COMMAND IN THE "IDELAY" SUBROUTINE. A CONDITIONAL RETURN. IN~-
STRUCTION WHEN THE CONDITION IS NOT MET IS THE ONLY TYPE OF COMMAND THAT
VILL USE BUT 12 MICROSECONDS OF TIME. THE "RTS" INSTRUCTION INSERTED AT
THAT POINT WILL NEVER HAVE THE TRUE CONDITION MET AS THE READER MAY VER~-
IFY BY CLOSE EXAMINATION OF THE POSSIBLE CONDITION OF THE "SIGN" FLAG
VHENEVER THAT INSTRUCTION IS EXECUTED. IT IS A GOOD TECHNIQUE TO REMEM-
BER IF A 12 MICROSECOND DELAY IS REQUIRED BUT THE PROGRAMMER MUST MAKE
CERTAIN THAT THE CONDITION WILL NEVER BE SATISFIED WHEN USED FOR THAT
PURPOSE! (REMEMBER, VIRTUALLY ALL OTHER TYPES OF INSTRUCTIONS TAKE UP
AT LEAST 20 MICROSECONDS OF EXECUTION TIME IN A NOMINALLY ADJUSTED 8@88
SYSTEM) .

AS ANOTHER EXAMPLE OF THE DETAILS OF REAL-TIME PROGRAMMING, THE
ABOVE EXAMPLE WILL BE EXPANDED TO DEMONSTRATE HOW THE PROGRAM COULD BE
IMPROVED TO INCREASE THE RELIABILITY OF RECEIVING CORRECT DATA FROM THE
EXTERNAL MACHINE. AS MANY READERS MAY KNOW, THE INCOMING DATA FROM AN
ELECTRO~-MECHANICAL MACHINE SUCH AS A TELETYPE MAY BE "NOISY.” THAT IS,
A SIGNAL THAT 1S SUPPOSED TO BE, FOR INSTANCE, IN THE LOGIC "1 STATE
FOR AN ENTIRE UNIT OF TIME MAY OCCASIONALLY GO TO THE *@* CONDITION FOR
SMALL FRACTIONS OF A UNIT OF TIME, OR VICE-VERSA. IN THE ABOVE PROGRAM
THE COMPUTER *“SAMPLES"™ FOR THE STATE OF THE INCOMING SIGNAL JUST ONCE
IN EACH UNIT OF TIME. 1F BY CHANCE IT SHOULD SAMPLE THE SIGNAL AT THE
MOMENT THAT "NOISE™ WAS PRESENT, INCORRECT DATA COULD BE RECEIVED. IN
A “CRITICAL" APPLICATION,. IT MIGHT BE DESIRABLE TO REDUCE THE CHANCE OF
SUCH AN ERROR OCCURING. THIS COULD BE DONE BY “SAMPLING" THE INCOMING
SIGNAL SEVERAL TIMES DYRING EACH UNIT OF TIME AND COMPUTING AN AVERAGE
OF THE "VALUE" RECEIVED TO DETERMINE WHETHER THE SIGNAL WAS TRULY IN A
“1'" OR "@" STATE. FOR INSTANCE, ONE COULD ELECT TO *“SAMPLE" THE S1G-
NAL FIVE TIMES NEAR THE “MIDDLE"™ OF EACH UNIT OF TIME AND THEN MAKE A
DECISION AS TO WHETHER THE SIGNAL WAS A "1" OR A “@" BY DETERMINING
WHICH STATE VAS DETECTED 3 OR MORE OUT OF THE S SAMPLED TIMES. SUCH A
“SAMPLING'" METHOD WOULD GREATLY REDUCE THE CHANCES OF “NOISE"™ CAUSING
AN INCORRECT SIGNAL LEVEL TO BE RECEIVED.

THE TIME DIAGRAM AT THE TOP OF THE NEXT PAGE ILLUSTRATES A SIGNAL
VITH THE UPWARD ARROWS ALONG THE BOTTOM OF THE DIAGRAM REPRESENTING THE
MULTIPLE SAMPLING POINTS. IN EACH UNIT OF TIME. DEVELOPING A PROGRAM TO
GIVE THE IMPROVED PERFORMANCE IS NOT DIFFICULT BUT IT DOES REQUIRE A
FEW MORE TIME RELATED CONSIDERATIONS WHEN DEVELOPING THE “SOFTVWARE.®"
THESE ILLUSTRATIONS VWILL BE POINTED OUT IN THE DISCUSSION THAT FOLLOWS.

. TO BEGIN DEVELOPMENT OF THE MULTIPLE-SAMPLING PROGRAM A MAJOR SUB-
ROUTINE WAS DEVELOPED THAT WOULD PERFORM THE TASK OF “SAMPLING" FIVE
TIMES IN SUCCESSION, KEEPING TRACK OF WHETHER A 1" OR “@" WAS RECEIV-
ED, AND FINALLY DETERMINING WHICH STATE WAS RECEIVED MOST OFTEN. THE
SUBROUTINE WITH EXECUTION TIMES FOR EACH INSTRUCTION IS PRESENTED AFTER
THE DIAGRAM ON THE NEXT PAGE. THE READER MIGHT PAY SPECIAL ATTENTION TO
THE MANNER IN WHICH THE "PREDOMINANT" SIGNAL STATE WAS DETERMINED.

7 -9

| START| 1 | 2 | 3 | 4 | S | SToPa | STOP2 |

£C
P

0 1 o i 0 i 1 1

LLEC S N 1 O o1 N 1 11 A R (111

TIMING DIAGRAM FOR MULTIPLE SAMPLING OF INCOMING SIGNAL

MNEMONIC COMMENTS
32 SAMPLE, LDl 0065 /SET COUNTER FOR NUMBER OF SAMPLES
32 LEl 377 /78ET UP REG "E" FOR STORING SIGNAL STATE
32 BITEST, INP X /SAMPLE CURRENT SIGNAL ON INPUT LINE
32 ND1 280 . /MASK OFF UNUSED INPUT LINES
a4 /7 36 CTS PLUSE /INCREMENT “E" IF SIGNAL A LOGiC "1"
32 ‘ ND1 200 /RESTORE FLAGS TO REFLECT ACC CONTENTS
36 /7 Aa CFS MINUSE /DECREMENT “E" IF SIGNAL A LOGIC "@"
20 DCD /DECREMENT SAMPLING COUNTER
A4 / 36 dFZ BITEST /SAMPLE AGAIN IF COUNTER NOT = @
20 LAE /WHEN HAVE S SAMPLES PLACE "E" INTO ACC
32 NDI 280 /MASK OFF ALL BUT MOST SIGNIFICANT BIT
20 RET ZEXIT WITH PREDOM SIG STATE IN MSB OF ACC
20 PLUSE., INE /INCREMENT REGISTER “E*
29 RET /EX1IT
20 MINUSE, DCE /DECREMENT REGISTER "E"
20 ‘ RET /EXIT)

INFORMATION REGARDING THE AMOUNT OF TIME REQUIRED TO EXECUTE POR-
TIONS OF THE “MULTIPLE SAMPLING"™ ROUTINE JUST PRESENTED 1S REQUIRED

BEFORE THE OVER-ALL ROUTINE CAN BE DEVELOPED FOR REASONS THAT WILL SOON
BE APPARENT.

THE READER CAN CONFIRM THAT THE TIME BETWEEN EACH OF THE FIVE SAM-
PLES WILL BE 286 MICROSECONDS FOR A TYPICAL 80088 SYSTEM REGARDLESS OF
WHAT SIGNAL STATE WAS RECEIVED. . IT IS IMPORTANT TO NOTICE HOV THE
SAMPLING ROUTINE WAS "BALANCED" BY THE APPROPRIATE CHOICE OF INSTRUC-
TIONS SO THAT THE RECEIPT OF EITHER SIGNAL STATE RESULTS IN THE SAME
TOTAL TIME TO EXECUTE THE "SAMPLING LOOP." IF THIS REQUIREMENT VWERE
NOT MET THE PROGRAMMER WOULD HAVE QUITE A “HEAD-ACHE" TRYING TO DEVEL-
OPE AN ACCURATE ROUTINE BASED ON ALL THE POSSIBLE COMBINATIONS OF *1*
AND *"@' SIGNAL STATES THAT COULD BE RECEIVED!

THE READER SHOULD ALSO TAKE NOTE THAT THE “SET UP™ TIME, THAT IS THF
TIME TO EXECUTE THE INSTRUCTIONS FROM THE LABEL “SAMPLE" TO “BITEST"
PLUS THE TIME TO ACTUALLY “CALL" THE SUBROUTINE WOULD REQUIRE 188 MICRO-
SECONDS. THAT 1S, IT WILL TAKE 108 MICROSECONDS FROM THE TIME THE PRO-

GRAM STARTS TO “CALL" THE SUBROUTINE UNTIL THE FIRST "INP X* INSTRUCTION
1S ENCOUNTERED.

ADDITIONALLY, THE READER SHOULD NOTE THAT IT VWILL REQUIRE 344 MICRO-
SECONDS FROM THME TIME THE $°'TH SAMPLE IS TAKEN UNTIL THE SUBROUTINE IS

T =10

ACTUALLY EXITED!

IT IS IMPORTANT TO KNOW THESE RELATIONSHIPS SO THAT THE ENTIRE SUB-
ROUTINE CAN BE PROPERLY LOCATED WITHIN A TIME FRAME. FOR INSTANCE,
SINCE IT WOULD BE DESIRABLE TO HAVE THE 3°'RD "SAMPLE" TAKE PLACE AT THE
THEORETICAL “MIDDLE" OF A “UNIT OF TIME"” 1T WILL BE NECESSARY TO START
“CALLING" THE '"SAMPLE" SUBROUTINE WHEN THERE ARE ABOUT 668 MICROSECONDS
REMAINING BEFORE THE THEORETICAL MIDDLE OF THE "UNIT OF TIME." THIS IS
BFCAUSE IT WILL REQUIRE 108 MICROSECONDS TO "CALL™ AND “SET UP" THE SAM-
PLING SUBROUTINE, PLUS 280 MICROSECONDS BETWEEN THE 1°'ST AND 2°ND SAMPLE
AND ANOTHER 280 MICROSECONDS BETWEEN THE 2°'ND AND 3'RD SAMPLE.

SIMILARLY IT IS IMPRTANT TO KNOV THAT THERE WILL BE 904 MICROSECONDS
FROM THE TIME THE 3°'RD SAMPLE IS TAKEN UNTIL THE ROUTINE IS EXITED. AS,
260 MICROSECONDS VILL BE TAKEN BETWEEN SAMPLE NUMBER 3 AND 4, ANOTHER
280 MICROSECONDS BETWEEN SAMPLE 4 AND $, AND AN ADDITIONAL 344 MICRO-
SECONDS FROM SAMPLE NUMBER § TO THE TIME THE ROUTINE IS EXITED.

WITH THIS INFORMATION NOW AVAILABLE ONE CAN CALCULATE HOW MUCH TIME
SHOULD BE USED FROM THE TIME A START BIT IS RECEIVED UNTIL IT IS TIME TO
“CALL" THE "'SAMPLE" SUBROUTINE SO THAT THE 3°'RD SAMPLE POINT VILL BE IN
THE MIDDLE OF A "UNIT OF TIME.”™ AND, AFTFR THAT, HOW MUCH DELAY TO PRO-
VIDE FROM THE TIME THE "“SAMPLE" SUBROUTINE 1S EXITED IN ONE UNIT OF TIME
UNTIL IT IS TO BE CALLED AGAIN TO SAMPLE THE SIGNAL IN THE MIDDLE RANGE
OF THE NEXT UNIT OF TIME.

IN A SITUATION SUCH AS THE ONE BEING DISCUSSED, IT IS OFTEN HELPFUL
TO PRODUCE AN “EXPANDED TIMING DIAGRAM" TO ILLUSTRATE SMALLER PORTIONS
OF “CRITICAL" TIME RELATIONSHIPS. AN EXPANDED DIAGRAM SHOVWING THE iIN-
FORMATION JUST DERIVED AS IT APPLIES TO THE "START"™ BIT AND THE 1°ST
“DATA" BIT OF THE EXAMPLE INCOMING SIGNAL IS SHOWN BELOW.

START 1

T trr

54 —» 668+ 704 668 ¥ 904
9,374 18,428 :

f¢—— 10,000 20,000 >

Jk

EXPANDED TIMING DIAGRAM

WITH THE TIMING REQUIREMENTS OF THE “SAMPLE"™ SUBROUTINE KNOWN, THE
APPROPRIATE DELAYS TO PLACE THE "SAMPLING" SUBROUTINE SUCH THAT THE 3°'RD
SAMPLE IS AT THE MIDDLE OF A “UNIT OF TIME" CAN BE ASCERTAINED AS SHOWN
ON THE ABOVE EXPANDED DIAGRAM. IT IS THEN A RELATIVELY EASY MATTER TO
MODIFY THE PROGRAM PREVIOUSLY DEVELOPED FOR THE CASE WHEN ONLY A SINGLE
SAMPLE VAS TAKEN PER TIME UNIT SO THAT IT “CALLS" THE "SAMPLE" SUBROUT-
INE. AN EXAMPLE OF SUCH A ROUTINE IS PRESENTED NEXT.

7«11

MNEMONIC - COMMENTS

LY T X Y P ¥ L ¥ X X L ¥ 3 CX Y T E ¥ K L X 2 X X 2 4

BDIN, LBl 000 /CLEAR INCOMING FORMING & STORAGE REGISTER

. LC1 @8s /SET BIT COUNTER

32 STRTIN, INP X /LOOK FOR “START" BIT

32 'NDI 200 /MASK OFF IRRELEVANT DATA

aA /7 36 TS STRTIN /1F NO START BIT, FORM "SAMPLING LOOP*

AL + 9184 'CAL HDELAY /1F FIND LOGIC “@" ASSUME START, DELAY

AL + 1828 CAL SAMPLE /AND THEN DO MULTIPLE SAMPLE ON START BIT

36 /7 AA 4TS STRTIN /IF RESULT NOT "@" ASSUME FALSE START

Ak + 20 CAL DUMMY /ADD COMPENSATING DELAY BEFORE ENTERING

20 NDA /MAIN “DATA" SAMPLING ROUTINE

20 NDA " /WITH THESE THREE INSTRUCTIONS

Aa+18B24@ MORBDI, CAL IDELAY /EXECUTE MAIN DELAY LOOP

AL + 1§28 CAL SAMPLE /MULTIPLE SAMPLE ROUTINE ON "DATA™ BITS

20 RAL /SAVE RESULTING STATE IN CARRY FLAG

20 LAB /GET ANY PREVIOUS BITS

20 RAR /JROTATE NEVW BIT FROM CARRY INTO ACC

20 LBA /SAVE FORMATION IN REGISTER “B*

20 pce /DECREMENT BITS COUNTER

aa /7 36 ‘'dFZ MORBDI /DELAY & THEN FETCH NEXT "DATA"™ BIT

29 RRC /HAVE ALL § “DATA"™ BITS - RIGHT JUSTIFY

20 RRC /1N ACCUMULATOR BY ROTATES

20 RRC /BEFORE PREPARING TO EXIT

AM + 9184 CAL HDELAY /OPTIONAL DELAY TO REACH *STOP" AREA

20 RET /EXIT BAUDOT INPUT ROUTINE

a2 1DELAY, LDI 282 /SET TIME LOOP COUNTER

20 NDA /TRIM TIME DELAY

29 NDA /TRIM TIME DELAY

44 + 286 RDELAY, CAL DUMMY /TIME CONSUMING LOOP

20 DCD /DECREMENT COUNTER

12 7 206 - RTZ /EXIT TO CALLING RTN WHEN CNTR = @

an JMP RDELAY /OTHERVWISE CONTINUE USING UP TIME

32 HDELAY, LDI 1@l /SET TIME LOOP COUNTER

29 NDA /TRIM TIME DELAY

20 NDA /TRIM TIME DELAY .

Al JMP RDELAY /GO USE UP MORE TIME

29 DUMMY, RET /SHORT RTN TO USE UP TIME

THE INFORMATION PRESENTED TO THIS POINT IN THE CHAPTER HAS BEEN CON-
CERNED WITH ILLUSTRATING TECHNIQUES TO COORDINATE THE EXECUTION OF A
PROGRAM WITH THE TIMING REQUIREMENT OF AN EXTERNAL DEVICE, THROUGH THE
METHOD OF PROVIDING TIME DELAYS, TO EFFECTIVELY “SLOW DOWN'" THE EXECU-
TION OF A PROGRAM. HOWEVER, ANOTHER ASPECT OF REAL-TIME PROGRAMMING IN-
UWLVES ESSENTIALLY THE OPPOSITE OBJECTIVE. THAT IS TO OBTAIN MAXIMUM
SPEED OF OPERATION FROM A COMPUTER PROGRAM SO THAT 1T MAY HANDLE EVENTS
THAT MIGHT BE OCCURING QUITE RAPIDLY. THE BALANCE OF THIS CHAPTER VILL
PRESENT SEVERAE BASIC GUIDE LINES FOR "“STREAMLINING" THE OPERATION OF A
PROGRAM TO OBTAIN MAXIMUM SPEED OF EXECUTION.

PERHAPS THE FIRST POINT TO PRESENT IS THAT THERE IS A COROLLARY BE-
TWEEN OBTAINING MAXIMUM OPERATING SPEED AND THE AMOUNT OF MEMORY REQUIR-
ED BY THE PROGRAM THAT MAY AT FIRST SEEM A LITTLE STRANGE. THAT 1S, AS
ONE ATTEMPTS TO PROGRAM AN 8808 SYSTEM TO EXECUTE A PROGRAM THAT WILL
PERFORM A FUNCTION IN A MINIMUM AMOUNT OF TIME, ONE GENERALLY WILL IN-
CREASE THE AMOUNT OF MEMORY NEEDED TO STORE THE OPERATING PROGRAM. THE

7?7 - 12

REASON FOR THIS RELATIONSHIP IS THAT STREAMLINING A PROGRAM GENERALLY
REQUIRES THE ELIMINATION OR REDUCTION IN THE USE OF “LOOPS"™ AND SUBROUT-
INES, WHICH, THE READER MAY RECALL, VWERE EARLIER STRESSED FOR THEIR AB-
ILITY TO SAVE MEMORY STORAGE SPACE! ’ '

TO ILLUSTRATE MOV THE ELIMINATION OF “LOOPS" CAN DRAMATICALLY REDUCE
THE TIME REQUIRED TO EXECUTE A SPECIFIC FUNCTION, CONSIDER THE EXAMPLE
PRESENTED NEXT. 1IN THIS CASE, A PROGRAMMER NEEDS TO LOAD THREE CONSECU-
TIVE WORDS IN MEMORY WITH THE CONTENTS OF THE ACCUMULATOR IN AS LITTLE
TIME AS POSSIBLE. A ROUTINE USING A “LOOP" MIGHT BE AS SHOWN HERE:

32 LBl 003
28 AGAIN, LMA

20 INL

20 DCB
AK/36 JFZ AGAIN

THE READER MAY EASILY CALCULATE THAT THE TOTAL TIME REQUIRED TO EXEC-
UTE THE ABOVE LOOP WOULD BE 360 MICROSECONDS. A ROUTINE THAT DID NOT
USE A LOOP COULD BE EXECUTED IN ABOUT 1/3 THE TIME IN THIS PARTICULAR
CASE AS ILLUSTRATED NEXT:

28 LMA
29 INL
28 LMA
20 INL

28 LMA

THE “STRAIGHT™ ROUTINE ONLY REQUIRES 124 MICROSECONDS TO DO THE SAME
d0B. WHILE THE COROLLARY MENTIONED ABOVE MIGHT NOT SEEM EVIDENT WHEN
SGCH A SHORT LOOP 1S INVOLVED, CONSIDER THE SAME CASE IF 28 LOCATIONS
IN MEMORY VERE TO BE LOADED WITH THE DATA IN THE ACCUMULATOR. ONE CAN
CALCULATE THAT THE LOOP METHOD WOULD ONLY REQUIRE 8 (DECIMAL) LOCATIONS
IN MEMORY FOR THE OPERATING PORTION OF THE PROGRAM AND WOULD EXECUTE
THE PROGRAM IN 2264 MICROSECONDS. ON THE OTHER HAND, THE “STRAIGHT"
ROUTINE METHOD WOULD REQUIRE SOME 39 LOCATIONS IN MEMORY FOR STORAGE OF
THE OPERATING PROGRAM, BUT THAT "STRAIGHT" ROUTINE WOULD BE EXECUTED IN
A MERE 940 MICROSECONDS.

THE ELIMINATION OF SUBROUTINES CAN ALSO GREATLY SPEED UP THE OPERA-
TION OF A CRITICAL PORTION OF A PROGRAM AS SHOWN BY THE FOLLOVING EXAM-
PLE. THE FOLLOVING “SUBROUTINE"” METHOD MIGHT BE USED AS PART OF A PRO-
GRAM THAT WAS TO RAPIDLY OUTPUT THE CONTENTS OF THE ACCUMULATOR AS A
SERIES OF OCTAL DIGITS. 1.E., THE OUTPUT DEVICE WOULD ONLY RECEIVE THE
THREE LEAST SIGNIFICANT BITS IN THE ACCUMULATOR.

24 ouT X

44 + 80 CAL ROTAND
24 ouT X

AA + 89 CAL ROTAND
24 OuT X

16 HLT

WHERE THE SUBROUTINE "ROTAND" APPEARS AS:

20 ROTAND, RAR

20 RAR
28 RAR
20 RET |

ONE CAN CALCULATE TMAT EXECUTING THE ABOVE “SUBROUTINED" PROGRAN WOULD

713

REQUIRE 336 MICROSECONDS. “THE "STRAIGHT" PROGRAM METHOD SHOWN ‘BELOV ON~
LY REQUIRES 208 MICROSECONDS TO DO THE SAME FUNCTION.

24 oUT X
20 RAR
20 RAR
20 RAR
24 ouT X
20 RAR
20 RAR
20 RAR
24 . 0UT X
16 HLT

VHILE THE ABOVE EXAMPLE DOES NOT SUPPORT THE “MEMORY USAGE CORALL~
ARY"™ ONE CAN SEE THAT IF THE SUBROUTINE WERE SOMEVHAT LONGER - SAY IT
CONTAINED EIGHT OR NINE INSTRUCTIONS, THAT THE CORALLARY WOULD BE TRUE.

ANOTHER RULE OF THUMB TO APPLY TOWARDS DEVELOPING PROGRAMS TO OPER-
ATE IN A MINIMUM AMOUNT OF TIME IS TO DO AS MUCH WORK AS POSSIBLE WITH
CPU REGISTERS INSTEAD OF WITH MEMORY. FOR INSTANCE, SUPPOSE ONE HAD AN
INSTRUMENT INTERFACED TO A 8008 SYSTEM THAT PERIODICALLY NEEDED TO SEND
A SHORT "BURST" OF DATA TO THE COMPUTER FOR STORAGE. FOR TECHNICAL CON-
SIDERATIONS ASSUME THAT IT WAS DESIRED TO RECEIVE THE “BURST" AS RAPID-
LY AS POSSIBLE, AFTER WHICH THE COMPUTER WOULD HAVE SOME “IDLE" TIME TO
PROCESS THE DATA. ONE CAN READILY SEE BY THE FOLLOWING EXAMPLE THAT IT
VILL TAKE MUCH LESS TIME TO STORE, SAY FOUR “CHARACTERS"™ IN CPU REGIS-
TERS, THAN TO STORE THE SAME AMOUNT DIRECTLY IN MEMORY. A ROUTINE TO
STORE THE CHARACTERS DIRECTLY IN MEMORY WOULD REQUIRE:

32 INP X
28 LMA
20 INL
32 INP X
28 LMA
20 INL
32 INP X
28 LMA
20 INL
32 INP X
28 LMA

OR A TOTAL OF 308 MICROSECONDS. STORING THE DATA IN CPU REGISTERS WOULD
ONLY REQUIRE 216 MICROSECONDS USING THE FOLLOWING ROUTINE.

32 ‘ INP X
ee LBA
32 INP X
20 LCA
32 INP X
20 LDA
32 INP X
20 ' LEA

THE FACTOR THAT MIGHT BE PARTICULARLY VALUABLE IN A "TIME-TIGHT" APPLI-
CATION 1S THAT EACH CHARACTER IN THE SECOND ROUTINE COULD BE ACCEPTED
AT $2 MICROSECOND INTERVALS WHILE THE FIRST ROUTINE COULD NOT ACCEPT THE
CHARACTERS AT A RATE FASTER THAN EVERY 80 MICROSECONDS. NATURALLY, THE
ABOVE EXAMPLE 1S STRICTLY LIMITED T0 THE CASE WHERE VERY SHORT *“BURSTS"
ARE BEING HANDLED AS TMERE ARE A LIMITED NUMBER OF CPU REGISTERS AVAIL-
ABLE IN WHICH TO STORE DATA. HOWEVER, THE PRINCIPLE CAN BE VALUABLE.
. ¥

7T~ 14

THE CONCEPT OF UTILIZING CPU REGISTERS AS MUCH AS POSSIBLE CAN BE
EXTENDED TO A VARIETY OF APPLICATIONS BESIDES THE ONE ILLUSTRATED ABOVE.
FOR INSTANCE, 1T 1S OFTEN ADVANTAGEOUS TO SET UP CPU REGISTERS IN AD-
UWANCE OF A "CRITICAL" TIME PERIOD IN ORDER TO STREAMLINE A PROGRAM DUR-
ING SELECTED OPERATING PERIODS. PFOR INSTANCE, SUPPOSE ONE NEEDED TO IN-
PUT DATA AT A FAST RATE AND ALSO PERFORM SOME MANIPULATION OF THE DATA.
SUCH AS, PERFORM A TWO°'S COMPLEMENT OPERATION ON THE DATA AND THEN DEPO-

SIT THE DATA IN MEMORY. ONE WAY TO DEVELOP THE ROUTINE WOULD BE AS FOL-
LOVS:

32 RECEIV, INP X

3e ND1 377

32 ADI 081}

28 - LMA

20 ‘ INL

A44/36 JFZ RECEIV

THE ABOVE ROUTINE COULD HAVE THE TIME FACTOR DECREASED BY ABOUT 12
PERCENT IF, PRIOR TO ENTERING THE "LOOP" (A NECESSARY EVIL IN THIS EX-
AMPLE BECAUSE A "LARGE" BLOCK OF DATA IS HYPOTHETICALLY BEING PROCESSED)
ONE FIRST SET CPU REGISTER "B™ TO CONTAIN *"377" AND CPU REGISTER *C" TO
HOLD “@01," AND USED THE ROUTINE SHOWN NEXT.

3e RECEIV, INP X

20 NDB
20 ADC
28 LMA
20 ~INL
44/36 : JFZ RECEIV

A FEV CLOSING COMMENTS ON THE SUBJECT OF “STREAMLINING" REAL~TIME
PROGRAMS WOULD INCLUDE THE MENTION THAT IF “SUBROUTINES™ ARE NECESSARY,
TO USE THOSE VALUABLE “RESTART" COMMANDS WHICH ONLY REQUIRE 26 MICRO-
SECONDS FOR AN EFFECTIVE “CALL"™ INSTEAD OF 44 MICROSECONDS. ADDITION-
ALLY, THE PROGRAMMER SHOULD PAY STRICT ATTENTION TO OVER-ALL PROGRAM OR-
GANIZATION IN ORDER TO REDUCE TIME CONSUMING “QUERHEAD" OPERATIONS, OR
AT LEAST TO DEFER SUCH OPERATIONS FOR EXECUTION DURING NON-CRITICAL TIME
PER1IODS. :

FINALLY, REAL-TIME PROGRAMMING IS AN AREA WHERE THE CREATIVE PROG-
RAMMER CAN HAVE A LOT OF FUN. EXPERIMENT, LOOK FOR NEW METHODS TO SOLVE
A PARTICULAR PROBLEM - YOU MAY FIND A BETTER, FASTER WAY! SUCH AS:

HAVE THE FIRST INSTRUCTION OF THE ABOVE ROUTINE LOCATED AT THE ADD-
RESS OF RESTART LOCATION *“X,*” MODIFY THE ROUTINE AS ILLUSTRATED, AND CUT
ANOTHER 7 PERCENT OFF THE REQUIRED EXECUTION TIME OF THE ROUTINE!

32 INP "X"
20 NDB
20 ADC
28 LMA
20 INL
127286 RTZ

20 RST “X=

T-18

PROM® PROGRAMMING CONSIDERATIONS

FOR READERS WHO MAY NOT BE FAMILIAR WITH THE ABBREVIATION, A "PROM"™
IS A "PROGRAMMABLE READ-ONLY MEMORY™ FELEMENT. A PROGRAMMABLE READ=-ONLY
MEMORY ELEMENT IS AN ELECTRONIC DEVICE THAT CAN BE “PROGRAMMED™ WITH A
PROGRAM USING A SPECIAL INSTRUMENT SO THAT IT CONTAINS A “PERMANENT®
PROGRAMs SOME “"PROM™ ELEMENTS CAN BE “ERASED" AND RE-PROGRAMMED BY US~
ING SPECIAL INSTRUMENTS WHICH ARE GENERALLY TOO EXPENSIVE FOR THE AVER~
AGE USER TO HAVE READILY AVAILABLE., WHEN THE "PROGRAMS* IN SUCH ELE-
MENTS NEED TO BE CHANGED IT 1S GENERALLY NECESSARY TO SEND THE DEVICE
BACK TO THE MANUFACTURER OR REPRESENTATIVE FOR PROCESSING.

THE KEY FEATURE THAT A “READ-ONLY MEMORY* ELEMENT HAS OVER A “RAM"
(READ AND WRITE MEMORY) DEVICE 1S THAT ONCE A PROGRAM HAS BEEN PLACED IN
A “ROM"™ IT IS NON-VOLATILE, OR PERMANENT. A SEMI-CONDUCTOR *"RAM™ DEVICE
WILL LOSE IT*S CONTENTS IF POWER IS REMOVED FROM THE DEVICE. A "ROM"™
WILL RETAIN THE INFORMATION PLACED IN IT IF POWER IS REMOVEDes THUS, THE
*ROM™ IS AN IDEAL MEMORY DEVICE IN WHICH TO STORE PROGRAMS THAT ARE PER-
MANENT IN NATURE OR THAT HAVE FREQUENT USE IN A SYSTEM WHERE POWER MAY
FREQUENTLY BE REMOVEDe IT ELIMINATES THE PROCESS OF HAVING TO *“LOAD"™
PROGRAMS BACK INTO MEMORY WHEN A COMPUTER SYSTEM IS INITIALLY “POWERED-
UP* FOR A PERIOD OF OPERATION.,

THE KEY DISADVANTAGE OF THE "ROM™ 1S THAT THE COMPUTER CANNOT ALTER
THE CONTENTS OF THOSE MEMORY LOCATIONS ASSIGNED TO A "ROM“ DEVICE. THUS
ONE MUST TAKE SPECIAL PRECAUTIONS WHEN DESIGNING PROGRAMS THAT ARE TO
RESIDE IN A “ROM"™ DEVICE,

FOR INSTANCE, ONE CANNOT USE MEMORY ADDRESSES IN A ROM TO STORE TEM=-
PORARY POINTERS AND COUNTERS FOR A PROGRAM THAT NEEDS TO ALTER SUCH
POINTERS AND COUNTERS DURING THE PROGRAM®S OPERATION - AND SIMILARLY ONE
CANNOT USE ANY SUCH LOCATIONS FOR ANY KIND OF TEMPORARY STORAGE OF DATA
OR OTHER "TEMPORARY"™ INFORMATION, BECAUSE, AS JUST MENTIONED, THE COM-
PUTER WILL NOT BE ABLE TO “WRITE” THE INFORMATION INTO THE ROM!

THUS, IF A PROGRAM IS TO BE STORED IN A ROM, AND IT 1S NECESSARY TO
USE POINTERS AND COUNTERS IN A PROGRAM (AS WILL CERTAINLY BE THE CASE IN
MANY APPLICATIONS) ONE SHOULD ARRANGE THE PROGRAM TO USE CPU REGISTERS
FOR THOSE PURPOSES, OR TO USE ADDRESSES IN MEMORY THAT WILL CONTAIN RAM
ELEMENTS.,

A ROM ELEMENT CAN BE CONSIDERED AS A “HARDWARE“ MEMORY ELEMENT AND
AS SUCH, ONE OF THE FIRST MATTERS ONE SHOULD CONSIDER WHEN PLANNING ON
INSTALLING ROMS IN A COMPUTER SYSTEM, IS WHERE TO ASSIGN THE ROM ELE-
MENTS IN MEMORY. A GOOD RULE OF THUMB 1S TO PLACE SUCH ELEMENTS AT THE
UPPER EXTREME ADDRESSES AVAILABLE. IN THE SYSTEMe FOR INSTANCE, IF ONE
HAS AN 8008 SYSTEM CAPABLE OF ADDRESSING UP TO 4 K OF MEMORY, (PAGES 00
THROUGH 17) IT WOULD BE ADVISABLE IN MOST CASES TO DEVELOP PROGRAMS FOR
ROM(S) THAT ARE ON PAGE 17, OR IF MORE PAGES ARE REQUIRED FOR ROMS, TO
WORK DOWNWARD FROM THAT ADDRESS, (MOST ROM AND PROM DEVICES CAN CONTAIN
256 EIGHT BIT WORDS - OR ONE "PAGE™ IN A TYPICAL 8668 SYSTEM,) THIS AL~
LOWS ALL ADDRESSES BELOV THE ROM ELEMENT(S) TO BE AVAILABLE AS ONE CON~
TINUOUS BLOCK OF “READ AND WRITE™ MEMORY WHICH IS GENERALLY A MORE CON=-
VENIENT ARRANGEMENT THAN, SAY, STICKING A ROM ELEMENT ON PAGE 18 IN SUCH

A SYSTEM, THUS DIVIDING THE AVAILABLE ADDRESSES FOR RAM MEMORY INTO TWO
SEPARATE AREAS. |

ALTERNATIVELY, ONE MIGHT WANT TO CONSIDER PLACING ROM ELEMENTS AT
THE LOWEST AVAILABLE ADDRESSES FOR THE SYSTEM, AND LEAVING THE UPPER AD=-
IRESSES AVAILABLE AS ONE CONTINUOUS BLOCK FOR RAM ELEMENTS. HOWEVER,

=1

INLESS A SYSTEM IS BEING DESIGNED TO SERVE AS A SPECIAL FUNCTION. DEVICE,
IT IS GENERALLY WISE TO NOT USE A ROM ON PAGE @6 IN AN 8088 SYSTEM AS IT
WILL OCCUPY ALL THE POSSIBLE “RESTART™ (RST) INSTRUCTION LOCATIONS! THE
EXCEPTION TO THIS WOULD BE IF ONE DELIBERATELY WANTED TO HAVE “POWER-UP"
ROUTINES THAT USED THE INTERRUPT FACILITY OF THE 8868 SYSTEM IN CONJUN-
CTION VWITH A ROM TO AUTOMATICALLY GO TO A "RESTART" LOCATION. THE

“RST” CLASS OF INSTRUCTIONS, WHICH USE THE SPECIAL LOCATIONS ON PAGE @4,
ARE PARTICULARLY USEFUL COMMANDS WITH GENERAL PURPOSE APPLICATIONS, AS
DISCUSSED ELSEWHERE IN THIS MANUAL, AND ONE SHOULD CONSIDER THEIR GEN-
ERAL PURPOSE CAPABILITIES CAREFULLY BEFORE DECIDING TO RESTRICT THEM TO
A ROM APPLICATION.

THE TYPES OF PROGRAMS THAT ARE GENERALLY MOST SUITABLE FOR PLACE-
MENT ON ROMS INCLUDE ROUTINES TO ASSIST GETTING A SYSTEM "ON~-LINE™ IM-
MEDIATELY FOLLOWING POWER TURN-ON, SUCH AS 1/0 ROUTINES AND "PROGRAM
LOADERS," FREQUENTLY UTILIZED PROGRAMS THAT ONE MAY NOT WANT TO HAVE TO
BE BOTHERED LOADING EACH TIME A SYSTEM 1S STARTED, OR PROGRAMS FOR DEDI-
CATED APPLICATIONS. ~ ‘

FOR INSTANCE, A USER WITH A TELETYPE SYSTEM MIGHT WANT TO PUT A
STANDARD ROUTINE TO INPUT AND OUTPUT INFORMATION TO THE DEVICE (WHICH
COULD BE.CALLED BY GENERAL ROUTINES) AND POSSIBLY A "LOADER PROGRAM"
THAT WOULD ENABLE THE USER TO QUICKLY LOAD PROGRAMS INTO RAM MEMORY VIA
A PAPER TAPE READER., IN SUCH AN APPLICATION, ONE MIGHT ALSO HAVE SPACE
ON A PROM TO INCLUDE A SIMPLE PROGRAM THAT WOULD ENABLE ONE TO EXAMINE
AND MODIFY MEMORY LOCATIONS USING THE TELETYPE DEVICE. THUS, WHENEVER
POWER WAS APPLIED TO THE COMPUTER SYSTEM, ONE WOULD INSTANTLY BE IN A
POSITION TO “LOAD™ LARGER PROGRAMS INTO RAM MEMORY, OR TO IMMEDIATELY
USE THE TELETYPE TO PLACE INFORMATION INTO RAM MEMORY. WITHOUT A ROM,
THE USER WOULD HAVE TO USE MANUAL CONTROL METHODS TO "LOAD"™ A “LOADER"™
PROGRAM OR OTHER ROUTINES INTO MEMORY. THE SAVINGS IN TIME ONE CAN ACH-
IEVE BY USING A ROM TO STORE “START-UP™ PROGRAMS OVER HAVING'fb USE PUR~
ELY MANUAL PROCEDURES CAN BE WELL WORTH THE COST OF A ROM OR PROM DE-
VICE.

HOWEVER, A USER WHO DESIRED TO DEVELOP SUCH A PACKAGE FOR STORAGE
ON A ROM DEVICE WOULD HAVE TO BE PARTICULARLY CAREFUL WHEN DEVELOPING
THE TELETYPE 1/0 ROUTINE 1F SUCH A ROUTINE REQUIRED "REAL-TIME PROGRAM-
MING™ CONSIDERATIONS, SUCH AS A “TIMING LOOP.” FOR INSTANCE, THE READ-
FR WHO HAS READ THE PREVIOUS CHAPTER WILL REALIZE THAT IF THE COMPUTER
PROGRAM ITSELF WILL CONTROL THE ACTUAL OPERATION OF A DEVICE SUCH AS A
TELETYPE MACHINE, AND “TIMING LOOPS*™ ARE ESTABLISHED TO CONTROL THE PRE-
CISE TIME AT WHICH EVENTS WILL OCCUR, THAT THE ACTUAL TIMING REQUIRED
T0 PROPERLY OPERATE A DEVICE WILL BE A FUNCTION OF THE DEVICE BEING CON~-
TROLLED AS WELL AS THE TIMING IN THE COMPUTER ITSELF, AND THAT THE AC-
CURACY AT WHICH SUCH TIMING MUST BE MAINTAINED 1S A FUNCTION OF THE AC-
CURACY OF THE TIMING IN THE COMPUTER SYSTEM AND THE DEVICE ITSELF. THIS
ACCURACY MAY UVARY BETWEEN DIFFERENT UNITS. . IF A FIXED “TIMING LOOP"™ WVAS
PROGRAMMED INTO A “PROM™ AND AT SOME LATER DATE THE EXTERNAL DEVICE WAS
REPLACED WITH A DIFFERENT ONE, OR THE TIMING OF THE COMPUTER WAS ADJUST-
ED, THE ORIGINAL “TIMING LOOP™ MIGHT BE MADE INVALID. THUS, IN SUCH AN
APPLICATION, IT MIGHT BE WISE TO PLACE THE ACTUAL "DATA™ VALUE THAT IS
TO CONTROL THE “TIMING LOOP™ IN A "RAM™ LOCATION AND HAVE THE PROGRAM IN
THE PROM ACCESS THAT VALUE, WHICH WOULD BE MANUALLY INSERTED BY THE OP-
FRATOR, RATHER THAN HAVING THE VALUE BE "FIXED"™ IN THE PROM. THE FOL~-
VIDVING TWO SUBROUTINES WILL HELP CLARIFY THE POINT.

PROM PROGRAM WITH A "FIXED" TIMING LOOP VALUE '

TIME, LDI 100 /SET TIMING LOOP COUNTER

8 - 2

TIMER, CAL DUMMY /DELAY SUBROUTINE
DCD /DECREMENT TIMING LOOP COUNTER
RTZ /EXIT SUBROUTINE WHEN TIME DELAY DONE
JMP TIMER /O0THERWISE CONTINUE TIMING LOOP :

PROM PROGRAM WITH CAPABILITY TO ALTER TIMING LOOP VALUE

TIME, LHI XXX /SET POINTER TO *"RAM" LOCATION WHERE
LLI YYY /TIMING LOOP COUNTER VALUE STORED
LDM /SET TIMING LOOP COUNTER VALUE
TIMERs eoe /SAME AS ABOVE ROUTINE

THE SECOND ROUTINE ILLUSTRATED ABOVE ASSUMES THAT THE CPU MEMORY
POINTER REGISTERS WILL BE SET UP TO POINT TO A LOCATION IN RAM MEMORY
WHERE THE ACTUAL *“LOOP COUNTER"™ VALUE WILL HAVE BEEN PLACED BY THE OP-
FRATOR. WHILE THE METHOD NECESSITATES THE OPERATOR HAVING TO SET THE
PROPER VALUE INTO RAM MEMORY BEFORE USING THE PROGRAM STORED ON THE ROM,
IT AVOIDS THE PROBLEM OF HAVING A “USELESS™ PROGRAM IN THE PROM IF A
TIMING VALUE MUST BE ALTERED AT SOME FUTURE DATEe. IT SHOULD BE APPARENT
THAT THIS KIND OF SCHEME CAN BE APPLIED TO ANY SIMILAR SITUATION WHERE A
*VALUE" USED BY A PROGRAM MIGHT CONCEIVABLY NEED TO BE ALTERED.

IF, FOR SOME REASON, ONE DID NOT WANT TO HAVE TO DEDICATE A LOCATION
IN RAM MEMORY FOR A "VARIABLE" VALUE IN SUCH A ROUTINE - THERE IS STILL
ANOTHER TRICK THAT CAN "SAVE™ THE DAY IN SUCH A SITUATION. THE OPERATOR
COULD MANUALLY LOAD THE *"D” REGISTER IN THE CPU PRIOR TO USING THE ABOVE
TYPE OF SUBROUTINE (OR HAVE AN EXTERNAL ROUTINE IN RAM MEMORY PERFORM
THE SAME FUNCTION BEFORE USING THE ROUTINE), IN WHICH CASE ONE COULD EL~
IMINATE THE PORTION OF THE ABOVE ROUTINE LABELED “TIME® AND SIMPLY USE
THAT PORTION LABELED “TIMER."

A GOOD RULE OF THUMB TO APPLY WHEN CONSIDERING THE USE OF ROM IN A
SYSTEM IS TO TAILOR THE PROGRAM FOR COMPACTNESS. AFTER ALL, THE MORE
ROUTINES OR SUBROUTINES ONE CAN STORE ON A PROM, THE MORE USEFUL THE DE-
VICE VILL BE. MAKE EVERY EFFORT TO SAVE MEMORY SPACE BY JUDICIOUS USE
OF SUBROUTINING, WITH MULTIPLE ENTRY POINTS IF APPLICABLE, AND BY USE OF
PROGRAM LOOPS. AN EARLIER CHAPTER STRESSED THE CONCEPT AND PROVIDED
GUIDELINES AND FORMULAS FOR CALCULATING WHEN SUCH TECHNIQUES ARE APPLI~
CABLEe. ONE SHOULD FIGURE ON SPENDING SOME EXTRA TIME WHEN DEVELOPING
PROGRAMS TO BE STORED ON ROMS IN ORDER TO LOOK AT WAYS TO SAVE MEMORY
SPACEe TRY TO USE EVERY AVAILABLE LOCATION ON A PROM - AFTER ALL, ANY
INUSED LOCATIONS WILL BE “PERMANENTLY"™ WASTED. IF ONE FINDS ONE HAS
SOME ROOM LEFT IN A PROM AFTER ONE HAS PLACED THE PROGRAMS REQUIRED TO
BE ON THE DEVICE FOR A PARTICULAR APPLICATION, CONSIDER THE POSSIBILITY
OF “TUCKING IN™ A FEW SMALL ROUTINES THAT WOULD HAVE GENERAL USEFULNESS.
SUCH ROUTINES AS “SWITCH,*™ "ADV,* AND "CNTDWN™ WHICH WERE PRESENTED AND
USED FREQUENTLY IN EXAMPLES THROUGH-OUT THIS MANUAL ARE TYPICAL KINDS OF
GENERALLY USEFUL SUBROUTINES THAT ONE MIGHT CONSIDER HAVING ON A ROM
RATHER THAN "WASTING™ ANY LOCATIONS. THESE TYPES OF ROUTINES WOULD THEN
ALWAYS BE AVAILABLE IN THE SYSTEM FOR USE BY PROGRAMS RESIDING IN RAM,

ABOVE ALL, HOVEVER, ONCE ONE HAS DEVELOPED ROUTINES FOR A PROM, ONE
SHOULD THOROUGHLY TEST AND CHECK THE PROGRAM(S) TO MAKE SURE THEY ARE
ABSOLUTELY OPERATING AS INTENDED. AFTER ALL, IT IS A BIT COSTLY TO MAKE
A “"PROGRAM PATCH™ ON A READ-ONLY MEMORY ELEMENT!

CREATIVE PROGRAMMING CONCEPTS

ONCE ONE HAS BECOME FAMILIAR WITH THE FUNDAMENTAL ASPECTS OF MACKe
INE LANGUAGE PROGRAMMING. ONCE ONE IS FAMILIAR WITH THE MNEMONICS THAT
REPRESENT THE MACHINE LANGUAGE COMMANDS AND CAN MENTALLY THINK OF THE
FUNCTIONS THAT THOSE MNEMONICS REPRESENT., ONCE ONE HAS LEARNED HOW TO
FORMALIZE AND PLAN OUT A PROGRAM, UNDERSTANDS FLOV CHARTING, AND MEMORY
ALLOCATION OR MAPPINGe ONCE ONE HAS HAD SOME PRACTICE AT DEVELOPING AL-
GORITHMS AND COMBINING SMALLER ALGORITHMS INTO FULL SIZED PROGRAMS BY
SUBROUTINING. ONCE ONE IS FAMILIAR WITH SETTING UP POINTERS, COUNTERS,
FORMING PROGRAM LOOPS, UTILIZING BIT "MASKSe™ ONCE ONE KAS A ™FEEL®
FOR ORBANIZING DATA FOR TABLES, AND UNDERSTANDS HOW DATA CAN BE SORTED.
ONCE ONE UNDERSTANDS HOV MATHEMATICAL INFORMATION MAY BE PROCESSED BY
THE COMPUTER, AND, ONCE ONE KNOWS KOV TO GET DATA INTO AND OUT OF THE
CPU FROM AND TO SOME EXTERNAL. DEVICESe IeEes ONCE ONE HAS SPENT A LITe
TLE TIME STUDYING THE ASPECTS OF MACHINE LANGUAGE PROGRAMMING A COMPUT~
R = AS ONE VILL HAVE DONE BY READING (AND HOPEFULLY LEARNING1) THE
INFORMATION PRESENTED. IN THE PRECEEDING SECTIONS OF THIS MANUAL., THEN,
ONE SHOULD BE IN A POSITION TO UNDERSTAND AND APPRECIATE THE TRUE POTe
INTIAL OF A DISITAL COMPUTER WHEN IT*S POVER 1S UNLEASKED UNDER THE
AUSPICES - OF A CREATIVE PROGRAMMER, THEN, 1S WHEN ONE CAN REALLY START
HAVING. FUN CREATING AND DEVELOPING COMPLETELY ORIGINAL PROGRAMS TO PER=
FORM MYRIADS OF PERSONALLY DESIRED FUNCTIONS. THIS IS THE POINT AT
WHICH ONE MAY TAKE A “BROAD VIEW™ OF THE IMMENSE CAPABILITY OF THE MACHe
INE BY STANDING BACK AND PONDERING SOME ®SCENES® MUCK THE WAY AN ARTIST
WOULD PONDER A BLANK CANVAS BEFORE STARTING TO PAINT A “CONCEPT" OR “IM-
ABE™ THAT EXISTED PURELY IN THE ARTIST®S MIND, THE DISCUSSION THAT FOLe
LOVS MERELY PRESENTS SOME WAYS IN WHICK TO VIEV THE CAPABILITY OF A DIGe
-ITAL COMPUTER, SOME POINTS OF VIEW THAT MAY HELP PROGRAMMER®S APPROACK
PROGRAMMING TASKS WITH CREATIVITY, NO GREAT “MAGIC™ 1S CLAIMED FOR THE
IDEAS PRESENTEDs NO GUARANTEE 1S MADE THAT THE POINTS OF VIEW VILL INe
SPIRE EVERYONE TO @REATER PROGRAMMING CREATIVITY OR ABILITY. BUT, IT IS
KNOVN THAT THE VIEWS PRESENTED KAVE KELPED AT LEAST ONE PROGRAMMER TO
CREATE COUNTLESS PROGRAMS, SOME OF WHICK OTHERS HAD CLAIMED “COULDN®T BE
DONE ON A SMALL MACKINE,” AND SOLVE NUMEROUS PROGRAMMING PROBLEMS, WHILE
HAVING A LOT OF FUN - AND QUITE OFTEN SAVING A LOT OF TIME! THUS, THE
IDEAS WILL BE PRESENTED IN THE HOPES THAT PERHAPS A FEVW OTHERS VILL BEN-
EFIT A LITTLE, OR A LOT. .

IT MUST BE ADMITTED THAT TO SOME READERS THE CONCEPTS DISCUSSED. IN
THIS SECTION MIGHT SEEM "TRIVIAL™ AT FIRST GLANCE, PERHAPS THE REASON
' SOME PEQPLE INITIALLY SEE THE CONCEPTS AS TRIVIAL 1S BECAUSE THEY ARE
PROFOUNDLY BROAD AND TO SOME LUCKY PEOPLE, PERHAPS, INSTINCTIVELY OB~
VIoUS. HOVEVER, MOST READERS WILL PROBABLY FIND THE CONCEPTS *“GROW®™
AS ONE DOES MORE AND MORE PROGRAMMING, UNTIL ONE DAY, TRE READER "DlSe
COVERS*™ A PROFOUNDLY *“SIMPLE™ WAY TO HANDLE A PROGRAMMING PROBLEM BASED
ON A VARIATION OF ONE SORT OR ANOTHER OF THE CONCEPTS PRESENTED IN THIS
SECTION,. :

FOR WHAT THEY ARE WORTH, THE CONCEPTS TO BE PRESENTED WILL BE DIS~
CUSSED IN THREE PARTS,

THE ONE DIMENSIONAL VIEW

THE UNDERLYING PRINCIPAL IN THIS ENTIRE DISCUSSION ON CREATIVE PRO~
GRAMMING IS TO LEAVE OUT THE DETAILS OF THE OPERATION OF THE CPU AND
IT*S ASSOCIATED REBISTERS, IT 1S KNOWN THAT TRE CPU AND THE ASSOCIATED

9 -1

REGISTERS CAN DO A WHOLE HOST OF SPECIFIC OPERATIONS = MATHEMATICAL, BOe
OLEAN LOGIC, EXECUTE CONDITIONAL BRANCHES AND WHATEVER, THESE FUNCTIONS
WILL BE TAKEN FOR GRANTED IN THE POLLOWING DISCUSSION, WHAT IS IMPOR~
TANT IN THE PRESENT SITUATION IS TO REALIZE THAT THE POWER OF THE COMPUe
TER IS IN IT*S MEMORY, THE CPU OBTAINS IT*S INSTRUCTIONS FROM MEMORY,
AND THE CPU IS ABLE TO MANIPULATE INFORMATION IN MEMORY, THE CPU 1S
ABLE TO ACCESS A PARTICULAR WORD IN MEMORY, IN THE CASE OF AN 8088 SYS-
TEMs BY POINTING TO THE “ADDRESS™ USING THE “H & L* REGISTERS, FOR EACH
SPECIFIC “ADDRESS™ THERE IS A "SPECIFIC WORD IN MEMORY"™ THAT CONTAINS
EIGHT BINARY BITS.

ONE WAY TO VIEW THE ORGANIZATION OF MEMORY IS TO THINK OF MEMORY
AS BEING ONE LONG LINE OF WORDS = STACKED ONE AFTER THE OTHER. IN FACT,
THIS 1S THE WAY VIRTUALLY ANY MACKINE LANGUAGE PROGRAMMER FIRST STARTS
THINKING OF MEMORY BECAUSE OF THE SIMPLE WAY IN WHICH EACH MEMORY AD-
DRESS CORRESPONDS TO A WORD IN MEMORY - AND MEMORY ADDRESSES ARE SIMPLY
A SERIES OF CONSECUTIVE NUMBERS,

SRR REERR R EEE SRS S EREERERE SRR RS
& ADDR # "N™ & MEM WORD # "N" »
SREEEEEEEREREER SRS EREERECREERE RS
* ADDR # N¢! & MEM WORD # N+l =
SRR EREREEEERERERRER R SRR R RS ERR R
® ADDR # Ne¢2 & MEM WORD # Ne2 =
SERREER RN SRS E R RS S LR R EERREEERE

. ° [[)

. ° . . .
EREEEREREEES RS SR B SRR EEERREE R RS
® ADDR # NeX & MEM WORD # NeX =
ENEREEEC RS SRR SRR EE R R AR KRB EER

THUS ONE CAN CONSIDER MEMORY AS SIMPLY BEING ONE LONG STRING OF LOCe
ATIONS THAT MAY BE FILLED WITH WHATEVER INFORMATION IS DESIRED IN A SERe
JAL SEQUENCEe IF ONE VERE TO FILL EACH MEMORY WORD WITH A “CODE™ THKAT
SYMBOLIZED A LETTER OR DIGIT, OR PUNCTUATION SYMBOL, ONE COULD PROCEED
TO FILL A “STRING™ OF MEMORY LOCATIONS WITH ENGLISHK (OR FRENCH, OR GER~
MAN, OR WHATEVER) WORDS, AND GO ON T0 FORM SENTENCES, AND BY USING OTHER
CODESs, TO SEPARATE SENTENCES INTO PARAGRAPHS,

N 0 w SPACE b¢ S
ADDR N ADDR Nel ADDR Ne2 ADDR N+3 ADDR N+4 ADDR Ne5
OR, ONE COULD PLACE MATHEMATICAL VALUES IN MEMORY LOCATIONS, SEPA=
FATE THOSE VALUES BY "OPERATOR® SYMBOLSs AND PROCESS “COLUMNS™ OF MATH=

IMATICAL DATAe (ASSUMING IN THIS STRICT CASE THAT THE VALUES WERE SMALL
EHNOUGK TO BE STORED IN ONE MEMORY WORD.)

"ADDR N ¢ +100
ADDR Nel ¢ MINUS
ADDR Ne2 ¢ - 50
ADDR Ne3 ¢ EQUAL

OR, THE CONTENTS OF MEMORY WORDS MAY BE USED TO SYMBOLIZE JUST ABOUT
ANY ABSTRACT ITEM THAT THE PROGRAMMER MIGHT DESIREes THE PROGRAMMER NEED

Y -2

SIMPLY FORM A CODE THAT THE PROGRAMMER DESIRES TO HAVE SYMBOLIZE SOME-
THING. ‘ .

ADDR N ¢ SYMBOL FOR *“APPLES"™
ADDR Nel 8 SYMBOL FOR “PEARS*
ADDR N¢2 ¢ SYMBOL FOR “BANANAS"™
ADDR N¢3 ¢ SYMBOL FOR “CHERRIES"™
ADDR N¢3 ¢ SYMBOL FOR "LEMONS*™
ADDR Ne4 ¢ SYMBOL FOR "BELLS"™

THE READER SHOULD REALIZE HERE, THAT THE CONCEPT BEING PRESENTED 15
CONCENTRATING ON HOW MEMORY IS UTILIZED FOR HANDLING "DATA"™ OR INFOR=-
MATION. IT IS TAKEN FOR GRANTED THAT A PORTION OF MEMORY WILL BE USED
FOR THE ACTUAL OPERATING PROGRAM THAT *CONTROLS™ THE MANIPULATION OF THE
MEMORY THAT 1S BEING USED FOR THE "DATA." THUS, IN THE ABOVE EXAMPLES
ONE MUST REALIZE THAT AN “OPERATING PROGRAM™ VILL PLACE THE CODES FOR
LETTERS OR DIGITS, PUNCTUATION MARKS, SPACES, AND SO FORTH, AND PERFORM
WHATEVER PROCESSING 1S DESIRED, AN OPERATING PROGRAM VILL TAKE THE VAL~
UES GIVEN IN THE MATHEMATICAL EXAMPLE AND “INTERPRET® THE SYMBOLS AND
PERFORM THE DESIRED FUNCTIONS. AND, AN OPERATING PROGRAM IN THE THIRD
EXAMPLE WOULD RECOGNIZE A PARTICULAR CODE TO MEAN “APPLES® AND PRINT OR
DISPLAY THE ENTIRE WORD (OR PICTURE!) WHEN 1T INTERPRETED THAT CODE.

THE PRIMARY POINT BEING MADE IS THAT THE DATA 1S ORGANIZED AS A LONG
*"LINE" OF INFORMATIONes THAT LINE OF INFORMATION CAN BE ARBITRARILY
SPLIT UP INTO MANY PARTS AND PIECES OF THE LINE BE CONSIDERED AS FORMING
ONE PARTICULAR SECTION, AS IN THE CASE WHEN ONE “ENGLISH WORD™ IS FORMED
FROM A SERIES OF “LETTERS."” THE LONG LINE IS SIMPLY FORMED, AND LOCA~-
TIONS ALONG THE LINE ARE MARKED, BY A "MEMORY ADDRESS."

HOWEVER, AND TH1S THE CREATIVE PROGRAMMER SHOULD TAKE PARTICULAR
NOTE OF, THE FACT THAT LOCATIONS ARE MARKED ALONG THE LINE BY “MEMORY
ADDRESSES™ CAN BE TRANSFORMED BY THE PROGRAMMER SO THAT MEMORY ADDRES-
SES ESSENTIALLY STAND FOR ANY ARBITRARILY ASSIGNED “MARKER.™ IN OTHER
WORDS, TO THE PROGRAMMER, MEMORY ADDRESS NUMBER “N* CAN CORRESPOND TO
TIME *T,* OR DISTANCE "D,* OR POINT "Z." TKUS, ONE CAN STORE, SAY,

THE VALUE OF THE AMPLITUDE OF A SIGNAL AT TIME *“T" IN ONE LOCATION, THE
VALUE AT TIME T ¢ T* IN TKE NEXT LOCATION, THE VALUE AT TIME T ¢ 2T°® IN
THE NEXT LOCATION., FURTHERMORE, IT SHOULD BE APPARENT THAT T® CAN BE
“SCALED" AS DESIRED BY APPROPRIATE PROGRAMMING SO THAT T°® REPRESENTS ONE
MICROSECOND, OR MILLISECOND, OR SECONDs OR A YEAR!

FURTHERMORE, ONE CAN ACTUALLY 60 BEYOND THE POINT. OF CONSIDERING
THE LOCATIONS TO BE A LONG STRAIGHT LINE, BY CONSIDERING THE POSSIBILITY
OF MANIPULATING THE LINE OF LOCATIONS AS A PIECE OF STRINGe ONE CAN
FIGURATIVELY *CUT* THE PIECE OF "STRING™ AT ANY DESIRED LOCATION AND
FORM THE "STRING™ INTO A "RING™ OR "CIRCLE.*™ THIS IS EASILY ACCOMPLISKe-
ED BY SIMPLY HAVING THE “MEMORY ADDRESS POINTER™ GO BACK TO LOCATION
"N WHEN IT REACHES LOCATION *N ¢ X.” CONSIDER THE POSSIBILITY OF DO=
ING SUCK AN OPERATION WITH THREE SECTIONS OF THE LINE AND USING THE
TECHNIQUE TO SIMULATE A “ONE ARMED BANDIT*™ MACKINES

ADDR N APPLE ADDR NeXel PEAR ADDR Ne2Xe¢l BANANA
ADDR Ne¢1 PEAR ADDR NeXe2 BANANA ADDR Ne2Xe2 LEMON
ADDR N¢2 CHERRY ADDR Be¢Xe¢3 LEMON ADDR N+¢2Xe3 APPLE
ADDR N+3 BANANA ADDR N+X+4 BELL ADDR N+2X+4 BELL
ADDR N¢4 LEMON ADDR N+¢X+5 CHERRY ADDR N+2X+5 PEAR
ADDR N+X BELL ADDR N+Xe¢6 APPLE ADDR N+¢2X+6 CHERRY

9 -3

ONE COULD DEVELOP ALGORITHMS TO *SPIN™ THE MEMORY POINTER AROUND .EACH
“RING™ AND RANDOMLY COME TO A STOP AT A LOCATION WITHIN EACH RING. THE
RESULTS OF THE EVENTS IN ALL THREE “RINGS® COULD THEN BE PROCESSED TO
DETERMINE WHETHER ONE “HIT A JACKPOT"™ OR MISSED, THE DETAILS OF SUCH A
PROGRAM VILL BE LEFT TO THE CREATIVE PROGRAMMER, BUT THE CONCEPT OF HOW.
" ONE COULD APPROACH SUCH A SIMULATION PROJECT 1S HOPEFULLY CLEAR.

FINALLY, TO TAKE THE “ONE DIMENSION® VIEW A LITTLE FURTHER, ONE CAN
@ DOWN TO THE *BIT™ LEVEL. SINCE A MEMORY WORD IN AN 8808 SYSTEM AC~
TUALLY CONSIST OF 8 INDIVIDUAL "BITS,"™ ONE COULD CONSIDER MEMORY TO BE
A LONG LINE OF *1°S® AND "@°S,"™ EACH MEMORY LOCATION CONTAINS EIGHT
BITS AND BY USING CONSECUTIVE MEMORY LOCATIONS ONE CAN BUILD UP LONG
“STRINGS™ OF BITSs AGAIN, THE “STRING"™ CAN BE "BROKEN™ AT ANY DESIRED
POINT AND MANIPULATED AS DESIRED, THIS TECHNIQUE CAN BE USEDs SAY, TO
SIMULATE A RUGE "“SHIFT REGISTER® (USING ROTATE INSTRUCTIONS) OR TO RE~
PRESENT AN EVENT OCCURING, OR NOT OCCURING AT POINTS IN TIME, OR AT DIS-
TANCES ALONG A LINE. IN THIS VIEW, A BIT IS “ADDRESSED™ AS BEING AT A
SPECIFIC *"POSITION™ WITHKIN A SPECIFIC “MEMORY ADDRESS LOCATION."™ WHILE
THE PROGRAMMING “OVERKEAD* TO MANIPULATE SUCH "DATA"™ WILL GENERALLY BE
MORE COMPLICATED THAN THE CASE WHERE ENTIRE MEMORY “WORDS® ARE USED TO
REPRESENT A “SYMBOL™ OR PI1ECE OF DATA, ONE CAN SEE THAT THE BASIC CON~
CEPT OF CONSIDERING ALL BITS IN MEMORY AS BEING FORMED OF ONE CONTINUQUS
“LINE” OF ONES AND ZEROS IS A VALID, AND OFTEN USEFUL IMAGE.

THE TWO DIMENSIONAL VIEW

THE CONCEPT OF VIEVING MEMORY AS A TWO DIMENSIONAL PLANE VILL BE
STARTED BY CONSIDERING AN IMAGE AT THE BIT LEVEL. '

ADDR

ADDR Ne¢Xe¢l » ADDR Ne¢2Xe¢l

ADDR N

~-00000D000000000000000 -
~O=00000000~D0000CO0 =0 ™
~O0O~O000000O=O=00000 =00 -
~OO0O0O=0000=000=O000 =000 =
~ 0000 mOmmO00000~O~O0000 ~
—00000=0D0000000=00000 ~
~0000=0000O0=0000mO000 -
—~-000mO0O000O00OmO0000=000 —
~00=0000000 000000 m=mOO
~O 00000000 =0000000 =0~
- OOOQ v s st o s b s 00 e O OO O e e
~O=~0000000O0OmRO000000 =0~
-~ OO0OmO0O0DO00000=000000 =00 -
—~000Om0O0000O0OmO0000 =000 -
~000O0O=OO00O00OmOO000=000O -
~00000O=000O0000O0=O00O0O0 -
P - - - - - Y- XX - X - X - TN - X - X - X -1
—~OO0O0OmO000=DO00=000 =000 m
~O00OmO00000O=OmOO0O00O0=00 -
N Y- - - - - - - -
-~-00000000D0D000000CO00OO0 —
Gud Pub (b Gub fmb Pud Gub b PUD Qut S Gut (W Gub Db b P b (b Puib G P

ADDR NeX

»
o
o
x

NeX

ADDR Ne2X & ADDR

E
<
w
>

THE ABOVE DIAGRAM ILLUSTRATES AN IMAGE CREATED BY THE STATUS OF THE

9 -4

BITS IN A “PLANE"” OF MEMORY, THE “PLANE WAS ESTABLISHED BY ESSENTIAL~
LY TAKING "LINES™ OF MEMORY ADDRESSES (AS PRESENTED IN THE “ONE DIMEN~-
SIONAL V1IEW*) AND PLACING THEM ALONGSIDE ONE ANOTHER TO FORM A SURFACE
OR “PLANE.™ THIS CONVENTION WOULD BE ESTABLISHED BY THE MANNER IN WHICH
THE PROGRAMMER MANIPULATED THE MEMORY POINTER IN THE CPU., IN THE ABOVE
ILLUSTRATION THE *PLANE" 1S ESTABLISHED AT THE MOST FUNDAMENTAL (AND
COMPLEX) LEVEL AND BITS WITHIN EACHK WORD ARE MANIPULATEDes AS MAY BE 0B~
SERVED IN THE ABOVE DIAGRAM, ONE CAN VIEW AND MANIPULATE BITS IN MEMORY
SO AS TO FORM "PICTURES*™ OR "DIAGRAMS." THE ABOVE REPRESENTS A RECT=
ANGLE, A DIAMOND, AND A CROSS AS AN IMAGE MADE UP OF APPROPRIATE ONES
AND ZEROS IN SELECTED BIT POSITIONSe ONE COULD THUS MANIPULATE PORTIONS
OF MEMORY TO REPRESENT “PICTURESe™ (OR CHARTS, GRAPHS, PLOTS!) THE DE=-
GREE OF DETAIL WHICH ONE CAN OBTAIN BY SUCH MANIPULATIONS IS A FUNCTION
OF HOW MANY *“BITS"™ ARE USED TO REPRESENT A GIVEN "AREA™ OF A REAL (OR
PROPOSED "REAL") OBJECTe THE ABOVE EXAMPLE PRESENTS ALL KINDS OF POSSI~
BILITIES FOR THE CREATIVE PROGRAMMER, ONE CAN USE SUCH TECHNIQUES TO
FORM "MODELS,*™ CREATE PATTERNS, AND SO FORTH,

IN FACT, GOING THE OTHER WAY SO TO SPEAK, THAT 1S FROM HAVING THE
COMPUTER GENERATE PATTERNS OR OBJECTS, ONE CAN ALSO TAKE THE TWO DIMEN~
SIONAL CONCEPT AND APPLY. IT TOWARDS HAVING THE COMPUTER RECOGNIZE OB~
JECTS BY ‘“PROJECTING™ THEIR SHAPE OR FORM AS A SIMILAR IMAGE OF ONES
AND ZEROS IN MEMORY,

MUCH RESEARCH 1S CURRENTLY BEING CONDUCTED TOWARDS DEVELOPING ALGO~
RITHMS THAT CAN RECOGNIZE “OBJECTSe™ ONE APPROACH THAT IS BEING STUDIED
IS AN INTERESTING APPLICATION OF THE TWO DIMENSIONAL CONCEPTe A "PICe~
TURE™ OF AN "OBJECT™ 1S “MAPPED" INTO MEMORY WITH *1°S%™ BEING USED TO
REPRESENT THE AREA OCCUPIED BY THE “OBJECT®™ AND *0°S* FOR AREAS *"0UT~
SIDE+" THEN, THE COMPUTER 1S *“TRAINED"™ TO IDENTI!FY OBJECTS BY USING AL~
@RITHMS BASED ON A "NEIGHBORING BITS* SCHEME. IN THIS MANNER, THE COM~
PUTER DETERMINES HOWV MANY *@°*S* SURROUND A "1%* AND PERFORMS CALCULATIONS
TO FIND THE “OUTLINE™ AND SHAPE OF THE OBJECTe THESE FINDINGS ARE THEN
COUPLED WITH COMPLEX ALGORITHMS TO ATTEMPT TO IDENTIFY THE OBJECT FROM A
"CLASS"™ OF POSSIBILITIES.

SUCH PROGRAMS ARE OF COURSE QUITE COMPLEX AND THE DETAILS OF SUCH
MANIPULATIONS ARE SOMEWHAT ESOTERICe BUT, THE IDEA IS INTRIGUEING AND
CAN PROVIDE FERTILIZATION FOR THE CREATIVE PROGRAMMER®S IMAGINATION,

TAKING THE TWO DIMENSIONAL VIEW TO THE MEMORY WORD LEVEL IS PERHAPS
A BIT LESS COMPLICATED (IT ISt IT 1S?) THAN CONSIDERING IT AT THE BIT
LEVELe, 1IN THIS CASE, ONE NEEDS ONLY ENVISION A "PLANE™ OF MEMORY WORDS
WHICH CAN CONTAIN CODES FOR LETTERS, NUMBERS, SYMBOLS OR ACTUAL MATHE=-
MATICAL VALUESe THE READER HAS ALREADY SEEN EXAMPLES OF PROGRAMS THAT
COULD BE CONSIDERED AS TWO DIMENSIONAL IN ORGANIZATIONe ONE FOR IN-
STANCE, WAS DESCRIBED IN CHAPTER FOUR IN THE PRESENTATION OF THE NAMES
SORTING PROGRAM. ' THERE, LINES OF NAMES WERE FORMED "ONE BENEATH THE
OTHER®™ IN ORDER TO MAKE THE SORT ROUTINE EASIER TO PROGRAMe ONE MIGHT
REVIEW THE DIAGRAM SHOWING THE SAMPLE NAMES STORED IN MEMORY AS THEY REe
lATE TO THE MEMORY ADDRESSES, WHICH WAS PRESENTED NEAR THE END OF CHAPTe
ER FOUR,

THE PROGRAMMER IS AGAIN REMINDED THAT AS IN THE ONE DIMENSIONAL
VIEW, THE MEMORY ADDRESSES THAT FORM THE “X" AND "Y™ BOUNDARIES OF A
TWO DIMENSIONAL MEMORY PLANE CAN ACTUALLY BE THOUGHT OF AS ARBITRARY
WNITS = SUCH AS TIME, FREQUENCY, OR DISTANCE, AND THE PROGRAMMER ALSO
HAS THE FREEDOM TO *SCALE™ BOTHR THE “X% AND “Y% BOUNDARIES BY APPROP-
RIATE SOFTWAREs, THE NEXT ILLUSTRATION SHOWS HOW AN “ALTITUDE MAP™ OF
A GEOGRAPHICAL AREA MIGHT BE STORED IN A "PLANE" OF MEMORY.

9«5

N NeX Ne2X Ne3X Ne4Xx NeSX Ne6X

N 668 865 078 875 674 070 864 580 YDS
Nel 861 @76 8684 283 080 876 876 488 YDS
Ne2 862 878 888 298 896 0891 8862 300 YDS
N+3 062 078 290 182 181 89 872 208 YDS
Ne4 2855 o710 875 853 ear 863 @39 100 YDS
Ne(X=1) G40 835 220 10 011 009 008 8 YDS

@ YDS 180 YDS 200 YDS 388 YDS 488 YDS 508 YDS 688 YDS

IN THE ABOVE ILLUSTRATION EACH MEMORY LOCATION CONTAINS A VALUE
THAT REPRESENTS THE ELEVATION OF A PIECE OF LANDs THE TOP AND LEFT SIDE
OF THE ILLUSTRATION SHOWS THE ACTUAL MEMORY ADDRESSES IN THE COMPUTER
WHILE THE BOTTOM AND RIGHKT SIDE ILLUSTRATE THAT EACH “ADDRESS™ ACTUALLY
STANDS FOR *1080 YARDS DISTANCE." IT SHOULD BE APPARENT THAT THE ELe~
EVATION FACTORS COULD BE, INSTEAD, INCHES OF RAINWATER, OR A TEMPERATURE
PROFILE FOR THE AREA, OR, AS PREVIOUSLY MENTIONED, THAT THE "YARDS*™ CAN
BE ALMOST ANYTHING ELSE THE PROGRAMMER MIGHT DESIRE TO DEFINE.

AS A FINAL EXAMPLE OF THE TWO DIMENSIONAL CONCEPT, THE READER WILL
BE LEFT WITH THE FOLLOVING DIAGRAM -« WHICH HOPEFULLY WILL ENCOURAGE ONE
TO CONSIDER THE POSSIBILITIES FOR MUCH MORE COMPLEX “BOARD GAMES|™

N NeXel Ne2Xel
, -
N X * 0 ® X Ne2Xel
* *
SRR R SRR EEE SRS RS CEERE R R R
] *
N+l 0 ® X. . 0 Ne2Xe2
. ® *
SRESEEREEEERREEREREREE SR BN
- *
NeX 0 * X * X Ne3X
*® -
NeX Ne2X Ne3X

FINALLY, THE READER WILL BE REMINDED, THAT IN A MANNER SIMILAR TO
FORMING A "RING™ AS DISCUSSED IN THE ONE DIMENSIONAL VIEW, ONE CAN ALSO
CONSIDER FORMING A "CYLINDER” OUT OF A “PLANE" WITH INTERESTING RAM] -
FICATIONS?!

THE THREE DIMENSIONAL VIEW

1T SHOULD NOV BE APPARENT THAT IF ONE GAN SET UP MEMORY LOCATIONS
BY APPROPRIATE ADDRESSING TO REPRESENT “LINES™ AND “PLANES,*" ONE CAN EXe
TEND THE PRINCIPLE OUT TO THE “THIRD DIMENSION™ TO FORM "“CUBES"™ OF MEMe
ORYse THERE ARE MANY INTERESTING POSSIBILITIES WHEN MEMORY 1S VIEVED. IN

9 =6

THIS MANNER. ONE CAN PLOT THREE DIMENSIONAL GRAPHS OR VECTORS. -ONE CAN
APPROACH MANY TYPES OF "NMODELING™ AND MANIPULATE SUCH MODELS SO AS TO
OBTAIN DIFFERENT *CROSS-SECTIONAL®™ VIEWS,

AS IN THE CASE OF THE ONE AND TWO DIMENSIONAL IMAGES, THE PROGRAM-
MER CAN SUBSTITUTE C(EFFECTIVELY) MEMORY ADDRESSES FOR SCALE FACTORS, NOW
ALONG THREE AX1Se AND, AS IN THE PREVIOUS EXAMPLES, ONE CAN TAKE SUCH
MANIPULATIONS DOWN TO THE BIT LEVEL 1F DESIRED.

THE DIAGRAM BELOV PRESENTS AN IMAGE OF MEMORY WHEN VIEWED AS A THREE
DIMENSIONAL WORKING AREA,

/{/ D
< < Pl
— //

N X L~ X }

/
N+4 x X 1
N+2 X e P
N+3 x | x |7 ///4__ (N+6X)
. 4(N+6X
N+ /————/ Zinrens
~———— (N+6X)

N+X N+2X N+3X N+4X N+5X N+6X

IT IS HOPED, THAT BY THIS TIME, THE READER HAS RECEIVED.SUFFICIENT
INFORMATION ON THE PRACTICAL ASPECTS OF MACHINE LANGUAGE PROGRAMMING
FROM THE PRECEEDING CHAPTERS, AND THAT THIS CONCLUDING CHAPTER HAS PRO=-
VIDED SOME STIMULATING CONCEPTS, SO THAT THE READER MAY GO ON TO DE~
VELOP PROGRAMS THAT WILL BE OF PARTICULAR VALUE TO THE INDIVIDUAL. 1IT
IS ALSO HOPED THAT THOSE WHO HAVE BEEN INTRODUCED TO THE SUBJECT BY THIS
MANUAL, VILL FIND MACHINE LANGUAGE PROGRAMMING AN EXCITING, ENJOYABLE,
AND IN AS MANY WAYS AS POSSIBLE, A REWARDING ENDEAVOR?

	0001
	0002
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	8-01
	8-02
	8-03
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07

