
MICROPROGRAMMING

THE RCA SPECTRA 70/

MODEL 45

9. 1 INTRODUCTION

The RCA Spectra 70/Model 45 is a general purpose, medium-scale proces­
sor capable of accepting a wide variety of industrially-accepted codes and
programming language. This multilingual system can be used to solve a wide
variety of business, scientific, communication, and real-time application prob­
lems. Architecturally, it is compatible with the other processors in the Spectra
70 product line, which includes the 70/15, 70/25, 70/35, 70/45, 70/55, and
70/60. However, its internal organization and data flow, its timing, its micro­
programming and microprogramming aids are considerably different from all
other processors.

The RCA Spectra 70 is architecturally similar to the IBM System/360.
Both systems apply a common code structure based on the Extended Binary
Code Decimal Interchange Code (EBCDIC) of eight bits plus parity. The
standard unit of storage in both systems is called a byte. Both families offer
the facilities for using the American Standard Code for Information Inter­
change (ASCII). Fixed length data of 8, 16, 32, or 64 bits may be processed.
Variable-length data of up to 256 characters (bytes) can be processed by both
systems.

Both systems have similar and complex instruction formats 2, 4, or 6 bytes

412

Sec. 9.1 INTRODUCTION 413

wide, signaling register to register, register to storage, and storage to storage
information interchange respectively. Each instruction begins with the opera­
tion code byte, followed first by one or two general purpose registers, then
by memory addresses as required. •

Both systems have a base register which can be indexed by any of the gen­
eral purpose registers.

The system interrupts, their classification into five classes (program inter­
rupts, external interrupts, supervisor call interrupts, and input/output inter­
rupts), and the priorities of handling them are also similar.

The microprogrammed processors in both product lines apply similar flow­
chart microprogramming language and a rigidly-formatted instruction box.
Both systems apply an encoded control ROS word organization with a built-in
sequencing and decision-logic specification.

Other architectural features such as the sixteen 32-bit general purpose
registers (G PR's), the four 64-bit floating-point registers (FPR's), the memory­
protection features, and other similarities are clearly documented and easily
discernible by reading the principles-of-operation manuals for both systems. *

These architectural similarities mask considerable diffetences in their respec­
tive design implementations, circuit technology, and ROS implementation.
They benefit the reader since architectural similarities permit the reader to
focus immediately on their respective hardware and microprogramming
structures.

Some of the more noticeable dissimilarities in the design and implementa­
tions of the two systems are:

1. The Spectra 70/45 is a single bus system. Its data flow, its arithmetic
and logic box (ALB), and its three memories all communicate with each other
over one I8-bit-wide data bus (DB). This must be contrasted with the System/
360 Models 40 or 50, with their multidata-path structures which communicate
over two or more data buses of different widths.

Another difference in the data flow of the two systems is the abundance
of general purpose hardware registers with extensive gating in the System/360
versus the minimum hardware registers in the Spectra 70/45. This is not tq
suggest that the performance of the 70/45 suffers from the apparent lack of
hardware registers and bussing, or that the complexity of data flow of the
System/360 by itself makes it in any way superior to the Spectra 70, for the
two systems are judged by their performance throughput, turn-around, re­
sponse time, and other parameters external to the respective systems data-flow
structure.

2. The System/360 architecture provides only one set of sixteen 32-bit-wide
G PR's plus four double-word (64-bit) FPR's, all in the high-speed local store.
This single set of GPR's services all the demands of the system. When an

*IBM Systemsj360 Principles of Operations Manual, Form #A22-6821-4, File # S360-0 1 ,
and RCA Spectra 70, Systems Information Manual, Doc. 70-00-601, Dec. 1964.

414 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap.9

interrupt occurs, the G PR's are stored away and loaded with the new data in
the process of shifting from one mode of operation to the next. This implies
an expenditure of time necessary to STORE MULTIPLE and LOAD
MULTIPLE. This time was saved in the Spectra 70/45 by providing four
complete sets of GPR's, each set assigned to service one of the four system
states. * Addressing of the scratch pad memory (SPM) is in many cases pro­
gram-state-dependent, allowing the same read-only storage (ROS) algorithm to
operate with different physical registers, depending on the operating state. The
Spectra 70/45 also stores these four sets of sixteen 32-bit G PR's plus one
single set of four double-word FPR's, all in a high-speed destructive read­
storage unit-the SPM or fast memory (FM). The SPM is also used as a
substitute for the number of hardware registers present in System/360. This
use of SPM for intermediate storage and for the supply of data to the ALB is
justified on the basis of timing, as we will see later. However, if the two
operands are in SPM, two machine cycles are needed to perform any operation
through the ALB which involves both operands.

3. The third difference between the two system implementations is not as
obvious as the first two. This deals with the microprogramming of the two
systems. The System/360 is micro-order-oriented. The micro-orders are
primarily organized around the control gate that permits information to flow
from one storage and functional station to the next. As such, the System/360
is not highly specified. That is to say, almost every new conceivable micro­
instruction can be structured from the available micro-orders, provided that the
timing and concurrency of information-gating is permitted. This flexibility by
itself does not imply or ensure efficient microprogrammed control. This is to
be contrasted with the Spectra 70/45 microinstruction structure [RCA's term
for microinstruction is elementary operation (EO)]. The RCA ROS words
are highly structured and EO-oriented. Its ROS [cr read-only memory (ROM)]
word is divided into fields. Each field when decoded specifies an action or
specifies a toggle setting but not the state of unique gates. These fields
may have a number of different interpretations, depending on the setting of
another field. That is to say, the decoding of the Spectra 70/45 fields are, in
general, interdependent. Therefore one can conclude that the Spectra 70/45 is,
highly specified, and its microprogramming, because of its sophisticated ROS
word structure, is difficult to master.

The highly specified structure of the Spectra 70 system does not in any
way imply an inferior design. It merely points out that the system designers
chose to optimize the data processing function by a highly organized, inter­
dependent EO structure. The intention here in contrasting the Spectra 70 with
other equipment is once again to underscore the flexibility of microprogram­
ming. The designers of the IBM System/360 chose a general, simple micro-

*The four operating states provided in Model 45 are: the program state, the executive
state, the interrupt state, and the machine state. The System/360 has only two states: the
program state and the supervisor state.

Sec. 9.2 70/45 HARDWARE 415

order structure, and the Spectra 70 designers chose a more sophisticated
interdependent EO ROS structure. The appropriateness of each design must
be viewed in the context of the total system design and the constraints and
trade-offs that were imposed on the respective system designers.

4. There are a number of other dissimilarities between the two systems that
will become apparent after one gains more insight into the microprogramming
of the two systems. These differences, although they will not be discussed
here, will include: the concurrency of operations; the high-speed local storage
mapping and addressing; the microinstruction organization and ROM address­
ing and branching; the extent of hardware facilities, toggles, and triggers to
share the control with the microroutines in the spectra 70/45 and others.

9.2 70/45 HARDWARE (FIG. 9.1)

The 70/45 has three memories: the main memory (MM), the SPM or fast
memory (FM) (called local storage in the IBM System/360), and the ROM.
The first two are used for data and the last for microinstruction storage. The
70/45 has a number of hardware registers, plus an eight-bit-wide arithmetic
and logic box (ALB). All these functional units are interconnected by a single
data bus two bytes wide.

9.2.1 The Main Memory

The main memory (MM) is expandable to 262,144 bytes. It has a l.44
microsecond cycle time and a 16-bit word storage structure representing two
bytes; a parity bit is stored with each byte in the MM. The DB is 16 bits
wide and normally transmits either half of the data register (DR) directly to
the utility register (UR), intermediate register (IR), main memory address
register (MMAR), or the main memory register (MMR), thus providing a com­
plete interchange flexibility among the ALB and the two data memories. In
addition, a second data bus (DBA) is provided for transmittal of the two
most significant bits of 18-bit memory address to MMAR. This second bus is
driven primarily by the DR and B register (BR). This model 70/45 has a
memory-protection feature to prevent destruction of information by program­
ming or input devices. This feature consists of a set of registers that are
constantly scanned during instruction-addressing to ascertain that the address
falls within the allowable limits. If a violation is detected, an interrupt condi­
tion is set, and the appropriate ~ction is taken.

The following describes a typical operation requiring data to be- read from
MM for transfer to the UR using an address accessed from the SPM. The
address accessed from the SPM is transferred to the MMAR via the OR and is
incremented during its regeneration into the SPM during the first microinstruc-

416 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9

DATA
BUS DATA DATA

(INPUT FROM ROM, B REG., GREG., PS REG, R REG.l A BUS 0 BUS I
I rM ADDRESS GENERATION

11 <~ ~~~~gg~og ~~~~:!~~::~

~

I FM ADDR. REG
i
1

0
~

I PARITY CHECK,

I GENERATE FAST MEMORY
18 34 IFMorSPMI

t MAIN MEMORY. 1 l ADDRESS REG.
I INCREMENT, I] MMAR

SHIFT
~ 15,16,17 I

J I MAIN ~~MORY I
1 1 1 ~ l l

I. DRP) 1 ORO: 1 DRI I I OR2 ~ I DR3 'I

~
l MMR~ MMR U 107·001 117·101 1l1-tol ISl-lD'

28,~;G@ J
108·001 118-101

12,130 12 @ 12 ® 13 @ 13 ® 42@43@

I PARITY CHECK, I -<V ~ r J I -~

GENERATE r® I ADDRESS B
18 34 @, @. ADDER REG W

® 21 30 @)
I <W PARITY CHECK I ®' ®"

I~V ~,
GENERATION

1[01 Gf 18

~:ITCH 19,20
BAA

®J • 29 <D R REG. J [lJ ~ IR I 13-1 Oil RI23-2~'1
.. ". fr I ~ 27 @) 27 @)

L~~C J J > ... ~~. 2~R; ~ J II 19,.20 ,@ 1 4 24® lBl

~ ~ @)
BAB UR ~,SWITCH BOB @j

29<D ""'1 IS <D

~ REG. LENGTH

-® -®
fUR SIGN REG.l--- ~ 31 8 32
23 <D ® 0

URO T URI

~~ 107·001 117·101 I ~ SIGN R~ I-- ~ 25 25 CONDITION

t REG. CODE
31 ® 32

. 1 PROGRAM , I
J INTERRUPT REG. I l STATE REG.

\'132,251 1'124'171 .1 116,12, J 108·011 , I 39 PSR 0

11,101
38 ® 37 @ 70 @) 36 ®

J
MEMORY

I
I

I PROTECT
10'TlONALI

.1 KEY REG.

J 130
111-•• ,

H PRIV REG. 1\

I CONSOLE
30 <D

64

H30
A REG. 1\

I
<D

GENERATE

I CONSTANT
V2,C6-CO of EO ~ EON REG. I 30

NOTE:
C"'CUD DIGIT 0 INDICATn THr NU"IU 0' STAGU 011 LINrs. H30 8U REG,

J wow- CI~CL(O D15ITS INDICATr TMr LUT TWO DIIITI 01' THr D~A.'" WUIIIU.

Figure 9.1 Spectra 70/45 block diagram.

tion. The read cycle takes three machine cycles. As far as a main memory read
(MMR) is concerned, no useful work is accomplished during the second micro­
instruction. This second EO cycle can be used to perform other functions not
related to the MM data path. If no other function is needed during this second
EO cycle, a memory address register W (MAR W) micro-order can be specified
which causes the machine to wait between the first and third EO time, thus
saving one word of ROS. At the beginning of the third microinstruction, the
contents of the addressed location in MM are transmitted to the MMR. The

Sec. 9.2 70/45 HARDWARE 417

MMR is specified as the source and the UR as the destination during the third
microinstruction. This example will be expanded and the regenerate cycle will
be discussed in a later section on the 70/45 timing.

9.2.2 The Scratch Pad Memory (SPM)

The 70/45 utilizes a high-speed SPM as an integral part of the data flow.
It is used as a substitute for one hundred and twenty-eight 32-bit-wide flip-flop
registers. It provides for the storage of four sets of sixteen 4-byte-wide
OPR's plus one set of four 8-byte-wide FPR's, input and output control
registers, and other utility functions such as storing the source- and destination­
memory-address registers. Each of the four system states is also provided with
a unique set of registers in SPM as well as their instruction counter, interrupt
mask register, and interrupt status register. An SPM map is shown in Table 9.1.

The memory is operated in a linear select fashion, with a fullword access at
120 nanoseconds and an overall cycle time of 480 nanoseconds. This timing
permits three SPM cycles to be executed for each MM cycle. This will be dis­
cussed in a later section devoted to the systems' timing.

When the system is placed in the emulation mode (EM), the SPM contains
several tables (such as a decimal-to-binary-address table), and a mapping of
hardware registers of the emulated machines required by this mode.

The scratch pad memory address register (SPMAR) is driven directly from
the applicable registers: base address register (BR), general purpose register
(OR), program status register (PSR), R register (RR), status register (SR), and
the ROM. See Fig. 9.1. This causes a word from the SPM to be read out
into the DR and passed through the incrementor and shifter during the same
machine cycle. In addition, the DR with its new contents can act as the source
register for a transfer to any other register on the data bus, or to the ALB to be
operated upon. Note that the DR is 32 bits wide and that two switches (the
DR switch and the WDB (word driver bit) toggle switch) are built into the
data flow to allow for the selection of one of the four bytes, to be gated into
or out of the DR register.

The shift incrementor network in the SPM regeneration path has the ability
to shift a 32-bit word one place, either right or left, and to increment or
decrement the word by one or two bits. If no shift and increment or decrement
microcontrol are specified by the microinstruction, the word read from the
SPM will be regenerated unchanged.

9.2.3 The Read-only Memory

The third memory in the 70/45 processor is the read-only memory (ROM).
It is part of the control system and stores the sequences of microinstructions
used to control the transfer of information, the arithmetic operations, and the
machine status switching.

3

5

Table 9.1 FAST MEMORY LAYOUT AND REGISTER ASSIGNMENT

I I I I I

NO.1 /

PROCESSO /R UTILITY / /

_ NO."

I I I I

UD
A

ADDRESS
REGISTER

BAD
B

ADDRESS
REGISTER p.

PROCESSOR
UTILITY

NO.7

14---------1/0 CHANNEL REGISTERS - MULTIPLEXOR-----~

REGISTER

"

UTILITY
NO.1

REGISTER
PI

+--P~~~~IS;~R ________

NO. 10 NO. 11

GENERAL GENERAL
PURPOSE PURPOSE
REGISTER

NO. 0 NO.1
.2 '2

0lIl--- P~~~~~~OR _____

GENERAL GENERAL
PURPOSE .UR.OSE
REGISTER REGISTER

NO.O NO. I
PI PI

FLOATING-POINT
REGISTER NO.O

I

ADDRESS
REGISTER

PROGRAM

COUNTER

INTERRUPT
FLAG

COMMAND
REGISTER I

REGISTER

P2

STATUS
REGISTER

INTERRUPT
STATUS

REGISTER

'2

UTILITY
NO.2 NO.3

PROGRAM
COUNTER

GENERAL
PURPOSE
REGISTER

I/O CHANNEL REGISTERS _ SELECTOR NO.2

CHANNEL CHANNEL CHANNEL ASSEMBLY
ADDRESS COMMAND CDMMAND STATUS UTILITY UTILITY

REGISTER I REGISTER NO.2 NO.3

GENERAL GENERAL GENERAL GENERAL GENERAL GENERAL
PURPOSE PURPOSE PURPOSE PURPOSE PURPOSE PURPOSE
REGISTER REGISTER REGISTER

NO.2 NO.3 NO ... NO.5 NO.6 NO.7

'2 '2 P2 .2 '2 '2

liD CHANNEL REGISTERS - SELECTOR NO ••

CHANNEL CHANNEL
ADDRESS COMMAND
REGISTER REGISTER II

GENERAL GENERAL
PURPOSE PURPOSE

REGISTER REGISTER
NO. 2 NO.3

" .,

fLOATING-POINT
REGISTER NO.2

I

CHANNEL ASSEMBLY
COMMAND STATUS

REGISTER I REGISTER

GENERAL GENERAL
PURPOSE PURPOSE

REGISTER REGISTER
NO ... NO.5 ., .,

fLOATING-POINT
REGISTER NO."

I

UTILITY UTILITY
NO.2 NO.3

GENERAL GENERAL
PURPOSE PURPOSE
REGISTER REGISTER

NO.6 NO.7 ., "

fLOATING·POINT
REGISTER NO.6

I
* WoN Acldre •• I. ht H._..deelmal; .. , •• 2A • p,.,ram Counter P].

NO.8 NO.9

MASK
REGISTER .,

STATUS
REGISTER .,

PROCESSOR UTILITY

NO. 13

GENERAL GENERAL
PURPOSE PURPOSE

REGISTER
NO •• NO.9

'2 '2

PROCESSOR UTILITY

NO. 16 NO. 17

GENERAL GErURAL
PURPOSE PURPOSE

REGISTER REGISTER
NO.8 NO.9 ., PI

r-- P~~~c.~S~R -------

NO. 18 I NO. 19

PROGRAM
COUNTER .,

ADDRESS

REGISTER

NO. 10

'2

CHAtfr(EL
ADDRESS

REGISTER

GENERAL
PURPOSE
REGISTER

1010.10

"

CHAHHEL
ADDRESS

REGISTER

PURPOSE

REGISTER
NO.II

P.

GENERAL
PURPOSE
REGISTER

HO.l1 .,

MASK

REGISTER REGISTER
P.

ASSEMBLY
COMMAND STATUS
REGISTER I REGISTER

GENERAL GENERAL
PURPOSE PIJRPOSE
REGISTER REGISTER

NO. 12 NO. 13
P, .,

PROGRAM

COUNTER p.

UTILITY
NO.2

GENERAL
PURPOSE

REGISTER
NO. U

P,

I/O CHANNEL REGISTERS _ SELECTOR NO.3

ASSEMBLY
UTILITY

COMMAND COMMAND STATUS
REGISTER II REGISTER I REGISTER

NO.2

GENERAL GENERAL GENERAL
PURPOSE PURPOSE PURPOSE

NO. II NO. 12 NO. 13 NO. 14

'2 '2 '2 '2

liD CHAHNEL REGISTERS _ SELECTOR NO.5

CHANNEL CHANNEL ASSEMBLY
COMMAND COMMAND STATUS UTILITY

REGISTER II REGISTER I REGISTER NO.2

GENERAL GENERAL GENERAL GENERAL
PURPOSE PURPOSE PURPOSE PURPOSE
REGISTER REGISTER REGISTER REGISTER

NO.ll NO •. 12 NO. 13 NO. 14

" PI ., PI

I/O CHlNI"IEL REGISTERS _ SELECTOR NO.6

I CHA~EL I CHA~EL I ASSEMBLY I UTILITY COItNAND COMMAND STATUS
REGISTER II REGISTER I REGISTER .

NO.2 I

GENERAL

PURPOSE

NO. 15

(WEIGHT)

UTILITY
NO.3

GENERAL
PURPOSE

REGISTER
NO. 15

(.EIGHT) .,

UTILITY
NO.3

GENERAL
PURPOSE

No.... 15

'2

UTILITY
NO.3

GENERAL
PURPOSE

REGISTER

NO.1S

"

UTILITY
NO. ,

Sec. 9.2 70/45 HARDWARE 419

I 2 3 4 ~3

,,~,~~ ------B-""""
EOWORD3W~~'I'SIDE

(b)

960 NS 960 NS 960 NS

I 480 NS I 480 NS I 480 NS I 480 NS I 480 NS I 480 NS

J ACCESS! RECOVERY L EO NO I

J ACCESS! RECOvERY L EO NO.2

JACCESS! RECOVERY L EO NO.3

(a) (c)

Figure 9.2 E-core ROM technology. (a) E-core wiring; (b) wiring of the
elementary operation (EO) words; (c) ROM cycle time.

Figure 9.2 illustrates the basic ROM technology. It uses an E core trans­
former-type ROM. The bit pattern stored in a ROM word (EO) is determined
by the way each word-drive is threaded through each E core that corresponds
to one bit in the ROM word. This transformer read only storage (TROS)
technology provides bipolar signal outputs. A drive-line threaded through one
leg of the E core would produce an output signal of a polarity opposite to
that produced if the same word-drive-line is threaded through the other leg of
the E core. This difference is sensed by a differential sense amplifier whose
output represents the bit stored. The decision as to which polarity of the output
signal represents a 1 or a 0 is arbitrary.

The ROM is organized into units of 2048 words of 56 bits each. One
2048-word-bank is used for the 70/45 standard architectural implementation
and up to two additional ROM banks may be supplied for the emulator's
microcode.

The ROM bank is organized into two separate memory stacks (each
memory stack containing 1024 56-bit words) which generally operate on an
alternating basis. This organization (Fig. 2.3) effectively halves the access
time, by overlapping the access time of one with the recover time of the other
half. Because of conditional branches, this microprogramming restriction is

420 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9

sometimes dispensed with, and sequential addresses are accessed from the same
bank. This would imply an automatic 480-macrosecond time-delay penalty.

The 12-bit ROM address register (ROMAR) is used to address ROM. The
input to the ROMAR comes from the address generator, the regenerate address
(REG AD), or multiplexor regenerator address (MREGAD) registers. (See Fig.
9.3.)

ROM address generation

Normal EO:
T true - use A field
T false - use N field

Test EO:
T true - use A field
D true - T false -

r--- use N field
S true - T & D false -

use C, V fields

E = unconditional jump:

~
ROM address reg

use A, N fields
03 @

E = End staticizing:
use OR register

I Read only memory 01

+
Read only memory register

05,06

F)1 V II C)1 MIS I D T N I A I E III 05 @ 05 @ 05 ® 05 @ 05 ® 05 ® 06 ® 06 ® 06 ® 06 ® 08 CD

ROM addr
check gen

All zeros ~
All ones

04 I c:n~rOI I ~ Test J
conditions

·11
/

l 33,34

I
F reg ,I

07 @
I Creg J

07 ®
s reg ,I

09 ® r
E reg I

07 ®

I V reg 11
07 @ I

Dreg J
09 ® I

I reg II
07 CD

~

IF d~odel I C d~~odel S decodel
09, 10

r E d~~odel

t
IV d~odel I dat~~usl I D decodeJ

09,10

Note:
Circled digits refer to the number
of bits in registers. Noncircled
digits refer to the last two digits
of the drawing number.

Figure 9.3 Spectra 70/45 VI format and control.

Sec. 9.2 70/45 HARDWARE 421

The address generator uses fields of the current microinstruction to generate
the address of the next microinstruction. Where only one field is used, it is
placed in the least significant section of the 12-bit address (the 6 most significant
bits remaining from the current address). The contents of the operation register
(OR) may also be used for addressing. The REGAD register normally holds
the ROM address that has also been sent to the ROMAR.

The ROM word (56 bits) is organized into eleven fields: F, V, C, M, S, D, T,
N, A, E, and I. Some of these fields are logically grouped: F, V, and C be­
longing to one logical group; M, S, and D belonging to another logical group;
and T, N, and A belonging to a third one. The remaining two fields, E and I,
are independent functions.

All fields of the ROM word are available in every microinstruction and are
read into the ROM DR. In some cases, a field may be multipurpose and have
different functions at different times. The alphabetical letter used to indicate
the field is an abbreviation, and the full word will give an indication of the
function:

F = Function (of microinstruction)
V = Variation (of function)
C Counter-control (also used as a constant and for addressing)

M = Memory control (controls SPM operation)
S = Source (for DB transfers; also used to specify conditions in special

test micro-orders and to address SPM)
D Destination (for DB transfers; also used to specify conditions in

special test microinstructions)
T Test (specifies test conditions in all microinstructions)
N Normal (address of next microinstruction, depending on the test

results or E field)
A Alternate (address of next microinstruction, depending on the test

results or E field)
E Exception (specifies checking for validity of addresses or data; also

used to specify unconditional jumps)
I Inhibit (inhibits an I/O servicing break prior to executing the next

microinstruction).

These functional field groups are designed to operate as follows:

FVC I MSD I TNA I E I I I

1. The Function Control Fields (F, V, C): The F, V, and C fields are the most
complex to specify because they define a variety of control functions which
include the ALB data path, the counters, shift and increment control, and
toggle settings. Some of the functions specified by F, V, and C fields can be
performed concurrently. In general the F defines the basic function to be
performed, the V field further defines the variations and/or further specifica­
tions of that function, and the C is the counter control field.

422 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9

The F field, for example, can specify either shift or increment. If it is
a shift function, the V field specifies right or left shift and the disposition of
the bits shifted out of or into the SPM location specified. If the F field
specifies an increment function, the V will be used to specify whether the
counter is incremented or decremented and the value by which the counter is
modified. Another example of the FVC control is to specify the ALB opera­
tion. The F field indicates a set, perform, or set and perform operation,
whereas the V field specifies one of eight different arithmetic, logic, decimal
binary, or transfer through ALB operations.

r(field bit positions)

F = (F)g = F (2-0)- Function
V = (V) 16 = V (3-0)-Subfunction (Variation)
C = (C)16' (C)16 = C(7-4) for the switch- and toggle-setting control the

(fi ld d')~ data flow into and out of ALB, also used to intro-
e ra lX duce a literal onto DB; concatenated with C (3-0)

(concatenation) for the counter initialization and decrement control.

The reader must note the bit significance of the C (7-4) field.
C(7) controls the ingating and outgoing of the leftmost or rightmost two

bytes-to and from the DR register. It also sets the WDB toggle which con­
trols the gating of the two bytes of data on the DB (0, 1) into the right or left
half of the four-byte register DR, on transfers to the DR during a perform EO.

The toggles BAA, BAB, BDB are specified by the C(6), C(5), and C(4),
respectively. They are set to the state of C(O) if specified.

The RR and GR counters are decremented as specified by C(3) and C(2)
and are decremented by 0, -1, -2, -3 which is specified by C{l)· C(O).

2. C(7), MSD Fields (data transfer) F ¥= 0
The M, S, and D fields control the transfer of information between the

functional units. The M designates the operation of the SPM, and the Sand D
fields designate the source and destination registers for DB transfers. 'That is,
by using the Sand D fields, it is possible to transfer from one register to any
other register along the DB. Note that any SPM operation must use the DR so
that, if a read from the SPM is specified, DR automatically becomes the source
register for any transfer on the DB bus. Similarly, in an SPM write operation,
any of the hardware registers can be designated as a source register. The con­
tents of the specified hardware register are transmitted to one or the other half
of the DR; the remaining half of the DR is accessed from the specified SPM
location, and the full word is written into the SPM.

M = (M)4 = M (1-0)-FM or SPM control
S = (S)4' (S)16 = S(5-4)· S(3-0)-FM address or source register

D = (D)4' (D)16 = D(5-4)· D(3-0)-specifies source or destination
register

Sec. 9.2 70/45 HARDWARE 423

The Sand D fields can have a number of different interpretations, depend-
ing on the M and F fields of the associated microinstruction (EO).

3. TNA Fields-Branch Control
Every EO specifies the address for the next EO to be executed.
The T is a 6-bit field which denotes the specific test conditions to be tested.

This width of field permits anyone of 63 different combinations of hardware
states to be tested. If the test is true (T -true), the A field is the low-order 6-bit
portion of the address of the next EO within the block of 64. If the test is a
false/no test (T -false), the N field is the low-order 6-bit portion of the address
of the next EO. Address is determined prior to execution of the EO.

A: 1fT-true: A(5-0) - ROMAR(5-0)· ROMAR(lI-6)
remains unchanged

N: ifF =p 5 and T-false/F = 5. T-false· O-true;
N(5-0) - ROMAR(5-0)· ROMAR(lI-6) remains unchanged

T = (T)4· (T)16 = T(5-4)· T(3-0)-test condition code
N = (N)g· (N)g = N(5-3)· N(2-0)-next EO address in ROM if test false
A = (A)g· (A)g = A(5-3)· A (2-0)-next EO address if test is true

4. E Field

E = (Eh· (E)16 = E(4)· E(3-0)-exception code

5. I Field

I = (lh = I(O)-inhibit I/O servicing.

A check for correct operations on all the bits of the ROM is made at the
appropriate intervals. The check in effect makes use of two special micro­
instructions, one consisting of a pattern of all zeroes and another consisting of
all ones. These two patterns cause an error to be indicated when not in check
mode. In the 56-bit version, there are three parity bits which are checked on
each read cycle.

Certain of the fields (F, V, C, S, 0, and I) make use of a second level of
registers. It is the output of these operation decoders that generally controls
the execution of the appropriate operations in the processor.

When an SPM operation (M(O) = 1) is specified, the S field is used for SPM
addressing. If, the operation is a write, a source is required. The source in
this instance is indicated by the 0 field; the 0 field bits are transferred to the
S decoding logic for the operation. If the source is any of the other registers
on the DB, 16 bits from the DB are placed in half of the DR as directed by
either C7 of the EO or the WDB (the other half of the DR containing the
contents of the SPM word addressed), and the entire 32 bits are then placed
in the SPM. In the SPM read cycles, the 0 field is interpreted normally, and
the S field is automatically set to indicate the DR as the source. These opera­
tions are defined in the Sand 0 field descriptions.

424 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9

9.2.4 The Arithmetic and Logic Box (ALB)

The arithmetic and logic portion of the processor operates on eight bits in
parallel. Anyone of the four bytes in the DR register can be selected and
transmitted through the 4/1 DR switch to form one byte input to the ALB.
The other inputs to the ALB are taken from the UR, which is two bytes wide,
and the selection of the byte to be gated to the ALB is specified in the micro­
instruction field which sets the byte address B (BAB) switch.

The output of the ALB goes to the 16-bit intermediate register (IR). As
indicated on the block diagram (Fig. 9.1), the 8-bit output of the ALB is divided
into two 4-bit halves which can be switched as dictated by the byte divider
bit trigger (BDB). The 8 bits are then further switched to the appropriate half
of the IR under the control of the byte address A(BAA) trigger.

One operand of the ALB function is the byte of the UR selected by the
BAB toggle; BAB = 0 selects URO while BAB = 1 selects UR 1. The other
operand is the byte of the DR selected by C7 and the BAA toggle.

If C7 = 0 and BAA = 0, select DR 0
If C7 = 0 and BAA = 1, select DR 1
If C7 = 1 and BAA = 0, select DR 2
If C7 = 1 and BAA = 1, select DR 3

The ALB output is set into the byte of the IR selected by the BAA toggle:
BAA = 0 selects IRO, BAA = 1 selects IR 1. The transfer paths from ALB to
IR are further defined by the contents of the V field of the EO and BOB
toggle, so that when V 2 V I Vo = 000, the full 8-bit result from the ALB is
transferred to IRO or IR 1, ignoring BDB.

The remaining variations of V 2 V I Vo bits select only four bits of the ALB
determined by the BDB toggle [BDB = 0 selects ALB (7-4), BDB = 1 selects
ALB (3-0)].

Example: If V(2-0) = 100 and BDB
IR (3-0), leaving IR(7-4) unchanged.

1, this would transfer ALB (3-0) to

The I-bit DR sign register (DRSR) is set under specific conditions during
transfers into the IR. Similarly, the I-bit UR sign register (URSR) is set under
specific conditions during transfers into the UR. The DRSR and URSR are set
if the sign is negative. The ALB is designed to perform one of eight operations
specified by the microinstruction (the V field). These functions are: binary add,
binary subtract, decimal add, decimal subtract, transfer utility register UR,
transfer the complement of UR, logical OR, and exclusive OR. When the ALB
is set to anyone of these eight functions, it remains in that mode until it is
reset by the microprogram. This modification is specified in the F field. The
F field would either set, perform, or set and perform. In order to perform an
operation on successive data types, the perform microinstruction will continue
operations on the data operands using the carried-over setting of the control-

Sec. 9.2 70/45 HARDWARE 425

carry and result-zero flops. The control flops will be reinitialized only by
another set, or set and perform, microinstruction.

9.2.5 Other Hardware Registers

A number of other registers are shown on the simplified 70/45 data flow in
Fig. 9.1. These are all connected to the DB bus for various purposes. They
include the following:

General Purpose Register (GR) is an 8-bit decrementing counter used as a
general purpose counter, and is also used to address SPM.

Status Register (SR) also has properties peculiar to the Spectra 70 (and
should not be used in emulators) in that it contains:

1. the condition code representing the results of previous operations (posi­
tive, negative, zero, and overflow) the equivalent of the previous result indica­
tors in earlier processors, and

2. four interrupt masks.
The 8-bit SR is fed from DBO. SR provides the lower order bits on the
DB(5-0). The two high-order bits of the 8-bit byte may be provided by the
instruction length hardware or the S register (Fig. 9.1). The instruction length
information is derived from the two high-order bits of the OR. Two bits of
S contain the condition code.

Operation Register (OR) is an 8-bit register normally holding the operation
code, with the special property that the individual bits of the register can be
tested by EO (except for OR7, which cannot be tested by itself). The OR is
also used in the staticizing routine as a portion of the 64-way branch facility.

Base Address Register (BR) is a 4-bit BR used for address-indexing and also
during shift operations to supply and receive the end data.

R Register (RR) is an 8-bit general purpose, decrementing counter that may
also be split into two independent 4-bit counters.

The BR or RR may also be used in addressing the SPM but, when so used,
are more restricted than the GR.

Interrupt Register (IR) is a 32-bit register that records the many internal
and external conditions capable of causing a program interrupt; when an inter­
rupt occurs, its cause or reason is automatically set into the register.

Other miscellaneous registers in the system include:

Arithmetic Mode Flip-Flop (AR) is a I-bit register indicating whether the
arithmetic operations are being performed in the ASCII or EBCDIC Code.

Program Status (PSR) is a 2-bit register indicating the current program state
of the processor; it is also used in SPM addressing, i.e., FPC -- MAR.

426 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9

Key Register (KR) is a 4-bit register holding the memory protection key and
is used with the optional memory protect feature.

Privilege Register (PR) is a I-bit register used to indicate specific operations
that cannot be executed when set. The KR, AR, and PR ~re operated simul­
taneously as far as transfers to and from the DB are concerned.

Emulator On Register (EON} is a I-bit register used to indicate that the
operation of the 70/45 is in the emulator mode. (This is used in machines
provided with the emulator option.)

Bank 3 Register (BK3) is a I-bit register used to indicate the correct ROM
bank to be addressed. (This is used in machines provided with the emulator
option.)

9.2.6 Wired-in Control Functions

The following is a set of wired-in control functions designed to assist the
microprogram control specified in the EO:

EDR Flip-Flop. Regardless of the F or V fields of an EO, the EDR flip­
flop is reset whenever (BR = 0000), (S field = XIOOOX) and (I/O INST);
namely, BR = 0000, and BR is being used to address the SPM. Resetting of
EDR causes the DR operand to appear as all zeros to the ALB. The condi­
tion continues until EDR is set by a set function or set and perform EO.

RZ Flip-Flop. The RZ flip-flop is set by the set function, or set and
perform EO, and V fields ,e O. It is reset by a perform or set and perform
EO and a nonzero result at the output of the ALB.

Sign Flip-Flops. When the destination code calls for setting the sign flip­
flops (DRS or URS), the sign box is set if the sign is negative. If E = 6/7, the
sign flip-flops are set according the 4-bit decimal sign at the input to the ALB
(the DR switch or UR switch output); otherwise, the sign flip-flops are set from
DB07.

WDB Toggle (Word Driver Bit). The WDB toggle is set according to C7
only in a set function, perform, or set and perform EO.

Transfer Controls From DB to DR. The WDB toggle controls the transfer
from the DB to the DR only if FMCY = I in a perform EO. The transfer is
controlled by CO and CI in a merge EO. Otherwise, the transfer is controlled
byC7.

Transfer Controls From DR to DB and ALB. The transfer from DR to the
DB is always controlled by C7. The transfer from the DR to the ALB is always
controlled by EDR, C7, and BAA.

Sec. 9.2 70/45 HARDWARE 427

Final EO True Test Condition. The last EO of an instruction should con­
tain E = 00010 (end instruction) and must contain a test with the true branch
leading to staticizing (instruction fetch inicroroutine). The unconditional jump
(E = 00001) should not be used to go to staticizing because various starting
signals must be generated.

E-Code Requir~ments. The E codes for end staticizing (E = 00011) and end
instruction (E = 00010) require a true test condition T. The A field must be
either 000000 or 000001 to specify a standard even or odd entrance address.

I/O Servicing. Not more than four consecutive EO's (1.92 micros) must be
permitted without I/O servicing.

Triggering GR or RR. It is not permissible to transfer into or out of the
GR or RR and trigger that counter in the same EO.

BAA, BAB, BDB Triggering. It is not permissible to trigger a BAA, BAB,
or BD B toggle in one EO and test that toggle with a test and branch function
that drops through in the immediately following EO.

Interrupt Register Bit #21. Bit #21 of the interrupt register (supervisor
call instruction interrupt in Spectra 70 operations) will be set if the E field
equals 00000011 and the OR equals 0000 1010.

Interrupt Register Bit #32. Bit #32 of the interrupt register (debug mode
option of the program control instruction in Spectra 70 operations) wilt'be set if
the E field equals 0000 0010 and the OR equals 1000 0010 and RRIO equals
one.

Testing of a Destination Register. A register that is used as a destination for
aDB transfer may not be tested in the same EO.

9.2.7 Data Transfer

All the above logic and storage facilities are interconnected by the two-byte­
wide data bus (DB) (Fig. 9.1). A second two-bits-wide bus called DBA is
provided to transmit the two most significant bits of the main memory address
into the MMAR (the remaining 16 bits of the address are transmitted over the
DB bus). The DB bus can be viewed as two separate byte buses called DBO and
DB I. Two bytes can be gated on the DB from a number of different sources
and transmitted as a single 16-bit field or as two different bytes to two different
destinations. It'is imperative that the reader study carefully the extent of the
gating of the contents of the different hardware facilities on this bus and the
gating of the information on the bus into the different permissible facilities.
This gating, although extensive enough for the functions performed by the
Spectra 45, does present some limitations of which the microprogrammer must

428 MICROPROGRAMMING THE RCA SPECTRA 70jMODEL 45 Chap. 9

be aware. Note, for example, that the OR is fed from DBO; hence, UR 1 cannot
be transmitted to OR. If a byte is to be transmitted from ALB to OR, the BAA
bit control switch must be set to transmit the ALB output byte to OR through
URO. The R register, when used as one eight-bit decrementing counter, com­
municates with other functions via the DB 1 bus. The R register can also be
split into two independent four-bit counters, each of which is loaded or un­
loaded by the four least-significant bits of DB 1 [DB (10-3)]. Note' also that
the G register can be loaded from the OBI and unloaded to the DBO; therefore
~ tra~sfer of UR 1 to G R presents no problem whereas a direct URO to G R
transfer is not possible. The reader is urged at this point to examine Fig. 9.1
carefully in order to master the capabilities, limitations, and alternate paths
through which the data can be transmitted. He must be familiar with the
function of every box in Fig. 9.1, its ingating and outgating capabilities, and
the switches that affect this gating.

9.3 70/45 OPERATIONAL TIMING

The 70/45 basic EO time interval (central processing unit (CPU) cycle)
is 480 nanoseconds. This is split into four equal time periods (TP 1, TP2, TP3,
and TP4) of 120 nanoseconds each. One exception to this is in the case of a
"SP2" XXX (set and perform twice) or set followed by "PR2" XXX (perform
twice) where the following timing sequence occurs: TPl, TP2, TP3, TP4, TP3,
TP4. The 'SP2' and 'PR2' are used to process two-byte operands in 1.5 EO.
The 70/45 has one clock pulse generator to provide and synchronize the timing
of the different register and memory transfers. These timing pulses also
synchronize the microprogrammed and the hardware control functions in the
system.

Figure 9.4(a,b,c,d) shows the timing relationships between the ALB, SPM,
MM, ROM, and other toggle set and reset timing controls. These figures are
also helpful in tracing the concurrent action of all the functions involved in
any given operation.

9.3.1 SPM-Timing

The SPM has a 480-nanosecond memory cycle, and an access time of 120
nanoseconds. The SPM read command would transfer the SPM word (four
bytes) into the DR in the first 120 nanoseconds. The regenerate cycle is not
started until 180 nanoseconds later, allowing time for incrementing or shifting
the data before writing it back into memory. The actual regeneration time is
180 nanoseconds. Hence the SPM is capable of reading and regenerating (or
writing) one word each CPU cycle.

EO
TP

Read Only Memory
MAR reset

MAR set

MMR set

MMR reset

Scratch Pad Memory

Data Bus Transfer

Read out source

Reset destination

Read in destination

Main Memory

MMAR and MMR reset
MMAR set

MMR set

ALB Perform Once

Reset I R

ALB~IR

BAA, BAB, BOB TOG

Set, reset

Trigger

WDB TOG

Set, reset

1 2
1 2 3 4 1 2 3 4 1

~
1120 ns r--- ~

I I

I I I r

..- r-
~ Increment

Regenerate Read
Increment

Regenerate Read

~ L-

'---h h
~ f------

I----

~
f--

r---
~

r- r-
I I r

f--
r-, r----t

n n

I--- ~

Figure 9.4(a) Spectra 70/45 BPU operational timing diagram.

3
2 3 4

~

r-
r-

Increment
Regenerate

L-

h
I----

r-
~

1-

r---,

.fl-

~

430 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45

EO

TP

E,C,F,V reg
Reset

Set

~
Reset

Set

S,D reg

Reset
Set

ELAND, ELOR, BCD reg

Reset

Set

EDR,
SIMC, COMP, ICAR reg

Set

(Gated) Reset

RZ reg

Reset

Set

SCAR,OV reg

Reset

Set

1

1 2

h

I

L..r-
r---r--.

---.r-
h -

r--

2

3 4 1 2

h

r-
I

r-

.-
r--.

.~

r--.

r-
h

(

r-
h

Figure 9.4(b) Spectra 70/45 BPU operational timing diagram.

9.3.2 Main Memory Timing

Chap. 9

3 4

r-

~

~

r--
~

The main memory (MM) cycle time is 1.44 microseconds. It takes three
CPU cycles to read and regenerate the information in MM. In Section 9.2 we
considered the data flow and the hardware involved in a typical operation
requiring data to be read from MM for transfer to the UR, using an address
accessed from SPM. The timing chart in Fig. 9.4(a) shows that the MM
address is read out during the first timing point (first 120 nanoseconds) of the
first EO cycle. The MMAR and MMR are both reset during the second timing
period of the first EO cycle. During the third timing period of the first EO
cycle, the MM address read-out from SPM is transferred to MMAR. The

· Sec. 9.3 70/45 OPERATIONAL TIMING 431

EO 1 2
TP 1 2 3 4 1 2 3

B, K, A, PRIV, 0, S reg
h r--. Reset I---
I--- I---

Set I---

URS, DRS reg

Reset r- r-

Set
r--, t--1

R reg --, r---,
Reset -

I--- i---
Set -

Reset R2 if c1 Co = 00 ~ r-

Trigger n

Greg r--, r---,
Reset I---

I---
Set I---

Trigger n n

Rese t if c, Co = 00 r-h r- r---,

Figure 9.4(c) Spectra 70/45 BPU operational timing diagram.

EO

TP

ALB,IR

Reset I R

ALB--+IR

BAA, BAB, BOB TOG

Set, reset

Trigger

1

1 2 3 4 3 4 1 2

r- r-

1 ~ ~

i---t----1 t----1

n n

Figure 9.4(d) Spectra 70/45 BPU operational timing diagram.

4

2

3 4

r-
r ,

n

3 4

r-'
r-~

.lL-

432 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9

SPM word is incremented and replaced in the SPM during the first EO cycle.
As far as this operation is concerned, no useful work is accomplished during the
second EO until its last time period, when the actual MM read-out takes place.
If no other useful work is planned for the second EO time, a wait cycle is
used. This automatically causes a wait of 480 nanoseconds. The MMR is
specified as the source and the UR as the destination during the third EO cycle.
As indicated in Fig. 9.4(c), transfers to UR via the DB are accomplished
during the second time period of the EO cycle.

Enough time remains in the third EO cycle for an operation through the
ALB to the IR with one byte. If a perform-twice EO is specified, time periods
three and four are repeated for a total of six time periods rather than the
normal four time periods of the EO (i.e., the second execution of the function
requires one-half the usual EO time interval since no DB transfer is made).
There are two transfers of a byte from ALB to the IR. This byte transfer is
controlled by the BAA and BAB toggles and occurs during the fourth timing
period of the first EO. The arithmetic function is subsequently performed on
the second byte in the DR and UR and the result transferred to the upper
half of the IR.

9.3.3 Read-only Memory

The basic ROM cycle time is 960 nanoseconds. The 70/45 uses two banks
of ROM that generally operate on an alternating basis to effectively halve the
ROM access time to 480 nanoseconds. Therefore, it is possible to access
one EO every machine cycle (480 nanoseconds). In case of a jump or
branch, it is necessary to access sequential addresses from the same bank,
thereby incurring an automatic 480 nanosecond delay as a time penalty. The
ROM timing shown in Fig. 9.4(a) is valid only for addressing alternate stacks
(even-odd or odd-even). The contents of ROM addressed in the first 120
nanoseconds are available at the end of the EO cycle.

One of the functions that can be specified by the F field is test EO, which
permits a test of three conditions for a four-way branch. All other EO's
however, permit a test with a two-way branch. In either case, the tests that
are specified by the EO are completed before the second basic time period, and
at this time period, the ROMAR is set for the next EO. The conditions affect­
ing the test and jump are, therefore, those that have been resolved in previous
operations and are not a result of the current EO.

9.3.4 Simultaneity

All operations that are completely independent with regard to data paths
and ROM field-bit functions can be carried on simultaneously. Although SPM
operations such as increment and shift are normally independent of DB trans­
fers between hardware registers (other than DR), addressing the memory in-

Sec. 9.3 70/45 OPERATIONAL TIMING 433

volves the S field and, therefore, concurrent execution of the two functions
with one EO is ruled out by the M field, which indicates the SPM operation.

Data bus transfers and ALB operations can be executed in the same EO and
can be independent of, or dependent on, each other. The ALB operation takes
place after the DB transfer. If the transfer involves either the DR or the UR,
the result is involved in an operation through the ALB. If the transfer does
not involve either register, the transfer and the ALB operation are independent
of each other.

If an ALB operation is specified in one EO together with a bus transfer
from the IR, the data transferred from the IR is the data present from the
previous operation, and the data in the IR at the end of the operation is the
result of the current ALB operation. If an ALB operation is specified on one
EO together with a bus transfer to the IR, the bus transfer to the IR takes
place first and then the IR receives the output of the ALB.

The increment/shift function provides a facility for shifting or incrementing
a value as it is written in SPM. The word being shifted or incremented need
not have previously been in SPM, but may be operated upon as it is written.

The merge EO function will occur before the incrementing. It provides
the only way to modify a single byte of the DR and leave the remaining
three undisturbed. Normally, either the upper or the lower half of the DR is
loaded from the DB. The merge EO provides for clearing and setting either
the ORO or the DR! byte from the corresponding bus without altering any other
bytes within the DR. Figure 9.5 illustrates the execution time of an EO which

Merge, SPM write,
Bus transfer

SPL to ORO, 1,2,3

Source f (0 field) to bus

ORO, OR1 reset, fICO, C1)

Bus to ORO, OR1, F(CO, C1)

SPM write

Increment, SPM write
Bus transfer

SPM to ORO, 1,2,3

Source f(0 field) to bus

ORO, 1/0R2, 3 Reset, f(C7)

Bus to ORO, 1/0R2, 3, f(C7)

SPM write

1 2 3 4 1 2 3 4

I I r-
L- L-

"-- r----J

I

I r-
L- L-

h r-t

J I

I

Figure 9.5 Spectra 70/45 EO execution timing.

434 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9

includes the merge/increment operation with SPM write and DB transfer to the
DR. During the first timing period (first 120 nanoseconds), the addressed SPM
word is accessed into the DR. Also during the same time, data is put in the
DB from the register specified by the destination field. During the second
time period in the EO cycle, part of the DR is reset, then is set by the bus. Data
in the DR is then transferred to the same location in the SPM from which
the original word was read. On the way it is incremented as required by the EO.

9.4 MICROPROGRAMMING THE SPECTRA 70/45

Microprogramming the Spectra 70/45 involves the transfer of information
over the DB, the transformation of information through the ALB, and finally
the conditional transfer of control. To effect these operations, the EO word
is set to specify the combinations of functions that are permitted to happen in
one EO time period.

The process of microprogramming this system requires intimate knowledge
of the system's data flow, its hardware facilities and functional capability, its
data busing system, its ingating and outgating, its timing, and finally the hard­
ware control signals which have higher priority over the microprogrammed
control in certain machine states. The microprogram mer must also have a clear
understanding of the ROM stack and the ROM word organization. He must
master the functions of each micro-operation implied by any unique combina­
tion of binary bits in each field in the ROM word. There are complex inter­
relationships and interdependencies between each group of ROM fields that
affect their decoding, even their function. An example here will be the function
of the Sand D fields. These two fields normally indicate the source and
destination registers during an EO where the SPM is not specified or when
field M contains 00. However, when M = 01, which implies an SPM read
cycle, the contents of the S field are interpreted as the address of an SPM
word from which data is to be transmitted, and the D field specifies the destina­
tion facility. A third possible interpretation of these two Sand D fields is
found in the case of the SPM write operation, when M = 11. Here, the DR is
automatically selected as the destination register, the S specifies the SPM
address (the destination of data transferred in this cycle), and the D field
specifies the source.

This interdependency between the functions performed and the decoding of
the fields in the ROM word is perhaps the most difficult aspect of mastering
the Spectra 70/45 microprogramming. It requires a thorough analysis of the
field decoding charts. We will defer this task to the latter part of this
section.

Another basic requirement for developing the microprogramming skill for
this system is the familiarity with the mechanics of writing a Spectra 70/45
microprogram-the different phases of preparing, assembling, simulating, and

Sec. 9.4 MICROPROGRAMMING THE SPECTRA 70/45 435

documenting the microroutines. This requires a familiarity with the RCA
70/45 Microprogramming Design Aid System known as the RCA-MIDAS
system. Like any other computer-aided design program, the MIDAS requires
a fixed input format and specific control card sequence to select the desired
facilities, functions, and other options available.

We will begin the analysis of these requirements with the MIDAS system.

9.4.1 MIDAS

MIDAS is a microprogramming design aid system developed by RCA pro­
grammers to assist in assembling, debugging, and simulating the microroutines
and, finally, to prepare the necessary documentations and data files needed for
the manufacture and maintenance of the control section of the 70/45 system.
It includes an assembler to permit microprogramming in an easy meaningful
symbolic notation, a simulator to test and debug the microroutines and the
internal operations of the system, and a number of facilities to update, to
delete, or to add new EO's in the microroutines. The MIDAS system is de­
signed to be open-ended with the intent of adding other functions and facilities
to it as the need arises.

MIDAS Assembler-Input/Output Forms. The assembler accepts the se­
quence of microinstructions, punched on standard 80-column punch cards in a
fixed format, converts this input into an internal form used as an output to the
microprogrammers, as an input to the ROM word and stack manufacturing, as
an input to the simulator program, and as an input to the logic flow-chart
output routine.

The microprogrammer prepares the input to the MIDAS assembler on a
special form (Fig. 9.6) where each line represents an image of the EO record
to be punched on one punched card. The form is divided into fields, most of
which correspond to the ROM word fields. It also contains a label field in
columns CI-6. This field contains a symbolic name for the EO documented
on the line. The rules governing this label are:

1. The label can be 1 to 6 alphanumeric characters wide, starting with an
alphabetic one and excluding the two characters $ and / (these two characters
have been assigned a certain meaning in the MIDAS job control program).

2. The label must be punched left justified, i.e., starting with column 1.
3. It must not contain any blanks.
4. No relative addressing is permitted; that is, if the address of the first EO

in a microroutine is assigned a label, for example TALLY, we cannot refer to
the next EO as TALLY + 1.

Coding sheets for this source language input will have two sets of headings.
The purpose of this is to allow the programmer to write each field in either
mnemonic or binary representation.

PROGRAM _______________________ PROGRAMMER _______ DATE _____ PAGE __ OF __ _

1 ... c C T

LABEL
~

TEST A N M FROM TO F V EXCEPT 0 ABS. R NOTATION t:N ~lml~IRIGI'iI~
N A
s
·O~DDR.

c
, 7. .. 20 .. 2. 34 '0 T E

00 &&87

I I I I I I I I I I I I I , I I I I I I I I

I I I I I I I

I I I I I I I I

I II 1 I I I I

I II I I I

I I , , 'I I I I I ~ I

, " , ,
, I

, I I I I I I I I I I I I I I I , I I II I I I I I I I I I , I

I I I I I I I I
, • I

,
" I I I I I I I I l I I , I I

I I I I I I I I I I I I I I I I I , I I I I I I II I I I I , I I

,.
,

I I I I I I I I , ,
I I I I I

I I~ I I I I I

I
1 ,

II , I

I'
, , I I I I I I I I I I

I . I I

I , , I I II I I I I

I I I I

I , I I , 'I I

35·00-207

Figure 9.6 Microcoding assembler form.

Sec. 9.4 MICROPROGRAMMING THE SPECTRA 70/45 437

Notes: 1. It should be noted that when coding mnemonically, FROM and TO
columns are unique in that FROM does not necessarily mean the S
field and TO does not necessarily mean the D field. The pro­
grammer should only consider these fields as FROM and TO, and
the assembler will make the determination whether to place the bits
in the S or D fields.

2. Descriptions of various fields do not apply when a special form of
EO called a TEST EO is used. A complete description of a TEST
EO may be found in Appendix K.

The field on the microprogramming form with the heading of "absolute
address" permits the microprogrammer to specify an absolute ROM address
for any number of EO's in the microroutine. It can be used in conjunction
with a label or by itselL Another field entitled "CONST" is used to specify
two hexadecimal characters to be put on either the DBO or DBI byte bus as
specified by the entry in the FV fields. The "notation" or "remark" field is
for the microprogrammer and has no effect on the MIDAS assembler. The
remaining fields, T, N, A, M, S, D, F, V, I, and E, are used to specify the
functions to be performed in that EO.

This input is punched by trained keypunch operators on standard 80-
column keypunch cards.

The assembler first checks the syntax of each EO Over twenty-seven
validity checks are performed by the MIDAS system. These checks include
incompatible combinations of micro-orders within an EO, invalid microcodes,
violation of basic timing rules, and checks for certain illegal sequences of
EO's.

The normal output of the assembler is illustrated in Fig. 9.7. It contains
the assembly listing, the ROM absolute address assigned to each EO, the sym­
bolic micro-orders, and the encoded binary bits in the control word. Another
optional output is the microflow-chart printout illustrated in Fig. 9.8. This
provides the microprogram mer with a visual aid to check the logical flow of the

[lATE OllnO/69 50t READ O"L Y MEMORY (ROM)

LABEL TFST A MPlCH1 MOVETO ,. V C FIELD EXC AAS T COM~ENT ROHAA rvc ~S D T N A E I

TITLE !iLl REA!l ONLY MFMORY (1'/014) 00000000
AFT BATES TTRES!: TSHIH FFRl UR SP1 1l ADDS SS 460n 00000100 460n 12B111'1 0280 t 0 700 0
AFLAG I ASHAD HR2 cONnHO R 80<4620 00000200 46<'0 3 D 0031 coo 00 at4 6 0 11
AFTI AFT rr Rl IR SlL7A2 S 477~ 00000300 4715 42 ft OllAOEOOOD4 6010
AFUT9 ArUT91 FUT9 UR SP1 1'ADDS SS 4~57 00000400 4657 1281111110006046010

, AFUT91 AFUT9 DR rUT9 SLLZR2 5 4656 00000500 .656 '2803180Ao05746010
I A'UT91 AFUT92 IR FUT9 S"LZB2 S 4660 00000 600 4660 H 80 31 ft o AO 061460 10

I :~~~:~ I ArUT9J F'UTQ G SALZB2 R 41>61 00000 700 4661 • AD 0 1181 11 0 062 46 01 0
ArUT94 GA MAR CONI1RO SHADE404662 00000800 '662 39'000F1Con6363041

AFUT941 AFU,95 F'UT9 CONnBO R 1504663 00000 900 '663 3DOO 31 11 0(10 n6U60 11
ArUT951 MR 17ElA f UT98AFUT96 MMR GUR MGEn81 4664 00001000 .664 300200C133'656 7OO1
AF'UT96 OROEQOArUT97AFU1'99 DR I R SP1BADDS RR 4665 00001100 .665 128000BOEO 170660 00
AF'UT97 AFBnl BIR FUT9 SITSAMES 4666 00001200 .61>6 7880318120 035"010
AF'UT98 P2CALL Vi CONnBl 4'4667 00001300 '667 344430 800000045010
AF'UTQ9 AF Rn I BIA F'UT9 CONDBl S 03467n 00001 400 467" 3413 31812003' 47 010
AIORT OR4EQOAIORHAERJ;X IRDS CONDBO 804671 00001500 "671 3DOOOOOOD052572000

Figure 9.7 Sample MIDAS assembler output listing.

• ODD I N

• ~100

.........
• EvENIN

FPC-)tHR
INC +2

• w
• 5101 · ········r·
......... !

.• STAB

• 5102

·· .. ····T·······
......... .,
• STA T2

HMR-> IROS

• 5103 IHP60

::::::::r::::::
• STAT3

IR->FF"R2
MGE DBC

• 510 4 "'

....... J
• sTAT4

FFR2->OR:1l
SET SAME
R->DAB

• 5105

...............
• STA T5 OR5EQO

IR!->F"FR1

• 5106 J

... J: :
• CALL2·

F"PC-)MAR
INC +2

• w o 5t07 I •

..................
• LDOB2

FPC-)MAR
INC +2

• \01
• 5115 I •

..................
• TOll4 OR4EQ1 •

FPC-)MAR
I fIlC +2

w
5121 I •

F T
. !

..,----+------'
..................
• I NCPX

w

F"'R?-)UR. I R
SET SAME

• 5110 I •

..................
• TOR3 OR3EQl •

rrR2-)UII.IR •
SET S~.ME

• w
• 5120 r •

F T
~----+--..... ······1·····

..
• LoDA

MMR-)F"F"Rl
SET SAME

• w
• 5111 MAPBD

.....
• TOR2 O!l2F'H

"'~R-)FF'Ql
SET "A"'E-

o ~ S-)AR
• !>122 MAPRO

.. » 1-._._. '-'-'-'---11--'-'-' '-'.." ; •• ** • i; .. · ·

.................. ~
• LOOB1 • LBNOT

FPC-)MAR F"PC->MAR
INC +2 INC +2

• w
• 5112 I • ·········r········
.........
• INCPX1

F'R2->
SP1 BADD
S-HB

• 5113 I • 1'
..................
• STAT6

MMR->FrRl+1 •

• 5114 MAPBO

• w
• 5123 I I' · ..
..................
• LBNoa

F"R2-)
SPl BAOD
S-)AB

• 5124 ·········1·········
..........
• FUBl

MMR->F"UT9
SET SAME
S-)D

• 5125 MAPBD

Figure 9.8 Sample MIDAS flow-chart output.

..................
• ST AT7 BOBECl

;.:!ll~:J,::::.!.~
..................
• STATe IRX6E1. • • F'UB2 IRX6E1

~MQ-);FR1+1 • MMR->F'UT9
SET SAME SET SAME

• w • 5117 MAPsn r ·
.
• PPX BDBE01

F"R2-)
SP2 BADD

• W R->AB
• 5127 r ·
.
• NQRST IRX6El •

I R->FFR2
SCC NO

• W T-)A
• 5130 r ·
.

->uR
CON DBO CO

• 5131 I' · ..
.
• PC31

FFR2->IR
SP l BADD

• W R-HB
• 5132 ········1·········
........ ,
• PC32

I R-)FFR2
PRl BYTE

• 5133 r · ..
.
• PC33 BDBEC1

IR1-)FFR2
SET SAME
S-)A

• 5134

• \01 • 5126 HAPSD

.
• RCASEl IRX~El •

I R-)rFR2
sec NO

• \oj T _> A
• 51.35

Sec. 9.4 MICROPROGRAMMING THE SPECTRA 70/45 439

microroutines. The flow-chart program output is similar to the IBM control
automation systems output. It consists of EO boxes which have a fixed format
with fixed printout positions for each micro-order. For example, the register­
to-register transfers are always printed on line 2.

CD EO label o Test condition

o Bus transfer

o Function

(i) Counter control

® Hex address

f.ji\ Octal
\!..Y address 13

o Exception

12

Figure 9.9 EO flow-chart format.

13

Figure 9.9 shows the format of this microinstruction box. The fields therein
have the following meaning:

1. Entry from Previous Microinstruction (EO). One or more entries may be
·specified for an EO. All entries from previous EO's are shown on the EO
flow-charts. The entry may be shown as a direct line connecting the EO with
the previous EO, or the mnemonic EO label of the previous EO may be shown
in a circle or triangle. A circle is used to designate an entry or exit point
with the same algorithm. A triangle is used for entry or exit to another
algorithm. An EO may be duplicated in different portions of the same
algorithm in order to clarify the logical EO flow. An EO may also be shared
and will, therefore, appear in different algorithms. In order to avoid confusion
in the flow, only the paths that apply to that algorithm will be shown. (Thus,
an erroneous exit or entry from or to the algorithm will not be cross-refer­
enced.)

2. EO Label. The EO label identifies the EO and the EO flow-charts. It is
not represented in the EO word in ROM. The first letter (or group of letters)
of the label identifies the algorithm in which the EO is used.

3. Test Condition. The test condition mnemonic specifies the test to be per­
formed during execution of the EO. This test condition is represented in the

440 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45

XXXX=Current EO Address
T=Test Condition

XXXX T

Current EO

Next EO if False

No Test

XXXX

Current EO #1

Next EO if True Next EO #2

If the Address of the

Figure 9.10 TNA fields (branch control).

xxxx

STAT

Chap. 9

Begin
Execution

1st EO of Instr.

XXXX T

Last EO of Instr.
if Test True

E=EI
T

Return to
END 1st EO of

STAT or
INT

T field of the EO word in the ROM (Fig. 9.3). Figure 9.10 illustrates the EO
flow when a test and branch condition is specified.

4. Bus Transfer. The bus transfer mnemonic specifies the data movement to
be executed by the EO. The form of the mnemonic is SOURCE DESTINA­
TION. The bus transfer mnemonics are represented in the EO word in the
ROM in the M, S, and D fields (Fig. 9.11).

M=O M=l

EJ EJ
Figure 9.11 C7, MSD fields (data transfer); F ~ 5.

If the source is a scratch pad FM location, i.e., the first letter of mnemonic
is F, the M field is (Olh.

If the destination is a scratch pad location, the M field is (11 h.
If neither the source nor the destination is a scratch pad location, the M

field is (OOh.
If a scratch pad location is specified in a bus transfer, the code for the

scratch pad location is in the S field regardless of whether the scratch pad
location is a source or a destination.

Sec. 9.4 MICROPROGRAMMING THE SPECTRA 70/45 441

5. Function. The function mnemonic which appears on the EO flow-chart
designates the functions to be performed during the EO. These mnemonics
are represented in the EO word in the RO M in the F and V fields, and in some
cases, in all or a portion of the C field (Fig. 9.12).

6. C7. The C7 mnemonic is represented by the C7 bit of the EO word in
the ROM. The EO flow-chart mnemonics for C7 are either space or W. If a W
is shown in the EO flow-chart, the C7 bit is 1, and OR2 and OR3 are specified.
If the EO flow-chart shows a space (blank) in the C7 position, the C7 bit is 0
and ORO and DR 1 are specified.

7. Counter Control. The counter control mnemonic specifies the setting,
resetting, or triggering of the various toggles and Rand G counters. The
counter control mnemonics are represented in the C field of the EO word in
the ROM.

8. Hex Address~ This mnemonic in the EO flow-chart is the ROM address
of the EO. The form of the address is X I X 2X 3X4 , where

(X 1)4
(X 2)16

(X3)4

(X4) 16

represents bits
represents bits
represents bits
represents bits

2 11 _2 10

29 _2 6

25 _24
23 _2°

of address
of address
of address
of address

This form of the address is used in the 70/45 assembler and simulator and is
included in the EO flow-charts to facilitate cross-referencing with the assembler
listing.

9. Exceptions. The exception mnemonic in the EO flow-chart is represented
in the ROM in the E field of the EO. If no exception appears in the EO flow­
chart, the E field is 00000 if a test condition is specified; if no test condition
is specified, the E field is 00001.

10. I (Inhibit). The EO now-chart shows either a space (blank) or 1 in the
inhibit position. If the EO flow-chart has a blank in this position, the I field
of the EO in the ROM is 0, and I/O servicing is inhibited between this EO and
the next EO in the flow-chart.

11. Octal Address. This mnemonic in the EO flow-chart is the ROM
address of the EO. The form of the address is Y 1 Y 2 Y 3 Y 4, where

(Y l)g represents bits 2 11 _2 9 of address
(Y 2)g represents bits 28 _2 6 of address
(Y 3)g represents bits 25 _2 3 of address
(Y 4)g represents bits 22 _2° of address

12. Exit to Next EO if No Test Condition is Specified. If no test condition
is specified, there is only one exit to the next EO. This is shown on the EO
flow-chart by a line connecting this EO box directly to the next EO box or to
a circle or triangle containing the EO label of the next EO and flow-chart sheet
number where the next EO is shown. This line is in one of the positions

See F=3&V3 (0)&C(3-0)=0

---nJ-v T

C7,MSD
C(6-4)

E

See F=4&V3 (0)V2 (0)

sLiT
C7,MSD
V(1-0)
C(3-0) C(6-4)
E

See F=l

~-V T

C7,MSD

C(3-0) C (6-4), CO
E I

See F=3&V3 (0)&C(3-0);i0

~E T

D_(S)C(3-0)
C(6-4)

E

See F=4&V3 (0)V2 (1)

~ T

C7,MSD
V(1-0)
C(3-0)
E

See F=6

~C-V T

C7,MSD

C(6-4)

C(3-0) C(6-4)
E

E FIELD (EXCEPTION)

See F=2&M=0&C7 (1)

~-V T

DR23-
S_D
c{3-0) C(6-4)
E

See F=3&V3 (1)

.-J T

~~~~ (6-0 ).24c7 , MSD 
C7,MSo-

E 

SRL 
C7,MSD 
V(1-0) 
C(3-0) 
E 

See F=7 

SETF-V 
C7,MSD 

0) 

C(6-4) 
I 

T 

C(6-4) ,co 
I 

See F=2&M=1 

c{3-0) 

E 
C(6-4) 

I 

See F=2&M=0&C7 (0) 

~ T 
PER-V 
S_D 

E I 

See F=4&V3 (1)V2 (1) 

~ T 
SRA 
C7,MSD 
V(1-0) 
c(3-0) C(6-4) 
E I 

I FIELD (INHIBIT lIO) 

Figure 9.12 -FVC field (function). 

See F=2&M=3 

~-V T 

(S)C7-
D_(S)WDB 
C(3-0) C(6-4) 
E I 



Sec. 9.4 MICROPROGRAMMING THE SPECTRA 70/45 443 

labeled 12 in Fig. 9.9. The address of the next EO is represented in the EO 
word in the ROM in the A and N fields as follows: 

a. If no test condition is specified and no exception is specified in the EO 
flow-chart, the A field contains the six most-significant bits of the ROM 
address of the next EO to be executed. The six least-significant bits of 
the next EO address are in the N field. (The EO in the ROM has E field 
coded 00001.) 

b. If no test condition is specified and an exception is specified in the EO 
flow-chart, both the A and the N fields contain the six least-significant 
bits of the ROM address of the next EO to be executed. (The A field is 
the same as the N field.) The six most-significant bits of the next EO 
address are the same as those of the current EO. 

13. Exit to Next EO if a Test Condition is Specified. If fl test condition is 
specified, there are two possible exits to the next EO. These are shown by 2 
separate lines in any of the positions labeled 13 in Fig. 9.9. Each line connects 
this EO box directly to the next, or to a circle or triangle containing the EO 
label of the next EO and the flow-chart sheet number where the next EO is 
shown. A "T" alongside the line indicates the exit if the test is true; an "F" 
alongside the line indicates the exit if the test is false (Fig. 9.8). The address 
of the next EO is represented in the EO word in the ROM in the A and N fields 
as follows: 

a. If a test condition is specified in the EO flow-chart and the exception is 
not ENDIN nor EES, the A field contains the six least-significant bits of 
the ROM address of the next EO to be executed if the test condition is 
true, and the N field contains the six least-significant bits of the ROM 
address of the next EO to be executed if the test condition is false. The 
six most-significant bits of the ROM address of the next EO to be exe­
cuted (test condition true or false) are the same as those of the current 
EO address. 

b. If a test condition is specified in the EO flow-charts and the exception 
is ENDIN and the test condition is true, the A field contains the six 
least-significant bits of the ROM address of the next EO to be executed. 
The six most-significant bits of the ROM address of the next EO, if the 
test is true, are 10100. If the test is false, the N field contains the 
six least-significant bits of the ROM address of the next EO to be exe­
cuted; the six most-significant bits of the next EO address are the same 
as those of the current EO address. 

c. If a test condition is specified and the exception is EES and the test is 
true, the ROM address of the next EO to be executed is obtained as 
follows: 

2° of address is 2° of A field, 
25_2' of address are a result of "logical OR" of 25~2' bits 

of A field with 24_2° bits of OR, respectively. 



444 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 

28_2 6 of address are 27_2 5 of OR, respectively, 
2 11 _29 of address are 100, respectively. 

Chap.9 

If the test is false, the N field contains the six least-significant bits of the 
ROM address of the next EO to be executed; the six most-significant 
bits of the next EO address are the same as those of the current EO 
address. 

MIDAS Simulator. Another main MIDAS function is provided by the 
Simulator program, which is used as another debugging and performance 
evaluation aid. It contains the following optional features: 

I. Trace option is used to trace the sequences of microinstructions as they 
are executed. The trace may consist of a printout of the contents of specified 
registers as the microroutines are being executed. Tracing can be performed 
for the complete microroutine or any part of it between any specified addresses. 

2. Memory Snapshots. The simulator provides a snapshot of the MM and 
the SPM points specified by the microprogram mer. 

3. Termination Options. A simulator problem can be terminated for many 
reasons such as time and page limits. Termination may also be specified by 
other exceptional conditions specified for the simulator. 

4. Checking Options. This option provides a very useful tool in the simu­
lator for checking the contents of the M M and the SPM against predicted 
results on termination of the problem. 

9.5 MICROPROGRAMMING AND EO FIELD DECODING 

This section has three objectives: 

1. To present the ROM field decoding charts and the conditions which 
affect and alter the decoding of that field. 

2. To relate the fields or any grouping of fields to the hardware facilities 
shown in Fig. 9.1 that are affected by them. 

3. To provide practical illustrations and help the reader develop experience 
in microprogramming this system. 

9.5.1 Data Movement Control Fields (M,S,D) 

This group of control fields controls the transfer of data between: 

I. register to register 
2. register and FM (SPM) 
3. register and main storage. 

I. The first type is simple if one is familiar with the data-flow diagram 
(Fig. 9.1), the data transfer capabilities and limitations of the system, and also 



Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 445 

the setting of the control switches which affect the byte selecting and gating 
pattern. 

The micro-orders found in these fields are selected to identify which of the 
three data transfer types is requested in a particular EO. Note the following 
cases: If the micro-order which is written in the S or the 0 field starts with 
an F, it indicates that the FM is involved in a read or write operation. If this 
micro-order starting with an F is in the S field, it further implies an FM-to­
register read operation, and the M field is set to 01. Here the FM is read out 
to the DR, or two bytes of the addressed FM word are read to the right or left 
half of the DR as specified by the setting of C7 (bit 7 of the C field), operated 
upon (if any action is specified in the F and V fields), and then regenerated 
(with or without shifting or decrementing) into the FM. In this FM cycle the 
o field specifies the destination register and the S field specifies the address 
of the source data in the FM. The actual transfer of data here is from the 
FM to the DR to the destination register specified by the 0 field. All this is 
accomplished in one machine cycle. 

2. If the micro-order specified in the 0 field starts with an F, it implies an 
FM write cycle, and the M field is set to 11. In this case the DR is automati­
cally selected as the destination register in anticipation of a possible DB trans­
fer of information into the DR from a source register specified by the 0 field. 
That is, the contents of the register specified by the 0 field are transmitted to 
the DR (right or left half, depending on C7), and then the contents of DR are 
regenerated into the FM location specified by the S field. 

3. If neither the S nor the 0 micro-orders start with an F, this indicates 
that no FM operation is specified for the associated EO cycle. The M field is 
therefore set to 00. The S field indicates the source; the 0 field indicates the 
destination register in a register-to-register operation. All other EO fields are 
interpreted normally. 

Note that M = 10 is an invalid code, and the results are unpredictable. 
We will first illustrate these three cases before introducing the main memory 

data transfers. 

aI: UR(S); IR(O) 
a2: IR(S); UR(O) 
a3: UR(S); OR: R(O) 
a4: FFRI (S); UR,IR(O); s(C7) 
a5: BIR(S); FPC(O); s(C7) 

The above notation is to be interpreted as follows: 

1. ai is the symbolic address of the associated EO. 
2. ,B(S); ,B(O); s(C) 

That is, the micro-order ,B in the source field S specifies the source data to 
be transferred to the destination specified by the micro-order ,B appearing in the 
o field. The s(C) implies the setting or resetting of the bits in the C field to 



446 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

effect the setting of data-flow selection switches. In general, one can represent 
the whole EO format to correspond to the EO input form as follows: 

ai; (3(1); (3(T); (3(N); (3(A); (3(M); (3(S); (3(D); (3(F); (3(V); 
s(C7, B, A, D, C3, C2, C 1, CO): Absl; (3(E); CONST 

Note the Absl field here implies the absolute address specified by the 
microprogrammer. The CONST is a two hexadecimal digit constant that can 
be specified by the microprogram mer to be loaded on the DB. 

The first EO with symbolic address a I specifies that the contents of the 
16-bit UR are to be transferred to the 16-bit IR register. This is an example 
of a register-to-register transfer. Other examples of this type of transfer are 
found in a2 and a3. a3-EO says that the two bytes in the source register UR 
are to be transmitted to two registers: the URO byte goes to the OR and simul­
taneously the URI byte goes to the R register. 

EO-a4 represents an FM request. Here the contents of the fast float­
ing-point register I (FFRI) in the FM are to be transferred to the DR, 
then depending on th~ setting of the C7 switch, either the D RO, 1 or D R2,3 con­
tents are transmitted to the destination register(s). In this specific example, 
DR2,3 is to be transmitted to the two specified destination registers UR, IR. 
Note that the character (:) in the micro-order OR: R (in a3) specifies a con­
catenation operation, whereas the comma (,) as in UR, IR (in a4) specifies a 
parallel transfer. 

The fifth example (as) specifies that two bits from register B, namely, 
B(1-0), and the full IR register are transmitted over bus A(1-0) and full data 
bus (forming a total of 18 bits) to the destination register specified by the D 
field. The fast program counter (FPC) micro-order specifies a program counter 
register in the FM. This program counter is state-dependent. 

An important side issue is the use of the DR to hold the 18-bit memory 
address field. Figure 9.1 shows that the two-bit A data bus is always gated to 
DRI bits (0, 1). This means that the remaining 16 bits transferred on DBO and 
DBI must always be set in the DR2 and DR3 bytes so as to leave DRI avail­
able for the A bus. A general rule which covers this case is to always set bit C7 
on, whenever the microprogram mer is arranging for an MM address transfer. 

Appendix A gives the FM address codes for the CPU normal EO cycle 
(I/O). The leftmost column specifies the encoded S field mnemonic as it ap­
pears on the assemble output. Note that the fast memory address register 
(FMAR) is seven bits wide, FMAR (6-0). It is divided into two address fields, 
and FMAR (6-4) is used to specify one of four states. For example, there are 
four independent sets of 16 GPR's; each set will be accessible to the micro­
routine depending on the state in which the system is operating. The first state's 
G PR's are stored in the SPM addresses 60 to 6F; the second state's in 40 to 4F; 
the third in 20 to 2F; and the final state in 00 to OF. The program status register 
(PSR) was defined as a 2-bit register indicating the current program state of the 
processor. These two bits then are used to define the setting of the high order 
bits of the FMAR. 



Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 447 

The floating-point registers are stored in locations 70 to 7F. Only one set of 
the floating-point registers is used to service all the states. 

The remaining four low-order bits of the fast memory address register, 
FMAR (3-0), are specified by the microprogrammer and are transmitted to 
FMAR (3-0) from the B register [B (3-0) -- FMAR (3-0)], from the left half 
of the R register, from the right half of the R register, or from the G register. 
Note that the left half of the R register is designated as R I, and the right 
half is designated as R2. 

Examples 

Assume the R register is set to "26": 

Then, 

1. FFRI 
2. FFRI + 
3. FFR2 
4. FFR2 + I 
5. FRI 

R23-R20 

means 72 
means 73 (72 + 1) 
means 76 
means 77 

RI3-RIO 

means 62, 42, 22, or 02, depending on which state the 
system is in. 

Another type of FM address code is the FB form. The only difference 
between this and the FR I or FR2 is that the four low-order FMAR bits come 
from the B register rather than the RI or R2. Note that the FB is also 
program -state-dependen t. 

The most general format is the FG. It is state-independent and permits the 
microprogrammer to modify any register in FM. It must be used carefully. 
The FMAR is totally specified by transmitting the seven leftmost bits of the G 
register to the FMAR. For example, assume G = "DO" hex (11000000). Then 

'--y----J 
60 

the seven leftmost bits when transmitted to FMAR will address location 60. 
Hence the EO (FG -- UR) will transmit the contents of the FM word 60 to 
UR. 

Note that, in the FG and FG + I formats, the G(O) = I case overrides the 
C7 setting., 

For example, let G = "E2" hex. Then, which FM registers are addressable 
by the FG format? The correct answer is 71. The following example in­
corporates the setting of the G register and its use to address the FM hex. 



448 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 

al: -- G(D); CON (E), DB I (V); (C7 = I); "E2" (CONST) 
a2: FG(S); UR (D) 

Chap. 9 

The first EO (a 1) loads the OBI with the specified constant "E2" hex and 
gates the contents of DB I into the G register. 

The second EO (a2) transfers G (7-1) to FMAR (6-0) to address location 
71. It is important to recognize that the constant E2 could not have gotten 
to the G register if we loaded it on the DBO bus since the G register only 
receives data from the OBI bus. 

Appendix A also specifies the mnemonics for other UR's in the FM. The 
mnemonic specifies the type of UR, and the specific program-state further 
defines the exact FM location desired. 

Appendices Band C tabulate hardware, source and destination register 
codes respectively. The structure of these tables is self-explanatory. It consists 
of the source or destination mnemonic followed by the h~xadecimal SD fields 
code, followed by the source or destination hardware registers. The columns 
labeled transfer bus show the transfer between the designated register over the 
data bus A and the data bus bits. 

Main Memory Data Transfer. The third and final type of data transfer is the 
main memory to register transfer. The main memory has a 1.44 microsecond 
memory cycle and a 16-bit word representing two bytes. The MM cycle is 
equivalent to three EO cycles. The MM request is made by placing the 18-bit 
address field in the MMAR. This function is specified by placing the MAR 
micro-order in the D field. The read cycle takes three machine cycles before 
the particular MM word is destructively read out and the same or ~ifferent 
word is regenerated in that memory location. As far as an MM read cycle 'is 
concerned, no useful work is accomplished during the second microinstruction; 
however, the second EO in this three-cycle MM sequence can be used to specify 
any action not involving the MMAR or main memory read (MMR). For 
example, 

al: I; X(S); MAR(D) 
a2: I; anything 
a3: MMR(S); X(D) 

The question is, what if no other micro-operation is to be specified in a2? 
Will we waste an EO to satisfy the MM timing requirement? No; to alleviate 
this loss of an ROM wire, a read-with-wait micro-order was provided by the 
designer. This is the memory address read-with-wait (MAR W) micro-order. 
An example of how it is used is the following: 

al: 
a2: 

I; X(S); 
MMR(S); 

MARW(D) 
X(D) 

Note that this sequence of read-with-wait takes two ROM words; how~ver, 
it still requires thrt?e EO cycle times to execute. The MAR W says transfer 



Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 449 

the 18-bit MM address from the source register X into the MMAR;.however, 
wait one EO time before performing the next EO (a2). 

The last M M operation is that of write. This write operation is specified 
by requesting a memory cycle in a I (by transferring an address into M MAR), 
and transferring the 16-bit word to be written into selected memory location in 
the second EO time (a2). The following action takes place. The address in 
MMAR is decoded and the corresponding X, Y drive lines are activated and 
destructively read-out the contents of that MM location. Early in the second 
EO cycle time, the data - MMR is sensed and the MM sense lines are in­
hibited from setting the MMR; rather the contents of DBO and DB I are 
allowed to set MMR instead. During the third EO time the regeneration cycle 
from MMR into main storage is completed. For example: 

al: I; X(S); MAR 
a2: I; Y(S); MMR 
a3: Anything not affecting the memory registers. 

9.5.2 I Field 

The I field consists of 1 bit. It is staticized in the I bit register and is used 
to inhibit a break in the EO sequence with a request for servicing. The follow­
ing EO will be given over to the start of the I/O servicing routine if the new 
EO does not contain another I inhibit micro-order. This means with the setting 
of I in each EO, the I/O servicing routine is postponed one more EO cycle time. 
The maximum time for the execution of EO's without a break for I/O servicing 
is 1.92 microseconds. This allows for four EO's if they are the normal four-time 
period type. If any of the EO's are of the perform twice (PR2) or 6 basic 
machine time periods, then less than four EO's are permitted. 

The I/O servicing required the MM and all its interface registers; hence 
I/O servicing cannot be permitted to occur during a memory cycle. This fact 
explains why the I field was specified in the a land a2 EO's in the last 
memory example. In the MARW example, the I in the aI-EO controls the 
wait cycle as well. Such servicing also requires the FM-DR data path since 
most channel information is stored in FM. 

In the normal mode, the next normal EO address is preserved in REGAD 
and MREGAD-ROMAR (11-0) - REGAD (11-0), MREGAD (11-0). 
When MULTIPLEX (MUX) servicing breaks in, REGAD is undisturbed. 
DuringMUX servicing, the next MUX EO address is preserved in MREGAD 
-ROMAR (11-0) - MREGAD (11-0). I bit is used during MUX servicing 
to inhibit SELECTOR (SEL) servicing. When SELECTOR (SEL) servicing 
breaks in, REGAD and MREGAD are undisturbed. 

When returning from SEL service to MUX service, MREGAD (11-0) -
ROMAR (11-0), and the BPU continues MUX service. When returning from 



450 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

SEL/MUX service to normal mode, REGAD (11-0) - ROMAR (11-0), and 
the BPU continues in the normal mode. 

9.5.3 Function Control Fields: F, V, C 

The F, V, and C fields are the most complex because they define a variety 
of functions that can be performed, and because separate functions can be 
performed in different parts of the processor. In general terms, F defines the 
basic functions to be performed, V further defines the variations within the 
broad general function, and C is a counter control field. 

One way to present these fields is to look at the eight major classes of 
functions encoded in the 3-bit F field, and within each class, to examine the 
variations in action specified by the V and the C field settings. 

The F field is encoded to signal the following action: 

1. F = 0 
2. F = I 
3. F = 2 
4. F = 3· V3(O) 
5.F=3·V3(1) 
6. F = 4 
7. F = 5 
8. F = 6 
9. F = 7 

No action 
Set and Perform (SPER) 
Perform (PER) . 
Increment/Merge 
GCON 
SLL/SLA/SRL/SRA 
Test 
SETCC (set condition code) 
SET FUNCTION 

In the remainder of this section we will take these major classes of actions 
and analyze the variations within each one based on the V and C field settings. 

1. F = O~~-No Operation. This EO performs the usual test, data move­
ment, and exceptional checks but does not use or modify the ALB or the shift/ 
increment network. The V and C fields (except C7) are ignored, and the other 
fields have their usual interpretation. 

2. F = DOl-Set and Perform Function. This EO sets the ALB function 
control flip-flops to perform functions specified by the V field, sets the toggles, 
and triggers the counters as specified in the C field. It then executes (per­
forms) the function once or twice and transfers the result into IR, as specified 
by the V field. After each execution of the ALB function, the toggles are 
modified as specified in the V field. The other fields have their usual meaning. 

The toggles BAA, BAB, and BOB specified by C6, C5, and C4 are set to the 
state of CO; the toggle WDB is set to the state of C7. The toggles can be set 
before the ALB function is executed, and complemented after each execution of 
the function. This complement operation is designed to provide an automatic 
control when processing two-byte register data through a one-byte ALB (by a 
set and perform twice microcommand). 



Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 451 

The V (3) bit specifies the number of times to execute the ALB function 
and complement the toggles. 

V3 = 0 Execute function once, and complement toggles once. 
V3 = I Execute function twice, and complement toggles twice. 

The V2, V I, VO bits specify the function to be performed. (See also Set Func­
tion F = III for definition of these functions.) 

V = XOOO Function does not change 
V = XOOI BCD add absolute; set ICAR if IR03{l) 
V = XO I 0 Binary address add 
V = XO II Binary address subtract 
V = X 100 Transfer UR into IR 
V = X 101 Transfer two's complement of UR into IR 
V = X 110 BCD add absolute 
V = X III BCD subtract absolute 
Appendix E (with FV bit patterns between 0010000-0011111) shows the 

16 micro-orders variations, eight for SPI and eight for SP2. 
3. F = OIO-Perform Function (PER). This EO executes the function 

previously set into the ALB and transfers the result into the IR. The definition 
of the function set will be reviewed in F = III (Set Function). In this opera­
tion the V (3) bit specifies the number of times this function is performed. The 
V (2-0) defines transfer from the ALB into IR. The first execution (perform) of 
the ALB function is controlled by the initial setting of the three toggles BAA, 
BAB, BDB, and by the C7 bit of the EO. After each execution, the three 
toggles and the WDB are modified as specified in the C field; that is, they are 
not automatically complemented as in set and perform where F = 001. Each 
execution is controlled by the new states of the three toggle switches. 

The timing of the various functions is such that an operand can be read 
from the SPM or any other source register into the DR or UR, and the 8-bit 
result of the ALB function using the operand can be set into the IR, all in a 
single EO time interval. If a second execution of the ALB function is specified 
by V (3) = I, no additional DB transfer is made, but the operands already in 
the DR and UR are used. The second execution of the function therefore 
requires one-half the usual EO time interval (TP2 and TP3). Hence a 16-bit 
result of the set-and-perform-twice operation can be set into the IR in a total of 
1.5 EO-time or 720 nanoseconds (TPI, TP2, TP3, TP4, TP3, TP4). 

One operand of the ALB function is the byte of the UR selected by the 
BAB toggle: 

BAB = 0 selects URO 
BAB = I selects UR 1 

The other operand is the byte of the DR selected by C7 and the BAA toggle: 

C7 = 0 BAA = 0 select DO 
C7 = 0 BAA = I select DI 



452 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

C7 = 1 
C7 = 1 

BAA = 0 select D2 
BAA = 1 select D3 

The result is set into the byte of the IR selected by the BAA toggle: 

BAA = 0 select IRO 
BAA = 1 select IR 1 

The transfer path from ALB to IR is further defined by the V field of the EO 
and the BDB toggle. This transfer is shown in Appendix E. 

Note the following rules which govern the toggle setting: 

a. In a set, or set and perform, the only allowable mnemonics are S for set, 
R for reset, or blank. All the toggles must be set, reset, or unchanged. 
No arbitrary mix is allowed. 

b. In the set function any toggle set in that EO is still set at the end of the 
EO. 

c. In a set and perform, any toggle that has an entry (set or reset) will be 
complemented at the end of the EO during the TP4 timing point. 

d. Also, during any perform EO, all toggles that have an entry will be 
complemented during TP4. 

Appendix F gives a list of all C field columns and their valid mnemonics. 
Before reviewing the remaining F action implied by F = 3 through F = 6, 

we will review the F = III set function operation. 

4. F = J J J -Set Function (SETF). This EO sets the ALB function control 
flip-flops to- perform the function specified by the V field, and sets the toggles 
specified by the C field to the state of CO, but does not execute (perform) this 
function. The other fields have their usual meaning. 

The V field designates the setting of the ALB function control flip-flops 
as follows: 

F, V = 70 
F, V = 71 

F, V = 72 

F, V = 73 

F, V = 74 

The function does not change. 
BCD (decimal) add absolute, set ICAR if IR03 = 1. 
The EDR, BCD, RZ flip-flops are set. The six decimal 'fill 
method described in Chapter 8 (used with the IBM System 360 
Model 50) is used. 
Binary address add 
The ED Rand RZ flip-flops are set, and all others are reset. 
This prepares the ALB and the address adder to perform a 10-
bit binary addition of the selected portions of the DR and UR. 
Binary address subtract 
EDR, COMP, ICAR and RZ flip-flops are set, and all others 
are reset. This operation is done by the two's complement 
arithmetic. 
Transfer UR into IR 
The RZ flip-flop is set, and all others are reset. This micro­
order prepares the ALB and the address adder to perform a 



Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 453 

IO-bit transfer of the selected UR register operand. The trans­
fer is performed by binary addition of the UR operand to all 
zero 0 R operands. 

F, V = 75 Transfer two's complement of UR into IR 
Similar to F, V = 74, except that the COMP and leAR 
triggers are set to permit the two's complement of the UR 
to be added to all zero 0 R operands. 

F, V = 76 BCD add absolute 
EDR, BCD, and RZ flip-flops are set, and all others are reset. 
The ALB is prepared to perform an 8-bit decimal addition of 
the selected DR and UR operands. 

F, V 77 BCD subtract absolute 

F, V = 78 

F, V = 79 

F,V = 7A 

F,V = 7B 

The EDR, COMP, BCD, ICAR, and RZ flip-flops are set, and 
all others are reset. This prepares the ALB to perform an 8-bit 
decimal subtraction of the selected UR operand from the se­
lected 0 R operands. 

The function does not change. 
Logical OR 
The EDR, ELOR, SIMC, COMP, ICAR, and RZ flip-flops 
are set, and all others are reset. This prepares the ALB to 
perform an 8-bit logical OR of the selected UR and DR 
operands, and prepares the address adder to perform a 2-bit 
binary subtract of the G R operand from the DB operands. 

Logical AND 
The EDR, ELAND, SIMC, ICAR, and RZ flip-flops are set, 
and all others are reset. This function prepares the ALB to 
perform an 8-bit logical AND of the selected UR and DR 
operands, and prepares the address adder to perform a 2-bit 
binary addition of the GR and DR operands with a forced 
carry from the ALB. 

Exclusive OR 
The EDR, SIMC, COMP, ICAR, and RZ flip-flops are set, 
and all others are reset. This prepares the ALB to perform 
an 8-bit exclusive OR of the selected UR and DR operands, 
and prepares the address adder to perform a 2-bit binary sub­
traction of the GR operand from the DR operands. 

F,V = 7C Binary Subtract with ICAR set 
The EDR, COMP, and RZ flip-flops are set, and all others are 
reset. This prepares the ALB and the address adder to per­
form a IO-bit binary subtraction of the UR from the DR 
without the usual initial carry. This is equivalent to adding 
the one's complement of UR to the DR. 

F,V = 70, 7E, or 7F are not assigned. 



454 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

The following three examples will serve to review and establish familiarity 
with the data movements and functional control field specifications., After the 
problem is stated, the microprogram prepared on the MIDAS input form is 
given and explained. Note that these examples contain micro-orders in fields 
such as the TNA and E, which are not yet covered. Their inclusion will serve 
as an introduction to the remaining ROM fields to be discussed immediately 
after the examples. 

Example 1: Branch on NOT ZERO (Fig. 9.13) 

PROGRAM 'ZERO BRANCH (Bronch on 1) PROGRAMMER ______ DATE 

If (FFRI)-I~O; FFRZ-FPC 
. Else FPC - Next Instruction -

LABEL 
~ 

TEST A N M FROM TO F v F?I •• C 

EI ~1~1~IRIGICjI~ 
EXCEPT CONS 

S D E T. , l' • 14 20 28 2. .. .0 .. .. 80 ' 

NL2~B, , , , , N,~,B,I, " , , , , , , , , , , U,R, , , , C,O,N D,BrI, , , , , , , I 'I I 0.1 
Nll,B,I, , , N~B2 , , , , FF R I, , , , , SP2 B SU B 5, ,5,5, , , , , , , , 
N~B2 RLa'=llt~ b,O-,O,OlO~O Nl B 3 , 'I I 1 I ,~._, ~.l 'I I I Ill' I I EIN,D_tI,N -' 
NI~,B 3 N~ B 4, , , , , F F R 2 , , , , , I I' I I 

~lLB 4 I . T,R UE, , 0000,0,0 , , 1'1 I D,R I , , I FIPICI II I , , , , , I , , , I' E,N,DII,N I 
I I I , I I I , I I , I , I , , I I I 

Figure 9.13 Example I: ZERO branch microroutine. 

If the contents of FFRI minus 1 are not equal to zer6, store the contents 
of FFR2 in FPC; otherwise FPC = the next instruction. 

The five EO's needed to implement this operation are given the labels 
NZB, NZB 1, ... , NZB4. 

NZB loads the specified constant (01 hex) on to the DB 1 bus, which is 
in turn gated into the UR register. (Remember that the UR is first 
cleared; hence, at the end of this operation UR = 0001 hex.) This 
EO specifies NZB 1 as its successor. 

NZBI The F, V fields specify a set and perform binary subtract twice. The 
C7, BAB, and BAA are set. The contents of FFR 1 (specified by 
S field) are automatically transmitted into DR2,3, and in this and 
the following EO cycle, the binary subtraction is performed. The 
RZ (result = zero) trigger is set to reflect the output. This EO 
specifies NZB2 as its successor. 

NZB2 This EO tests if RZ = 1; if the result is true, we terminate this 
operation and branch to instruction fetch routine (hardware ad­
dress generation); otherwise, we branch to NZB3. 

NZB3 This EO brings the contents of FFR2 and places it into the DR 
register. The next address specified is NZB4. 

NZB4 Stores the contents of the DR register into the FPC and terminates 



, Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 455 

the routine by transferring control to the instruction fetch routine 
(staticizer routine). 

Example 2: Byte move (Fig. 9.14) 

PROGRAM" Byte Move Microroutine PROGRAMMER ______ DATE" 

F71.. C 
c 

LABEL 
~ 

TEST A N M FROM TO F V "EXCEPT ON. 

S D U~I:I:IRIGI'iI~ ... E T • 
\ 7. \0 20 2. 2. 30 00 U • 0 

MOVE I M.O V E 1, , , , F,F R,I IM.A RW , INC , ,+,' S . 
~ .Ll.1 , , , , 

MO VE , IMO V E 2 , , , IM.MR UR S PI TR S I G,-.tl " , , 
MO V E 2. I iii..1..1 MtON,E,3, , , , . , F,F R 2t..1 MA,R, , , IN C .+.11 S • • ..1..1..1..1i , I •• , 
M..1~V..1~3 I ..1 ..1 IM.O V,E.4, ••• I I ltR..1..l...l...1 MtMJR.l, I N,O,P .1i ..1.1.1..1..1 , , . , , 
M10,V E 4 G=O ..1 0000,00 IM.ON E , ..1.1 , , , , , NOP , .. . '"' ,..1..1 ..1 E,N,D,I,N , 

..1.1 , 
• 

, , , 

Figure 9.14 Byte move microroutine. 

Move number of characters specified in G (assuming G is set to some count) 
from memory as addressed by FFR 1 to memory as addressed by FFR2. This is 
a memory-to-memory transfer with byte control. 

The first EO labeled MOVE transfers the contents of the SPM register 
FFR 1 and sets the leftmost two bytes of FFR 1 into DR2,3(C7 = 1), incre­
ments this address by + 1 and regenerates it into the FFR I location, trans­
fers the 18-bit address to MMAR, and issues a memory request with a 
wait cycle. The B in the C field would transfer the zero bit of MAR to BAB 
trigger to control the UR switch. The I in the I field indicates an I/O inhibit 
cycle. In this case, since MAR W microcommand is used, the I would affect 
two EO cycles. The function of the third cycle is documented in the EO 
labeled MOVEI. The MMR contains the two-byte word brought from MM. 
The MMR contents are transferred to the UR. The ALB function triggers are 
set and perform one ALB function "Transfer" (UR to IR, 8 bits). The byte 
transferred is determined by the zero bit of the MAR register (even byte if 
zero, odd byte if one). Note that, since we incremented the MM address stored 
in FFR 1 by 1, the next time we go through this loop we will select the 
second UR byte. The G counter is decremented by 1 and an unconditional 
branch is made to EO labeled MOVE2. 

The MOVE2 EO transfers the contents of the SPM word FFR2 (containing 
the MM move to address) to the DR2,3 and on to the MAR register. Thus, a 
second MM request has been initiated, and the I inhibit trigger is set. The 
contents of the FFR2 are incremented by 1 and regenerated into FFR2. An 
unconditional branch is made to the second EO cycle in the M M write cycle 
labeled MOVE3. 

In MOVE3, the contents of IRI are stored in MMR and regenerated in 



456 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

the byte position in the memory specified by the MAR zero bit. Again, an 
unconditional branch is made to MOVE4. 

In MOVE4, a test G = 0 is made. I( the test failed, a branch to MOVE 
is taken; otherwise, a branch to the instruction fetch microroutine is taken. 

Exercise: Write a move character-by-character microroutine taking advantage 
of a two-byte write capability for the two cases. 

1. In the properly aligned case 
2. In the nonaligned case. 

Again, assume in both cases that the G counter is set to the number of bytes 
to be moved, and that the FFR 1 and FFR2 contain the initial addresses of the 
two main memory blocks. 

Example 3: Tally routine (Fig. 9.15) 

PROGRAM Tolly Mic(oroutine PROGRAMMER ______ DATE 

LABEL 
~ 

TEST A N M FROM TO F v 71.. C EXCEPT CONS 

I 7. 14 20 2. 2. 
5 

34 
D 

40 43 ~I ~1:1~IRH'iI'b "" E eo T, 

T,A L,L,Y I , T,A L L Y,1 , " , I F,F R,1 , M,A,R, , , I N,C +,0'_1 5 , , , , , , , , , , 
T,A,L L,Y 1 I TALLY2 , , , , , , U,R , , , CON DBI 5 , , , , , , , , , , 0.1 
TAL L Y2 T A,L L Y 3 , I , MM R DR 5P2 B 5 U,B 5 5,5, , , , , " , 

TALLY3 R,211 T,A L L ,y 6 T A L,L,Y,4 , , , , , , NO,P , , , " " 
, , , , , 

T,A,L L Y 4 I , , , , , T,A,L,L,Y 5 , F,F ,RI21~ ~~~~~ I N~C -hQu 5, , , , , , , , , , , , 
TALLY5 , , T,A L,L,Y,6 DR, , , F,PC, , , NOP , , , 5 , , , , , , , , , 
T,A,L,L,Y,6 I I , , , , , T,A,L,L Y,7 , F F ,R,J, , MA,R, , N,O P , , , 5, , , , , " , , 
TALLY7 I , " , , , 1 T A L,L,Y 8 I R MMR NOP , , , 
T,A,L,L,Y,8 TR UE, , 000,0,0,0 , , I, , , , , , , _L ~ -'- _Lii , , , E,N,D,I,N , 

... 

Figure 9.15 Tally microroutine. 

The following tally routine subtracts a 1 from memory as addressed by R 1 
and branches to address in R2 when R 1 reaches zero. Let us analyze the 
following microroutine. 

The first EO labeled TALLY transfers the contents of FFR 1 in main storage 
into DR2,3, then ,on to MAR. The address is regenerated into FFR 1 un­
changed. An MM cycle request is initiated, and the I/O inhibit trigger is set. 
An unconditional branch to TALL Yl is made by the end of this EO. 

TALLY 1 ~ EO zeros the UR register, loads DB 1 with the specified constant 
"01" hex, and then gates the data bus into UR. At this point, UR is equal 
to "0001" hex. Since this is only the second EO cycle of the MMR cycle, the 
I/O inhibit trigger is set. An unconditional transfer to TALL Y2 is made. 

TALL Y2 specifies that the contents of the MMR is to be transmitted to 
DR2,3. The BAB and BAA are set to control the ALB data transfer. The 
ALB function triggers are conditioned to set and perform twice the ALB func-



Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 457 

tion "Binary Subtract." The setting of BAB and BAA and their automatic 
complement by the end of the first perform cycle insures that the subtraction 
is carried out systematically (the two low-order bytes in the first perform cycle, 
then the two high-order bytes). Note that this subtraction is carried out by 
adding the two's complement of UR to the true DR2,3. At the end of this 
EO an unconditional branch to TALL Y3 is executed. 

In TALL Y3, if the result of the binary subtraction is not zero-that is, 
RZ r!= 1, test is false, branch to TALL Y6; if RZ = 1 is true, branch to 
TALLY4. 

In TALLY 4, the contents of FFR2 in SPM are transferred to DR2,3, then 
regenerated into FFR2 without any modifications. The I/O inhibit trigger is 
set. A nonconditional branch to TALLY5 is then executed. 

TALL Y5 simply stores this address (in DR2,3) into the program counter 
register (FPC) in SPM, and transfers control to EO TALL Y6. 

In TALL Y6 we find that the contents of FFR I are again transferred to 
MAR via the DR2,3; the I/O inhibit trigger is set; DR2,3 is regenerated into 
FFR I without any modifications, and finally an unconditional branch to 
TALL Y7 is executed. 

TALLY7 forms the second EO cycle of the MM write cycle. The contents 
of IR, that is, the result of the binary subtract operation, are set into the 
MMR to be generated (written) into the specified MM location. The I inhibit 
trigger is set, and an unconditional branch is made to TALL YS. 

TALL YS forces the system to transfer unconditionally to the beginning of 
the I fetch routine. 

We have thus far discussed the function control field action implied in 
F = 0, I, 2, and 7 (no action, set and perform, perform, and set function). 
We will continue this section with the other actions implied in the remaining 
groups of F classes of functions. 

5. F = 011, V3 = O-Merge and Increment. This EO inserts the byte 
from DBO into DRO and/or the byte from DBI into DRI, or increments or 
decrements the contents of the DR and stores the result in the SPM. The 
particular operation is specified by the V field. 

The RR and G R counters are not affected by the C field, but they may be 
specified as destination registers. 

The WDB toggle is not changed. Toggles BDB, BAA, and BAB as specified 
in the C field are set to the value of the DB(10). 

For the merge operation (V = OXOOO), the DR need not be specified as the 
destination register. The result of a merge is left in the DR. The timing 
is such that a word is read out from SPM, or one or two bytes may be merged 
into that word, and the resulting word is stored in the SPM. 

For an increment operation (V = OXOI or OXIO), the word may be loaded 
entirely from the SPM, or partly from the MM and partly from any source 
register as specified by the M, S, and D fields before incrementing, or the 
contents of the DR may be held over from previous cycles. The contents of the 
DR are incremented as specified by the V field and stored in the SPM. 



458 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 

The V and C fields have the following interpretations: 

V = 0000 merge as specified by C I, CO, increment by 0 
V = 000 I merge as specified by C I, CO, increment by I 
V = 0010 merge as specified by CI, CO, increment by 2 
V = 0011 merge as specified by CI, CO, increment not defined 
V = 0100 merge as specified by CI, CO, increment by 0 
V = 0101 merge as specified by CI, CO, increment by I 
V = 0110 merge as specified by CI, CO, increment by 2 
V = 0 III merge as specified by C I, CO, increment not defined 

C7. = 0 read from DB into DRO and DRI ifRIDR and CI, CO = 00 
I read from DB into DR2 and DR3 if RIDR and Cl, CO = 00 
(in either case, the state ofWDB is not changed) 

C6 = 0 do not change D BD 
I set BDB accordingly to DBIO 

C5 =:. 0 do not change BAA 
I set BAA according to DB 10 

C4 = 0 do not change BAB 
I set BAB according to DBIO 

C3, C2 ignored 

C I, CO = 00 set DR from bus according to C7 if RID R 
01 clear and set DRO from DBO 
10 clear and set DRI from DBI 
II clear and set DRO from DBO and DRI from DBI 

Appendix E gives a listing of the merge/increment micro-orders. 

Example 1 

Chap. 9 

Assuming FRI (in the SPM) contains the value "ABCD/EFI2" hex, what 
will be the contents of DR after the following EO has been executed: 

al: FRI(s); MERGE(F); DBOI; C7 = I 

The answer' is that after this EO is executed, the FRI and DR will have 
EFI2EFI2. 

Example 2 

If register UR contains" 1234" hex, what will be the value of FR 1 after 
executing the following EO: 

a2: UR(s); FR1(D); MERGE(F); DBO(V) 

The answer is FRI = 1200 0000. How do you justify the answer? 



Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 459 

6. F = 011, V3 = 1 Generate Constant. This EO transmits the byte con­
sisting of V2, C6, C5, C4, C3, C2, CI, CO onto DBI and/or DBO as specified 
by V I and YO. Counters and toggles are not changed unless they are specified 
as destination registers. If the source register specified in the S field and the 
constant are transmitted on the same bus, the logical "OR" will occur on the 
same bus. 

C7, E, I, and the remaining EO fields have the usual meaning. The V field 
controls the transmission of the constant on the DB. V2 is the most significant 
bit of the constant. 

v = OXXX 
IXOOO 
IXOI 
IXIO 
IXII 

Do not transmit constant to DB (see M/INC.) 
Do not transmit constant to either DB 
Transmit constant to DBO only 
Transmit constant DB 1 only 
Transmit constant to both DBO and DB I 

Table 9.2 shows the three basic micro-orders which fall in this area of 
F functions. These mnemonics are also shown in Appendix E. 

Mnemonic 

CON OBO(YY) 

CON OBI (YY) 

CON OBOI (YY) 

Table 9.2. GENERATE CONSTANT 

Bit Patterns 
F Field V Field 
210 3210 

o I I X 0 I 

o I I X 10 

o I I X 10 

F=3·Y3(1) 
(G CON) 

Function and Remarks 

Generate constant (YY) 16 on bus 0 
(YYh6 = (Y2C6CSC4C3C2CICoh 

Generate constant (YY) 16 on bus I 
(YYh6 = (Y2C6CSC4C3C2C,Coh 

Generate constant (YY) 16 on bus 0 and bus I 
(YYh6 = (Y2C6CSC4C3C2CICoh 

A number of microprogramming examples have already used these micro­
orders; hence we will continue with shift control. 

7. F = 100 Shift. This field shifts the contents of the DRone place left 
or right into the SPM. The shift is specified in the V field; all other fields have 
the same meaning. The DR is loaded as usual from the SPM or any other 
source register, partially or entirely before shifting it. If no SPM cycle is 
specified, no shifting occurs. 

The V field designates the shift to be performed as follows: 

Y = 0000 
0001 
0010 

Left Logical 
Left Logical 
Left Logical 

Lost Bit 
Stored in 

BRO 
BR2 

BR2 
BR2 
o 

Vacated Bit 
Filled/rom 



460 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

Lost Bit Vacated Bit 
Stored in Filled/rom 

ool1 Left Logical BR2 BRa 
0100 Left Algebraic* BR2 
0101 Left Algebraic BRa BRa 
0110 Left Algebraic BR2 IR07 ,e URSt 
0111 Left Algebraic BR2 IR07 = URSt 
lOoo Right Logical BR2 
1001 Right Logical BRa BR2 
1010 Right Logical BR2 a 
1011 Right Logical BR2 BRa 
1100 Right Algebraic BR2 
1101 Right Algebraic BRa BR2 
1110 Right Algebraic BR2 DR07t 
1111 Right Algebraic BR2 OR07 ,e OVt 

* A left algebraic shift will set the overflow (OV) if the two most-significant bits of the DR 
are not equal (OR07 ,e DR06); this EO does not reset OV. Resetting OV can be done with a 
set function or a set and perform function. 

t Note: A 1 is supplied if the boolean expression is true; a a is supplied if the boolean expression 
is false. 

Appendix E gives the 16 micro-orders designed to perform the shift control. 

8. F = 101 Test and Branch. This has a very limited usage. It was 
designed to handle a few special cases. The EO makes three successive tests 
and selects the next EO according to the first test condition that is true. The 
three test conditions are specified in the T, D, and S fields, and are executed 
in that order. If the condition specified by the T field is true, the next EO is 
selected from the ROM location specified by the A field. If the T condition is 
false but the D condition is true, the next ROM address is selected from the 
N field. If both the T and D conditions are false, but the S field test condition 
is true, the next ROM address comes from the C and V fields. In this case, 
the C provides the upper 8 bits whereas the V provides the lower 4 bits of the 
12-bit ROM address field. If all three conditions are false, the next EO ROM 
address is obtained by inserting a binary I in the least-significant bit position 
of the current ROM address without changing any other bit. 

These conditions and the types of tests performed are summarized in 
Append.ix E. 

9. F = 110 Set Condition Code. This EO mayor may not set the condition 
code represented by the two bits SREG3 and SREG4. The two bits may be set 
directly from the EO, or as a complex function of the contents of the OR and 
several other machine indications. The variations are specified in the V field. 

V3 bit specifies whether or not the condition code will be set as follows: 

V3 0 Set condition code 
V3 = I Do not set condition code 

The V2, VI, and VO bits define the way in which the condition code is to 
be set ifV3 = O. 



Sec. 9.5 MICROPROGRAMMING AND EO FIELD DECODING 461 

v = OOXX Set condition code as a function of OR, IR07, UR07, URS, 
SCAR, OV, RZ, STR 

v = 0100 
V = 0101 
V = 0110 
V = 0111 

Set condition code to 00 
Set condition code to 01 
Set condition code to 10 
Set condition code to 11 

V = lXXX Condition code is not changed. 

Appendix E shows the classes of the machine operations and the conditions 
in each class under which the condition code is set. 

9.5.3 TNA-Branch Control Fields 

It was stated earlier that the TNA are test and branch fields, which permit 
the microprogram mer to specify one of 63 different tests representing hardware 
or flip-flop conditions that can be tested. The tests are encoded in the 6-bit 
T field. 

The N and the A fields are also 6 bits wide. If the test condition is false or 
if no test condition is specified, the next EO is taken from the address desig­
nated in N. If the test condition is true, the next EO is taken from the 
specified address in A. In both cases, these fields provide only the low-order 
6 bits of the 12-bit ROMAR. This means branching is constrained to a block 
of64 ROM words. 

Another branch option can be specified in the E field. The specific micro­
order therein will cause the A and the N fields to provide a 12-bit jump 
address. This gives the flexibility to jump anywhere in ROM. 

'The conditional branch is implemented in the system as follows: 

A: 1fT-true: A (5-0) - ROMAR (5-0). ROMAR (11-6) 
ROMAR (11-6) remains unchanged. 

N: If F ~. 5 and T-false/F = 5. T-false. D-true 
N (5-0) - ROMAR (5-0). ROMAR (11-6) 
ROMAR (11-6) remains unchanged. 

Note that when M = 0/1, the T field cannot select a register or an indicator 
to be tested if the register or indicator is selected by the D field. 

Appendix G gives the specific tests and the conditions associated with each. 
The format is self-explanatory. 

In the previous exercises we have seen a number of test and branch con­
ditions and conditional test options. The reader should familiarize himself with 
the 63 test and branch conditions encoded in the T field and specified in 
Appendix G. 



462 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

9.5.4 Exception Check Control-E Field 

The E field for the most part is concerned with various' exception condi­
tions in the Spectra 70. There are many data and programming exceptions, 
conditions that may be considered errors or simply indicators to the program 
and may result in an interrupt. They include overflow, underflow, and data 
not being in the correct format or not being in the correct memory location. 
Other conditions tested include the correct decimal code. The E field is also 
a catchall for all other miscellaneous functions which do not fit in any other EO 
field, such as the conditional jump. 

We have seen how the ENDIN micro-order which is specified in the E field 
forces an unconditional jump to the beginning of the instruction fetch routine. 
The ENDIN micro-order is used at the end of the microroutine and will 
automatically jump back to the appropriate (hardware-generated) address in the 
ROM to fetch the next instruction. Another unconditional jump ENDST can 
be used at the end of the instruction fetch to cause a 256-way branch based 
on the Op code in OR. Appendix H gives a listing of all the exception 
memories available. 

Appendix I summarizes the FM (fast memory) field settings. Appendix J 
provides a further explanation of, and the mnemonics for, the T, A, N, E 
field variations. The last, Appendix K, gives a summary of the test and branch 
EO's discussed earlier in the chapter. 



Appendix 9A SCRATCH PAD LOCATION MNEMONICS 463 

APPENDIX 9A: SCRATCH PAD LOCATION MNEMONICS 

S Field Fast Memory Address 
Mnemonic Bit Pattern 

543210 6 5 4 3 2 I 0 

FB 010000 (PS2) (PSI) 0 (B3) (B2) (BI) (BO) 
FB + I 010001 (PS2) (PSI) 0 (B3) (B2) (BI) I 
FRI 010010 (PS2) (PSI) 0 (RI3) (RI2) (RII) (RIO) 
FRI + I 010011 (PS2) (PSI) 0 (RI3) (RI2) (RII) I 
FR2 010100 (PS2) (PSI) 0 (R23) (R22) (R21) (R20) 
FR2" + I 010101 (PS2) (PSI) 0 (R23) (R22) (R21) I 
FG 010110 (G7) (G6) (G5) (G4) (G3) (G2) (GI) 
Note: For FG - C7 = I, if (GO) T I; ,C;7 = C7 if ,(GO) = 0 

I 

FG + I I 010111 I (G7) I (G6) (G5) 1 (G4) (G3) (G2) I 
Note: For FG + I - C7 = I if (GO) =:=. I; C7 = C7 if (GO) = 0 

FUT9 011000 (PS2) (PSI) I I 0 0 I 
FFRI 011010 I I I (RI3) (RI2) (RII) (RIO) 
FFRI + I 011011 I I I (RI3) (RI2) (RII) I 
FFR2 011100 I I I (R23) (R22) (R21) (R20) 
FFR2 + I 011101 I I I (R23) (R22) (R21) I 
FR 011110 0 0 0 0 0 (R23) (R22) 
Note: For ~R - C7 = I, if (R21) ,= I; C7, = C7 if I (R21) = ~ 

FR + I 1 011111 I 0 I. 0 I 0 I 0 I 0 (R23) I 
Note: For FR + I - (C7) = I if (R21) = I; (C7) = ROM C7 if (R21) = 0 

FI 001000 0 0 0 0 0 0 0 
F2 001001 0 0 0 0 0 0 I 
F3 001010 0 0 0 0 0 I 0 
F4 001011 0 0 0 0 0 I I 
F5 001100 0 0 0 0 I 0 0 
F6 001101 0 0 0 0 I 0 I 
F7 001110 0 0 0 0 I I 0 
F8 001111 0 0 0 0 I I I 
FUTIO 000000 (PS2) (PS2) I 0 0 0 0 
FUTII 000001 (PS2) (PS2) I 0 0 0 I 
FUT8 000010 (PS2) (PSI) I I 0 0 0 
FIFR 000011 0 I 0 0 0 I I 
FIM 000100 0 K 0 (PS2) (PSI) 0 0 
Note: For ~IM - K = II if (PS2) ,or (PSI) ;= I 

FIS J 000 10 I I 0 I KI 0 
-- --
(PS2) (PSI) 0 I 

Note: For ~IS - K = I if (PS2) or (PSI) =, I 

FPC I 000 110 I 0 I K I 0 (PS2) (PSI) I 0 
Note: For FrC - K = I ,if (PS2) or (PSI) :: I 

FIW I 000111 I 0 I y I 0 I I I I 
Note: For FIW - Y = I if not PS4 Interrupt 



464 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

APPENDIX 98: SOURCE MNEMONICS 

Sor D Field 
Mnemonic Bit Pattern Source Register Transfer Bus 

543210 

B 010001 B (3-0) Bus 0 (7-4) 

BIR 010010 2 bits from B and Full IR 
B (1-0) Bus A (1-0) 
IRO (7-0) Bus 0 (74)) 
IRI (7-0) Bus I (7-0) 

B:KAP 011110 B (3-0) Bus 0 (3-0) 
. K (7-4) Bus I (7-4) 
A Bus 13 
EON Bus 12 
BK3 Bus II 
PRIV Bus 10 

CFFI 011001 Control flip-flops set I 
BCD Bus 07 
ICAR Bus 06 
RZ Bus 05 
SCAR Bus 04 
MARA (1-0) Bus I (1-0) 

CFF2 011010 Control flip-flops set 2 
CaMP Bus 07 
SIMC Bus06 
ELOR Bus05 
OV Bus 04 
MREGAD (11-8) Bus 0 (3-0) 
MREGAD (7-0) Bus I (7-0) 

CFF3 01 lOll Control flip-flops set 3 
BAA Bus 07 
BAB Bus06 
BDB Bus05 
UDB Bus 04 
US Bus 03 
DS Bus02 
EDR BusOI 
ELAND BusOO 
FMMAR (6-0) Bus I (6-0) 

DR 001011 If C7 = 0, DROI 
DRO(7-0) Bus 0 (7-0) 
DRI (7-0) Bus I (7-0) 

If C7 = I, DR23 
DR2 (7-0) Bus 0 (7-0) 
DR3 (7-0) Bus I (7-0) 

GA 001110 G (7-0) Bus 0 (7-0) 



Appendix 9B SOURCE MNEMONICS 465 

APPENDIX 98: SOURCE MNEMONICS (Continued) 

Sor D Field 
Mnemonic Bit Pattern Source Register Transfer Bus 

543210 

GB 001111 G (7-0) Bus I (7-0) 

INTI 010100 Interrupt register, lower half 
INT (32-25) Bus 0 (7-0) 
INT (24-17) Bus 1(7-0) 

INT2 010101 Interrupt register, upper half 
INT (16-09) Bus 0 (7-0) 
INT (08-01) Bus I (7-0) 

IR 001010 Full IR 
IRO (7-0) Bus 0 (7-0) 
IRI (7-0) Bus 1(7-0) 

IRI 010110 IRI (7-0) Bus I (7-0) 

MACHE 011111 Machine error and IR 
IRO (7-0) Bus 0 (7-0) 
MRPE BusOI 
DRPE Bus 00 
IRI (7-0) Bus I (7-0) 

MAR 011000 MARO(7-0) Bus 0 (7-0) 
MARl (7-0) Bus 1(7-0) 

MMR 001100 MMR 
MRO (8-0) Bus 0 (8-0) 
MRI (8-0) Bus I (8-0) 

MPMR 100000 Memory protect register 
MPMR (3-0) Bus I (7-4) 

OR:R 011100 OR (7-0) Bus 0 (7-0) 
RI (3-0) Bus I (7-4) 
R2 (3-0) Bus I (3-0) 

PS 001101 PS (2-1) Bus 0 (6-5) 

R 001001 Full R register 
RI (3-0) Bus 1(7-4) 
R2 (3-0) Bus I (3-0) 

RI 000111 R 1 (3-0) Bus I (3-0) 

R2 001000 R2 (3-0) Bus I (3-0) 

S 010011 S (7-0) Bus 0 (7-0) 

S:G 011101 Sand G registers 
S (7-0) Bus 0 (7-0) 
G (7-0) Bus I (7-0) 

UR 010000 FullUR .J. 

URO (7-0) Bus 0 (7-0) 
URI (7-0) Bus I (7-0) 



466 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap.9 

APPENDIX 9C: DESTINATION MNEMONICS 

D Field 
Transfer Bus 

Mnemonic Bit Pattern Destination Register 
543210 

or Data 

BUR 010010 Full B reg. and lower 12 bits 
ofUR 

B (3-0) Bus 0 (7-4) 
URO (3-0) Bus 0 (3-0) 
URI (7-0) Bus I (7-0) 
URO (7-4) 0000 

OR 001000 If C7 = 0, DROI 
DRO (7-0) Bus 0 (7-0) 
DRI (7-0) Bus I (7-0) 

If C7 = I, DR23 
DR2 (7:-0) Bus 0 (7-0) 
DR3 (7-0) Bus I (7-0) 

G 011000 G (7-0) Bus I (7-0) 

GUR 010011 Full UR, lower 2 bits of G 
URO (7-0) Bus 0 (7-0) 
URI (7-0) Bus I (7-0) 
G (1-0) Bus A (1-0) 
G (7-2) 000000 

IR 001110 Full I R register 
IRO (7-0) Bus 0 (7-0) 
IRI (7-0) Bus I (7-0) 

IROS 001101 IR register and DR sign reg. 
IRO (7-0) Bus 0 (7-0) 
IRI (7-0) Bus I (7-0) 

If (E Field + 06/07), OS Bus07 
If (E Field = 06/07). 

[ORX (3-0) = 3/5/B/DI, DS 

IR,DR 001100 16 bits to both DR and IR 
If C7 = 0: DRO (7-0) and 

IRO (7-0) Bus 0 (7-0) 
DRI (7-0) and IRI (7-0) Bus I (7-0) 
If C7 = I: DR2 (7-0) and 

IRO (7-0) Bus 0 (7-0) 
DR3 (7-0) and IRI (7-0) Bus I (7-0) 

KAP 011011 K (7-4) Bus I (7-4) 
A Bus 13 
EON Bus 12 
BK3, BK3A Bus II 
PRIV Bus 10 



Appendix 9C DESTINATION MNEMONICS 467 

APPENDIX 9C: DESTINATION MNEMONICS (Continued) 

D Field 
Transfer Bus 

Mnemonic Bit Pattern Destination Register 
543210 

or Data 

MAR 011100 Main memory address reg.; 
perform next EO immediately 

MARA (1-0) Bus A (1-0) 
MARO(7-0) Bus 0 (7-0) 
MARl (7-0) Bus I (7-0) 

MARW 011101 Main memory address reg.; 
wait one EO time before per-
forming next EO 

MARA (1-0) Bus A (1-0) 
MARO(7-0) Bus 0(7-0) 
MARl (7-0) Bus I (7-0) 

MMR 011111 Two byte to MMR 
MRO (8-0) Bus 0 (8-0) 
MRI (8-0) Bus I (8-0) 

MMRI 011110 Single byte to MRO or MRI; 
If MARIO (0): MRO (8-0) Bus I (8-0) 
If MARIO (I): MRI (8-0) Bus I (8-0) 

MPMAR 100000 MPMAR(6-5) Bus A (1-0) 
MPMAR(4-0) Bus 0 (7-3) 

MPMR 100001 MPMR (3-0) Bus I (7-4) 

OR:R 001011 ORand R registers 
OR (':'-0) BusO (7-0) 
RI (3-0) Bus I (7-4) 
R2 (3-0) Bus I (3-:-0) 

PS 001001 Program state registers; 
If R20 (I): PS (2-1) BusO (6-5) 
If R20 (0): PS2 (R22) 

PSI (R21) 

R 001010 Full R register 
RI (3-0) Bus I (7-4) 
R2 (3-0) Bus I (3-0) 

S 011011 S (7-0) Bus 0 (7-0) 

UR 010000 Full UR regist~r 
URO(7-0) Bus 0 (7-0) 
URI (7-0) Bus I (7-0) 

UR,IR 001111 Full UR and IR registers 
URO (7-0) and IRO (7-0) Bus 0(7-0) 
URI (7-0) and IRI (7-0) Bus I (7-0) 

URUS 010001 UR register and U sign register 
URO (7-0) Bus 0 (7-0) 
URI (7-0) Bus I (7-0) 

If E Field ~ 06/07: US Bus 07 
If (E Field :., 06/07). 

[URX (3-0) = 3/5/B/D]: US 



468 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

APPENDIX 9D: F FIELD MNEMONICS AND REQUIRED BIT SETTING 

Mnemonic F V Remarks 

Nap 000 0000 No Function 
SPI 001 OXXX Set Function and Perform Once 
SP2 001 IXXX Set Function and Perform Twice 
SET III XXX X Set Function 

, PRI 010 OXXX Perform Once 
PR2 010 IXXX Perform Twice 
INC 011 OXXX Increment = Set C 1 Co to 00 
CON Oil IXXX Generate Constant onto Bus (Constant 

is V2C6CSC4C3C2Cl Co) 
MIN 011 OXXX 
MGE Oil OXXX Merge and Increment 
SLL 100 OOXX Shift Left Logical 

,SLA 100 OIXX Shift Left Algebraic 
SRL 100 10XX Shift Right Logical 
SRA 100 IIXX Shift Right Algebraic 
TBR 101 XXXX Test and Branch 
SCC 110 XXX X Set Condition Code 

Note: V field positions shown as X will 
be set according to the contents of 
the subfunction field. (Columns 
43-46.) 



Appendix 9E FV FIELD COMBINATIONS 469 

APPENDIX 9E: FV FIELD COMBINATIONS 

Mnemonic 
Bit Patterns 

Function and Remarks 
F V 

CON DBO(YY) 011 IXOI Generate constant (YY) 16 on bus 0 
(YYh6 = (V2C6CSC4C3C2CI Coh 

OBI (YY) 011 IXIO Generate constant (YY)16 on bus I 
(YY)16 = (V2C6CSC4C3C2CICoh 

DBOI (YY) 011 IXII Generate constant (YYh6 on bus 0 and bus I 
(YYh6 = (V2C6CSC4C3C2CI Coh 

INC + 0 011 0000 Increment scratch pad contents by O. C I Co = 00 

+ I 011 000 I Increment scratch pad contents by I. C I Co = 00 

+ 2 011 0010 Increment scratch pad contents by 2. C I Co = 00 

- I 011 0101 Decrement scratch pad contents by I. C I Co = 00 

- 2 011 0110 Decrement scratch pad contents by 2. C I Co = 00 

MGE DBO 011 0000 Merge bus 0 to ORO. Co = I 

OBI 011 0000 Merge bus I to ORI. C I = I 

DBOI 011 0000 Merge bus 0 to ORO and bus I to OR I. 
CICO = II 

MINH + 0 011 0000 Merge bus 0 to ORO and increment scratch pad 
contents by o. Co = I 

H + I 011 000 I Merge bus 0 to ORO and increment scratch pad 
contents by I. Co = I 

H + 2 011 0010 Merge bus 0 to ORO and increment scratch pad 
contents by 2. Co = I 

H - I 011 0101 Merge bus 0 to ORO and decrement scratch pad 
contents by I. Co = I 

H - 2 011 0110 Merge bus 0 to ORO and decrement scratch pad 
contents by 2. Co = I 

L+O 011 0000 Merge bus I to ORI and increment scratch pad 
contents by O. C I = I 

L+I 011 0001 Merge bus I to ORI and increment scratch pad 
contents by I. C I = I 

L + 2 011 0010 Merge bus I to DR I and increment scratch pad 
contents by 2. C I = I 

L - I 011 0101 Merge bus I to DRI and decrement scratch pad 
contents by I. C I = I 

L - 2 011 0110 Merge bus I to DRI and decrement scratch pad 
contents by 2. C I = I 

NOP 000 0000 No Function 

PRI BYTE 010 0000 Perform previously set ALB function once on 8 
bits through ALB to IR. 



470 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

APPENDIX 9E: FV FIELD COMBINATIONS (Continued) 

Mnemonic 
Bit Patterns 

Function and Remarks 
F V 

B4 010 0100 Perform previously set ALB function once on 4 
bits straight through ALB to IR. 

B4NS 010 0011 Perform previously set ALB function once on 4 
bits through ALB to left 4 bits of IR. Right 4 bits 
of IR from BCD resultant sign. Sign is inverse of 
that in PR 1 B4S. 

B4S 010 0010 Perform previously set ALB function once on 4 
bits through ALB to left 4 bits of I R. Right 4 bits 
of IR from BCD resultant sign. 

PRI B4X 010 0110 Perform previously set ALB function once on 4 
bits through ALB crossover to IR. 

B4XZ 010 0111 Perform previously set ALB function once on 4 
bits through ALB crossover to IR and 0000 to 
other 4 bits of IR. 

B4Z 010 0101 Perform previously set ALB function once on 4 
bits through ALB straight to IR and 0000 to 
other 4 bits of JR. 

ZONE 010 000 1 Perform previously set ALB function once on 
right 4 bits through ALB to JR. Left 4 bits of IR 
from zone generator. 

PR2 BYTE 010 1000 Perform previously set ALB function twice on 8 
bits through ALB to JR. 

B4 010 1100 Perform previously set ALB function twice on 4 
bits straight through ALB to JR. 

B4NS 010 1011 Perform previously set ALB function twice on 4 
bits through ALB to left 4 bits of JR. Right 4 bits 
of JR from BCD resultant sign. Sign is inverse of 
that in PR2B4S. 

B4S 010 1010 Perform previously set ALB function twice on 4 
bits through ALB to left 4 bits of JR. Right 4 bits 
of JR from BCD resultant sign. 

B4X 010 1110 Perform previously set ALB function twice on 4 
bits through ALB crossover to IR. 

B4XZ 010 1111 Perform previously set ALB function twice on 4 
bits through ALB crossover to IR and 0000 to 
other 4 bits of IR. 

B4Z 010 1101 Perform previously set ALB function twice on 4 
bits through ALB straight to JR and 0000 to 
other 4 bits of IR. 



Appendix 9E FV FIELD COMBINATIONS 471 

Mnemonic 
Bit Patterns 

Function and Remarks 
F V 

ZONE 010 1001 Perform previously set ALB function twice on 
right 4 bits through ALB to IR. Left 4 bits of IR 
from zone generator. 

SCC NO 110 1000 Condition code does not change. 

OR 110 0000 Set condition code as function of OR. 

0 110 0100 Set condition code to O. 

I 110 0101 Set condition code to I. 

2 110 0110 Set condition code to 2. 

3 110 0111 Set condition code to 3. 

SET AND III 1010 Set ALB function "Logical And" 

BADD III 0010 Set ALB function "Binary Add" 

BSUB III 0011 Set ALB function "Binary Subtract" 

DADD III 0110 Set ALB function "Decimal Add" 

DSUB III 0111 Set ALB function "Decimal Subtract" 

EXOR III 1011 Set ALB function "Exclusive Or" 

OR III 1001 Set ALB function "Logical Or" 

SADD III 0001 Set ALB function "Special Add" 

SAME III 1000 ALB function does not change 

SET SSUB III 1100 Set ALB function "Special Subtract" 

TR III 0100 Set ALB function "Transfer" 

TRC III 0101 Set ALB function "Transfer Complement" 

SLA B2BO 100 0101 Shift Left Algebraic. Fill from B2. Shifted bit 
to BO. 

B2L 100 0100 Shift Left Algebraic. Fill from B2. Shifted bit 
lost. 

EQB2 100 0111 Shift Left Algebraic. Fill with I if US = IR07. 
Shifted bit to B2. 

NEB2 100 OlIO Shift Left Algebraic. Fill with I if US r! IR07. 
Shifted bit to B2. 

SLL BOB2 100 0011 Shift Left Logical. Fill from BO. Shifted bit 
to B2. 

B2BO 100 0001 Shift Left Logical. Fill from B2. Shifted bit 
to BO. 

B2L 100 0000 Shift Left Logical. Fill from B2. Shifted bit 
lost. 

ZB2 100 0010 Shift Left Logical. Fill with O. Shifted bit to 
B2. 

SPI BADD 001 0010 Set and perform once ALB function "Binary 
Add" 

BSUB 001 0011 Set and perform once ALB function "Binary 
Subtract" 



472 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

Mnemonic 
Bit Patterns 

Function and Remarks 
F V 

DADD 001 0110 Set and perform once ALB function "Decimal 
Add" 

DSUB 001 0111 Set and perform once ALB function "Decimal 
Subtract" 

SADD 001 0001 Set and perform once ALB function "Special 
Add" 

SPI SAME 001 0000 Perform previously set ALB function once on 8 
bits. 

TR 001 0100 Set and perform once ALB function "Transfer" 
(UR to JR, 8 bits). 

TRC 001 0101 Set and perform once ALB function "Transfer 
Complement" (UR to JR, 8 bits). 

SP2 BADD 001 .1010 Set and perform twice ALB function "Binary 
Add" 

BSUB 001 1011 Set and perform twice ALB function "Binary 
Subtract" 

DADD 001 1110 Set and perform twice ALB function "Decimal 
Add" 

DSUB 001 1111 Set and perform twice ALB function "Decimal 
Subtract" 

SADD 001 1001 Set and perform twice ALB function "Special 
Add" 

SP2 SAME 001 1000 Perform previously set ALB function twice on 
8 bits. 

TR 001 1100 Set and perform twice ALB function "Trans-
fer" (UR to JR, 8 bits). 

TRC 001 1101 Set and perform twice ALB function "Trans-
fer Complement" (UR to JR, 8 bits). 

SRA B2BO 100 1101 Shift Right Algebraic. Fill from B2. Shifted 
bit to BO. 

B2L 100 1100 Shift Right Algebraic. Fill from B2. Shifted 
bit lost. 

DRB2 100 1110 Shift Right Algebraic. Fill from DR07. Shifted 
bit to B2. 

SRA OVB2 100 1111 Shift Right Algebraic. Fill with 1 if DR07 ,e 

OV; 0 ifDR07 = OV. Shifted bit to B2. 

SRL BOB2 100 1011 Shift Right Logical. Fill from BO. Shifted 
bit to B2. 

B2BO 100 1001 Shift Right Logical. Fill from B2. Shifted 
bit to BO. 

B2L 100 1000 Shift Right Logical. Fill from B2. Shifted 
bit lost. 

ZB2 100 1010 Shift Right Logical. Fill with O. Shifted bit 
to B2. 



Appendix 9F C FIELD (COLUMNS 47-54) 473 

APPENDIX 9F: C FIELD (COLUMNS 47-54) 

1. A breakdown of C field columns and their valid mnemonics is as follows: 

(a) WDB or C7* 
R = set WDB or C7 to 0 
S = set WDB or C7 to 1 

(b) BDB, BAA, BAB 
R = set to 0 
S = set to 1 
T = trigger 
B = set to the value of DB 10 

The setting of BOB, BAA, and BAB is controlled by the same bit in the C 
field (CO). Therefore, if one of these three columns has a mnemonic, the other 
two columns must have either the same mnemonic or the blank. For example, 
if an R appears in the column for BAA, either an R or blank must appear in 
the columns for BOB and BAB. . 

In addition, if an S (set to 1) appears in either of these columns (BOB, BAA, 
BAB) with an F field setting of set and perform (F = 001), this indicates that 
the specified counters should be set and triggered. The mnemonic B may only 
be used if the function is increment or merge (F = 011). 

(c) R Column(C3) 
S = Set R2 to all Qnes [f (OR)] 
T - 1 = Decrement R register by -1 [f (OR)] 
T - 2 = Decrement R register by -2 [f (OR)] 
T - 4 = Decrement R register by -4 [f (OR)] 

The programmer should be extremely cautious in triggering the R register 
since the trigger of R is a function of the OR register. 

A trigger can be generated during a Set Condition Code EO (SCC), Shift 
EO, Set and Perform EO, or a Perform EO. The C3 bit selects R as the register 
to be triggered and the C 1 CO bits select the value to be decremented. The OR 
register determines if R is to be treated as an 8-bit counter or two 4-bit 
counters Rl and R2. Table 9F.l shows the various combinations of the OR 
register and their effects on the R trigger. It should be noted that the mne­
monics Rand B are invalid for the R column (C3). 

*See notes at the end of this appendix. 



474 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9. 

Table 9F.1. R TRIGGER CONTROL 

C3-O 
Mnemonic OR7-5 = 1/0 OR7-5 = J 1/ OR7-6 = 1/ 

T~-O RI (- I) RI (- I) R2 = F (1111) 
R2 = F (1111) R2 = F(IIII) R I - unchanged 

T~-I R (- I) RI (- I) R2 (- I) 
R2 (- I) R I - unchanged 

T~-2 R(- 2) RI (- 2) R2( - 2) 
R2 (- 2) R I - unchanged 

T~-4 R (- 4) RI (- 4) R2 (- 4) 
R2 (- 4) R I - unchanged 

(d) G Column 
Modification of the G register is a function of C2, Cl, CO, and the F 

field. 

C2-O 
Mnemonic 

R~~ 
T-I 
T-2 
T-4 

Effect on G register 

Set G register to a value of 0 
Trigger G register by -I 
Trigger G register by -2 
Trigger G register by -4 

2. Table 9F.2 shows the allowable C field combinations associated with the 
particular function shown. The race condition subroutine checks for proper C 
field combinations. 

Table9F.2. ALLOW ABLE CODING FOR C FIELD 

C6 C5 C4 C3 C2 
Function C7 

BDB BAA BAB R G 

NOP SIR 
SP* SIR T/S/R T/S/R T/S/R 
PR SIR T T T TIS T/R 
MIN/MGE/INC SIR B B B 
CON SIR 
SHIFT SIR T T T TIS T/R (Same as PR) 
TBR 
SCC SIR T T T TIS T/R (Same as PR) 
SET SIR SIR SIR SIR R 

*Either S or R in a Set and Perform function causes a trigger after the function is executed. 



Appendix 9F C FIELD (COLUMNS 47-54) 475 

3. The assembler should set the following bits: 

WDB 
BDB BAA BAB R G Cl CO Assembler Action 

orC7 

R Set C7 = 0 
S Set C7 = I 

B Set C6 = I 
R Set C6 = I, CO = 0 
S Set C6 = I, CO = I 
T Set C6 = I 

B Set C5 = I 
R Set C5 = I, CO = 0 
S Set C5 = I, CO = I 
T Set C5 = I 

B Set C4 = I 
R Set C4 = I, CO = 0 
S Set C4 = I, CO = I 
T Set C4 = I 

S Set C3 = I, CICO = 00 
T - I Set C3 = I, CICO = 01 
T - 2 Set C3 = I, CICO = 10 
T - 4 Set C3 = I, CICO = II 

R Set C2 = I, CICO = 00 
T - I Set C2 = I, CICO = 01 
T - 2 Set C2 = I, CICO = 10 
T - 4 Set C2 = I, CICO = II 

4. Since the particular setting of all registers specified in the C field except 
WDB may be controlled by C1CO, the programmer must use extreme care when 
specifying the setting of each register. He may only call for a setting in the 
C field that will cause the required setting of C 1 CO to be compatible with all 
other registers specified in the C field. For example, the mnemonic S when used 
in BAA column causes CO to be set to 1. The programmer may not use an R 
in the G column of the same EO word since this causes C 1 CO to be set to 00. 

Notes: 

1. Programmers must use extreme care in programming for WDB or C7 
(Column 47). The following rules apply. 

(a) WDB will control the affected half of the DR register only when the 
function (Columns 40-42) is PR 1 or PR2 (Perform), and then only when 
a transfer from the Bus to DR is specified. It should also be noted that 
this control will be on a previous setting of WDB, and not the setting 



476 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

of WDB as specified within the EO word to be executed. In all other 
cases, the desired half of DR is under control of C7. 

(b) WDB may be set only when the functions (Columns 40-42) SPI, SP2 
(Set function and perform), PRI, PR2 (Perform), or SET (Set function) 
are specified. 

Note that any transfers to or from DR register specified in an EO 
word that includes one of the above functions, except as outlined in (a) 
above, will be under control of C7 and not WDB, but WDB will be set 
to the value specified in Column 47 of the coding sheet. In all other 
cases, WDB will not be affected when a value is specified in Column 47. 

2. The assembler sets C7 to 0 or I, depending on whether the mnemonic R 
or S is used by the programmer. If Column 47 is blank, C7 is reset to zero. 



Appendix 9G TEST CONDITION MNEMONICS 477 

APPENDIX 9G: TEST CONDITION MNEMONICS 

T Field 
Mnemonic Bit Test Condition True If 

Pattern 

BOEQI 010110 BO (I) 
BOEQO 010110 Complement test* of BO (I) 
BIR = +1 011001 B3 (I). BI (0)· BO (0)· (IR = 00000000/00000001) 
BAAEQI 100010 BAA (I) 
BAAEQO 100010 Complement test of BAA (I) 
BABEQI 100011 BAB (I) 
BABEQO 100011 Complement test ofBAB (I) 
BOBEQI 100100 BOB (I) 
BOBEQO 100100 Complement test of BOB (I) 
BRTEST 101011 B2 (l)/(R2 = 0000) 

ORI = FS 010000 ORI = 00100010 
ORO = FS 010001 ORO = 00100010 
OSEQO 010010 OS (0) 
OSEQI 010010 Complement test of OS (0) 

GORTST 001100 (G = XXIXXXXX)/(OR = XXIXXXXX)/(OR = 01000001) 
GTEST 010101 [(OR ~ llIXXXXX) . (G4 = O)]j[(OR = IIIXXXXX) . 

(GR6 = 0)] 
G = 0 011101 (G = oooOOOOO)/(G = 10000000) 
G = ONES 011110 G = 11111111 
GGR4 011111 G R ~ (00) 16/(0 I) 16/(02) 16/(03) 16/(04) 16/(80) 16/(81) 16/(82) 16/ 

(83) 16/(84) 16 

IR7EQI 010111 IR07 (I) 
IR7EQO 010111 Complement test IR07 (I) 
IREQO 011010 IR = (00»6 
IRNEO 011010 Complement test of IR = (00»6 
IRXR = 0 011011 /BAA (0) . [I R I (3-0) = 011/ /BAA (I) . [IRO (3-0) = 011 
tlRX6EI 111100 [BAA (0)· IR06 (l)]j[BAA (I). IRI6 (I)] 

MR7EQI 001000 MR07 = (I) . 
MR7EQO 001000 Complement test' of MR07 = (I) 
tMRX6EO 110000 [BAB (0)· MR06 (O)]j[BAB (I). MRI6 (0)] 
tMR06EO 110001 MR06 (0) 
tMRI6EO 110010 MRI6 (0) 
tMR0616 111011 MR06 (I) . MRI6 (I) 
tMRI7EI 110100 MRI7(1) 
tMRX6X7 110101 [BAB (0)· MR06 (I)· MR07 (I)]/[BAB (I). MRI6 (I)· MRI7 (I)] 
tMRSCWM 111101 MR06 (I)· MR07 (I). MRI6 (I). MRI7 (I) 
tMRI4EI 110111 MRI4 (I) 
tMRX5EI lllooo [MARIO (0) • MR05 (I)]j[MARIO (I) . MRI5 (I)] 
tMRX4X5 lllOOI [MARIO (0) . MR05 (0) . MR04 (O)l/[MARIO (I) . MRI5 (0)· 

MRI4 (0)] 
tMRENC 111010 MR05 (0)· MR04 (0)· MRI5 (0)· MRI4 (0) 
tMRXESP 110011 [MARIO (0)· MMRO = XXOOOOOI l/[MAR 10 (I). MMRI = 

XXoooooI] 
tMRXESI 110110 [MARIO (0) ·MMRO = XXoooOOIl/[MARIO (0)· MMRO = 

XXlllIOO]/[MARIO (I). MMRI = XXOOOOOIl/[MARIO (I)· 
MMRI = XXllllOO] 

tMRXESM 111110 [MARIO (0) • MMRO = XXOoooOI l/[MAR 10 (0) . MMRO = 
XXOOllOO]/[MARIO (I). MMRI = XXOOOOOll/[MARIO (I). 
MMRI = XXOOllOO] 



478 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap~ 9 

APPENDIX 9G: TEST CONDITION MNEMONICS (Continued) 

T Field 
Mnemonic Bit Test Condition True If 

Pattern 

OROEQO 000001 ORO (0) 
OROEQI 000001 Complement test of ORO (0) 
ORIEQO 000010 ORI (0) 
ORIEQI 000010 Complement test of OR I (0) 
OR2EQO 000011 OR2 (0) 
OR2EQI 000011 Complement test ofOR2 (0) 
OR3EQO 000100 OR3 (0) 
OR3EQI 000100 Complement test ofOR3 (0) 
OR4EQO 000101 OR4 (0) 
OR4EQI 000101 Complement test ofOR4 (0) 
OR5EQO 000110 OR5 (0) 
OR5EQI 000110 Complement test of OR5 (0) 
OR6EQO 000111 OR6 (0) 
OR6EQI 000111 Complement test of OR6 (0) 
OVEQI 101001 OV (1) 
OVEQO 101001 Complement test of OV (I) 

RZTEST 001001 (RR = ooOOOOoo)/[(OR = I1IXXXXX). (RI = 0000/R2 = 0000)] 
RNEO/I 001010 (RR ;e 00(00000) . (RR ;e 11111111) 
REQIS 001011 RR = XXXXXXXX 
RIEQ1S 001101 RI=I111 
R2EQO 001110 R2 = 0000 
R2EQIS 001111 R2 = 1111 
R21EQO 010011 R21 (0) 
R21EQI 010011 Complement test of R21 (0) 
RIEQO 010100 RI = 0000 
RINEO 010100 Complement test of R I = 0000 
RIEQI 011100 Rl = 0001 
RINEI 011100 Complement test ofRI = 0001 
RZ = I 100000 RZ(1) 
RZ = 0 100000 Complement test of RZ (1) 
RZSCAR 100001 RZ (O)/(RR = 11111111)/SCAR (0) 

SCAR = 0 100101 SCAR (0) 
SCAR = 1 100101 Complement test of SCAR (0) 

TRUE lllill No Test. Result always true 

USEQO 100110 US (0) 
USEQI 100110 Complement test of US (0) 
USEQ07 101010 [US (0) . IR07 (O)]/[US (1) • IR07 (I)] 
URTEST 011000 {BAB (0) . [UR (03-00) > 9]}/{BAB (1) . [UR (13-10) > 911 

*When any Complement Test is specified, the assembler places the bit pattern of the A field 
into the N field of the EO word and the bit pattern of the N field is placed in the A field. For all 
other cases, the A and N fields are placed in their respective positions in the decoded EO word. 

tThese tests only valid when OR ;e 100111XX. 



Appendix 9H EXCEPTION MNEMONICS 479 

APPENDIX 9H: EXCEPTION MNEMONICS 

E Field 
Mnemonic Bit Pattern 

43210 

00000 

A clion and Remarks 

No exception. If test is true, next EO address is: 

25_2° = 25_2° of A field 
2 11 _26 remain unchanged. 

I f test is false, next EO address is: 

25_2° = 25_2° of N field 
2 11 _26 remain unchanged. 

00001 Unconditional jump. Address of next EO is: 

EES 10011 

EXCXX YYYYY 

ENDIN 00010 

ENDST 00011 

25_2° = 25_2° of N field 
2 11_26 

= 25_2° of A field 

(See Appendix 9K). 

Emulator End Staticizing. If test is false, address of next EO is: 

25 _2° = 25_2° of N field 
2 11_26 remain unchanged. 

If test is true, address of next EO is: 

2° = 2° of A field 
25_2 1 = result of logical or of 25_2 1 of A field with 24_2° of 0 R, 

respectively. 
28_26 

= 27_25 of OR, respectively. 
2 11_29 

= 100, respectively. 

XX are two hexadecimal digits which, when converted to binary, 
equal OOOYYYYY. For action resulting from these exceptions, 
refer to 70/45 Processor EO Flow Chart Manual, EDP form 
70-45-101. 

End of instruction. Address of next EO is: 

If test is true: 

25_2° = 25-2° of A field 
2 11_26 

= 101001, respectively 

If test is false: 

25-2° = 25-2° of N field 
2 11_26 remain unchanged. 

End of staticizing. If test is false, address of next EO is: 

25-2° = 25-2° of N field 
2 11_26 remain unchanged. 

If test is true, address of next EO is: 

2° = 2° of A field 
25_2 1 

= result of logical or of 25_2 1 of A field with 24_2° of OR, 
respectively. 



480 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

APPENDIX 9H: EXCEPTION MNEMONICS (Continued) 

E Field 
Mnemonic Bit Pattern A ction and Remarks 

43210 

28_26 = 27_25 of OR. respectively. 
2 11_29 = 000 respectively. 

If OR = (OAh6. set INT21 

MAPBD 10001 Mapped Memory boundary. If MR1 = (8F)16. set INT24. 

NOOP 01110 No-op interrupt. Set INT23. 

SHADE 00100 Address shaded memory. 

TBK3 10010 Trigger BK3 flip-flop. 

APPENDIX 91: M FIELD SETTINGS 

The M field setting controls the operation on Fast Memory and the 
assembler should accomplish the following: 

*1. If neither FROM or TO is Fast Memory, set M = 00. 
2. If FROM is Fast Memory and TO is not Fast Memory, set M = 01. 
3. If FROM is not Fast Memory and TO is Fast Memory, set M = 11. 

*4. If FROM and TO are both the same Fast Memory location~ set 
M = 01. Definition of M field is as follows: 

M = OO-Not a Fast Memory operation 
M = OI-Fast Memory read 
M II-Fast Memory write 
M = IO-Not used 

APPENDIX 9J: T, A, N, AND E FIELD VARIATIONS 

Two tables have been included in this appendix to show the assembler 
action on various combinations of the test field (col. 8-13), the A field (col. 
14-19), the N field (col. 20-25) and the Exception field (col. 55-59). 

Table 9J.I contains the possible variations of T, A, and N if the E field 
was not coded. The column headed by "EXCEPT" shows how the assembler 
automatically codes the EXCEPT field in the decoded EO. The last column 
explains how the A and N fields are decoded under these conditions. 

*The only time the FROM and TO fields may both be Fast Memory is when they are both 
the same Fast Memory location. M must contain the proper binary code if EO is coded in binary. 



Appendix 9J T, A, N, AND E FIELD VARIATIONS 481 

Table 9J.1. ASSEMBLER ACTIONS FOR T, A, N, AND E FIELD VARIATIONS WITH 

UNCODED EXCEPT FIELD 

Test A N EXCEPT* A and N Fields of EO Word Contain 

Coded Coded Coded 00 A = 25_2° of coded A field 
N = 25_2° of coded N field 

Coded Coded Blank 00 A = 25_2° of coded A field 
N = EO address + I (25_2°) 

Coded Blank Coded 00 A = EO address + I (25_2°) 
N = 25_2° of coded N field 

Coded Blank Blank 00 A = EO address + I (2 5_2°) 
N = EO address + I (2 5_2°) 

Blank Coded Coded 01 A = 2 11 _2 6 of coded A fieldt 
N = 25_2° of coded A field 

Blank Coded Blank 01 A = 2 11 _26 of coded A field 
N = 25_2° of coded A field 

Blank Blank Coded 01 A = 2 11 _26 of coded N-field 
N = 25_2° of coded N field 

Blank Blank Blank 01 A = 2 11_2 6 of EO address + I 
N = 25_2° of EO address + I 

*EXCEPT column indicates the action taken by the assembler in decoding the EXCEPT 
field if the programmer has left it blank. 

tN field ignored in this case. 

Table 9J.2. ASSEMBLER ACTIONS FOR T, A, N, AND E FIELD VARIATIONS WITH 

CODED EXCEPT FIELD 

Test A N EXCEPT A and N Fields of EO Word Contain 

Coded Coded Coded 01 A = 25-2° of coded A field* 
N = 25_2° of coded N field 

Coded Coded Blank 01 A = 25_2° of coded A field* 
N = 25_2° of EO address + I 

Coded Blank Coded 01 A = 25_2° of EO address + 1* 
N = 25_2° of coded N field 

Coded Blank Blank 01 A = 25-2° of EO address + 1 * 
N = 25_2° of EO address +1 

Blank Coded Coded 01 A = 2 11 _26 of coded A fieldt 
N = 25_2° of coded A field 

Blank Coded Blank 01 A = 2 11_26 of coded A field 
N = 25-2° of coded A field 

Blank Blank Coded 01 A = 2 11_26 of coded N field 
N = 25_2° of coded N field 

Blank Blank Blank 01 A = 2 11_26 of EO address + I 
N = 25_2° of EO address + 1 

Coded Coded Coded ,e01 A = 25_2° of coded A field 
N = 25_2° of coded N field 

Coded Coded Blank ,e01 A = 25-2° of coded A field 
N = 25-2° of EO address + 1 

Coded Blank Coded ,e01 A = 25_2° of EO address + 1 
N = 25_2° of coded N field 



482 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

Table9J.2. ASSEMBLER ACTIONS FOR T, A, N, AND E FIELD VARIATIONS WITH 

CODED EXCEPT FIELD (Continued) 

Test A N EXCEPT A and N Fields of EO Word Contain 

Coded Blank Blank ,e01 A = 25_2° of EO address + I 
N = 25_2° of EO address + I 

Blank Coded Coded ,e01 A = 25_2° of coded A field 
N = 25-2° of EO address + I 

Blank Coded Blank ,e01 A = 25_2° of coded A field 
N = 25_2° of EO address + I 

Blank Blank Coded ,e01 A = 25_2° of coded N field 
N = 25_2° of EO address +1 

Blank Blank Blank ,e01 A = 25_2° of EO address + I 
N = 25_2° of EO address + I 

*These cases are probably coding errors since the A and N fields of the EO word are 
combined to form one 12-bit address when the exception code is 01 and the combination is 
neither the address of a label nor of N label. 

tN field ignored in this case. 

Table 9J.2 contains all possible variations of T, A, N, and E if the pro­
grammer codes the EXCEPT field himself. The table shows the difference in 
the way the A and N fields are decoded if the EXCEPT field is 01 or if it is 
not 01 (~O 1), since 01 is the only code which changes the addressing scheme. 

Notes: 

1. The assembler decodes the A and N fields as shown except when a com­
plement test is used. Then the A and N fields are treated as. if they were 
reversed, i.e., A field coding is used as if it were in the N field and vice 
versa. 

2. All 6-bit addresses are checked to see if they are in block. 

APPENDIX 9K: TEST AND BRANCH EO 

The test and branch EO is a special EO, the fields in the TBR EO having 
meanings different from the normal EO. 

There may be up to three tests and branches within the same EO and if 
none of the tests is true, Read Only Memory will automatically "drop 
through" to the next sequential EO. This EO may be coded either symbolically 
or "binarily" and the special requirements for both cases are described below. 

I. Symbolically Coded Test and Branch EO 

When the test and branch EO is symbolically coded, the mnemonic TBR is 
used in the F field. Up to three lines of coding may be used for each 
test EO and TBR must appear in the F field (col. 40-42) of all three lines. 



Appendix 9K TEST AND BRANCH EO 483 

In order for the assembler to distinguish between separate EO's, each EO 
must contain a label in the LABEL field on the first line of coding and the 
LABEL field must be blank on the second and third lines of coding if they 
are used. 

Only five fields besides the LABEL field on the coding sheet may be used . 
. These are the TEST field, the A field, the F field, the EXCEPT field, and 
the ABS ADDR field. These fields are used to describe the particular test 
flow desired and are set ~p as follows: 

A. First Card 

1. The LABEL field (col. 1-6) must be coded and with a valid label. All 
characters are valid for a label except the use of a numeric for the 
first character of a label name. The address of this EO is assigned to 
this label and then placed in the tag table. 

2. The TEST field (col. 8-13) must be coded with a valid test mnemonic. 
The bit pattern for this test is placed in T field of the EO word or 
with the proper binary bit pattern (see Appendix 9B). Complement 
tests are not legal for a test EO. 

3. The A field (col. 14-19) must be coded with a valid label of a current 
EO. The EO referred to must be located within the same ROM block 
that the test and branch EO is placed. This field will be the jump 
address of the first test which is contained in the TEST field if the 
test is true. This is placed in the A field of the assembled word. 

4. The F field (col. 40-42) must contain the mnemonic TBR. The bit 
pattern is placed in the F field by the assembler. 

5. The EXCEPT field (col. 55-59) may contain any valid exception 
mnemonic or may be coded in binary or hexadecimal accolding to the 
rules for this field as explained in the specification, or may be left 
blank. This field is placed in the E field of the EO word. 

6. The ABS ADDR field (col. 62-65) may contain a valid octal number to 
specify the desired address of the test and branch EO or may be left 
blank. If blank, the next sequential address is assumed and assigned 
to this EO. 

All other fields must be left blank except the I field (col. 7) which may be 
coded normally to inhibit I/O servicing. 

B. Second Card* 

1. The LABEL field must be blank if this is to be assembled as part of the 
same EO. 

2. The TEST field must contain a valid test pattern for the second test. 
The assembler will place this bit pattern in the D field. Valid tests 
for the second line of coding are: 

*This card not necessary if only one test is desired. If no second test is desired but a third 
test is used, this card must be present and only the F field is coded with TBR. 



484 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 

Bit Pattern 

000001 
000010 
000011 

Meaning 

SSOEC (R I jR2 = O)jR = 0 
OR I = significant start symbol 
ORO = significant start symbol 

Chap. 9 

3. The A field must contain a valid label of a current EO. The EO re­
ferred to must be located within the same ROM block that the test 
and branch EO is placed. This field will b~ the jump address of the 
second test which is contained in the TEST field of the second card 
if the test is true. The assembler will place this address in the N 
field of the EO word. 

4. The F field must contain the mnemonic TBR. 

All other fields should be left blank. 

C. Third Card* 

l. The LABEL field must be blank. 
2. The TEST field must contain a valid test pattern for the third test. 

The assembler will place this bit pattern in the S field. Valid tests for 
the third line of coding are as follows: 

Bit Pattern 

000100 
000101 
000110 
000111 

Meaning 

RI NE condition code 
RGRO 
DRI NE digit select symbol 
ORO NE digit select symbol 

3. The A field must contain a valid mnemonic label. This field will be 
the jump address of the third test which is contained in the TEST 
field of the third card. Because this is a 12-bit address, it is not 
necessary that this label be in the same block. The assembler will 
place this address in the VC fields of the EO word in the format 
C7C6CSC4C3C2CI Co V 3 V 2 V I Vo with the low-order bits in the V field. 
It should be noted, however, that the V field is placed directly in 
front of the C field on the coding form and in the assembled EO word. 

II. Binary Coded Test and Branch EO 

A test and branch EO may also be coded on a singie card by using the 
binary format; requirements for the binary coding are given below in a 
field-by-field description. 

*This card not necessary if only a one or two test EO is desired. The assembler will 
automatically fill in an insert if this card is missing. 

Note: A mnemonic test EO may consist of one, two, or three lines of coding at any time. Error 
messages are printed after the assembled EO word to aid the microprogram mer in de­
bugging his coding. 



Appendix 9K TEST AND BRANCH EO 485 

1. The LABEL field (col. 1-6) may contain any valid label name. 
2. The I field (col. 7) is coded normally to inhibit I/O servicing if neces­

sary. This may be coded either in binary or mnemonically and will be 
placed in the I field of the EO word. 

3. The TEST field (col. 8-13) will contain a valid binary test pattern as 
found in Appendix 9A or may be coded mnemonically. This is the first 
test of the EO and will be placed in the T field of the assembled word. 

4. The A field (col. 14-19) will contain a 6-bit binary pattern describing 
the jump address of the first test if it is true. (The most significant 6 bits 
of the address are omitted because it is required that this jump be within 
block and the most significant 6 bits describe the block address.) These 
6 bits are placed in the A field of the EO word. If desired, this field 
may also be coded with a valid label of a current EO within block. 

5. The N field (col. 20-25) is similar to the A field except this is the jump 
address of the second test (col. 34-39). This address is decoded into the 
N field of the EO word and the same coding rules apply for this as for 
the A field. 

6. The M field (col. 26-27) must contain the binary 00. Without this, the 
FROM and TO fields will not be decoded. 

7. The FROM field (col. 28-33) must contain a valid bit pattern for the 
third test as shown above. This bit pattern is placed in the S field of the 
EO word. 

8. The TO field (col. 34-39) must contain a valid bit pattern for the second 
test as shown above. This bit pattern is placed in the D field of the EO 
word. 

9. The F field (col. 40-42) must contain the bit pattern "101" for a binary 
test and branch EO. Using the mnemonic coding TBR will invalidate 
the assembly and cause an error flag to be set because it will be assumed 
to be a mnemonically coded EO. 

10. The VC fields (col. 43-54) will contain the 12-bit binary jump address 
of the third test coded in the FROM field. This address is coded in the 
format C7C6CSC4C3C2C) Co V 3 V 2 V) Vo with the least significant four 
bits coded in the V field (col. 43-46). This address can only be coded by 
a valid binary 12-bit address which represents the four character octal 
address of the EO that is being referred to. No mnemonic code may be 
used in this field. 

11. The EXCEPT field (col. 55-59) is coded with any valid mnemonic 
exception as described in Appendix 9H or in straight binary. 

12. The CONST field (col. 60-61) is not used in the test and branch EO and 
is ignored .. 

13. The ABS ADDR field (col. 62-65) must be blank or contain a valid 
four character octal number. 

The remaining fields are not used. 



Field ROMAR F VC M S D T N A E I 

3rd 
2nd 

EO test Not 3rd 2nd 1st 
1st 

EXCEPT I 
Description 

adder 
Function 

jump used 
jump jump 

test test test 
adder adder 

field bit 
adder 

Prntr. Char. XXXXt 5* xxx XX XX XX XX XXt XXt XX X 

No. of Bits 12 3 12 2 6 6 6 6 6 5 1 

Note: X indicates a printer graphic; * indicates function field always containing a "5" for a test EO; t indicates the field in octal. 



Chap. 9 PRACTICE PROBLEMS 487 

Assembly Listing Format for Test and Branch EO 

The format of the assembled test and branch EO is as follows: 

ROMAR F V C M S D T N A E I 

XXXX X X XX X XX XX XX XX XX XX X 

where X indicates the number of printer graphics associated with the ap­
propriate fields. All fields are hexadecimal except ROMAR, N, and A, which 
are octal. The test and branch EO decoding is shown on page 486. 

PRACTICE PROBLEMS 

1. Supply the register sizes and bit numbering systems for the foHowing: 

(a) IR 
(b) UR 
(c) MMR 

(d) DR 
(e) OR 
(f) R 

2. How many bits does an MMR read? 

3. How many bits does a scratch pad-read read? 

4. How many bits does an ROM-read read? 

5. What is the cycle oftime ofMM? ROM? SPM? 

6. List the functions specified in the F field. 

(g) BR 
(h) MAR 
(i) GR 

7. What is the binary configuration in the F field for a set function? 

8. What are the differences between set function and the set and perform function? 

9. Determine the operations specified by the F and V fields: 

F V 

a 0 0 1 0 1 0 
b 0 0 0 0 0 
c 0 0 
d 1 1 0 0 1 1 
e 0 1 0 1 1 0 
f 1 0 1 1 0 1 1 
g 0 0 1 0 0 0 
h 0 0 0 0 0 

0 1 1 1 0 
j 0 0 0 0 0 
k 1 1 0 0 
I 0 0 0 0 



488 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

10. Match the bit positions of the C field with the appropriate control flip-flops: 

BAA C4 
BDB C7 
BAB C5 
WDB C6 

11. Explain the use ofWDB. 

12. IfBAA/BAB/BDB is specified in a set and perform function, will·it be triggered and 
then set to the value of CO? 

13. List the bit settings of the M field for the following: 
(a) SPM read 
(b) SPM write 
(c) Register-to-register operation 

What is the only bit configuration that is illegal in the M field? 

14. Write the binary configuration of the S, D, and M fields to accomplish the following 
transfers (assume PSI, HSM = ~O's): 

S D M 

(a) IR -- UR 
(b) UR -- OR:R 
(c) IR -- MARW 
(d) MMR -- FPC (C7 = 1) 
(e) FPC -- MAR (C7 = 1) 
(f) IR -- MMR 
(g) -- G 
(h) G -- IR 

15. Assume in Problem 14 that IR contains (1234 16). What will the contents of each of 
the following be at completion of Problem 14? 

IR _____ _ FPC _____ _ 
UR ______ _ G ______ _ 

OR ______ _ DR ______ _ 
R ______ _ MAR _____ _ 

MMR _____ _ 

16. Write an EO program in binary to add UR to DR right (binary add) 

DR = 11223344 16 

UR = 4334 16 

17. What are the settings of the following registers at the completion of Problem 16? 

IR _____ _ 
BAA _____ _ 
BAB _____ _ 
UR _____ _ 

IS. Write a program in assembler language to multiply the contents of SPM 22 by 4. 



Chap. 9 

19. Assume 

UR = FFFF16 

DR = FFFFFFFF 16 

IR = 432A 16 

PRACTICE PROBLEMS 489 

(a) Write a program that reverses the contents ofIR so that IR contains 34A2 16 • 

(b) Assuming the same operands, write a program that results in the following 
conditions: 
(1) UR A234 16 

(2) IR A234 16 

(3) DR A234 A234 16 

(4) MM at location 234A 16 = A234 16 

20. Assume 

SPM 22 = 0000124E 16 

SPM 70 = 0000126A 16 

SPM 71 = 00001280 16 

Write a program in assembly language that compares the MM locations specified 
by SPM 72 and 73. 

1f(72) = (73), Branch to 124E16 • 

1f(72) > (73), Branch to 126A 16. 

1f(72) < (73), Branch to 1280 16 • 

21. Assume 
SPM 70 = 0000126A 16 

SPM 71 = 0000128A 16 

SPM 22 = 00003100 16 

Write a program that subtracts 1 from the field specified by the MM address in 
SPM 70. If the field at the address specified by SPM 70 = 0, branch to the address 
specified by SPM 71. 

22. Write a program that moves the contents of MM location 1000 through 1002 to MM 
locations 1003 through 1005. Assume 

SPM 70 = 100016 

SPM 71 = 1003 16 

MM 1000 = 010203040506070809 16 

23. Write a program that transfers N number of bytes from MM 100016 to MM 2000 16 • 

Assume 

N = 6310 
SPM 70 = 100016 

SPM 71 = 2000 16 

SPM 74 = N 

24. Code Problem 1 for the assembler and simulator where: 

SPM 74 = 13 16 

MM 1000 = 090807060504030201 16 



490 MICROPROGRAMMING THE RCA SPECTRA 70/MODEL 45 Chap. 9 

1009 
1010 

2000-2020 

OAOBOCODOEOF1011 16 

1213141516171819 16 

FF16,s 

25. Trace the data processing action in the two microroutines shown in Fig. 9.16. 

PROGRAM Microrouline Trace Exercise 

Exercise-I AOO~ (R1)+ R(2) =} Rl 

PROGRAMMER _______ DATE 

L.ABEL 1=71.. C c 

! TEST A to! M FROM TO F v 
~I ~1~1~IRIGI'ih 

EXCEPT °N
S , 7. '0 20 2. 2. 

S 
3' 

0 
00 '3 SS E .0 T. 

R,A 0,0, R,A DO 1, , , , , F,F Rd UR , SET B,A,O 0 S ,S,S, u ' , 
R,A',O 02 RA002 , , , F,F~Rt2~ i PR2 BYTES T T, " , , 

" 

R,A,O,O 2, T.R,U,E, , 0,0 ,0,0,0,0 , , , , , I,R , , F F,R I, I NO P , , S , , , , , , E,N,O,I,N , 
, , , '~i~ 

, 
i.~ i , , , , , , , , , , , 

, , , , , , , , , , , , , , I I III' , , , 
"" , "" 

I 
" 

, , , , , " 
, 

E,X,E,R Cd S E,-,2 I I ASSUM E , ,SPM iF 2 = ,( 0,0,0 01 234,) , , , , , , " , 
~ , , , , " , I , , , , '"' ,S,P,M ,F 1,= ,( 0,0,0 05,5 4 4,),'1

0 , , , , I , , , , 
, , ,0 A, , ,W,,,,,, U • V 

,,,, , , ' , , , I I , , , , 
A,L F,A I, A,L F A,2, , , , , , , F,I, , , , U,R, , SET AN,O, S, ,S,S, , , , , , , , , 
A L F,A 2, , " , , A,L,F,A,3, 1'1.' , , F,2, I ~ i iii...li PIR,2 ftY~1E ,T,T, , I , , I , , 
AL FtA3 T,R,U,ELL 0,0 O,Op,O , " LL J,R , '-iLJ ~t1.U..li ' SIC1C N10..1..1 S , , I , , , E,N,O,I,N , 

Figure 9.16 Trace microroutine. 

REFERENCES 

1. "Spectra 70/45 Processor EO Flow Charts," RCA 'Document #70-45-101, March 
1966. 

2. Benjamin, R. I., "The Spectra 70/45 Emulator for the RCA 301." Communications 
of the ACM, December 1965. Vol. 8, No. 12, p. 748-752. 

3. Vollbrecht, John R., "MIDAS-Microprogramming Design Aid System for RCA 
Spectra 70/45." Presented at the ACM Workshop on Microprogramming, Oct. 7-8, 
1968; Bedford, Mass. (No proceedings were published.) 

4. RCA internal document which "provides a detailed description of the micropro­
grammed algorithms for the 501 emulator in the Spectra 70/45." 

5. "70/45 EO Format Description," RCA Internal Document, December 11, 1967. 


