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Chapter 1

Introduction

The PERQ 16K 20 bit CPU board contains some 261 integrated circuits
varying in complexity from simple TTL gates up to a complete microcode
sequencer. The operation of this unit is covered in general terms in the POS
user manuals, but these manuals do not explain the operation of some of
the more specialised sections of the PCB, for example, the Raster Operation
system, and they also do not cover some of the more complicated features
of many of the other sections. This manual attempts to remedy that, by
explaining the operation of every gate, PAL equation, and state machine on
the CPU module at the hardware level.

1.1 Types of PERQ CPU

The PERQ 1 and PERQ 2 series of workstations have been fitted with 3
different types of CPU module, namely the original 4K Writable Control
Store board used in the PERQ 1, the enhanced 16K Writable Control Store
module introduced with the PERQ 1a, and also used in the PERQ 2 T1 and
the PERQ 2 T2, and finally, the 24 bit 16K WCS unit used in the PERQ2
T4. These modules all share many common features, although there are also
some significant differences between them.

This Technical Reference Manual covers the PERQ 16K CPU module
at component level, and explains the operation of every subsystem of this
unit. The manual is also of relevance to the Original 4K module, provided
that references to the extra sections of the 16K board (for example, the
Multiply/Divide logic and the Extended microcode Sequencer) are ignored.
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The extra sections of the 24 bit CPU are also covered, in particular, the
extended AMUX logic and the 24-bit lookahead carry.

Component references and Signal names used in this manual refer to the
PERQ 20 bit 16K module, except for the extra circuits on the 24 bit version,
where the component number of this board is, of course, used. Therefore,
although the circuitry on the other CPU modules is similar, as the layout is
quite different, care must be taken to translate the component numbers to
those of the board under consideration.

1.2 Audience

This manual was originally produced for Service Engineers who are diag-
nosing and repairing the PERQ CPU to component level, and who need to
understand the operation of the module in order to diagnose faults. It will
also prove useful to advanced programmers who wish to modify the PERQ’s
internal microcode and therefore need to understand how this microcode con-
trols the operation of the CPU, and to hardware designers who wish to design
custom Input/Output boards to fit into the OIO slot, who need information
on the I/O bus operation and timing.

Finally, the manual should prove interesting to those who wish to see
how a complete processor system operates, and how the various functional
subsystems are interrelated.

1.3 Prerequisites

In order to fully understand this manual, the reader should be familiar with
the operation of a microcoded processor system, and more particularly with
the operation of the PERQ microcode instructions covered in, for example,
the POS G.6 microprogrammer’s reference manual, or the ICL publication
’Modifying the Microcode’. It is not, however, essential to have actually
written a microprogram.

It is also necessary to understand the operation of digital electronic cir-
cuits, including the simple gates and flip-flops, but also including PALs and
PROMs, and to understand the basic concepts behind finite state machines.
This information can be found in many books on Digital Electronics, and no
particular one will be recommended here.
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Finally, the reader should have access to data sheets for all the integrated
circuits used in the PERQ CPU, but especially to those for the 74S181 ALU
and the AMD 2910 microcode sequencer, as these contain much information
not contained in the circuit descriptions in this manual.

1.4 Structure of the Remainder of this Man-

ual

The remaining 6 chapters of this technical reference manual cover the indi-
vidual blocks of the PERQ CPU and their interrelations.

Chapter 2 explains the sections that feed data to the ALU, including the
general purpose registers, Arithmetic stack, and the memory data inputs,
along with the AMUX and BMUX multiplexers that select between them

Chapter 3 continues the description of the data path, with an explana-
tion of the arithmetic logic unit, the output registers (including the memory
address and data registers), and the multiplication and division subsystems

The Control Store is described in Chapter 4, along with the way in which
the microcode instructions are decoded, and how they control the other CPU
systems

The Control Store Address Sequencer, along with the conditional branch
logic and microcode jump address are explained in chapter 5

Chapter 6 returns to the data path, with a description of the 16 bit barrel
shifter and it’s associated masking logic, together with an explanation of how
these sections are used for both programmed shifts and graphics (raster)
operations.

Finally, Chapter 7 describes the 2 finite state machines used to control
memory cycles and Raster Operations.
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Chapter 2

Data Paths 1 - Registers

2.1 Introduction

In explaining the operation of the PERQ CPU, there is a problem: It’s
impossible to understand the operation of the Data Path system without
understanding the microcode word that controls it and the control system
that provides that word. It’s also impossible to completely understand the
microcoded control system unless the data path that it controls, and also
that loaded the control store in the first place is fully understood. However,
it will be assumed that a microcode word has been provided by the control
system and is available at the outputs of the data latches (U55, U60, U65,
U110, U43, U41 and U69), and the (conceptually simpler) data path will be
explained first. Then, when the operation of that system is understood, the
control system will be explained

The format of the microcode word is given in figure 2.1, and the leftmost
(most significant fields) control the data path. The leftmost field is the X
field which selects the Destination Register, and thus the general purpose
register will now be described

2.2 General Purpose (X,Y) registers

The main CPU data path is 20 bits wide, the same width as a memory address
(24 bits on the rare T4 CPU board), and the registers are therefore 20 bits
wide also. There are 2 copies of each of the 256 registers on the CPU board,
one selected by the X field (and hence called the X-register) and fed to the A
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X Y A BWH ALU F SF Z C J

Field Width Use
X 8 bits X (Destination) Register Address
Y 8 bits Y (Source) Register Address
A 3 bits A Multiplexer Control
B 1 bit B Multiplexer Control
W 1 bit Enable Write Back to register
H 1 bit Prevent DMA operations
ALU 4 bits Select ALU operation
F 2 bits Select control function
SF 4 bits Select Special Function
Z 8 bits Microcode Data Field
C 4 bits Select Jump Condition
J 4 bits Select Jump type

Figure 2.1: PERQ Microcode Word Format
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input of the ALU, while the other is selected by the Y field (and referred to
as the Y-register) and fed to the B input of the ALU. Therefore, 2 different
registers can be simultaneously selected, and fed to the appropriate inputs
of the ALU. Then, when the arithmetic operation is completed, the output
of the ALU can be simultaneously written to both copies of the register, one
in the X-registers, the other in the Y-registers. This duplication of the main
registers speeds up CPU operation (as the 2 registers required for an ALU
operation can be read in the same cycle), and was common practice in high
speed processors, like the DEC PDP11/45.

Although the 2 banks of registers are very similar in design, there are
some differences between them, so both will described.

2.2.1 X registers

The 256 20-bit X-registers are physically stored in 4 256*4bit RAM chips at
the following locations on the CPU board :

Chip Bits
U80 0-3
U81 4-7
U82 8-11
U111 12-15
U113 16-19

The registers are loaded from the active low outputs of the R-register which
is described in Chapter 3. The outputs from the registers (which are also
active low of course) are fed into the AMUX distributed multiplexer that is
described below. The first thing to consider is the register control signals,
and how the X microcode field addresses the register.

2.2.2 X register control

The chip select lines from the X-register RAMs are tied into a permanently
enabled state, namely -CS1 is grounded, and CS2 is pulled up through a 1K
resistor R1. This leaves 2 control signals, namely -OE (output enable) and
-WE (write enable) to consider
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The output enable signal is known as EX’ (not Enable X register). It
is provided by output 6 of U223 (the AMUX control decoder), and will
be described below. Write enable is produced by U130b, a 74S20 4-input
NAND gate. This gate combines 2 clock signals (CLK-51R and CLK16),
which enable writing after the ALU has completed its operation, with the W
signal from the microcode word and the ABORT’ signal from the memory
cycle control. The W field in the microcode word is used to enable or disable
the writing back of the ALU result into the registers. The ABORT’ signal
disables the write-enable signal if the machine cycle needed data from the
main memory and that data was not valid. This signal will be described in
more detail in Chapter 7.

2.2.3 X register addressing

The next block to be described is logic between the microcode X field and
the address inputs of the X-register RAMs. On the 4K PERQ 1 CPU board,
this logic was little more than a buffer, but on the PERQ 1a (16K) CPU
board, there is additional gating to provide the Indexed addressing feature
of this processor. The logic operates as follows :

Each RAM address line is provided by a 74S51 AND-OR-INVERT gate.
This gate performs the following logic function : XADDR < n >= (X <
n > .1) + (Index < n > .XIndexOn) where the signals are as follows :

Xaddr<n> The nth address input to the RAMs
X<n> The nth bit of the X microcode field
1 a logic one signal provided by the pull-up R5(1k)
Index<n> The nth bit from the Index register
X Index On Enable signal for indexed addressing of X

X Index On is produced by the 74S02 NOR gate U35d, which combines the
2 most significant X field signals, X7 and X6. Therefore, Indexing is enabled
when one of the lower 64 X-registers is selected, and both these signals are
therefore 0 The result of all this logic is that when one of the higher 192
registers is addressed by the microcode, then the address is passed unchanged,
but when one of the first 64 registers is selected, the address is logically ORed
with the output of the Index register. For reference, the gates that perform
this address modification are :
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Bit Gate
0 U74b
1 U75a
2 U75b
3 U96a
4 U96b
5 U74a
6 U94b
7 U94a

2.2.4 Index Register

The Index register is U97, a 74LS273 latch. It is loaded from the outputs of
the R register by the LD INDEX signal, and cleared on a processor reset by
the INIT’ signal. LD INDEX is produced by the Special Function decoder
(U149) and will be described in Chapter 4. This register is common to the
address modification of both the X and Y registers.

2.3 Y registers

Like the X registers, the Y registers are physically produced from 256*4bit
RAMs at the following locations on the CPU board:

Chip Bits
U62 0-3
U61 4-7
U63 8-11
U64 12-15
U83 16-19

2.3.1 Y register control

The Y register chip enable signals are tied to permanently enable the RAMs,
in exactly the same way as the X RAM enable lines described above. The
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Write Enable signal is also provided by the same signal as the X register
Write Enable.

This leaves the Output Enable signal. This signal comes directly from
the single-bit B field in the microcode word. Therefore, the outputs of the
RAMs are enabled when the B field is 0. This field will be described more
fully in the BMUX section below.

2.3.2 Y register addressing

The first stage of the logic to address the Y registers is the same as the
X register addressing logic described above, provided the ‘X’ in the signal is
replaced by a ‘Y’. The Y Index On signal is produced by the 74S02 NOR gate
U95a, while the AND-OR-INVERT gates that actually perform the address
modification are as follows :

Bit Gate
0 U98a
1 U120b
2 U98b
3 U120a
4 U119a
5 U119b
6 U93b
7 U93a

However, the outputs of this circuit are not fed directly to the Y register
RAMs, but are instead connected to the Y address multiplexer built from
2 74S158 devices, U76 and U99. This circuit switches the Y RAM address
inputs between the Y address logic (when the select input is 0) and the X
address logic (when the select input is 1). The select input is connected to
the CPU clock signal CLK-4F, so that during the first part of the microcycle
the Y register is controlled by the Y microcode field (and thus the register
selected by this field is read into the ALU), while in the second part of
the microcycle, when the output from the ALU is being written back to
the registers, the multiplexer switches over, so that both register banks are
controlled by the X field, and so the copy of the destination register (selected
by the X field) in both banks is updated simultaneously.
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2.4 Distributed Multiplexers

A multiplexer is an electronic multi-way switch that is used to select several
different signals. For example, one is needed at the A input to the ALU,
to select between memory data, registers, and the other A-line sources. A
normal multiplexer is one circuit that selects between these signals - like a
multi-way rotary switch. A distributed multiplexer is rather like an inter-
locked set of push-button switches - each signal has it’s own on/off switch (in
this case, a 3-state output) which connects the signal to a common bus. Ex-
ternal logic ensures that only one output is enabled at a time. In the PERQ
CPU, there are 3 main distributed multiplexers, the AMUX and BMUX at
the inputs to the ALU, and the JMUX that is used to select microcode jump
addresses. The latter will be described in chapter 5, while the other 2 are
described below

2.5 AMUX

The AMUX is, as its name implies, a distributed multiplexer used to select
the A input to the ALU. It is controlled by the 3-bit A field in the microcode
word, and can therefore select between 8 inputs. These 8 inputs will now be
described, followed by a discussion of the AMUX control logic.

2.5.1 Input 0 - Shifter

The 16-bit output from the shifter (SHIFT<n>) is gated onto the low 16
AMUX lines via 74S240 inverting buffers, controlled by the ENB SHIFT’
signal. The following buffers are used for this signal :

Bits Buffer
0-7 U140
8-11 U225a-d
12-15 U202e-h

The operation of the shifter is described in chapter 6.
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2.5.2 Input 1 - Opcode file

The opcode file is a 8-byte dual port register file built from 4 74LS670 chips,
which is automatically loaded from the 16 bit memory data bus. The op-
eration and control signals for this register file are described in chapter 5
in relation to the microcode jump address function, which is the main use
of this circuit. For the moment, the only feature that needs to be noted is
that the outputs of this register file (OP<n>) can be transferred onto the
lowest 8 AMUX lines via the 74S240 buffers U161e-h and U182a-d, when the
NEXT OP’ signal becomes active. This signal also enables the Byte Pro-
gram Counter (BPC) via the 74S00 NAND gate U203b, so that the BPC is
incremented on such an instruction. The operation of the BPC is described
more fully in Chapter 5.

2.5.3 Input 2 - Input Port

During an Input/Output microinstruction, the IOB ENB L signal becomes
active when the data on the IOD<n> lines is valid. This signal clocks the
data into the 74S534 latches at positions U245 (low 8 bits) and U248 (high 8
bits). The 3-state output of these chips is gated onto the AMUX lines when
the EIOB’ signal becomes active.

2.5.4 Input 3 - Memory Data

The 16 bit memory data output bus (MDO<n>) is stored in the memory
data output register (MDOR) consisting of the 74S534 latches U247 (bits
0-7) and U252 (bits 8-15) by the CLK MDOR signal. This signal is provided
first latching the MDO VALID H (Memory Data Output Valid) signal from
the memory board, which arrives at the CPU board on pin 141 in the latch
U209h to provide the LMDO VALID H signal (Latched Memory Data Output
Valid). This signal is then NANDed with the CLK-4E clock signal by the
74S00 U232c to produce the CLOCK MDOR signal.

The outputs of the MDOR are gated onto the AMUX0-15 lines by the
EMDO’ signal from the AMUX control logic.
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2.5.5 Input 4 - Memory Data Extended

Since the Memory data bus is 16 bits wide, while the CPU data path is 20
bits wide, there needs to be a way of transferring memory data into the upper
4 bits of a register. This is performed by the MDX (Memory Data eXtended)
logic. The lowest 4 bits of the MDO bus are latched in a 74S534 at location
U230 by the CLK MDOR signal, and thence gated onto the AMUX16-19
lines by the ENB MDX’ signal, which enables the 3-state outputs of this
latch.

2.5.6 Input 5 - Microstate Register

The microstate register is a collection of 20 status bits that are transferred to
the AMUX lines via 3-state buffers. These buffers are enabled by the ENB
UST’ signal from the AMUX control logic, and provide the following signals
:
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Bit Buffer Signal
0 U202d (74S240) BPC<0> (Byte Program Counter bit 0)
1 U202c (74S240) BPC<1>
2 U202b (74S240) BPC<2>
3 U202a (74S240) BPC<3>
4 U185h (74S240) OVF (Overflow Flag)
5 U185g (74S240) EQL (Equal Flag)
6 U185f (74S240) CRY (Carry Flag)
7 U185e (74S240) LSS (Less Flag)
8 U254d (74S240) 0
9 U254c (74S240) STK EMP’ (Stack Empty)
10 U254b (74S240) 0
11 U254a (74S240) 0
12 U123h (74S240) BMUX<16>’ (Inverted B Mux output)
13 U123g (74S240) BMUX<17>’
14 U123f (74S240) BMUX<18>’
15 U123e (74S240) BMUX<19>’
16 U145/O0 (16R4) CCSR0 PAL Arith X,Y diagnostic *
17 U145/O1 (16R4) CCSR0 PAL Carry bit 15 diagnostic *
18 U145/O2 (16R4) CCSR0 PAL Arith X,Y diagnostic *
19 U145/O3 (16R4) CCSR0 PAL Equal diagnostic*
(*) signal undocumented in PERQ systems manuals
and forced to 0 by a bug (?) in the AMUX control logic

2.5.6.1 The CCSR0 PAL

The top 4 signals in the above table are forced low by the AMUX control
logic and the ‘force 0 buffers’ described below. However, they are also driven
by a 16R4 PAL, which is inaccessible in a normal PERQ, and, therefore, not
documented in the Microcode reference manual. Its function seems to be
to enable certain parts of the multiplication logic to be checked. The PAL
accepts 5 bits from the output of the ALU (0-3 and 15) and the control signals
(Arith X, Arith Y, LC<15>, LB<15>, LA<15>, LA=B) that are used by
the multiplication and condition code logic. The latter signals whose names
start with ‘L’ are stored in the 67S380 transparent latch at location U165
which is controlled by the CLK-0R C clock. Therefor, during the second half
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of the microcycle, when the CLK-0R clock is low, these signals are stable.

Signal Latched By Produced from
LC<15> U165c C<15> - ALU 16 bit Carry out
LB<15> U165b BMUX<15>’ - BMUX 15th bit
LA<15> U165a AMUX<15>’ - AMUX 15th bit
LA=B U165d A=B - ALU lower 16 bits all 0 (=) output

Arith X and Arith Y are provided by the ALU control PROM ALD16.1 at
location U105, and indicate if an add or subtract operation is being performed
by the ALU. This circuit is described in Chapter 3 as part of the ALU control
logic.

In order to use this facility, an ALU operation is performed to set the
latched signals described in the last paragraph, together with the R register
outputs, to the correct values. The special function decoder described in
chapter 4 then generates the MUL STEP clock which clocks the latches in
the CCSR0 PAL, and stores the result. The outputs of the PAL can then be
read via the microstate register onto the AMUX lines.

Signal R<15> seems to act as a toggle between checking the correct
operation of the PAL (by feeding the other R lines through it) and checking
the Condition logic. The logic functions are as follows

signal R<15>’=0 R<15>’=1
AMUX<19> R<3> !LA=B
AMUX<18> R<1> !LA<15>+!ArithY.LB<15>+!ArithX.!LB<15>

ArithX.!ArithY.!LA<15>.LB<15>
AMUX<17> R<2> LC<15>
AMUX<16> R<0> !LA<15>+LB<15>.!ArithY+!LB<15>.!ArithX

2.5.7 Input 6 - X Register

This is probably the simplest AMUX input of all - the EX’ output from
the AMUX control logic simply enables the 3-state outputs of the X register
RAMs, which therefore pass their data onto the AMUX<n> lines.
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2.5.8 Input 7 - The Stack

The 16 level arithmetic stack forms the last input to the AMUX. Physically,
the stack consists of 5 16*4 bit 27S07 RAMs, at locations (in increasing bit
order) U121, U163, U220, U226 and U125. The 3-state data outputs of these
RAMs are connected directly to the AMUX lines, and the Data inputs to
the R register outputs (the R register is the latch at the output of the ALU
and is described in Chapter 3). The RAM addressing and control will now
be described.

The RAM address is provided by the 4-bit Stack Pointer – the syn-
chronous 74S169 counter at location U233. The parallel load inputs of this
counter are connected to ground, so that the parallel load function acts as a
reset. This load input is provided by the STK RESET’ signal. The direction
of the counter is controlled by the POP’ signal, which causes the counter
to decrement on a POP instruction, and increment on a PUSH instruction.
The counter is clocked by the CPU clock signal CLK-4J and enabled on
these instructions by the !P input, which is produced by the 74S00 NAND
Gate U237c. This gate combines the STK CLK ENB H (Stack clock enable)
with the ABORT’ signal, thus preventing stack pointer changes if the cycle
is aborted due to a memory cycle not being ready. Finally, the Carry out-
put of the counter provides the STK EMP’ input to the microstate register
described above.

There are 2 control inputs to the chips that make the data stack, namely
CE (Chip Enable) and WE (Write Enable). Both signals are active low. The
write enable signal is produced by the 74S20 NAND gate U139a. It combines
2 CPU clock signals, CLK-16 and CLK-4J, which ensure that the RAM is
only written to when the data inputs are valid, with the ABORT’ signal (to
ensure that the stack will not be altered on an aborted cycle), and the STK
WE (Stack Write Enable) signal. The Chip Enable signal comes from the
74S08 AND gate U231b, which combines the Write Enable signal with the
AMUX control line ENB STK’. Since all the signals involved are active low,
this gate enables the RAM if either the AMUX is selecting the stack OR the
stack is being written to.

2.5.9 Force 0’s

As I mentioned above, the main CPU data path, and hence the AMUX lines
are 20 bits wide. However, not all the inputs use all 20 bits, the Opcode file
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is 8 bits wide (0-7), the MDX input is 4 bits wide (16-19), and so on. When
such inputs are selected, it is necessary to fill up the rest of the 20 bit word
with logical 0’s. Rather than use a separate system for each possible input,
there are common buffers for the 0-7, 8-15 and 16-19 bit fields. They are
located as follows.

Field Buffer Control signal
0-7 U133 (74S240) AZRO<7:0>’
8-15 U253 (74S240) AZRO<15:8>’
16-19 U146e-h (74S240) AZRO<19:16>

In all cases, the inputs to the buffers are connected to ground, while the
outputs are connected directly to the AMUX lines. The 3-state control inputs
to these buffers come from the AMUX control logic that will be described
next

2.5.10 AMUX Control Logic

The control logic for the AMUX distributed multiplexer is composed of 2
circuits. The first is the 74S138 decoder (U229). This decoder is permanently
enabled, and is controlled by the 3 A bits (A<0>, A<1>, A<2>) from the
microcode word data register. The 8 outputs of this decoder provide the
enables for the 8 input systems described above in the standard way.

The second control section is the 74S288 PROM at location U188, and
known as AMX16. This PROM provides the control signals for the Force
Zero buffers, a signal to indicate that the A field has selected one of the 2
memory data functions (MDO and MDX) and a shift type signal (SH TYPE)
to the shifter logic. The PROM is controlled by the A field of the microcode
word, and also by the F (Function) 2-bit field. The PROM decodes the fields
to produce these signals in the following way :
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Address Signal
A0 F<0>
A1 F<1>
A2 A<0>
A3 A<2>
A4 A<1>

ROM Bit Signal Active when
0 Proc Needs MDI A=3 (MDO)

A=4 (MDX)
1 SH TYPE F=2 (Enable Z field as Shifter Control)
3 AZRO<7:0> A=4 (MDX)
4 AZRO<15:8> A=1 (NextOp)

A=4 (MDX)
5 AZRO<19:16> A=0 (Shifter)

A=1 (NextOp)
A=2 (IOB Input Port)
A=3 (MDO)
A=5 (Microstate). This causes a bus
contention with
the CCSR PAL, and may be a bug
in the design

2.6 BMUX

The BMUX is the 2-input distributed multiplexer that selects between the
Y register and constants at the B side input of the ALU. This multiplexer
operates as follows

2.6.1 Input 0 - Y register

The single B bit of the microcode word is directly connected to the output
enable pins of the Y register RAMs. Therefore, when the B field is 0, the
RAMs have their outputs enabled, and pass their connects onto the BMUX
lines.
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2.6.2 Input 1 - Constant

The constant control logic is slightly more complicated, because both 8 bit
and 16 bit constants are allowed by the hardware. In both cases, the top 4
bits are all 0’s, and the lower 8 bits provided by the Y microcode field.

The 74S240 3 state buffer at location U101 connects the Y microcode
field lines to the BMUX<7> - BMUX<0> lines when it is enabled. This
circuit provides the lower 8 bits of all constants. Similarly U102a-d (another
74S240 3-state buffer), which has its 4 inputs grounded, forces 0’s onto the
top 4 BMUX lines. Both these buffers are enabled by the B’ signal, which is
simply the inverted output of the latch that stores the B field.

The BMUX<15>-BMUX<8> lines are driven by different buffers de-
pending on whether a long or short constant is selected. In the case of a
short constant, the buffers U103e-h and U102e-h force 0’s onto the appropri-
ate BMUX lines. These buffers are enabled by the SHORT CONST’ signal,
and have their inputs grounded. U123a-d and U124a-d transfer the contents
of the Z microcode field (Z0-Z7) onto the BMUX<8>-BMUX<15> lines
when a long constant is required. These buffers are enabled by the LONG
CONST’ signal. All the buffers involved are 74S240’s.

The NOP SF’ signal from the JPPAL3 at U108 determines the size of the
constant, being low for a long constant, and high for a short one. This signal
is low during normal long constant cycles (F field is either 0 or 2, SF field
is 0), and also during Push Long Constant instructions, when the F field is
1 and the SF field 5. The resulting signal is NANDed with the B field in
the 74S00 gate U86c to provide the SHORT CONST’ signal. Similarly, the
NOP SF signal, produced by inverting the NOP SF’ signal in the 74S04 NOT
gate U90e, is NANDed with the B field in U86b, another 74S00, to give the
LONG CONST’ signal.

2.7 The modified AMUX control in the T4

CPU

The AMUX control logic was totally redesigned in the 24 bit T4 CPU. The
AMX16 prom was replaced by a 512*8bit PROM designated ‘AMUX24’ lo-
cated at U140. The 74S138 decoder remains, and is now at location U215.
There are 2 microstate registers (in T4 mode), which selected by the state
of the H microcode field. These registers are enabled by outputs on the
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AMUX24 PROM, and output 5 of the U215 is no longer used for this func-
tion. The address inputs of the AMUX24 PROM are assigned as follows:

Addr Signal
A0 F<0> (Microcode F field)
A1 F<1> (Microcode F field)
A2 A<0> (Microcode A field)
A3 A<2> (Microcode A field)
A4 A<1> (Microcode A field)
A5 H (Microcode H field)
A6 CPU type - Controlled by JP1 (Link to earth) and pulled

High by R8. Set to 0 for a T2-compatible CPU, and
1 for a T4 CPU

A7,A8 Connected to ground

The Outputs produced by the ROM are similar to those produced by the
AMX16 ROM in the normal 20 bit CPU. The signals are given here.
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Bit Name Active when Comments
D0 Ustate1’ A=5&H=1&T4 U166 CE’. Select

2nd Microstate register. U166 places
BMUX<19:23> on AMUX<0:7>

D1 Ustate’ A=5&(H=0|T4=0) Enable main microstate
register if A=5 and either
it’s a T2 or H=0
This is a standard 20-bit like
microstate register

D2 AZRO<16:19> A=0 Shifter
A=1 NextOp
A=2 Input Port
A=3 MDO
A=5&H=1&T4 Ustate1 register

Note: Ustate<16:19> are
Not forced to 0. The CCSR0 PAL
Can be read in a T4 (in both modes)

D3 AZRO<8:15> A=1 NextOp
A=4 MDX
A=5&H=1&T4 Ustate1 register

D4 AZRO<0:7> A=4 MDX - Identical to 20 bit CPU
D5 AZRO<20:23> A=0 Shifter

A=1 NextOp
A=2 Input Port
A=3 MDO
A=5 Ustate,Ustate 1

(Both microstate registers)
D6 Sh Type F=2 Identical to 20 bit CPU
D7 Proc Needs MDI A=3 MDO

A=4 MDX
(Identical to 20 bit CPU)

Bit 8 of the main microstate register is driven by the CPU type signal from
JP1. It’s 0 if the CPU is set to 20-bit compatible mode, and 1 if the CPU is
set to T4 mode
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Chapter 3

Data Paths 2 - ALU, Output
registers, Multiplication and
Division

Having seen how to obtain 2 20 bit words (one form the AMUX, and the other
from the BMUX), the means by which they processed by the Arithmetic Logic
Unit - the ALU will be described.

3.1 The 20 bit ALU

The PERQ CPU uses the popular 74S181 ALU to combine the AMUX and
BMUX signals and produce the ALU Y lines. A complete logic diagram to
gate level of this ALU is published in e.g. the Texas Instruments TTL Data
Book Volume 1, and therefore little will be said about the operation of the
device here. For the moment it is sufficent to note that the device combines
2 4 bit words using either one of 16 logic functions or 1 of 16 arithmetic
functions (not all the functions are used in the PERQ).

The distinction is that arithmetic functions have a carry signal between
adjacent bits, whereas logic functions do not. The carry circuitry, and hence
the choice of arithmetic of logical functions is controlled by the ‘M’ input
to the ALU chip, and the particular function selected by the 4 S inputs. In
the PERQ, these signals are driven by the ALU control PROM (ALD16.1),
which decodes the ALU field in the microcode word. This logic is described
in the ALU control section below.
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Since each ALU processes 4 bits, 5 devices are needed for the PERQ’s 20
bit processor. They are physically located at the following locations on the
CPU board :

Bits Location
0-3 U133
4-7 U132
8-11 U152
12-15 U153
16-19 U154

The input and output signals for the ALU will now be described.

3.1.1 ALU Data inputs

The inputs to the ALU are simply the AMUX and BMUX lines that were
described in the last chapter. The apropriate common line for each bit is
directly connected to the A or B ALU input pin. Note that the ALU in the
PERQ operates on active-low data and produces an active-low result.

3.1.2 Carry

For an arithmetic operation, like addition, there needs to be a carry signal
from each bit to the next higher bit. In fact, the ALU chips used in the PERQ
have a carry input signal (which is the carry input to the least significant
bit of that ALU) and a carry output signal (the carry output from the most
significant bit). The simplest scheme (the so-called ‘Ripple Carry), could be
implememtned by linking the carry out of one ALU chip to the carry in of
the next. Conceptually, the ALU circuit has a logic output from each bit
which is fed into the processing circuit for the next bit. Although simple,
this system has the disadvantage that the carry into the highest bit is only
valid when all the lower bits have stabilised, so the addition time is the sum
of the propagation delays for each bit. This therefore means that adders for
long word lengths are slow.

In the PERQ, a faster system, called ‘lookahead’ carry. Each ALU pro-
duces 2 signals, the carry generate signal G<n>’ and the carry propagate
signal P<n>’. Although, in the PERQ, these signals are actually active low,
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in the description that follows, the signals will be described using a posi-
tive logic convention, that is a signal that is active will be given the level 1.
In order to explain how these signals are generated and used, consider the
following 4-bit additions:

sum G P Comments
0011+0101=1000 0 0 No carry out,

carry in will not cause a carry out
1000+0111=1111 0 1 No carry out,

carry in propagated to carry out
1000+1100=0100 1 0 Carry out,

no matter what carry in is

So, the generate signal G is produced if this addition produces a carry out,
independant of the carry in signal, whereas the propagate signal is active if
a carry out would be produced had carry in been active. The carry output
from this 4-bit stage is therefore given by Cout = G + P.Cin. However, this
is not a simply a confusing way of describing a carry.

The important thing is that, unlike a carry out signal, the state of the G
and P signals depend only on the 4 bits being considered - i.e. for each of the
74181’s in the PERQ, the states of the G<n>’ and P<n>’ signals does not
depend on the state of the carry input. Therefore, given an A and B word
to process, the 5 ALU chips can calculate the 5 sets of G<n>’ and P<n>’
simultaneously, without the problem that the (unknown) carry input to that
ALU chip could affect the state. Based on these signals, a fairly simple logic
ciruit that will be described in more detail below can determine the states
of the carry inputs to each of the ALUs. After these signals have stabilised,
the ALU outputs may have to change, based on the carry in signals, but the
G<n>’ and P<n>’ signals will not.

The carry input to a given ALU stage is given by :
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Explanation
Cin<n>= G<n-1> Stage below generated a carry.

+P<n-1>.G<n-2> Stage below propagated a carry
generated 2 stages below.

+P<n-1>.P<n-2>.G<n-3>
+etc

The way this logic is implemented in the PERQ 20 bit CPU will now be
described. U142 is a 74S182 Look-ahead carry generator. This chip accepts
the G<n>’ and P<n>’ signals from 4 ALUs along with a carry input, and,
using the equation given above, determines the Carry input signals for the
3 higher ALUs (The carry input for the least significant ALU is simply the
carry input). Final propagate and generate signals are also produced for the
entire ALU, but these are not used in the PERQ. The 3 carry outputs of
U142 are connected to the carry inputs of U132,U152 and U153 respectively
to provide a look-ahad carry over the lower 16 bits of the ALU.

The is actually little speed disadvantage in using a ripple carry from the
ALU handling bits 12-15 to the most significant ALU. So, as U142 can only
control a total of 4 ALUs, this is what was done. The carry input on the
most significant ALU (U154) is simply linked to the carry output of U153.

The carry output from bit 15 – signal C<15> is latched in U165c (67S380)
by the CLK-0R C clock. It is therefore stable throughout the second half of
the cycle before being latched in the carry flip-flop (U209e - 74S374) by the
rising edge of CLK-0R B at the end of the microcycle. The output of this
flip-flop – old carry’ is processed by the ALU control PROM ALD16.1 (at
location U105) to provide the carry input for the ALU on the next microcycle.
The main carry flag therefore operates over 16 bits.

Carry<19> is the carry output from the most significant ALU bit. It
is latched by U165e in a similar manner to the C<15> signal to produce
the LC<19>’ signal. This signal is then clocked into the extended carry
flip-flop U209g by the CLK-0R B signal at the start of the next microcycle.
The output of this flip-flop is called OLD CARRY<19>’, and is used by the
condition code logic.
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3.1.3 Carry logic in the 24 bit T4 CPU

The carry logic in the 24 bit version of the PERQ CPU is basically similar
to the 20 bit machine. Two 74S182 chips are used, U242 for the lower 4
ALU chips and U243 for the higher 2. Therefore, look-ahead carry is used
over all 24 bits in this processor. Link JP2 selectes whether the equivalent
of Carry<19> comes from either the carry output of the ALU handling bits
16-19 (U263), when the machine acts like a 20 bit CPU, or the carry output
of U263 (which handles bits 20-23), whereupon the processor acts as a 24 bit
machine.

3.2 ALU outputs - the R register

The outputs of the ALU (the ALU Y(n) signals) are latched in the 74S373
transparent latches by the LATCH R signal from the clock generation cir-
cuitry. This signal is low throughout the second half of a microcycle (while
the CLK-0R signal is low), thus latching the ALU outputs. During this half
of the cycle, the registers and stack are updated, but the R latch ensures that
any changes made to the inputs of the ALU will not affect the outputs. The
LATCH R signal goes high shortly after the start of each microcycle, allow-
ing the contents of the latch to be updated, before going low again shortly
before the CLK-0R signal does. The chips that constitute the R-latch are as
follows :

Bits Latch
0-7 U191
8-15 U235
16-19 U143a-d

The outputs of U143 are permantently enabled, since the output enable pin
is grounded. However, the outputs of the latches for the lower 16 bits can
be set to the high impedence state, since these R-lines can also be driven by
the Multiplier register or the Victim latch. The output enable pins of U191
and U235 are driven by the 74S10 NAND gate U213b. This gate disables
the latch outputs when either RD VICTIM or ENB MDR L are active (low),
thus enabling either of these circuits to drive the R-lines.
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The outputs of the R register are linked to the data input pins on the
RAM chips that make up the X and Y registers. During the second half
of the microcycle, the Wr RAM’ signal goes active (unless inhibitied by the
W microcode field), and the contents of the R register are written to the
appropriate X and Y registers. The Register contol logic is described in
chapter 2.

3.3 The memory data register

Since the memory address and data words are calculated by the main ALU,
this is a logical place to describe the registers that store these words.

The ALU Y<n>’ data outputs are stored in the 67S380 inverting trans-
parent latches (U258 for the low byte, and U259 for the high byte) by the
LATCH R signal. The outputs of these latches drive the backplane memory
data input lines, MDI<n>. These outputs are enabled by the ENB MDI’
signal from the 74S10 NAND gate U213c, which combines the following 3
signals : MEM RDING MA/MD, RO/PS’, and CLK-4E. These signals have
the following significance :

The MEM RDING MA/MD signal is driven by the GMV02 PROM
(U204) in the memory state machine. It is active during a memory cycle
when the memory card is accepting address or data words. The operation of
this state machine is described in chapter 7.

The RO/PS’ signal disables the MDI outputs when a raster operation is
in progress, since the raster op logic drives the MDI lines itself.

Finally, the CLK-4E signal ensures that the the outputs are only enabled
during the second half of a microcycle (when the CLK-0R signal is low). This
is the time that the latch is holding the valid memory data.

3.4 The memory address register

The memory address register is similar to the memory data register just
described. The 20 bit ALU Y<n>’ output word is stored in the 74S534
latches by the rising edge of the CLK MA’R<5> signal. The latches used to
perform this function are as follows :
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Bits Latch
0-7 U255
8-15 U257
16-19 U256d-g

During a memory access cycle (that is, when the F microcode field con-
tains 1, and the high bit of the SF field is set), the Load MA output from
the 74S138 decoder U149 in the special function decoder is selected. This
output goes low shortly after the CLK-4G output goes high at the start of
the second half of the microcycle. The Load MA signal is inverted by U234e
(a 74S04 NOT gate) to produce the CLK MA’R<5> signal. Therefore, the
memory address register is loaded at the start of the second half of memory
access microcycles.

The output enable of the memory address register is similar to that for the
mmemory data register. The output enable lines of the 74S534s (signal ENB
MA’) are driven by the 74S00 NAND gate U232d. This gate combines the
MEM RDING MA/MD and CLK-4E signals to enable the memory address
register during the second half of those microcycles when the memory card is
reading the address or data lines. The signals involved are described in the
previous section. However, since the Raster Operation logic does not drive
the memory address lines, but relies on the ALU to calculate the addresses
for such operations, the memory address register is not disabled during such
operations, and the RO/PS’ signal is not an input to U232d.

3.5 The Output Register and IO Cycles

An input/output (IO) cycle is defined by the F microcode field containing 0
and the SF field containg 17(octal). This condition is detected by NANDing
together the SF<0>, SF<1>, SF<2>, SF<3> signals and the F<0>’ and
F<1>’ signals in the 74S30 NAND gate U216. The remaing 2 inputs to
this gate are both driven by the DON’T IO ENB signal from the CPU clock
circuitry. This signal is low for a short period at the start of each microcycle,
thus preventing the output of the gate from going active until the remaining
inputs have stabilised. The output of U216 directly drives the IOB ENB L
signal on the backplane. This signal also drives the clock inputs to the input
port latches U245 and U248 that are described in raltion to the AMUX in
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chapter 2. Shortly after the DON’T IO ENB signal goes low at the end of
the microcycle, the IOB ENB signal swings high and latches the contents of
the IOD data bus in the input port latches, from where it can be read into
the ALU via the AMUX.

A output cycle has the additional condition that the most significant
Z field bit is high. The IOB ENB L signal is inverted by U185a (a 74S240
NOT gate which is permanently enabled), and then NANDed with the Z<7>
microcode data bit and the CLK-4G clock signal by the 74S10 NAND gate
U207b. The output of this gate, known as ENB IODO, therfore goes low
during the second half of output microcycles. This signal enables the outputs
of the IO output latches (U246 for the low byte and U249 for the high byte,
both 67S380s) during the second half of such microcycles. These latches store
the ALU Y<n>’ data outputs when the CLK-0RB signal goes low during
the second half of the microcycle, in an identical manner to the memory data
register.

The IO address lines (IOA<n>) are produced by buffering the microcode
word Z field (Z<n>) by the 74S240 inverting buffers U225e-h and U206e-h.
These buffers are permanently enabled since the enable input is connected
to ground. The Z field, and hence the IOA lines are valid throughout the
microcycle.

3.6 The ALU control PROM

The particular function performed by the ALU is selected by the 27S29
PROM (ALD16.1) at location U105. This PROM combines the ALU mi-
crocode field, the carry input (old carry’), the multiplier control bits (MDR<0,1>),
the lowest bit of the multiplier register (MDR<0>) and the most significant
latched bit of the ALU output from the previous instruction, UW<15>.
From these signals it produces the 5 bit ALU control word (ALUF<0-3>
and ALU M), the ALU carry input (CN<0>, and the ArtihX,Y signals that
are used by the condition code logic. These signals are connected to the
PROM as follows :
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Address Signal
A0 ALU<3> (Microcode bit)
A1 ALU<2>
A2 ALU<1>
A3 ALU<0>
A4 OLD CARRY’
A5 UW<15>
A6 MD INSTR <0>
A7 MD INSTR <1>
A8 MDR<0>

Data Signal
D0 ALU M
D1 ALUF<3>
D2 ALUF<2>
D3 ALUF<1>
D4 ALUF<0>
D5 ARITH X
D6 ARITH Y
D7 CN<0> (Carry Input)

Since there are 4 ALU control bits in the microcode word, there are 16
possible ALU functions. In 2 cases, namely when the ALU field contains 14
(function is A+B) and when the ALU field contains 16 (function is A-B), the
state of the PROM outputs depends on the state of the multiplier control
signals. For the 14 other functions, the ALU control lines depend only on
the state of the microcode ALU field, and these will be described first.

3.6.1 Normal Functions

These 14 functions are best described by the following table :
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ALU field ALU F ALU M ALU fn ArithX ArithY CN<0>
0 1111 1 F=A 0 0 0
1 1010 1 F=B 0 0 0
2 0000 1 F=!A 0 0 0
3 0101 1 F=!B 0 0 0
4 1110 1 F=A.B 0 0 0
5 1101 1 F=A.!B 0 0 0
6 0001 1 F=!(A.B) 0 0 0
7 1011 1 F=A+B 0 0 0
10 0111 1 F=A+!B 0 0 0
11 0100 1 F=!(A+B) 0 0 0
12 1001 1 F=A xor B 0 0 0
13 0110 1 F=A xnor B 0 0 0
15 1001 0 F=A add B 0 1 !(Old carry)
17 0110 0 F=A sub B 1 0 !(Old carry)

The Carry signal is forced low except for the A+B+carry (ALU field = 15)
and A-B-carry (ALU field = 17) operations. Here, the ALD16.1 PROM in-
verts the old carry signal and feeds it to the ALU carry input. This inversion
compensates for the inversion perfomed by U165c in the carry path. The
ArithX and Arith Y signals are used to tell the condition code logic that an
add or subtract was the last ALU function performed. ArithX is high for a
subtraction, and ArithY for an addition. Both signals are low for all other
operations. These signals are also set automatically on the additions and sub-
tractions used in multiply and divide instructions, which will be described
next.

3.6.2 Multiply and divide control of the ALU

3.6.2.1 The Add Instruction

The Add instruction is selected when the ALU field contains 14 (Octal).
When the MDR<0,1> signals select either no operation, or unsigned divide
(i.e. when MDR<1>=0), then the signals are set as follows :

ALU field ALU F ALU M ALU fn ArithX ArithY CN<0>
14 1001 0 F=A add B 0 1 0
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However, when a multiply operation is selected (MDR<1>=1) then the func-
tion performed by the ALU is controlled by the output from the least signif-
icant bit of the multiplier register. The operations performed are :

ALU field ALU F ALU M ALU fn ArithX ArithY CN<0>
MDR(0)=1 (multiplier LSB = 0)
14 1111 1 F=A 0 0 0
MDR(0)=0 (multiplier LSB = 1)
14 1001 0 F=A add B 0 1 0

Therefore, the least significant bit of the Multiplier Register (a 16 bit shift
register) controls whether the ALU performs an add operation or a simple
transfer operation.

3.6.2.2 The subtract instruction

The subtract instruction is selected when the ALU microcode field contains
16 octal. Again, the operation of the ALU is controlled by the MDR<0,1>
signals, but this time, the following operations occur.

When the MDR<0> signal is 0, that is, when either no operation or
an unsigned multiply is selected, the ALU performs the following operation,
independant of the states of any other control signals.

ALU field ALU F ALU M ALU fn ArithX ArithY CN<0>
16 0110 0 F=A sub B 1 0 1

For a signed multiply (MDR<1,0>=11, the ALU operation is controlled
by the least significant bit of the multiplier register, in a similar way to the
add instruction. Here’s what actually happens :

ALU field ALU F ALU M ALU fn ArithX ArithY CN<0>
MDR(0)=1 (Multiplier LSB = 0)
16 1111 1 F=A 0 0 0
MDR(0)=0 (Multiplier LSB = 1)
16 0110 0 F=A sub B 1 0 1
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This is used for handling the most significant bit of the signed multiply
operation. Since the MSB of a signed number can be considered to have a
negative value, if this bit is set, then the shifted multiplicand is subtracted
from the product.

On an unsigned division cycle, the ALU operation is controlled by the
latched Most significant bit of the previous ALU operation. This bit, which
is, of course, a sign bit indicating if the previous result was negative, is taken
from the microcode control store input latch, U56e, and is called UW<15>,
but this reference to the control store has no significance in divide operations,
which do not, of course, write to the control store. Anyway, the operations
performed by the ALU on such a cycle are :

ALU field ALU F ALU M ALU fn ArithX ArithY CN<0>
UW<15>=1 (Last operation’s result was +ve)
16 0110 0 F=A sub B 1 0 1
UW<15>=0 (Last operation’s result was -ve)
16 1001 0 F=A add B 0 1 0

Therefore the sign of the last ALU operation controls whether the divisor
will be added to or subtracted from the shifted remainder register

3.7 The multiplier register

In order to do a shift–and–add multiplication, 2 shift registers are needed,
one to shifter the multiplicand or product, and to accumulate said product,
and the other to shift the multiplier and look at the least significant bit each
time. In the PERQ CPU, the first function is performed by the main CPU
barrel shifter that’s described in chapter 6, while the second is perfomed by
a dedicated shift register – the multiplier register.

This consists of 2 74S299 8-bit universal shift registers are locations U91
(for the low 8 bits) and U89 (for the high 8 bits). The registers are cascaded
in the conventional way by connecting QH’ on U89 to SR on U91 and QA’
on U91 to SL on U89, thus making a 16 bit Universal shift register. The
bidirectional data lines of the register are connected to the R-register outputs
of the ALU circuit, and all the control lines are commoned between the
2 halves of the register. Now, the manner in which the control lines are
provided will be described.
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The register’s 3-state outputs are enabled by the ENB MDR L signal
from the special function decoder circuit desribed in chapter 5. When the
R=product special function is selected (F field = 1 and SF field = 4), this
signal goes low, and enables the 3 state outputs via the G2* control input
on the 74S299’s. It also disables the R register outputs via U213b, a 74S10
NAND gate, as described above.

The shift register is clocked by the MUL STEP signal from output 5 of
the 74S138 decoder U149 in the special function decoder. This signal goes
low shortly after the start of the MUL STEP microcycle, and then returns
high, clocking the multiplier register at the begining of the second half of
that cycle. The MUL STEP signal is eabled by the special function decoder
on Multiply/divide cycles (F=1, SF=1), and also on Load Multiplier register
micrococycles (F=1, SF=2), when the control lines to the multiplier register
are forced into the load state.

The Shift register control lines, S1 and S0, are controlled by MDRI<0>
and MDRI<1> respectively. These signals are provided by the MULT01
PROM at location U106. The Address and data lines for the PROM are
connected as follows:

Address Signal
A0 R<0>’
A1 R<15>’
A2 LA<15>
A3 LB<15>
A4 MDR<15>
A5 MD INST<1>
A6 MD INST<0>
A7 ARITH Y
A8 LD MDR
A9 ARITH X

Data Signal
D1 PR<0> (Multiply Sign extension bit)
D2 MDRI<0>
D3 MDRI<1>
D4 PR<15> (Divide Quotient bit)
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. As can be seen from this table, this PROM controls also provides 2 bits of
the shifter input on multiply and divide cycles, and that function is described
later. The control lines for the multiplier register are defined as follows :

MDRI<0>=MD Instr<0> . !(MD Instr<1>) + Ld MDR
MDRI<1>=MD Instr<1> + Ld MDR

These equations produce the following truth table

MDInstr<1> MDinstr<0> Ld MDR MDRI<1> MDRI<0> Function Comments
0 0 0 0 0 Idle No Op
0 1 0 0 1 Shift Left Divide
1 X 0 1 0 Shift Right Mult
X X 1 1 1 Load Load Multiplier

So, the LD MDR signal from the Special Function decoder forces the shift
register to perform a parallel load operation from the R register. Otherwise,
the shift register shifts left on divide, and shifts right on multiply.

On multiply cycles, the least significant bit of the R register (R<0>’) is
shifted into the register via the SR input of U89. This allows the low bits
of the product (calculated by the shfiter and ALU system) to be shifted into
the multiplier register, and thus allows this register to store the low 16 bits
of the 32 bit product. The complete multiplication algorithm is described
below.

On divide cycles, the sign bit of the last result (bit R<15>’) is inverted by
the 74S240 buffer U151a, which is permanently enabled, and is then loaded
into the multiplier register via the SL input of U91. The inverted sign bit
is the bit of the quotient that has just been calculated, and therefore the
complete quotient is built up in the multiplier register. Again, the complete
algorithm is described below.

3.8 ALU to shifter latches

The other shift register required for a multiplication or division is provided by
the 16 bit barrel shifter that is described in chapter 6. This shifter can also be
used as part of the ALU data path for any shift function. The ALU inputs are
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ALU Output ALU Output15 150 0

Rot L 1

Rot L 2

Figure 3.1: Example of Shifter operation

appended to themselves to make a 32 bit number, and the shifter extracts a
16-bit field from the middle of this number, thus providing the required shift.
This process is illustrated in figure 3.1, and is more completely described in
chapter 6, where the masking function required for shifts is also described.
The most significant bit of the left copy is never used, since including it in
the result field would imply a rotate by 16 bits, with is (of course) the same
thing as a rotate of 0. However, this bit is produced in the PERQ CPU.

The ALU R outputs are latched by 4 67S380 inverting latches at the
following locations :

Latch Bits
U118 24-31
U135 16-23
U117 8-15
U178 0-7

These latches hold the contents of the R register during the first half of
the microcycle (that is, when the CLK-4F signal is low), so that the shifter
inputs are stable, and the ALU can therefore process the shifted version of
the previous ALU result, and are transparent during the second half of the
microcycle, therefore updating the shifter inputs with the new ALU result.
The latch clock signal is provied by NANDing the CLK-4F signal with the
ABORT’ signal (so that the latch is not updated if the microcycle is aborted)
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using the 74S10 gate U207c, and then inverting the result with the 74S04
NOT gate U208c. The outputs of the latches are controlled by the RO/PS
signal from the Raster-Op control register, so that the latches are disabled
on raster operations, and therefore the Raster-Op hardware can drive the
shifter inputs.

Of the 32 inputs to these shifter input latches, all but 2 are directly con-
nected to the apropriate R-register output (R<n> signal). The 2 exceptions
are bits 15 and 16. Bit 15 is the least significant bit of a rotate left 1 bit, and
is therefore the LSB of the partial remainder on division. Bit 16 is the most
significant bit of a rotate right 1 bit, and is is therefore the sign extension
bit on multiplication. These bits are provided by the MULT01 PROM, and
the methods used for determining them will be described next.

3.8.1 MULT01-modified shifter inputs

Bit 15 of the shifter input is provided by the signal PR<15> from the
MULT01 PROM. This signal is defined by the equation :

PR<15> = MDR<15> . !MD INST <1> . MD INST <0>
+R<15> . !(!MD INST <1> . MD INST <0>)

That is to say, bit 15 of the shifter input is simply the R<15> ALU output on
all operations except division, when the most significant bit of the multiplier
reigster (signal MDR<15>, from QA’ of U89) is fed there instead. This
allows the next bit of the divident to be shifted into the ALU path.

The logic for bit 16 (PR<0>) is considerably more complicated, since
this signal is a sign extension bit on multiplication. I will therefore describe
the logic for the 4 possible multiply/divide functions separately, rather than
give the overall equation.

3.8.1.1 Sign extension - OFF

In this mode, PR<0> is simply the R<0> bit of the ALU output, and
therefore no sign extension occurs.
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3.8.1.2 Sign extension - Division

The logic for this mode is identical to the previous case, since the division
operation does not require a shift right function, and so no sign extension is
needed.

3.8.1.3 Sign Extension - Unsigned Multiply

The logic equation for this mode effectively defines a carry out from the top
bit of the ALU, and consists of the following 6 terms, which will be explained
separately.

!PR<0>’= (R15’ . LA15 . ArithY . !ArithX)
+(!R15’ . !LA15 . !ArithY . ArithX)
+(R15’. LB15 . ArithY . !ArithX)
+(LA15 . LB15 . ArithY . !ArithX)
+(!LA15 . LB15 . !ArithY . ArithX)
+(!R15’ . LB15 . !ArithY . ArithX)

The first terms to be considered are those used by addition , which are
the 1st, 3rd, and 4th lines of the above equation. The first term sets the
carry out bit if the output has a 0 in the 15th bit, but the first operand had
a 1 there. This can only happen if a carry was propagated into the 15th
bit. Therefore a carry out should be generated. The 3rd line is identical, but
considers the 15th bit of the second operand. Finally, the 4th line generates
a carry if the 15th bit of both operands is set. In effect, this PROM performs
a propagate-generate carry function as was described above.

The remaining 3 lines are used on subtraction, which is slightly unusual,
because this operation is not used on unsigned multiplication. The second
term sets the carry out bit if a subtraction changes a clear 15th bit of the
1st operand into a set 15th bit. Similarly, the 5th term sets the carry out bit
if the 1st operand has a clear 15th bit, and the second operand a set 15th
bit. Finally the last term sets the carry out signal if both the result and the
second operand have set 15th bits. The exact use of this logic is somewhat
obscure.
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3.8.1.4 Sign Extension - Signed Multiply

In this mode, the MULT01 PROM performs a sign extension function onto
the high bit of the shifted word. The function is defined by the following
equation :

PR<0>’= (R15’ . !LA15)
+(R15’ . !ArithY . !ArithX)
+(R15’ . !LB15 . ArithY)
+(R15’ . LB15 . ArithX)
+(!LA15 . !LB15 . ArithY . !ArithX)
+(!LA15 . LB15 . !ArithY . ArithX)

These terms define when the sign bit of the result will be clear - that’s
to say when the result is positive. The first term say that if a positive result
(R15’ true) is produced from a positive first operand (LA15 false), then the
result is genuinely positive, and the sign bit should be clear.

The second term says that a positive first operand will always produce a
positive result if the function is neither addition or subtraction - when both
ArithX and ArithY are false.

The 3rd and 5th terms are used on addition. Here, the result is tru-
ely positive if either a positive number is produced from a positive second
operand (the case of a positive 1st operand is covered by term 1), or if both
operands are positive.

Finally, the 4th and 6th terms cover subtraction. The sign bit is cleared
(the result is positive) if either a positive result occurs on subtracting a neg-
ative number, or if a negative number is subtracted from a positive number.
It’s fairly easy to see that these cases cover all the ones needed for signed
addition and subtraction, and hence signed multiplication.

3.9 The multiplication algorithm

This hardware has been designed to perform a 16bit * 16bit multiplication
giving a 32 bit product. The system operates as follows : Initially, the
multiplier is loaded into the Multiplier shift register (U89 and U91), and the
multiplicand stored in any CPU register.
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On each cycle, the least significant bit of the multiplier (signal MDR<0>)
controls the ALU via the ALD16.1 PROM. If this bit is set, the ALU adds
the multiplicand register (on the BMUX) to the outputs of the shifter (on the
AMUX), and feeds the result through the shifter, which is set to shift right
by one bit. The shift register is then clocked at the end of the first half of the
microcycle, and the multiplier is shifted one bit to the right. Simultaneously,
the least significant bit of the ALU output (which would otherwise be lost
by the shifter shifting right) is stored in the top bit of the multiplier register,
since R<0> is connected to the SR input of U89.

This cycle is repeated a total of 16 times, after which the contents of
the R register are stored (via the shifter) in a CPU register. This register
contains the top 16 bits of the product, while the lower 16 bits are contained
in the multiplier register, from where they can be transferred into a CPU
register.

3.10 The Division Algorithm

The PERQ 16K CPU was designed to use a non-restoring division algorithm.
This algorithm is related to the normal restoring ‘long division’ operation
performed on binary numbers, and therefore the restoring algorithm will be
explained first.

The traditional long division algorithm first compares the left shifted
divisor with the dividend. If the left shifted divisor is less than the dividend, it
is subtracted, and a 1 shifted into the rightmost bit of the quotient, otherwise
no arithmetic operation is performed, and a 0 is shifted into the rightmost
bit of the quotient. The divisor is now shifted one place to the right, and the
process repeated, until all the quotient bits have been generated.

In practice, this algorithm is modified in 2 ways to make it easier to
implement. Firstly, rather than shifting the divisor to the right (and having
an ALU capable of processing all the bits of the dividend, which is in general
larger than the divisor), it is easier to shift the dividend to the left, and to
subtract the divisor from the most significant bits on each cycle. Secondly,
it is simpler to always subtract the divisor from the shifted dividend, and to
then look at the sign of the result. If the result is positive, which occurs when
the shifted dividend is larger than the divisor, then a 1 is shifted into the
quotient, and the next bit is calculated. However, if the result is negative,
then a 0 is shifted into the quotient, and the divisor is added back, thus
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restoring the original shifted dividend. In either case, the dividend is then
shifted one bit to the left. The extra add operation needed to restore the
orignal dividend is the reason that this method is known as the ‘restoring
division algorithm’.

Now, let the accumulator register that contains the dividend be called
R, and the divisor be called D. After a subtraction that leaves a positive
result, R is shifted left one place, and D is the subtracted from it, leaving
2*R-D. However, if the result in R is negative, then D is added back (the
restore cycle), the result is shifted left one place, and D is again subtracted,
leaving 2*(R+D)-D = 2*R+D. Therefore, the above algorithm can be further
optimised by the following process : Start by subtracting the divisor from
the shifted dividend, as in the restoring algorithm above. Then, on each
subsequent operation, if the previous result was positive, shift a 1 into the
least significant bit of the quotient, shift the modified dividend left 1 bit
and subtract the divisor. If the result was negative, shift a 0 into the least
significant bit of the quotient, shift the modified divisor left 1 bit and add
the divisor. Thus, only one arithmetic operation is required per cycle.

In the PERQ, the dividend is initially stored in the multiplier register.
On each division step, it is shifted left by one bit, and the most significant bit
transferred into the least significant bit of the shifter via the MULT01 PROM
described above. The ALU, which is controled by the ALD16.1 PROM then
performs either an add or subtract operation depending on the sign of the
previous operation - the UW<15> bit. The sign bit is also shifted into
the least significant bit of the multiplier register, which thus builds up the
quotient one bit at a time. After 16 such cycles, the complete quotient has
been generated. An example of the division microcode is given in the POS
G.6 microprogramming manual, and will not therefore be reproduced here,
although the above description of the algorithm and hardware should help
with the understanding of this microprogram.

40



Chapter 4

Control 1 : Clocks and Control
Store

In the last 2 chapter the operation of the main sections of the PERQ 16K
CPU data path has been explained. The control section will be described
next, and the first part of this is the master clock generator

4.1 CPU Clock Signals

A timing diagram of the main PERQ CPU clock signals is given in figure
4.1. The signals are provided as follows :

4.1.1 Master clocks

The main timing signal, CLK-7R is supplied by the PERQ’s RAM board.
It enters the CPU on pin J176 and is buffered by the 4 sections of U240 (a
74S37 NAND gate), all of whose inputs are driven by CLK-7R. The outputs
of these gates provide the first set of clock signals, CLK-4, as follows :

Gate Signal
U240d CLK-4E
U240a CLK-4F
U240b CLK-4G
U240c CLK-4J
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Figure 4.1: PERQ CPU Clock Timing Diagram

42



The only reason that 4 gates are used to provide these signals is to provide
sufficient fan-out to drive all the sections of the CPU that use this clock.
Note that CLK-4 is inverted with respect to CLK-7R and CLK-0R, and its
transitions occur midway between those of CLK-7R and CLK-0R.

The CLK-4G signal is again buffered by 4 inverters (Since again a large
fan-out is needed) to produce the main microcode clock signal, CLK-0R.
The gates that perform this function are all 74S04’s and are at the following
locations:

Gate Signal
U234d CLK-0R A
U234c CLK-0R B
U234f CLK-0R C
U234b CLK-0R D

The same CLK-4G is also fed into the 50ns delay line U77. This produces
5 further main clock signals, at 10ns intervals, namely CLK-6, CLK-16, CLK-
26, CLK-36 and finally CLK-46. CLK-16 is inverted by the 74S04 NOT gate
U90f, to provide the CLK20R signal. Similarly, CLK46 is inverted by the
74S04 NOT gate U234a to produce CLK-51R.

The names of the clock signals indicate the delay in nanoseconds between
that signal and the main reference clock, CLK-0R. Unfortunately, the signal
name does not indicate whether or not the clock edge occurs before or after
the CLK-0R edge, although signals that end with a final letter R are inverted
with respect to those that do not.

4.1.2 Derived Clocks

The following signals are produced by combining the master clock signals
just described, and are used to time the operation of various parts of the
PERQ CPU.

4.1.2.1 LD MIR’

The 2 signals LD MIR’ A and LD MIR’ B are used to load the microcode
pipeline latches (see below) at the start of each microcycle. They are each
produced by a 74S10 3-input NAND gate, U215b and U213a respectively.
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These gates NAND the CLK-4J signal with 2 other signals, ABORT’ and
WR NOW’. Therefore, the LD MIR’ signal has the same timing as CLK-0R,
unless either the microcycle is to be aborted (ABORT’ from the memory
control state machine is low), or the current cycle is the first of the 2 cycles
used to load the writable control store, whereupon LD MIR’ is forced high.
Therefore, on such cycles the microcode pipeline is not reloaded.

4.1.2.2 WR RAM’

This signal is used to write back the contents of the ALU R register into the
main CPU registers during the second half of the microcycle. It is produced
by NANDing CLK-16 and CLK-51R, together with the W microcode word
bit and the ABORT’ signal, using the 74S20 NAND gate U130b. This signal
is therefore an active low pulse during the second half of the microcycle,
provided that the W bit is set (that is, the result should be written back to
the CPU register) and that the cycle is not aborted.

4.1.2.3 WR OP’

The 74S04 NOT gate inverts CLK-36 to produce CLK-41. This signal is
then NANDed with CLK-4J and LD OP by the 74S10 3-input NAND gate
U207a, whose output is connected to the write-enable inputs on the Opcode
file memories, U181, U160, U159 and U200. Therefore, when the LD OP
signal is high (that is, when the Opcode file is being loaded from memory),
the WR OP’ signal goes low for a period in the second half of the microcycle,
while the memory data output is valid, and writes the data into the Opcode
file.

4.1.2.4 LATCH R

The ALU R register is controlled by the 74S02 OR gate U95c. This gate
combines the CLK-6 and CLK-4J signals to produce a signal which goes
high shortly after the start of the microcycle, and goes low again before the
start of the second half of the same cycle. Therefore, the R register is updated
during the first half of the microcycle, but the data is latched throughout
the entire second half.
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4.1.2.5 Stack Write

The 2 clock signals, CLK-4J and CLK-16 are logically NANDed with the
STK WE signal and the ABORT’ signal by the 74S20 gate U130a. This gate
provides an active-low write-enable signal to the stack RAM chips during
the period when LATCH R is low, provided that the STK WE signal is high
(that is, the microcode instruction specifies a write to stack operation), and
that the cycle is not aborted.

4.1.2.6 DON’T IO ENB

The Input/Output gate U216 is disabled by the 74S00 NAND gate U239a
while the microcode pipeline registers are being updated. U239a combines
the CLK-7R and CLK-26 clocks to produce a signal which goes low at the
start of each microcycle.

4.1.2.7 SLIVER CLK

The half-width pipeline registers (U116, U136, U158 and U177) in the Ras-
terOp circuit store the previous source data word, so that non-aligned graph-
ics operations are possible. These registers are updated at the end of each
graphics operation microcycle by a signal called the Sliver Clock. This signal
is produced by the 74S10 NAND gate at location U211c. This gate combines
the CLK-4J and CLK-46 signals, together with the CLK FIFO OUT signal
which enables the sliver clock on graphics cycles. The resulting signal goes
low for a short period at the end of each microcycle.

4.1.2.8 The WCS Write-Enable Clock

The control signal to write to the control store is produced by the enable
gating of the 74S138 decoder U92. This decoder is enabled by a combination
of 3 signals, namely CLK-4E (enabled when high), CLK20R (enabled when
low) and WR NOW’ (again enabled when low). This last signal is active
during the first of the 2 microcycles needed to update the WCS, while the
2 clock signals enable the decoder during the second half of the microcycle,
when the WCS data inputs are stable
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4.1.3 Overview of an Arithmetic Cycle

The most common type of microcycle is probably an ALU operation on 2
registers, with the result being written back to the destination register. The
clock signals for such a cycle operate in the following way.

At the end of the previous cycle, the CLK-4J signal goes low, and forces
the LD MIR’ signals high, thus clocking the microcode word pipeline registers
and the microcode sequencer. The microcode instruction is loaded into the
pipeline register.

Since, during the first half of the microcycle, CLK-4F is low, the Y-
register address multiplexer U76 and U99 feeds the Y microcode field to the
Y-register RAM address inputs. The outputs of the microcode word pipeline
register control the ALU and the registers as was described in the last 2
chapters. Since the LATCH R clock is now high, the R register contains the
result of the ALU operation.

The CLK-4F signal now goes high and therefore the Y-register address
multiplexer applies the X-register (destination) address to the Y-register
RAM address inputs. Therefore, the destination register in both the X and
Y register banks will be updated. The WR RAM’ signal goes low and writes
the ALU result (now stored in the R register) to the destination registers.

Throughout the microcycle, the J-inputs to the microcode address se-
quencer have been stable, and therefore the sequencer has addressed the
next instruction in the control store. Therefore when the CLK-4J signal
goes low at the end of the microcycle, the next instruction is loaded into the
pipeline register.

4.2 CPU Reset

At switch-on, C160 (33 µF) begins to charge via R7 (47 Ω) and R6 (33k).
When the voltage across C160 reaches the threshold of the B input of U238a
(a 74221 Monostable), U238a triggers since its A input is grounded and its
reset input is pulled high via R3 (1k). U238a produces the reset pulses,INIT
and INIT’, for the CPU logic. The Q output of U238a is buffered and inverted
by U254f (a 74S240 inverting buffer, which is permanently enabled), and then
fed to the INIT L signal on the backplane via the edge connector pin J72.

The system can be manually reset by pressing the BOOT switch on the
front panel. This grounds pin J197 of the CPU card and therefore discharges
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C160 via R7. When the BOOT switch is released, a reset operation as
described above occurs

4.3 The Control Store

4.3.1 The Writable Control Store RAM

The PERQ 16K CPU uses a 16K * 48 bit writable control store containing
48 16K * 1 bit 2167 RAM chips. These RAMs are loaded from the UW
register at the output of the ALU, and supply data to microcode pipeline
register. They are addressed by one of 2 buffered address buses produced
by the microcode address sequencer described in chapter 5. These buses
provide identical signals, and the only reason that 2 are used is to provide
sufficient fan-out to drive the RAM address inputs. These address lines are
active-low. The Control store is written to 16 bits at a time, and the 3
write enable signals for this operation are produced by the Special Function
decoder described below.

The Writable control store RAMs are at the following locations on the
CPU board. This table also lists the RAM control and address signals, the
functions of which are described below.

Bit RAM Data In Write En CS Address
0 U59 UW<8> U WR B’ ENB RAM’ B UA<n>B’
1 U33 UW<9> U WR B’ ENB RAM’ B UA<n>B’
2 U27 UW<10> U WR B’ ENB RAM’ B UA<n>B’
3 U52 UW<11> U WR B’ ENB RAM’ B UA<n>B’
4 U34 UW<12> U WR B’ ENB RAM’ B UA<n>B’
5 U5 UW<13> U WR B’ ENB RAM’ B UA<n>B’
6 U26 UW<14> U WR B’ ENB RAM’ B UA<n>B’
7 U36 UW<15> U WR B’ ENB RAM’ B UA<n>B’
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8 U35 UW<8> U WR A’ ENB RAM’ A UA<n>B’
9 U6 UW<9> U WR A’ ENB RAM’ A UA<n>B’
10 U29 UW<10> U WR A’ ENB RAM’ A UA<n>B’
11 U28 UW<11> U WR A’ ENB RAM’ A UA<n>B’
12 U32 UW<12> U WR A’ ENB RAM’ A UA<n>B’
13 U4 UW<13> U WR A’ ENB RAM’ A UA<n>B’
14 U1 UW<14> U WR A’ ENB RAM’ A UA<n>B’
15 U9 UW<15> U WR A’ ENB RAM’ A UA<n>B’
16 U44 UW<0> U WR B’ ENB RAM’ B UA<n>A’
17 U22 UW<1> U WR B’ ENB RAM’ B UA<n>A’
18 U18 UW<2> U WR B’ ENB RAM’ B UA<n>A’
19 U16 UW<3> U WR B’ ENB RAM’ B UA<n>A’
20 U21 UW<4> U WR B’ ENB RAM’ B UA<n>A’
21 U24 UW<5> U WR B’ ENB RAM’ B UA<n>A’
22 U15 UW<2> U WR A’ ENB RAM’ A UA<n>A’
23 U42 UW<4> U WR A’ ENB RAM’ A UA<n>A’
24 U49 UW<0> U WR A’ ENB RAM’ A UA<n>A’
25 U48 UW<1> U WR A’ ENB RAM’ A UA<n>A’
26 U20 UW<6> U WR B’ ENB RAM’ B UA<n>A’
27 U11 UW<3> U WR A’ ENB RAM’ A UA<n>A’
28 U46 UW<7> U WR B’ ENB RAM’ B UA<n>A’
29 U50 UW<5> U WR A’ ENB RAM’ A UA<n>A’
30 U19 UW<6> U WR A’ ENB RAM’ A UA<n>A’
31 U39 UW<7> U WR A’ ENB RAM’ A UA<n>A’
32 U48 UW<0> U WR C’ ENB RAM’ C UA<n>A’
33 U47 UW<1> U WR C’ ENB RAM’ C UA<n>A’
34 U13 UW<2> U WR C’ ENB RAM’ C UA<n>A’
35 U37 UW<3> U WR C’ ENB RAM’ C UA<n>A’
36 U12 UW<4> U WR C’ ENB RAM’ C UA<n>A’
37 U25 UW<5> U WR C’ ENB RAM’ C UA<n>A’
38 U45 UW<6> U WR C’ ENB RAM’ C UA<n>A’
39 U38 UW<7> U WR C’ ENB RAM’ C UA<n>A’
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40 U31 UW<8> U WR C’ ENB RAM’ C UA<n>B’
41 U3 UW<9> U WR C’ ENB RAM’ C UA<n>B’
42 U54 UW<10> U WR C’ ENB RAM’ C UA<n>B’
43 U53 UW<11> U WR C’ ENB RAM’ C UA<n>B’
44 U57 UW<12> U WR C’ ENB RAM’ C UA<n>B’
45 U30 UW<13> U WR C’ ENB RAM’ C UA<n>B’
46 U2 UW<14> U WR C’ ENB RAM’ C UA<n>B’
47 U58 UW<15> U WR C’ ENB RAM’ C UA<n>B’

Since the bits are somewhat scrambled, the following table may help with
working out the values to load into the control store.

ALU Load Load Load
Bit Low Mid High

0 24(ALU2) 16(SF0) 32(Y0)
1 25(ALU3) 17(SF1) 33(Y1)
2 22(ALU0) 18(SF2) 34(Y2)
3 27(W) 19(SF3) 35(Y3)
4 23(ALU1) 20(F0) 36(Y4)
5 29(A0) 21(F1) 37(Y5)
6 30(A1) 26(H) 38(Y6)
7 31(A2) 28(B) 39(Y7)
8 8(Z0) 0(J0) 40(X0)
9 9(Z1) 1(J1) 41(X1)
10 10(Z2) 2(J2) 42(X2)
11 11(Z3) 3(J3) 43(X3)
12 12(Z4) 4(Cond0) 44(X4)
13 13(Z5) 5(Cond1) 45(X5)
14 14(Z6) 6(Cond2) 46(X6)
15 15(Z7) 7(Cond3) 47(X7)

4.3.2 The Microcode Pipeline Register

The 48 bit output of the control store is clocked into the microcode pipeline
register by the rising edge of the LD MIR’ signal. This register consists of
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48 D-type flipflops at the following locations of the CPU board :

Bit Signal Latch Type
0 J0 U69d 74S175
1 J1 U69c 74S175
2 J2 U69b 74S175
3 J3 U69a 74S175
4 Cond0 U41d 74S374
5 Cond1 U41c 74S374
6 Cond2 U41b 74S374
7 Cond3 U41a 74S374
8 Z0 U41h 74S374
9 Z1 U41g 74S374
10 Z2 U41f 74S374
11 Z3 U41e 74S374
12 Z4 U43d 74S374
13 Z5 U43c 74S374
14 Z6 U43b 74S374
15 Z7 U43a 74S374
16 SF0 U43h 74S374
17 SF1 U43g 74S374
18 SF2 U43f 74S374
19 SF3 U43e 74S374
20 F0 U110d 74S175
21 F1 U110c 74S175
22 ALU0 U65g 74S374
23 ALU1 U65h 74S374
24 ALU2 U65b 74S374
25 ALU3 U65a 74S374
26 H U110b 74S175
27 W U65c 74S374
28 B U110a 74S175
29 A0 U65d 74S374
30 A1 U65e 74S374
31 A2 U65f 74S374
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32 Y0 U60g 74F374
33 Y1 U60e 74F374
34 Y2 U60h 74F374
35 Y3 U60f 74F374
36 Y4 U60c 74F374
37 Y5 U60a 74F374
38 Y6 U60d 74F374
39 Y7 U60b 74F374
40 X0 U55f 74F374
41 X1 U55h 74F374
42 X2 U55e 74F374
43 X3 U55g 74F374
44 X4 U55b 74F374
45 X5 U55d 74F374
46 X6 U55a 74F374
47 X7 U55c 74F374

The output-enable pins of the 74S374s and 74F374s are grounded so that
the outputs of these latches are permanently enabled. Similarly, the reset
input of U110 is pulled high via R3 (a 1k resistor), so that this latch is never
reset. However, the reset input of U69, which provides the J field inputs is
driven by the INIT’ signal, so that this latch is cleared when the processor
is reset. This forces the J inputs on the microcode sequencer to logical 0, so
that the first operation performed by the sequencer is a Jump0. Therefore
the microcode starts executing at location 0 after a CPU reset.

Both the normal and inverting outputs of U110 are used. This latch stores
the F, H and B microcode fields, and the availability of the inverted versions
of these signals simplifies the microcode decoding circuitry. The inverted
signals have a ’ suffixed to their names.

The outputs of the microcode pipeline register are fed to the microcode
decode circuit that is described below.

4.3.3 The UW register

The writable control store is loaded from the ALU via the UW register,
which consists of a pair of 74S374 latches at locations U71 and U56. These
latches are clocked by the rising edge of the LD MIR’ B signal at the start

51



of each microcycle, and store the contents of the R-register, and hence the
ALU result, of the previous microcycle. U71 stores the low 8 bits, while U56
stores the high 8 bits. The sequence of operations necessary to load 16 bits
of the writable control store will be described next.

4.3.4 Loading the Writable Control Store

The only CPU subsystem that can address the control store is the microcode
sequencer described in chapter 5. In order to load an instruction into the
control store, it is therefore necessary to cause the sequencer to output the
address of the location to be loaded, and then to continue with the next
instruction of the original microprogram. This occurs in the following way.

When an instruction to load the control store is executed (that is to say
an instruction with the F field containing 0 or 2, and the SF field 14, 15 or
16), the special function decoder asserts the WRCS (WRite Control Store)
signal, which is active high. Since the DON’T WRCS’ signal is also high
at this point, the 74S00 NAND gate, U212d, which combines these signals,
asserts the active low WR NOW’ signal. This signal disables the LD MIR’
gates U215b and U213a (both 74S10 3-input NANDs) described above and
prevents the LD MIR’ signal from going low during the second half of this
microcycle.

An instruction that loads the writable control store must have the Con-
dition field set to 0 (normally called TRUE), and the Jump (J) field set to
7 (which is known as GOTO S). When the condition field is 0, the lower
condition multiplexer chip, U189 (a 74S251) feeds the WR NOW’ signal to
the CONDITION’ input on the microcode sequencer. The condition logic is
fully described in chapter 5. Since the WR NOW’ signal is low during such
a microcycle, the CONDITION’ signal is high (the multiplexer chip inverts
the signal), and the microcode sequencer interprets this as a false condition.

Therefore, since the J inputs to the microcode sequencer have the states
0111, the microcode sequencer outputs the contents of its internal S register
onto the control store address lines. This S register has been previously
loaded with the control store address that is to be written to. The required
location in the writable control store is now being addressed.

The special function decoder asserts the WRCS<0> and WRCS<1> sig-
nals according to whether the low, middle, or high 16 bit word of the control
store is being addressed. These signals are decoded by U92, a 74S138 3 to 8
line decoder. Since the WRCS signal is high, and the WR NOW’ signal low,
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during the Wr WCS time in the second half of the microcycle, as defined by
the CPU clock timing diagram above the decoder is enabled and asserts one
of the U WR A’, U WR B’ or U WR C’ signals. These signals are connected
to the write-enable inputs of the control store RAMS, and therefore the con-
tents of the UW register are written to the selected 16 bit word of the control
store. The signal asserted is given by the following table:

Word WRCS<1> WRCS<0> Decoder input Signal Asserted
Low 0 0 100 U WR A’
Mid 0 1 101 U WR B’
High 1 0 110 U WR C’

Since the LD MIR’ signals did not go low during the second half of that
microcycle, the microcode word pipeline register cannot be clocked by the ris-
ing edge at the start of the next clock cycle, and therefore no new microcode
word is loaded. The clock input of microcode sequencer is also driven by the
LD MIR’ A signal, and therefore, the sequencer is not clocked at this time.
So, the microcode program counter inside the sequencer is not updated.

However, U209b, a 74S374 D-type flip-flop is clocked by the rising edge of
CLK-0R B at the start of the next microcycle. The D input of this flip-flop
is driven by the WR NOW’ signal, and the flip-flop is therefore set to 0, thus
making the DON’T WRCS’ signal also low (as it is driven by the output of
U209b) and thus U212d makes the WR NOW’ signal high again.

During this cycle, U92 is inhibited (since WR NOW’ is high), and the
CONDITION’ input to the microcode sequencer is low (driven via the con-
dition multiplexer U189), and so the sequencer outputs the contents of the
microcode program counter at the end of the previous instruction. This is,
of course, the address of the next microinstruction to execute.

During the second half of this microcycle, the LD MIR’ signal goes low
in the usual way (since the WR NOW’ signal is high), and at the end of the
microcycle, the next microinstruction to execute is loaded into the microcode
word pipeline register in the usual way. Also, the microcode program counter
is incremented by the sequencer, just like at the end of any other instruction,
and the next instruction is executed.

53



4.3.5 The Microcode Boot ROM

When the PERQ is switched on, the writable control store contains random
data, and therefore the CPU would not have a valid microprogram to execute.
This problem is avoided by the 512-word microcode boot rom. This ROM
consists of 6 27S29 512 byte PROMs at the following locations on the CPU
board

Name Location Addressed by
TCA01 U10 UA<n>B’
TCB00 U23 UA<n>A’
TCC00 U17 UA<n>A’
TCD00 U14 UA<n>A’
TCE00 U8 UA<n>B’
TCF00 U7 UA<n>B’

As the above table shows, the ROMs are addressed by one of the 2 buffered
address outputs from the microcode sequencer. However, the address lines
are scrambled between the sequencer and the ROMs, and the following table
indicates which address line goes where:

Sequencer ROM
Address Bit Address Bit
0 1
1 7
2 4
3 2
4 6
5 0
6 5
7 8
8 3

The data lines are also scrambled between the ROMs and the microcode
word pipeline register, and the next table indicates how those signals are
connected.
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Data Bit TCA01 TCB00 TCC00 TCD00 TCE00 TCF00
(U10) (U23) (U17) (U14) (U8) (U7)

0 U<6> U<12> U<20> U<25> U<37> U<46>
1 U<7> U<13> U<17> U<24> U<39> U<44>
2 U<5> U<15> U<16> U<27> U<36> U<47>
3 U<4> U<14> U<19> U<29> U<38> U<45>
4 U<3> U<11> U<18> U<23> U<32> U<43>
5 U<2> U<10> U<21> U<22> U<34> U<41>
6 U<1> U<9> U<26> U<31> U<33> U<42>
7 U<0> U<8> U<28> U<30> U<35> U<40>

The enable input of all 6 boot ROM chips are connected together and
driven by the E BOOT ROM’ signal which is derived from the ROM enable
latch that is described in the next section.

4.3.6 The ROM Enable Latch

The ROM Enable latch is the 74S74 D-type flip-flop U236b. The set and D
inputs of this flip-flop are pulled high by R3 (a 1k resistor), so this flip-flop
is set by a rising edge on the clock input and cleared by a low level on the
reset input. These signals are produced by the following circuitry.

The main CPU reset signal, INIT, is NANDed with the CLK-0R C clock
by the 74S00 NAND gate U237d. The output of this gate drives the clock
input of the ROM Enable latch. Therefore, during the CPU reset, when
INIT is high, a falling edge of the CLK-0R clock will set the ROM Enable
latch. The reset input of the ROM Enable latch is driven by the CONT’
signal from the opcode file input control circuit. When the first Reload Op
instruction after a reset is executed, the CONT’ signal goes low, and the
ROM Enable latch is cleared.

The output of the ROM Enable latch, the so-called BOOT signal, is
NANDed with UA<11>A’ by U131c (a 74S00 NAND gate). The output of
this gate is low to enable the ROM, and this occurs when the ROM Enable
latch is set and the UA<11>A’ signal is also high, that is to say when the
microcode address line 11 is a logical 0. Therefore the boot ROM overlays
the lower half of each 4K page of the writable control store.

The output of U131c is connected to one input of each of the 3 RAM
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enable gates U66b, U66c and U66d (all 74S00 NAND gates). The outputs of
these gates are known as the ENB RAM’ A, ENB RAM’ C and ENB RAM’ B
respectively, and are linked to the chip enable inputs of the writable control
store RAMs. Therefore, when the ROM is enabled, the outputs of these
gates go high and disable the control store RAM.

The output of U131c is inverted by the 74S240 NOT gate U254g, and
then fed to one input of the 74S00 NAND gate U66a. The output of this
gate is the E BOOT ROM’ signal that drives the chip select inputs of the 6
microcode boot ROMs. Therefore, when the output of U131c goes low, the
E BOOT ROM’ signal goes low also, and enables the ROMs.

The remaining inputs of the 4 sections of U66 are all linked together and
pulled high by the 1k resistor R2. Therefore, the NAND gates in U66 operate
as inverters, as the above description indicates. However, these inputs can
be forced to a logic 0 state by grounding the DIS USTORE L pin on the
CPU diagnostic connector, which therefore disables both the writable control
store RAMs and the boot ROM. This allows the CPU to be controlled by an
external control store.

4.3.7 The CPU diagnostic connector

The 3 edge connectors on the front edge of the CPU board provide external
access to the control store address and data lines. A logic analyser plugged
into these connectors may record the microcode program flow and the instruc-
tions that were executed. Alternatively, by grounding the DIS USTORE L
pin, the internal CPU control store may be disabled, and an external control
store, connected to the diagnostic connectors, may provide the microcode
program.

The signals present on the diagnostic connectors are given in the following
tables. The pin numbering is, however, somewhat unconventional, with pin
1 being the top pin on the component side, and the pins are then numbered
consecutively going down the component side, followed by the pins on the
track side, with the numbers again increasing downwards.
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JA (Top Connector) – Microcode Data 1
1 U<0>
3 U<1>
5 U<2>
7 U<3>
9 U<4>
11 U<5>
13 U<6>
15 U<7>
17 U<8>
19 U<9>
21 U<10>
23 U<11>
25 U<12>
27 U<13>
29 U<14>
31 U<15>
33 U<16>
35 U<17>
37 U<18>
39 U<19>
41 U<20>
43 U<21>
45 U<22>
47 U<23>
49 U<24>
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JB (Middle Connector) – Microcode Data 2
2 U<25>
4 U<26>
6 U<27>
8 U<28>
10 U<29>
12 U<30>
14 U<31>
16 U<32>
18 U<33>
20 U<34>
22 U<35>
24 U<36>
26 U<37>
28 U<38>
30 U<39>
32 U<40>
34 U<41>
36 U<42>
38 U<43>
40 U<44>
42 U<45>
44 U<46>
46 U<47>
47 DIS USTORE L
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JC (Bottom Connector) – Microcode Address
1 UUA<0>
3 UUA<1>
5 UUA<2>
7 UUA<3>
9 UUA<4>
11 UUA<5>
13 UUA<6>
15 UUA<7>
17 UUA<8>
19 UUA<9>
21 UUA<10>
23 UUA<11>
25 LD MIR’ A

4.4 The microcode word decoder

The microcode word is divided into 12 fields, as described in chapter 2. The
way each field is used by the PERQ CPU is described in this section.

4.4.1 The X field

The X field specifies the destination register for the ALU operation. It is fed
to the X-register addressing gates U74, U75, U94 and U96 only, as described
in chapter 2.

4.4.2 The Y field

The Y field is used to specify the source register in the ALU operation. It is
therefore fed to the Y register address gates U93, U98, U119 and U120 which
are fully described in chapter 2. The Y field is also used to provide the lower
8 bits of a constant operand, and for that reason it is fed onto the BMUX
lines via the 74S240 3-state buffer U101. This system is also described in
chapter 2. Finally, the Y field provides the top 6 bits of a microcode leap
address. It is gated onto the JMUX lines by the 74S240 3-state buffer U122.
The JMUX and associated control logic is described in chapter 5
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4.4.3 The A field

The A field selects the AMUX input. It is fed to the 2 AMUX control chips
(the 74S138 decoder U229 and the AMX16 PROM (U188)). This logic is
described in chapter 2.

4.4.4 The B field

The microcode pipeline latch for the single bit B field provides both the
normal and inverted outputs. These signals are used to control the BMUX,
as described in chapter 2.

4.4.5 The W field

The single bit W field is used to enable the writing back of the ALU output
to the CPU register RAM. The output of the appropriate microcode pipeline
latch is connected to one input of U130b (a 74S20 NAND gate), which pro-
vides the active-low WR RAM’ signal. Therefore, when this bit is low, the
WR RAM’ signal is inhibited by being forced high.

4.4.6 The H field

Again, both the normal and inverted outputs of the H field microcode pipeline
latch are available. They are used as follows.

The I/O MEM RQST signal from the EIO board is latched at the start of
each microcycle by the 74S273 latch U227a. This latch is clocked by the rising
edge of the CLK-0R D clock, and cleared by the CPU reset signal INIT’. The
output of this latch, MEM RQST L, indicates when the EIO card wishes to
perform a DMA transfer to the main system RAM. This signal is NANDed
with the inverted H field (the H’ signal) by the 74S00 NAND gate U237a.
The output of this gate is the DMA request signal to the memory control
state machine described in chapter 7. Therefore, when the H field contains
1, the H’ signal is low, and the DMA request signal is disabled.

The H field is also used to distinguish between certain microcode jumps
which have the same value in the J field, for example the ‘Vector’ or ‘Dispatch’
instructions. For this reason, the H signal is connected to one input of the
12L6 PAL U108 (JPPAL3) which controls the JMUX circuit, and one address
input of the extended microcode sequencer control PROM U67 (USQ01).
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The operation of the microcode sequencer and the JMUX are described in
chapter 5

Finally, on the 24 bit T4 CPU, the H field is used to select between the
2 microstate registers. It is therefore connected to an address input of the
AMUX24 PROM that controls the AMUX in that version of the CPU. This
extended AMUX is described in chapter 2.

4.4.7 The ALU field

The 4 bit ALU field, which selects the ALU function, is simply fed to the
ALU control PROM U105 (ALD16.1). The operation of the ALU control
logic is described in chapter 3.

4.4.8 The F field

The microcode pipeline latch that stores the F field provides both the normal
and inverted outputs. These signals are used to control the following CPU
systems.

The active high signals F<0> and F<1> are fed to the AMUX control
PROM U188 (AMX16). When the F field contain 2, this PROM asserts the
SH TYPE signal thus enabling the Z microcode field to control the shifter.
The shifter and its associated control logic is described in chapter 6

The active high signals are also connected to address inputs on the special
function decoder PROMs U150 (SFA16.3) and U193 (SFB16.3), since the
use of the SF field depends on the value of the F field. The special function
decoder is described below.

The signals F<0> and F<1>’ are combined with the SF3 signal by the
74S10 NAND gate U215a. The output of this gate therefore goes low when
the F field contains 1 and the SF field contains 1x, that is when the microcode
instruction specifies a memory cycle. The output of U215a is connected to
the memory control state machine described in chapter 7.

The same pair of signals, F<0> and F<1>’ are combined by the 74S08
AND gate U231d. The output of this gate, the MEM FUNC signal, is NAND
with the CPU clock signal CLK-6 by the 74S00 NAND gate U232a. This gate
was originally used to clock the memory address register, but this function is
now performed by the LOAD MA signal from the special function decoder.

When the F field contains 3, the microcode instruction contains a long
jump. This is detected by the 74S00 NAND gate U131d, which NANDs
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together the F<0> and F<1> signals. The active low output of U131d, the
LONG JUMP’ signal enables the 74S240 3-state buffer U151e-h, which then
gates the SF field onto the JMUX<8> to JMUX<11> lines. The operation
of the JMUX is described in chapter 5

Finally, an Input/output instruction is defined by the F field contain-
ing 0 and the SF field containing 17. This condition is detected by the
74S30 NAND gate U216, which combines the F<0>’ and F<1>’ signals,
the SF<0>, SF<1>, SF<2> and SF<3> signals, and the DON’T IO ENB’
signal from the CPU clock circuit. When such a microcode instruction is
executed, the output of U216 goes low, thus asserting the IO ENB L signal
on the system backplane.

4.4.9 The SF field

The 4 bit SF field is used by several parts of the PERQ CPU logic.
Firstly, it is fed to the special function decoder PROMS U150 (SFA16.3)

and U193 (SFB16.3). These PROMs decode the SF field, along with the F
field, and assert control signals to various parts of the processor, depending
on which special function is being executed. The special function decoder is
described below.

The SF field also enables the IO ENB L signal during Input/Output
instructions via the 74S30 NAND gate U216, as described in the last section.

Since the JMUX control may also depend on the state of the SF field,
(for example, the extended special function defined by F=1 and SF=6 gates
the output of the shifter onto the JMUX lines) the 4 SF lines are connected
to the JMUX control PAL U108 (JPPAL3). The operation of the JMUX is
described in chapter 5.

The SF<3> signal enables U215a which controls the memory control state
machine. This gate was described in the last section. The lower 3 SF signals
are fed to the control inputs of this state machine, and determine which of
the 8 types of memory cycles is to be performed. The memory control state
machine is described in chapter 7.

The SF field also provided the top 4 bits of a 12 bit microcode jump
address. U151e-h (a 74S240 3-state buffer) gate the SF field onto the JMUX
lines when the LONG JUMP’ signal is active. The JMUX is completely
described in chapter 5
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4.4.10 The Z field

The Z field of the microcode word provides an 8-bit data value that is used
by several sections of the CPU logic.

The Z field is gated onto the lowest 8 BMUX lines by the 74S240 3-state
buffers U123a-d and U124a-d when the B field specifies a constant and it
therefore provides the least significant byte of this constant. This circuit is
described in chapter 2.

The Z field is also used to specify the shifter operation when the F field
contains 2. The Z field is stored in the 67S380 latch U127, which is enabled by
the LD SHIFT CMD signal from the special function decoder. The outputs
of this latch, which are enabled by the active low output of the SH TYPE
latch U147a (a 74S74 D-type flip-flop) then provide the SHIFT CMD signal
to the shifter control PROMs. The Shifter and its associated control logic is
described in chapter 6.

Since the Z field also provides the low 8 bits of an absolute microcode jump
address, it is gated onto the lower 8 JMUX lines via U124e-h and U103a-
d. Similarly, certain of the Z field bits are used to provide the constant
microcode address bits on a NEXT OP microcode jump. These Z-field bits
are gated onto the appropriate JMUX lines via U144e-h. During an interrupt
vector jump, the remaining constant bits are provided by the remaining Z-
field bits, which are gated onto the JMUX lines via U146a-d. All the buffers
used for these purposes are 74S240s. The JMUX and its control electronics
are described in chapter 5.

The Z field is buffered by the 74S240 buffer U225, which is permanently
enabled, and then fed to the IOA Input/Output address lines on the back-
plane. This circuit is described in chapter 3. The most significant Z field
bit, Z<7> distinguishes an input port address from an output port address.
It is therefore connected to U217a, a 74S10 NAND gate, which is used to
enable the I/O data output buffers onto the I/O data bus on the backplane.
Therefore, these buffers are only enabled when Z<7> is high.

Finally, the lower 7 Z field bits are connected to the inputs of the Raster
Operation control register U190 (a 74S273 octal D-type flip-flop). The Z
field is loaded into this register on the rising edge of the LD C signal from
the special function decoder. The register is cleared by the CPU reset signal
INIT’ described above. The outputs of this register are used to control the
Raster Operation state machine that is described in chapter 7.
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4.4.11 The CND field

The 4-bit CND field is used to select the condition that will be used to control
the microcode sequencer. The lower 3 bits of this field are connected to the 3
select inputs of a pair of 74S251 8-input multiplexers, U187 and U189. The
CND<3> bit is connected the enable input of U189, and it is inverted by the
74S240 inverting buffer U185d, before being connected to the enable input
of U187. The 3-state outputs of the 2 multiplexers are linked together and
provide the CONDITION’ signal. Therefore, U189 selects between the first 8
conditions, and U187 the second 8 conditions. The conditional branch logic
is described in chapter 5

4.4.12 The JMP field

The microcode sequencer function is controlled by the 4-bit JMP field, which
is therefore connected directly to the 4 control inputs (I0-I3) on the 2910
sequencer U112. It is also connected to the JMUX control PAL U108 (JP-
PAL3), and the JMUX control PROM JPE16 (at location U104) since which
JMUX input should be selected depends on the jump instruction being ex-
ecuted. Finally, the JMP field is connected to 4 of the address inputs on
the extended microcode sequencer control PROM U67 (USQ01), so that this
sequencer executes the correct jump instruction.

4.5 The Special Function decoder

The special function decoder consists of a pair of 512*8 bit 27S29 PROMS at
locations U150 (SFA16.3) and U193 (SFB16.3). Corresponding address lines
of the 2 proms are connected together, and driven by the microcode word F
and SF fields as indicated by the following table.
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Bit Signal
A0 SF<3>
A1 SF<2>
A2 SF<1>
A3 SF<0>
A4 F<1>
A5 Ground
A6 Ground
A7 Ground
A8 F<0>

Twelve of the 16 data outputs of these PROMs are used to directly provide
CPU control signals. These signals are defined as follows.

Bit Signal Active when Comments
SFA16.3
D0 WRCS F=0|2, SF=14|15|16 Load Control Store Instructions
D1 Raw Ld Shift Cmd F=0,SF=1 Shift On R

F=2 Shift on Z
D2 BPC:= F=0|2, SF=13 Load BPC
D7 LD MDR F=1, SF=2 Load Multiplier Register
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SFB16.3
D0 STK RESET’ F=0|2, SF=2 Reset Stack pointer
D1 STK WE F=0|2, SF=3 TOS:=(R)

F=0—2, SF=4 Push
F=1, SF=5 Push Long Constant

D2 POP’ NOT(F=0|2, SF=4) Push
NOT(F=1, SF=5) Push Long Constant

D3 STK CLK ENB H F=0|2,SF=4 Push
F=0—2,SF=5 Pop
F=1,SF=5 Push Long Constant

D4 Read Victim F=1, SF=0 (R):=Victim
D5 WRCS<0> NOT(F=0|2, SF=14|16)WCS mid instruction
D6 WRCS<1> NOT(F=0|2, SF=14|15)WCS high instruction
D7 ENB MDR F=1,SF=4 R=multiplier register

The remaining 4 outputs of the SFA16.3 PROM are used to control the
74S138 decoder U149. The 3 ROM outputs D3, D4, D5 are fed to the select
inputs of this decoder, while the D6 output is connected to an active-low
enable input. The decoder is also enabled by a high level of the CPU clock
signal CLK-4G. This clock is high during the second half of a microcycle, and
therefore a selected decoder output goes low at this time. The devices that
are controlled by this decoder are clocked by the rising edge of the decoder
output, which occurs at the end of the microcycle, just after the CLK-4G
clock has fallen. This decoder provides the following signals :

OutputSignal Active when Comments
0 LD C F=0|2, SF=6 Ctrl RasterOp=(Z)
1 LD S F=0|2, SF=7 Src RasterOp=(R)
2 LD D F=0|2, SF=10 Dst RasterOp=(R)
3 LD W F=0|2, SF=11 Width RasterOp=(R)
4 RELO OP F=0|2, SF=12 Load Op
5 MUL STEP F=1, SF=1 Mul Step

F=1,SF=2 Load Mult/Div
6 LD INDEX F=1, SF=3 Load Index Register
7 LOAD MA F=1, SF¿=10 Memory Functions

The circuits controlled by each of these signals will now be described.
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4.5.1 WRCS

This signal enables the Control store write enable decoder U92, as described
above

4.5.2 Ld Shift Cmd

The appropriate output from the special function decoder ROM is NANDed
with the CLK-51R signal by the 74S00 NAND gate U131b, and then NORed
with the CLK-4E clock signal by the 74S02 NOR gate U95b. The output of
U95b, the LD SHIFT CMD signal is used to enable the 2 shifter command
latches U127 and U128 and also to clock the SH TYPE flip-flop U147a. The
operation of the shifter is described in chapter 6

4.5.3 BPC:=

This signal is connected to the active-low Load input of the byte program
counter U201 (a 74S163 counter). When a BPC:=(R) instruction is executed,
this signal goes low, and loads the bottom 4 bits of the shifter input latch
U178 (a 67S380) into the byte program counter. This circuit is described in
chapter 5

4.5.4 LD MDR

This signal is connected to the multiplier register control PROM U106 (MULT01),
and it therefore causes the Multiplier register to be loaded as described in
chapter 3.

4.5.5 Stk Reset’

This signal drives the active low Load input of the Stack pointer (U233 -
a 74S169 counter). Since the parallel load data inputs of this counter are
grounded, this signal clears the stack pointer to 0, as described in chapter 2.
It also increments the DDS display as described below.

4.5.6 Stk WE

This signal enables the 74S20 NAND gate U139a on a Push or TOS:=(R)
instruction. U139a provides the write enable signal to the stack RAMs as

67



described in chapter 2.

4.5.7 POP’

This signal is connected to the direction input of the 74S169 stack pointer
U233. It is normally low (causing the counter to count down, and thus pop
the stack), but goes high (to cause the counter to increment and push the
stack) on any push instruction

4.5.8 STK CLK ENB H

This signal is NANDed with the ABORT’ signal by the 74S00 NAND gate
U237c, and is then connected to the active-low clock enable input of the stack
pointer U233. Therefore the stack pointer will change on any push or pop
instruction.

4.5.9 Rd Victim

When this signal goes low, the 74S10 NAND gate U213b is inhibited, and
therefore the outputs of the ALU R register described in chapter 3 are dis-
abled. This signal also enables the outputs of the victim latch U79 and U88
(both 74S534 octal D-type flip-flops) and gate the outputs of this latch onto
the R lines in place of the R register. The signal is also connected to one
input of the 74S08 AND gate U73Ac, which clears the hold victim latch as
described in chapter 5.

4.5.10 WRCS<0> & WRCS<1>

These signals are connected to the select inputs of the control store write
enable decoder U92. They therefore select which 16 bit section of the 48 bit
control store word is to be written to, as described above.

4.5.11 ENB MDR

This signal inhibits the 74S10 NAND gate U213b, and hence disables the
outputs of the R register. It also enables the 3-state outputs of the multiplier
register U89 and U91 described in chapter 3, and thus the multiplier register
passes its contents onto the R lines.
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4.5.12 LD C, LD S, LD D & LD W

These 4 signals are used to clock one of the 4 74S273 Raster Operation
Control registers. These registers, which are described in chapter 7, store
the control parameters for the raster operation state machine.

4.5.13 RELO OP

This signal is connected to one input of the 74S00 NAND gate U212c. It sets
the LD OP control latch, and causes the opcode file to be loaded with the
contents of the memory data bus on the next 4 microcycles. The operation
of the opcode file is described in chapter 5

4.5.14 MUL STEP

This signal clocks the multiplier register U89 and U91 described in chapter
3 on either a Load Multiplier or a Multiply Step instruction. It also clocks
the CCSR0 PAL (U145) described in chapter 2

4.5.15 LD INDEX

This signal clocks the index register U97 (a 74S273 octal D-type flip-flop)
and thus loads it with the lower 8 bits of the ALU result. The index register
is cleared by the CPU reset signal INIT’. The outputs of the index register
are fed to the main register address gates as described in chapter 2

4.5.16 LOAD MA

This signal is inverted by the 74S04 inverter U234e, and then used to clock
the memory address registers U255, U257, and U256 at the start of a memory
instruction, thus loading them with the ALU result. The memory address
register is described in chapter 3.

4.6 The DDS

The digital diagnostic system display that is mounted on the front of the
PERQ’s cabinet is controlled by a simple 3-digit counter circuit mounted
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behind the display. The counter is cleared by pressing the system reset
switch, and may be incremented under program control in the following way.

The STK RESET’ output from the special function decoder is latched by
the 74S74 D-type flip-flop U236a. The set and reset inputs of this flip-flop
are tied high, and it is clocked by the rising edge of the CLK-0R C clock at
the start of each microcycle. The output of this flipflop is buffered by the
74S240 inverting 3-state buffer U254h, which is permanently enabled, before
being fed to the DDS module via pin J196 of the CPU board. Therefore
executing a stack reset instruction will cause a clock pulse to be sent to the
DDS, and the display will increment.
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Chapter 5

Control 2 : The Microcode
Sequencer and JMUX

5.1 The microcode address sequencer

The original PERQ 1 CPU board had a 4K control store, and therefore 12
microcode address lines. The microcode program was sequenced by a 2910
chip from AMD, and for compatibility the same device was used in the PERQ
2 16K CPU board, and an extra circuit, to provide the upper 2 address lines,
was added.

5.1.1 The AMD 2910 sequencer

The lower 12 microcode address lines are controlled by the 2910 sequencer
chip at location U112. The operation of this device is described in the relevant
AMD data sheet, and will not be repeated here. This section will explain
how the device is connected to the rest of the PERQ CPU, and how it is
controlled by the microcode.

The 2910 executes one of 16 different microcode branch functions per
clock cycle, selected by the 4 control inputs I0-I3. These lines are directly
driven by the microcode word JMP field (JMP<0> - JMP <3>), and there-
fore this field selects one of the 16 functions given in the following table.
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JMP Mnemonic Comments
00 Jump0 Forced jump to location 0
01 Call Conditional Subroutine Call
02 * Load PC from JMUX
03 Goto Conditional jump
04 Pushload Push address and load register
05 CallS Conditional call from register
06 * Load PC from JMUX
07 GotoS Conditional jump from register
10 Repeatloop Dec register, goto TOS
11 Repeat Dec register, goto JMUX
12 Return Return from subroutine
13 JumpPop Pop stack, Conditional Jump to JMUX
14 LoadS Load Register
15 Loop Condition jump to TOS
16 Next Inc PC
17 3way branch Conditional counted loop

A full explanation of the operations performed by those instructions is given
in the 2910 data sheet.

The output enable of the 2910 is tied low, so that the microcode address
outputs are permanently enabled. Similarly, the CCEN* (Condition Code
Enable) pin is also tied low, so that the condition input is always significant.
The RLD* (Register Load) input is disabled by connecting it to the +3B
signal, which is pulled high through R3 (a 1k resistor). The CI (Carry Input)
is similarly pulled high, so that the program counter may increment.

The outputs of the 2910 are buffered by 74S240 NOT gates as described
below. The data inputs of the 2910 are driven by the JMUX lines. The
JMUX, which selects between the possible jump address sources, is also de-
scribed below.

5.1.2 The extended microcode sequencer

The extra 2 address bits required to address the 16K control store in the
PERQ 2 CPU board are provided by a specially designed circuit which con-
tains the main elements of the 2910 sequencer, namely a Bank Register (to
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act as the extended program counter), an 8-level stack, a multiplexer to
switch the address outputs between the various sources, and a control sys-
tem built round a 512byte PROM. The operation of these various sections
will be described next.

5.1.2.1 The Control ROM

The key element in this extended sequencer is the USQ01 control ROM at
location U67. This chip is controlled by the microcode work H and JMP
fields and the condition code input, and depending on their values, controls
the other sections of the sequencer. It also handles decrementing the stack
pointer on a return instruction. The address and data signals for this PROM
are given in the following table.

Address Signal Comments
A0 NSP2 Stack pointer bit 2 from USPAL0
A1 NSP1
A2 NSP0
A3 CONDITION’ Condition code input
A4 JMP<3> Microcode JMP field
A5 JMP<2>
A6 JMP<1>
A7 JMP<0>
A8 H Microcode H field

Data Signal Comments
D0 ZeroBank Clear Bank register (PC)
D1 LD REG Load Register
D2 MuxA Address Multiplexer Select
D3 MuxB
D4 SP<0> Stack pointer output
D5 SP<1>
D6 SP<2>
D7 Push Control signal to increment SP

The operation of this prom is described by the following table
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Cond=1 Cond=0
JMP H ZeroBank LdReg Push Mux SP ZeroBank LdReg Push Mux SP
00 X 1 0 0 Bank Zero 1 0 0 Bank Zero
01 X 0 0 0 Bank Same 0 0 1 Jmux Same
02 0 0 0 0 Bank Same 0 0 0 Bank Same
02 1 0 0 0 Jmux Same 0 0 0 Jmux Same
03 X 0 0 0 Bank Same 0 0 0 Jmux Same
04 X 0 0 0 Bank Same 0 1 0 Bank Same
05 X 0 0 1 Reg Same 0 0 1 Jmux Same
06 X 0 0 0 Bank Same 0 0 0 Bank Same
07 X 0 0 0 Reg Same 0 0 0 Jmux Same
10 X 0 0 0 Bank Same 0 0 0 Bank Same
11 X 0 0 0 Bank Same 0 0 0 Bank Same
12 X 0 0 0 Bank Same 0 0 0 Stack Dec
13 0 0 0 0 Bank Same 0 0 0 Jmux Same
13 1 0 0 0 Bank Same 0 0 0 Jmux Dec
14 X 0 1 0 Bank Same 0 1 0 Bank Same
15 X 0 0 0 Bank Same 0 0 0 Bank Same
16 X 0 0 0 Bank Same 0 0 0 Bank Same
17 X 0 0 0 Bank Same 0 0 0 Bank Same

The output signals from this PROM will be described along with the circuits
they control below.

5.1.2.2 The Bank Register

The bank register is the analogue of the program counter, although no system
is provided to increment it - the only way it can be changed is by a Leap
or Return instruction. This register consists of 2 sections of a 74S174 hex
D-type flip-flop (U72a and U72b) which are clocked by the rising edge of the
LD MIR’ A signal at the start of each active microcycle, and the 2 D inputs
are driven by the unbuffered microcode address lines UUA<13> (U72a) and
UUA<12> (U72b). The outputs of these flip-flops are connected to the
‘2’ inputs of the address multiplexer and also to the JMUX logic described
below. U72 is reset by the 74S00 NAND gate U86a, which combines the CLK-
4J clock signal with the ZeroBank output from the USQ01 control PROM.
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When the microcode instruction specifies a Jump0 operation, the ZeroBank
signal goes high, and the Bank register is cleared during the second half of
the microcycle.

5.1.2.3 The S Register

This circuit is the equivalent of the counter register in the 2910, although
there is no mechanism for automatically decrementing it. The register con-
sists of 2 sections of the 16R8 registered PAL USPAL0 (at location U68),
which is clocked by the rising edge of the LD MIR’A signal. The output
enable pin is tied low, so that the outputs are permanently enabled, and the
relevant PAL equations are :

!Sreg12:=!sreg12 . !Jmux12 + !Sreg12.!LdReg + LdReg.!J12
!Sreg13:=!sreg13 . !Jmux13 + !Sreg13.!LdReg + LdReg.!J13

So, while LdReg is low, each S Register Bit is loaded with itself on the
rising edge of the LD MIR’ A signal. When an S register load instruction is
executed, the USQ01 PROM brings LD REG high, and the S Register bits
are loaded with the state of the appropriate JMUX input.

The outputs of the S register are connected to the ‘1’ input of the extended
address multiplexer.

5.1.2.4 The stack pointer

The circuit to generate the stack pointer for the extended address stack is
rather complex, and involves sections of both the USPAL0 and USQ01 Rom.
The basic idea is that the 3-bit stack pointer is stored in 3 of the D-type flip-
flops in the USPAL0. This 3-bit register stores the address of the first free
location in the Stack RAM. The outputs of these flip-flops are fed through
the USQ01 ROM, which can then decrement the stack pointer on a POP, and
then fed to the address inputs of the Stack RAM. The outputs of the USQ01
ROM are also fed back to the inputs of the USPAL0, which increments the
value on a push and then written back to the register inside the USPAL0.
This register is clocked on the rising edge of the LD MIR’ A signal at the
start of each microcycle. The PAL equations for the USPAL0 to perform the
gated increment operation are :
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!NSP<0>:=!SP<0>.!Push + SP<0>.Push
!NSP<1>:=!SP<1>.!Push + !SP<1>.!SP<0> + SP<1>.SP<0>.Push
!NSP<2>:=!SP<2>.!Push + !SP<2>.!SP<0> + !SP<2>.!SP<1> +
SP<2>.SP<1>.SP<0>.Push

This circuit is capable of performing 4 different operations, which will now
be described.

During a Jump0 instruction, the USQ01 PROM forces all the SP<n>
outputs to 0, and since the Push output is low, the USPAL0 writes this 0
into the stack pointer register.

When a value is to be pushed onto the stack, the USQ01 PROM passes the
value of the SP register unchanged onto the SP<n> lines. Since the PROM
now brings the Push output high, the USPAL0 increments the value on the
SP<n> lines before writing it back to the SP register inside the USPAL0.

When a value is popped from the stack, the USQ01 PROM decrements
the value of the SP register before sending to the SP<n> lines. Thus the
last value pushed onto the stack is addressed. Since the Push output from
the USQ01 PROM is low, this decremented stack pointer is written back to
the SP register at the end of the microcycle.

During all other operations, the contents of the SP register are unchanged
by both the USQ01 PROM and the USPAL0 and the SP register is loaded
with the same value at the end of the microcycle.

5.1.2.5 The USPAL0 PAL

This 16R8 PAL at location U68 on the CPU board contains the S register
and SP register circuits that have just been described. The signals connected
to this PAL are given by the following table.
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Pin Signal Comments
Clock LD MIR’ A
I2 SP<2> Stack Pointer
I3 SP<1>
I4 SP<0>
I5 Push Enable Increment of SP
I6 LD REG Load S Register
I7 JMUX<13> JMUX line
I8 JMUX<12>
O12 NSP<0> Output of SP register
O13 NSP<1>
O14 NSP<2>
O15 S<12> S register output
O16 S<13>

5.1.2.6 The Stack

The extended microcode address stack is stored in the 16*4 bit 74S189 RAM
at location U87. The lower 3 address inputs of the RAM are driven by
the SP<n> outputs from the USQ01 PROM, while the top address input
is grounded since only 8 locations are used. The Chip Enable input is also
grounded, so that the data outputs are always active. The lower 2 data inputs
are driven by the outputs of the Bank Register described above, so that the
current bank can be pushed onto the stack. The 2 corresponding inverted
data outputs are reinverted by a pair of 74S04 NOT gates (U90a for bit 13
and U90d for bit 12), before being fed into the address multiplexer. When a
Push operation is performed, the Push output from the USQ01 PROM goes
high. This enables the 74S00 NAND gate U86d, and during the second half
of the microcycle, when CLK-4E is high, the output of U86d (which combines
Push and CLK-4E) goes low and writes the Bank Register onto the stack.

5.1.2.7 The Address Multiplexer

The 74S153 dual 4-input multiplexer at location U70 selects between the 4
possible sources of the extended microcode address. It is controlled by 2
output bits from the USQ01 PROM, and the enable inputs to both sections
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are grounded. The multiplexer’s inputs come from the following sources :

Input Source
0 Jmux
1 S Register
2 Bank
3 Stack

The outputs of the multiplexer provide the 2 extended microcode address
lines, and are buffered by 74S240 NOT gates, as described below, before
driving the control store address inputs.

5.1.3 Operation of the Extended Microcode Sequencer

In this section, a NOP will be defined as : The ZeroBank, LDReg and Push
signals are all inactive, the Multiplexer gates the Bank Register onto the
address lines, and the Stack pointer is unchanged.

The way the extended microcode sequencer executes the various jump
instructions will now be described.

5.1.3.1 Jmp=0 - Jump0

During this instruction, the ZeroBank signal goes active, so the Bank Register
is cleared during the second half of the microcycle. Also, the stack pointer is
cleared as described above. The Multiplexer gates the cleared Bank Register
onto the address outputs.

5.1.3.2 Jmp=1 - Call

If the CONDITION’ signal is high, the condition is false, and the sequencer
executes a NOP. When the CONDITION’ signal is low, the PUSH signal
goes active, pushing the Bank Register onto the stack, and the multiplexer
gates the JMUX outputs onto the address lines.

5.1.3.3 Jmp=2, H=0 - NextInst

This instruction causes the sequencer to execute a NOP
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5.1.3.4 Jmp=2, H=1, Revive Victim

During this instruction, the multiplexer gates the JMUX lines (which contain
the contents of the victim register, as described below) onto the address
outputs. In all other respects, the sequencer executes a NOP.

5.1.3.5 Jmp=3 - Goto

If the condition is false (the CONDITION’ signal is high), the sequencer
performs a NOP. If the condition is true, the Multiplexer gates the JMUX
lines onto the address lines, but the other parts of the sequencer execute a
NOP.

5.1.3.6 Jmp=4 - PushLoad

If the Condition is true, the LdReg signal goes active, and loads the JMUX
lines into the S Register. In all other respects, a NOP is executed. A false
condition causes the sequencer to perform a NOP.

5.1.3.7 Jmp=5 - CallS

The contents of the Bank Register are pushed onto the stack. If the Condition
is false, the Multiplexer gates the S Register onto the address outputs, while
if the condition is true, the JMUX lines are gated there instead.

5.1.3.8 Jmp=6 - Vector or Dispatch

In all cases, the extended sequencer performs a NOP.

5.1.3.9 Jmp=7 - GotoS

If the Condition is false, the contents of the S register are gated onto the ad-
dress lines by the Multiplexer, while a true condition causes the Multiplexer
to gate the JMUX lines there instead. The rest of the sequencer behaves as
for a NOP.

5.1.3.10 Jmp=10 - Repeatloop

The extended sequencer executes a NOP during this instruction.
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5.1.3.11 Jmp=11 - Repeat

This instruction causes the extended microcode sequencer to execute a NOP.

5.1.3.12 Jmp=12 - Return

If the CONDITION’ input is high, that is the condition is false, the sequencer
executes a NOP. If the condition is true, the Stack Pointer is decremented,
and the Multiplexer transfers the contents of the top of the stack to the
address outputs.

5.1.3.13 Jmp=13, H=0 - JumpPop

If the condition is false, the extended sequencer executes a NOP, while if it
is true, the Multiplexer gates the JMUX lines to the address outputs.

5.1.3.14 Jmp=13, H=1 - LeapPop

If the condition is false, a NOP is executed. When the CONDITION’ signal
is low, signifying a true condition, the Stack Pointer is Decremented, and the
Multiplexer gates the JMUX lines onto the address outputs.

5.1.3.15 Jmp=14 - LoadS

This instruction is identical to a NOP except that the LdReg signal goes
active and causes the JMUX lines to be loaded into the S Register.

5.1.3.16 jmp=15 - Loop, Jmp=16 - Next, Jmp=17 - 3way Branch

All these instructions cause the extended address sequencer to execute NOPs

5.2 The Microcode address buffers

The 14 address outputs from the sequencers described in the previous section
are buffered by 74S240 inverting 3-state buffers. In order to get sufficient fan-
out to drive the 48 Writable control store RAMs and the 6 boot PROMs,
each line drives 2 such buffers, and 2 separate address busses (UA<n>A’ and
UA<n>B’) are produced. The address lines are series terminated by 33Ω
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resistors before driving the address pins of the memory devices. The buffers
and resistors used to produce each signal are given in the following table.

Address Line Raw Address Line Buffer Terminator
UA<0>A’ UUA<0> U65d RS2e
UA<0>B’ UUA<0> U78h RS6a
UA<1>A’ UUA<1> U65c RS2d
UA<1>B’ UUA<1> U78g RS5c
UA<2>A’ UUA<2> U65b RS2c
UA<2>B’ UUA<2> U78f RS6c
UA<3>A’ UUA<3> U65a RS2a
UA<3>B’ UUA<3> U78e RS6d
UA<4>A’ UUA<4> U73d RS5e
UA<4>B’ UUA<4> U73h RS4b
UA<5>A’ UUA<5> U73c RS5d
UA<5>B’ UUA<5> U73g RS4c
UA<6>A’ UUA<6> U73b RS1c
UA<6>B’ UUA<6> U73f RS4a
UA<7>A’ UUA<7> U73a RS1d
UA<7>B’ UUA<7> U73e RS4e
UA<8>A’ UUA<8> U65h RS1b
UA<8>B’ UUA<8> U78d RS6e
UA<9>A’ UUA<9> U65g RS1a
UA<9>B’ UUA<9> U78c RS6b
UA<10>A’ UUA<10> U65f RS2b
UA<10>B’ UUA<10> U78b RS5a
UA<11>A’ UUA<11> U65e RS1e
UA<11>B’ UUA<11> U78a RS5b
UA<12>A’ UUA<12> U51g RS3a
UA<12>B’ UUA<12> U51h RS3b
UA<13>A’ UUA<13> U51e RS3e
UA<13>B’ UUA<13> U51f RS3d
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5.3 The JMUX

The JMUX is the 14-bit distributed multiplexer that selects the microcode
jump address source and feeds it to the address inputs on the microcode ad-
dress sequencer. The operation of this multiplexer is somewhat more compli-
cated than that of the AMUX and BMUX multiplexers described in chapter
2, since the jump address may be 8 bits wide (the Z field - a short jump), 12
bits wide (the SF and Z fields - a long jump), or 14 bits wide (the Y and Z
fields - a leap). The JMUX also allows jump addresses to be produced con-
taining the next opcode from the opcode file (a ‘Next Instruction’ Branch),
the number of the highest priority interrupt currently active (the interrupt
vector), or the lowest 4 bits of the shifter output (a dispatch). Finally, the
entire 14 bit address may also be provided by the shifter outputs or the victim
latch.

The operation of the JMUX control logic will be described first, followed
by a description of how each type of jump address is gated onto the JMUX
lines.

5.3.1 The JMUX control Logic

The main device used to control the JMUX is the 12L6 PAL JPPAL3 at
location U108. This PAL is controlled by the H,F,SF and JMP microcode
fields and produces signals to control the main JMUX buffers. The signals
connected to this PAL are as follows:

82



Pin Signal Comments
I1 Jmp<3> Microcode JMP field
I2 Jmp<2>
I3 Jmp<1>
I4 Jmp<0>
I5 SF<3> Microcode SF field
I6 SF<2>
I7 SF<1>
I8 SF<0>
I9 F<1> Microcode F field
I11 F<0>
I19 H Microcode H field
O13 DON’T PAGE’ Disable page outputs
O14 Disable Z Addr’ Disable Z field-lower 8 Jmux lines
O15 ENB Y’ Enable Y field to upper 6 Jmux lines
O16 Enb Shift to JMUX’ Enable shifter to all 14 JMUX lines
O17 NopSF’ Enable Long Constant
O18 Disable Bank’ Disable bank register outputs

The PAL equations programmed into the JPPAL3 are given in the following
table :
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Comments
DON’T PAGE =!Jmp<3>.Jmp<2>.Jmp<1>.!Jmp<0> Vector or Dispatch

+!Jmp<3>.!Jmp<2>.Jmp<1>.!Jmp<0> Next Instruction
or Revive Victim

+!SF<3>.SF<2>.SF<1>.!SF<0>.!F<1>.F<0> 2910 := Shifter
+!SF<3>.SF<2>.SF<1>.SF<0>.!F<1>.F<0> Leap

Disable Z Addr =!Jmp<3>.Jmp<1>.!Jmp<0> Dispatch,Vector,
Next Instruction
or Revive Victim

+!SF<3>.SF<2>.SF<1>.!SF<0>.!F<1>.F<0> 2910 := Shifter

EnbY =!SF<3>.SF<2>.SF<1>.SF<0>.!F<1>.F<0> Leap

Enb Shift
to JMUX =!SF<3>.SF<2>.SF<1>.!SF<0>.!F<1>.F<0> 2910 := Shifter

NopSF =!SF<3>.!SF<2>.!SF<1>.!SF<0>.!F<0> Long Const
+!SF<3>.SF<2>.!SF<1>.!SF<0>.!F<1>.F<0> Push

Long Constant

Disable Bank =!SF<3>.SF<2>.SF<1>.!F<1>.F<0> 2910 := Shifter
Or Leap

+!Jmp<3>.!Jmp<2>.Jmp<1>.!Jmp<0>.H Revive Victim

The other main element in the JMUX control circuit is the 32*8bit 74S288
PROM JPE16 at location U104. This PROM is addressed by the microcode
Jmp and H fields, and provides the control signals for the buffers used to gate
the interrupt vector, OpFile, victim latch and dispatch addresses onto the
JMUX lines. The signals handled by this PROM are listed in the following
table
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Address Signal Comments
A0 H Microcode H field
A1 JMP<0> Microcode JMP field
A2 JMP<1>
A3 JMP<2>
A4 JMP<3>

Data Signal Comments
D1 Enb Next Inst’ Gate Opfile onto JMUX
D2 Revive Victim’ Read Victim Latch
D3 Enb Dispatch’ Gate lower 4 shifter outputs to JMUX
D4 Enb Vector’ Gate Interrupt Vector to JMUX
D5 Enb Z Vec Fill’ Fill Interrupt Vector Address with Z
D6 Enb Z Op Fill Fill Special Address with Z

These signal enable the relevant buffers during the following microcode jump
instructions :

Signal Comments
Enb Next Inst’ H=0 Jmp=2 Next Instruction
Revive Victim’ Jmp=0 Clear Victim Control on Jump0

H=1 Jmp=2 Revive Victim
Enb Dispatch H=1 Jmp=6 Dispatch
Enb Vector H=0 Jmp=6 Vector
Enb Z Vec Fill H=0 Jmp=6 Vector

H=1 Jmp=6 Dispatch
Enb Z Op Fill H=0 Jmp=2 Next Instruction

H=0 Jmp=6 Vector
H=1 Jmp=6 Dispatch

The outputs of this PROM directly drive the enable inputs of the relevant
buffers, as described below.

The Disable Z Addr output from the JPPAL3 is inverted by the 74S04
NOT gate U90c before driving the enable input of the buffers U124e-h and
U103a-d. Therefore, when the JPPAL3 asserts the Disable Z addr signal,
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the buffer is disabled. In a similar way, the Disable Bank output is inverted
by the 74S04 NOT gate U90b which drives the enable input of the Bank
Register buffer U84e-h. When the Disable Bank output goes low, this buffer
is disabled.

A long jump occurs when the microcode word F field contains 3. This
condition is detected by the 74S00 NAND gate U131d, which then asserts
the LONG JUMP’ signal. This signal is NANDed with the DON’T PAGE’
output from the JPPAL3, and the resulting signal, ENB PAGE’ is connected
to the output enable input of the page register U109. Therefore, when either
a long jump or a special jump that changes these 4 microcode address lines
is executed, the ENB PAGE’ signal goes high and disables the outputs of the
page register.

The NOP SF’ output from the JPPAL3 is not used by the JMUX control
logic. When it is high, it enables the short constant logic via the NAND
gate U86c. It is inverted by the 74S04 NOT gate U90e, and then fed to the
NAND gate U86b. Therefore, when the NOP SF’ signal is low, U86b enables
the long constant logic. The constant logic is described in chapter 2.

5.3.2 Operation of the JMUX

The operation of the JMUX buffers and the signals that control them will
now be described for each type of jump.

5.3.2.1 Short Jump

When a short jump instruction is executed, the Disable Z Addr’ output from
the JPPAL3 is high, and therefore the ENB Z ADDR’ signal, provided by
the 74S04 NOT gate U90c is low. This enables the 74S240 3-state inverting
buffers U124e-h and U103a-d and gates the microcode word Z field onto the
lower 8 JMUX lines.

The 4 microcode address lines UUA<8>-UUA<11> are clocked into the
74S374 page register U109c-f on the rising edge of the LD MIR’ A clock
signal at the start of each microcycle. Since both the DON’T PAGE’ and
the LONG JUMP’ signals are high, the 74S00 NAND gate U131a brings the
ENB PAGE’ signal low and gates the contents of the page register onto the
JMUX<8>-JMUX<11> lines. Therefore these address lines are unchanged
on a short jump.
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The Bank Register in the extended microcode sequencer is loaded with
the upper 2 microcode address lines on the rising edge of the LD MIR’ A
signal as described above. The JPPAL3 output Disable Bank is high, and
therefore the 74S04 NOT gate U90b brings the ENB BANK’ output low
and enables the 74S244 3-state buffer U84. This gates the contents of the
bank register onto the upper 2 JMUX lines, so the corresponding microcode
address bits are also unchanged on a short jump.

5.3.2.2 Long Jump

The lower 8 bits of a long jump address are provided by the microcode word
Z field. Since the Disable Z Addr’ output from the JPPAL3 is high, the
Z field is gated onto the appropriate JMUX lines as described in the last
section.

A long jump occurs when the microcode word F field contains 3. This
condition is detected by the 74S00 NAND gate U131d, which therefore brings
the LONG JUMP’ signal low. This signal disables the 74S00 NAND gate
U131a, and the output of this gate is therefore high. This signal, ENB PAGE’
then disables the outputs of the page register U103. Since the LONG JUMP’
signal is connected to the enable input of the 74S240 inverting 3-state buffer
U151e-h, this buffer is enabled during a long jump, and gates the microcode
word SF field onto the JMUX<8>-JMUX<11> lines. Therefore the SF field
provides those 4 microcode address bits.

The top 2 microcode address bits are provided by the bank register as
described in the last section

5.3.2.3 Leap

Again, the lower 8 JMUX bits are provided by the microcode word Z field
as described for the Short Jump above.

The JPPAL3 makes the DON’T PAGE’ output low, which therefore
causes the 74S00 NAND gate U131a to force the ENB PAGE’ signal high,
and thus disable the outputs of the page register U103. Similarly, the JP-
PAL3 Disable Bank output is low, and the 74S04 NOT gate U90b disables
the 74S244 3-state buffer U84, and therefore the Bank Register is not gated
onto the top 2 JMUX lines.

The ENB Y’ output of the JPPAL3 is also low, and this enables the
74S244 3-state buffer U122, which gates the lower 6 bits of the microcode
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word Y field onto the upper 6 JMUX lines.

5.3.2.4 Next Instruction

The Next Instruction Jump is a 256-way conditional jump dependant on
the contents of the Opcode file. When such an instruction is executed, the
JPPAL3 brings the Disable Z addr output low, and thus the ENB Z ADDR
signal from the 74S04 NOT gate U90c is high. This condition disables the
74S240 inverting 3-state buffers U124e-h and U103a-d, and the microcode
word Z field is not placed on the lower 8 JMUX lines. The DON’T PAGE’
output is also low, and the page register is disabled via the 74S00 NAND
gate U131a as described for the Long Jump above.

The JPE16 PROM U104 asserts the ENB NEXT INST’ output by making
it low. This signal therefore enables the 74S240 inverting 3-state buffer U162,
which gates the contents of the Opcode file (OP<n>) onto the JMUX<2>-
JMUX<9> lines. The JPE16 PROM also brings the ENB Z OP FILL’ signal
low, which enables the 74S240 inverting 3-state buffer U144e-h. This buffer
gates 4 of the microcode word Z field bits onto the JMUX lines, as given in
the following table.

Z JMUX Buffer
Z<0> JMUX<0> U144h
Z<1> JMUX<1> U144g
Z<6> JMUX<10> U144f
Z<7> JMUX<11> U144e

The upper 2 bits of the JMUX are drive by the bank register via the
buffer U84e-h as described above.

5.3.2.5 Dispatch

When a Dispatch instruction is executed, the JPPAL3 disables the Z field
address buffers U124e-h and U103a-d, and the outputs of the page register
U109, as described above.

The JPE16 PROM asserts the ENB Z OP FILL signal as described in
the last section, and the 74S240 inverting 3-state buffer U144e-h gates the
same 4 Z field bits onto the JMUX lines. The JPE16 PROM also brings the
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ENB Z VEC FILL signal low, which drives the enable input on the 74S240
buffer U146a-d. This buffer gates the remaining 4 bits of the microcode word
Z field onto 4 more JMUX lines, as given in the following table:

Z JMUX Buffer
Z<2> JMUX<6> U146a
Z<3> JMUX<7> U146b
Z<4> JMUX<8> U146c
Z<5> JMUX<9> U146d

The JPE16 PROM also enabled the dispatch address buffer U144a-d by
bringing the ENB DISPATCH’ signal low. This buffer gates the latched
versions of the lower 4 shifter outputs (L SHIFT <n>) onto the JMUX<2>-
JMUX<5> lines. The latched shifter outputs are provided by the 74S373
transparent latch U143e-h. This latch is controlled by the LATCH R signal
described in chapter 4, and therefore stores the appropriate shifter outputs
throughout the second half of the microcycle. This latch ensures that the
jump address is stable on the rising edge of LD MIR’ at the start of the next
microcycle.

The top 2 JMUX lines are controlled by the Bank Register as described
above

5.3.2.6 Vector

The Vector Jump is used to provide a conditional microcode branch which de-
pends on the highest active interrupt source. The operation of the JMUX and
its control logic is identical to the operation during a Dispatch, except that
the ENB DISPATCH’ output from the JPE16 PROM is not asserted (low),
and therefore the latched shifter outputs are not gated onto the JMUX<2>-
JMUX<5> lines. Instead, the JPE16 PROM makes the ENB VECTOR’
output low, which enables the 74S244 3-state buffer U84a-d. U84a forces
a zero onto the JMUX<5> line, while the remaining sections of this buffer
gate the outputs of the interrupt priority encoder U251 (74LS148) onto the
JMUX<2>-JMUX<4> lines.
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5.3.2.7 2910:=Shifter

This instruction allows the microcode jump address to be provided by the
lower 14 outputs of the barrel shifter described in chapter 6. When the
microcode word F field contains 1 and the SF field contains 6, signifying
this instruction, the JPPAL3 brings the Disable Z Address’ signal low, which
disables the Z address buffers U124e-h and U103a-d via the 74S04 NOT gate
U90c. Similarly, the 74S00 NAND gate U131a is inhibited by the DON’T
PAGE’ output from the JPPAL3 going low, and therefore the outputs of the
page register U109 are disabled. The bank register is not gated onto the
upper 2 JMUX lines, since the JPPAL3 forces the Disable Bank’ signal low
which disables the 74S244 3-state buffer U84e-h via the 74S04 NOT gate
U90b.

The lower 14 outputs of the shifter are connected to the D inputs of
a pair of 74S373 octal D-type transparent latches at locations U141 (lower
8 bits) and U183 (upper 6 bits). These latches are controlled by the LD
MIR’A signal described in chapter 4, and so, during the second half of the
microcycle, when the LD MIR’A signal is low, the shifter outputs are held in
these latches. The outputs of U141 and U183 are directly connected to the
14 JMUX lines. When a 2910:=shifter instruction is executed, the JPPAL3
brings the ENB SHIFTER TO JMUX’ signal low, which drives the Output
Enable pin of these latches. Therefore, the outputs are enabled, and the
latched shifter outputs are gated onto the appropriate JMUX lines.

5.3.2.8 Revive Victim

The Victim latch, described below, stores the address of a microinstruction
that attempted to read a byte from the opcode file when it was empty. The
contents of the victim latch can be gated onto the JMUX lines to allow the
instruction to be executed again, and this occurs when a Revive Victim jump
is executed.

When such a jump happens, the JPPAL3 disables the Z address buffers,
the page register, and the bank register buffer as described in the last sec-
tion. The JPE16 ROM brings the REVIVE VICTIM’ output low which is
connected to the output enable pins of a pair of 74S374 flip-flops (U109 and
U107) which form the victim latch. The outputs of these flip-flops are directly
connected to the 14 JMUX lines. Thus, during a Revive Victim instruction,
the outputs of these devices are enabled and gate the victim address onto
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the JMUX lines.

5.4 The Opcode File

The opcode file is a 64 bit register file consisting of 4 74LS670s at locations
U160, U181, U159 and U200. It is loaded as 4 16-bit words provided by the
memory PCB on successive microcycles during a FETCH4 memory instruc-
tion, and it is read as 8 bytes into either the ALU via the AMUX as described
in chapter 2, or onto the JMUX lines as described above.

The control logic used to load and read the Opcode File will now be
described.

5.4.1 Loading the Opcode File

The 16 bit data words arrive from the memory PCB via the MDO lines and
are stored in 2 74S374 octal D-type flip-flops at locations U224 (for the low
byte) and U244 (for the high byte). The outputs of these flip-flops, which
are permanently enabled, drive the data inputs of the 74LS670 devices that
form the opcode file. The MDO VALID H output from the memory board
is strobed into the 74S374 D-type flip-flop U209h by the rising edge of the
CLK-0R B clock at the start of each microcycle. The output of this flip-flop,
LMDO VALID H, is NANDed with the CLK-4E clock signal by the 74S00
NAND gate U232c, and the output of this gate, the CLK MDOR signal,
drives the clock inputs of U224 and U244. When the memory card is going
to output a valid data word, it sets the MDO VALID H signal, and at the
start of the next microcycle, the LMDO VALID H signal goes high. Near
the end of that microcycle, the rising edge of the CLK MDOR signal stores
the data word in U224 and U244.

The bottom 2 bits of the main timing counter on the memory board are
inverted on that PCB, and fed to the CPU board as the TIME<0>’ and
TIME<1> signals. The value in this counter, the so-called T-state number,
is used to determine which word is begin read from the main memory, as
described in chapter 7. The TIME<0>’ signal is inverted by the 74S04 NOT
gate U208d, to produce B TIME <0>’ which is connected to the lower write
address input to the Opcode File. The TIME<1>’ signal is buffered by
connecting it to both inputs of the 74S08 AND gate U231c. The output of
this gate, B TIME <1>’, is connected to the higher write address input of
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the Opcode File. Since the first word is read out of the memory during the
T state t2, this word is written to the zeroth location of the opcode file, as
indicated in the following table.

T state Word TIME <1,0>’ B TIME<1,0>’ Location
T2 15-0 01 00 0
T3 31-16 00 01 1
T0 47-32 11 10 2
T1 63-48 10 11 3

So, the words fetched from the main memory are written to the appropriate
locations of the Opcode File.

The write-enable control signal for the Opcode File is produced by the
following circuit. When the microcode instruction specifies a Reload Op
operation (i.e. the F field contains 0 or 2 and the SF field contains 12), the
special function decoder asserts the RELD OP signal by forcing it low. This
signal is connected to one input of the 74S00 NAND gate U212c, and thus
the output of this gate is set high. This output drives the LD OP control
flip-flop, the 74S374 U209c. Therefore, at the start of the next microcycle,
this flip-flop is clocked by the rising edge of the CLK-0R B clock, and thus
the LD OP signal, produced by the output of this flip-flop, is set.

The microcode program is written to cause the microcode cycles between
the Reload Op Instruction and the next T2 state to be aborted, e.g. by
making the A microcode field of the Reload Op instruction specify one of the
2 memory data operations. Therefore, the LD MIR’ clock does not go active
until the next T2 state, and the microcode pipeline register is not reloaded.
Therefore the RELD OP output remains active, and the LD OP flip-flop is
held set.

At the next T2 state, the RELD OP signal returns to the inactive (high)
state. However, since both the output of the 74S00 NAND gate U210b, and
the LD OP signal are high, the 74S00 NAND gate U210c which combines
these 2 signals and produces CONT’ is enabled, and the CONT’ signal is
forced low. This signal is applied to the other input of the 74S00 NAND
gate U212c, and thus the LD OP flip-flop U209c is held set until the end of
the next T1 state.

During the subsequent T1 state, both the B TIME<1>’ and B TIME<0>
signals are high. These signals are NANDed together by the 74S00 NAND
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gate U210b, whose output therefore goes low. This output inhibits the 74S00
NAND gate U210c and therefore the CONT’ signal goes high. Since the
RELD OP output from the special function decoder is now also high, the
output of U212c goes low, and on the rising edge of the CLK-0R B clock at
the start of the next microcycle, the LD OP flip-flop U209c is cleared.

The output of the LD OP flip-flop (the LD OP signal) is connected to
one input of the 74S10 NAND gate U207a. This gate NANDs LD OP with
the CLK-4J and the CLK-41 clock signals, and produces a write-enable pulse
for the Opcode File chips. The timing of this signal is described in chapter
4. The output of U207a is directly connected to the write-enable inputs of
the Opcode File registers.

Therefore, to load the opcode file, the microcode program starts a FETCH4
memory cycle, and then executes a Reload Op instruction. This sets the LD
OP flip-flop, and causes the data fetched from memory to be written into the
Opcode File. When all 4 data words have been fetched, the LD OP flip-flop
is cleared, and the system returns to the idle state.

A low level on the CONT’ signal (which occurs when the Opcode File
write logic is active) is also used to clear the Boot ROM enable flip-flop
U236b which is described in chapter 4

5.4.2 Reading the Opcode File

The data outputs of the opcode file are gated onto the lower 8 AMUX lines
by the 74S240 inverting 3-state buffers U161e-h and U182a-d. These buffers
are enabled by the NEXT OP’ signal from the AMUX control logic, and this
circuit, together with the rest of the AMUX system, is described in chapter
2. The outputs of the Opcode file can also be used to control the microcode
jump address during a Next Instruction operation by gating them onto the
appropriate JMUX lines as described above. This function is enabled by the
ENB NEXT INST’ signal from the JPE16 PROM U104.

The read address for the Opcode File is provide by the Byte Program
Counter (BPC), which is the 74S163 4-bit binary counter at location U201.
The B and C (21 and 22) outputs of this counter are connected to the read
address lines of the 74S670s in the Opcode file. Since there are only 8 bytes
in the Opcode File, the most significant output of the BPC (BPC<3>) is
low whenever the BPC points to a valid Opcode File Location.

The least significant output of the BPC (BPC<0>) is inverted by the
74S04 NOT gate U208b to produce the BPC<0>’ signal. Similarly BPC<3>,
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the most significant output, is inverted by U192f (74S04) to give BPC<3>’.
The read enable signal to the 74S670 Opcode File Chips U181 and U160,
ENB OP<0>’ is produced by NANDing the BPC<3>’ and BPC<0>’ with
the 74S00 NAND gate U203a. Therefore, these chips, which are loaded with
the low byte of the memory data, are enabled when the BPC contains a
valid even address. Similarly, the read enable signal for U159 and U200,
which store the upper byte of the memory word, is provided by the 74S00
NAND gate U203d, which combines the BPC<3>’ and BPC<0> signals.
Therefore, these devices are enabled when the BPC contains a valid odd
address.

The BPC can be loaded with the latched form of the bottom 4 bits of the
R register (SL<0>-SL<3>) by the BPC:= signal from the Special Function
decoder as described in chapter 4. The Reset input of the BPC is connected
to the +3B line, and thus pulled high through R3 (a 1k resistor). The BPC
is clocked by the rising edge of the LD MIR’B signal at the start of every
microcycle, and therefore, if the NEXT INST OP signal is high, the BPC is
incremented and selects the next byte in the Opcode File.

The NEXT INST OP signal is produced by the 74S00 NAND gate U203b
which combines the active-low signals NEXT OP’ and ENB NEXT INST’.
One of these signals goes active on either type of instruction that reads a
byte from the Opcode File, and therefore after such an instruction, the BPC
is incremented and points to the next byte in the Opcode File.

The value in the BPC can be read onto the lowest 3 AMUX lines via
the 74S240 inverting 3-state buffer U202a-d, which is part of the microstate
register. This register, and its associated control logic, is described in chapter
2.

5.5 The Victim Latch

The Victim latch consists of a pair of 14 bit registers which are loaded with
the microcode control store address at the start of each instruction, one of
which can be transferred to the JMUX inputs to the microcode sequencer,
while the other may be transferred into a normal CPU register If an attempt
is made to read the Opcode File via the AMUX and the Opcode file is
empty (that is, the BPC<3> bit is 1), then the CPU control electronics
locks the address of that microcode instruction in the Victim l=Latch. After
the Opcode file has been refilled from the main memory, the contents of the
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Victim Latch can be transferred to the microcode sequencer via the JMUX,
and the original instruction repeated.

The copy of the Victim Latch which can be transferred to the JMUX
consists of the pair of 74S374 flip-flops at locations U107 (for the top 8 bits
of the microcode address) and U108 (for the lower 6 bits). The D inputs
of these flip-flops are directly connected to the UUA<n> microcode address
lines, while the outputs are connected to the JMUX lines. The flip-flops are
clocked by the LD VICTIM’ signal that is described below, and the outputs
are gated onto the JMUX lines by the REVIVE VICTIM signal which is
connected to the Output Enable pin of U107 amd U108. This signal is
described above.

The second copy of the Victim Latch may be transferred onto the R
register lines. This consists of 2 74S534 octal inverting D-type flip-flops at
locations U88 (for the top 8 bits) and U79 (for the bottom 6 bits of the
microcode address). The D inputs of these flip-flops are again connected to
the UUA<n> control store address lines, and the chips are both clocked by
the LD VICTIM’ signal. The 3-state outputs of these devices are connected
to the bottom 14 of the R-register outputs. These outputs are enabled by the
active-low RD VICTIM output from the special function decoder described
in chapter 4. This signal is also connected to one input of the 74S10 NAND
gate U213b which drives the output enable inputs of the R-register latches.
When the (R):=Victim instruction is executed (that is, when the microcode
word F field contains 1, and the SF field contains 0), the RD VICTIM signal
goes low, disables the R register outputs via U213b and gates the contents
of the Victim Latch onto the R lines and hence into a CPU register.

The way in which the Victim Latch is loaded will now be described.
Normally, the P HOLD VICTIM’ signal is high. This signal is NANDed with
the CLK-4E CPU clock signal by the 74S00 NAND gate U210d to produce
the LD VICTIM’ signal that directly drives the clock inputs of the 4 chips
that make up the Victim Latch. Therefore, at the start of every microcycle,
when the CLK-4E clock goes low, there is a rising edge on the LD VICTIM’
signal that clocks the microcode address into the Victim Latch.

When the Opcode File is read via the AMUX into the ALU, the NEXT
OP’ output from the AMUX control decoder U223 (74S138) goes low. This
signal is inverted by the 74S240 NOT gate U206c, and then ANDed with the
most significant bit of the Byte Program Counter, BPC<3>, by one side of
the 74S51 AND-OR-Invert gate U205b. If an attempt is made to read the
opcode file when it is empty, therefore, the output of U205b, the P HOLD
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VICTIM’ signal goes low, which inhibits the 74S00 NAND gate U210d, and
therefore the Victim Latch is not clocked at the start of the next microcycle.

The P HOLD VICTIM’ signal is also connected to the D input of the
74S374 flip-flop U209d, which is clocked by the main clock signal CLK-0R B.
Therefore, at the start of the next microcycle, this flip-flop is set to 0. The
output of this flip-flop is inverted by the 74S240 NOT gate U206d, and then
ANDed with the output of the 74S08 AND gate U73Ac by the other side
of U205b. Therefore, while the output of U73Ac is high, U209d is reloaded
with 0.

U73Ac ANDs the 2 active-low signals that read the Victim Latch, namely
RD VICTIM and REVIVE VICTIM’. Since both of these signals are normally
high, the output of U73Ac is also high, as required by the previous paragraph.
When the Victim Latch is read, the output of U73Ac is set to 0, and thus
the output of U205b is forced high. At the end of the microcycle, when a
rising edge of the CLK-0R B clock signal occurs, U209d is loaded with 1,
which therefore causes the output of U205b to remain high, and the loading
of the Victim Latch at the start of each microcycle resumes.

5.6 The Interrupt Encoder

The PERQ 16K CPU board can accept interrupt signals from 8 different
sources, which are listed in the following table.

Signal Latch U251 Input Comments
PAR INTR L U250h 0 Memory Parity Error
X INT INTR L U250g 1 OIO Interrupt # 1
LINE COUNT INTR L U250f 2 Line Counter overflow
Z80 RDY INT L U250e 3 EIO CPU data In ready
NET INTR L U250d 4 EIO Network Interrupt
DISK INTR L U250c 5 EIO HArd Disk Interrupt
Y INTR L U250b 6 OIO Interrupt # 2
UPROC INTR L U250a 7 EIO CPU Data Out ready

Unlike a conventional processor, the PERQ CPU does not automatically
respond to interrupts, but instead the microcode program must check for a
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pending interrupt periodically, and if one occurs, jump to the appropriate
service routine.

The 8 interrupt input signals are clocked into the 74S374 Octal D-type
flip-flop at location U250 by the rising edge of the CLK-0R D clock at the
start of each microcycle. The outputs of U250, which are permanently en-
abled, are connected to the 8 inputs of the 74LS148 priority encoder U251,
as indicated in the table above. The EI expansion input of this encoder is
grounded, so that the encoder is always active. The EO output, which in-
dicates if any of the interrupt signals are active, is latched by the 74S374
flip-flop U209a on the rising edge of the next CLK-0R B clock to give the
INTR PEND (Interrupt Pending) Input to the Condition Code logic. The 3
data outputs from the priority encoder U251, which carry the number of the
most significant active Interrupt, are fed to the interrupt vector buffer U84a-
d and then gated onto the JMUX lines during a vector jump instruction as
described above.

Five of the 8 interrupt lines are driven by hardware that is fitted to every
PERQ system, but the remaining 3, namely X INT INTR L, Y INTR L and
NET INTR L, are provided by optional equipment. Therefore these 3 inputs
are pulled up on the CPU board by the 1k resistors RS7b, RS7c and RS7i
respectively.

5.7 The Condition Flags

The microcode sequencer may be controlled by one of 15 different conditions
which are selected by the 4 bit microcode word COND field. This field con-
trols the condition multiplexer U187 and U189 (both 74S251s) which then
pass the selected condition signal onto the CONDITION’ input of the se-
quencer. Eight of these condition flags, the so-called Arithmetic Conditions,
are provided by a 16R8 PAL (CCPAL0) at location U186, and this circuit
will therefore be described first.

Four signals from the data path are latched in the 67S380 inverting trans-
parent latch U165a-d, as listed in this table.
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Signal Latch Latched Signal Comments
AMUX<15>’ U165a LA<15> Top bit (sign) of AMUX
BMUX<15>’ U165b LB<15> Top bit (sign) of BMUX
C<15> U165c LC<15> Carry out from bit 15
A=B U165d LA=B Lower 16 ALU outputs 0

These latches are controlled by the CLK-0R C clock described in chapter
4. During the first half of the microcycle, the outputs of the latches are
updated, but the signals are held stable during the second half, when the
CLK-0R clock is low. The outputs of U165 are permanently enabled, since
the output enable pin is tied low. These signals are then fed to the inputs of
the CCPAL0, which is described next.

5.7.1 The Condition Code PAL

The condition code PAL is the 16R8 registered PAL CCPAL0 at location
U186, which accepts inputs from the data path, and produces the arithmetic
flags. The signals processed by this chip are listed in the next table.
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Pin Signal Comments
I2 ArithX ALU Subtraction indicator
I3 ArithY ALU Addition indicator
I4 R15’ Active-low R-register sign bit
I5 LA=B Active-low ’Low 16 ALU outputs 0’ signal
I6 LC<15> Active-low Carry Out from bit 15
I7 LB<15> Active-high BMUX bit 15
I8 LA<15> Active-high AMUX bit 15

(All outputs are active-high)
O12 OVF Overflow Flag
O13 CRY Carry Flag
O14 Leq Less than or equal Flag
O15 Lss Less than Flag
O16 Geq Greater than or Equal Flag
O17 Gtr Greater than Flag
O18 Neq Not Equal Flag
O19 EQL Equal Flag

The outputs of this PAL are always active, since the output enable pin is tied
to ground. The CCPAL0 output register is clocked by the LD MIR’ B signal.
Therefore, at the start of each microcycle, on the rising edge of the LD MIR’
clock, the flags are updated based on the previous microcycle’s ALU result.

The logic functions used to generate each of the arithmetic flags will now
be described.

5.7.1.1 OVF

This flag tests for overflow on addition or subtraction. The Logic Equation
used to generate this flag is :
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Comments
No Overflow if

!OVF:= R<15>’.!LA<15> +ve result,
first operand +ve

+ArithX.ArithY.R<15>’ Never Occurs!
+!ArithX.R<15>’.!LB<15> Addition of a +ve,

Giving a +ve result
+!ArithY.R<15>’.LB<15> Subtraction of a -ve

Leaving a +ve Result
(The above 2 terms also
Cover logical operations)

+!R<15>’.LA<15> -ve result from
-ve first operand

+ArithY.!R<15>’.LB<15> Additon of a -ve
and leaving a -ve result

+!ArithX.!ArithY.!R<15>’ -ve result on
any logical Op

+ArithX.!R<15>’.!LB<15> Subtration of a +ve
leaving a -ve result

In the above cases, the sign of the result is correct, so the overflow flag is not
set. In all other cases, a carry out of the most significant bit has caused the
sign to be incorrect, so the overflow flag is set.

5.7.1.2 CRY

The carry flag is produced in the obvious way by the following PAL equation
:

Comments
!CRY:= LC<15> No Carry if

LC<15> high

The Carry output from bit 15 of the ALU is inverted by the latch U165c,
and therefore reinverted by the CCPAL0 before being fed to the condition
multiplexer.
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5.7.1.3 LEQ

The PAL equation that produces the Less than or equal flag is the following:

!LEQ:= ArithX.!ArithY.!R<15>’.LA=B.LB<15>.!LA<15>
+!ArithX.ArithY.!R<15>’.LA=B.!LB<15>.!LA<15>
+R<15>’.LA=B.!LA<15>
+ArithX.ArithY.R<15>’.LA=B
+!ArithX.R<15>’.LA=B.!LB<15>
+!ArithY.R<15>’.LA=B.LB<15>

The LEQ flag is set if the result is either 0 or negative. Therefore, the state
of the LEQ flag is given by logically ORing the Equal flag with the LSS flag.
Since the PAL internally operates with inverted signals, the equation for the
!LSS flag given below is ANDed with the inverted Equals flag - the LA=B
signal, to produce the !LEQ signal.

5.7.1.4 LSS

This flag is defined by the following logic equation:
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!LSS:= ArithX.!ArithY.!R<15>’.LB<15>.!LA<15>
Subtraction of a -ve
from a +ve, leaving a -ve
Overflow, should be +ve

+!ArithX.ArithY.!R<15>’.!LB<15>.!LA<15>
Addition of 2 +ves
Giving a -ve
Again, Overflow - should
be +ve

+R<15>’.!LA<15> +ve result from
+ve first operand

+ArithX.ArithY.R<15>’ Never Occurs
+!ArithX.R<15>’.!LB<15> No Overflow conditions for
+!ArithY.R<15>’.LB<15> Addition or Subtraction

(Or a Logical operation)
Giving a +ve result

The Less flag is set if the ALU result is negative, and therefore the !LSS
signal should be true if the top bit of the previous ALU result was +ve.
A complication arrises because an overflow can occur on either addition or
subtraction, and the flag must take account of this. Therefore, the equation
considers all cases when a positive result should have occurred, irrespective
of whether or not the result overflowed.

The resultant flag indicates whether the result would have been negative
on a machine with arbitrary word length.

5.7.1.5 GEQ

This flag is the logical inverse of the LSS flag, and indicates when the previous
ALU result would have been 0 or positive - that is when the top bit, corrected
for a possible overflow, would have been 0. The inverted !GEQ signal, used
inside the CCPAL, therefore tests for the sign bit of the result being set. The
equation used is :
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!GEQ:= ArithX.!ArithY.R<15>’.!LB<15>.LA<15>
Subtraction of a +ve
from a -ve, leaving a +ve
Overflow, should be -ve

+!ArithX.ArithY.R<15>’.LB<15>.LA<15>
Addition of 2 -ves
Giving a +ve
Again, Overflow - should
be -ve

+!R<15>’.LA<15> -ve result from
-ve first operand

+!ArithX.!ArithY.!R<15>’ -ve result on
Logical Operation

+ArithX.!R<15>’.!LB<15> No Overflow conditions for
+ArithY.!R<15>’.LB<15> Addition or Subtraction

Giving a -ve result

5.7.1.6 GTR

The Greater Than flag is set if the greater than or equal flag is set, and the
equal flag is not - the ALU result was strictly positive. Therefore, inside the
PAL, the !GTR signal is produced by logically ORing the !GEQ signal with
the !LA=B not equal signal, using the following equation :

!GTR:= !LA=B
+ArithX.!ArithY.R<15>’.!LB<15>.LA<15>
+!ArithX.ArithY.R<15>’.LB<15>.LA<15>
+!R<15>’.LA<15>
+!ArithX.!ArithY.!R<15>’
+ArithX.!R<15>’.!LB<15>
+ArithY.!R<15>’.LB<15>
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5.7.1.7 NEQ

The Not Equal flag is produced in the obvious way by latching the LA=B
inverted equal signal in the CCPAL0 output register. This is done with the
following equation:

!NEQ:= !LA=B

5.7.1.8 EQL

The Equal flag is produced by inverting the LA=B inverted equal signal,
and storing the result in the PAL’s output register. This is performed by the
following simple equation:

!EQL:= LA=B

5.7.2 The Condition Multiplexer

The condition multiplexer consists of a pair of 72S251 8-input multiplexers
at locations U189 and U187. The select inputs of these chips are directly
connected to the lower 3 bits of the condition code field of the microcode
pipeline register described in chapter 4 (the CND<0>-CND<2> signals).
The 3-state inverting outputs of the 2 multiplexers are linked together, and
to the CONDITION’ input of both the 2910 microcode address sequencer and
the extended microcode address sequencer, as described above. The Enable
input of U189 is driven by CND<3>, the most significant bit of the COND
field, so that this multiplexer is enabled when one of the first 8 conditions is
selected. The CND<3> signal is inverted by the 74S240 NOT gate U185d,
the output of which is connected to the enable input of U187, which is thus
enable when one of the second 8 conditions is selected. This circuit therefore
selects between the 16 condition flags and therefore operates as a 16 input
multiplexer.

The way in which each of the condition flags is produced will now be
explained.
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5.7.2.1 0 - U189(0) - True

This input is driven by the WR NOW’ signal from the control store loading
circuit. This signal is normally high, so the microcode sequencer receives a
True (low) CONDITION’ input. However, this signal is forced low during
the first microcycle of the control store load operation, and this causes the
microcode sequencer to output the contents of the S register onto the control
store address lines. During the second microcycle of such an instruction, the
WR NOW’ signal is high, and thus the sequencer behaves normally. The
operation of the control store load circuitry is described in chapter 4.

5.7.2.2 1 - U189(1) - False

This input is simply connected to ground, so that the sequencer always re-
ceives a false condition.

5.7.2.3 2 - U189(2) - Intr Pend

The output of U209a (a 74S374 D-type flip-flop) is connected to this input
of the multiplexer. U209a is loaded with the state of the Interrupt encoder
EO output at the start of each microcycle, so this condition is true if a CPU
interrupt input is active. The interrupt priority encoder is described above.

5.7.2.4 3 - U189(3) - Space

This input is not used, and simply left floating.

5.7.2.5 4 - U189(4) - Opfile Empty

This input is connected to the most significant bit of the Byte Program
Counter - the BPC<3> signal. It is therefore active when the value stored
in the BPC is greater than or equal to 8, i.e. when all the words stored in
the opcode file have been read out. The Opcode file and its control logic are
described above.

5.7.2.6 5 - U189(5) - C19

The CARRY<19> carry output from the most significant ALU chip U154
(74S181) is latched in the 67S380 D-type latch U165e. This latch is con-
trolled by the CLK-0R C clock signal, and thus the state of this carry signal
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is held throughout the second half of the microcycle. The output of U165e
is connected to the D input of the 74S374 D-type flip-flop U209g, which is
directly clocked by the rising edge of the CLK-0R B clock at the start of the
next microcycle. Therefore, the output of U209g (the OLD CARRY<19>
signal) holds the state of the final carry out from the ALU on the previous
microcycle. The output of U209g then drives the relevant input on the con-
dition code multiplexer. Since U165 is an inverting latch, this condition is
true when no carry out occurs.

On the PERQ T4 24 bit CPU, a link (JP2) enables the input of the
final carry latch (the equivalent of U165e on the 20 bit CPU) to be switched
between the carry out from bit 19 (for T2 compatability) or the carry out
from bit 23 (when the CPU operates in 24 bit mode).

5.7.2.7 6 - U189(6) - Odd

The contents of the R register are transferred to the microcode store input
latch U56 and U71 (both 74S374s) on the rising edge of the LD MIR’B clock
at the start of each microcycle. The operation of this register is described
in chapter 4. Since the data path uses active-low data signals, UW<0>, the
least significant bit of this register, is therefore set low if the previous ALU
result was odd. This bit is stored in U71d, and the output from this flip-flop
is inverted by the 74S240 NOT gate U192h, the output of which drives the
appropriate condition multiplexer input.

5.7.2.8 7 - U189(7) - Bytesign

This signal is produced in a similar way to the Odd flag just described.
UW<7>, bit 7 of the microcode store input latch, indicates the sign of low
byte of the previous ALU result. The output of U71e, which stores UW<7>,
is inverted by U192g, the output of which drives the relevant condition code
multiplexer input.

5.7.2.9 10 - U187(0) - Neq

This input is driven by the O18 output of the CCPAL0 described above.
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5.7.2.10 11 - U187(1) - Leq

The O14 output of the CCPAL0 is directly connected to this input of the
condition code multiplexer. The operation of the CCPAL0 is described above.

5.7.2.11 12 - U187(2) - Lss

Again, this input is directly driven by one of the CCPAL0 outputs, in this
case the O15 output.

5.7.2.12 13 - U187(3) - Ovf

The overflow output O12 from the CCPAL0 described above is connected to
this input of the condition multiplexer.

5.7.2.13 14 - U187(4) - Carry

The latched carry output from the CCPAL0 appears on the O13 pin, which
drives this input of the condition code multiplexer.

5.7.2.14 15 - U187(5) - Eql

This input is driven by the O19 output from the CCPAL, which carries the
latched Equal signal as described above.

5.7.2.15 16 - U187(6) - Gtr

The O17 output from the CCPAL0 directly drives this input.

5.7.2.16 17 - U187(7) - Geq

This last input of the condition code multiplexer is driven by the O16 output
from the CCPAL0 described above.
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Chapter 6

The Shifter and Combiner

The operation of shifting a binary number left or right by a given number
of bits is often performed by a sequential circuit - the shift register, which
shifts the number by one bit on each clock cycle. However, the operation of
shifting a number is a combinatorial one - the output depends only on the
input and on the number of bits by which it is shifted. The combinatorial
circuit that performs such a shift is known as a barrel shifter.

A barrel shifter simply consists of a number of multiplexers, one for each
bit in the output word, which select the relevant bits from the input word.
The select inputs of all the multiplexers are joined together, and driven by
the signals that select the number of bits to shift by. The output of each
multiplexer provides one bit in the output word. The following table gives
a simple example of a barrel shifter - one that will rotate a 4 bit word by
0,1,2,3 bits.

Input Multiplexer
0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

The control inputs on the multiplexers effectively select one horizontal line
of the table, and the 4 rightmost columns show which bit of the input word
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is fed to each output.
A barrel shifter, similar to this, is used in the PERQ 16K CPU board. It

selects a 16 bit field from a 31 bit input word, and is used for both arithmetic
and graphics operations.

6.1 The shifter

The barrel shifter in the PERQ 16K CPU board consists of 11 AM25S10
chips. The shifter is designed as a 2-stage cascade, where the first stage
selects a 28 bit word from the 31 bit shifter input word, starting at bit 0,1,2
or 3, and the second stage extracts a 16 bit result from the 28 bit intermediate
word, with the control inputs selecting the first nybble to be included.

The first stage consists of 7 25S10 chips at the following locations:

Location Input Bits Output
U196 0-6 SA<0>-SD<0>
U176 4-10 SA<1>-SD<1>
U114 8-14 SA<2>-SD<2>
U134 12-18 SA<3>-SD<3>
U175 16-22 SA<4>-SD<4>
U155 20-26 SA<5>-SD<5>
U115 24-30 SA<6>-SD<6>

These shifters are controlled by a pair of control lines, SHIFT CTRL<2>
(The least significant bit) and SHIFT CTRL<3>. These signals are provided
by the shifter control PROMs described below. The outputs of this stage of
the barrel shifter are directly connected to the inputs of the second stage.

The second stage of the shifter consists of 4 25S10 devices which extract
a 16 bit word from the 28 bit output of the first stage, aligned on a nybble
boundary. Each chip handles one particular bit in each nybble, as indicated
in the following table:
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Location Input bits Output Bits
U195 SA<0>-SA<6> 0,4,8,12
U194 SB<0>-SB<6> 1,5,9,13
U218 SC<0>-SC<6> 2,6,10,14
U217 SD<0>-SD<6> 3,7,11,15

For example, U195 takes the least significant bit of each nybble of the input
word, and passes the relevant 4 bits to the least significant bit of each nybble
of the 16 bit shifter output word. These shifters are controlled by the SHIFT
CTRL<1> and SHIFT CTRL<0> signals from the shifter control PROMs,
which specify the number of bits by which the shifter input should be rotated
right.

The outputs of all 11 barrel shifter chips are permanently enabled since
the output enable pin is connected to ground. The outputs of the second
stage of the shifter are fed to the combiner logic that is described below.

6.2 The shifter input

When the shifter is used as part of the main CPU data path, the shifter
inputs are driven by the ALU to Shifter Latch, but when it is used for raster
operations, it is driven by the outputs of the half pipeline latches. These 2
circuits will now be described.

6.2.1 The ALU to Shifter Latch

The 31 bit ALU to Shifter Latch consists of 4 67S380 transparent latches
which are loaded with the contents of the R register during the second half
of the microcycle. The latches that form part of this circuit are listed in the
following table

Location Input bits Output bits
U178 R<0>-R<7> SL<0>-SL<7>
U117 R<8>-R<15> SL<8>-SL<15>
U135 R<0>-R<7> SL<16>-SL<23>
U118 R<8>-R<14> SL<24>-SL<30>
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Therefore the input to the shifter consists of 2 copies of the ALU result
concatenated together, so that when the shifter extracts a 16 bit field from
the middle of this 31 bit word, the result is as if the ALU result had been
rotated by the appropriate number of bits.

There is, however, one extra feature of the shifter input latch used in
the PERQ. The 15th and 16th inputs (the high bit of the low copy of the
R register) and the low bit of the high copy of the R register) are modi-
fied by the MULT01 PROM in the multiplication/division logic, so that on
multiplication, when the ALU result is shifted to the right, the data can be
correctly sign-extended, and on division, when the ALU result is shifted to
the left, the next bit of the dividend is placed in the new least significant bit.
The operation of the MULT01 prom and its associated logic is described in
chapter 3.

The CLK-4F CPU clock signal is NANDed with the ABORT’ signal and
a pull-up signal from the 1k resistor R5 by the 74S10 NAND gate U210c.
The output of this gate is inverted by the 74S04 NOT gate U208c, and the
output of this inverted is connected to the clock inputs of the 4 67S380s that
form the ALU to shifter latch. Therefore, this latch is enabled during the
second half of a non-aborted microcycle, and the contents of the R register
are held in the ALU to shifter latch throughout the first half of the next
microcycle, when the ALU may read the output of the shifter via the AMUX
lines.

The output enable pins of these latch chips are all connected together,
and driven by the RO/PS signal from the raster operation control register.
When the shifter is being used for arithmetic operations, this signal is low, so
the outputs are enabled, and the ALU result is transferred into the shifter.
During raster operations, the RO/PS line is high, so the ALU to shifter latch
is disabled.

6.2.2 The Raster Operation Source FIFO

As is described in the PERQ User Manual, the PERQ CPU includes a system
to simplify the updating of a bit-mapped graphics image. This system, the
so-called Raster Operation unit, allows the destination image to be combined
with the source image in one of 8 different ways, and the 2 bit-maps do not
have to start in the same positions within a 16 bit machine word. The shifter
is an important part of the Raster Operation system, as it is used to shift
the source bitmap’s words to align them with the destination. The Raster
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Operation unit operates on 64 bit words as are stored in the main system
memory, and the words of the source image required to update the next word
of the destination image are stored in a 16bit * 16 level FIFO queue - the
Raster Operation Source FIFO.

This FIFO is constructed from 4 74S225 devices at the following locations
:

Location bits
U157 0-3
U158 4-7
U137 8-11
U138 12-15

The way in which data is loaded into the FIFO and then transferred from
the FIFO into the shifter will now be described.

The data is loaded into the FIFO from the main system memory by a
FETCH4 cycle as described in chapter 7. The data path for these words
operates in the following way.

The incoming memory data is stored in a pair of 74S374 octal D-type flip-
flops at U224 and U244 that are also used to load the Opfile memory, and
are therefore described in chapter 5. The MDO VALID H output from the
memory board, which indicates when valid data is present on the MDO lines,
is latched in U209h (74S374) by the rising edge of the CLK-0R B clock, and
the output of this flip-flop is NANDed with the CLK-4E CPU clock signal
by the 74S00 NAND gate U232c. The output of this gate, CLK MDOR,
is used to strobe the memory data into U224 and U244. The outputs of
these memory data registers are connected directly to the data inputs on the
FIFOs.

The data is clocked in by the logical AND of the CLK-4F and CLK FIFO
IN signals which drive the CK A and CK B pins of the 74S255s. The latter
signal is produced by the RTI02 PROM at location U171, which is part of the
Raster Operation State Machine. This state machine is described in more
detail in chapter 7.

There are a pair of miscellaneous control signals on the FIFO chips,
namely CLR* (an active-low reset input) and OE* (an active low output
enable). These signals will now be described. The LD W output from the
Special Function Decoder described in chapter 4 is connected to the CLR*
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input of these 4 FIFO devices When the microcode instruction loads the
Raster Operation Width Register, this signal goes low, and clears the FIFO.
The output enable pins of the FIFO chips are grounded, so the outputs are
permanently enabled.

The source bit-map words are transferred out of the FIFO to the shifter
by the CK IN input on each FIFO chip. This signal is produced by the
following circuit The 2 CPU clock signals CLK-16 and CLK-4E are logically
ANDed by the 74S08 AND gate U73Ab to produce a clock pulse that is goes
high during the second half of the microcycle, and returns low at the end
of the microcycle. This clock is combined with the CLK FIFO OUT enable
signal from the Raster Operation State machine by the 74S00 NAND gate
U203c, and the output of this gate, the UNLD signal, is connected to the
output clock (CK IN) pins of the FIFO devices. Therefore, when the CLK
FIFO OUT signal is high, a rising edge of the UNLD signal occurs at the
end of the microcycle, and thus the next word in the FIFO appears on the
data output lines

A given 16 bit word of the Destination bitmap will in general be combined
with parts of 2 source bitmap words, as shown in figure 5.1. For this reason,
the 31 bit input to the shifter consists of the current FIFO output word
concatenated to the previous shifter output word. Which half of the 31 bit
word is latched depends on whether the Raster Operation is being performed
Left-to-Right, or Right-to-Left, and this is controlled by the state of the
SL/SR signal from the Raster Operation control register U190 described
below.

For this reason, the 16 bit output of the FIFO is connected to the inputs
of the 2 Raster Operation half pipeline latches, which provide the input to
the shifter. These latches are each implemented by a pair of 74S373s, and
together they provide the 31 bit shifter input as indicated in the following
table.

Latch Input Bits Shifter Bits
U177 0-7 SL<0>-SL<7>
U136 8-15 SL<8>-SL<15>
U156 0-7 SL<16>-SL<23>
U116 8-14 SL<24>-SL<30>

For any given Raster operation, one of the latches (either U177 and U136,
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Destination Word

Source word 1 Source word 2

Figure 6.1: Parts of 2 source words are needed to update each destination
word

or U156 and U116) is forced into the transparent state, and the other one
holds the previous source word, as was described in the previous paragraph.
The control logic that achieves this will be described next.

The main timing signal used to control the half pipeline latches is the
Sliver clock, which is produced by NANDing the CLK-4J and CLK-46 clocks
with the CLK FIFO OUT enable signal using the 74S10 NAND gate U211c.
The output of this gate is the Sliver Clock, the relative timing of which is
shown on the master CPU timing diagram in chapter 4.

The latch enable signal for the low half pipeline latch (U177 and U136)
is provided by the 74S10 NAND gate U211a. This gate combines the sliver
clock with the LATCH ON enable signal from the Raster operation control
register U190, and the SL/SR signal from the same register. In a similar way,
the 74S10 NAND gate U211b controls the high half pipeline latch, but its
inputs are the sliver clock, the LATCH ON signal, and the inverted signal,
SL/SR’. This last signal is produced by inverting the SL/SR signal with the
74S04 inverter U208f.

This circuit operates as follows: If the LATCH ON signal is low, then the
enable inputs to both halves of the pipeline latch are forced high, and the
entire pipeline latch is transparent. If the LATCH ON signal is high, and the
SL/SR signal is low, then U211a is still inhibited, and the low half pipeline
latch is transparent. U211b, on the other hand, is enabled and inverts the
sliver clock and applies it to the enable input of the high half pipeline latch.
This register is therefore updated when the sliver clock is low, which occurs
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during the second half of the microcycle. The operation of U221a and U211b,
and of the 2 halves of the pipeline latch, is reversed when the SL/SR signal
is high.

The output enable signals for the half pipeline latches are all driven by
the RO/PS’ signal. This signal is provided by inverting the RO/PS Raster
Operation Enable signal from the Raster Operation control register by the
74S240 NOT gate U185c. The outputs of these latches are directly connected
to the inputs of the barrel shifter, and thus form a distributed multiplexer
with the outputs of the ALU to shifter latch described above.

The Raster operation source FIFO to shifter data path is controlled by
the Raster Operation state machine described in chapter 7. During a normal
raster operation, the LATCH ON signal is set high by the Raster Operation
Control Register U190 and if the SL/SR signal is low, the Raster Operation
is being performed left-to-right, and the low half pipeline latch is forced
into the transparent state since U211a is inhibited. When the next word
of the source bitmap is needed, the state machine asserts the CLK FIFO
OUT signal, which enables the Sliver Clock via U211c. Therefore, during
the second half of the microcycle, the high half pipeline latch is enabled via
U211b, and the current source word transferred into this latch. The CLK
FIFO OUT signal also enables the output clock to the FIFO chips via U203c,
and therefore at the end of the microcycle, the FIFO is clocked and the next
word appears at its outputs. This word passes through the low half pipeline
latch, and appears at the shifter inputs. Therefore, the high bits of the shifter
input consist of the pervious word, and the low bits the current word. The 2
halves of the shifter input are reversed if the SL/SR signal is high, indicating
that the Raster Operation is being performed right-to-left. In either case,
the most significant bit of the shifter input represents the leftmost pixel on
the PERQ’s display.

6.3 The Combiner

The 16 bit output of the barrel shifter described above is directly connected
to a combinatorial logic circuit called the combiner. This circuit masks the
shifter output before feeding it to the AMUX during an CPU shift operation,
and combines the source and destination bitmaps during a raster operation.

This circuit is implemented by 8 7643 1024*4 bit CMB00 PROMs, each
of which handles 2 bits of the shifter output, and which are located at the
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following positions on the CPU board.

Location Bits Handled
U197 0,1
U220 2,3
U242 4,5
U241 6,7
U199 8,9
U223 10,11
U198 12,13
U222 14,15

The signals connected to U197 are listed in the next table. The other 7
CMB00 PROMs handle identical signals except for the fact that the desti-
nation, mask, and shifter output bit numbers are different.

Address Signal Comments
A0 ROP FN<0>’ Raster Function Select bit 0
A1 ROP FN<1>’
A2 ROP FN<2>’
A3 DON’T MASK Force Raster Outputs to equal Destination
A4 DST<0> Low bit of Destination
A5 DST<1>
A6 MSK<0> Low bit of Mask
A7 MSK<1>
A8 SHOUT<0> Low bit of shifter output (source)
A9 SHOUT<1>

Data Signal Comments
D0 ROP OUT<0> Low bit of updated bitmap
D1 ROP OUT<1>
D2 SHIFT<0> Low bit of shifted result to AMUX
D3 SHIFT<1>

The ROP FN<n> lines are control inputs from the Raster Operation control
registers described below which allow the source and destination bitmaps to
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be combined by one of 8 different functions during a Raster Operation. The
Raster Operation state machine also provides the DON’T MASK input to
the combiner, which when high disables the update of the bitmap, and passes
the destination word, DST<n>, unchanged to the ROP OUT <n> outputs.
These control inputs have no effect on the SHIFT<n> data outputs to the
AMUX.

The 16 bit mask word MSK<n> is produced by the shifter control logic
described below. During arithmetic operations, the output of the shifter is
logically ANDed with the mask word, so that unwanted bits in the shifter
output can be forced to 0. During Raster Operations, the bits of the mask
word determine whether the corresponding bit of the destination word is
inside the are to be updated (when it should be combined with the relevant
bit of the shifter output), or outside it (when it should be passed unchanged).
The operation of the combiner for each of these uses will now be described.

6.3.1 CPU shifts

The shifter extracts a contiguous 16 bit word from the 31 bit shifter input
word, and when it is used as part of the main CPU data path, this 31 bit word
essentially consists of 2 copies of the ALU output R register, as described
above. Therefore the shifter performs Rotate operations on the ALU result.
A shift operation can, however, be performed by masking the rotated R
register with a constant 16 bit word, to force the unwanted bits to 0. Such a
16 bit mask is provided by the shifter control logic described below, and the
mask operation itself is performed by the combiner.

The mask word must therefore be logically ANDed with the shifter
output, and the combiner proms are therefor programmed to implement the
following equation: SHIFT<n>=SHOUT<n>.MSK<n>

6.3.2 Raster Operations

During a raster operation, the combiner is controlled by the 3 function
select inputs ROP FN<n>’ from the Raster Operation control registers,
and the DON’T MASK signal from the Raster Operation state machine.
When the latter signal is high, the destination word is passed unchanged
through the combiner - that is ROP OUT<n>=DST<n>
When the DON’T MASK signal is low, the combiner combines the source
and destination words to produce the updated bitmap. The mask word from
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the shifter control logic now specifies whether or not a given bit of the des-
tination word lies inside or outside the region to be updated. When the
MSK<n> signal is 0, the corresponding DST<n> bit lies outside the area,
and is therefore unchanged, but when the MSK<n> bit is 1, then the cor-
responding DST<n> bit is updated by combining it with the corresponding
shifter output bit. The 8 possible logic functions used for this update are
selected by the ROP FN<n> lines, and are listed in the following table:

ROP FN ROP OUT<n> = Name
0 DST<n>.!MSK<n>+SHOUT<n>.MSK<n> Insert
1 DST<n>.!MSK<n>+!SHOUT<n>.MSK<n> Insert Not
2 DST<n>.!MSK<n>+SHOUT<n>.DST<n>.MSK<n> And
3 DST<n>.!MSK<n>+!SHOUT<n>.DST<n>.MSK<n> And Not
4 DST<n>.!MSK<n>+(SHOUT<n>+DST<n>).MSK<n> Or
5 DST<n>.!MSK<n>+(!SHOUT<n>+DST<n>).MSK<n> Or Not
6 DST<n>.!MSK<n>+(SHOUT<n> xor DST<n>).MSK<n> Xor
7 DST<n>.!MSK<n>+(!SHOUT<n> xor DST<n>).MSK<n> Xnor

6.4 The Raster Operation Destination Pipeline

The 16 data outputs of the CPU memory data input register (U224 and
U244) are directly connected to the D inputs of a pair of 74S374 flip-flops
at locations U219 (low byte) and U221 (high byte). The clock inputs on
these flip-flops are directly drive by the CLK-0R B CPU clock signal, and
the outputs, which are permanently enabled, drive the DST<n> inputs on
the combiner PROMs described above.

The ROP OUT<n> outputs from the combiner are latched in a further
pair of 74S374 flip-flops at U243 (low byte) and U260 (high byte). These flip-
flops are clocked by the CLK-0R A clock signal at the start of each microcycle.
The outputs of these latches are directly connected to the MDI<n> data in-
put lines to the memory board. The output enable pins of these flip-flops
are driven by the 74S00 NAND gate U237b, which combines the CLK-4E
CPU clock signal with the RO DATA RDY output from the Raster Opera-
tion state machine. Therefore, the updated word is transferred to the main
memory during the second half of a microcycle when enabled by the Raster
Operation state machine.
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The timing of this pipeline is as follows: The first valid memory data
word of a FETCH4 cycle appears at the outputs of U224 and U244 during
the t2 time. This word is transferred into U219 and U221 at the start of
the next microcycle, and therefore appears at their outputs during the t3
time. During this microcycle, the combiner updates the word as necessary,
and the modified word is loaded into U243 and U260 at the start of the next
microcycle. The modified word is therefore available at the outputs of U243
and U260 during the next t0 time, as is required by the overlapped Store4
cycle to transfer it back to the main memory.

6.5 The shifter and combiner control system

During CPU programmed shifts, the shifter and combiner are controlled by
an 8 bit word previously loaded into the shifter control latches from either
the ALU outputs or the microcode word Z field. During raster operations,
the shifter is controlled by the Source and Destination position bits from
the Raster Operation control registers and the combiner is controlled by the
Destination and Width control bits, along with 2 control lines from the Raster
Operation state machine. The control circuits used for these 2 different
functions are largely independent, and will therefore be described separately.

6.5.1 Programmed shift control

When a microcode instruction to load the shift control word is executed (that
is, one in which the F field contains 2, or one in which the F field contains 0
and the SF field contains 1), the special function decoder described in chapter
4 makes the LD SHIFT COMMAND signal high. This signal is connected to
the enable inputs of a pair of 67S380 transparent latches at locations U127
and U128.

The data inputs of U127 are directly connected to the microcode word Z
field, while the ones of U128 are connected to the ALU outputs, ALU Y<n>.
Therefore, these latches are loaded with the 2 possible shifter control words.
The corresponding 3-state outputs of the 2 latches are connected together,
and they thus form a distributed multiplexer to allow either source of the
control word to be selected.

The LD SHIFT COMMAND signal is also connected to the clock input
of the 74S74 D-type flip-flop U147a, while the D input of this flip-flop is con-

119



nected to the SH TYPE output from the AMUX16 control PROM described
in chapter 2. This signal goes high when the microcode word F field contains
2, and thus the flip-flop is set if a shift-on-Z operation is to be performed,
and cleared when a shift-on-R operation is required. The Q output of U147a
is connected to the active-low output enable input on U128, while the output
enable pin of U127 is driven by the !Q output. Hence, during a shift-on-R
operation, U127 is disabled, and U128 is enabled, so the shifter control word
is provided by the ALU Y<n> bits. When a shift-on-Z instruction is exe-
cuted, U128 is disabled and U127 enabled, and the shifter is controlled by
the latched microcode word Z field.

The outputs of these latches, the SHIFT CMD<n> signals, are connected
to the address inputs of a 27S29 PSF00 control PROM at location U129. This
PROM is programmed to provide the 4-bit shifter control word required
for each of the 256 possible programmed shifter operations. The signals
connected to this PROM are listed in the following table.

Address Signal
A0 SHIFT CMD<7>
A1 SHIFT CMD<6>
A2 SHIFT CMD<5>
A3 SHIFT CMD<4>
A4 SHIFT CMD<3>
A5 SHFIT CMD<2>
A6 SHIFT CMD<1>
A7 SHIFT CMD<0>
A8 Ground

Data Signal Comments
D0 RAW SHIFT CNTRL<3>
D1 RAW SHIFT CNTRL<2> LSB of Shifter Control
D2 RAW SHIFT CNTRL<1> MSB of Shifter Control
D3 RAW SHIFT CNTRL<0>

The output enable signal of the PSF00 ROM is connected to ground, so
the outputs are always active. These outputs are connected to the D in-
puts of the 74F373 transparent latch U148a-d. This latch is enabled by the
CLK-4E CPU clock signal, which ensures that the SHIFT CNTRL<n> can

120



only change during the second half of a microcycle, and in particular, if the
shifter is used during the ALU path of an instruction that loads the Shifter
Command word, then that ALU operation will use the old Shifter Command.
The outputs of U148a-d are enabled by the RO/PS signal, and so are enabled
during programmed shift, and disabled during Raster Operations. In fact,
they form a distributed multiplexer with the outputs of the RSF00 ROM
described below, which provides the shifter control word during raster oper-
ations. These outputs, the SHIFT CTRL<n> signals, are directly connected
to the control inputs of the barrel shifter chips.

The SHIFT CMD<n> signals are also connected to the D inputs of the
74F373 transparent latch U126. This latch is also enabled by the CLK-4E
clock, to prevent the mask control word changing during the first half of the
microcycle. The output enable pin of U126 is also driven by the RO/PS
signal, and the outputs form a distributed multiplexer with the data outputs
of the RSH00 PROM described below. These outputs, the LM SHIFT<n>
signals, are connected to the address inputs of the mask control PROMs
MSK40 (U179) and MSK50 (U180), and thus determine the mask word to
be fed to the combiner.

The mask control PROMs are 512*8 bit 27S29s, and together they provide
the 16-bit MSK<n> word used by the combiner. The highest address line,
A8, of these PROMs is connected to the RO/PS line, and thus the first half
of each PROM is used for programmed shift masking, and the second half for
Raster Operation control. The remaining address inputs are driven by the
LM SHIFT<n> signals described in the last paragraph. The connections to
the mask PROMs are given in the following table.

121



Address Signal
A0 LM SHIFT<7>
A1 LM SHIFT<6>
A2 LM SHIFT<5>
A3 LM SHIFT<4>
A4 LM SHIFT<3>
A5 LM SHIFT<2>
A6 LM SHIFT<1>
A7 LM SHIFT<0>
A8 RO/PS

Data Signal
MSK40 (U179)
D0 MSK<7>
D1 MSK<6>
D2 MSK<5>
D3 MSK<4>
D4 MSK<3>
D5 MSK<2>
D6 MSK<1>
D7 MSK<0>

MSK50 (U180)
D0 MSK<15>
D1 MSK<14>
D2 MSK<13>
D3 MSK<12>
D4 MSK<11>
D5 MSK<10>
D6 MSK<9>
D7 MSK<8>

6.5.1.1 Programmed Shift Commands

The Shift Control and Mask words for each of the 256 values of the shifter
command word are given in the following array. For each possible shifter
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command word, the upper number is the (decimal) value applied to the
shifter control lines (that is, the number of bits by which the ALU result is
shifted), and the lower number is the (hexadecimal) 16 bit mask word applied
to the combiner.

Low Nybble →
High Nybble
↓ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE
xF
0x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF 3FFF 7FFF
FFFF

1x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF 3FFF 7FFF
FFFE

2x 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0
14

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF 3FFF 7FFF
FFFC

3x 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0
13

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF 3FFF 7FFF
FFF8

4x 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0
12

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF 3FFF 7FFF
FFF0

5x 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0
11

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF 3FFF 7FFF
FFE0

6x 6 6 6 6 6 6 6 6 6 6 0 0 0 0 0
10

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF 3FFF 7FFF
FFC0

7x 7 7 7 7 7 7 7 7 7 0 0 0 0 0 0
9

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF 3FFF 7FFF
FF80
8x 8 8 8 8 8 8 8 8 0 0 0 0 0 0 8
8

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF FFFF FFFF
FF00
9x 9 9 9 9 9 9 9 0 0 0 0 0 0 1 9
7

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF FFFF FFFF
FE00
Ax 10 10 10 10 10 10 0 0 0 0 0 0 0 2 10
6

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF FFFF FFFF
FC00
Bx 11 11 11 11 11 0 0 0 0 0 0 0 0 3 11
5

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF FFFF FFFF
F800
Cx 12 12 12 12 0 0 0 0 0 0 0 0 0 4 12
4

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF FFFF FFFF
F000
Dx 13 13 13 0 0 0 0 0 0 0 0 0 0 5 13
3

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF FFFF FFFF
E000
Ex 14 14 0 0 0 0 0 0 0 0 0 0 0 6 14
2

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF FFFF FFFF
C000
Fx 15 0 0 0 0 0 0 0 0 0 0 0 0 7 15
1

0001 0003 0007 000F 001F 003F 007F 00FF 01FF 03FF 07FF 0FFF 1FFF FFFF FFFF
8000

The upper left triangle of this array (00-F0,01-E1, . . . , 0E-1E) define the

123



bit-field operations. The low nybble specifies the size of the extracted bit field
(0 specifies a 1-bit field, up to E, which specifies a 15 bit field), and the upper
nybble is the bit-position of the least significant bit of the extracted bit-field.
The word is rotated by the appropriate amount, and then anded with a mask
word containing the appropriate number of 1’s in the least significant bits.

The rightmost column, (0F-FF), specifies left shift operations. The high
nybble of the shifter command word determines the number of bits by which
the data word will be shifted. The input data word is rotated by the ap-
propriate amount, and the low bits are masked out by combining them with
0s.

Rotates are performed by the shifter command words 8D-FD and 8E-FE.
The shifter naturally performs a rotate operation, so the result need not be
masked, and therefore the mask word is set to FFFF.

Right Shifts are specified by the shifter command words lying on the
trailing diagonal of the array, 0F-F0. The word is again rotated by the ap-
propriate amount by the shifter, and then ANDed with a word containing
the appropriate number of 1’s in the least significant locations. These oper-
ations, are of course, identical to certain of the bit-field operations described
above, and are specified by identical command words.

6.5.2 Raster Operation Shift Control

During Raster Operations, the shifter is controlled by the Source and Des-
tination position control nybbles (SRC BIT<n> and DST BITS<n>) from
the Raster Operation control registers. These signals are connected to the
address inputs of the 27S29 512*8bit RSF00 PROM at location U166 as
indicated in the following table. The lower 4 data outputs of this PROM
are connected to the SHIFT CNTL<n> shifter control lines, and form a
distributed multiplexer with the outputs of U148a-d described above
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Address Signal Comments
A0 DST BITS<3> Destination bit position
A1 DST BITS<2>
A2 DST BITS<1>
A3 DST BITS<0>
A4 SRC BIT<3> Source bit position
A5 SRC BIT<2>
A6 SRC BIT<1>
A7 SRC BIT<0>
A8 Ground

Data Signal Comments
D0 SHIFT CNTL<3> Shifter Control
D1 SHIFT CNTL<2>
D2 SHIFT CNTL<1>
D3 SHIFT CNTL<0>
D4 Not Used
D5 Not Used
D6 Not Used
D7 Not Used

The output enable pin of the RSF00 PROM is driven by the inverted RO/PS
signal, RO/PS’. The outputs are therefore enabled during raster operations,
and this PROM controls the shifter. Since the RO/PS signal is high, the
outputs of U148a-d are disabled, and therefore the CPU shifter control circuit
has no effect on the shifter.

The RO/PS’ signal is also connected to both the set and reset inputs of
the shifter type latch U147a. Therefore, during Raster Operations, both the
Q and !Q outputs of this latch are forced high, and both U127 and U128 are
disabled. However, since no part of the Raster Operation control logic drives
the SHIFT CMD<n> lines, the reason for this feature is unknown.

The mask word required for a Raster Operation depends on the Destina-
tion and Width control nybbles (DST<n> and WID<n>) from the Raster
Operation Control Registers, together with a pair of control signals, EL and
ER from the Raster Operation state machine. The latter signals indicate if
there is an edge of the region to be updated in the current 16 bit word, as
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indicated by the following table.

ER EL
0 0 Word contains Both edges of updated region
0 1 Word contains Left edge
1 0 Word contains Right edge
1 1 Word contains No edges

The position of the edge within the word is determined by the value of the
DST<n> and WID<n> nybbles.

These 10 signals are connected to the address pins of a 1024*8 bit 29S86
RSH00 PROM at location U174. The 3-state date outputs of this PROM
are connected to the LM SHIFT<n> lines, forming a distributed multiplexer
with the outputs of U126, and thus drive the address inputs of the MSK40
and MSK50 PROMs. The signals connected to the RSH00 PROM are listed
in the next table.
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Address Signal Comments
A0 EL Left Edge
A1 ER Right Edge
A2 WID BITS<0> Width control Nybble
A3 WID BITS<1>
A4 WID BITS<2>
A5 WID BITS<3>
A6 DST BITS<0> Destination Position Nybble
A7 DST BITS<1>
A8 DST BITS<2>
A9 DST BITS<3>

Data Signal Comments
D0 LM SHIFT CMD<0> Mask Control
D1 LM SHIFT CMD<1>
D2 LM SHIFT CMD<2>
D3 LM SHIFT CMD<3>
D4 LM SHIFT CMD<4>
D5 LM SHIFT CMD<5>
D6 LM SHIFT CMD<6>
D7 LM SHIFT CMD<7>

The data lines of this PROM are directly connected to the address inputs
(A0-A7) of the MSK40 and MSK50 PROMs described above. The output
enable signal of the RSH00 ROM is driven by the RO/PS’ signal, so that
the outputs are only enabled during Raster Operations. Since the A8 line
of the 2 mask PROMs is driven by the RO/PS signal, the second half of
these PROMS is used for Raster Operations, while the first half is used for
programmed shifts.

6.5.2.1 Raster Operation Shift Commands

The number of bits by which the source bit-map words must be shifted to
align them with the destination is simply the difference between the SRC
BIT<n> and DST BIT<n> control nybbles. Therefore, the RSF00 PROM
is programmed to act as a 4-bit subtracter, as shown in this table.
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SRC<n>→
DST<n>
↓ 0 1 2 3 4 5 6 7 8 9 A B C D E
F
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15
1 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13
14
2 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12
13
3 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
12
4 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10
11
5 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9
10
6 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8
9
7 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6
7
9 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
6
A 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4
5
B 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
4
C 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2
3
D 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
2
E 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
1
F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

The particular mask word used depends on the state of the EL and ER
signals, and the 4 cases will be described separately. For each value of the
DST<n> and WID<n> nybbles, the table indicates the value of the LM
SHIFT<n> lines, and below it, the mask word sent to the combiner.

The case when both EL and ER are low occurs when one 16 bit word
contains both edges of the region to be updated. The DST<n> nybble
then specifies the position of the left edge (most significant bit) and the
complement of the WID<n> nybble is one less than the number of bits to
update. This is illustrated by the following table

WID<n>→
DST<n>
↓ 0 1 2 3 4 5 6 7 8 9 A B C D E
F
0 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00

0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001
0001

1 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 10
11

0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003
0002

2 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 20 21
22

0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0006
0004

3 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 30 31 32
33

000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000E 000C
0008

4 45 46 47 48 49 4A 4B 4C 4D 4E 4F 40 41 42 43
44

001F 001F 001F 001F 001F 001F 001F 001F 001F 001F 001F 001F 001E 001C 0018
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0010
5 56 57 58 59 5A 5B 5C 5D 5E 5F 50 51 52 53 54
55

003F 003F 003F 003F 003F 003F 003F 003F 003F 003F 003F 003E 003C 0038 0030
0020

6 67 68 69 6A 6B 6C 6D 6E 6F 60 61 62 63 64 65
66

007F 007F 007F 007F 007F 007F 007F 007F 007F 007F 007E 007C 0078 0070 0060
0040

7 78 79 7A 7B 7C 7D 7E 7F 70 71 72 73 74 75 76
77

00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FE 00FC 00F8 00F0 00E0 00C0
0080

8 89 8A 8B 8C 8D 8E 8F 80 81 82 83 84 85 86 87
88

01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FE 01FC 01F8 01F0 01E0 01C0 0180
0100

9 9A 9B 9C 9D 9E 9F 90 91 92 93 94 95 96 97 98
99

03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FE 03FC 03F8 03F0 03E0 03C0 0380 0300
0200
A AB AC AD AE AF A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

AA
07FF 07FF 07FF 07FF 07FF 07FF 07FE 07FC 07F8 07F0 07E0 07C0 0780 0700 0600

0400
B BC BD BE BF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA

BB
0FFF 0FFF 0FFF 0FFF 0FFF 0FFE 0FFC 0FF8 0FF0 0FE0 0FC0 0F80 0F00 0E00 0C00

0800
C CD CE CF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB

CC
1FFF 1FFF 1FFF 1FFF 1FFE 1FFC 1FF8 1FF0 1FE0 1FC0 1F80 1F00 1E00 1C00 1800

1000
D DE DF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC

DD
3FFF 3FFF 3FFF 3FFE 3FFC 3FF8 3FF0 3FE0 3FC0 3F80 3F00 3E00 3C00 3800 3000

2000
E EF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED
EE

7FFF 7FFF 7FFE 7FFC 7FF8 7FF0 7FE0 7FC0 7F80 7F00 7E00 7C00 7800 7000 6000
4000
F F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE
FF

FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000 E000 C000
8000

When the EL signal is high and the ER signal is low, the current word
contains the left edge of the region to update. The DST<n> nybble specifies
the location of this edge, and the WID<n> has no effect, as show in this
table

WID<n>→
DST<n>
↓ 0 1 2 3 4 5 6 7 8 9 A B C D E
F
0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00

0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001
0001

1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10

0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003 0003
0003

2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20

0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007
0007

3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30

000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000F 000F
000F

4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40

001F 001F 001F 001F 001F 001F 001F 001F 001F 001F 001F 001F 001F 001F 001F
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001F
5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50

003F 003F 003F 003F 003F 003F 003F 003F 003F 003F 003F 003F 003F 003F 003F
003F

6 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
60

007F 007F 007F 007F 007F 007F 007F 007F 007F 007F 007F 007F 007F 007F 007F
007F

7 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70
70

00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF 00FF
00FF

8 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
80

01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF
01FF

9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90

03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FF 03FF
03FF

A A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0
A0

07FF 07FF 07FF 07FF 07FF 07FF 07FF 07FF 07FF 07FF 07FF 07FF 07FF 07FF 07FF
07FF

B B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0
B0

0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF 0FFF
0FFF

C C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0
C0

1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF 1FFF
1FFF

D D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0
D0

3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF
3FFF

E E0 E0 E0 E0 E0 E0 E0 E0 E0 E0 E0 E0 E0 E0 E0
E0

7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF
7FFF

F F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

If the ER signal is high, and the EL signal is not, then the right edge of
the region to be updated is contained in the current word. The width of the
region (modulo 16) is equal to the complement of the WID<n> nybble plus
1, so the sum of the number of 1s in the corresponding elements of this table
and the last is equal to that value.

WID<n>→
DST<n>
↓ 0 1 2 3 4 5 6 7 8 9 A B C D E
F
0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
F0

FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000 E000 C000 8000
FFFF

1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF F0
F1

FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000 E000 C000 8000 FFFF
FFFE

2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF F0 F1
F2

FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000 E000 C000 8000 FFFF FFFE
FFFC

3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF F0 F1 F2
F3

FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000 E000 C000 8000 FFFF FFFE FFFC
FFF8

4 F5 F6 F7 F8 F9 FA FB FC FD FE FF F0 F1 F2 F3
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F4
FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000 E000 C000 8000 FFFF FFFE FFFC FFF8

FFF0
5 F6 F7 F8 F9 FA FB FC FD FE FF F0 F1 F2 F3 F4
F5

FFC0 FF80 FF00 FE00 FC00 F800 F000 E000 C000 8000 FFFF FFFE FFFC FFF8 FFF0
FFE0

6 F7 F8 F9 FA FB FC FD FE FF F0 F1 F2 F3 F4 F5
F6

FF80 FF00 FE00 FC00 F800 F000 E000 C000 8000 FFFF FFFE FFFC FFF8 FFF0 FFE0
FFC0

7 F8 F9 FA FB FC FD FE FF F0 F1 F2 F3 F4 F5 F6
F7

FF00 FE00 FC00 F800 F000 E000 C000 8000 FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0
FF80

8 F9 FA FB FC FD FE FF F0 F1 F2 F3 F4 F5 F6 F7
F8

FE00 FC00 F800 F000 E000 C000 8000 FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80
FF00

9 FA FB FC FD FE FF F0 F1 F2 F3 F4 F5 F6 F7 F8
F9

FC00 F800 F000 E000 C000 8000 FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00
FE00

A FB FC FD FE FF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9
FA

F800 F000 E000 C000 8000 FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00
FC00

B FC FD FE FF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA
FB

F000 E000 C000 8000 FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00
F800

C FD FE FF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB
FC

E000 C000 8000 FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800
F000

D FE FF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC
FD

C000 8000 FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000
E000

E FF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD
FE

8000 FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000 E000
C000

F F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE
FF

FFFF FFFE FFFC FFF8 FFF0 FFE0 FFC0 FF80 FF00 FE00 FC00 F800 F000 E000 C000
8000

Finally, if both EL and ER are high, the current word lies completely
inside the region to be updated, so all the bits must be updated. Therefore a
constant mask value of FFFF (hex) is used, as given by the following table.

WID<n>→
DST<n>
↓ 0 1 2 3 4 5 6 7 8 9 A B C D E
F
0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

1 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

2 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

3 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

4 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
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FFFF
5 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

6 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

7 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

8 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

9 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

A F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

B F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

C F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

D F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

E F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

F F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
F0

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF

6.6 The Raster Operation Control Registers

The Raster Operation system is controlled by 4 control registers which are
loaded by certain microcode instructions. The control signals produced by
each register will now be described. The operation of the Raster Operation
state machine, and the way in which these signals control it, is described in
chapter 7.

6.6.1 The Control Register

This register consists of a 74S273 octal D-type flip-flop at location U190.
The clock input of this chip is directly driven from the LD C output of the
special function decoder described in chapter 4. The D-inputs of the first 7
flip-flops are connected to the lower 7 microcode word Z field lines, and the
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reset input is connected to the INIT’ signal so that the register is cleared
when the CPU is reset. The bits stored in this register have the following
meanings.

Latch Z-bit Output Signal Comments
U190a Z<6> LATCH ON Enable half pipeline latches
U190b Z<5> PHASE<4> Enable Extra Source Word Fetch
U190c Z<4> PHASE<2> Raster Operation State Machine Control
U190d Z<3> PHASE<1> Raster Operation State Machine Control
U190e Z<2> PHASE<0> Raster Operation State Machine Control
U190f Z<1> RO/PS Enable Raster Operations
U190g Z<0> SL/SR Raster Operation Direction Select

The SL/SR signal is inverted by the 74S04 NOT gate U208f to produce
the SL/SR’ signal which is used by the half pipeline latch control circuit
described above. Similarly, the RO/PS signal is inverted by the permanently
enabled 74S240 NOT gate U185c to produce the RO/PS’ signal that is used
to disable the programmed shift system when Raster Operations are taking
place.

6.6.2 The Width Register

The Width register again consists of a 74S273, this time at location U168.
Six of the D-inputs are connected to the lower 6 R-register outputs, while
R<6>’ is inverted by U192c (74S240) and then connected to U168b’s D-
input. Similarly, R<7> is inverted by U192b (again a 74S240 NOT gate),
and connected to the D-input of U192a. The register is loaded by a rising
edge of the LD W signal from the special function decoder described in
chapter 4, and, since the reset pin is driven by the INIT’ signal, the register
is cleared when the CPU is reset. The 8 outputs of this register are used
to define the width of the updated region (modulo 64), and also to control
the multiplication/division hardware described in chapter 3. The following
signals are produced by this register.
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Latch R-bit Output Signal Comments
U168a R<7> MD INSTR<1> Multiplication control
U168b R<6> MD INSTR<0>
U168c R<5>’ WID WRD<1>’ Number of extra 16 bit words in width
U168d R<4>’ WID WRD<0>’
U168e R<3>’ WID BITS<3> Number of extra bits in width
U168f R<2>’ WID BITS<2>
U168g R<1>’ WID BITS<1>
U168h R<0>’ WID BITS<0>

6.6.3 The Destination Register

The destination register is the 74S273 register at location U164. The D-
inputs of this device are directly connected to the outputs of the ALU R
register (R<n>), while the reset input is connected to the INIT’ line. The
register is clocked by the rising edge of the LD D output from the special
function decoder described in chapter 4. The outputs of this register provide
the following signals:

Latch R-bit Output Signal Comments
U164a R<7>’ ROP FN<1>’ Combiner Function Select
U164b R<6>’ ROP FN<0>’
U164c R<5>’ DST WRD<1>’ Destination 16 bit word position
U164d R<4>’ DST WRD<0>’ in 64 bit word
U164e R<3>’ DST BITS<3> Destination bit position in 16 bit word
U164f R<2>’ DST BITS<2>
U164g R<1>’ DST BITS<1>
U164h R<0>’ DST BITS<0>

6.6.4 The Source Register

The source register is the 74S273 flip-flop at location U167. The signals that
drive the inputs of this chip are identical to those that drive the destination
register except for the fact that it is clocked by the LD S output from the
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special function decoder. The outputs of this register provide the following
control signals to the Raster Operation Hardware.

Latch R-bit Output Signal Comments
U167a R<7>’ OFF Turn Off PERQ 1
U167b R<6>’ ROP FN<2>’ Combiner Function Select
U167c R<5>’ SRC WRD<1>’ Source 16 bit word position
U167d R<4>’ SRC WRD<0>’ in 64 bit word
U167e R<3>’ SRC BIT<3> Source bit position in 16 bit word
U167f R<2>’ SRC BIT<2>
U167g R<1>’ SRC BIT<1>
U167h R<0>’ SRC BIT<0>

The output of U167a is logically NANDed with the INIT’ signal by the
74S00 NAND gate U232b, and the output of this gate is connected to pin
J154 (PWR DOWN) on the CPU backplane connector. This signal is not
used on any PERQ2 series machine, but on the PERQ 1, when the output of
U167a goes high, and the CPU is not being reset, the PWR DOWN pin goes
low and operates a relay in the power supply that turns off the machine.
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Chapter 7

The Memory and Raster
Operation State Machines

A finite state machine (often shortened to ‘state machine’) is simply a digital
system that is internally in one of a finite number of states. On each clock
pulse, the system may change to a different internal state, and the particular
state it goes into depends on the current state and on the values of external
input signals. The internal state may be decoded and used to control external
circuitry.

A state machine is usually implemented by a number of D-type flip-flops
(n flip-flops allow a maximum of 2n states), which are all clocked by the
clock pulses. A combinatorial logic circuit then drives the D-inputs on these
flip-flops depending on the state of the Q-outputs (that is, the current state),
and the external signals. Thus, this combinatorial circuit calculates the new
state based on the current state and the inputs, and when the flip-flops are
clocked, the internal state is updated. A further combinatorial circuit accepts
inputs from the Q-outputs and produces control signals for the rest of the
system.

In the PERQ 16K CPU board, such state machines are used to control
the memory cycles and the Raster Operation data path. In both cases,
the combinatorial logic circuit is provided by specially programmed PROM.
These 2 state machines will now be described.
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7.1 The Memory Control State Machine

The Memory control state machine follows the general scheme just described,
and the only unconventional feature is the way in which the external control
inputs are applied to the system.

The 4-bit internal state of this state machine is knows as the BOOK-
MARK value, and is stored by the 74S273 flip-flops U227e-h. These flip-flops
are clocked by the rising edge of the CLK-0R D signal at the start of each
microcycle, while they are reset to 0 by the INIT’ signal, which is connected
to the CLR input of U227, when the machine is reset. The outputs of these
4 flip-flops form the top 4 address lines to the state machine PROMs, as
described below, while the D-inputs are provided by 4 of the data outputs
of the BKM16.2 state machine PROM U173. This circuit forms the main
memory control state machine.

The remaining 4 flip-flops in U227 are used to hold 4 control signals from
the other 2 PCBs in the PERQ system, namely the microcode t-state counter
from the memory board and the DMA control signals from the EIO board.
These signals are listed in the following table.

Flip-Flop Input Output Comments
U227d TIME<0>’ L TIME<0>’ T-state counter
U227c TIME<1>’ L TIME<1>’ T-state counter
U227b I/O MEM WR I/O WANTS WR DMA Write
U227a I/O MEM RQST MEM RQST L DMA Request

The L TIME<n> signals are connected to 2 of the address inputs on the state
machine control PROMs, as described below. The DMA control signals form
2 of the external control inputs to the state machine, and that section will
be described next.

A memory-control microcode instruction is one in which the F field con-
tains 1 and the SF field has the high bit (SF<3>) set. This condition is de-
tected by the 74S10 NAND gate U215a, which combines the SF<3>, F<1>’
and F<0> signals. The output of this gate therefore goes low when such an
instruction is executed.

The ROMs used in the Memory control state machine contain 1024 words
each, and therefore have 10 address lines. Six of these lines are used for the
BOOKMARK and L TIME<n>’ signals, leaving 4 for the external control
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inputs. However, 6 external control signals need to be applied to the state
machine, namely the 2 DMA control signals, the memory instruction output
from U215a, and the remaining 3 SF signals which indicate which particular
memory instruction is to be executed. Therefore, these signals are multi-
plexed onto the 4 remaining address lines by U214, a 74LS158 quad 2-input
multiplexer.

The inverted outputs of U214 are directly connected to the lower 4 ad-
dress lines of the 2 state machine control PROMs, while the Enable input
is connected to ground, so that the data flow through the multiplexer is
permanently enabled. The select input is driven by the L TIME<1>’ sig-
nal described above, so that the 2 sets of inputs are selected alternately for
2 microcycles each. The A-inputs, selected when L TIME<1>’ is low, are
the CPU memory cycle control signals, while the B-inputs, selected when L
TIME<1>’ is high, are the DMA control signals. These signals are listed in
the following table.

Input Signal Comments
A1 SF<0> Microcode word SF signal
A2 SF<1>
A3 SF<2>
A4 Mem Instruction Output of U215a

B1 IO WANTS WR Latched DMA Write
B2 GATED MEM RQST’ Gated DMA Request
B3 STORE Output of U215c - low when store instruction
B4 Mem Instruction As above

The STORE signal is produced by U215c (a 74S10 NAND gate), which
combines the 3 lower SF field bits, SF<0>-SF<2>. This signal therefore
goes active when a Store memory instruction is executed, which causes this
instruction to have a slightly different cycle timing to the other instructions,
as described below.

The MEM RQST L DMA signal output from U227a is NANDed with the
inverted microcode H field, H’, by the 74S00 NAND gate U237a, and the
output of this gate is connected to the B2 input of the multiplexer U214.
Therefore, when the H field contains 1, H’ is low, U237a is inhibited, and no
DMA transfers can occur.
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The control logic for the state machine is logically provided by a 1024*12bit
ROM, consisting of the 1K*8 bit 28S86 PROM BKM16.2 at location U173
and the 1K*4 bit 7643 PROM GMV02 at location U204. Corresponding
address lines of these 2 PROMs are connected together, so that the PROMs
act as the required 12-bit wide unit. The Chip Select signals of the PROMs
are permanently connected to either ground or the +3B signal (pulled high
via R3), so that the PROMs are always enabled. The signals connected to
the state machine ROM are listed in the following table.
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Address Signal Comments
A0 CTRL<0> Multiplexed Control Inputs
A1 CRTL<1> (Outputs of U214)
A2 CTRL<2>
A3 CTRL<3>
A4 L TIME<0> Latched T-state counter
A5 L TIME<1>
A6 BOOKMARK<0> State Latch output
A7 BOOKMARK<1>
A8 BOOKMARK<2>
A9 BOOKMARK<3>

BKM16.2
Data Signal Comments
D0 RAS NOW Memory board Control Strobe
D1 MEM RQST ST<2> Memory Operation Select
D2 MEM RQST ST<1>
D3 MEM RQST ST<0>
D4 NEW BOOKMARK<0> Input to State Latch
D5 NEW BOOKMARK<1>
D6 NEW BOOKMARK<2>
D7 NEW BOOKMARK<3>

GMV02
Data Signal Comments
D0 MDI Valid High if memory data invalid
D1 Wait High to abort microcycle
D2 MEM RDING MA/MD Enable signal to CPU buffers
D3 GRANT DMA Grant

The NEW BOOKMARK<n> outputs of the BKM16.2 PROM are di-
rectly connected to the D-inputs of the state latch U227e-h, and determine
the next state of the state machine. The MEM RQST ST<n> signals, which
determine the particular type of memory cycle to be performed, are con-
nected to the Memory PCB via J181-J183 on the CPU backplane connector.
Similarly, the RAS NOW strobe, which starts a memory cycle, is fed to the
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Memory PCB via J184.
The GRANT output from the GMV02 PROM is connected to the D-

input of the 67S380 inverting transparent latch U165h. The output of this
latch is permanently enabled since the Output Enable pin is grounded, and
the strobe input is driven by the CLK-0R C CPU clock signal described in
chapter 4. Therefore, the output of this latch is stable during the second
half of the microcycle. This output is re-inverted by the 74S240 NOT gate
U254e, which is also permanently enabled, and the output of this gate, the
GRANT DMA signal, is connected to the EIO board via J171.

The MEM RDING MA/MD output is used to disable the address and
data buffers during DMA operations. It is connected to one input of the
74S00 NAND gate U232d, which drives the output enable pins of the memory
address latches U255,U257 and U257, and also to one input of the 74S10
NAND gate U213c, which controls the output enable pins of the memory
data output latches U258 and U259. Therefore, when the MEM RDING
MA/MD signal is low, both U232d and U213c are inhibited, and the outputs
of the address and data latches are forced to the high impedance state. The
operation of these latches is described in more detail in chapter 3.

A CPU microcycle should be aborted if either the memory system is
waiting for the correct t-state to start the memory cycle in - that is when
the WAIT output is high, or if the processor is reading the memory data
via the AMUX (that is, the PROC NEEDS MDI output from the AMUX
control PROM is high), and the MDI lines do not contain valid data - the
MDI VALID L line is also high. These conditions are detected by the 74S51
AND-OR-INVERT gate U205a, one side of which ANDs the PROC NEEDS
MDI with the MDI VALID L signal, while the other side has both inputs
driven by the WAIT signal. The output of this gate, the P ABORT signal,
is therefore low during any memory cycle that should be aborted. This
active-low signal is logically ORed with the HOLD OFF L signal from the
EIO DMA controller by the 74S08 AND gate U231a to provide the ABORT’
signal that inhibits the execution of the next microinstruction as described
in earlier chapters.

7.1.1 CPU Memory Cycles

The CPU can perform 8 different memory cycles, which are selected by the
lower 3 bits of the SF microcode word field, as mentioned above. These cycles,
the SF value needed to produce one, and the value sent to the memory board
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via the MEM RQST ST lines are listed in the following table

Cycle SF MEM RQST ST
FETCH4R 10 2
STORE4R 11 6
FETCH4 12 1
STORE4 13 5
FETCH2 14 3
STORE2 15 7
FETCH 16 0
STORE 17 4

The timing of the control signals for these memory cycles will now be de-
scribed.

7.1.1.1 Fetch Cycles

The 4 different Fetch cycles all have very similar timing. When the Mem-
ory cycle is started (i.e. when the output of U215a goes low), the memory
control state machine asserts the Wait signal until the next t3 state, so that
subsequent microcycles are aborted. At the end of the next T3 state, the LD
MIR’ signal rises as usual, and the next microcode instruction is executed.
The RAS NOW and MEM RQST ST signals are asserted during this T3
state, and the next 2 microcycles are aborted if the Processor tries to read
the MDI lines via the AMUX since the MDI VALID L signal is High. At the
next T2 state, the memory data input lines are valid, and may be read into
the data path via the AMUX.

The operation of the Fetch Cycles is described by the 4 following timing
charts, which show the relative timing of the MEM RQST ST, RAS, WAIT
and MDI VALID L signals.
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FETCH4R

Time F SF Bookmark ras Mem RQST Wait MDI Valid
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 8 0 0 0 1 0
2 1 8 0 0 0 1 0
3 1 8 6 1 2 0 0
0 1 8 6 0 0 0 1
1 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0

FETCH4

Time F SF Bookmark ras Mem RQST Wait MDI Valid
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 10 0 0 0 1 0
2 1 10 0 0 0 1 0
3 1 10 5 1 1 0 0
0 1 10 5 0 0 0 1
1 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0
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FETCH2

Time F SF Bookmark ras Mem RQST Wait MDI Valid
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 12 0 0 0 1 0
2 1 12 0 0 0 1 0
3 1 12 4 1 3 0 0
0 1 12 4 0 3 0 1
1 0 0 4 0 0 0 1
2 0 0 0 0 0 0 0

FETCH

Time F SF Bookmark ras Mem RQST Wait MDI Valid
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 14 0 0 0 1 0
2 1 14 0 0 0 1 0
3 1 14 3 1 0 0 0
0 1 14 3 0 0 0 1
1 0 0 3 0 0 0 1
2 0 0 0 0 0 0 0

7.1.1.2 Multiple-Word Store Cycles

Again, the timing of the STORE4R, STORE4 and STORE2 memory cycles
is very similar. The WAIT signal is asserted during the microcycles between
the memory instruction being executed and the next T3 state, so that these
cycles are aborted, and the next microcode instruction is loaded into the
pipeline at the start of the next T0 state. This instruction provides the first
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word of data to the memory board, as described in the microprogramming
manual. The MEM RQST ST code is asserted during the next T1 and T2
states, and finally, the RAS NOW signal becomes high during the subsequent
T3 state, thus starting the memory cycle. The following timing diagrams
show the relative sequence of these signals.
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STORE4R

Time F SF Bookmark ras Mem RQST Wait MDI Valid
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 9 0 0 0 1 0
2 1 9 0 0 0 1 0
3 1 9 8 0 0 0 0
0 1 9 8 0 0 0 0
1 0 0 8 0 6 0 0
2 0 0 8 0 6 0 0
3 0 0 0 1 0 0 0

STORE4

Time F SF Bookmark ras Mem RQST Wait MDI Valid
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 11 0 0 0 1 0
2 1 11 0 0 0 1 0
3 1 11 7 0 0 0 0
0 1 11 7 0 0 0 0
1 0 0 7 0 5 0 0
2 0 0 7 0 5 0 0
3 0 0 0 1 0 0 0

STORE2

146



Time F SF Bookmark ras Mem RQST Wait MDI Valid
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 13 0 0 0 1 0
2 1 13 0 0 0 1 0
3 1 13 9 0 7 0 0
0 1 13 9 0 7 0 0
1 0 0 9 0 7 0 0
2 0 0 9 0 7 0 0
3 0 0 0 1 0 0 0

7.1.1.3 Single-Word STORE Cycle

The STORE single-word write cycle has a different timing sequence to all
other memory cycles. When the appropriate instruction is executed, the
memory control state machine assets the WAIT signal until the next T2
state, and during this T2 state, the MEM RQST ST lines carry the value
‘4’, the code for a STORE instruction. At the end of the T2 state, the LD
MIR’ signal goes high, and clocks the next microcode instruction into the
microcode pipeline latch described in chapter 4. This instruction, which is
executed during T3, calculates the value to be written to the memory, and
this value is strobed into the memory PCB by the RAS NOW output from
the memory control state machine that is also asserted at this time. The
following table shows the relative timing of these signals

Time F SF Bookmark ras Mem RQST Wait MDI Valid
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 15 0 0 0 1 0
2 1 15 7 0 4 0 0
3 1 15 0 1 0 0 0
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7.1.2 DMA cycles

The EIO board in a PERQ machine contains a DMA controller that allows
several of the I/O subsystems to directly transfer data to the main memory.
During such a transfer, the DMA controller provides the memory address
and the data words, while the CPU memory control state machine asserts
the MEM RQST ST and the RAS NOW signals during the correct T-states.
The EIO card is outside the scope of this manual, so only the operation of
the memory control state machine will be described here.

There are 2 possible types of DMA cycle - Read and Write. Both types
transfer a Quad-word to/from the memory board, although the timing of the
2 cycles is very different, and will therefore be described separately

7.1.2.1 DMA Read

A DMA Read operation occurs when the I/O MEM RQST output from
the EIO board goes low and the I/O MEM WR signal is also low. When
this occurs, the memory control state machine asserts the GRANT output
for one microcycle during the next T2 state, and this signal is used by the
EIO card to start the DMA transfer. During the following T3 state, the
processor address outputs are disabled, since the PROC RDING MA/MD
signal is 0 (This signal is referred to as ‘MA’ in the following tables), and at
this time the DMA controller places the address onto the backplane address
lines. The memory control state machine drives ‘1’ onto the MEM RQST ST
lines, signifying a FETCH4 operation, and also asserts the RAS NOW signal.
The data words are read out of memory in the usual way, and transferred
to the peripheral by the DMA controller. This sequence is repeated every 4
microcycles, as indicated by the following table, and thus a 16 bit word is
transferred on every cycle.
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T Bookmark Mem Rqst ras IO Req Grant MA
1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 0 1
0 0 0 0 0 0 1
1 0 0 0 1 0 1
2 1 0 0 1 1 1
3 0 1 1 1 0 0
0 0 0 0 1 0 1
1 0 0 0 1 0 1
2 1 0 0 1 1 1
3 0 1 1 1 0 0
0 0 0 0 1 0 1
1 0 0 0 1 0 1
2 1 0 0 1 1 1
3 0 1 1 1 0 0
0 0 0 0 1 0 1
1 0 0 0 1 0 1
2 1 0 0 1 1 1
3 0 1 1 1 0 0
0 0 0 0 1 0 1

7.1.2.2 DMA Write

This operation is started when the I/O MEM RQST signal goes low and
the I/O MEM WR signal is high. The memory control state machine then
asserts the GRANT output during the next T2 state, and disables the pro-
cessor address and data outputs during the subsequent T0-T3 state, during
which time the DMA controller transmits the address and data words to the
memory card. The memory control state machine places ‘5’ onto the MEM
RQST ST lines during the T1 and T2 cycles of this period, thus defining a
STORE4 cycle, and then asserts the RAS NOW signal during the T3 period,
to start the memory operation. This sequence is repeated by asserting the
GRANT output during the next T2 cycle, and thus a 4-word transfer occurs
every 8 microcycles. The timing of this operation is shown in the following
table.
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T Bookmark Mem Rqst ras IO Req Grant MA
1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 0 1
0 0 0 0 0 0 1
1 0 0 0 1 0 1
2 2 0 0 1 1 1
3 2 0 0 1 0 1
0 2 0 0 1 0 0
1 2 5 0 1 0 0
2 13 5 0 1 0 0
3 0 0 1 1 0 0
0 0 0 0 1 0 1
1 0 0 0 1 0 1
2 2 0 0 1 1 1
3 2 0 0 1 0 1
0 2 0 0 1 0 0
1 2 5 0 1 0 0
2 13 5 0 1 0 0
3 0 0 1 1 0 0
0 0 0 0 1 0 1

7.2 The Raster Operation State Machine

The data path used to update a graphics bitmap that was described in chap-
ter 6 is controlled by a 4-state finite state machine, the outputs of which are
decoded by a set of PROMs to generate the necessary control signals. While
this system is controlling the bitmap data path, the main CPU calculates the
memory addresses for the bitmap words, and performs the necessary memory
cycles to fetch and store them.

The state of this machine is held in 2 sections of the 74S374 D-type
flip-flop U170, namely U170d (for the least significant bit, ROP ST<0>)
and U170c (for ROP ST<1>, the most significant bit). These flip-flops are
clocked by the rising edge of the LD MIR’ B signal at the start of each
microcycle,and thus at this time, the state of the machine can be changed.
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The outputs of the flip-flops are permanently enabled since the output enable
pin is tied low.

The State machine is controlled by the 512*8bit 27S29 PROM U171
(RTI02), which accepts inputs from the Raster Operation control register,
the microcycle T-state lines, and the output of the state latch. This PROM
is programmed to load the next state into the state latch, to provide 2 enable
signals (P SRC QUAD and P DST QUAD) to the source and destination
control systems, and also to provide 2 direct control signals to the data path,
namely RO DATA RDY (which enables the raster operation data path out-
puts to the memory board) and CLK FIFO IN (which loads the memory
data word into the source FIFO). The signals handled by this PROM are
given in the following table.

Address Signal Comments
A0 ROP ST<0> State Latch Output
A1 ROP ST<1>
A2 L TIME<1> Latched Microcode T-state counter
A3 L TIME<0>
A4 RO/PS Master Enable signal from control register
A5 Ground
A6 PHASE<0> Cycle type select from control register
A7 PHASE<1>
A8 PHASE<2>

Data Signal Comment
D0 P SRC QUAD Source Fetch control signal
D1 P DST QUAD Destination path Enable
D2 P ROP ST<1> Input to state latch
D3 P ROP ST<0>
D4 RO DATA RDY Enable signal to output buffers
D5 CLK FIFO IN Load memory word into source FIFO
D6 Not Used
D7 Not Used

The P ROP ST<n> lines are directly connected to the D inputs on the
respective state flip-flops, while the P SRC QUAD and P DST QUAD signals
are latched by U170a and U170b (both 74S374 flip-flops) respectively, before
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being fed to address inputs on the source and destination control PROMs,
as described below.

The RO DATA RDY signal is logically NANDed with the CLK-4E CPU
clock signal by the 74S00 NAND gate U237b, the output of which drives the
output enable pins of the combiner output latches U243 and U260. There-
fore, the outputs of these latches are enabled during the second half of any
microcycle when the RO DATA RDY signal is high, thus allowing the output
of the combiner to be stored in the main memory

The CLK FIFO IN signal is connected to one of the Input Clock pins
(CKA or CKB) of the Shifter source FIFOs U157, U158, U137, U138, while
the other clock input is driven by the CLK-4F CPU clock signal. Since
CKA and CKB are logically ANDed inside the FIFO chips, the CLK FIFO
IN signal enables the FIFO input clock and causes the memory data word
(SI<n>) to be loaded into the FIFO half way through the microcycle.

7.2.1 The Destination Control System

The actual updating of a given 16 bit word is controlled by the 512*4bit
7643 RDS00 PROM U169, which provides the control signals for the com-
biner along with the QUAL FIFO signal that causes a source bitmap word to
be clocked out of the Fifo. This PROM is controlled by the DST WRD<n>
and WID WRD<n> outputs from the appropriate control registers, which
determine where the left and right edges of the updated region occur. The
PROM also accepts the SL/SR control signal, which indicates in which direc-
tion the bitmap is being scanned. , as this determines whether the start of a
line contains a left edge or a right edge. Two of the cycle type signals, namely
PHASE<0> and PHASE <1> are also connected to this PROM, along with
the T-state counter outputs L TIME <n>. Finally, the whole data path is
enabled by the latched DST QUAD signal from the Raster Operation Finite
state machine.

Three of the outputs from the RDS00 PROM are the raw signals for the
Combiner mask, namely P EL, P ER and P DON’T MASK. These signals
are latched by U170e, U170f and U170h respectively to produce the EL, ER
and DON’T MASK control signals. The clock input to U170 is driven by the
LD MIR’B signal, so that the combiner control signals are updated at the
start of each microcycle. The Output enable pin of U170 is, as mentioned
above, grounded, so that these outputs are always enabled. The operation of
the combiner during graphics operations is described in chapter 6, and the
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relative timing of these signals is explained below.
The final output of the RDS00 PROM is the QUAL FIFO signal. This

signal is used to clock a source bitmap word out of the FIFO, after being
processed by the following circuit. The QUAL FIFO signal is not latched by
any section of U170, and, owing to the programming of the RDS00 PROM,
occurs during the microcycle preceeding the one in which the update takes
place.

The QUAL FIFO signal is connected to the D-input of the 74S374 flip-
flop U209f. This flip-flop is clocked by the CLK-0R B signal at the start
of each microcycle, and the permanently enabled output of U209f, the DLY
QUAL FIFO signal, is therefore active on the microcycle when the bitmap
updating actually occurs. This output is inverted by the 74S240 NOT gate
U206b, to produce the DLY QUAL FIFO’ signal.

The QUAL FIFO signal is logically NANDed with the PHASE<4> out-
put from the Raster Operation Control Register by the 74S00 NAND gate
U212a. The output of this gate therefore goes low on cycles preceding a
bitmap word update, and is therefore used to clock a word from the Source
FIFO into the half pipeline latches described in chapter 6.

The LEFTOVER output from the RSC03 source control PROM described
below is logically NANDed with the FIFO OR signal (which indicates when
there is a valid word in the Source FIFO), by the 74S00 NAND gate U210a.
The output goes low when a word has to be removed from the Source FIFO,
thus clocking the FIFO to drop the word, but not clocking the Raster Op-
eration memory data registers. This occurs when either fewer than 4 words
are to be fetched for the source operand, or to clear the FIFO after a com-
plete line of the graphics bitmap has been updated. The output of U210a is
connected to the D input of the 74S74 flip-flop U147b, which is clocked by
the rising edge of the CLK-4E signal at the start of the second half of the
microcycle. The output of U147b is the CLR FIFO L signal

The 3 signals that cause the FIFO to be clocked, namely DLY QUAL
FIFO’, CLR FIFO L, and the output of U212a, need to be Logically ORed
together. The DLY QUAL FIFO’ and CLR FIFO L signals are connected to
the inputs of the 74S08 AND gate U73Aa, while the output of this gate is
combined with the output of U212a by the 74S00 NAND gate U212b. Since
the 3 signals are all active low, the output of U212b, the CLK FIFO OUT
signal, goes high whenever at least one of the inputs is active, as required.

As described in chapter 6, the CLK FIFO OUT signal enables the 74S00
NAND gate U203c, and thus allows the UNLD signal to become active. This
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signal directly drives the output clock pins of the Source FIFO chips. The
CLK FIFO OUT also enables the SLIVER CLK via the 74S10 NAND gate
U211b, and causes the previous word to be loaded into the appropriate half
pipeline latch.

7.2.2 The Source Control System

The purpose of the source control system is to drop unnecessary words from
the Source FIFO either at the end of a line of the graphics object, or when
fewer than 4 words need to be fetched during a FirstSource operation. The
system consists of a small finite state machine controlled by the 74S287
256*4bit RSC03 PROM U172.

The PROM acts as the combinatorial feedback logic for the single-bit
state latch U170g, which is clocked by the rising edge of the LD MIR’ B
signal at the start of each microcycle. The D-input of this 74S374 flip-flop
is driven by the P SRC FIFO CLR output of the RSC03 PROM, while the
output, the OLD EVEN/ODD signal, is connected to one of the address
inputs of the RSC03 PROM, and also to the input of bit 5 of the Source
FIFO chip U157. The OLD EVEN/ODD signal is therefore carried through
the FIFO along with the source bitmap words, and emerges from U157 on the
Q5 pin as the FIFO EVEN/ODD signal, which is fed back to another address
input of the RSC03 PROM. By using this signal, the Source Control system
can flag the source bitmap words, and change state when the particular word
has passed through the FIFO.

The signals connected to the RSC03 PROM are listed in the following
table
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Address Signal Comments
A0 OLD EVEN/ODD Output of state flip-flop
A1 FIFO EVEN/ODD Output of FIFO flag bit
A2 SL/SR Direction control bit from control register
A3 L TIME<0> Latched T-state counter
A4 L TIME<1>
A5 SRC WRD<0> Source Word position from source register
A6 SRC WRD<1>
A7 SRC QUAD Source Word Enable from Raster Operation State Machine

Data Signal Comments
D1 Not Used
D2 Not Used
D3 Leftover Clear FIFO signal to clock logic
D4 P SRC FIFO CLR Input to state flip-flop

The only control output of this state machine is the LEFTOVER signal that
is used to enable the FIFO output clock to drop a FIFO word, as described
above.

When the value of the SRC WRD<n> field indicates that fewer than
4 words are to be loaded into the FIFO on a FirstSource Instruction, the
FETCH4 memory cycle is executed as normal, and the 4 words are in fact
loaded into the FIFO, but the unnecessary words are dropped from the FIFO
by the leftover signal.

7.3 Raster Operation Timing

All the raster operation update instructions have essentially the same timing,
and the basic sequence of operations is as follows.

The main CPU starts a FETCH4 cycle to get the next 4 words of the
destination bitmap from the main memory. The first word from this fetch
appears at the outputs of the combiner input register (U219 and U221) dur-
ing the T3 microcycle. The raster operation state machine now asserts the
EL, ER and DON’T MASK signals according to the particular part of the
graphics object being updated, and the combiner updates the bitmap word
in the required way. The resultant word is stored in the combiner output
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latched (U243 and U260) at the end of the T3 cycle, and is therefore valid
throughout the following T0 cycle to be written back to memory. The CPU
has started an overlapping STORE4 cycle, and so the result is written back
to the memory during the next 4 T-states. The CPU also starts an overlap-
ping FETCH4 cycle to fetch the next 4 words of the source bitmap into the
FIFO, controlled by the CLK FIFO output from the Raster Operation State
Machine. These memory cycles take a total of 8 microcycles to perform.

When the state of the DON’T MASK signal means that the current out-
put word of the FIFO will be used to update the bitmap, then the Raster
Operation state machine asserts the QUAL FIFO output during the preced-
ing microcycle, so that a new word will be presented to the shifter inputs at
the end of the cycle.

There then follows a pause of 4 microcycles before the entire sequence is
repeated, and thus a 64bit bitmap is updated every 12 microcycles.

The sequence of these memory cycles is given in the following table.

T-state
2 Destination Fetch
3 Destination Fetch
0 Destination Fetch Destination Store
1 Destination Fetch Destination Store
2 Source Fetch Destination Store
3 Source Fetch Destination Store
0 Source Fetch
1 Source Fetch
2 Idle
3 Idle
0 Idle
1 Idle

And the sequence is now repeated

As was mentioned above, Raster Operation state machine has 4 states,
numbered 0-3 and the following table give the approximate correspondence
between the state number and the operation being performed.
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State Operation
0 Idle between source and destination fetches
1 Destination Fetch
2 Source Fetch
3 Idle - Raster Operations turned off

It is important to note that in the following tables, the column headed ‘state’
gives the new state of the state machine at the end of that microcycle, that
is the value of the outputs of the ROM that are connected to the D-inputs
of the state latch.

There are 8 different Raster Operation instructions which are selected by
the state of the PHASE<0>-PHASE<2> signals, while the exact operations
performed by each instruction may be modified by the values of the SRC
WRD<n>, DST WRD<n> and WID WRD<n> fields together with the
state of the SL/SR signal. It is obviously impossible to show all possible
instructions in this manual, and therefore a representative sample will be
explained.

In the following tables, the state of the LEFTOVER signal should be
ignored unless reference is made to it in the text. This is because the state
of the source FIFO is unknown at the start of each instruction.

7.3.1 Phase=0 – Begin

This instruction follows the timing cycle just described, and when the SL/SR
signal is low, it performs a left-edge update of the destination bitmap. If a
particular 16 bit word is entirely outside the area to be updated, then the
DON’T MASK signal is asserted, and the QUAL FIFO signal is not, so that
the source FIFO is unchanged and the destination word is passed unaltered
through the combiner.

If the current 16 bit word contains the left edge of the bitmap, then the
DON’T MASK signal is forced to 0, and the QUAL FIFO signal is asserted
on the previous cycle, thus causing a normal update cycle to occur. The EL
signal is 1, and the ER signal is 0, so that the combiner performs a left-edge
masking operation.

Finally, if the current 16 bit word lies entirely inside the updated area,
then an update cycle occurs as described in the last paragraph, but both
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the EL and ER signals are set to 1, so that the combiner performs no mask
operation on the destination word.

The particular word that contains the left edge of the region to be up-
dated is selected by the DST WRD field of the Raster Operation Destination
Control Register. The following 2 tables show the sequence of operations that
occurs for 2 different values of this field.

Time= 0 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 0 Ph1= 0 Ph2= 0
SrcWd= 0 DstWd= 0 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 0 0 0 0 1 0 1 1 0 0 1
3 0 1 1 1 1 0 1 1 0 0 1
0 0 1 1 1 1 0 1 1 0 1 1
1 1 1 1 1 1 0 1 1 0 1 2
2 0 0 1 0 0 0 1 1 1 1 2
3 0 0 0 0 0 0 1 1 1 1 2
0 0 0 0 0 0 0 1 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 0 0 0 0 1 0 1 1 0 0 1
3 0 1 1 1 1 0 1 1 0 0 1

Time= 1 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 0 Ph1= 0 Ph2= 0
SrcWd= 0 DstWd= 2 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
1 0 0 0 0 0 0 1 1 0 0 1
2 0 0 0 0 1 0 1 1 0 0 1
3 1 1 1 1 1 0 1 1 0 0 1
0 1 0 1 0 1 0 1 1 0 1 1
1 1 0 1 1 1 0 1 1 0 1 2
2 0 0 1 1 0 0 1 1 1 1 2
3 0 0 0 0 0 0 1 1 1 1 2
0 0 0 0 0 0 0 1 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 0 0 0 0 1 0 1 1 0 0 1
3 1 1 1 1 1 0 1 1 0 0 1
0 1 0 1 0 1 0 1 1 0 1 1
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Finally, if the SL/SR signal is one, then the system performs a right-edge
update (since this is the first edge to be modifies on a right-to-left update),
as described for the END operation below. The next table shows how this
occurs.

Time= 3 Sl/Sr= 1 RO/PS= 1 E/O= 0
Ph0= 0 Ph1= 0 Ph2= 0
SrcWd= 0 DstWd= 0 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
2 1 0 0 0 1 0 0 0 0 0 1
3 1 0 0 1 1 0 0 0 0 0 1
0 1 0 1 1 1 0 0 0 0 1 1
1 1 0 1 1 1 0 0 0 0 1 2
2 0 0 1 1 0 0 0 0 1 1 2
3 0 0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 0 1 0 2
1 0 0 0 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
2 1 0 0 0 1 0 0 0 0 0 1

7.3.2 Phase=1 – Mid

This instruction is used to update graphics words where all 64 bits of the
destination quadword lie inside the area to be updated, and therefore no
edges are contained within the word. The operation of this instruction is not
affected by the contents of the various control registers.

On each update cycle, both the EL and ER inputs to the combiner mask
control are set to 1, so that the combiner passes the destination word un-
changed. The QUAL FIFO signal goes active during the microcycle before
each update cycle, so that a new word is fed into the shifter. These operations
are shown in the following table.
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Time= 3 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 1 Ph1= 0 Ph2= 0
SrcWd= 0 DstWd= 2 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 1 0 0 0 1 0 1 1 0 0 1
3 1 0 1 1 1 0 1 1 0 0 1
0 1 0 1 1 1 0 1 1 0 1 1
1 1 0 1 1 1 0 1 1 0 1 2
2 0 0 1 1 0 0 1 1 1 1 2
3 0 0 0 0 0 0 1 1 1 1 2
0 0 0 0 0 0 0 1 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 1 0 0 0 1 0 1 1 0 0 1

7.3.3 Phase=2 – End

When the SL/SR signal is low, this instruction is used to update graphics
words which contain the right edge of the are to be altered. The position of
this edge is determined by the difference between the DST WRD<n> and
WID WRD<n> fields of the raster operation control register. The sequence
of operations is similar to that of the previous 2 instructions, and the only
new feature is that during the cycle which updates the word containing the
edge, the mask control lines are set to the EL=0, ER=1 state, so that the
combiner performs a right-edge update. The following 2 tables show how
this occurs.

160



Time= 0 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 0 Ph1= 1 Ph2= 0
SrcWd= 0 DstWd= 2 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
0 0 0 0 0 0 0 1 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 1 0 0 0 1 0 1 1 0 0 1
3 1 0 1 1 1 0 1 1 0 0 1
0 1 0 1 1 1 0 1 1 0 1 1
1 1 0 1 1 1 0 1 1 0 1 2
2 0 0 0 1 0 0 1 1 1 1 2
3 0 0 0 0 0 0 1 1 1 1 2
0 0 0 0 0 0 0 1 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0

Time= 3 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 0 Ph1= 1 Ph2= 0
SrcWd= 0 DstWd= 2 WidWd= 2
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 1 0 0 0 1 0 1 1 0 0 1
3 1 0 1 1 1 0 1 1 0 0 1
0 0 0 0 1 1 0 1 1 0 1 1
1 0 1 1 1 1 0 1 1 0 1 2
2 0 1 1 1 0 0 1 1 1 1 2
3 0 0 0 0 0 0 1 1 1 1 2
0 0 0 0 0 0 0 1 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 1 0 0 0 1 0 1 1 0 0 1

If the SL/SR signal is one, the system performs as left edge update as
described for the Begin Instruction above, and as shown in the next table
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Time= 2 Sl/Sr= 1 RO/PS= 1 E/O= 0
Ph0= 0 Ph1= 1 Ph2= 0
SrcWd= 0 DstWd= 0 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
2 1 0 0 0 1 0 0 0 0 0 1
3 0 0 1 0 1 0 0 0 0 0 1
0 0 1 1 1 1 0 0 0 0 1 1
1 0 1 1 1 1 0 0 0 0 1 2
2 0 1 1 1 0 0 0 0 1 1 2
3 0 0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 0 1 0 2
1 0 0 0 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1

7.3.4 Phase=3 – Begin/End

This instruction is really a combination of the Phase=0 (Begin) and Phase=2
(End) instructions described above, and is used when the same 64 bit Quad-
word contains both the left and right edges of the area to be updated. When
these edges are contained in different 16-bit words, The raster operation
machine performs left-edge, middle, and right edge cycles as required. This
is demonstrated by the following table
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Time= 1 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 1 Ph1= 1 Ph2= 0
SrcWd= 0 DstWd= 2 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 0 0 0 0 1 0 1 1 0 0 1
3 1 1 1 1 1 0 1 1 0 0 1
0 1 0 1 0 1 0 1 1 0 1 1
1 1 0 1 1 1 0 1 1 0 1 2
2 0 0 0 1 0 0 1 1 1 1 2
3 0 0 0 0 0 0 1 1 1 1 2
0 0 0 0 0 0 0 1 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0

However, the 2 edges may occur in the same 16 bit word. When this
occurs, the Raster operation state machine sets both the EL and ER signals
to 0, so that the combiner performs a both-edge update cycle. The remaining
3 microcycles in the update do not change the destination word as the DON’T
MASK signal is set to 1. This sequence of operations is illustrated in this
table

Time= 1 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 1 Ph1= 1 Ph2= 0
SrcWd= 0 DstWd= 2 WidWd= 2
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1
2 0 0 0 0 1 0 1 1 0 0 1
3 1 1 1 1 1 0 1 1 0 0 1
0 0 0 0 0 1 0 1 1 0 1 1
1 0 1 1 1 1 0 1 1 0 1 2
2 0 1 1 1 0 0 1 1 1 1 2
3 0 0 0 0 0 0 1 1 1 1 2
0 0 0 0 0 0 0 1 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
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7.3.5 Phase=4 – XtraSource

This instruction is used to load quadwords from memory into the source
FIFO. The raster operation state machine alternates between states 0 and 2,
and while in state 2, the CLK FIFO IN signal is active, so that the memory
data is strobed into the FIFO. The main CPU performs FETCH4 cycles, so
that the required memory data is presented to the FIFO data inputs.

None of the control fields affect the operation of this instruction. The
sequence of operations is given in the next table

Time= 2 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 0 Ph1= 0 Ph2= 1
SrcWd= 0 DstWd= 0 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
2 0 0 0 0 0 0 0 0 1 0 2
3 0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 0 0 1 0 2
1 0 0 0 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 1 0 2
3 0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 0 0 1 0 2
1 0 0 0 0 0 0 0 0 1 0 0

7.3.6 Phase=5 – FirstSource

This operation makes use of the EVEN/ODD signal, and the flag bit of
the source FIFO, to load the appropriate number of 16 bit words into the
source FIFO at the start of a graphics operation. The Raster operation state
machine toggles between the 0 and 2 states, and loads a Quad-word into the
FIFO, after main CPU has executed a FETCH4 memory instruction.

The SRC WRD<n> signals control the relative phase of the OLD EVEN/ODD
and the CLK FIFO IN signals, and the result is to cause the LEFTOVER
signal to become active during some of the subsequent microcycles, and to
drop the appropriate number of words from the FIFO.

The following tables show examples of this operation
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Time= 2 Sl/Sr= 0 RO/PS= 1 E/O= 1
Ph0= 1 Ph1= 0 Ph2= 1
SrcWd= 3 DstWd= 0 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
2 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 2
2 0 0 0 0 0 1 0 1 1 0 2
3 0 0 0 0 0 1 0 1 1 0 2
0 0 0 0 0 0 1 0 1 1 0 2
1 0 0 0 0 0 0 0 1 1 0 0
2 0 0 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 1 0 0 2
2 0 0 0 0 0 1 0 0 1 0 2
3 0 0 0 0 0 1 0 0 1 0 2
0 0 0 0 0 0 1 0 0 1 0 2
1 0 0 0 0 0 0 1 0 1 0 0

Time= 2 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 1 Ph1= 0 Ph2= 1
SrcWd= 2 DstWd= 0 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 2
2 0 0 0 0 0 1 0 0 1 0 2
3 0 0 0 0 0 1 0 1 1 0 2
0 0 0 0 0 0 1 0 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0 1 0 0 0
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Time= 2 Sl/Sr= 0 RO/PS= 1 E/O= 1
Ph0= 1 Ph1= 0 Ph2= 1
SrcWd= 1 DstWd= 0 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
2 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 2
2 0 0 0 0 0 1 0 0 1 0 2
3 0 0 0 0 0 1 0 0 1 0 2
0 0 0 0 0 0 1 0 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 0 1 0 0 0

Time= 2 Sl/Sr= 0 RO/PS= 1 E/O= 1
Ph0= 1 Ph1= 0 Ph2= 1
SrcWd= 0 DstWd= 0 WidWd= 0
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
2 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 2
2 0 0 0 0 0 1 0 0 1 0 2
3 0 0 0 0 0 1 0 0 1 0 2
0 0 0 0 0 0 1 0 0 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 0 1 0 0 2
2 0 0 0 0 0 1 0 1 1 0 2
3 0 0 0 0 0 1 0 1 1 0 2
0 0 0 0 0 0 1 0 1 1 0 2
1 0 0 0 0 0 0 1 0 1 0 0

7.3.7 Phase=6 – End,Clear

This instruction is a combination of the End and FirstSource instructions
described above, and is used at the end of a graphics bitmap line, to ensure
that the FIFO is cleared, ready for the next line of the bitmap.

This operation is identical to the End instruction described earlier (that
is, the Phase=2 instruction), except that the LEFTOVER signal goes active
during the source fetch phase, and thus the unnecessary source operand words
are dropped from the FIFO. The sequence of operations is shown in the next
tables
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Time= 2 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 0 Ph1= 1 Ph2= 1
SrcWd= 2 DstWd= 1 WidWd= 1
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
2 1 0 0 0 1 0 0 0 0 0 1
3 1 0 1 1 1 0 0 0 0 0 1
0 1 0 1 1 1 0 0 0 0 1 1
1 0 0 0 1 1 1 0 0 0 1 2
2 0 1 1 1 0 1 0 0 1 1 2
3 0 0 0 0 0 1 0 1 1 1 2
0 0 0 0 0 0 1 0 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 1
2 1 0 0 0 1 0 0 1 0 0 1
3 1 0 1 1 1 0 0 1 0 0 1
0 1 0 1 1 1 0 0 1 0 1 1
1 0 0 0 1 1 1 0 1 0 1 2

Time= 0 Sl/Sr= 0 RO/PS= 1 E/O= 1
Ph0= 0 Ph1= 1 Ph2= 1
SrcWd= 1 DstWd= 1 WidWd= 1
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
0 0 0 0 0 0 1 0 0 1 0 2
1 0 0 0 0 0 0 1 0 1 0 0
2 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
2 1 0 0 0 1 0 0 0 0 0 1
3 1 0 1 1 1 0 0 0 0 0 1
0 1 0 1 1 1 0 0 0 0 1 1
1 0 0 0 1 1 1 0 0 0 1 2
2 0 1 1 1 0 1 0 0 1 1 2
3 0 0 0 0 0 1 0 0 1 1 2
0 0 0 0 0 0 1 0 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 0 1 0 0 0

7.3.8 Phase=7 – Begin/End, Clear

This instruction is similar to the End,Clear instruction just described, ex-
cept for the fact that a Begin/End (Phase=3) instruction replaces the End
instruction. It is therefore used when both edges of the updated region lie in
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the same 64 bit Quad word, and when the source FIFO needs to be cleared
ready for the next line of the bitmap.

The operation of this instruction is shown in the following tables.

Time= 1 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 1 Ph1= 1 Ph2= 1
SrcWd= 1 DstWd= 3 WidWd= 2
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
1 0 1 1 1 1 1 0 0 0 1 2
2 0 1 1 1 0 1 0 0 1 1 2
3 0 0 0 0 0 1 0 0 1 1 2
0 0 0 0 0 0 1 0 1 1 0 2
1 0 0 0 0 0 0 1 1 1 0 0
2 0 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 1
2 1 0 0 0 1 0 0 1 0 0 1
3 1 0 1 0 1 0 0 1 0 0 1
0 0 0 0 1 1 0 0 1 0 1 1
1 0 1 1 1 1 1 0 1 0 1 2
2 0 1 1 1 0 1 0 1 1 1 2
3 0 0 0 0 0 1 0 1 1 1 2
0 0 0 0 0 0 1 0 0 1 0 2

Time= 3 Sl/Sr= 0 RO/PS= 1 E/O= 0
Ph0= 1 Ph1= 1 Ph2= 1
SrcWd= 0 DstWd= 3 WidWd= 1
Time Qual Dont El Er P Dst P Src Left Old Clk Ro State

Fifo Mask Quad Quad Over E/O Fifo Data
3 1 0 1 0 1 0 1 1 0 0 1
0 1 0 1 1 1 0 1 1 0 1 1
1 0 0 0 1 1 1 0 1 0 1 2
2 0 1 1 1 0 1 0 1 1 1 2
3 0 0 0 0 0 1 0 1 1 1 2
0 0 0 0 0 0 1 0 1 1 0 2
1 0 0 0 0 0 0 1 0 1 0 0
2 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1
2 1 0 0 0 1 0 1 0 0 0 1
3 1 0 1 0 1 0 1 0 0 0 1
0 1 0 1 1 1 0 1 0 0 1 1
1 0 0 0 1 1 1 0 0 0 1 2
2 0 1 1 1 0 1 0 0 1 1 2
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