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Chapter 0

Introduction

The microprocessor has brought about a revolution in computing.
Whereas twenty or thirty years ago, computers were so expensive that only
large organizations could afford them, the microprocessor has brought
computers not just into the small company, but also into the home, the small
office, and even into industrial and consumer equipment. 

At this time, microprocessors are broken down into two major catego-
ries: CISC and RISC. 

CISC microprocessors are Complex Instruction Set Computers. These are
the traditional processors, which can execute a relatively large number of
fairly complex instructions. RISC processors, on the other hand, are Reduced
Instruction Set Computers, which can perform a smaller number of relatively
simpler instructions. Right now, there is some disagreement about which
are better. RISC processors, because they do less in each instruction, can be
built so they do it faster. But this is outweighed to some extent by the fact
that a larger number of instructions is needed to finish a particular job, and
so it is not quite so clearcut which is faster on complex jobs. 

In the CISC world, there are two major companies building micropro-
cessors: Intel and Motorola. Intel was the very first microprocessor manu-
facturer, and Motorola was the second, and they have been the two major
players ever since. Both make very capable products, and are forever
playing leapfrog, trying to best each other. At any given time, one or the
other may be out in front.

Although Intel is the more widely known microprocessor manufacturer
- mainly because their 8088 and its followers were chosen by IBM for their
PC line - many people prefer Motorola processors. Intel has attempted to
make each processor they make somewhat compatible with earlier proces-
sors, with the result that even their newest processors have many features
which seem archaic by today’s standards. Motorola, on the other hand,
made a major departure from earlier processors when they designed the
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68000 - they tried to keep the “flavor" of their earlier machines, but they did
not keep any of their limitations. Thus many users agree that the Motorola
68000 is easier to use - and certainly more pleasant to use - than the
comparable Intel processors. 

When higher level languages are used, it doesn’t much matter to the
programmer which processor they will eventually run on. But to get the
utmost speed or compactness out of a program requires assembly language,
and that is where programmers most often choose Motorola processors,
which are much more orderly in their structure and easier to program on
that level.

This book is about the 68000 Microprocessor and how it is used. We will
cover many details of both its internal operation, the external circuitry it
connects to, and the programs which it runs. Although Motorola makes
more advanced 68000-family processors (such as the 68020 and 68030),
almost all of the principles you will learn about the 68000 apply to those as
well - they are merely extensions of the basic 68000 architecture.

When you look at the heavy-duty number-crunching applications of
microprocessors, you will find the Motorola 68000 family used more often
than any other. Even though the 68000 may be one of the slower micropro-
cessors in the series, it is no slouch. 

The 68000 is the microprocessor that gives the Atari ST, Commodore
Amiga, and the Macintosh SE their power. It is also found inside many laser
printers, as well as in industrial controllers and scientific workstations. The
68000 is roughly in the middle of what many call the ’68K’ family of
processors - the 68008 is slightly below, the 68020 and 68030 are above. (A
fifth processor, the 68010, is theoretically faster than the 68000, but the 68000
can be run at faster clock rates and so is just about equal in practical speed.)

Our method for teaching you about the 68000 is to have you build and
use an actual system. 

In Volume I, you will concentrate on hardware. You will start from the
very beginning, mounting one part after another, until you have a complete
system up and running. As we go, we will discuss each part of the system,
see where it fits into the overall picture, build it, and then test it. 

In Volume II, you will then use the hardware to learn about software.
Using the HUMBUG ROM-based debugger, and the SK*DOS disk operat-
ing system, we will progressively do some simple programming exercises,
and ultimately look at various portions of the HUMBUG and SK*DOS
software code itself to examine how 68000 programs solve various pro-
gramming problems, and how to interface the software with the hardware.

Above all, don’t try to skip ahead in the book, because the treatment is
logically organized in a progression. If you skip some part as you go, you
will find yourself missing some crucial knowledge you would need later. 

With that, let us continue to Chapter 1, to learn about the SK68K
computer you will be building. 
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Chapter 1

Overview Of A Micro Computer

The typical computer consists of the following parts: 

1. The Central Processing Unit or CPU, which does the actual processing,
arithmetic, and decision-making of the computer, and also controls the
operation of the rest of the computer. 

2. The memory, which stores programs being performed, as well as data
and results.

3. Input and output equipment (also called I/O devices), which includes
things like printers, keyboards, and the like. Furthermore, there are
circuits called I/O interfaces which connect the I/O devices to the CPU
and memory. (This definition leaves the status of things like disk drives
and tape drives a bit hazy - some people would include these in the
memory category, and some in the I/O category. We will use the latter.)

With this breakdown in mind, we can look at the types of computers.
Historically, as well as in size order, computers can be broken down into
four types: 

a. Mainframe computers are the very large ones, which often occupy an
entire room (perhaps even a very large room). Originally, of course, all
computers were this large; these days, computers like these are used by
the Internal Revenue Service, large corporations, or universities for
commercial or research applications. In a typical mainframe computer,
the CPU might be in one floor-standing cabinet, the memory in another,
I/O interfaces in another, and the actual I/O devices in a few more.

b. Minicomputers are smaller and newer, usually occupying one or more
cabinets standing on the floor, but small enough to fit into an ordinary
office or laboratory, along with other equipment. It too could be used
for business or research applications, but is not as powerful as the very

Overview Of A Micro Computer 3



large mainframes. In a typical minicomputer, The CPU might be one or
more printed circuit boards, the memory might be a few more, and each
I/O interface might be one or more pc boards as well. But all of these
might be mounted in the same cabinet.

c. Micro computers are generally quite small, usually in desk-top cabinets,
and less powerful than either of the above. But, given enough memory,
these too can be used for both business and research applications. In
most cases, the CPU is just one or two integrated circuits (ICs) occupying
just part of a printed circuit board, which might even contain some
memory or other circuitry as well. 

d. Microcomputers (notice that we are now spelling it as one word, not two)
are the smallest of the lot. In a typical microcomputer, a single integrated
circuit contains the CPU, some memory, and even some of the I/O
interfaces as well. In fact, the entire IC might be called a microcomputer.
They are almost used strictly for control applications - for example, you
might find one inside a camera or inside a traffic light.

The 68000 Microprocessor (also called a Micro Processing Unit, or MPU)
would be the CPU in a Micro Computer. Actually, some of the 68000’s faster
cousins are powerful enough that they can do jobs often reserved for
minicomputers in the past. And so the distinction between the minicom-
puter and the micro computer is becoming blurred as time goes on. In fact,
some people believe that the minicomputer may even cease to exist, as
micro computers take over many of their jobs. 

The SK68K Computer Trainer
As shown in the photograph of Fig. 1-1, the SK68K microcomputer

trainer is all contained on one printed circuit board. It contains the follow-
ing:

a. The 68000 microprocessor is the large integrated circuit near the bottom.
b. The main memory consists of the 32 small integrated circuits in the

bottom left corner plus the four medium size IC’s near the center. The
32 ICs in the corner provide 1 megabyte of dynamic RAM (the main
random-access memory); the four IC’s in the center provide 4K (4
kilobytes) of static RAM with battery back up (the two slightly smaller
ICs), and 32K of ROM (read-only-memory) with space for more (in the
two slightly larger ICs).

c. The I/O interfaces are located mostly along the top edge and the top right
of the board, and include 4 serial ports to connect to terminals, modems,
printers, etc., two parallel ports for printers or other I/O devices, a
floppy disk interface for up to four drives, a sound interface for a
speaker, a clock/calendar chip, an interface for a PC or XT clone key-
board, and six interface connectors for additional clone-compatible I/O
boards. (The clones we are talking about are the Japanese, Taiwanese or
Korean computer components often known as IBM-compatible because
they are interchangeable with those of IBM PC- and XT-style comput-
ers.)
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d. Finally, the rest of the board contains various smaller ICs used for timing
and control, and to interconnect the remaining parts together. In fact,
these remaining ICs are often called glue chips for that reason. 

The fact that the SK68K has connectors to accept XT-compatible clone
components such as keyboards, video boards, and hard disk controllers,
makes the SK68K somewhat unique. It allows us to expand the Trainer and
give it additional capabilities, and do so at a very low cost by taking
advantage of the fact that such clone components are produced in very large
quantities and are therefore very inexpensive.

Fig. 1-1. The SK68K Printed Circuit Board.
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The Block Diagram
The best way to get an overall view of the SK68K trainer and how it

works is to start with the block diagram in Fig. 1-2. In general terms, this
diagram describes any microcomputer, not just the SK68K. 

The heart of the diagram is the microprocessor, a Motorola 68000 in our
case. It is driven by a clock, which is nothing more than a high frequency
oscillator which generates a square wave. In the SK68K, this clock will most
likely be an 8 MHz signal, though it could go as high as 16 MHz. The clock
synchronizes everything occurring in the system so that it occurs at a fixed
speed. 

The right side of the diagram contains three essential parts: ROM, RAM,
and I/O interfaces. ROM and RAM are both part of the computer’s mem-
ory, but ROM can only be read (hence, its name read-only-memory or
ROM), meaning that the data and programs in the ROM were placed there
once the factory and can now be used by the trainer but not changed. RAM,
on the other hand, is read-write- memory (somewhat misnamed as RAM
rather than RWM - but then, have you ever tried to pronounce RWM?) The
Trainer can write (store) data or programs in RAM, can later read them back,
and can also change them at any time. Furthermore, ROM is permanent
even when the power is turned off, whereas RAM is erased when power
disappears (unless special precautions are taken, such as providing a small
battery to keep the RAM powered up even when the rest of the system is
shut off. Such memory is called battery backed-up.) 

The ROM
The ROM in the SK68K system consists of two 28-pin ICs called

EPROMs or Erasable Programmable ROMs. If you purchased these from
an electronic distributor, they would be empty or erased. But the two
EPROMs which come with the SK68K kit have been programmed with a
copy of the HUMBUG debugging program and with a Basic translator. The

Fig. 1-2. Typical computer block diagram.

Overview Of A Micro Computer 6



computer can read and use these programs, but cannot erase or change
them. 

The RAM
The SK68K computer’s RAM consists of two parts - static RAM, and

dynamic RAM.
Most computers would generally have either static RAM (abbreviated

SRAM) or dynamic RAM (DRAM), but not both. We use both because they
each have their advantages and disadvantages. For large memories, dy-
namic RAM is cheaper and smaller - without it, it would not be practical to
provide 1 megabyte of static RAM at a reasonable cost. On the other hand,
for small memories static RAM is the right choice because it is much simpler
- and easier to debug in case of problems! Hence the SK68K computer will
first be built with a small amount of static RAM using just two integrated
circuits. Since the static RAM circuitry is so simple, it will probably work
immediately without any problems, giving us the ability to run Basic and
HUMBUG. Once the static RAM is all working, then we can add the
dynamic RAM, consisting of thirty-two 256K dynamic RAM ICs plus a
batch of support ICs. If there is a problem, we can use HUMBUG to debug
the dynamic RAM. This kind of bootstrapping makes the building of a large
system like the SK68K from scratch a lot more practical. 

There is actually an ulterior motive to providing static RAM - to provide
a clock/calendar we need only unplug one of the RAM ICs and substitute
a clock/calendar IC which is totally pin compatible. We will use the
MK48T02 which provides not only a clock and calendar, but also some static
RAM of its own - and a built-in battery to keep the clock and RAM going
while the computer is turned off. 

I/O Interfaces
Although Fig. 1-2. shows just a single box labelled I/O Interfaces, the

SK68K computer’s I/O is actually quite complex. It consists of two
MC68681 DUARTs to provide four serial interfaces, one 68230 parallel
interface/timer, a 1772 floppy disk controller, keyboard interface, speaker
interface, a number of extra support ICs, all of the circuitry needed to
interface to the six PC-compatible interface connectors, plus the interrupt
circuitry shown at the bottom, which allows I/O devices to interrupt the
68000 when they need it; the latter is absolutely essential for using a clone
keyboard. 

Some microcomputers often also provide DMA or Direct Memory Ac-
cess circuits. This is a feature which is often used when the CPU has
difficulty keeping up with fast I/O devices such as disk drives. Since the
68000 does not have any problems keeping up (and DMA really complicates
the computer), we chose not to use it in the SK68K computer. 

The Data Bus
As Fig. 1-2 shows, the two main sets of connections between the micro-

processor and the ROM, RAM, and I/O interfaces, are the data bus and the
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address bus. The term bus is used to signify that a number of parallel wires
are used to carry data simultaneously. 

The data bus is used to move numbers (which could be numeric data,
instructions, or text) between the microprocessor, memory, and I/O de-
vices. If you look at the arrowheads at the ends of the data bus in Fig. 1-2,
you will see why the data bus is said to be bidirectional. Data may go in
either direction - left or right. 

In our case, the data bus consists of 16 wires, each of which carries one
bit or binary digit. (See Appendix B if you are not that familiar with binary
numbers and bits.) Thus the 68000 can transfer a 16-bit number to or from
the microprocessor all at once. As we will see, however, the 68000 handles
numbers in chunks of 8 bits (called a byte), 16 bits (two bytes, also called a
word), or 32 bits (four bytes, also called a long word.) When transferring a
byte, the 68000 uses only half of the data bus; when transferring a long
word, it uses the data bus twice, transferring 16 bits at a time. 

The number of bits on a data bus - also called the width of the bus -
obviously has a bearing on the speed - the wider the bus, the more bits can
be moved at a time, so the faster the computer runs. But there is more to the
story - the size of numbers that can be handled internally in the micropro-
cessor is also important. 

The very first general-purpose microprocessors - the 8080, 6800, 6502,
and Z-80 - had an 8-bit data bus and also handled 8-bit numbers internally.
For this reason these were called 8-bit microprocessors. 

The next generation of chips, such as the 6809 and 8088, still had 8-bit
data buses, but could now handle 16-bits internally. This gave them extra
power, but they were still bogged down by the slow speed at which they
could transfer data to and from memory and I/O devices. 

The next step up included the 8086, 80186, and 80286, processors which
could handle 16-bit numbers both internally and externally, and which are
called 16-bit processors. 

The 68000 is one step higher yet - it still only has a 16-bit data bus, but
can handle 32-bit numbers internally. 

Finally, at the top of the current pyramid are the 80386 and 68020, both
of which handle 32-bit numbers both internally and on the data bus. These
are true 32-bit processors. 

But even this is not the entire story - there are still other factors which
affect computer speed. Though there are processors which have a wider
data bus than the 68000, a bus that’s twice as wide doesn’t necessarily mean
a computer that’s twice as fast unless you consistently run programs that
make full use of that width. What does make the 68020 and 80386 faster
than the 68000 or 8086 is their more extensive use of a cache. This is an area
of memory within the processor that holds instructions or data that are read
out of memory before they are needed. Whereas older processors would
only read data out of memory at the instant it is needed - and then have to
wait for it - newer processors may spend their spare time pre-reading a few
bytes ahead of themselves, and store the bytes read just in case they should
be needed in the next few instructions. Alternatively, they may store in-
structions that have been recently used in case they are needed again soon.
In this way they avoid the need to wait for data or instructions to come in
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from memory. The 68000 does have a small cache, but it is too small to
provide a significant saving. 

The Address Bus
The other major bus, the address bus, carries addresses. That is, in order

to save data into memory, or read data from memory, the processor must
specify exactly where in memory that data is located. This is done with a
numeric address, sent out on the address bus. As you can see from the
arrowheads in Fig. 1-2, the address bus carries data from left to right; that
is, it is unidirectional. (There is an important exception - when a computer
uses DMA, then addresses may come out of an I/O interface and travel to
the left.) 

The width of the address bus determines exactly how much memory a
computer can have. If the bus had only three lines, for example, then each
address would consist of just three bits. Since each bit can only be either a
0 or 1, there would be just eight possible addresses - 000, 001, 010, 011, 100,
101, 110, or 111 - since there is no other three-bit number that can be made
out of ones and zeroes. Hence the maximum number of addresses - or put
another way, the maximum possible number of locations in the memory of
this computer - would be eight, which also happens to be equal to two to
the third power. That is, 23 = 8.

In general, the maximum number of addresses is 2 to the same power
as the number of address lines. For example, most 8-bit computers have 16
address lines in their address bus, so they have a maximum of 216 = 65536
addresses. 

Since a K in computer terms is 1024 (not 1000 as in ordinary electronics),
65536 works out to be exactly 64K locations. 

Newer microprocessors have more address lines than their predeces-
sors: 

microprocessor address bus
width (bits)

maximum
memory size

8080, 6800, etc. 16 64K

8088, 68008, etc. 20 1 megabyte

68000 24 16 megabytes

68020, 80386 32 4 billion bytes

As you might expect, there is more to the story than just the width of
the address bus. Consider the 20-bit bus of the 8088 and 68008, for example.
Both of these processors can address up to a megabyte of memory, but the
68008 (the smaller cousin of the 68000) can do so in one continuous piece,
whereas the 8088 must split that memory into 64K segments. Handling the
segmenting greatly complicates a program - that’s why many programs
written for the 8088 (such as Microsoft’s BASIC or BASICA) can only use
64K of memory at a time, whereas a Basic on the 68008 has no such
limitation. 

Thus the 68000 can easily handle programs and data that use up the
entire 16 megabytes of memory ... almost. There is a difference between the
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way that Intel and Motorola processors handle I/O. In a computer using a
Motorola processor like the 6800 or 68000, the I/O interface connects to the
processor in exactly the same way as the memory, with the result that
memory and I/O use the same addressing scheme. Thus if the 68000 were
to use 1 megabyte to address I/O, then there would only be 15 megabytes
left for memory. Intel processors do not have that limitation - they use the
entire normal address range for memory, and have a separate set of ad-
dresses (usually much smaller) just for I/O. Although some people point
this out as a weakness in the Motorola approach, in practice it makes very
little difference since I/O seldom requires more than just a few dozen (or
perhaps a few hundred) addresses. There are still plenty of addresses left
for memory. In most cases, a 68000 or 68020 has so many possible addresses
that we can afford to waste thousands - maybe even millions - of addresses
on I/O without feeling the pinch. 

A list of addresses in a computer and what they are used for is called a
memory map. Table 1-1 shows a simplified memory map of the SK68K
computer. 1 As you can see, there is still plenty of memory left for expan-
sion, probably a lot more than most of us would care to pay for. 

Table 1-1. Simplified SK68K Computer memory Map 

Memory Range (hex) Description

000000 - 0FFFFF Dynamic RAM (1 megabyte)

100000 - BFFFFF Empty - for expansion (11 megabytes) 

C00000 - DFFFFF Addresses for PC expansion slots (2
megabytes) 

E00000 - F7FFFF Unused (1.5 megabytes) 

F80000 - F9FFFF ROM (128K) 

FA0000 - FBFFFF Addresses for PC expansion slots (128K) 

FC0000 - FDFFFF Unused (128K) 

FE0000 - FE3FFF I/O Interfaces (16K) 

FE4000 - FEFFFF Unused (48K) 

FF0000 - FF7FFF Static RAM (32K) 

FF8000 - FFFFFF Unused (32K) 

The Address Decoder
As Fig. 1-2 shows, the address bus coming out of the microprocessor is

split into two parts - part goes into the address decoder, while part goes to
the ROM, RAM, and I/O interfaces. 

The job of the address decoder is to look at the address on the bus and
decide whom it’s intended for. For example, as Table 1-1 shows, the dy-
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namic RAM occupies addresses 000000 through 0FFFFF. Whenever the
address decoder sees any address beginning with the hexadecimal digit 0,
it recognizes it as a RAM address, and sends a signal to the RAM that
effectively says “Hey, you! This address is meant for you ... go to work."
This signal is called an enable or select signal. If it goes directly to an IC,
then it is called a chip enable or chip select, often abbreviated CE or CS. 

Fig. 1-2 shows just one address decoder, connected to the ROM, RAM,
and I/O interfaces. In practice, though, most computers split that address
decoder into two or more smaller decoders, each of which services just one
part of the computer. Part of the reason is that it is easier to build that way,
but there is a second reason as well - not all the decoders look at the same
part of the address bus. 

In the case of dynamic RAM, the address decoder need only look at the
leftmost hex digit of the address; that is, it looks at the four leftmost bits,
which must equal 0000 (a hex 0) for the RAM to go to work (see Appendix
B for a discussion of binary and hexadecimal digits if you need to brush
up.)

The decoder for the ROM, on the other hand, must look at seven bits.
As Table 1-1 shows, the ROM occupies addresses F80000 through F9FFFF.
Since there are other parts of the computer whose addresses also begin with
the hexadecimal digit F, the ROM’s address decoder must look at more than
just the first digit F - it must also check that the second digit is either an 8
or a 9. This is done by looking at individual bits of the address.

When written in binary, the lowest ROM address - F80000 - begins with
the bits 1111100 and then continues with 17 zeroes, like this: 

F80000 = 1111 1000 0000 0000 0000 0000.
The address F9FFFF also begins with 1111100 but then continues with

17 ones, like this:
F9FFFF = 1111 1001 1111 1111 1111 1111.
All other ROM addresses also begin with the bits 1111100, but have

different combinations of 17 zeroes and ones at the end. Thus any address
which starts with the bits 1111100 applies to the ROM; the ROM’s address
decoder therefore looks for a 1111100 bit pattern in the first seven bits of the
address, and sends an enable signal to the ROM as soon as it sees it. 

Hence different parts of the address decoder look at different bits of the
address bus. Some parts may only look at one or two bits, other parts may
look at four or six, and some parts of a typical computer’s address decoder
may look at 16, 32, or even more bits in some computers.

Conclusion
We conclude this chapter by just reviewing that the typical computer

consists of a CPU (called a microprocessor in a micro computer), some
memory (both ROM and RAM), I/O devices and their I/O interfaces, and
various other circuitry made up of glue chips. And let us not forget the
subject of the next chapter - the power supply.
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Chapter 2

The Power Supply

An unreliable power supply can play havoc with a computer. Yet the
power supply is so common - and inconspicuous - that it is taken for
granted and seldom suspected in case of a problem. Since nothing else can
work without the power supply, let us start with it.

2-1. Discussion
The SK68K requires three power supply voltages. But it is difficult to

say exactly how much current it needs at any specific time, since this
depends on how far along you are in constructing it, and also on how many
plug-in expansion boards are installed in the six XT-compatible connectors.

A fully configured SK68K, with a full 1 megabyte of memory and all
on-board options, requires the following:

+5 volts for the main TTL and MOS logic.
+12 volts for the RS-232C serial port, and for some of the I/O circuits.
-12 volts for the RS-232C serial port, and for some of the I/O circuits.
These voltages can be supplied from one or more regular power sup-

plies, but the simplest and cheapest is a 135-watt or 150-watt switching
power supply of the type designed for XT clones.

Types of Power Supplies
Switching power supplies are substantially smaller and more efficient

than the old-fashioned “linear" power supplies. The block diagram of Fig.
2-1 shows the difference between the conventional linear supply and a
switching supply. 

The conventional linear supply begins with a step-down transformer,
which steps the 115 volts AC from the power line to a more manageable
voltage, slightly above the desired DC output voltage. The resulting AC is
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then full-wave rectified, filtered, and
then fed to a linear regulator. The most
common regulator contains a pass
transistor in series with the output,
controlled by a voltage comparator
which compares the DC output volt-
age against a reference voltage. The
comparator then biases the pass tran-
sistor to change its resistance; it thus
uses the voltage drop across the tran-
sistor to keep the output DC voltage
constant. If the output voltage is too
low, it makes the pass transistor con-

duct more; if the output voltage is too high, it biases the pass transistor so
it conducts less.

There are three main problems with such a linear circuit: 

(1) Since the AC line operates at 60 Hz, the step-down transformer must be
fairly large and heavy. It must have enough iron in the core so as not to
saturate at the low frequency. 

(2) The filter capacitor must also be fairly large so as to remove the ripple,
which occurs at twice the line frequency. Although the capacitor need
not remove all the ripple (since the regulator can remove the rest), it
must remove enough ripple to make sure the voltage fed to the regulator
does not drop too far.

(3) The regulator’s pass transistor conducts current at all times, and there-
fore dissipates power. To safeguard against the voltage dropping too far,
the voltage level into the regulator must be at least several volts more
than the desired output, so the power dissipated by the pass transistor
may be considerable.

None of these problems is major, but it does mean that a linear power
supply to provide a substantial amount of power must be fairly large and
heavy, and must dissipate a substantial amount of power.

The switched-regulator supply of Fig. 2-1 (B) is substantially more
complex. It starts with a rectifier and filter, which directly change the
incoming 115 volts AC into DC at between 110 and 150 volts. This DC then
powers an oscillator, which generates a high voltage AC at a frequency of
several kHz. This signal is then stepped down through the transformer,
rectified, and then filtered.

Regulation is achieved by again comparing the DC output of the supply
against a reference voltage in a voltage comparator, and using the resulting
output to control the pulse-width of the oscillator. 

This circuit has several advantages over the linear supply:

(1) Since the transformer works at several kHz, rather than at 60 Hz, it
requires a smaller iron core. A small toroid can be used with less loss
and less cost.

(2) Likewise, the final filter capacitor can be small since the ripple frequency
is much higher than in the linear supply. (Although a second filter is

Fig. 2-1. Types of power supplies.
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needed in the input circuit, the oscillator will tolerate a large amount of
ripple and thus a small capacitor can be used here as well.)

(3) Although the oscillator transistors indirectly provide regulation of the
output, they do not operate in the linear region as the pass transistor
would in a linear power supply. They are always either cut off or
saturated, and so their power dissipation is much lower than in the
linear region. 

The result is that a switching power supply, although much more
complex than a linear supply of the same output power rating, is generally
much smaller and lighter, and runs much cooler. For example, a 135-watt
or 150-watt power supply of the type often used in XT clones weighs only
a fraction as much as an equivalent supply used to weight before switching
power supplies became popular.

Needless to say, switching supplies do have some disadvantages. The
major ones are this:

(1) Because the oscillator operates at fairly high powers and high frequen-
cies, it can produce interference with nearby radio or television receiv-
ers. The 115-volt input to the power supply must therefore be well
filtered to prevent high frequency signals from being transmitted back
into the power supply; additional filtering is also needed on the dc
outputs as well, and the supply must be well shielded.

(2) Since the supply does not have a large output filter capacitor, it does not
do well when the output current suddenly changes. In a conventional
power supply, the output capacitor easily handles sudden surges in
power; transient response of switching supplies tends to be slower. The
lack of a large filter capacitor also means that switching power supplies
are also much more susceptible to short power outages. For example,
some users may use a UPS (Uninterruptible Power Supply) or standby
power supply in case of main AC power failure. Such power supplies
often delay a anywhere from 15 milliseconds to as much as 1/2 second
after a main power failure before they switch in to provide power. The
large filter capacitor in a linear power supply may be able to provide
power to tide the computer over during this interval; in a switching
power supply, there is no such storage capacitor and so the dc power
may just totally disappear for this fraction of a second.

(3) Multi-output power supplies (such as an XT supply which provides four
different output voltages) often derive all their output voltages from the
same regulator and transformer. In other words, the switching regulator
in an XT power supply controls all four outputs at the same time.
Typically, it regulates only the +5-volt output, while the other three
outputs are allowed to vary somewhat. For example, if the load on the
+5-volt output goes up, the switching regulator increases the output of
all four supplies at the same time. The +5-volt output may thus stay
constant, but the other three outputs rise. Some power supplies try to
compensate by providing low-power linear regulators on the other
outputs, but this obviously limits their output capacity. In most XT-type
power supplies, the fan is powered from the +12-volt supply; you can
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often hear it speed up or slow down slightly as the switching regulator
changes its pulse width to keep the +5-volt output constant. 

(4) Switching regulators do not work very well if there is no load. Most
XT-type power supplies therefore have a protection circuit which turns
off the entire power supply when the load is removed; the same circuit
also turns off the supply if the dc output is shorted. 

SK68K Power Supply Connector Pinouts
The XT-type power supply has six dc output connectors, two for the

electronics and four for disk drives.
Two six-pin connectors plug into the main computer board (J10A and

J10B in the right rear corner of the board). The only reliable way to differ-
entiate between them is by the colors of the wires. In order, their 12
connections are as follows:

Pin
 number

Color Function

J10B

1 Orange Power Good (not used - see text)

2 - No Connection    

3 Yellow +12 volts DC

4 Blue -12 volts DC

5 Black Ground

6 Black Ground

J10A

1 Black Ground

2 Black Ground    

3 White -5 volts DC (not used)

4 Red +5 volts DC

5 Red +5 volts DC

6 Red +5 volts DC 

These connectors provide two outputs which will not be used by our
computer - a “power good" output which could have been used to detect
that primary (115-volt) power has just disappeared and the dc outputs are
also about to disappear, and a -5-volt output which is simply not needed. 

The remaining four power supply connectors are all wired identically
as follows:

Pin
 number

Color Function

1 Yellow +12 volts DC

2 Black Ground

3 Black Ground
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Pin
 number

Color Function

4 Red +5 volts DC 

5-1/4" floppy and hard disk drives all use the same wiring, so such a
power supply can directly power as many as four such drives (assuming
that it has enough power handling capacity.) 3-1/2" drives use a different
connector and pinout, and an adapter cable has to be used.

2-2. Construction
Before proceeding with actual work, it’s important to set things up so

the SK68K printed circuit board can be worked on easily, yet is protected
from accidental short circuits and other possible damage.

The best way to do so is to is to mount the board and its power supply
on a wooden board about 12" by 24", as shown in Fig. 2-2. Hammer two
brads into the board as shown to hold the printed circuit board in place. Be
sure to use the correct two holes to avoid a possible short circuit. (The
location of the two brads in Fig. 2-2 is shown with the small triangular flags

on the brads.)
Note how the board is ori-

ented - power connector J10 is
right next to the power supply,
and the six expansion connec-
tors are in the left rear corner. We
will use the words left, right,
front, and back to describe the
board when it is positioned like
this (it will fit into a PC clone
cabinet the same way). For ex-
ample, U92 is in the back, while
C47 is in the front left corner.
(Look at the silk-screen printing
on the board to see how the com-
ponents are positioned on the
board.) 

Note also that the side with
all of the white lettering - this is

called the silk-screen layer - is on top, whereas the other side of the board
will be called the bottom. All of our soldering will be on the bottom side
-there are no solder joints whatever on the top or silk-screen side of the
printed circuit board.

Soldering itself is more of an art than a science. Even if you consider
yourself to be an expert, read Appendix C for our hints on how to keep bad
soldering from ruining your SK68K project.

Fig. 2-2. One way to mount the board and supply.
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The Power Connector
The power connector, J10, actually consists of two six-pin connectors,

J10A and J10B, in the right rear corner of the board. They are shown in Fig.
2-3, J10A on the left and J10B on the right. Read the following paragraphs
before you do anything. 

The power connectors are a potential source of big problems. If you look
at the connectors you have, you will note that the two board-mounted
connectors are identical, and the two power supply plugs are probably
identical as well. In other words, it is extremely easy to make a mistake and
plug the wrong power supply plug into the wrong connector on the board
and burn up the board. We have to make sure that never happens. 

First, look at the two power supply plugs. You will see that one of them
has six wires, while the other has only five - the next-to-the-last wire is
missing. Note also that we have cut off the next-to-the-last pin on J10B in
Fig. 2-3 (compare it with your connectors). Though this doesn’t really
prevent a mixup, it does serve to remind us what goes where. 

Next, compare the tops of J10A and J10B in Fig. 2-3 with the actual power
connectors in your parts kit. In the plastic, behind each of the metal pins, is
a small rectangular opening with a tiny plastic ’bridge’ above it. Your
connectors will still have all of these bridges, while some of the bridges are
shown cut off in Fig. 2-3. Now look at the two matching power supply
plugs, which will have six small plastic tabs sticking out the long side. These
tabs may all still be there, or some of them may already be cut off. When all

Fig 2-3. Power connectors and plugs. Note how the tabs match

The Power Supply 18



the plugs and connectors are brand new, the tabs on the plugs prevent them
from being inserted into the pc-mounted connectors because the long tabs
hit the bridges. The object is to cut just the right combination of tabs and
bridges so the six-wire plug only fits J10A, and the five-wire plug only fits
J10B. If you look closely at Fig. 2-3, you will see that we have done exactly
that. (The whole thing is complicated by the fact that the power supply
plugs may already have some tabs cut off, so you may have to take that into
account.) 

One useful piece of information: when properly installed, the black
wires of the two connectors are adjacent to each other.

Now that you know what has to be done, install the following compo-
nents:

J10A and J10B Solder the two connectors to the board as in Fig. 2-3,
and then match up the bridges and tabs so the power
supply plugs in only one way. Make sure that the
connectors are oriented the correct way, so that the
metal pins are visible from the edge of the board, as
in Fig. 2-3, and that the 5-wire plug only fits J10B. 

C65 10 µF tantalum capacitor; make sure that its positive
lead (marked by a + sign) is closer to J10, as tantalum
capacitors have a nasty habit of exploding if
connected backward! 

C6 0.1 µF disk capacitor near J10 

C3, C4, and C5 47 pF disc ceramic capacitors 

C68 33 pF disc ceramic capacitor 

Although not part of the power supply, the 47 pF and 33 pF capacitors
are very similar to the many 0.1 µF capacitors, and this gets them out of the
way so you will not confuse them later.

Aside from one 1 µF tantalum capacitor, all the remaining capacitors are
0.1 µF disc ceramics. Digital circuits are notoriously ’noisy’, and computer
designers have learned the hard way that it is necessary to install small
bypass capacitors between the +5-volt line and ground all over a board to
keep that noise off the power lines. A general rule of thumb is that one such
capacitor should be installed for every two or three digital ICs. We will
instruct you when to install these additional capacitors.

2-3. Testing
We will do no testing at this stage; the power supply will be tested in

the next Chapter.
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Chapter 3

LED Indicators

First, a bit of theory and some terms we are going to need later. Even if
you know all about logic circuits, read on - some of these concepts are a bit
different in real life from the way they are sometimes written up in simple
books and magazine articles. 

3-1. Discussion
Digital circuits represent the binary digits 0 and 1 by means of voltages;

in most microcomputers, the two voltages are often called low (which is a
voltage between 0 volts and roughly 0.8 volt) and high (which is a voltage
between about 2 volts and 5 volts). There are a few exceptions, of course -
such as in an RS-232 circuit between a computer and terminal where larger
positive and negative voltages may appear - but lows near 0 volts and highs
near 3 to 5 volts are the most common. In any case, the range between 0.8
volts and 2 volts is a no man’s land; if a digital signal is in that range it
usually indicates a problem somewhere. 

Many people think that a low voltage is a 0, while a high voltage is a 1,
but this is not always true - it could be the other way around. So talking
about ones and zeroes can be ambiguous, while talking about lows and
highs is always quite specific. Note that we don’t really care about the exact
value of a signal’s voltage, so long as it falls into one of these two ranges. 

But we can talk about digital signals in a different way as well - we can
say that a particular signal is on, or off. Computer people, however, like
somewhat longer words - they say that a signal is asserted when they really
mean it is on, and they may say that it is negated when it is off. 

Now comes the problem - some circuits use a high to mark a signal as
on (asserted), while other circuits may use a low to turn on (assert) a signal.
So we run into two types of circuits: 
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A so-called active high circuit is one which is high when asserted (on),
and low when negated (off); some books call this positive logic. A so-called
active low circuit is one which is low when asserted (on), and high when
negated (off); some books call this negative logic. In a typical computer,
both kinds of circuits may be used, and often an active high circuit may be
just a tenth of an inch from an active low circuit. 

Many of the signals in this text and diagrams are assigned meaningful
names. Whenever you see a name which has a “not bar" either above or
below its name, such as HALT you will know that this signal is active low.
On the other hand, a signal without the not bar, such as FC0 or A16, is active
high. Because it is difficult to place not bars over signal names in text, many
people use alternative ways of marking active low signals; some common
ways are with an asterisk, as in HALT*, a minus sign, as in -HALT or HALT-,
or with a lower case letter n, as in nHALT. We will use the not bar above
the name in this book.

LED Indicators
If, instead of using an XT-clone cabinet, you use what is commonly

called a “mini-AT" cabinet (because it is the size of an XT cabinet, but is built
in the style of an AT cabinet), you will note that such cabinets have two or
three status indicator LEDs on the front panel. These LEDs can eventually
connect to J15, J16, and J17 on the SK68K board as shown in Fig. 3-1 (which
also shows the speaker wiring.) In each case, a resistor in series with the
LED (or speaker) limits the current through it, while the LED (or speaker)
is controlled by a section of U32, a 7406 open collector gate. (Note that U32c,
U32f, U32d, and U32b are all part of the same U32 IC; U32 has six such
inverters, and the other two are used elsewhere. The numbers on the

Fig. 3-1. LED and speaker circuit.
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outside of the triangle, next to the leads, are the pin numbers. The vertical
line inside the U32 symbol marks this as an open collector device, explained
shortly. Ignore the fact that U32f has a small circle, called a bubble, on its
input side instead of the output; this is just a different notation and will be
explained next time shortly. 

The LED at J15 lights whenever there is +5-volt power, while the LED
at J17 lights when the 68000 is halted, and the LED at J16 lights to indicate
hard disk use. 

3-2. Construction
Since many users of the SK68K do not have access to an oscilloscope or

even a logic probe, the wiring for the LED at J16 has been set up to allow
its use as a simple logic probe. Furthermore, during construction you will
not have the printed circuit board mounted in the cabinet, and so we want
to connect LEDs directly to the board for immediate use. (This is especially
important for the HALT LED, which will be very useful during checkout
of the board.)

We therefore wire the circuit a bit differently. Refer to Fig. 3-2, the parts
layout, and install the following parts:

R14, R15, and R16 330 ohm 1/4-watt resistors

R24 2200 ohm 1/4-watt resistor

C11 0.1 µF disk ceramic capacitor

14-pin socket for U32

R25 33 ohm 1/4-watt resistor

J18 4-pin header strip

Do not install U32 in its socket yet. (R25 and J18 are not needed yet, but
this is a convenient time to install them as the speaker wiring is so similar
to the LED wiring. But do not connect the speaker yet.) 

Then install the three LEDs at J15, J16, and J17. The negative lead of each
LED, usually marked by a small flat on the side, should go toward the
resistors. If at all possible, check each LED first, since many times LEDs
available on the open market are wired opposite to this convention.

Install each LED so it stands up straight, but the bottom of the LED is
about 1/2" above the board. (The reason: When we’re ready to mount the
board in the cabinet, we will cut off each LED lead just below the LED itself,
and use the stubs of the LED leads as connectors for the panel-mounted
LEDs.) 

3-3. Testing
Now connect the power supply to J10 and power up the board. The

POWER LED should light, though it may immediately go off again. If so,
don’t be alarmed - most PC-type power supplies shut themselves off if there
is not enough of a load on them, and a single LED is a very small load
indeed. Simply turn off the supply, temporarily connect the 150- or 330-ohm
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resistor between pins 7 and 14 of the U32 socket (don’t force the leads into
the socket) and try again. This should add just enough of a load to allow
the supply to turn on. 

If the LED does not light at all, even for an instant, then most likely either
the LED is in backward, R14 is the wrong value, or the power supply is

Fig 3-2. Printed circuit board layout.
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defective or not properly connected to J10A and J10B. Correct the problem
before continuing. 

NOTE:
During construction, we will often wire something, turn on the
power and try it out, turn off the power, wire some more, and so
on. It is absolutely essential that you turn off the power before
doing any wiring, soldering, or inserting ICs into sockets. Better
yet, turn off the supply and also unplug it. If you slip and forget to
turn off the power, you may well burn out part or all of the
components on the board, and perhaps even burn out a few of the
traces as well. 

So now turn off the power, connect a thin wire about 12-15" long to
terminal 1 of J14. Try to use a thin solid wire, about 30 gauge. If you use a
stranded wire, then twist the strands of the loose end and cover them with
a bit of solder so they stick together. Next, insert a 7406 IC into U32 (remove
the 150- or 330-ohm temporary resistor). Note that all ICs on the entire
board are oriented the same way - pin 1 (marked by a dimple or notch, both
on the IC and also on the silk screen layer on the board) goes toward the
back of the board. Then turn the power back on. 

The wire connected to J14-1 (which is shorthand for terminal 1 of J14) is
now a test probe, which we will call the LED probe. If you ground its loose
end (to pin 7 of IC32, for example) then the LED at J16 should go off; if you
connect it to a high voltage (pin 14 of IC32, for instance) then the LED
should go on. The J16 LED now makes a simple logic probe which can be
used to check out other parts of the computer. (If you have a meter,
oscilloscope, or real logic probe, then feel free to use it instead, but you may
still occasionally want to use this built-in probe instead.) 

When the LED probe wire is connected to a low or ground, the LED will
be dark; when connected to a high or +5 volts, it will be brightly lit. When
it is not connected to anything at all, then the LED will be on, for the simple
reason that TTL ICs see a disconnected input as if it were high. When
connected to a source of pulses, the LED will light, but its brightness will
depend on the type of pulses - a pulse signal which is high most of the time
will be brighter than one which is mostly low. If you connect the LED probe
to a pulse signal, the LED will usually dim slightly from its normal bright
light (because of the open circuit); this is an easy way to recognize a pulse
signal.
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Chapter 4

The Reset Circuit 

The 68000 microprocessor must be initialized when the system is first
turned on, or whenever it must be restarted from a major error. This process
is called resetting.

4-1. Discussion
Resetting is done by temporarily grounding two 68000 pins - the RESET

line and the HALT line. Remember - the “not bar" denotes that these signals
are active low. Hence grounding them, which forces them to a low, asserts
these two lines or turns them on. Asserting RESET and HALT together for
a minimum of 100 milliseconds resets the 68000 and gets it ready to run a
program. 

The 68000 should be automatically reset every time the power is turned
on, but it is also useful to have a button which can be pushed to force a reset
if the computer does something it is not supposed to do. Both of these
functions are done with the circuit of Fig. 4-1. 

The main IC in the circuit is U91, a 555 timer which is connected to a
timing circuit consisting of R23 and C63. When the computer is running,
C63 is charged through R23 to about +5 volts, and then the output on pin
3 of the timer is a low; this is inverted by the two U22 inverters to a high.
Actually, this description is not entirely correct. U22 is a 7406, which is an
open collector (or o.c.) hex inverting buffer. Open collector devices (marked
on diagrams by a vertical line inside the logic symbol) are missing the part
of the output circuit which can output a high; hence they can only output
a low or nothing. In this case, they output nothing - an open circuit. But
because of R20 and R21, two 2200-ohm resistors connected to +5 volts, the
RESET and HALT lines are pulled high by the resistors instead; that’s why
these resistors are called pullups. In general, if you ever see an open-collec-
tor device which does not have some sort of a pullup resistor connected to
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its output (the LED circuit in Fig. 3-1 was a pullup in a way) it usually means
somebody made a design error. 

Whenever a pushbutton connected to J23 is pressed, this applies a low
to pin 2, the trigger input of the timer, which causes the timer to ground pin
7, which discharges C63. (This also happens when power is first applied,
since C63 would normally start off discharged). The 555 timer sees this low
voltage on its pin 6, and therefore outputs a high on pin 3. This is inverted
to a low by U22, and asserts a low on RESET and HALT of the 68000,
resetting it. (The reset signal also goes elsewhere through U66e, but more
on that later.) 

As soon as the pushbutton is released (or the power supply voltage has
risen), C63 starts to charge through R23. When it reaches about 3.3 volts,
the 555 timer senses this rise and shuts off its output on pin 3; this removes
the low from RESET and HALT, and lets the 68000 begin operating. 

How long does it take for the voltage on C63 to reach 3.3 volts? About
one time constant, which is defined as the product of R23 and C63. Since
R23 is 1 megohm (1,000,000 ohms) and C63 is 1 µF (0.000001 farads), the
product is 1,000,000 x 0.000001 = 1 second. Thus the RESET and HALT
signals will go low for about 1 second at startup or whenever we push the
reset pushbutton. 

4-2. Construction
Install the parts listed below, but note that tantalum capacitor C63 is a

polarized capacitor; its positive terminal must go toward pin 6 of U91. Also,
the two-pin header strip for J23 has a short end and a long end; the short
end goes through the board and is soldered on the bottom, while the long
end sticks up. 

R22 and R23 1 megohm 1/4-watt resistors 

Fig. 4-1. The RESET circuit.
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R20 and R21 2200 ohm 1/4-watt resistors 

C57, C61, C62 and
C64

0.1 µF disc capacitors 

C63 1 µF 16-volt tantalum capacitor 

J23 a two-pin single header strip 

U91 555 timer and its socket 

U22 7406 open-collector buffer and its socket 

U66 74LS04 hex inverter and its socket

Two unmarked 0.1 µF capacitors to the left of U66. 

4-3. Testing
Turn on the power. The HALT LED should go on for about a second,

and then suddenly switch off. 
Now use the LED probe wire connected to J14 to check the signals at the

outputs of U22d, U22c, and U66e. Connect the probe to one of these, and
use a screwdriver or wire to short the two pins of J23; the test LED should
go off and then, a second or so later, back on, indicating that the signal went
low and then back high. 
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Chapter 5

The Master Clock Circuit

The “clock" circuit of a computer is actually not a clock in the traditional
sense (since there is a separate section called a “clock/calendar". Rather, it
is an oscillator which is more like a metronome or drill sergeant. It supplies
pulses which keep all the parts of the computer marching in step.

5-1. Discussion
Fig. 5-1 shows the diagram of the master clock for the entire computer.

U78 is a 16 MHz oscillator module containing a crystal oscillator and all the
logic circuitry to provide a square wave output at the right levels for TTL
logic circuitry. Its output goes to U77a, a 74ALS74 type-D flip-flop wired as
a divide by 2. Each time the CK (clock) input goes from a low to a high, the
flip-flop flips from one state to the other. Its output therefore goes through
a complete cycle once for every two input cycles, so its output is at 8 MHz,
exactly half of the 16 MHz input. This signal, called CLK8, is used in a
number of places throughout the computer. 

In addition, if J24 has a jumper from the center terminal to terminal 1
(which would be the normal situation), U77b also divides the 16 MHz by
two and provides an 8 MHz clock signal, called MPUCLK, to the 68000 and
elsewhere. 

To run the computer at 10 MHz, you would install another oscillator
module, running at 20 MHz, at U79 and place the J24 jumper in position 2.
CLK8 would still be at 8 MHz, but MPUCLK would now run at 10 MHz.
Two modules are necessary because CLK8 is used elsewhere in the com-
puter and must stay at 8 MHz even if the 68000 itself runs faster. 

Incidentally, the small triangle inside the clock inputs on U77 indicates
that these inputs respond to a change of voltage, also called an edge. Since
there is no bubble on the outside of this pin, the clock input responds when
the input goes high (i.e., a positive edge.) 
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5-2. Construction
Now mount the following components:

U78 16 MHz oscillator and its special socket. Note that
three corners are rounded; the pointed corner
identifies pin 1

U77 74ALS74 (ALS, not LS) and its socket 

J24 3-pin header 

C58, C59, C60 0.1 µF disc capacitors

a shorting jumper from the center pin to pin 1 of J24

Although U78 is installed in a socket, in most applications it would be
soldered directly to the board. Note that a special socket is needed since its
pins are round, whereas most IC pins are rectangular.

5-3. Testing
Next, power up the computer. If you have an oscilloscope or a logic

probe which can detect pulses, test the CLK8 and MPUCLK lines for the
required pulses (inexpensive oscilloscopes may have trouble displaying the
clock pulses, or may show them as a very distorted sine wave.) 

Testing is a bit tougher if you only have the LED probe connected to
J14-1; still, it can be done. First, note how bright the LED is when the probe
wire is not connected. Then connect it to CLK8 or MPUCLK; the LED
should be somewhat dimmer, indicating that the signal is high part of the

Fig. 5-1. Main clock circuit.
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time and low part of the time. Since the LED is flashing on and off so fast
you cannot see it, it appears somewhat dimmer than when on continuously.

Next, connect the probe wire to MPUCLK and note its brightness. Then
slip off the shorting jumper from J24-1 and note whether the LED gets
brighter or darker. Each time you do this, you stop U77b from flipping.
Sometimes it will stop in the set state, in which case the LED will be getting
a full high voltage and become brighter; other times it will stop in the reset
state, in which case the LED will go off. If all this is happening, then all is
well. 

The Master Clock Circuit 33



The Master Clock Circuit 34



Chapter 6

68000 Operation

We will do no construction in this chapter; instead, we will take a
detailed look at the individual pins of the 68000 and what they do.

6-1. 68000 Pinout
Fig. 6-1 shows some of the wiring to the 68000 microprocessor. Though

the 68000 is a 64-pin IC and its wiring looks complex, it is really quite
straightforward. Let’s go over it pin by pin first. 

On the right we see the data bus with its 16 lines labelled D0 through
D15, and the address bus with its 23 lines labelled A1 through A23. In case
you’ve noticed that one is missing, you’re right - there is no A0. Its function
is handled by LDS and UDS. 

Let’s look at the control lines on the left side more carefully; they are
labelled with arrows to indicate whether they are inputs or outputs or, in
some cases, both. 

At the top left are FC0, FC1, and FC2. These three active-high lines
output a Function Code which can be externally decoded to indicate what
the 68000 is doing internally; it also could be used to increase the 68000’s
memory up to 64 megabytes if necessary. 

E (an Enable clock), VMA (valid memory address), and VPA (valid
peripheral address) are useful if the 68000 is used with older I/O chips,
those originally intended for Motorola’s 6800 processor. VPA is also pro-
vides some interrupt information, and that is the only function the SK68K
system will use it for. 

IPL0, IPL1, and IPL2 are interrupt level inputs. We will discuss inter-
rupts later; now let us just say that outside events (such as a keyboard) can
interrupt whatever the 68000 is doing and cause it to respond. These three
inputs tell the 68000 whether an interrupt is being asked for, and what kind
of an interrupt it is. 
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The RESET and HALT inputs come from the 555 circuit in Fig. 4-1, but
these two pins are also outputs. That explains why an open-collector 7406
inverter was used to drive them; occasionally the 68000 may output a low
on one of these two lines, which would conflict with the normally-high
output of a standard inverter (such as a 7404) and cause excessive current
flow. 

BR, BG, and BGACK are used when DMA circuitry is used. If DMA were
used, the DMA controller circuit would send a Bus Request (BR) to the
68000, which would release the data and address busses and return a Bus
Granted (BG). The DMA controller would then send a Bus Grant Acknowl-
edge (BGACK) signal to confirm that it has control of the busses, and
temporarily take over the system while the 68000 sits back and waits. 

LDS and UDS replace address line A0 in an interesting way. Since the
68000 has a 16-bit data bus whereas memory is divided into 8-bit bytes, the
data bus can access two bytes at a time. The memory is wired so that half
of memory - all the odd-numbered locations - connects to the ’lower’ part
of the data bus (bits D0 through D7), while the other half of memory - all
the even-numbered locations - connects to the ’upper’ part of the data bus
(bits D8 through D15). The 68000 asserts LDS (lower data strobe) when it
wants to use the lower half of the data bus, asserts UDS (upper data strobe)
if it wants to use the upper half of the data bus, or asserts both if it wants
to transfer 16 bits on the entire data bus. Thus an odd address turns on LDS
while an even address turns on UDS; this is similar to the function of A0,
since A0 is 0 for an even address and 1 for an odd address. 

AS is an address strobe which is generally asserted by the 68000 at the
same time as either LDS or UDS, and simply tells external circuitry (mainly
address decoders) that there is a valid address on the address bus. This is
important, since the address bus often carries data which is not meaningful;
there has to be a way to prevent address decoders from responding to it in
error. 

Fig. 6-1. 68000 microprocessor pinout.
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Winding down the home stretch, we get to R/W which stands for
Read/not Write. This is a signal used by the 68000 to tell other circuitry
whether it wants to read data in (when R/W is high) or write data out (when
R/W is low). Thus R/W would be high when data goes from the RAM or
ROM to the 68000, whereas it would be low when data goes from the 68000
to RAM. 

BERR is an input to the 68000, used by external circuitry to tell the 68000
that something has gone wrong on one of the busses. We will see how this
is done later. 

Finally, DTACK stands for Data Transfer Acknowledge. Whenever the
68000 wants to read or write to memory or an I/O device, it (a) puts the
address on the address bus, (b) puts a high or low on R/W, (c) outputs the
address strobe and LDS and/or UDS, and then sits back and waits. It waits
until it either gets back DTACK, indicating that the transfer is finished, or
BERR, indicating that something went wrong. When DTACK is received,
then the 68000 goes on to the next step. 

If DTACK were grounded, the 68000 would always assume that the
transfer was finished really fast, and would zip along at maximum speed.
In most cases, though, DTACK comes from an external timer circuit of some
kind which gives memory and I/O just enough time to finish their job. If a
certain memory or I/O device is particularly slow, DTACK can be delayed
so the 68000 waits for it to finish. 

In practice, each 68000 memory or I/O access takes a certain minimum
amount of time, measured in cycles of the MPUCLK signal. If DTACK is
delayed, even just an instant, the 68000 lets an entire extra clock cycle slip
by and checks again. If DTACK is still off, then the 68000 waits another clock
cycle, and so on. Each of these extra clock cycles is called a wait state. The
ideal case would be to have everything fast enough so that the 68000 can
go right on without wait states; some computers have slower memory or
I/O and run with one or even more wait states, which obviously slows
everything down. (You’ll be happy to know that the SK68K runs with no
wait states.) 

6-2. 68000 TIMING
Note: the rest of this chapter provides more detailed information about the 68000

than you really need to understand its operation at this point. Although we present
it here for completeness, we suggest that you skip ahead to the next chapter, and
return here to read the rest of this material after you have finished with the rest of
this volume.

As described in Chapter 5, the master 68000 clock is called MPUCLK.
In a basic SK68K system, this clock could be as slow as 8 MHz or as fast as
12.5 MHz. It is this clock which governs how fast the 68000 performs its
operations.
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Slightly idealized, MPUCLK looks like this:

Let us assume that MPUCLK runs at 8 MHz. In the simplest case, four
complete cycles of the clock constitute a Bus Cycle as shown in the figure.
At an 8 MHz frequency, one clock cycle is equal to 

1

8 × 106 second,

 or 125 nanoseconds (ns). Thus a bus cycle is four times that - 500 ns or 1/2
microsecond (µs). (As we will see in a moment, a bus cycle could be longer
- this computed time is the minimum.) 

The bus cycle is called that because it represents the time required for
one complete bus operation. In other words, a read from memory (which
involves a bus operation), or a write to memory (which also involves a
complete bus operation), requires one bus cycle.

The reason why the clock must run four times faster than a bus cycle is
that the 68000 uses MPUCLK edges to time its own internal operations. The
above figure shows the four clock cycles divided into eight half-cycles, each
one of which has an edge. These half-cycles are called states, and are
numbered S0 (meaning state 0) through S7. Each of these states begins with
a clock edge - for example, state S0 begins with a rising edge, S1 begins with
a falling edge, S2 again with a rising edge, and so on. These eight edges
provide eight different times during a bus cycle at which the 68000 can
trigger flip-flops or perform various other operations. For example, if the
rising edge at the beginning of S0 causes something to happen, we will say
that it happens at the beginning of state 0 or perhaps that it occurs during state
0. 

With this in mind, let us look at Fig. 6-2. Here we see the MPUCLK in
relation to a bus cycle. Note that this bus cycle is preceded and followed by
other bus cycles. Thus there was probably a state 7 just before state 0, and
there will be another state 0 just after state 7 of the current bus cycle. The
thing to remember is that the 68000 clock never stops - in normal operation,
the 68000 just keeps running one bus cycle after another.

Before continuing, let us explain some of the symbols used in Fig. 6-2.
The waveform labelled “DATA BUS", for example, looks like this:

Keeping in mind that the data bus consists of 16 lines, it is obviously not
practical to show the signal on each and every one of those lines. Instead,
we attempt to show all twelve signals on one waveform without being
specific as to which lines are high and which are low. The waveform shown
starts off with a thin line at the left, which then opens up to one curve which
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goes up to a high, and another which goes down to a low. The intent is to
represent that “some data bus lines - we will not specify which - are high,
and others are low." 

The single line at the left and right, which is shown halfway between a
high and a low, clearly cannot represent an actual signal; instead, it is
supposed to simply tell us that there may be some data on the bus at that
time, but we don’t care what it is. In a sense, we may think of it as useless
garbage or, as some Motorola literature refers to it, irrelevant data..

Looking at Fig. 6-2, then, we see that the data bus has irrelevant garbage
data for roughly the first half of the bus cycle, some real data for the second
half of the cycle, and then goes back to irrelevant data after the bus cycle
ends.

We see a similar situation on the address bus, except that here the
irrelevant data exists for only a short time near the beginning of the cycle.
On the FC0 through FC2 lines, on the other hand, the data changes very
quickly from one set of valid data to another, just after the beginning and
end of the bus cycle. 

With that background, let us see what happens when the 68000 wishes
to do a read from memory. To do so, it performs a read bus cycle, which is
shown in Fig. 6-2. The 68000 then does the following: 

Start of S0: a. Remove whatever address was on the address bus from
the previous bus cycle,

b. Make R/W high to indicate it wants to read,

c. Place the new function code on pins FC0 through FC2. 

Start of S1: Place on the address bus the address of the location it wants
to read from. 

Start of S2: a. Assert the address strobe AS

Fig. 6-2. Normal read cycle timing
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b. Assert UDS and/or LDS. It asserts UDS for a byte read
from an even address, LDS for a byte read from an odd
address, or both strobes for a 16-bit read from a pair of
addresses, one even and the other odd. 

The 68000 now waits. The address decoder, which receives AS, UDS,
LDS, and the address on the address bus, sends an appropriate enable
signal to the ROM, RAM, or I/O interface (depending on the address). This
device is now supposed to do a read and send the desired data to the data
bus. At about the same time, it is supposed to assert DTACK to tell the 68000
that the data is available. In order to continue as shown, the 68000 needs
DTACK before the end of state 4, while the data itself must be on the data
bus before the end of state 7. If all this happens on time, then the 68000
proceeds as follows: 

Start of S7: a. The data on the data bus is latched inside the 68000,

b. AS, and UDS and/or LDS are negated (they go back
high).

Once AS, and UDS and/or LDS go off, the memory or I/O device is
supposed to turn off DTACK and also remove the data from the bus. This
completes the bus cycle, at the end of which the 68000 removes the FC0
through FC2 signals and removes the address from the address bus, in
preparation for the next cycle. 

As mentioned above, DTACK is supposed to arrive before the end of
state 4. What happens if DTACK is delayed (by slow memory, for example)?
Fig. 6-3 shows what happens. 

If DTACK arrives too late, instead of going from state 4 into state 5, the
68000 pauses and waits for DTACK. Since the MPUCLK is still running,

Fig. 6-3. Extended read cycle timing.
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extra clock cycles are now inserted between state 4 and state 5; once DTACK
arrives, the 68000 will begin state 5 at the next falling edge. Since each clock
cycle is two states, this means that even numbers of states (called wait states)
are inserted into the bus cycle. Fig. 6-3 shows DRAM arriving so late that
four wait states (labelled W) are inserted between S4 and S5. 

In the actual SK68K computer, the DRAM is fast enough that DTACK
comes in time; the ROM and static RAM are slower, on the other hand, and
so they operate with two wait states. The largest number of wait states
occurs with some types of XT-compatible cards plugged into the expansion
connectors; some of the video boards are slow enough that they may insert
hundreds of wait states.

This type of operation, where the 68000 waits for memory or I/O devices
to finish their operation, is called asynchronous. While the term “asynchro-
nous" implies “not synchronized", we see that signals really are very
carefully synchronized with MPUCLK after all, so the term may not be
entirely accurate. But it does help us differentiate from synchronous opera-
tion, which is used in almost all earlier microprocessors. In these processors,
every bus cycle is exactly the same length. In a synchronous system, the
cycle length must be adjusted to allow the microprocessor to keep up with
the slowest memory or I/O device, which prevents us from taking advan-
tage of faster speeds possible in some parts of the system. The asynchronous
operation of the 68000, on the other hand, allows the system to run at the
maximum speed possible at any given time. (For use with older-design I/O
interfaces, the 68000 can also run in a synchronous mode. This mode is not,
however, used in the SK68K.)

Fig. 6-4 shows bus operation during a write to memory or I/O. The
waveforms are very similar to those of a read cycle, except for three
differences:

1. R/W now goes low during the cycle, to tell memory or I/O devices that
a write is occurring instead of a read. 

Fig. 6-4. Normal write cycle timing.
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2. UDS and LDS are delayed, so they do not start until S4. 
3. Data on the data bus now comes from the 68000, instead of coming from

memory or an I/O interface. It appears on the data bus at the beginning
of S3, and should be latched off the bus by the destination device at the
end of LDS or UDS.

So far, we have described the read and write bus cycles separately. As
we have seen, the minimum such cycles are 4 clock periods or 8 cycles,
although they can be stretched longer by wait cycles. In most cases, as the
computer runs it will have many more read cycles than write cycles, but
these cycles will continuously follow each other unless the computer is
somehow halted.

There is one particular instruction, though, that has a minimum bus
cycle of 20 states, shown in Fig. 6-5. This is the TAS or “Test and Set"
instruction, which is generally used only when the 68000 is being used for
multi-tasking. In these applications, the operating system software gener-
ally uses a software flag (a bit in memory) to indicate whether the system
is free to start another program, or whether it is busy. If the operating system
software wants to run a particular program, it first checks this flag to see
whether the system is busy. If not, then it sets the flag (to indicate that the
system is now busy) and then starts the desired program. It is important to
be able to test the flag and then immediately set it in the same instruction,
because this prevents two processes testing the flag at almost the same time,
and both starting up under the impression that the system is free.

The TAS instruction therefore contains a 20-state bus cycle which con-
sists of reading the flag from memory into the 68000, four states during
which the 68000 can modify the data just read, and then another set of states
to write the new flag data back into memory. Whether you think of this
read-modify-write operation as one big cycle, or as two smaller cycles sepa-

Fig. 6-5. Read-modify-write cycle timing.
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rated by a modify, the fact is that they cannot be separated. The TAS
instruction is used very seldom; in fact, the circuitry of the SK68K computer
does not support it.

We have omitted specific details of bus timing in the foregoing descrip-
tion, giving only a rough idea of the sequence in which things happen.
These specific timing details can be found in the Motorola 68000 data book.
Instead, we will discuss some more general principles of bus operation.

6-3. The Function Code Outputs
As Figs. 6-2 through 6-5 show, the FC0 through FC2 outputs from the

68000 provide a three-bit output during the entire bus cycle (except for a
slight delay right at the beginning of S0). The following table shows the
meaning of these three bits.

FC2 FC1 FC0 Meaning 

0 0 0 Not used

0 0 1 User data

0 1 0 User program

0 1 1 Not used

1 0 0 Not used

1 0 1 Supervisor data

1 1 0 Supervisor program

1 1 1 Interrupt Acknowledge

These outputs can therefore inform external circuitry what is happening
inside the 68000. They could, for example, be used to switch in different
banks of memory, so that programs and data could be stored in different
memory. 

6-4. Interrupt Operation
As shown in the above table, when all three FC outputs are a 1, the 68000

is signalling an Interrupt Acknowledge. As shown in Fig. 6-6, this is used
to generate the VPA signal which tells the 68000 how to process an interrupt
request. 

The interrupt system in a computer is used to allow external devices,
such as I/O interfaces, to interrupt a running program. While the program
is interrupted, the microprocessor can execute a different program called
an interrupt service routine (ISR), which can in some way service the I/O
device. When the ISR is finished, the interrupted program continues from
the point where it was stopped as though nothing had happened.

The interrupt system in a 68000 is quite extensive. In addition to being
caused by external hardware, 68000 interrupts can also be caused by
so-called trap instructions, and by certain kinds of programming errors
(such as using invalid operation codes or trying to divide by zero.) These
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interrupt sources fall into the category of software, and so we will not look
at them further at this time. But we will look at hardware interrupts.

Fig. 6-6 shows the circuitry involved (we will not actually install it until
the next chapter). In normal operation, the seven IRQn inputs into U89 are
all pulled high by the seven 10K resistors, and thus U89 outputs three high
levels to the IPL inputs of the 68000. The 68000 ignores this condition and
executes its normal program. 

But suppose that a character has been received by the DUART, and the
DUART tries to signal the 68000 to accept that character. Assuming that the
DUART has been properly programmed to do this, it will output a low
signal on the IRQ5 input to U89.

U89 is a priority encoder. If it receives a low on one of its inputs, U89
outputs the number of that input on its A2 - A0 outputs. For example, when
IRQ5 is low, it outputs the number 101, a binary 5. This number is called
the interrupt level. (Noting that the A outputs as well as the IPL inputs are
active low, the 101 bit pattern is actually represented as low-high-low.) The
word priority in the name of U89 becomes important here - it means that if
several of U89’s inputs are low, U89 outputs the number of the highest low
input. For example, if IRQ6, IRQ5, and IRQ2 are all low, then U89 would
output the number 6. 

When the 68000 receives the number 101, it checks its status register to
see whether such an interrupt is currently allowed. If not, then the 101 is
temporarily ignored. If it is allowed, then the 68000 completes the current
instruction and then begins exception processing.

Fig. 6-6. 68000 Interrupt circuitry.
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Exception Processing is the generalized name for processing an inter-
rupt on the 68000 (either hardware or software). The 68000 begins by
stopping the current program, switching to supervisor mode (if not already
in it), and then outputting a 111 on the FC outputs to acknowledge the
interrupt. At this point, it needs to know where to find the ISR which is
supposed to process the interrupt. 

There is room in low memory, between locations $0 and $3FF, for up to
256 exception vectors, which are pointers to interrupt service routines. These
vectors would normally be placed there by some program, though they
could also be in ROM. When the 68000 outputs the 111 on the FC outputs,
it also outputs the number of the interrupt on the A2 - A0 address lines. One
of two things can now happen in a typical system: 

1. The interrupting device can tell the 68000 which vector to use to find the
ISR. It would do this by placing a high on the VPA line, and putting the
vector number (an eight-bit number between 0 and 255) on data bus
lines D7 through D0.

or

2. External circuitry can place a low on the VPA line, in which case the 68000
will automatically choose one of seven vectors, depending on the inter-
rupt level. Since the 68000 chooses its own interrupt vector, this is called
auto-vectoring.

As shown in Fig. 6-6, U37b automatically sends a low to the VPA pin of
the 68000 as soon as it receives three highs on the FC lines, and so the SK68K
uses auto-vectoring to choose a hardware interrupt vector. 
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Chapter 7

68000 Operation In An Open Loop

Now that we have functioning clock and reset circuits, and are familiar
with some of the pins on the 68000, it is time to get it to do something.
Normally, you need quite a bit of external hardware to get any micropro-
cessor running, but there is a way of fooling the 68000 into thinking there
is an entire computer connected even though there is almost nothing there.

7-1. Discussion
Fig. 7-1 shows how we are going to get the 68000 to work with the

minimum of external hardware.
In order to minimize the amount of extra wiring we have to do, we will

take advantage of circuitry already on the printed circuit board which will
be needed later anyway. For example, the RESET, HALT, and CLK signals
are already connected on the printed circuit board, and we don’t need to
do anything to them at all. 

U37b is a NAND gate which generates a low VPA when FC0, FC1, and
FC2 are all high, but keeps VPA high at all other times. As explained in
Chapter 6, it is used during interrupt processing to tell the 68000 to use
auto-vectoring; for now, it will simply keep VPA high. 

U89 is the priority encoder IC, also used only during interrupts. For now,
however, the seven resistors in R19 are keeping all of the IRQ lines high;
since they are active low, this negates them. U89 therefore sees no interrupt
request, and so it sends the number 000 to the 68000, telling it there are no
interrupt requests. We could have achieved the same thing by grounding
the three IPL pins of the 68000 and connecting VPA high, but we can save
ourselves that job by installing R19, U89, and U37, which we would have
had to do eventually anyway. 

Two of the 68000’s inputs are already connected to a high to negate BR
and BGACK, and several pins (including the entire address bus) are la-

68000 Operation In An Open Loop 47



belled NC to show that they do not, as yet, go anywhere. We need do
nothing with these as yet. 

That leaves the three sets of connections shown in heavy black on Fig.
7-1. First, BERR must be held high (negated) so the 68000 doesn’t think a
bus error has occurred; this is easily done by installing a short jumper
between pins 14 and 22 of the 68000, since pin 14 is at +5 volts. 

Although DTACK will normally carry a meaningful signal, for now we
want to ground it to make the 68000 think that all is well on the outside.
But since inverter U66 was already previously installed, we instead connect
U66a input to +5 volts with a jumper from U66 pin 1 to pin 14. 

Finally, when the 68000 is running, it wants to keep fetching instructions
and addresses out of memory; we have to provide it with some meaningful
data so it can keep going. We do so by grounding all 16 lines of the data
bus. In this way, every time the 68000 tries to read anything out of memory,
it will get back the number 0000. As it turns out, there is a a valid 68000
machine language instruction which says “OR a 0 to register D0", abbrevi-
ated OR.B #0,D0, which consists of four bytes of 00. 

Though this OR instruction does absolutely nothing, the 68000 thinks
all 16 megabytes of its memory are full of nothing but 4 million OR
instructions, and so it starts doing them one after another. When it gets to

Fig. 7-1. Test circuit for the 68000.
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the top of memory at $FFFFFF, it simply starts all over again from $000000.

7-2. Construction
Now let’s wire up the required components and see what happens.

Install the following: 

64 pin socket for U47 (but don’t plug in the 68000 yet)

U37 74LS10 triple 3-input NAND, and its socket 

U89 74LS148 priority encoder, and its socket 

R19 10K single-in-line package. Its pin 1, identified by a
white line, points toward J25 

C14 and C48 0.1 µF disc capacitors

A short wire jumper from U47-14 to U47-22 to negate
BERR.

A short wire jumper from U66-1 to U66-14 to assert
DTACK. Both of these jumpers will be removed later,
so do it neatly and in a way which is easily
unsoldered later. 

Grounding the entire data bus can be messy, so we will do it another
way. The data bus is connected to the two EPROM sockets (U20 and U27)
and the two static RAM sockets (U21 and U28) as shown in Fig. 7-2. Start
by installing a 28-pin socket at U27 and a 24-pin socket at U21. 

Fig. 7-2. EPROM and SRAM data bus wiring.
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On U27, data bus bits D0 through D7 go to pins 11-13 and pins 15-19,
while pin 14 (not shown) is conveniently grounded. Thus we need to short
together pins 11 through 19. In the same way, on U21, data bus bits D8
through D15 go to pins 9-11 and pins 13-17, while pin 12 (not shown) is
conveniently grounded. Thus we need to short together pins 9 through 17.
On both ICs, these are the bottom four pins on the left and the bottom five
pins on the right. Instead of soldering, we take a strip of Molex Soldercon
pins and insert them into the sockets as shown in Fig. 7-3, with four pins
on the left, five pins on the right, and a section of six or so pins bent in a U
shape down below. These Molex pins are normally sold as an inexpensive
substitute for sockets; they consist of individual clips joined by a perforated
carrier strip which would normally be broken off after soldering. In our
case, we insert the thin pins (which would normally be soldered to a board)
into the socket, and use the entire strip as one big short circuit. 

7-3. Testing
Finally, plug in the 68000 (be careful not to bend pins) and turn on the

power. Connect your LED probe to pin 52 of the 68000, which is address
line A23; if all is well, the LED will light for about 2 seconds, go off for about
2 seconds, and so on. It may operate faster if your SK68K clock is faster than
8 MHz. 

If the LED does not flash at the 2 seconds on, 2 seconds off rate, recheck
the signal at every pin of the 68000. Look especially for the low on DTACK,
lows on all data lines, a high on BERR, HALT, and RESET, and the clock
signal (LED slightly less than full brightness) on CLK. 

Fig. 7-3. Grounding the data bus with Molex pins.
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If the LED flashes as expected, all is probably well. What’s happening
is that the 68000 is racing through memory (or what it thinks is memory, all
16 megabytes worth), executing OR instructions at its maximum speed, one
instruction every microsecond. One complete run through 4 million in-
structions (4,194,304 instructions, to be exact, one quarter of 16 megabytes
or 16,777,216) therefore takes a bit over 4 seconds. 

During that time, the address bus is counting off the addresses where
the 68000 thinks those instructions are coming from. If you look at some
small binary numbers such as 000, 001, 010, 011, 100, 101, 110, 111 etc., you
see that the right-most bit alternates 0, 1, 0, 1, 0, 1, .... The second bit also
alternates, but slower: 0, 0, 1, 1, 0, 0, ...; the third bit is slower still: 0, 0, 0, 0,
1, 1, 1, 1, ..., and so on. Exactly the same thing occurs on the address bus:
A1 alternates back and forth very rapidly, A2 goes half as fast as A1, A3 is
half as fast as A2, and so on, all the way up to A23 which alternates from 0
to 1 and back to 0 once every four seconds. 

Fig. 7-4 shows some of the waveforms on the upper bits of the address
bus. When the LED probe is connected to A23, it flashes on and off once
every four seconds. If it is connected to A22, it repeats once every two
seconds; on A21 it repeats once per second. As we go down to A20, A19,
and so on, it flashes faster and faster, until at A16 (pin 44) it flashes so fast
(about 32 times per second) that we can barely see it flicker; A15, flashing
about 64 times per second, looks absolutely steady (though not at full
brightness).

As a final check, if you have access to an oscilloscope or frequency
counter, check each address line to make sure that its frequency is half that
of its higher neighbor. This makes sure that there are no accidental shorts
between adjacent lines of the address bus. (If using a frequency counter,
keep in mind that the actual waveforms are not nearly as precise as the
idealized ones of Fig. 7-4; some counters may have difficulty properly
counting the frequency of such a square wave.) 

Fig. 7-4. Address bus waveforms during testing.
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Chapter 8

The MAP Circuit

In the preceding chapter, we described the connections to the 68000
microprocessor and actually got it to the point where it ran. It is now time
to add some of the circuits which make it into a working system. 

8-1. Discussion
(Let us begin with a short Detour): We have by now learned that signals

could be either active high or active low, and that the name of a signal was
often a dead giveaway if it was “notted"; that is, if it had the “not bar" over
it. A signal like DTACK was therefore active low because of being notted,
whereas FC0 was active high because it did not have a not bar. 

Another way to mark a signal in a diagram is by using a bubble, which
is simply a small circle at the end of a wire. Many engineers and technicians
tend to get a bit careless with bubbles so they can’t always be trusted, but
when properly used they can be very helpful. Look at Fig. 8-1 for an
example; this is just a repeat of part of the HALT LED circuitry discussed
in Chapter 3. The signal arriving from the left is HALT; it has a not bar over
the name (we say it is notted) to indicate that this signal is low when
asserted. In other words, this signal goes low when the 68000 is halted. This
is also shown by the bubble at pin 13, the input side of inverter U32f. The
output on pin 12, as well as the input into pin 9, has no such bubble and so

Fig. 8-1. The HALT LED circuit.
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we know that this wire is high when the 68000 is halted. Pin 8, the output
of U32d, on the other hand, has a bubble again, so we again see that this
point is low during a halt. Put another way, pins 13 and 8 are active low,
whereas pins 12 and 9 are active high. Here is a prime example where active
low and active high circuits are separated by just a tenth of an inch. 

It’s important to understand that U32f and U32d are really the same type
of device even though their symbols are different. They are both part of
U32, a 7406 IC, and are both exactly the same. The fact that one has a bubble
on the input whereas the other has it on the output is just a convenient way
of drawing the same physical circuit. It is drawn that way to explain what
is happening in this particular circuit.

Fig. 8-2 shows some more examples of this. The left diagram at (a) is
normally called an AND gate; described in words, its job is to “make the
output high if input A is high AND input B is high." Thus if both inputs are
high, then the output is high. But there is another way of looking at it: if
either input is low, then the output is low. Thus we could say “make the
output low if A is low OR B is low." That sounds more like an OR gate which
works with lows. In a way, the right diagram at (b) is supposed to tell us
just that - think of each bubble as being the word ’low’. 

Hence if you have two active high circuits and want to AND them to
assert an active high output if both inputs are asserted (which means high),
then you use the AND gate symbol at the left. But if you have two active
low circuits and want to assert an active low output when either input is
asserted (which, in this case, means low), then you use the strange-looking
OR symbol at the right. 

Fig. 8-2. Logic gate equivalents.
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It’s important to understand that both symbols in Fig. 8-2 (a) are really
the same device - they are just different on paper because they stress a
different function. A designer might use either symbol for the same device,
depending on what that particular circuit is supposed to do. An IC manual,
for example, describes a 7408 as a “quadruple 2-input positive-AND gate".
This means the 7408 has four 2-input gates which act as “positive-AND".
Remembering that ’positive logic’ is just another phrase for ’active high’,
this says that the 7408 is used for ANDing in an active high circuit. But the
7408 could just as well be called a “negative OR" (though most IC manuals
assume the reader already knows that and hence don’t bother to use those
words.) 

In the same way, Fig. 8-2 (b) shows a “positive-OR" at the left, and a
“negative AND" at the right. In reality, both of these could be used for the
same 7432 IC. The left circuit says that “if A is high OR B is high, then the
output is high", whereas the right circuit says that “if A is low AND B is
low, then the output is low." Both of these sentences say the same thing. 

If you think of the bubble as being the word “low", whereas the lack of
a bubble means “high", then the left circuit in Fig. 8-2 (c) means "if A is high
AND B is high, then the output is low", whereas the right circuit says "if A
is low OR B is low, then the output is high." In reality, this is again saying
the same thing. Both of these symbols could apply to the same 7400 NAND
gate even though the right symbol is really doing an ORing function - if
you assume that the inputs are active low, then if either input is asserted
low, the output is asserted high. 

Likewise, the left circuit in Fig. 8-2 (d) means "if A is high OR B is high,
then the output is low", whereas the right circuit says "if A is low AND B is
low, then the output is high." Again, this is really saying the same thing.
Both of these circuits could apply to the same 7402 NOR gate. 

All of this may sound strange to you, but as we go on, you will see that
these new symbols greatly help to explain how some parts of the SK68K
computer work. 

(End of Detour, and back to the MAP circuit.)
When the 68000 first starts operating after it is turned on, it has to know

(a) where to place its stack, and (b) where to find the very first instruction
to perform. It looks for these two addresses in the first eight bytes of
memory, starting at address 0. 

In most 68000 computers, however, address 0 is the beginning of RAM;
moreover, the RAM is empty when the computer is first turned on. How
do these two addresses get there then? The solution is usually to doctor up
the address decoder so that at the very beginning it is the ROM, not the
RAM, that is at location 0. The ROM is there just long enough for the 68000
to get its two addresses, after which the address decoder removes the ROM
and replaces it with RAM. Such a ROM is sometimes called a phantom. The
MAP circuit of Fig. 8-3 tells the address decoder when to switch in RAM or
ROM at address 0. 

U90 is an eight-stage shift register - a group of eight flip-flops connected
so an input applied to the A and B pins shifts through the register, one flip-
flop at a time, as it receives clock pulses. When the computer first starts, or
each time it is reset, all the flip-flops in the register are cleared by the
RESETsignal. The QD output, which is normally jumpered out through J25,
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then provides a low MAP signal which tells the address decoder to put the
ROM at address 0. (In normal operation, there would be a jumper from the
center pin of J25 to pin 1.) 

When the 68000 starts, it fetches the stack address and program start
address from ROM in four 16-bit reads; each one of these reads is accom-
panied by an  AS address strobe. At the same time, the positive edge (i.e.,
the trailing edge) of each AS strobe clocks U90. Since the A and B shift
register inputs are connected to a high (+5 volts), each clock pulse shifts a
high into the register. After the first clock pulse, that high gets to QA; after
the second pulse it gets to QB, and so on. After exactly four AS strobes, that
high gets to QD, out the MAPlead to the address decoder, and tells the
decoder to disconnect the ROM from address 0 and substitute RAM instead
of ROM. 

In normal operation, therefore, when the computer first starts, the MAP
signal is low and therefore the 68000 sees ROM at address 0. After four AS
pulses - exactly long enough for the 68000 to read eight bytes of data from
the ROM - MAP goes high and address 0 becomes RAM instead of ROM. 

In the SK68K, however, the RAM used at address 0 is dynamic RAM. If
we want to use the computer without the DRAM, then we must disable the
MAP circuit and keep ROM at address 0. This can be done by jumpering
the center pin of J25 to position 2, which keeps MAP low at all times.

8-2. Construction
Reminder:

There should still be two jumpers on your board, left over from
Chapter 7: one connecting U47 pins 14 and 22 to negate the 68000’s
BERR, signal, and one connecting U66 pins 1 and 14 to assert the
68000’s DTACK signal. You should also still have the two sets of
Molex pins plugged into the U21 and U27 sockets to provide zeroes
on the data bus. Leave these until we tell you to remove them.

Now install the following:

U90 74LS164 and its socket 

Fig. 8-3. Circuit to generate MAP signal.
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J25 three-pin header. Place a shorting plug from the
center pin to position 1. 

U66 is already installed from a previous step.

8-3. Testing
Turn on the power and verify that the MAP signal on the center pin of

J25 goes low while you short the reset pins (J23), and goes high about a
second later, at the same time as the HALT LED goes off. (Unless you have
a good quality oscilloscope, it is very difficult to verify that exactly four AS
pulses go by before MAP becomes high, so we will have to take it on faith.)
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Chapter 9

The Bus Error Circuit

The Bus Error circuit is somewhat unique to the 68000. It acts much like
automobile insurance - It is there in case of problem, but hopefully you will
not need it.

9-1. Discussion
Each time the 68000 wants to access memory or I/O, it sends out the

address, LDS and/or UDS, R/W, and AS. Then it sits back and waits for
the external circuitry to respond. If all goes well, the external circuits are
supposed to return a low on DTACK (data transfer acknowledge); if some-
thing goes wrong, they are supposed to return a low on BERR (bus error).

The DTACK signal is supposed to tell the 68000 how fast it can go; slow
memory or I/O tells the 68000 to slow down and insert wait states. But
suppose the 68000 program accidentally calls some address at which there
is no memory or I/O - what then? Since there is nothing to generate a
DTACK signal, the 68000 might sit there forever, waiting. That’s where the
bus error circuit comes in - its job is to detect the lack of DTACK after some
time and generate BERR, which then sends the 68000 into an error recovery
procedure. 

When we first powered up the 68000 in Chapter 7, we forced DTACK
to be low and forced BERR to be high. This forced the processor to go at its
maximum speed, and made sure that a bus error would never occur. Since
we are still providing a fake DTACK, the 68000 will go ahead even though
there is no memory in the system yet, so we might as well put in the correct
BERR circuit at this time. 

Though the circuit in Fig. 9-1 looks complex, actually it consists of just
two parts - U65, a 74LS390 dual decade counter, and U76, a 74LS175 quad
D flip-flop. 
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U65 consists of two decade counters, each of which is wired to divide
its input signal by 10. U65a divides the 8 MHz CLK8 signal down to 80 kHz,
and U65B further divides that down to 80 kHz. The four flip-flops of U76
are wired as a four-stage shift register clocked by 80 kHz signal from U65b.

The input data comes from the AS address strobe, which is also con-
nected to the clear pin. Before the 68000 starts a memory or I/O access, AS
is negated (high), which puts a low on the CLR input and clears all four
flip-flops. This makes sure to send a high out the last flip-flop to BERR at
the beginning of a memory or I/O access and between accesses. 

Once the 68000 starts a memory or I/O access, it asserts AS. Since AS is
inverted to AS by U66f, this removes the low on the clear pin, and also sends
a high to the D input of the first flip-flop. Each time an 80 kHz clock pulse
arrives, this high is shifted one flip-flop right in the register. If the AS signal
lasts long enough for four pulses of the 80 kHz clock (about 50 microsec-
onds), then the last flip-flop will set and BERR will go low to tell the 68000
that too much time has passed since the memory or I/O access started. 

9-2. Construction
Building the circuit is easy - remove the jumper between U47 pins 14

and 22 (which kept BERR negated) and then install

U65 74LS390 dual decade counter and its socket

Fig. 9-1. Circuit to generate BERR.
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U76 74LS175 quad D flip-flop and its socket.

(U66f has been installed previously.)

9-2a. Additional Construction Step
If you have a very early SK68K printed circuit board, then your circuit

board contains an error, for which we apologize. On your board, the clock
input to pin 9 of U76 (shown in Fig. 9-1) goes to the E output from the 68000,
instead of going to U65 as shown in the diagram. This earlier connection
works well with older XT-compatible boards, but does not work with some
of the newer video boards. 

To make the change, please cut the trace from U76-9 to U47-20, and
install a jumper from U76-9 to U65-10.

9-3. Testing
Using the LED probe, look at pins 4 and 9 of U76. Since AS and the 80

kHz clock pulses are both pulses, the LED will glow but only dimly. Then
look at pin 2, the Q output of the first flip-flop. Since AS and the 80 kHz
signal are not in any particular phase relationship - one is at 1 MHz while
the other runs at 80 kHz - the first flip-flop will trigger once every few AS
cycles, but never stay on very long. Thus the flip-flop is mostly off, and the
LED should be quite dim. In normal operation, the other flip- flops never
get a chance to set, and so the LED should stay dark when testing any of
the other Q outputs. BERR, of course, is a high all the time, so the LED
should be bright when testing pin 14.

The Bus Error Circuit 61



 

The Bus Error Circuit 62



Chapter 10

The Address Decoder

The address decoder’s job is to continuously monitor the high order bits
of the address bus, and signal the ROM, RAM, and I/O interfaces whenever
an address comes along which is intended for them. As such, it has an
extremely important function in keeping the computer operating properly.

10-1. Discussion
The SK68K computer has a single address decoder circuit, but it consists

of three ICs. Let’s look at Fig. 10-1 to understand how it works. 
The heart of the decoder is U63, a 16L8 PAL or Programmable Array

Logic element. A PAL is somewhat like a fast ROM - it has a number of input
lines and output lines; when a combination of ones and zeroes is presented
on the input lines, the PAL looks up in its internal memory what to send
out on the output lines. But there are several significant differences between
a ROM and a PAL - the ROM is more complex because it has a larger number
of possible output combinations; being simpler, the PAL can be made faster.
The ROM is meant to store numbers; the PAL is meant to replace logic ICs.
In this case, the PAL replaces almost a dozen gates and inverters at a saving
of space and money. 

The PAL uses its inputs like this:

1. If AS is negated (high), the PAL does nothing; it needs a low AS to ensure
that a valid address exists. 

2. If address lines A20-A23 are low, representing addresses starting with the
binary bits 0000 (i.e., hex addresses from $000000 through $0FFFFF,
corresponding to a megabyte of dynamic RAM), the DRAM signal is
asserted (low). In addition, if the CASinput is low, indicating that the
dynamic RAM circuitry wants to access a column of dynamic RAM, it
asserts one or two of the CAS outputs; this activates a group of dynamic
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RAM ICs. LDS and UDS decide whether to use one of the CASL or CASU
outputs (for either an odd byte or even byte or both), while A19 splits
the megabyte into a lower 512K and an upper 512K. Incidentally the
four resistors, parts of 33-ohm resistor packs R17 and R18, slightly slow
down the rise and fall times of these signals. The CASL and CASU each
go to eight dynamic RAM chips, and fast rise and fall times cause sharp
signal edges which contribute to noise in the memory. The resistors
reduce this noise and improve reliability. 

3. If the address begins with the three bits 110, representing all addresses
beginning with a hex C (1100) or hex D (1101), the PCMEM signal is
asserted. This signal goes to the six PC-compatible expansion connec-
tors. 1

4. If all five address lines are 1, representing all addresses beginning with
the bits 11111 (addresses between $F80000 and $FFFFFF), the line la-
belled ELSE1 is asserted; this signal implies that this address is some-
thing else besides dynamic RAM or memory on expansion slots. 

5. Operation is a bit different if MAP is low; if so, then the dynamic RAM
is disabled and the ELSE1 signal is asserted instead of it. This substitutes
ROM instead of RAM at address 0.

Fig. 10-1. The address decoder.
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In other words, the PAL splits the 16 megabyte address space of the
computer into three main areas: 

$000000 - $0FFFFF DRAM dynamic RAM

$C00000 - $DFFFFF PCMEM PC expansion memory space

$F80000 - $FFFFFF ELSE1 all else

Any other address simply doesn’t get recognized by the address de-
coder. 

When ELSE1 is low, addresses in its range of $F80000 - $FFFFFF are
further split up into three smaller groups by U64a, depending on address
bits A18 and A17. U64 asserts one of its outputs when it is enabled (the G
input is low); which output is asserted depends on the binary input on its
B and A inputs. It asserts the Y0 output when it receives a 00, the Y1 output
when it receives 01, and so on - it simply interprets the B and A inputs as a
number between 0 and 3. 

1. If A18 and A17 are 00, which occurs for addresses $F80000 - $F9FFFF,
U64a asserts the CE and OE signals for both EPROMs, enabling them.
Note how U64 has bubbles on the output to remind us that the outputs
are active low. 

2. If A18 and A17 are 01, which occurs for address $FA0000 - $FBFFFF, U64a
asserts the PCI/O line. This signal goes to the six PC-compatible expan-
sion connectors for accessing I/O addresses on plug-in cards. (These are
the I/O addresses, not memory addresses.)

3. If A18 and A17 are 10, which occurs for address $FC0000 - $FDFFFF, U64a
asserts its Y2 output, but this is not used.

4. If A18 and A17 are 11, which occurs for address $FE0000 - $FFFFFF, U64a
asserts the ELSE2 output. 

As we’re beginning to see, each IC in the chain in Fig. 10-1 uses the
output of its neighbor to the left to narrow down the range of addresses it
recognizes. Now U64b takes the ELSE2 signal from U64a, and splits the
$FE0000 - $FFFFFF range into two smaller groups, depending on address
lines A16 and A15. 

1. If A16 and A15 are 00, which occurs for addresses $FE0000 - $FE7FFF,
U64b asserts the I/O signal which goes to U34. 

2. If A16 and A15 are 10, which occurs for addresses $FF0000 - $FF7FFF,
U64b asserts the SRAM signal which goes to the two static RAM (SRAM)
ICs or the clock/calendar. Note how LDS and UDS also come into the
picture to enable the upper 8 bits, lower 8 bits, or possibly both. This
gating is done with U26b and U26c, and is a good example of the need
for bubbles to simplify a circuit. In U26c, for example, if UDS is asserted
and SRAM is asserted, then the CE and OE pins of U21 are asserted and
this SRAM IC is enabled. Since both inputs and outputs of U26c have
bubbles, all of these signals are low when asserted. 

3. (If A16 and A15 are either 01 or 11, then U64b asserts one of its unused
outputs.)
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That brings us to U34, the last IC in the address decoder, which gets the
I/O signal which is asserted for addresses $FE0000 - $FE7FFF. In addition,
though, U34 also needs a low or zero on A14, so it actually only operates
for addresses in the range from $FE0000 through $FE3FFF. U34 now looks
at address lines A8, A7, and A6 to decide which of its outputs to assert. Like
U64, U34 interprets the three-bit number on its C, B, and A inputs as a binary
number between 0 and 7, and asserts Y0 through Y7 in response. 

U34’s job is to assign addresses to seven I/O devices: the two MC68681
DUART serial ICs, the MC68230 PIT parallel port, a drive select latch which
controls the floppy drive, the WD1772 floppy disk controller IC, an optional
WD1002 hard disk controller, or a PC-compatible keyboard. 

For example, when A8, A7, and A6 are 000, U34 asserts the I/O0 line on
Y0, which enables the first MC68681 DUART. 

Now comes a difficult question - what address range does this DUART
respond to? Following the circuit from left to right, we see that, for I/O0 to
be low (selecting the first DUART), 

(a)  A23 through A19 must be 11111  

(b)  A18 and A17 must be 11  

(c)  A16 and A15 must be 00  

(d)  A14 must be 0  

(e)  A13 through A9 are unknown  

(f)  A8 through A6 must be 000 

(g)  A5 through A0 are unknown.

Thus we see that this address decoder does not really look at all the bits
of the address bus - there are eleven bits unaccounted for (or ten bits when
we realize that A0 doesn’t exist.) Let’s not worry about A5 through A0, since
we will see that they do play a role later. But A13 through A9 are the
problem. 

Let’s put the above bits in order, left to right, like this:
A23..........................A0
 |                           |
 1111 1110 00xx xxx0 00yy yyyy

The five unknown bits in the middle are labelled xxxxx, and the six
unknown bits on the right are labelled yyyyyy. Clearly these x and y bits
could be anything - all zeroes, all ones, or any combination of zeroes and
ones. 

Let’s begin by assuming that the x bits are all zeroes, giving us
A23..........................A0
 |                           |
 1111 1110 0000 0000 00yy yyyy

Since the bits are already separated into groups of four, let’s follow
through and convert them to hexadecimal. The first four digits are clearly
$FE00. If the y bits are all zeroes, then the last two digits are $00; if they are
all ones, then the last two digits are $3F. This tells us that the DUART can
be addressed in the range from $FE0000 through $FE003F. This is a total of
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64 addresses, and is in fact the range of addresses that we use in program-
ming it. 

But the x digits need not be zeroes - they could just as well be 00001,
which would make the complete address look like this: 
A23..........................A0
 |                           |
 1111 1110 0000 0010 00yy yyyy

Again assuming that the y digits can be anything from all zeroes to all
ones, this gives us an address range of $FE0200 through $FE023F. Contin-
uing like this, we see that the DUART responds to many addresses: 

$FE0000 through $FE003F
$FE0200 through $FE023F
$FE0400 through $FE043F
$FE0600 through $FE063F
$FE0800 through $FE083F

and so on, all the way up to

$FE3E00 through $FE3E3F

when the x bits are all ones.
This is all an example of incomplete address decoding, caused by the fact

that the address decoder does not decode all the bits - some of the bits can
be anything, and are usually called don’t cares. Incomplete address decoding
results in the use of more addresses than are actually needed. 

The EPROM is another example of incomplete decoding. As we learned
above, the EPROM is assigned addresses from $F80000 through $F9FFFF,
a total of 128K bytes. But in a typical case, the EPROM may consist of a pair
of 27128s, which provide a total of only 32K of EPROM, so that 96K of
addresses (128K minus 32K) are wasted. What actually happens is that the
32K of actual EPROM appears in that 128K space four times. That is, the
EPROM appears to take up the entire 128K, but on closer examination we
see that there are four copies of the same data in that space. Such a loss of
addresses in an 8-bit computer with a total of 64K of addresses would be
unthinkable; in a computer having 16 megabytes of addresses, the loss of
96K is unimportant. 

The same situation occurs with the I/O. Although each of the I/O
devices may only require a few bytes, each takes up thirty-two 64-byte
chunks of addresses, for a total of 2048 addresses. 

10-2. Construction
Install the following components: 

U63 16L8 PAL and its socket

R17 and R18 33-ohm resistor packs soldered directly to the board
without a socket 

U64 74LS139 dual decoder and its socket

U34 74LS138 decoder and its socket
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C13, C67 and C70 0.1 µF disc capacitors

Finally, place the J25 jumper in position 1.

10-3. Testing
Recheck all connections and then apply power.
Although a really thorough test of the address decoder requires sophis-

ticated equipment, we can nevertheless do a simple check with the aid of
Fig. 10-2, which shows the waveforms output by the decoder circuit. 

As you remember, the 68000 is still executing what it thinks is 4 million
OR instructions, looping through memory once every four seconds. Think
of Fig. 10-2 as showing what happens during those four seconds (there is a
tiny bit at the right end of the figure which shows how everything repeats
after those four seconds are up). During those four seconds, however, the
68000 is also counting up through 16 megabytes of memory. Thus the left
of the figure corresponds to its trying to access location 0; the right end
corresponds to its trying to read location $FFFFFF, which is at the top of the
16 megabytes; the midpoint corresponds to location $800000, the 8-mega-
byte point of memory. So Fig. 10-2 also represents the 16 megabyte range
of memory, and some of the more important memory addresses are shown
at the bottom. 

Now let’s look at the DRAM signal. Since dynamic RAM will comprise
the first 1 megabyte out of the sixteen, the DRAM signal goes low for the
first 1/16th of the four seconds; that works out to one quarter of a second
in terms of actual time. It is shown as a solid block in Fig. 10-2, however,
because it does not stay low all that time. Like all other signals in the address
decoder, DRAMis asserted only when the AS address strobe is on; since
ASkeeps rapidly cycling high and low, so does DRAM. If you connect your
LED probe to the DRAM output, pin 18 of U63, you will note that the LED
is on continuously (since the signal is high), but once every four seconds,
the LED will get slightly dimmer for about a quarter of a second. An
oscilloscope would show a continuous high, with a short burst of pulses
once every four seconds. 

Each of the other address decoder outputs can be checked in the same
way except for the four CAS outputs (which will show a constant high

Fig. 10-2. Address decoder output waveforms.
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because we are not supplying a CAS input to U63.) Some of the other
outputs will be longer - such as PCMEM which will dim the LED for a 1/2
second - while most will be much shorter. The I/O and SRAM outputs will
be very difficult to see since they only last about ten milliseconds, just barely
long enough to flicker the LED if you watch carefully. The outputs of U34
are too short to see on our LED, although a pulse-catching logic probe or
oscilloscope will show a slight flicker once every four seconds. 
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Chapter 11

The DTACK Circuit

Up until now, we have been generating an artificial DTACK with a
temporary jumper; it’s time to substitute a real DTACK circuit and see how
it works. 

11-1. Discussion
Ideally, each device, whether memory or I/O, should generate its own

DTACK when it has finished an operation. In this way, the 68000 would
know right away that it is time to continue to the next step. That is practical
in some cases, such as dynamic RAM or some I/O devices, but in others it
may be necessary to build a timer which just waits a certain time and then
assumes that all is well. Thus the SK-68K system takes both approaches. 

Fig. 11-1 shows the heart of the DTACK circuit. This circuit has eleven
inputs, of which two (AS and CLK8) are used strictly for timing. 

Five of the inputs come directly from the address decoder in Fig. 10-1.
Three of these go to U37a: I/O4goes low whenever the address decoder
enables the WD1772 floppy disk controller; the EPROM CE signal goes low
when the EPROM is selected, and SRAM goes low when the address
decoder selects the static RAM. Whenever any of these three goes low, U37a
provides a high output to U33. Note that U37a is a three-input "positive
NAND" gate, but in this application it ORs three active-low signals and
provides an active high signal whenever any of the inputs is asserted (low).

U33 is a quad D-type flip-flop, wired exactly the same as U76 in Fig. 9-1,
so this time it is shown as a single block. It is clocked by CLK8, the 8 MHz
clock signal, but most of the time the output of U37a is low, and so its four
flip-flops are normally forced reset. That makes its 3Q output (the Q output
of the third flip-flop) normally high. 

Now suppose the address decoder selects either the floppy disk control-
ler, the EPROM, or the static RAM. The output of U37a then goes high,
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releasing the CLR signal on U33 and allowing it to start shifting. Since AS
is high at this point, this high starts shifting through the flip-flops. After
three CLK8 clock pulses, the 3Q output goes low. In other words, U33 acts
as a delay, sending a low pulse to U36. Note that it is clocked by CLK8, not
by MPUCLK. Even if you speed up the computer by using a faster
MPUCLK, the delay in U33 will not change. 

Now let’s look at U36, an 8-input "positive NAND" 74LS30 which is
used here as a "negative OR with a positive output" or, rather, to OR seven
active low signals and produce an active high output (only seven inputs
are needed, so pin 5 is permanently negated by being connected to +5 volts).
One of these seven inputs comes from U33; one comes directly from the
keyboard select line, I/O7, in the address decoder; and another comes from
the drive-select enable line, I/O3, also in the address decoder. (The key-
board circuit and floppy disk drive select circuits are very fast and so I/O7
and I/O3, their select signals, immediately generate a DTACK without any
other delay.) 

The other four inputs to U36 come from other parts of the computer
which we have not yet built or discussed. Each of these other parts gener-
ates its own DTACKwhen it is finished with a data transfer, and all of these
are also ORed in U36. For now, however, we need resistors R9, R10, R12,
and R13 to keep these four inputs high and prevent any undesired DTACKs
from being generated.

U36 therefore acts as a large OR gate - whenever it receives a low pulse
on any of the seven inputs, it sends a high to U66, which then finally asserts
DTACK by sending a low to the 68000. 

Fig. 11-1. DTACK generator circuit.
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11-2. Construction
To construct this DTACK circuit, REMOVE the jumper between pins 1

and 14 of U66, which we have used until now to generate a fake DTACK.
Then install the following components: 

U33 74LS175 and its socket

U36 74LS30 and its socket

R9, R10, R12, R13 10K 1/4-watt resistors

U37 and U66 have already been previously installed; the J25 jumper
should still be in position 1 from our previous step; and at this point you
should still have the Molex pins inserted in the U21 and U27 sockets, but
no other extra jumpers.

11-3. Testing
Now turn on the power again and let’s see what happens. 
Nothing! Well, of course not. The problem is that the 68000 is still trying

to execute 4 million OR instructions; it is getting those instructions from
our Molex pins all right, but it is not getting DTACK. Hence the BERR bus
error circuit is timing out and halting the whole thing. You probably noticed
that the HALT LED stays on and never even flickers. 

Now move the J25 jumper from position 1 to position 2 and try again;
you will see a slight flicker on the HALT LED about a second after you turn
on the power (or force a reset by shorting J23), but it still lights.

Since the Molex shorting pins on U21 and U27 put all zeroes on the data
bus, the start address which the 68000 gets just after a reset is also all zeroes.
It therefore starts to execute a program which it thinks starts at address
000000. With J25 in position 1, low memory is supposed to be dynamic
RAM; since there isn’t any, there is no DRAM DTACK coming into U36;
hence the 68000 quits almost immediately with a bus error. With J25 in
position 2, however, the EPROM is supposed to be mapped into low
memory. There isn’t any EPROM, of course, but the address decoder and
DTACK generator don’t know that; hence they generate DTACKas if the
EPROM were there. The 68000, therefore, starts to execute its OR program
until it passes the address where EPROM would normally end; then
DTACK suddenly disappears and the system goes into HALT as a bus error
appears.
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Chapter 12

ROM and Static RAM

In order to do some useful work, the SK68K needs some RAM and ROM.
The ROM contains a debugging program called HUMBUG and a simple
Basic interpreter; the RAM is needed as a temporary memory to hold
various data needed by HUMBUG.

12-1. Discussion
A fully configured SK68K system contains both static RAM (also some-

times called SRAM) and dynamic RAM (called DRAM). Static RAM cir-
cuitry is generally very simple and inexpensive, but only for small amounts
of memory. Whenever a very large amount of memory is needed, dynamic
RAM is the only economical alternative. We will examine dynamic RAM
in a later chapter; for now, however, we will concentrate only on static RAM.

Since static RAM is so much simpler - needing just two ICs - installing
a small amount of it at this time gives us a fast way of getting the SK68K
operating. For that reason, HUMBUG and the ROM-based Basic are spe-
cially configured to use only the static RAM. We will add DRAM later, after
the SK68K is at least partly operational; in that way, we will be able to use
the remaining parts of the system to debug the DRAM circuitry if there are
any problems. We will not actually need the DRAM until we are ready to
run the disk system; running large programs of the type best suited for
DRAM is really not practical until we have some means of saving and
loading them on a disk.

Fig. 12-1 shows the circuitry for the EPROM and the static RAM. The
68000’s data bus is 16 bits wide, but no one makes EPROMS and RAMS
which have 16 data lines. The solution is to use two 8-bit-wide EPROMS
and two 8-bit-wide static RAMs, each of which holds 8 of the 16 bits. 

The two EPROMs are shown at the top, and the two static RAMs are
shown at the bottom. Three kinds of EPROMs can be used, though both
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EPROMs of a pair must be identical. A pair of 27128s holds a total of 32K
bytes; a pair of 27256s holds 64K bytes; a pair of 27512s holds 128K bytes.
Any one of these would be big enough to hold HUMBUG and Basic, but
the prices on memory ICs have been so unstable that your SK68K may
contain any one of these - it depends on which is cheapest at the moment.
Jumpers J19 and J20 simply determine which kind of EPROM can be used,
because larger EPROMs require more address lines. 

The two static RAMs are shown at the bottom. The simplest version of
the SK68K uses a pair of 6116s, which provide a total of 4K bytes of memory.
But it is possible to replace one - or both - with a Mostek MK48T02, which
also contains a static RAM and has the same pinout as a 6116, but has two
additional features - it contains a built-in clock/calendar (which replaces
the top 8 locations of the RAM), and it has a built-in lithium battery which
powers both the clock and the RAM when the computer is turned off. The
battery is rated for at least 31,000 hours of operation, or slightly more than
3-1/2 years. In actual use, it would probably last longer since the battery
only powers the clock when the computer is off. (Note that the MK48T02,
if used, must be inserted into U28, since the clock software in SK*DOS
expects to find it in the lower byte.) 

As to the wiring, the two left ICs (left in Fig. 12-1; physically, they  are
really located toward the back of the actual board) connect to D8 through
D15; the two right ICs connect to D0 through D7. Thus the two left ICs
handle what is called the upper byte, whereas the two right ICs hold the lower
byte. This is sometimes confusing and needs some explanation. When the
68000 stores a word (two bytes) from an internal register into memory, the

Fig. 12-1. EPROM and static RAM wiring.
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left byte (the more significant byte, also called the upper byte) goes into
memory first, and is always in an even-numbered location. The right byte
(least significant or lower byte) goes into memory next, and goes into the
next higher odd location. For example, the number $1234 might be stored
as $12 in location $3500 and $34 in location $3501. This is the more logical
way to do things, but it is confusing for two reasons: (1) the upper byte is
actually stored in the lower address, and (2) this is the opposite of what
Intel processors do. 

Both EPROMs are controlled by the same CE (chip enable) and OE
(output enable) signals, whereas there are separate enable signals for the
static RAMs. Reading both EPROMs at the same time does no harm - if the
68000 only wants one byte, it simply ignores the other half of the data bus.
But writing to the static RAM requires two control lines to make sure that
writing to one RAM does not store garbage in the other. Note also the
difference between CE and OE - when a read is done from RAM or EPROM,
CE enables the IC and starts the read process, but no output gets to the bus
until OE is asserted. In many systems, CE is used to put the entire chip into
a low power mode when not being used; in the SK68K we simply control
both together so it always switches into low power mode after every access.

Note that on all four memory ICs, the IC’s A0 connects to A1 on the
address bus, A1 connects to A2, and so on. Part of the reason is simply that
A0 does not exist on the address bus; part comes from the way memory is
addressed on the SK68K. Consider the static RAM, for example, which is
addressed starting at address $FF0000. The bytes of this RAM are stored as
follows: 

$FF0000 is in U21 location 0
$FF0001 is in U28 location 0
$FF0002 is in U21 location 1
$FF0003 is in U28 location 1
$FF0004 is in U21 location 2
$FF0005 is in U28 location 2

and so on, with all even addresses (the ’upper byte’) in U21, and the odd
addresses (’lower byte’) in U28. The address lines are ’shifted over one bit’
because shifting a binary number to the right by one bit divides it by two.
For example, location $FF0008 ends with the bits 1000; it would be in
location 100 of U21. Location $FF0009, on the other hand, ends with the bits
1001; it would also be in location 100, but in U28. Thus the last bit of an
address (0 in $FF0008, 1 in $FF0009) tells us which IC it is stored in, while
the preceding bits specify the location in that IC. 

12-2. Construction
Now that we understand how the EPROM and static RAM circuitry

works, let us actually connect it. Remove the Molex pins from the U21 and
U27 sockets, and install the following components: 

U26 74LS32 and its socket

C12 and C66 0.1 µF disc capacitors
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U20 EPROM marked ’upper’ and its socket

U27 EPROM marked ’lower’

U21 6116 2Kx8 static RAM

U28 6116 2Kx8 static RAM and its socket  

J19 and J20 three-pin header strips

Examine the two EPROMS and position the J19 and J20 jumpers to
match the type of EPROM used, following this table:

EPROM J19 J20

27128 2 1

27256 2 2

27512 1 2

Place jumper J25 in position 2 to address the EPROM starting at location
0. 

12-3. Testing
Now turn on the power.
The important sign that all is well is that the HALT LED goes off after

about a second. If not, then go back a step, recheck that all worked before,
and then recheck all connections and parts installed since then. 

The design of 68000 computers is such that they tend to halt if something
goes wrong. If the HALT LED is off, that is a pretty good sign that nothing
major is wrong, even though the computer is still not fully operational. 

Use the LED probe to check a few signals. First of all, all data bus lines
should have pulses (indicated by the LED dimming when you connect to
the line). Likewise, all address lines from A1 through A18 should show lots
of pulses, whereas A19 through A23 should not dim the LED at all. If the
HUMBUG program in the EPROM is running, it is accessing mostly itself
(EPROM locations $F80000 and above) and static RAM (locations $FF0000
and above). Since both $F8 and $FF start with the five bits 11111, we would
expect the five highest bits of the address bus - A23 through A19 - to be
constantly high, even though the others may change. 

You can confirm this by testing the outputs of the address decoder. You
will note a lot of pulses, indicated by the LED dimming, on U63 pin 19,
which decodes all addresses above $F80000. U64 will have pulses on pin 4
(which selects the EPROM), pin 7 (which drives U64b), and pin 10 (which
selects the static RAM.) 

What you don’t see on the LED (though a good scope will reveal them)
are tiny low pulses on A23 through A19, as the 68000 is trying to access
some error vectors because it senses a bus error - no DUART is installed.
Likewise, you can see some tiny pulses on U64 pin 5, as HUMBUG is
desperately trying to access the expansion slots in the hope that there is a
video board there to report the error on. 
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Chapter 13

The Magic Moment: First Signs Of Life

At this point, we can finally get the computer to do something useful -
we call it the Magic Moment when it shows the very first signs of Life. 

13-1. Discussion
When you turn on the power (or short the reset pins at J23), the

HUMBUG monitor program in the computer’s ROM tries to initialize the
input and output ports, makes a list of what options you have installed,
and emits a "beep-boop" sound from the speaker.

The MC68681 DUART at U10, along with the 3.6864 MHz oscillator at
U3, is used mainly for the serial ports. But the DUART also has an internal
counter and timer, which is used to generate the tones for the speaker. This

Fig13-1. DUART1 sound generator.
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circuitry is shown in Fig. 13-1, though only one small wire - the connection
to pin 13 of U10 - is dedicated to the speaker circuit.

The main IC in this circuit is U10, the DUART. This is a Dual Asynchro-
nous Receiver-Transmitter which handles the conversions between the par-
allel data as it is sent along the data bus, and the serial data as it travels
along the serial link to the terminal or printer. Though it carries the "UART"
letters in its name, it is much more than the traditional UART, which only
handles the conversion to and from serial data. Not only does the DUART
contain two internal receiver/transmitter ports, but it also contains a
multi-function 6-bit parallel input port, an 8-bit output port, and a 16-bit
programmable timer/counter. We will discuss the other capabilities of the
DUART in upcoming chapters. The DUART does use bit 3 of the output
port (pin 13, called OP3) and the programmable counter/timer to drive the
speaker circuitry, as shown in Fig. 13-1. 

The connections to the rest of the computer (on the left of U10) are fairly
straightforward. The clock signal comes from U3, a 3.6864 MHz oscillator
module. The DTACK output connects directly to the DTACK gate, U36; the
IRQ output connects to IRQ5, the level 5 IRQ input; R/W and RESET
connect to the same points in the rest of the system, and CS, the chip select
input, connects to the I/O0 point (U34-15). As we have already discovered,
this address decoder output goes low for addresses in the range from
$FE0000 through $FE003F. 

Finally, data bus pins D0 through D7 connect to the lower eight bits of
the data bus, while the four register select lines, RS1 through RS4, connect
to A1 through A4, respectively. Since there are four register select lines -
four address lines - the DUART occupies 16 addresses in the 68000’s
memory space. But since only the lower eight bits of the data bus are
involved, these sixteen addresses are all odd, so the DUART is addressed
at $FE0001, $FE0003, $FE0005, and so on, up through $FE001F.

Internally, a DUART contains almost two dozen registers, some of which
can be read by the 68000, and some of which can be written into by the
68000. It takes Motorola about 70 pages to explain the DUART in their
MC68681 data ’sheet’ (Motorola publication ADI-988, available from
Motorola distributors or from Motorola Semiconductor Products, 3501 Ed
Bluestein Blvd., Austin TX 78721), so there is no way to do it justice here.
We strongly recommend that you obtain that manual.

13-2. Construction
Install the following parts:

U3 3.6864 MHz oscillator module (possibly in a special
socket)

U10 MC68681 DUART and its socket

Then connect a speaker to pins 1 and 4 of J18. The small speaker which
comes with XT or AT clone cabinets is best; any other speaker or earphone
will do, but choose a cheap one. The circuit puts a constant DC current
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through it which, though it won’t harm the speaker, will certainly not do
much good to an expensive hi-fi speaker system. 

13-3. Testing
Now turn on the power; about a second later, the HALT LED should go

off, and another second later you should hear a beep-boop from the speaker.
This is a signal from the HUMBUG program that it is up and running, and
is the first big indication that the computer is really capable of running a
real program - even the slightest problem would prevent HUMBUG from
sounding this dual tone. 

Now that a real program is running with no errors, the signals in the
address decoder will change slightly from before. HUMBUG is currently
running a loop which continuously checks for the presence of a keyboard;
this loop runs entirely in EPROM and calls the first DUART, so you will see
pulses on the EPROM chip select line, U64a pin 4; the I/O line on U64b pin
10; and the I/O0 line, U34 pin 15. You will no longer see pulses on the SRAM
chip select line. 

13-4. In Case Of Difficulty...
Even if your system is working properly and emits the beep-boop sound

from the speaker, read the following material so as to get a good idea of
what the system is doing and how one would proceed to troubleshoot it if
necessary.

In case of difficulty, we start with all of the obvious possibilities. 
First, using a good magnifying glass, carefully examine all solder joints

to make sure all connections are soldered, but no shorts exist between
adjacent lands on the board. Try to check that all IC socket pins really go
through the board to the bottom side - sometimes a pin bends under the
socket and never makes it through the board. Make sure that all IC’s point
in the same direction - pin 1 toward the left rear corner - and that each socket
contains the correct IC.  Check also that all capacitors and resistors are in
their correct places. It might also be a good idea to check power supply
voltages. 

While on the subject of power supply voltages, note that the wide
copper strip going all around the edge along the bottom side of the board
is ground, but the edge conductor on the top of the board is +5 volts.  Hence
if you mount the board with metal hardware, you will short +5 volts to
ground.  Moreover, it is possible to short out the power supply by clipping
a scope or meter ground lead to the edge of the board. Be careful in this
regard. 

Next, check that all the correct components are installed, but no others.
Extra oscillators, resistors and capacitors can stay, but any extra ICs should
be unplugged during troubleshooting, as they can cause undesirable re-
sults. 

Check also all jumpers and other connections. The speaker should be
connected to the two outer pins of J18; J25 should connect the center pin to
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pin 2; J24 should connect the center pin to pin 1; J19 and J20 should be set
according to the table in Fig. 12-1.

If all these simple tests reveal no problems, then it’s time for more drastic
action. At this point, there are two ways to go - the brute-force method is to
go back to Chapter and then try to retrace our steps. But there is another,
more elegant method which lets us use the 68000 to help us debug. Let’s
describe the latter. 

Let’s review how the 68000 works. When it wants to access memory or
I/O, the 68000 outputs an address on the address bus, along with the
appropriate control signals on UDS, LDS, etc. When the memory or I/O is
finished with the requested operation, it sends back a DTACK or data
transfer acknowledge signal, which tells the 68000 that the operation is
finished and it can continue to the next step. If, for some reason, an
operation cannot be completed within a specified time, then the bus error
circuit sends a BERR signal to the 68000, which attempts to recover. If the
recovery procedure results in another bus error, then the 68000 simply halts
and the HALT LED goes on. This is most likely what is happening if your
HALT LED either stays on continuously, or flickers about 1 second after
you turn on power or reset the system. 

To proceed, disable the BERR circuit by pulling out U76 and connecting
a 10K resistor from U76 pin 14 to pin 16. This forces BERR always high, so
that a bus error will never be received. (We have soldered two Molex pins
to the leads of the 10K resistor, so we can just insert it into the socket instead
of U76. Don’t force the leads of the resistor into the socket, as they will
stretch the socket pins.) 

Next, disable the DTACK circuit by pulling out U36 and connecting a
330-ohm resistor from U36 pin 8 to pin 7. Since U66 is installed (we can’t
remove it because it is used in the reset circuit), this forces the DTACK input
into the 68000 high so it never receives a DTACK. 

Now turn on the power. The very first thing the 68000 tries to do upon
power up is to get a stack address and a starting address from locations
000000 through 000007, which are at the very beginning of the ROM and
which contain the following data:

Address Data

00000000 00FF0FEA Address for the stack

00000004 00F800C0 Starting address of HUMBUG

A bit of explanation is in order. Although addresses inside the 68000
consist of 32 bits (and thus are expressed as eight hex digits in the above),
the actual 68000 address bus only consists of 24 lines (counting A0 even
though it only exists internally within the 68000). Thus the first two hex
digits of addresses are generally 00. 

Furthermore, the 32-bit address 00FF0FEA is too long to fit into a
memory location which can only hold an 8-bit byte. It is therefore stored in
four consecutive locations, namely locations 00000000 through 00000003.
That explains why the address of the second line in the above is 00000004
- it is the next available location after location 00000003. 
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Finally, although we have a 4-byte address stored in four 1-byte loca-
tions, the 68000 can read or write two bytes at a time over its 16-bit data
bus. It must therefore read the 4-byte address in two parts.

So what happens is this: when the 68000 tries to read the stack address
from memory, it outputs address 000000 on the address bus, makes both
UDS and LDS low to signal that it is trying to access both an upper byte
and a lower byte, makes the AS address strobe low to activate the address
decoder, and makes R/W high to indicate it is reading.  The address
decoder decodes address 000000, and sends a low to both EPROMs to
enable them. The EPROMs, in turn, output the contents of the first two bytes
(the number $00FF, the first half of the $00FF0FEA stack address) to the data
bus, which sends this data to the 68000. The 68000 receives the data, and
now waits for DTACK so it can continue. 

But we’ve disabled DTACK! Thus the microprocessor just sits there,
waiting.  Take a scope, logic probe, or even a meter, and look at its pins.
You will see the address 000000 on the address bus, 00FF on the data bus,
both UDS and LDS low, AS low, and R/W high. (It may be useful to place
a label on the top of the 68000 and label each pin). You will also see lows on
the CE and OE pins of both EPROMS, and a low on IC64a pin 4. In other
words, even with fairly simple test equipment, we can check out the circuit
to make sure all the right signals are there. Table 14-1 is a complete list of
what you should find on every pin of the 68000 at this point - check to see
that this is so, and trace the signals if not. (The table refers to lines as being
either High or Low. A high should be +3 volts or more; a low should be
below 0.4 volt; if you see any lines which are between those levels, look for
a possible short circuit which is connecting a high to a low and producing
an in-between voltage.) 

(Here’s an example of how to interpret strange results. Suppose all the
signals on the 68000 are correct except for the sixteen data bus lines. If the
data bus reads $FF00 instead of $00FF, are the EPROMs interchanged? If
the data bus is completely different, are the EPROMs selected (lows on their
OE and CE inputs)? If yes, are they getting the correct address? Is U64 pin
4 outputting a low? If not, is U64 getting lows on pins 1, 2, and 3? As long
as the processor is totally stopped, tracing signals through is easy.) 

If everything seems to be normal, the next step is to pulse DTACK low
so the 68000 will proceed to its next step. This pulse must be wide enough
so the 68000 will recognize it, and yet narrow enough so that the 68000 will
only go forward one step and no more. The timing is thus touchy, but we
have found that taking a discharged 0.001 µF capacitor (short its leads
together first to discharge it) and momentarily connecting it from U36 pin
8 to pin 14 works quite well. Pin 8 is being held low by the 330-ohm resistor
added a few paragraphs ago, but the 0.001 µF capacitor pulls it high for
about a quarter of a microsecond; this is inverted by U66a into a low
DTACK pulse. 

As a result, the 68000 now tries to read the next two bytes of the stack
address from memory, so the address bus should contain the address
000002, and the data bus should have the number 0FEA - the second half
of the address 00FF0FEA. There is always the possibility that the pulse from
the capacitor may be too wide or too narrow, or that more than one pulse
may be generated, in which case you may either stay at the same step, or
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may skip ahead several steps. In that case, refer to Table 14-2, which  is a
list of the addresses and data that should exist on the address and data bus
during the first dozen or so steps. 

Looking at the address and data busses in this way should make it
possible to spot address or data bus shorts or opens. 

Assuming these results are normal, the next step is to remove the
330-ohm resistor, replace U36, and restart the system. The computer will
now start executing HUMBUG from the beginning, going at high speed
through the steps we were tracing one-by-one earlier. But any time that it
tries to access a memory or I/O address that either doesn’t exist or that is
not properly working, it will fail to get DTACK; since we are still forcing
BERR high with a 10K resistor, the 68000 will therefore stop and we can
again look at the address bus to see where. 

Since HUMBUG tries to compile a list of installed hardware, it inten-
tionally tries to access addresses that may not yet exist on your system. In
order, these are $FE0089 (to see whether a 68230 exists), $FE000B (to check
for DUART 1), $FE004B (to check for DUART2), and either $C00001 or
$D60001 (to check for the existence of PC/XT-compatible connectors). Thus
the first address you see on the bus should be $FE0089 (though, of course,
we cannot see A0. Instead, LDS will be low or on, while UDS will be high
or off, to signify that the address is $FE0089 and not $FE0088.) If the 68000
stops with any other address on the address bus, the 68000 is trying to access
some location that does not work or does not exist. 

Once you see the $FE0089 address of the 68230, you may pulse BERR
low once to get the 68000 to continue until the next bus error. This can be
done with the same 0.001 µF capacitor as before, except this time connect it
between U76 pin 14 and U76 pin 8, which is ground. As before, you may
skip ahead a few extra steps if the pulses introduced by the capacitor are
not quite right, in which case just start over. 

Note that your computer should not stop at address $FE000B, since you
have already installed DUART1 at U10. If it does, then there is something
wrong with the DUART1 circuit. 

TABLE 13-1. Signals on the 68000 pins as it waits for its first DTACK

PIN NO. STATE SIGNAL
NAME

DESCRIPTION COMMENTS

52-50
and 48-29

Low A23-A1 Address bus $000000

54-61 Low D15-D8 Data bus 00 

62-64
and 1-5

High D7-D0 Data bus $FF

6 Low AS Address strobe on 

7 Low UDS Upper data strobe on 

8 Low LDS Lower data strobe on 

9 High R/W Read/write Read 

10 High DTACK Data Xfer acknowledge Forced to off 

The Magic Moment: First Signs Of Life 84



TABLE 13-1. Signals on the 68000 pins as it waits for its first DTACK

PIN NO. STATE SIGNAL
NAME

DESCRIPTION COMMENTS

11 High BG Bus granted off

12 High BGACK BG acknowledge off 

13 High BR Bus request off

14 High Vcc +5 volts power

15 Pulses CLK 8 MHz clock clock pulses 

16 Low GND Ground

17 High HALT Halt Not halted 

18 High RESET Reset Not reset 

19 High VMA Valid Memory Address off 

20 Pulses E E clock clock pulses 

21 High VPA Valid Peripheral addr off 

22 High BERR Bus Error Forced to off 

23 High IPL2 Interrupt inputs

24 High IPL1 " no interrupts 

25 High IPL0 "

26 High FC2 68000 Function Code Currently in 

27 High FC1 " supervisor 

28 Low FC0 " program mode 

49 High Vcc +5 volts power

53 Low GND Ground

TABLE 13-2. Address And Data Bus Contents During The First Few
Memory Accesses

ADDRESS DATA EXPLANATION

000000 00FF Initial stack address = $00FF0FEA

000002 0FEA

000004 00F8 HUMBUG starting address = $00F800C0 

000006 00C0

F800C0 4EF9 JUMP (op code 4EF9) to $00F80126
instructionF800C2 00F8

F800C4 0126

F80126 4239 A CLR.B instruction 

F80128 00FF

F8012A 002D
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TABLE 13-2. Address And Data Bus Contents During The First Few
Memory Accesses

ADDRESS DATA EXPLANATION

F8012C 4239 Another CLR.B instruction 

F8012E 00FF

F80130 0C85

F80132 48F9 A MOVEM instruction

F80134 7FFF

F80136 00FF

F80138 0C0E
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Chapter 14

Serial Interface

We are now at the stage where we are ready to install the I/O (input/out-
put) circuitry to allow us to communicate with the computer via a keyboard
and some sort of video display. 

14-1. Discussion
There are two ways of communicating with the SK68K:
   1. If you already have either a computer terminal (such as a Televideo

or Soroq or whatever), or else a computer which can emulate a terminal
(using a communications program), then it’s easy - we install a serial port
on the SK68K by adding two ICs and a connector, and communicate with
the SK68K from the terminal via a serial port. This is discussed in this
chapter.

   2. The other method is to take advantage of the fact that we can use
PC-compatible clone components. By installing the keyboard interface and
PC-type bus connectors, we can then plug in a clone keyboard and either a
monochrome video board or a CGA color board (with, of course, the
appropriate monitor). This is discussed in Chapters 15 and 16. 

Even if you do not use the serial interface at this time, we will still install
it since we have already installed the DUART anyway, and since it is
potentially useful to drive a serial printer.

Fig. 14-1 shows the circuitry for the four serial ports that can be installed
on the board, although the bottom two ports are optional and seldom used.
Since R9, the 3.6864 MHz oscillator at U3, and the MC68681 DUART at U10
have already been installed, at this point we need only add U29, U30, J21,
and J22 to complete the top two ports. 

As described in the last chapter, the DUART (U10) has a number of
functions in the system. In addition to generating the tones for the speaker,
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it interfaces the two serial ports, and even handles the interrupts for many
of the system components.

Since the DUART connects to the data and address busses, its internal
registers appear in the 68000’s memory space as memory locations. It
contains two serial ports, called port A and port B. The following addresses
are for port A, the primary port used for a terminal: 

$FE0007 is the data register. Sending a byte to this address outputs it to
the first serial port, via J22; a character input from the port can be read at
the same address. 

$FE0003 can be read to determine whether the DUART is ready to send
or receive a character. The bits at this address are numbered from 0 to 7,
with bit 7 on the left and bit 0 on the right. In most cases, bits 0 and 2 are
the most important. If bit 0 is a 1, then the DUART has received a character
from the serial port, and the character can be read from $FE0007. If bit 2 is
a 1, then it is ready to output a character to the serial port, and you should
store that character into $FE0007. 

Writing to $FE0003 selects the baud rate for the port. The HUMBUG
software recognizes the baud rate of your keyboard and automatically sets

Fig. 14-1. Serial port circuitry.
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the DUART baud rate to match (it supports only 300, 600, 1200, 2400, 9600,
or 19200 baud), but the baud rate can be changed by placing a different
number into address $FE0003. The allowable values are 

Baud rate $FE0003 value

110 $11 

300 $44

600 $55 

1200 $66

2400 $88 

4800 $99

9600 $BB

19200 $CC

Addresses $FE0005 and $FE0015 can cause problems. The Motorola
DUART data sheet lists these as “Do Not Access - This address location is
used for factory testing of the DUART and should not be read. Reading this
location will result in undesired effects and possible incorrect transmission
or reception of characters. Register contents may also be changed.” Acci-
dentally reading this location may cause your SK68K system to crash.

14-2. Construction
Now mount the following parts on the board:

U30 1488 TTL-to-RS232C converter and its socket 

U29 1489 RS232C-to-TTL converter and its socket 

J21 and J22 two six-pin header strips 

Cut off one center pin and position each header so the cutoff pin is on
the side closest to U30; see Fig. 14-2 for details.

The two ICs do the voltage conversion between the DUART, whose
inputs and outputs are TTL-compatible (0 is approximately 0 volts, whereas
a 1 is about 5 volts), and the serial port wiring (which uses RS-232C levels
of about +12 volts for a 0 and about -12 volts for a 1). 

As Fig. 14-1 shows, there are four signal leads and one ground lead for
each port. On the main port - port A, the one connected to J22 - TXDA is the
transmitter data line, which sends serial data from the SK68K to a terminal,
and RXDA is the receiver data line, which receives data from the terminal.
RTSA is a request to send  line which can be used to tell the terminal (or other
device connected to the serial port) that the computer is asking for data.
Finally, CTSA is a clear to send  line which can be used by the terminal or
other device to tell the computer that it is OK to send data to it. Unless you
run special software, regular SK68K software ignores the RTS and CTS
lines. 

Fig. 14-2 shows how to connect a terminal to the six-pin header. On the
terminal end, you will need a DB-25S connector with wiring to pins 2, 3,
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and 7 as shown. On the computer end, you will need a special connector
made by Berg and others (and supplied as part of the SK68K kit). First,
crimp (or lightly solder) a Berg 47747 pin on the end of each wire, then insert
the three pins into the top end of a Berg plastic shell number 65043-034.
Finally, insert a 65307-001 key (a plastic insulating pin) into the hole
corresponding to the cutoff pin (labelled with an X in Fig. 4-2) so as to make
sure that the connector fits over the header just one way. Don’t insert the
extra pins into the remaining holes, as they cannot be connected to or
removed once installed in the shell. 

14-3 Testing
This section assumes that you have a serial terminal, or at least a

computer which can emulate a terminal by using a communications pro-
gram. If you do not have such a device, then skip ahead to Chapter 15.

Connect the DB-25S to the terminal, the Berg connector to J22 (not J21!),
and turn on the power. Wait until the beep-boop tone is finished, and then
press the RETURN (or ENTER) key on the terminal once or twice. If all goes
well, the terminal should display the HUMBUG program signon message
and then the prompt. 

If the signon message does not appear, it’s likely that there is a minor
problem with the terminal wiring. First, set the terminal to either 300 or
1200 baud.  Then, with a scope or meter (don’t use the LED probe from J14-1
or you may damage U32) check the voltage on the RXDATA and TXDATA
lines at J22; they should both be negative, between -3 and -15 volts. If the
TXDATA line is negative but RXDATA is not, then try swapping the two
connections at pins 2 and 3 of the DB-25S connector - both the computer
and terminal may be sending data to the same line. If both are negative,
check that pressing a key on the terminal makes the voltage on the RXDATA
line swing from negative to positive and back; a scope will show this quite
clearly, whereas a meter may just show a slight amount of wavering. A lack
of this signal means that the terminal is not sending the RETURN code to
the computer. Then check the TXDATA line; if it has a signal but the terminal

Fig. 14-2. Serial connector wiring.
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displays nothing, then the terminal is not properly receiving its data. Many
terminals require that several pins of their RS-232C connector be properly
strapped together (usually pins 5, 6, 8, and 20) before they work. 

Apart from possible problems with U29 and U30 (which may not be
passing either the received or transmitted signal), there are very few other
things which can go wrong at this point since all of the remaining parts of
this circuit (including U3 and U10) are already required to make the speaker
go beep-boop. (But check U3 anyway - if it is defective, U10 might still be
receiving just enough noise that the speaker circuit works yet the serial port
does not.)
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Chapter 15

The PC-compatible Keyboard

PC-compatible keyboards are very different from the average computer
keyboard in that they contain quite a bit of internal intelligence (including
a buffer which stores data which the computer hasn’t yet received), yet they
do not generate an actual ASCII code for each key press. Such keyboards
require a fairly complex interface, shown in Fig. 15-1, as well as a fairly
complex program to process their output. 

15-1. Discussion
The keyboard connects to J9 via a 5-pin DIN connector which sends

ground, +5 volts, and the RESET signal to the keyboard, and receives the
CLOCK and DATA signals from the keyboard. Note, however, that both
CLOCK and DATA are bidirectional since the SK68K can send signals back
to the keyboard via the same lines. 

When the computer is turned on or reset, the BRESET input to U32e-11
(which is the same as RESET but buffered by U17) is inverted into a low
and sent back to the keyboard on the CLOCK line; this causes the keyboard
to reset. (Those keyboards having caps-lock and num-lock lights usually
light these lights during reset.) The RESET signal is also sent to the key-
board, and at the same time clears U24, a quad flip-flop IC. Meanwhile, the
HUMBUG monitor program clears U23a by reading the keyboard (using
I/O7 from the address decoder, Fig. 10-1). With U23a cleared, its Q output
is low; this signal goes to G, the enable pin of U25, which allows it to operate.
It also goes to U32a pin 1, a 7406 open collector inverter, which then
open-circuits its output and lets the keyboard’s DATA line swing high or
low, as needed. At the same time, the Q output of U23a, which is high, goes
to the IP2 input of DUART 1. 
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Meanwhile, the 3.6864 MHz output of U3 (which is generated for the
DUARTs) also goes to U23b, where it is divided by 2 to produce a 1.8432
MHz signal which clocks U24, which is wired as a shift register. 

Now suppose you press (or release) one of the keyboard keys. The
keyboard sends out a key number (not an ASCII code) on the DATA line as
a serial code, and simultaneously starts to pulse the CLOCK line, once for
each bit. The data is sent to the D1 input on U25, a 74LS322 shift register.
At the same time, the CLOCK signal sends a low pulse to the 1D input of
U24, whose first two flip-flops are also wired as a shift register. After two
pulses of the 1.8432 MHz clock (a delay of about 1 microsecond), a high
comes out the 2Q output and clocks both the U23a flip-flop and U25, the
shift register. The data bit then enters the first stage of the shift register, and
a moment later the CLOCK signal goes back high. 

This process is repeated once for each keyboard data bit, with the data
bits proceeding through U25, from QA to QB, QC, and so on, until the first
bit gets to the last flip-flop, at which time a high comes out QH’ and is sent
to the D input of U23a. This bit happens always to be a 1, but it is
immediately discarded because at the next clock pulse it is shifted right out
of U25. It is there long enough, however, to make U23a set at the next clock

Fig. 15-1. PC-compatible keyboard interface.
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pulse. When this occurs, the flip-flop does four things: (a) its Q output goes
low and sends an interrupt request to DUART 1, which relays it to the 68000,
(b) the same low forces U23a to stay set in case there are more clock pulses,
(c) the Q output sends a high to the G input of U25, which prevents it from
shifting further, and (d) the same high is inverted by U32a into a low, which
grounds the DATA line and prevents the keyboard from sending further
data. 

Assuming that DUART 1 is properly programmed, the interrupt request
goes to the 68000, which then stops its normal processing and goes to a
special routine called an interrupt service routine to accept the input from the
keyboard. This routine is part of the HUMBUG monitor, which now reads
a byte from location $FE01C3; doing this read pulses the I/O7 line. This
clears the U23a flip-flop, and also pulses the output enable (OE) pin of U25,
which then sends the received data byte to the data bus to be read by the
68000. The 68000 thus gets the data byte output by the keyboard. 

A few microseconds later, the interrupt service routine does a read from
location $FE01C1, which pulses the I/O7 line a second time, but with a
difference. On the first read (from $FE01C3), A1 (and BA0, which is the same
as A1 but buffered by U19) was a 1, but on the second read (from $FE01C1)
this signal is a 0 (because C3 ends with 0011 whereas C1 ends with 0001;
the second bit from the right is A1, which is now a zero.) Hence on the
second read, U26a receives two low inputs at the same time, and therefore
outputs a low to the CLR input of U25, which resets it and gets it ready for
the next keyboard output. 

Rather than providing a specific ASCII character for each key pressed,
PC-compatible keyboards send out a code each time any key is pressed, and
a different code each time any key is released. Since this circuit generates
an interrupt request for each such code, the interrupt service routine in
HUMBUG is called each time a key is pressed or released, and has the job
of keeping track of keys as well as converting these codes into ASCII. A
number of books on the IBM PC describe how such a keyboard works; a
particularly readable one is chapter 6 of the Programmer’s Guide to the IBM
PC by Peter Norton. 

15-2. Construction
Now install the following components:

R7 4.7K 1/4-watt resistor

R8 10K 1/4-watt 

U23 74S74 dual D flip-flop and its socket

U24 74LS175 quad latch and its socket

U25 74LS322 shift register and its socket

U17 74LS373 buffer and its socket

U19 74S373 buffer and its socket

C8, C9, and C10 0.1 µF disk capacitors

J9 round, black keyboard connector
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U26, U32, and the three 47 pf capacitors have already been previously
installed.

15-3. Testing
Now turn on the power. If you have a serial terminal connected, then

testing the keyboard circuit is easy:

1. Set the terminal to 2400 baud (the default rate for HUMBUG),
2. Turn on the power,
3. Wait for the beep-boop from the speaker,
4. Press the RETURN key on the PC-compatible keyboard,
5. Press control-S, followed by the letter R, on the PC-compatible keyboard.

You can now use this keyboard for input, but will see all output on the
serial terminal. 

If your terminal does not run at 2400 baud, you can change the baud
rate from the PC-compatible keyboard by inserting the following steps
between steps 4. and 5. above:

4a. Type the following exactly as shown: MSFE0003
4b. Press the space bar once
4c. Type in the baud rate code listed in the table in Chapter 14 (but do not

type in the dollar-sign).

For example, to change the baud rate to 9600 baud, type in
MSFE0003spaceBB (press the space key - don’t type in the word "space".)
This sets the baud rate register of the DUART (at location $FE0003) to the
code $BB, which corresponds to 9600 baud.

Without a serial terminal, you have two choices: either use an oscillo-
scope or logic probe to check the various signals in the circuit, or else go on
to Chapter 16, and test the keyboard after a video board is installed. The
latter is probably easier. 
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Chapter 16

PC-Compatible Bus Connectors

The left rear corner of the SK68K board holds up to six 62-pin card-edge
connectors like those of an IBM PC/XT or clone computer. These connec-
tors can hold most PC- or XT-compatible plug-in I/O cards (although cards
intended for AT-type slots will not work.)

16-1. Discussion
SK68K software supports the monochrome or CGA color video boards,

and the WDXT-GEN (and similar) hard disk controller, but it is fairly
straightforward to write software for other cards as well. It does not support
some of the other popular PC-type cards such as floppy disk controllers,
serial and parallel I/O cards, clock/calendar boards, or multi-function
boards which combine several of the above, for the simple reason that all
of these options are already contained on the main SK68K board itself and
so there is no need for these extra boards. 

Although there are many hard disk controllers available for PCs and
their clones, SK*DOS - the SK68K disk operating system - currently sup-
ports only the Western Digital WDXT-GEN controller, and its older versions
such as the WD1002-WX1 version controller. This is because PC-compatible
hard disk controllers contain a ROM which contains the 8088 code to
operate them. The ROM is customized to fit the particular hardware con-
figuration of the controller. On a true PC or clone, MS-DOS or PC-DOS
simply calls the ROM to do the work without having to concern itself with
the actual hardware. 

But that ROM is in 8088 code; the 68000 in the SK68K can read that ROM,
but it cannot understand it - 8088 machine language has no meaning to the
68000. Thus the disk software in SK*DOS has to do all the work of handling
the actual controller hardware, and has to be customized to work with the
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particular circuitry on a given controller. We therefore chose
an inexpensive, widely available hard disk controller and
standardized on it. 

Fig. 16-1 shows the pinout of each of the six PC-compatible
connectors. (This is a top view of the connector, as seen from
the front of the board). All of the labelled pins are used; the
unlabelled pins are not needed in a 68000 system. Some of the
pins, such as ground or power, are obvious; the other connec-
tions are shown in the next few diagrams. 

Most of the pins on the right hand side of the connector are
simply buffered address or data lines. Fig. 16-2 shows the
buffering of the address lines, and the data buffers are shown
on Fig. 16-4. As you can see in Fig. 16-4, the eight-bit data bus
(BD0 through BD7) on the expansion connectors comes from
the lower eight bits of the 68000’s data bus, so each address on
the expansion bus becomes an odd address for the 68000.
Moreover, we see that the 68000’s A1 line becomes BA0 on the
expansion bus, A2 becomes BA1, and so on, up to A20 which
becomes BA19. This is necessary because the expansion con-
nectors need a BA0 line, but the 68000 does not have an A0
output; hence everything is shifted over one bit. 

To understand how expansion slot addresses equate to 68000 addresses,
we have to understand the circuit in Fig. 16-3. In a 68000 (or, in fact, most
Motorola processors) there is only one set of addresses, which are used for
both memory and I/O. The 8080 (and most Intel processors) have two sets
of addresses - one for memory, and another just for I/O. Memory addresses

Fig. 16-1. PC-compatible expansion
connector.

Fig. 16-2. Address bus buffers.
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are used for normal reads and writes, while I/O addresses are used only
by special IN and OUT instructions. A typical Intel processor then manip-
ulates these addresses with four control lines: 

MEMW is asserted (low) to write to memory
MEMR is asserted to read from memory
IOW is asserted to write to an I/O device
IOR is asserted to read from an I/O device.
In a typical IBM PC or clone, these four signals are brought to the bus

connectors, and all four are often used by I/O cards. For example, on a
monochrome or color video board, IOW and IOR are used to control the
card, but MEMW and MEMR are used to access the video RAM which
stores the data to be displayed. On a hard disk controller, IOR and IOW
again control the hardware, but MEMR is needed to read the ROM on the
board. 

Although most PCs or clones have a maximum of 640K of memory, they
can actually address 1 megabyte of memory and 64K of I/O addresses,
using all 20 address bits for memory and 16 bits for I/O addresses.  The
megabyte of memory addresses has room for 640K of plain RAM, plus 128K
of video memory, 64K of hard disk ROM, and up to 192K of other ROM
such as the BIOS and ROM Basic. All of these addresses - both memory and
I/O addresses - have to be squeezed into the 68000’s single memory address
space. 

As we saw in Fig 10-1, the address decoder generates a PCMEM signal
for 68000 addresses $C00000 through $DFFFFF, and a PCI/O signal for
addresses $FA0000 through $FBFFFF. These two enable signals are used by
Fig. 16-3 as follows: 

Fig. 16-3. Memory and I/O select logic.
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  1. If PCMEM is low and R/W is low, then U14c generates a low MEMW
signal.

  2. If PCMEM is low and R/W is high, then U14d generates a low MEMR
signal.

  3. If PCI/O is low and R/W is low, then U14a generates a low IOW signal.
  4. If PCI/O is low and R/W is high, then U14b generates a low IOR signal.

Thus when the 68000 reads or writes into memory addresses $C00000
through $DFFFFF, cards plugged into the expansion slots get a memory
read or memory write signal; when the 68000 writes into memory addresses
$FA0000 through $FBFFFF, the cards get an I/O read or I/O write signal. 

The result is that cards in the expansion connectors can be written to or
read, but the address they get is slightly different from the address the 68000
is accessing. For PC memory addresses, the relationship is this:

PC memory address 68000 memory address

$00000 $C00001

$00001 $C00003

$00002 $C00005

$00003 $C00007

: :

$FFFFF $DFFFFF

We can use the formula

Fig. 16-4. Miscellaneous expansion circuitry.
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   68000 memory address = $C00001 + 2 x (PC memory address)

to convert one to the other. For example, the top left corner of a mono-
chrome video board is at address $B0000, which translates to address
$D60001 in the SK68K. 

For PC I/O addresses, the relationship is this:

PC I/O address 68000 memory address

$0000 $FA0001

$0001 $FA0003

$0002 $FA0005

$0003 $FA0007

: :

$FFFF $FBFFFF

We can use the formula

   68000 memory address = $FA0001 + 2 x (PC I/O address)

to convert one to the other. For example, the control port of a monochrome
video board is at I/O address $03B8, which translates to address $FA0771
in the SK68K. 

The final result is that the 1 megabyte of PC RAM translates to 2
megabytes of 68000 addresses, from $C00000 through $DFFFFF, while the
64K of PC I/O addresses translate to 128K of 68000 addresses, from $FA0000
through $FBFFFF, but only the odd addresses are used in the SK68K because
only the lower half of the 16-bit address bus is connected to the expansion
connectors. This means that it is not practical to connect a PC-type memory
board to the SK68K since the board could only store odd addresses. 

The rest of the circuitry is shown in Fig. 16-4. Whenever either PCI/O
or PCMEM goes low, indicating that the 68000 is trying to access the
expansion connectors, U48c outputs a low PCEN signal which enables U1,
the bidirectional transceiver which buffers the BD0 through BD7 data lines
to the expansion connectors; the direction of data flow is determined by the
R/W signal (which is just R/W inverted; this signal is therefore low when
reading and high when writing.)

PCEN also goes to U35c, which inverts it to a high PCEN signal; this
permits U13a and U13b to divide the 8 MHz CLK8 signal by 4 and send the
2 MHz I/O CLOCK to the connectors. This signal is used by some video
boards as a clock for an MC6845 video controller chip. 

PCEN also goes through U35a and U35d to the clear input of U31. This
IC is wired as a shift register to produce a time delay. In normal operation,
U31 is held cleared and does nothing. But when PCEN goes high, U31’s
clear input also goes high and it starts to shift a high (from AS) through the
register, one flip-flop for every pulse of CLK8. After four clock pulses, or
about 500 nanoseconds, the 4Q output goes low and sends DTACK to U36.

This gives PC-compatible cards 500 nsec to work, but some cards need
additional time and send back a low PC/XT WAIT signal. This signal goes
through U51b and prevents U31 from timing out until the WAIT signal goes

PC-Compatible Bus Connectors 101



high. U31 then gives these cards an extra 500 nsec or so after the WAIT signal
returned to high. 

Finally, Fig. 16-4 also shows the 14.31818 MHz oscillator; it is needed by
some color video boards.  (This signal is four times 3.579545 MHz, which
is the color burst frequency).  Some color boards have their own oscillator;
others need one on the motherboard; either way, it is convenient to supply
this signal in all cases.

16-2. Construction
Now install the following components:

J1 through J6 62-pin card edge connectors (if you install fewer than
six, then space them apart) 

U18 74LS373 and its socket 

U15 74LS00 and its socket

U14 74LS32 and its socket

U1 74LS245 and its socket

U48 74LS08 and its socket

U35 74LS00 and its socket

U51 74LS32 and its socket

U31 74LS175 and its socket

U13 74LS74 and its socket

U92 14.31818 MHz oscillator (soldered directly to the
board, and with the pointed corner identifying pin 1
closest to J4) 

R26 2.2K 1/4-watt resistor

C1 0.1 µF disk ceramic capacitor

U17 and U19 have already been installed.
Finally, place a short wire jumper from U15 pin 12 to pin 7. Now that

we have installed U15, part of that IC is generating a false DTACK which
is upsetting everything else.  For now, this wire jumper disables this circuit;
we will remove the jumper as soon as we install U16 in a future step. 

16-3. Testing
If you have a PC-compatible video board and matching monitor, plug

it in at this time and turn on the power. If all goes well, on the screen you
should now see the message "Please press enter". 

Some users have reported problems with a CGA (color graphics) board
being unreliable. This is often due to noise on the RESET line at the PC slots,
which resets the board when it shouldn’t. If you encounter this, place a 0.1
µF disk capacitor right on the CGA board, from pin B2 (left side of connec-
tor, second pin from rear - see sheet 4 of your diagram) to ground (which
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is on pin B1, about 1/4 inch away). Don’t solder to the plated pin - find a
solder pad a few tenths of an inch away. 

In case of difficulty, follow the general procedures in section 13-4 of this
manual. To make the process more understandable, let’s first discuss what
should happen when all is working correctly, and how the computer
decides which I/O devices to use. 

When you turn on the power (or short the reset pins at J23), the
HUMBUG monitor program in the computer’s ROM tries to initialize the
input and output ports, makes a list of what options you have installed,
and sounds the beep-boop from the speaker.  If it detects that a video board
is plugged into one of the interface connectors, it will then display a "Please
press Enter" in the top left corner of its monitor; it does not, however,
display that message on a serial terminal because it doesn’t yet know what
baud rate to use. 

HUMBUG is now monitoring both the serial input and the keyboard
connector, waiting for you to press the ENTER key (also called RETURN or
CR), so it can determine (a) which keyboard you will be using, and (b) what
baud rate you are using if you choose the serial keyboard. Both keyboards
can thus be connected, but the first one to get an ENTER will be chosen as
the input device. (In order to make sure the correct baud rate is chosen, you
may have to press ENTER several times on a serial keyboard.) 

After the ENTER is received, HUMBUG displays its sign-on message,
the prompt (*), and a cursor (an underline in this example): 
HUMBUG (R) Copyright (C) 1986-1991 by Peter A. Stark
*_

Whichever keyboard you use, this message will go to the video board(s),
if any. If you use a serial keyboard, then it will also go out the serial port to
the terminal (at the same baud rate as the keyboard). Once you get the *
prompt and cursor, you may type in any of 32 HUMBUG commands; we
will get to those later. For now, try typing in the command HE to get a Help
screen which shows the HUMBUG commands. 
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Chapter 17

Computer Memories

To best understand how the dynamic RAM circuitry of our computer
works, let us make a short detour to look at memories in general. (Construc-
tion will continue in Chapter 18.)

17-1. Memory Basics
Let us begin with a look at what is inside a simple memory IC, shown

in Fig. 17-1. The heart of such an IC is the memory array which contains the
actual memory cells (the cells store the actual memory data.). The array
shown in Fig. 17-1 consists of just four horizontal wires called rows and four
vertical wires called columns, whereas a real memory chip will often contain
hundreds of rows and columns. At the intersection of each row and column
is a cell. Since we have four rows and four columns, the array shown has
room for exactly 16 (4 times 4) cells. (Notice that the row and column wires,
though they are shown as crossing, do not actually connect to each other.
Instead, there is a cell at each intersection, and that cell has one connection
to the row wire and another connection to the column wire.) 

To accommodate 16 cells, we could have used one row and 16 columns,
or 2 rows and 8 columns, or several other combinations, but in practice
memory arrays generally have the same number of rows and columns
because that makes the rest of the circuitry simpler. In other words, memory
arrays generally tend to look like a square rather than a rectangle. Further-
more, the number of rows and columns is always a power of 2. For example,
a 16K memory chip would have 128 rows and 128 columns, for a total of
128x128 or 16,384 cells. The next larger common memory chip would have
256 rows and 256 columns, for a total of 256x256 or 65,536 cells. This
explains why 16K and 64K memory chips are common, but 32K chips are
not - their array would be a rectangle rather than a square. 
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Each cell in the array stores one bit, so the circuit of Fig. 17-1 can store
16 bits. This particular circuit is configured to have 16 locations, each of
which stores one bit; such an IC would be called a 16x1 memory, where the
first number gives the number of locations while the second gives the
number of bits in each location. Small memory ICs often have more than
one bit per location, whereas large memory ICs almost always have just one
bit in each location, but with many thousands of locations.

Each of the locations in the memory (that is, each cell) has an address;
each time we want to read from or write into a cell (though Fig. 17-1 doesn’t
show the circuitry needed to write into a cell), we must specify the address
of the specific cell to read or write by giving the IC a binary address on the
address input lines. Since this circuit has 16 cells or locations, it requires a
4-bit address to specify the exact cell we want to access. The general rule is
that x address bits are needed to specify 2x addresses, so 4 address bits
specify 24 or 16 locations in our simple circuit. 

The four-bit address is split into two parts - a two-bit row address and
a two-bit column address. Since there are four rows, we need two bits to
choose one of them (again, because 22 is 4); since there are four columns,
we need two bits to choose a column. Keeping in mind that most memory
ICs have square arrays - the same number of rows and columns - that means
that they will need the same number of row address bits as column address
bits. This means that the total number of address bits is almost always an

Fig. 17-1. A simple memory IC.
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even number. For example, a 16Kx1 IC with 128 rows and 128 columns has
7 row address bits and 7 column address bits (since 27 is 128), for a total of
14 address bits (and 214 is 16,384). Similarly, a 64Kx1 IC has 256 rows and
columns, 8 row and column address bits (28 is 256) and a total of 16 address
bits (216 is 65,536 or 64K). 

Let’s suppose that we want to read out the bit in location 4 of the circuit
in Fig. 17-1, represented by the starred cell in the diagram. To do so, we send
the binary address 0100 (a four) to the address inputs. The left two bits, 01,
become the row address, while the right two bits, 00, become the column
address. The row address is sent to a row address decoder, which has two
inputs (for the row address) and four outputs (labelled 0, 1, 2, and 3) which
correspond to rows 0, 1, 2, and 3. A decoder normally has a number of
outputs, all of which are off except for one - the one specified by the binary
input. In this case, the binary input (the row address) is 01, so the decoder
turns on its 1 output and turns off the 0, 2, and 3 outputs. 

Of the 16 cells in the array, the 12 cells which are in rows 0, 2, and 3
receive no signal from the decoder, so they do nothing. But the four cells in
row 1 all receive a signal from the number 1 output of the decoder, so they
all get enabled. In turn, each of these four cells sends its bit down a column
wire to the column multiplexer. In other words, although we only want the
contents of one cell - the starred one - all four cells along the same row send
their contents down to the multiplexer. 

The multiplexer’s job is now to select the one desired bit from the four
it receives and send it out the output. To do so, it acts like a SP4T switch -
a single-pole switch with four positions, which selects one of the four inputs
and sends it out the output. The precise input selected depends on the
binary column address - in our case, the column address is 00 so it selects
the signal entering on the input labelled 0 and sends it out to a tri-state
buffer. If the chip enable input is on (it has to be low, since the tri-state buffer
has an active-low enable input as shown by the bubble), then that bit goes
out the data output.

As mentioned earlier, the circuit of Fig. 17-1 is very simplified. In an
actual memory IC, the chip enable signal might also go to the decoder or
multiplexer to prevent their working unless the chip is selected, there
would be circuitry to write into cells (along with a R/W input), the array
would be much larger, and there would be more components there that we
haven’t yet discussed.

The next question, though, is this - what is in a cell? That depends on
the type of memory IC we are discussing. In a ROM or PROM (a Program-
mable ROM), the cell might consist of just a diode, or a diode in series with
a fuse. Such a cell can store either a 0 or 1 bit, depending on whether the
diode is connected or not (for example, if the series fuse is blown out). In
an EPROM, the cell consists essentially of a FET transistor which is biased
on or off by a charge stored in an insulating region.

In RAMs, there are two main kinds of cells: in a static RAM (or SRAM),
the cell consists of a flip-flop which stores a 0 or 1, depending on whether
it is set or reset, plus some additional components which connect the
flip-flop to the row and column wires. Since this involves several transistors
(often six or more in each cell), the static RAM cell is quite complex. A
DRAM cell, on the other hand, consists of just one MOSFET transistor and
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a tiny capacitor, which stores a 0 or 1 depending on whether it is charged
or not. Since the DRAM cell is so much simpler than a SRAM cell, DRAM
ICs generally contain many more cells than SRAM ICs. On the other hand,
DRAM memories require more external support circuitry than SRAM, and
are somewhat slower. Thus smaller memories are usually made of static
RAM chips, whereas larger memories are generally dynamic RAMs (except
in those cases where absolute top speed is a necessity and cost is no object.)
In the SK68K computer, for example, there is a small amount of static
memory (consisting of just two ICs) which allows us to get the system up
and running quite quickly. But the main memory, 1 megabyte worth, is
strictly dynamic to keep the total cost down. Even though the DRAM needs
extra support circuitry to make it work, the circuitry is shared by the entire
1 megabyte of RAM so it is worth using, whereas it would not be worth
using if only a few K of memory were needed.

17-2. Dynamic Memory (DRAM)
Fig. 17-2 shows a typical DRAM cell, consisting of a storage capacitor

which holds the actual bit, in series with a MOSFET transistor. In normal
operation, the decoder output is off and so the MOSFET transistor is biased
off. This isolates the storage capacitor from the rest of the circuit so it can
hold a bit. But when the row holding the cell is selected by the decoder, the
MOSFET is biased on and the capacitor is connected to the column wire
through the transistor. At this point, the cell can be read out (since the
capacitor voltage appears on the column wire) or it can be written into (by
sending a signal up the column wire, and through the MOSFET transistor
into the capacitor.)

If this were all there was, there would be two major problems: First, since
the capacitor is very, very small, it discharges very quickly. Just reading the
cell (by turning on the MOSFET) puts enough of a load on the capacitor
that it discharges almost instantaneously, but even when the MOSFET is
biased off, the capacitor will typically hold its charge only a few seconds,
and under some conditions, only a few milliseconds. Moreover, whenever
a row wire is turned on by the decoder to select a cell on that row, all of the
MOSFETs on that row are turned on! In other words, reading one cell
selects all the cells on that row, with the result that all the capacitors in that
row immediately discharge. Thus something has to be done to prevent all

Fig. 17-2. A dynamic RAM cell.
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the cells from forgetting their data. The overall dynamic RAM system
therefore has additional circuitry which will (1) rewrite all the data back
into all the cells in a row whenever any cell in that row is read or written,
and (2) rewrite the data into all the cells of the entire memory at intervals
of a few milliseconds. The first job - that of rewriting cells when a row is
accessed - is handled internally by each DRAM IC; the second job - that of
rewriting all of memory every few milliseconds - is called refreshing and is
handled by external refresh circuits.  

Fig. 17-3 shows how the circuitry inside a typical DRAM integrated
circuit handles rewriting data into the cell capacitors whenever a row is
selected. Though DRAMs typically contain thousands of cells, this diagram
still shows only a small 16x1 chip with an array of four rows and four
columns, though only the left two columns are actually shown in the
diagram.

Fig. 17-3 has several new components we have not seen before. Al-
though the 16x1 DRAM circuit needs four address bits, the diagram shows
only two address pins, connected to both the row address decoder and the
column multiplexer through two sets of flip-flops called the row address
latches and the column address latches. The four-bit address is sent to the IC
two bits at a time; the first two bits are stored in the row address latches by

Fig. 17-3. DRAM IC organization.
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a pulse on the RAS or row address strobe, and then the second two bits are
stored in the column latches by a pulse on the CAS or column address strobe.
This technique is used in DRAM ICs to save input pins. For example, a
256Kx1 DRAM would normally need 18 address lines, whereas splitting
the address into two parts allows the 18 bits to be input through 9 address
pins and two address strobe pins. This allows 11 pins to do the work of 18,
so the DRAM can be packaged in a smaller case. There is, of course, a
disadvantage - external circuits have to be added to split the address into
two parts, and the process takes a bit longer than it would otherwise. 

As before, the two-bit row address is again sent to the row address
decoder, which outputs a pulse on one of the four row lines labelled 0, 1, 2,
or 3, depending on the value of the row address. Note, however, that the
array is now split into two parts by a row of sense amplifiers running across
the middle of the diagram. These sense amplifiers are essentially op-amps
or comparators, and have an inverting input (labelled with a -) as well as a
non-inverting input (labelled with a +). 

But now there are two more rows, labelled A and B, each of which
contains a row of reference cells. These cells are similar to regular cells, except
that they use a two-resistor voltage divider instead of a capacitor and
therefore always output a constant voltage whose value, chosen by the ratio
of the two resistors, is half-way between a 0 and a 1. The decoder is now
modified so that, in addition to selecting one of the rows 0 through 3, it also
selects a reference row at the same time, but it always makes sure that the
reference row is on the opposite side of the sense amplifiers.

For example, let’s again assume we want to read out the contents of the
starred capacitor, which is again location 4 or 0100. The row address (01)
entering the decoder selects row 1; at the same time, the decoder enables
the row of reference cells connected to output B. Note that the reference row
is on the opposite side of the sense amplifiers - row B gets selected along
with rows 0 or 1, whereas row A gets selected along with rows 2 or 3.

When row 1 is selected, all of the MOSFET transistors connected to that
row are turned on, and all four capacitors on that row (only two are actually
shown) send their voltage to the top input to a sense amplifier. At the same
time, the bottom input of each sense amplifier gets a reference voltage from
a reference cell at the bottom. Since the reference is a voltage between 0 and
1, each sense amplifier can compare the capacitor voltage against the
reference and decide whether the capacitor held a 0 or 1.

All of this must happen very quickly, because the capacitor almost
immediately discharges. By then, however, the bit stored in the capacitor
has already arrived at the output of the sense amplifier, which sends it down
to the multiplexer and the output.

But each of the sense amplifiers has a sort of positive feedback circuit
connected from output back to the two inputs. The actual circuit is some-
what different and more complicated than what is shown in Fig. 17-3, but
the main idea is this: as soon as the bit arrives at the output of the sense
amplifier, it is immediately sent back to the inputs through the two resistors.
Since the top sense amplifier input is inverting, the output is fed back
through an inverter so it comes back in the same polarity, but larger. This
signal then recharges (refreshes) the capacitor. if the original capacitor
voltage was lower than the reference voltage, this circuit pushes it back
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down toward ground; if it was higher than the reference, this circuit pushes
it up toward the positive supply voltage.

Even though we only wanted to read out the bit stored in the starred
capacitor, actually every capacitor in row 1 was read out and refreshed by
its own sense amplifier. This is an important concept - reading out any cell
automatically refreshes all the cells located in the same row.

If such a DRAM IC is connected to a microprocessor, each time the
processor reads (or writes - Fig 17-3 does not show any of the circuitry for
writing into a cell, but this can be accomplished by feeding bits backward
through the multiplexer) it refreshes an entire row of each DRAM IC. If the
computer were to use data from every row, then the entire IC would be
refreshed automatically and we wouldn’t have to do any more. In general,
though, we cannot trust that to happen, since the computer could easily get
stuck in a loop where it only accesses one or two rows, with the result that
all the rest of the memory would be forgotten. We therefore have to add
external refresh circuitry to make sure that every row of each DRAM IC is
properly refreshed. 

17-3. DRAM Refreshing
Most current DRAM ICs require that they be completely refreshed once

every 2 milliseconds, so the refresh circuits have to ensure that every row
of the memory is accessed at least once every 2 milliseconds. To minimize
the effort required, IC makers build larger DRAM chips a bit differently
from the smaller chips. In smaller DRAMs, up to 16Kx1, the array is
essentially square as we have discussed, and has 128 or fewer rows. In larger
memories, the array wiring is split to make several smaller arrays out of the
one large array, with each smaller array having only 128 rows and all arrays
being refreshed at the same time. As a result, instead of a 256Kx1 DRAM
having 512 rows and thus needing 512 reads for refreshing, it still only
needs 128 reads. This makes refreshing faster. 

There are two basically different ways of refreshing DRAM:
(1) The cheapest, requiring very little actual hardware, is to build an

oscillator which interrupts the CPU once every 2 milliseconds., and forces
it to stop the current program and execute an interrupt routine. The inter-
rupt routine, in turn, does a read from every row and then returns to the
main program. This is essentially a software approach, but it has the
disadvantage that it wastes a significant portion of the computer’s time and
slows down every program. For instance, if a read of one row (counting the
time to fetch and perform the read instruction) requires four microseconds
(which is not unusual for an average 8-bit microprocessor), then 512 micro-
seconds (plus interrupt processing time) would be taken up out of every 2
milliseconds for refresh. In other words, more than a quarter of the
processor’s time would be used up just on refresh. 

(2) The second approach is to build a counter which counts out the rows
from 0 through 127, and send its output as a refresh address to the memory.
The counter must go through the complete count at least once every 2
milliseconds, and every one of those counts must be sent to the memory.
The trick here is to do all this without slowing down the processor or
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affecting any programs. As usual, designers use many different ways, some
better than others:

(a) One approach is to periodically halt the processor, and send the 128
counts to the DRAMs instead, either individually or as a burst. If the
computer has a direct memory access (DMA) circuit, then this is easily
handled by the same circuitry. IBM PCs and clones use this approach, but
it obviously slows down programs and so is not the best.

(b) The best - and most expensive - approach is to split the memory into
two halves. Whenever the CPU is accessing one half, refresh the other half.
For example, in an 8-bit computer, all the even locations could be in one
half of the memory, and all the odd locations in the other half. Since most
of a computer’s time is spent accessing consecutive locations, it mostly
alternates from one half to the other, so each half of memory is unused
roughly 50% of the time. This leaves plenty of time to do memory refresh
without in any way slowing down the processor.

(c) A middle-of-the-road approach is to try to detect clock cycles when
the CPU is doing internal operations instead of using the memory, and
squeeze refresh accesses into these unused slots. With a processor which
uses many cycles for internal operations, this can sneak in refreshes without
slowing down the processor at all, but this approach doesn’t work quite as
well with processors which use the address bus fairly heavily. In that case,
the refresh circuits may be able to sandwich many - or even most - of their
memory accesses between CPU memory accesses, but there may still be
occasional conflicts when both need to access memory at the same time. In
that case the refresh circuits must get priority to avoid losing data in
memory, so there has to be a fairly complex circuit which times refreshes
and arbitrates between CPU and memory accesses. This is the approach
used in the SK68K computer, and it slows down CPU operation an average
of one or two percent. 
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Chapter 18

DRAM Circuitry

In this chapter we describe and build the actual DRAM circuits in our
SK68K computer. Since we have already discussed the general principles
behind DRAM circuits, we will discuss the specific DRAM circuitry of the
SK68K.

18-1. Discussion
Block Diagram Description

The block diagram of the complete DRAM circuitry is shown in Fig.
18-1. The overall timing of refreshing is handled by the DRAM control
circuits, which receive RSHAS and the DRAM enable signal from the
address decoder, the AS address strobe, and a clock, and which generate
the RAS, CAS, and DTACK signals, as well as three enable signals which
control three sets of tri-state buffers. 

The three sets of tri-state buffers are separately enabled by the DRAM
control circuits, with only one set of buffers enabled at any one time. In this
way, three different inputs can be combined onto one set of pins. When the
CPU is accessing memory, these buffers would work in this order:

1. The 68000 outputs an address, the address decoder recognizes a DRAM
address and sends the DRAM enable signal to the DRAM control
circuits.

2. The control circuits enable tri-state buffers A (with B and C disabled) to
send nine bits of the address to the DRAM ICs, and then pulse RAS to
latch them in the row address buffers within each DRAM. 

3. The control circuits then enable tri-state buffers B (with A and C disabled)
to send the other nine bits of the address to the DRAM ICs, and pulse
CAS to latch them in the column address buffers within the DRAM. 
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The RAS signal goes to each DRAM IC so that all ICs, even those not
being used, receive a row address. But the CAS signal goes back to the
address decoder, in Fig. 10-1, which steers the CAS to the appropriate group
of ICs. 

The completed SK68K computer uses 32 256Kx1 DRAM ICs to provide
a total of one megabyte of RAM. These ICs are organized in four banks of
256K bytes each as follows:

U38 through U45 hold all the odd bytes for the first 512K
U53 through U60 hold all the even bytes for the first 512K
U67 through U74 hold all the odd bytes for the second 512K
U80 through U87 hold all the even bytes for the second 512K
When a particular byte (or 16-bit word, in the case of a two-byte transfer)

is accessed, only one or two of these banks need be enabled. Thus the
address decoder does the final selection, based on the state of A19, UDS,
and LDS, and sends CAS only to those banks being accessed. The DRAM
ICs use CAS as their main chip enable, and only those ICs getting CAS do
an actual read or write. 

Refreshing is initiated by the 80 kHz clock input to the refresh counter
and the DRAM control circuits. Once every 12.5 microseconds, a clock pulse
arrives, increments the refresh counter to a new row address, and sends a
refresh request to the DRAM control circuits. The control circuits then wait
until the 68000 stops using the memory and begin the refresh sequence by

Fig. 18-1. DRAM section block diagram.
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enabling tri-state buffers C (with A and B disabled) to send the refresh
address to the DRAM chips, followed by a pulse on the RAS line. Since RAS
as well as the address lines go to all 32 DRAMs, all the DRAMS are refreshed
at the same time. 

The complete refresh cycle for all 128 rows takes 1.6 milliseconds (12.5
microseconds between clock pulses times 128 rows), which is somewhat
less than the 2 milliseconds specified for most DRAMs, but there is nothing
wrong with refreshing the DRAMs more often than necessary.

DRAM Operation During CPU Accesses
 Let’s begin our discussion with the timing circuits shown in Fig. 18-2,

and let’s assume flip-flops U49a and U49b are reset, which is the condition
most of the time (for U49a is reset every time address strobe AS goes low).
Since U49b is reset, its REFRESH output is low and REFRESH is high.
Furthermore, since U49a is also reset, the CAS and DRAM DTACK outputs
are both high. 

When the 68000 wants to access DRAM to either write into it or read
from it, it places a valid DRAM address on the address bus. The address
decoder (Fig. 10-1) recognizes the address as referring to the DRAM, and
sends out the DRAM enable signal which goes to Fig. 18-2 and starts a
DRAM cycle. (The signal travels a long distance on the board, and C68, a
33 pF capacitor, is used to reduce its noise pickup.) 

The active-low DRAM signal goes low at this point; since pin 10 of U51c
is also low as we will see in a moment, U51c sends out a low pulse to U37c
pin 10. 

At this point it pays to recap for a moment. U51c is actually an OR gate,
but it is shown as an AND gate with bubbles on both its inputs and outputs.
This notation is used because its job in this circuit is not to or, but to and two
signals. In this case, when both of its inputs go low - and only then - its
output goes low. U37c, on the other hand, is a NAND gate but it is shown
as an OR gate with bubbles on its inputs. This notation is used because its

Fig. 18-2. DRAM timing circuits.
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job is not to and three signals, but to or them. Its job is to output a high
whenever any one of its inputs goes low. In other words, there are three
conditions under which pin 8 of U37c can go high.

As we mentioned two paragraphs ago, when the 68000 wants to access
DRAM, it sends out the RAM signal which, in turn, makes U51c pin 8 go
low. As a result, U37c pin 8 goes high. This signal now does three things.

First, it is inverted to a low by U66d to generate the RAS signal. This is
the row address strobe which goes to the DRAM ICs to tell them to accept a
row address. The same signal also goes back to U51d pin 12; since pin 13 is
already low (just like pin 10), U51d pin 11 also now becomes low. This
provides a second low to U37, making sure that it continues to output a
high on pin 8 even if the RAM signal should disappear at this point. This
is not important right now, though, since the RAM signal is not going to
disappear until after the DRAM operation is completed (this circuit is only
needed during refreshing). Finally, the high on U37c pin 8 also goes to U52.

U52 is called a 150-nanosecond delay line, and it does exactly what the
name implies - it delays signals. It has several outputs, of which we only
use pins 12 and 8. Whenever a logic signal is applied to its input on pin 1,
it is delayed and appears on the outputs a specified delay time later. The
total delay line is specified as 150 nanoseconds (ns), which means that the
input comes out the last output, pin 8, 150 ns after it entered. But the delay
line also has an intermediate output on pin 12, which provides only a 30 ns
delay. (When you really think about it, 30 ns is a very short time. For
example, a beam of light - the fastest thing we know of - only travels about
30 feet in 30 ns!) 

Up until now, however, the input to the delay line was a low, and so
both of its outputs have been low. U52 pin 8 therefore has been sending a
low back to U51c pin 10 and U51d pin 13, which were needed to get
everything started. U52 pin 12, on the other hand, has been sending out a
low to flip-flop U49a, to U35B pin 4, and to the A/B SELECT line. After the
30 ns delay, however, U52 pin 12 goes high. This changes the A/B SELECT
signal from a low to a high, and also clocks flip-flop U49a. Since pin 2 of
the flip-flop is already high (since flip-flop U49B was reset and therefore
REFRESH was high), the flip-flop now sets and sends out a low on CAS
and DRAM DTACK. 

Let’s now jump ahead to Fig. 18-3 and see what is happening in the
DRAM address multiplexers. As we mentioned last time, the DRAM ad-
dress pins receive three separate addresses. During normal memory oper-
ation, they receive first a row address, followed by a column address;
during refreshing, they receive a refresh address. The multiplexers shown
in Fig. 18-3 select which of these three addresses is applied when.

Up until now, REFRESH has been low and REFRESH has been high. The
circuitry at the top of Fig. 18-3 generates the refresh address, which can be
sent to the DRAMs through a set of tri-state buffers in U61 if their OC
(output control) input goes low. But since REFRESH is high, this keeps OC
high and therefore prevents the refresh address from getting to the DRAMs.

Instead, the low REFRESH signal is applied to the G (gate) chip select
inputs of U88, U75, and U62, enabling their circuitry. Each of these three
ICs is a "quad two-input multiplexer", meaning that it contains four multi-
plexers, each having two inputs. The A/B select input on each IC selects
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which of the two inputs is sent to the output of each multiplexer. Scanning
down the inputs of U88, for example, A1 goes to output MA3 if the A/B
select input is low, or A5 goes to MA3 if the A/B select input is high;
similarly either A2 or A6 goes to MA2, depending on the A/B select input,
and so on. Notice that the A inputs and MA outputs seem to be mixed up
in a crazy order, which seems as though the memory is going to be very
confused. In actual operation, it simply means that every time the 68000
stores something into memory it will go into what looks like the wrong
location; but the next time the 68000 wants to read it back, it will be read
back from the same wrong location and so the correct data will come back
out. 

At the beginning of the operation, A/B SELECT was low, and so each
of the multiplexers chose one set of nine bits to send to the MA outputs. But
after the delay line outputs a high A/B SELECT, the multiplexers switch
and send the other nine address bits to the MA outputs. The first set of nine
bits was the row address; the second set is the column address. Although
it looks as though the column address comes out just 30 ns after the row
address, actually the delay is somewhat greater. The row address is applied
to the DRAM ICs as soon as the 68000 starts its memory operation; the
column address is not applied until after the address decoder has recog-
nized the DRAM address and sent out the RAM signal, which must then
go through U51c and U37c before even entering the delay line.

Up until now, the operation has been as follows:

1. The 68000 sends out an address; since REFRESH and A/B SELECT are
both low, nine bits of the address go to the DRAMs as a row address. 

DRAM address multiplexers.
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2. The address decoder sends out RAM which starts the DRAM circuitry.
3. RAS goes low.
4. After a short delay, A/B SELECT goes high and sends the other nine

address bits to the DRAMs; this is now the column address. 
5. CAS goes low.
6. DRAM DTACK goes low.

Note that DTACK normally signals the 68000 that a data transfer is
completed, and yet the DRAM access is nowhere near being finished. In an
effort to keep the computer going at maximum speed, DTACK is sent to the
DTACK circuitry (U36, shown in Fig. 11-1) before the DRAM actually
finishes; the 68000 doesn’t respond for another few clock pulses and so the
DRAM will have enough time to finish before the 68000 continues. Note
that the timing of the entire DRAM circuitry is very carefully thought out;
since most SK68K operations involve the DRAM, squeezing extra speed out
of this circuit is very important. 

Let’s now return to Fig 18-2. After the 150 ns delay, U52 pin 8 goes high,
which makes U51c pin 10 and U51d pin 13 both high. As a result, all inputs
to U37c go high and so its output goes low. After passing through U66d,
this makes RAS go high again. Meanwhile delay line U52 is now processing
the low. After 30 ns, the low on U52 pin 12 makes A/B SELECT return low;
it also changes the clock signal to U49a from high to low, but the flip-flop
does not react since the 74ALS74 flip-flop only responds to a rising edge of
the clock. Thus the flip-flop stays set, and continues outputting CAS and
DRAM DTACK. 

After the delay line completes the 150-ns delay, its pin 8 goes low and
the DRAM circuits are ready for another memory access. Meanwhile, the
68000 finishes its memory access also; it then turns off the AS address strobe,
with the result that U49A finally resets, and both CAS and DTACK go back
high or off. 

RAM Operation During Refreshing
Let’s now look at how the DRAM circuits operate when refreshing. First,

the 80 kHz REFRESH CLOCK (from the bus error circuit of Fig. 9-1) is sent
to the refresh counters, U46a and U46b, in Fig. 18-3. As mentioned last time,
refreshing a DRAM involves reading 128 rows once every 2 milliseconds.
Although only 128 rows are needed, U46a and U46b are each divide-by-16
counters, so together they make a divide-by-256 counter. All eight of their
outputs are sent to the DRAM address lines through U61, even though only
seven outputs are needed. The eighth output does no harm, however, and
is there for possible future expansion. 

Since the period of the 80 kHz signal is 1/80000 second, or 12.5 micro-
seconds, the refresh counters complete a total of 128 counts in 128 x 12.5, or
1600 microseconds. This is 1.6 milliseconds, well within the ratings of the
DRAM chips which require refreshing at least once every 2 milliseconds. 

Once every 12.5 microseconds, when pin 9 of U65b goes high, this signal
clocks U50b in Fig. 18-2, which therefore sets (since its D input is connected
to +5 volts) to signal the DRAM circuits that it is time to do a refresh. The
Q output of U50b therefore goes high, so that the next rising edge of the
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MPUCLK signal (which might be anywhere from 8 to 16 MHz, depending
on CPU speed) sets U50a. Its Q output now also goes high, sending a high
to the D input of U49b.  The circuit now waits for two other events: for the
RSHAS pulse to go low (which is inverted into a high by U66B) and for
MPUCLK to go low again. When this occurs, U49b finally sets, and this
event finally starts the refresh cycle. Note that it was not sufficient for the
80 kHz signal to go high - the circuit waited for the correct sequence of
MPUCLK and RSHAS before actually starting the refresh. The reason is that
a refresh can interfere with the 68000’s use of the DRAM memory unless
the refresh is timed just right. This circuitry is designed to delay a refresh
until the end of an address strobe; the idea is to try to do a quick refresh just
after the 68000 has finished accessing memory and so try to squeeze the
refresh into an unused time period. (During normal operation, the RSHAS
signal - which comes from U63 in Fig. 10-1 - is the same as the AS strobe,
so timing is synchronized with the end of AS. But when the 68000 is waiting
for a DTACK from a board plugged into one of the expansion connectors,
U63 substitutes a steady low to allow the DRAM circuitry to refresh without
waiting for a real AS strobe.)

In any case, refreshing begins when U49b finally sets. This switches the
REFRESH signal from a low to a high, and switches REFRESH from a high
to a low. As shown in Fig. 18-3, when REFRESH goes high it turns off the
three multiplexers (U62, U75, and U88); when REFRESH goes low it enables
U61, so that the DRAM ICs receive the refresh address instead of the normal
column or row address from the address bus. 

Back in Fig. 18-2, however, the REFRESH signal is also sent to pin 1 of
U51a. This starts exactly the same memory cycle as was started by the RAM
signal from the address decoder, so that the delay line receives first a high
and then a low, just as in normal operation. But this time there are two
differences: first, the REFRESH signal is now low, and so the 30-ns output
on pin 12 of delay line U52 cannot set U49a. Thus no CAS or DRAM DTACK
is generated during a refresh. This means that only a row address is sent to
the DRAMs, no column address. Furthermore, DTACK is not needed since
the 68000 is not involved in refreshing, and doesn’t even want to know that
refreshing is occurring.  The second difference is that the 30 ns output of
the delay line is also sent to pin 4 of U35b. Since pin 5 is already high
(because REFRESH is high), U35b pin 6 goes low, thereby resetting flip-
flops U50b, U50a, and U49b. This ends the refresh cycle.

Finally, we need to look at how the 32 DRAM ICs are actually connected;
Fig. 18-4 shows the connections to just U38, one of the DRAMs. First, each
256K DRAM IC has nine address lines which connect to MA0 through MA8.
As shown in Fig. 18-3, these nine lines each come through a 33-ohm resistor,
a rather unusual practice in normal digital circuits but actually quite
common in memories. These resistors are used primarily to reduce over-
shoots and undershoots of voltage (above +5 volts and below 0 volts) which
would otherwise exist on these address lines. The problem is basically
caused by the fact that the memory address lines each go to 32 ICs. The
wiring for these lines is therefore quite long and complex and thus repre-
sents a fairly large capacitance to ground. The buffers driving these lines
would normally feed rather large current surges into this wiring, which
would result in overshoots and undershoots. 33-ohm resistors are also
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found on the R/W and RAS lines, which also go to all 32 DRAMs, as well
as the CAS lines. Only the memory data lines do not contain the resistors,
since each data line goes to only two ICs. 

The RAS signal from Fig 18-2, and the R/W signal (from the 68000) are
also applied to each and every DRAM IC in the entire system. That means
that all DRAMs accept the same row address, and also all receive the
read/write signal at the same time (although they don’t actually read or
write unless they also receive the CAS signal). 

The CAS signal leaving Fig. 18-2 does not go directly to the DRAMs;
instead it goes back to the address decoder (originally shown in Fig. 10-1,
but also partly shown at the bottom of Fig. 18-4.) CAS is used only during
actual memory accesses by the 68000, not during refreshing. At that time,
the address decoder must decide which group of DRAMs is actually being
addressed. The 32 DRAMs are divided into four groups of eight ICs: 

(a) the even (or high-order) bytes of the first 512K, U53 through U60, which
connect to CASU0,

(b) the odd (or low-order) bytes of the first 512K, U38 through U45, which
connect to CASL0,

(c) the even (or high-order) bytes of the second 512K, U80 through U87,
which connect to CASU1, and

(d) the odd (or low-order) bytes of the second 512K, U67 through U74,
which connect to CASL1.

U63, the address decoder PAL, decides which group (or groups) of
DRAMs to enable, based on the status of upper data strobe UDS, lower data

Fig. 18-4. DRAM IC wiring.
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strobe LDS, and address lines A19 through A23, and then passes the CAS
signal to the appropriate group or groups. Note that it might send CAS to
two groups of DRAMs at the same time if a 16-bit data transfer is needed
from both an even and an odd byte at the same time. 

Finally, within each group of eight DRAMs, each IC is connected to a
different bit of the data bus so that every data transfer involves either eight
or sixteen DRAMs, all writing or reading a different bit of the data bus. Since
the DRAMs have separate data in and data out pins, these are connected
together as shown in Fig. 18-4. Fig. 18-5 shows a pictorial view of the 32
DRAMs on the printed circuit board, identifying which IC connects to
which data line, and which group connects to which CAS line. 

18-2. Construction
It is now time to build the DRAM portion of the board. Begin by

checking that the following components have been installed in prior steps:
U35, 74LS00 quad NAND gate and its socket # U37, 74LS10 triple 3-input

NAND and its socket # U48, a 74LS08 quad AND gate and its socket # U51,
a 74LS32 quad OR gate and its socket # U66, 74LS04 hex inverter and its
socket # C68, a 33 pF disk capacitor # R12, a 10K resistor # R17 and R18,
33-ohm DIP resistor packs # U65, a 74LS390 dual decade counter and its
socket.

Recheck C68 to make sure it is 33 pF, and not 0.1 µF like almost all the
other disk capacitors on the board. 

Now install the following:

U49 74S74 dual flip-flop and its socket

U50 74LS74 dual flip-flop and its socket

U52 150-ns delay line, soldered directly to the board

U62, U75, U88 74S257 quad 2-input multiplexers and their sockets.
U62 uses a special IC socket with a built-in
decoupling capacitor, as there was no room on the
printed circuit board to place a separate capacitor
right next to it. 

U46 74HCT393 dual divide-by-16 counter and its socket

U61 74S373 8-input tri-state buffer and its socket. Make
sure that this particular IC is not made by TI; if
necessary, interchange with U19 to make sure it is
made by a different manufacturer. 

Although a TI-branded 74S393 works just fine as U19, the DRAM refresh
circuitry has some very critical timing, and 74S373 ICs made by TI do not
seem to operate well in this circuit - we have had good luck with units made
by National Semiconductor and others. 

We are now ready to install more components, but much of the wiring
in this area is very close and we must take special precautions to guard
against accidental short circuits. When installing the following compo-
nents, install the IC sockets first, and after every group of eight or so,
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recheck the wiring and then turn on the computer to make sure it still works
(make sure to remove all loose wires or solder before turning on the power).
Although this is not a foolproof check, it does help to narrow down the
cause of most problems as soon as possible after they happen. If at any point
the computer suddenly stops working, recheck all new soldering and
components and look for accidental solder joints. Here are the components
to be installed next: 

U38-U45 and U53-
U60

Sixteen 41256 dynamic RAM ICs

U67-U74 and U80-
U87

Another sixteen 41256 DRAMs if the optional second
512K of memory is to be installed. 

Use 150-nanosecond ICs at 8 or 10 MHz, 120-nanosecond ICs at 12.5 or
16 MHz clock speeds. Sixteen ICs will provide 512K of RAM and is the
minimum number that can be installed at this time. Even if you install only
16 DRAMs, it is a good idea to install all 32 sockets to avoid having to pull
the board out of the cabinet later. 

Next, install

C15-C46 thirty-two 0.1 µF disk capacitors near pin 1 of each
of the 32 DRAM sockets 

C47, and C49
through C54

seven 0.1 µF disk capacitors along the bottom edge
of the board below the DRAM sockets 

C56 0.1 µF disk capacitor between U75 and U88. 

18-2a. Additional Construction Step
If you have an early production PC board, your circuit board has an

error for which we apologize. As wired on the board, U48d-12 is connected
directly to AS, rather than going through U66b to RSHAS. This is a connec-
tion which worked well on the original system. But recent production
XT-compatible monochrome video boards have a tendency to output a long
wait signal to the bus while they complete internal operations. As originally
wired, the SK68K would therefore delay DTACK while waiting for the
video board to finish its operation. During this time, there would be no AS
strobes, and therefore no refreshing.

As described earlier, the modified SK68K circuit now performs a refresh
without waiting for AS while waiting for a video board. To implement this
change (which may not be necessary except when used with new video
boards), perform the following:

Cut the trace leading to U48d pin 12. Then install a jumper from U63 pin
15 to U66b pin 3, and another jumper from U66b pin 4 to U48d pin 12.

18-3. Testing
Next, let us try the memory out. Begin by moving the MAP jumper, J25,

to position 1 to enable the DRAM, and then turn on the power. The speaker
will probably beep and the normal HUMBUG prompt will probably appear
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on the screen, but this is not enough of a test - even if the memory
malfunctions, it is still possible for all this to happen since HUMBUG uses
mostly the static RAM; the DRAM is used only to hold some vector
addresses. 

To make sure the memory works we need to do some more tests. First,
use the MT (memory test) command of HUMBUG to run a quick memory
check. If you have installed all 32 DRAMs, then the correct command is 
MT FROM ADDRESS 0  TO FFFFF

which checks out 1 megabyte of locations from address $0000 to $FFFFF. If
you have installed only 16 DRAMs, then the correct command is
MT FROM ADDRESS 0 TO 7FFFF

which checks out only the first 512K of memory. In each case, press the space
bar after the zero and after the last F to tell HUMBUG that you have finished
typing the address. Either way, HUMBUG should print out a + sign and
then its normal * prompt if the memory test passes.

Although the MT memory test of HUMBUG is fast, it is not extremely
thorough. It merely goes through every location of memory and tries to set
and reset every bit, one at a time. It then reads the bit back and tests it. But
since it reads the bit back immediately after it sets it, the DRAM may seem
to work even if the refresh circuitry is bad. We therefore need a more
thorough test to check for a more long-term memory.

There are two ways to do this. One method involves copying the
HUMBUG ROM into DRAM, waiting a minute or so, and then doing a
memory compare to check the two against each other. Since the HUMBUG
ROM is less than 20K in size, it is not big enough to fill up all of DRAM for
a thorough test. Nevertheless, we can do a rough check by typing in the
following two commands:
MO  ENTER OLD ADDRESSES: FROM F80000 TO F84000
    ENTER NEW ADDRESS: 1000
MC  REGION 1: FROM F80000 TO F84000
    REGION 2: 1000

The MO command moves the contents of ROM locations $F80000
through $F84000 down into RAM locations $1000 and up (do not store
anything into locations 0 through $400, as these are used to hold other
vector addresses.). The MC command, which should be done a minute or
two later, does a memory comparison of the same two areas of memory. If
the two sets of data do not match, then HUMBUG will display the addresses
where a difference was found. 

Some other possible tests are to use the FM (fill memory) command to
fill all of memory with zeroes, and then the CS (checksum) command to
check that the sum of all these zeroes is 00000000. Another way is to move
whatever random data is in the bottom 512K into the top 512K, and then
make sure that the checksum of the bottom 512K is the same as the top 512K.
If you have plenty of time, you could also use the ROM-based Basic
program to POKE consecutive numbers into memory locations, and then
come back later, read them back with PEEK, and check against what was
stored. There are many possibilities.

DRAM Circuitry 123



If all seems to work, then skip ahead to the next chapter; once we get to
boot the SK*DOS disk operating system, there will be plenty of opportunity
to test out the memory more thoroughly. 

18-4. In Case Of Difficulty
Defective DRAM circuitry can show itself in many ways - the computer

can be totally dead, or it might come to life but be unreliable, or it might
appear to work but simply fails memory tests. The specific troubleshooting
procedures vary, depending on symptoms. The most likely symptoms are:

1. The computer is completely dead. Move the J25 jumper back to
position 2 to disable to DRAM and switch back to fully static RAM opera-
tion. If the computer is still dead, you have probably introduced a short
circuit while soldering some of the memory sockets. 

2. The speaker beeps, but nothing appears on the screen, or only the
"please press enter" message appears on the monitor (unless you are using
only a serial terminal), and at some point the HALT LED goes on. These
symptoms generally indicate that at least part of the DRAM circuitry is
working; the first step is to interchange the DRAM ICs, swapping each IC
in an upper or even group with those in a lower or odd group. If the
symptoms change then this generally indicates a defective DRAM IC. If, on
the other hand, the symptoms stay the same, then the problem is probably
elsewhere. 

If an oscilloscope is available, then place J25 into position 2 to disable
CPU accesses to DRAM, but keep the refreshing circuits going. Now check
for the following, and trace signals if any of these appear wrong:

(a) An 80 kHz signal at U46 pin 1 
(b) The frequency of each successive output from U46 should be half of the

preceding output. For example, pin 6 should be at 40 kHz, pin 5 at 20
kHz, etc. (see Fig. 18-3).

(c) There should be thin, barely-visible (depending on the oscilloscope)
negative-going pulses at U49 pin 8 and at U66 pin 8. 

(d) There should be thin, barely visible positive-going pulses at U52 pins 8
and 12.

(e) U49a should stay set at all times so pin 6 should always be high.

3. If the computer works, but fails a memory test, try to analyze the MT
test printout to determine where in memory the problem is. For example,
if errors occur in locations $80000 and above, then the problem is only in
the upper 512K of memory. If the problem occurs in a small region of
memory, then the problem is likely to be only in a single IC. 

Another way to narrow down defective DRAM problems is to use the
ME command to store a number into memory at one of the locations flagged
as defective by the MT test, and then read it back to see whether it was
stored properly. For example, suppose the MT test indicates errors in odd
locations between 4001 and 4FFF. This would indicate that an error is
occurring in the odd or lower memory group in the first 512K of memory.
Use the ME command to store the number $FF in location 4001, one of the
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defective locations. If you then read back $FB, for example, compare the bit
patterns for FF (11111111) and FB (11111011). Since there is a difference in
the third bit from the right (bit D2), you can then use Fig. 18-5 to identify
the correct IC - it is U43, since this IC is connected to D2 in the lower 512K
of memory. (Note that the bits in even locations are numbered from D15 on
the left to D8 on the right, whereas the bits in odd locations are numbered
from D7 on the left to D0 on the right.) 

Fig. 18-5. Physical layout of the 32 RAM ICs.
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Chapter 19

Floppy Disk Controller

Without some "mass storage" device such as a floppy disk, even the
largest computer would still be just a toy. The SK68K can use either a floppy
disk or a hard disk; the floppy disk interface is right on the main SK68K
board. 

19-1. Discussion
Although we tend to look in awe at the floppy disk circuitry of any

computer, actually it is a very simple circuit - because the most complex
parts are hidden in a dedicated IC known as the FDC or Floppy Disk
Controller.

Fig. 19-1 shows the circuitry. The heart of the circuit is the WD1772 FDC
which handles most of the real work of the interface. On the CPU side, the
FDC connects to the lower eight bits of the data bus, to address bits A1 and
A2, to the R/W line, to the RESET line, to the I/O4 select line from the
address decoder, and to the 8 MHz clock signal CLK8. 

The I/O4 line comes from U34 in the address decoder (Fig. 10-1). It goes
low whenever the 68000 accesses any address in the range from $FE0100
through FE013F, and thus selects the FDC whenever the 68000 does any
read or write to any address in this range. But since only the lower eight
bits of the data bus go to the FDC, only odd addresses in this range can
actually be used for data transfer. 

Internally, the CPU-side of the FDC is organized into six registers - six
groups of flip-flops which store a byte-sized number. Two of these registers
can be both written into and read by the 68000; another two can be read but
not written, and the last two can be written into but not read. The 68000
selects which register it is reading or writing by (a) making the R/W line
high for reading or low for writing, and (b) putting the appropriate bit
pattern on address lines A1 and A2. These two bits are controlled by
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choosing which address (in the range from $FE0100 through FE013F) the
program accesses. For example, writing to location $FE0103 makes R/W
low and puts the bits 01 on A2 and A1 respectively. (Remember that the 3
at the end of $FE0103 is the bit pattern 0011; the middle two bits of this
pattern are A2 and A1, respectively.) 

These six registers therefore appear to the 68000 at four address locations
as follows:

$FE0101 Control register Write only

$FE0101 Status register Read only

$FE0103 Track register Read/Write

$FE0105 Sector register Read/Write

$FE0107 Write data register Write only

$FE0107 Read data register Read only

Each of the registers has a specific job:
To tell the FDC what to do, the 68000 (or, to be more exact, its program)

puts a command into the Control register. The command might tell it to
move to a specific track, to read or write a specific sector, or to format a

Fig. 19-1. Floppy disk controller.

Floppy Disk Controller 128



track. (Read Appendix D about disk organization if you are not familiar
with how data is stored on a floppy disk.) 

To tell the 68000 (or its program) what is going on, the FDC puts status
information into the Status register. Each bit in the status register has a
function, such as to indicate that the FDC is busy, that it is waiting for data,
that the disk is write-protected, or that an error has occurred.

The 68000 tells the FDC where to read or write by placing the track and
sector number into the Track and Sector registers.

Finally, the 68000 places data to be written on the disk into the Write
data register, or reads data from the Read data register.

Although the FDC IC handles most of the housekeeping involved with
reading and writing floppy disks, there are two jobs it does not handle -
choosing one out of several drives, or choosing a specific side of a double-
sided disk. In addition, the FDC needs an additional input to tell it whether
to use single or double density on the disk. All three of these jobs are
handled by U11, a quad latch. 

As shown in Fig. 19-1, the four data inputs of U11 connect to bits 0, 1, 5,
and 6 of the data bus, while its CLK or clock input connects to I/O3. Like
I/O4, I/O3 comes from U34 in the address decoder, but this signal is pulsed
whenever the 68000 reads or writes to any address in the range of $FE00C0
through FE00FF. More specifically, any time that the 68000 stores a byte into
location $FE00C1, U11 is clocked and any data that is on bits 0, 1, 5, or 6 of
the data bus is stored into U11. The outputs of U11 are then used as follows:
bits 0 and 1 go to U12, a decoder which selects one of four drives; bit 5 is
sent to the DDEN pin of the FDC IC to choose either single or double
density; bit 6 goes through U22a to the disk drives to select the side. 

Finally, let’s look at the connections to the disk drives themselves. Disk
drives connect to the SK68K computer through a 34-wire flat cable which
plugs into J13. Although not shown in Fig. 19-1, all of the odd pins of that
connector are grounded, while the even pins carry signals to and from the
drives. (On the connector, all the odd pins are on one side of the connector,
while in the flat cable the odd-numbered wires alternate with the even-
numbered wires. This means that between any two even-numbered signal
wires there is always a ground wire which provides some shielding and
isolation between signal pins.)

When there is more than one floppy drive, all the drives share the same
34-conductor cable and are connected in parallel. The only signals which
are not shared by all drives are the DRV 0 through DRV 3 wires, which are
used to select a specific drive. For example, to access drive 0, the SK68K
places a low on the DRV 0 line while keeping the other three DRV lines high.
When a command is then sent to the four drives, only the one selected drive
actually obeys the command.

The signal wires can be grouped into three groups: read or write data,
control signals to the drives, and status signals returned by the drives.

The two data lines are RD for Read Data, and WD for Write Data.
Although data on the data bus travels in parallel, the FDC IC contains
internal shift registers which convert it to and from serial data, which is
then sent one bit at a time to or from the drive. Clock pulses are also added
by the FDC to make sure that the data on the disk is properly timed and
can be correctly read back. In single density, a clock bit is inserted between
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every data bit; in double density, clock bits are only inserted between
consecutive zeroes. By cutting down on the clock bits, double-density
operation can store more data bits on each track of the disk.

There are a number of control signals which are sent to the drive to
control its operation. We have already discussed the four DRV signals,
which select a particular drive, and the SIDE  signal which selects the side
of the disk. Other control signals include WG, the Write Gate signal, which
goes low to tell the drive to switch from reading to writing; STP (step) which
tells it to move the head from one track to the next; DIR which tells it which
direction to move the head in; and MOT, which tells it to turn the motor on.

By way of explanation, MOT actually controls all drives, so even drives
not selected (with a DRV signal) turn their motors on and rotate the disk.
The STP signal is so named because floppy drives use a stepper motor to
move the head back and forth between tracks. A stepper motor has a
ratchet-like motion which is so aligned that the head settles over the correct
track when the motor clicks into the next position. In this way the precise
positioning of the head over a track is handled by the motor without any
external help.

Finally, each drive sends back three status signals, all usually derived
from photo-electric sensors in the drive. A drive sends back a low on the
WPRT (write protect) line if it senses that the write-protect notch on the disk
is covered with tape. It sends back a low on the TR00 (track 00) line when
it senses that the head has been stepped all the way to track 0, the outermost
track on the disk. (Note that the FDC has no easy way of knowing which
track the head is positioned over - it keeps track of the head position by
sensing track 0, and then keeping a count of the STP step pulses as the head
moves in and out.) The IP or Index Pulse signal carries a low pulse every
time that a disk rotates so that the beginning of the track is under its head.
The drive senses the beginning of the track by sending a beam of light
through a small hole in the disk called the index hole; once every revolution
of the disk, the light is sensed and generates the IP pulse.

The FDC uses the index pulse in several ways. In normal operation, the
presence of the pulse signal tells the FDC that there is a disk in the drive
and the door is closed (otherwise the disk would not turn). While format-
ting the disk, it tells the FDC where to begin and end each track. When the
FDC encounters a disk error, it also uses the IP signal to count down how
many times it retries the operation before it gives up. 

19-2. Construction
Install the following components: 

U5 WD1772 floppy disk controller, and its socket

U11 74LS175 quad latch, and its socket

U12 7442 BCD-to-decimal decoder, and its socket

U7 74LS367 hex bus driver, and its socket

U6 7406 open-collector hex inverter, and its socket
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R1, R2, R4, R5, and
R6

150-ohm 1/4-watt resistors

J13 a 34-pin header

C6 0.1 µF disk ceramic capacitor 

19-3. Testing
Most 3-1/2" or 5-1/4" floppy disk drives will work with the SK68K, but

a double-sided drive (and, if possible, an 80-track drive) is preferable as it
will hold more data. In the PC world, these drives are normally identified
as 360K for 40-track drives, or 720K for 80-track drives; drives labelled 1.2
meg or 1.44 meg are not suitable. 

Note also that the SK*DOS disk operating system is normally supplied
on 80-track double-sided disks unless you specify otherwise. An 80-track
drive can read 40-track disks by a process called double-stepping, where
the drive takes two steps of 1/96" to move the 1/48" spacing between tracks
on a normal 40-track disk; SK*DOS automatically tries double-stepping
when it encounters a disk error, so reading a 40-track disk in an 80-track
drive is totally invisible to the user. But the reverse is not true - although
SK*DOS can write a 40-track disk in an 80-track drive, it often happens that
this makes the disk unreadable on a 40-track drive. The reason is that the
tracks on an 80-track disk are not just closer together, they are also narrower.
When an 80-track drive writes on a 40-track disk, it does not write over the
full track width and some of the original 40-track data may still remain
around the edges of the track. When a 40-track drive subsequently reads
the disk, it reads the new data as well as some of the old. Depending on the
exact track positioning and other factors, it may then misread the disk and
fail. 

The next task is to make sure that the jumpers on the drive are properly
set. As described above, selecting one out of a possible four drives is done
by the four DRV lines. Although all four lines go to each drive, only one
DRV signal is actually used by any single drive. Fig. 19-2 shows a simplified
diagram of some of the jumpers which control drive selection on a typical
floppy drive. As you can see, the four DRV signals appear on pins 6, 10, 12,
and 14 of the 34-pin connector, and go to a set of jumpers usually called DS0

Fig. 19-2. Drive select circuitry in a typical drive.
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through DS3 (although sometimes they are labelled DS1 through DS4).
When one of these jumpers is installed, then this DRV signal goes to the
‘drive select’ line on the drive to enable the drive.

To use a single drive with the SK68K, you must make sure that it has
only the DS0 jumper installed. In some drives, the connections are made
through a shorting plug installed in an IC socket; in this case you may have
to break three of the four connections on the shorting plug (or install a small
DIP switch instead of the shorting plug). In other cases, you may have to
move a jumper from one of the other positions into DS0. (Many floppy
drives currently sold for use in IBM PCs or clones have the DS1 jumper
installed, since the drive selection in these systems is done by flipping wires
in the 34-pin cable, rather than by moving jumpers on the drive.) If you
install more than one drive, place each DS jumper in a different position,
starting with DS0 for your main drive. 

In addition to moving the DS jumpers, you should also remove the MUX
(or MX) and HM jumpers if installed, and place a jumper in the HS position.
MUX is used to permanently select a drive for those computers which do
not provide DRV signals, while the HM and HS jumpers control the ‘head
load’ signal in those drives that have a solenoid which moves the
read/write head against the disk. Installing the HM (head with motor)
jumper would bring the head against the disk as soon as the motor turns
on, whereas installing the HS (head with select) jumper only brings the
head against the disk if the drive is selected. (Many modern drives do not
have a head load solenoid, in which case this item does not apply.)

One last item on the drive(s) concerns small resistor packs installed in
sockets. In order to minimize noise, each of the wires bringing a signal from
the computer to the disk drive must be properly terminated with a resistor.
Drives usually have small resistor packs which provide the terminations.
But to avoid overloading the signals when more than one drive is installed,
only the one drive at the very end of the cable should have its resistor pack
installed. If there is no terminating resistor pack, or if there are two or more,
the disk system may be unreliable, so check each drive in your system. (If
you are using used drives, they may be missing the resistor packs alto-
gether.) 

Once this is completed, connect the four-pin power plug from the power
supply to the drive, and connect the 34-pin cable between the computer
and disk drive. Pin 1 of J13 is toward the back of the board, and the pin 1
end of the connector is marked on most disk drives with a small notch
between pins. 

Finally, insert a blank disk into whichever is drive 0 and turn on the
power. Once the HUMBUG program is running, examine the disk drive to
check that the motor is off and the drive select LED on the face of the drive
is off. If either of these is on, the 34-pin cable is most likely connected
backward at one end. 

Now type the HUMBUG command FD (floppy disk). Since the drive
still contains a blank disk it cannot boot SK*DOS, but still the drive motor
should start and the drive select LED should light. If the motor comes on
but the LED does not, the DS jumpers may not be properly placed. Don’t
go on until the motor and LED behave properly.
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Once you have made all these checks, reset the computer, remove the
blank disk, place a write-protect tape strip on the write-protect notch of
your SK*DOS system disk, and place it in the drive. Then type the FD
command.

If all goes well, the disk drive should start, the drive select LED should
go on, the head should go back and forth a few times, and in a few seconds
the SK*DOS signon message should appear. Congratulations - your system
is working and almost finished!

19-4. In Case Of Difficulty
If not, then a bit of debugging is in order. First check the type of disk

drive - a single-sided drive cannot read a double-sided disk, a 40-track drive
cannot read an 80-track disk. If you are really quick, try to count the disk
revolutions per second (rps) - the disk should be turning at 5 rps, not 6. If
it turns at 6 rps, it may be a 360 rpm 1.2 megabyte drive intended for an
AT-type system; if so, all is still not lost since some of these drives have a
jumper to select either 300 or 360 rpm.

If the drive seems correct, use HUMBUG’s FM command to fill all of
memory from address $0800 through $8000 with zeroes, and then try the
FD command again. After about 15 seconds, reset the system and use the
HA command to look at locations $0800 through 0900. If these locations still
contain zeroes, then the disk system totally failed to read the disk. If an
oscilloscope or logic probe is available, check that the IP and RD lines are
normally high, but have negative-going pulses just after you type the FD
command. If not, then the disk may be in the drive backward, the disk drive
may still not be properly selected, or may be defective. An easy way to check
is to remove the disk, turn off the power, manually (and very carefully - it
might be useful to ask a knowledgeable person for help!) move the drive’s
head carriage a half-inch toward the center of the disk, and then try again.
As soon as you type the FD command, the FDC should step the head
carriage outward toward track 0; if not, then some of the control signals are
either not getting to the drive, or else are being ignored. 

If locations $800 and up are now nonzero, then something was read from
the disk. Check whether the first few bytes at $0800 are 60 08 50 54 32; these
are the very first bytes read from track 0 sector 1 of the disk. If this data is
there, then the disk system is almost OK. The data read from this very first
sector contains the first half of a program we call the superboot, and loads
into locations $0800 through $08FF. Once loaded, HUMBUG’s FD com-
mand then jumps to location $0800, and this program loads the very next
sector (track 0 sector 2) into memory at location $0900, so check whether
the area from $0900 through $09FF is now filled, or whether it still contains
zeroes.

The combination of these two sectors is now supposed to load the
SK*DOS.SYS system file into memory and jump to its beginning at location
$1000. Look at locations $0805 and $0806; these two bytes should contain
two nonzero numbers, which tell the program where on the disk to find the
SK*DOS.SYS file.
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Next, look at locations $1000 through 1100. If these locations still contain
zeroes, then the SK*DOS file was not read. If the drive seems able to read
the superboot program but fails to read SK*DOS.SYS, there may be a
problem with the STP or DIR lines or circuitry so that the drive can read
track 0 but not other tracks. This symptom would also appear if you were
using a 40-track drive to read an 80-track disk, or a single-sided drive to
read a double-sided disk.

Finally, look at memory locations in the range from $4000 to $5000 or so.
If these are still zeroes, then an error may have occurred while reading the
disk. A common problem is head alignment - the fact that the disk head
may not be centered over a track. Try a different drive; another possibility
is to copy your SK*DOS system disk on another system and try the copy.
For example, SK*DOS disks can be duplicated using the Copy II PC Option
Board on PC/XT clones. Alternatively, exchange your SK*DOS disk for a
new one.
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Chapter 20

Parallel Printer Port

There are several ways to connect a printer to the SK68K - a serial printer
can be connected to the serial port at J21, a parallel printer can be connected
to the printer port on a monochrome video card, or a parallel printer can
be connected to J8 on the SK68K system board. All of these are supported
by SK*DOS drivers, and it is even possible to connect all three printers at
once. This step discusses the parallel printer port at J8.

20-1. Discussion
As Fig. 20-1 shows, there isn’t actually much to discuss - the entire port

consists of just U2, an MC68230 parallel interface/timer IC (PI/T) which is
part of the Motorola 68000 family. The 68230 consists of essentially three

Fig. 20-1. Printer / parallel port.
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parts: 
Port A is an eight-bit input/output port which uses the eight PA pins

along with two hand-shaking pins called H1 and H2. The PA pins are data
pins for the eight-bit parallel data, and can be used for both input and
output; H1 and H2 are used for hand-shaking; that is, for sending control
information. When used with a printer, port A (via pins 1-20 on J8 - pins
21-40 are not used in this case) connects to a Centronics-compatible parallel
printer connector. The PA lines carry characters to the printer, H2 tells the
printer that a character is ready, and H1 lets the printer tell the SK68K
whether it is ready or busy.

Port B is a second eight-bit port similar to port A but using PB, H3, and
H4 lines instead of PA, H1, and H2. Although it could also be used to drive
a printer, in most cases it will not be connected (when using port A to drive
a parallel printer, don’t connect to J8 pins 21-40.)

The third part of the 68230 PI/T is a timer. This is a 24-bit counter which
can count either CLK8 clock pulses or external pulses, generate square
waves, generate interrupt signals to the computer at fixed time intervals,
and various other functions. It is not used by SK68K software, but there is
no reason why you can not use it in your own programs.

On the CPU side, the 68230 connections are similar to those of the floppy
disk controller. It receives the I/O2 signal from the address decoder, so it is
selected whenever any address in the range of $FE0080 through $FE00BF
appears on the address bus. Like the FDC, it contains a number of internal
registers which are accessed at specific addresses, depending on the status
of address lines A1 through A5. But there are just too many registers and
operating modes to describe here - Motorola publishes a 75-page manual
on this IC alone!

20-2. Construction
Install the following components:

U2 MC68230 PI/T and its socket

J8 40-pin header

C2 0.1 µF disk capacitor 

Fig. 20-2 shows how to construct the printer cable with 20-conductor
flat cable. You may use a 20-pin connector at the computer end if you make
sure to install it only in the pin 1 end of J8; otherwise, use a 40-pin connector
and make sure to attach the 20-wire cable all the way toward the pin 1 end.
Place a standard Centronics printer connector at the other end, making sure
that pin 1 of this connector connects to pin 1 of the other connector. 

20-3. Testing
Connect a standard Centronics-compatible parallel printer to J8, and

then boot SK*DOS (with the FD command).
To use the printer, you must first install the parallel printer driver. From

the SK*DOS prompt, use the command
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DEVICE PARALLEL AS PRTR AT 2

This installs the PARALLEL.DVR driver from the disk as device 2 and
gives it the name PRTR. To try out the printer, try any SK*DOS command,
but insert the text >PRTR on the command line to redirect the output from
the screen to the printer. For example, the command
ACAT >PRTR

would print an alphabetized catalog of the disk on the printer.

Fig. 20-2. Parallel printer cable.
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Chapter 21

Optional -HDO Hard Disk Port

Rejoice - this is the last section of your SK68K computer to be wired. In
fact, most users will probably choose to omit this section.

21-1. Discussion
The cheapest way to add a hard disk to your SK68K is by using a Western

Digital WDXT-GEN (or -WX2) type hard disk controller, plugged into one
of the XT-style connectors on the back. These controllers cost about $70, or
can be obtained complete with a 20-megabyte disk and cables for under
$250. 

Still, there are some users who wish to use a more expensive controller,
the Western Digital WD1002-HDO which alone costs about $250, because
they want to keep all their XT-type slots open for other purposes. The -HDO
hard disk port shown in Fig. 21-1 is for them; all others can simply skip this
part since the -HDO controller has no other advantages. (While both hard
disk controllers can be installed at the same time, they require slightly
different versions of SK*DOS and therefore cannot be used at the same
time.)

The -HDO controller connects to the SK68K with a 40-pin flat cable
connected to J17. It needs the data bus, three bits from the address bus to
select internal registers (buffered address lines BA0 through BA2, obtained
from the XT-type interface connectors are used), the I/O5 signal which
selects this port at addresses $FE0140 through $FE017F, RESET, and a pair
of signals called WE and RE for write enable and read enable, which are
generated by U15b and U15c from the R/W signal and a port-select signal
derived from U16. 

U16 is essentially a digital delay used to generate DTACK. Each time
the -HDO port is selected by I/O5 and the AS address strobe signal arrives,
U16 starts to shift the AS signal from stage to stage. After two CLK8 clock
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pulses, it sends a signal up to U15b and U16c to generate either WE or RE,
depending on whether the system is reading or writing. After six clock
pulses, it sends a pulse to U15d, which then generates DTACK. 

21-2 Construction
First, remove the jumper between U15 pin 7 and pin 12. When we

installed U15 in Chapter 16 as part of the XT-type bus connector circuitry,
we put in this jumper to prevent U15d from generating a constant DTACK
which would prevent the rest of the computer from working properly. Then
install the following parts: 

U16 74LS174 hex type D flip-flop and its socket

R13 150-ohm 1/4-watt resistor

J17 40-pin header

Other components, such as R10, U15 and U22 have been installed in
previous steps, so this completes the installation.

Fig. 21-1. -HDO hard disk controller port.
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21-3. Testing
There is no easy way of testing this port if you do not have an actual

-HDO controller.
If you do, then plug in the controller with a 40-pin cable and start the

computer. First, boot SK*DOS from a floppy disk using the FD command.
If your hard disk is empty, you will have to format it with the HDFORMAT
command; if it already has files on it, then use the DRIVE command to
assign it a drive number and check its contents with the DIR command.
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Chapter 22

Loose Ends

If you still have a test wire connected to pin 1 of J14, cut it very short
and use it to jumper pin 1 to pin 2. Since we will no longer need our LED
logic probe, this restores the circuitry feeding the LED.

Way back in Chapter 3, you installed three LEDs at J15, J16, and J17. If
you install the SK68K in a cabinet which has some LEDs on the front panel,
you may wish to replace the board-mounted LEDs with those on the front
panel. Since the DSK LED at J16 is only used with the -HDO hard disk
controller, you will probably choose to leave it, but the POWer LED at J15
and the HLT LED at J17 might be useful on the front panel. In that case, cut
off these two LEDs, leaving about 1/2" of their leads sticking up above the
board. The two-pin connectors that most cabinets are supplied with for LED
connections slip over the stubs of the LED wires (if the LEDs do not light,
reverse the leads.)

Look over the printed circuit board carefully to make sure that all solder
connections are right and that there are no areas which will suddenly cause
problems a few months from now. Check also to make sure that all compo-
nents are installed; look especially for capacitors or resistors which you may
have missed. If some of these are missing, the computer may still work but
may not be as reliable as it should be. 

Before mounting the printed circuit board in a cabinet, note again
that the board mounting holes have copper lands both on the top
and bottom of the board. These lands are not at the same potential!
The lands on the bottom are grounded, but the lands on top connect
to +5 volts. You must therefore use non-conductive mounting
hardware to prevent shorting the +5-volt line to ground.
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Appendix A

SK68K Parts List 

Integrated Circuits

U1 74LS245 Octal bus transceiver

U2 MC68230P8 Peripheral interface / timer

U3 3.68 MHz oscillator 

U4, U10 MC68681 DUART 

U5 WD1772 floppy disk controller 

U6, U22, U32 7406 Hex inverter/buffer (o.c.) 

U7 74LS367 Hex bus driver 

U8, U29 1489 RS-232 receiver 

U9, U30 1488 RS-232 driver 

U11, U24, U31,
U33, U76

74LS175 Quad D flip-flop 

U12 7442 BCD decoder 

U13, U50 74LS74 Dual D flip-flop 

U14, U26, U51 74LS32 Quad 2-input OR 

U15, U35 74LS00 Quad 2-input NAND 

U16 74LS174 Hex D flip-flop 

U17, U18 74LS373 Octal latch 

U19, U61 74S373 Octal latch 

U20, U27 27128 16Kx8 450ns EPROM (or 27256 or 27512) 

U21 6116 2Kx8 400ns static RAM 

U23, U49 74S74 Dual D flip-flop 
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U25 74LS322 8-bit shift register 

U28 6116 2Kx8 400 ns Static RAM or MK48T02 clock 

U34 74LS138 3-to-8 decoder 

U36 74LS30 8-input NAND 

U37 74LS10 Triple 3-input NAND 

U38-U45, U53-
U60, U67-U74,
U80-U87

256K 150ns dynamic RAM ** 

U46 74HCT393 Dual 4-bit counter 

U47 MC68000P8 microprocessor ** 

U48 74LS08 Quad 2-input AND 

U52 DDU66-150 150ns Delay Line ** 

U62, U75, U88 74S257 Quad 2-input multiplexer 

U63 16L8 programmable array logic 

U64 74LS139 Dual 2-to-4 line decoder 

U65 74LS390 Dual decade counter 

U66 74LS04 hex inverter 

U77 74ALS74 Dual D flip-flop 

U78 16 MHz oscillator 

U79 Optional 20 (or 24 or 32) MHz oscillator ** 

U89 74LS148 8-to-3 line priority encoder 

U90 74LS164 8-bit shift register 

U91 555 timer 

U92 optional 14.313 MHz oscillator 

Connectors

J1-J6 62-pin card edge connector 

J7, J8 40-pin dual header strip 

J9 5 pin PC DIN connector 

J10A, J10B 6-pin power connector 

J11, J12, J21, J22 6-pin dual header strip 

J13 34-pin dual header strip 

J18 4-pin single header strip 

J19, J20, J24, J25 3-pin single header strip 

J23 2-pin single header strip 

Resistors (all 1/4 watt, 10% unless otherwise noted)

R1-R6 150 ohms 

R7 4700 ohms 
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R8-R10, R12,
R13

10,000 ohms 

R14, R15, R16 330 ohms 

R17, R18 33-ohm 16-pin DIP package 

R19 10,000-ohm 8-pin SIP package 

R20, R21, R24,
R26

2200 ohms 

R22, R23 1 megohm 

R25 33 ohms 

Capacitors

C3, C4, C5 47 pF disc ceramic 

C63 1 µF 16-volt tantalum 

C90 10 µF 16-volt tantalum 

C68 33 pF disk ceramic 

all others
 (quantity 64)

0.1 µF disc ceramic 

Integrated circuit sockets

1 8-pin 

22 14-pin 

47 16-pin 

1 16-pin with decoupling capacitor 

7 20-pin 

2 24-pin 

3 28-pin 

2 40-pin 

1 48-pin 

1 64-pin 

Miscellaneous components

1 SK68K printed circuit board 

1 Cabinet (PC, XT, or AT clone) 

1 135- or 150-watt Power supply (PC or XT clone) 

3 LEDs 

4 shorting plugs 

NOTE: At higher CPU clock rates, components marked with ** must be
replaced with faster versions.

SK68K Parts List 147



SK68K Parts List 148



Appendix B

Computer Number Systems

Internally, computers do all their calculations with binary numbers
which may only contain the binary digits (bits) 0 and 1. 

Imagine that you had to count pages in a book, but were told that you
were not allowed to use any number containing the digits 2 through 9. In
other words, your numbers would only be allowed to contain zeroes and
ones. You would then count like this: 

1
(skip 2 through 9 because they contain forbidden digits)

10
11

(skip 12 through 99)
100
101

(skip 102 through 109)
110
111

(skip 112 through 999)
1000
1001

(skip 1002 through 1009)
and so on.

Thus the first page would be numbered 1, the second would have the
number 10, the third would be numbered 11, and so on. In other words, we
would get a table like this: 

Page Binary Count

1 1

2 10
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Page Binary Count

3 11

4 100

5 101

6 110

You may think of the left column as being a normal decimal number,
while the right column is its binary equivalent. When you extend the table
to include zero and also some larger numbers, you get a table like the one
below (we’ve added a few extra zeroes, but that doesn’t make a difference.
After all, 1, 01, 0001, or even 000000001 are still just ‘one’.) 

Decimal Binary Decimal Binary

0 0000 9 1001

1 0001 10 1010

2 0010 11 1011

3 0011 12 1100

4 0100 13 1101

5 0101 14 1110

6 0110 15 1111

7 0111 16 10000

8 1000 17 10001

Suppose you were limited to numbers consisting of just four bits. Then
the smallest number would be 0000 (decimal zero), while the largest num-
ber would be 1111, or the decimal number fifteen. But when you want to go
to sixteen, you need one more bit. So we see that you need more and more
bits as you count to higher and higher numbers. In fact, binary numbers
are roughly three times as long as their decimal equivalents - the decimal
number 999 translates to a binary 1111100111, while the decimal 9999
translates to 10011100001111. 

Which brings us to the binary numbers that travel on the data bus and
address bus of the SK68K computer. With a 24-line address bus, the smallest
address in the SK68K computer consists of 24 zeroes, while the largest
address consists of 24 ones. All the other addresses have some intermediate
combination of zeroes and ones such as, for example,
110101011100001111101010. Although such an address is fairly easy for the
computer to handle, we humans find it hard to read or write such long
numbers without making a mistake. Hence we use a mathematical short-
hand called hexadecimal notation instead. 

To use hexadecimal numbers, we first split the binary number into
groups of four bits like this: 
1101 0101 1100 0011 1110 1010
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Now we want to convert each group of four bits into a single digit, but
right away run into a problem: the very first 1101 is equal to decimal 13,
which is two digits, not one. In fact this is going to happen with 10, 11, 12,
14, and 15 as well. And so we extend the decimal number system with six
additional digits (called hexadecimal digits) A through F. We write A instead
of 10 (decimal ten), B instead of 11 (decimal eleven), and so on, up through
F for 15 (decimal fifteen). The number is now written as 
1101 0101 1100 0011 1110 1010
 13    5   12    3   14   10 
  D         C         E    A

or just plain D5C3EA. That gives us this conversion table to use between
binary and hexadecimal:

Hexadecimal Binary Hexadecimal Binary

0 0000 8 1000

1 0001 9 1001

2 0010 10 1010

3 0011 11 1101

4 0100 12 1100

5 0101 13 1101

6 0110 14 1110

7 0111 15 1111

Returning to the address bus ... the smallest address is 24 zeroes;
splitting into groups of four bits we get six groups of 0000, which translates
into the hexadecimal (also called just hex) 000000. The largest address is 24
ones, which separates into six groups of 1111, or a hex address of FFFFFF. 

One last item - when you see a number such as 3152, it is sometimes
hard to tell whether this is supposed to be a decimal number or hexadeci-
mal. Whenever there is any doubt, users of Motorola processors always put
a $ before hex numbers. Thus $3152 would be hexadecimal, whereas a plain
3152 would usually be decimal (except if someone forgot to write the dollar
sign, or else if it is obvious from the context.) 
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Appendix C

How To Solder

Even if you already have experience soldering components to a printed
circuit board, this Appendix contains useful information to help you avoid
disaster in wiring your SK68K computer trainer.

Using a printed circuit board for a project eliminates most worries about
connecting components to the wrong place, but it introduces new prob-
lems, especially if the board contains many components and very small
wiring, as the SK68K computer board does. Bad construction technique can
result in short circuits, bad connections, or even a ruined pc board.
If you have never soldered on a printed circuit board before, find an expert
technician or repairman and ask him or her to show you how it’s done.
Even your local TV repairman may be a good source of expertise. This
Appendix describes some of the hints and tricks, but there is no substitute
for on-the-job training. You just don’t want to train on the SK68K computer
pc board! 

Good soldering requires (a) a steady hand and some patience, (b) good
eyesight, (c) the right equipment, and (d) the right technique. Most of us
can manage the steady hand, resting our hand on a thick book or the table
edge if need be, and the patience we can’t help you with. In the absence of
good eyesight, we recommend one of the magnifiers which slips over the
head. It is available at many stationery stores and also from Heathkit. It
slips over the head and puts a magnifying lens in front of each eye. Highly
recommended. 

On to the equipment. First, you need the right solder. NEVER USE ACID
CORE SOLDER because it corrodes the connections. The proper solder for
electronic use is called rosin core. Solder is made of a combination of lead
and tin; the best solder is 60% tin and 40% lead, although so-called 50-50
solder will also work. But beware - some solders are labelled 60-40 to make
you think they are better, but are in fact worse than 50-50 because they
contain more lead rather than more tin. The composition of solder is
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important because the correct 60- 40 solder melts at the lowest temperature
and is thus easiest to use. 

Next, you need the right soldering iron. A pencil type iron rated 35 watts
or so is good; a temperature controlled low-voltage soldering station, made by
Weller, Ungar, and others, is a more expensive but ideal choice. The cheaper
non-temperature controlled irons sometimes tend to run too cool (which
results in inadequate joints) or too hot (which may burn the board.) 

Do not get anything over 45 watts, and definitely do not use a solder
gun. It is almost certainly going to run too hot. Aside from possibly burning
the board, a hot tip corrodes much faster and gets much dirtier in use.
Speaking of tips, the slightly more expensive iron-clad tips last much longer
than pure copper tips, and also stay cleaner. 

Cleanliness is important. Use a wet sponge to clean off the iron tip every
few minutes or so. We use a sponge in a holder on the solder stand, and
wipe the iron on it just before using it. This avoids the problem that any dirt
on the soldering iron’s tip (which is usually corroded solder and rosin flux)
will flow onto the soldered joint and contaminate it. Dirt also prevents good
contact between the iron and the joint, which is needed to quickly melt the
solder without overheating the joint. 

Once wiped clean, the iron sometimes needs three or four seconds to
heat up again, and also needs just a bit of solder to ’wet’ the tip with solder
and make it shiny. 

Most soldering instructions claim that you should put the iron on one
side of a joint, hold solder against the other side of the joint, and wait for it
to melt and flow on the joint. We find this doesn’t always work. When a
clean iron tip touches the joint to be soldered, it often touches at just a single
tiny point; the result is that not enough heat gets transferred to the joint to
melt any solder. You can try to get around this by placing the flat part of the
iron against a flat part of the joint, but heat transfer is still sometimes too
low. Our solution is to hold the thin strand of solder between the joint and
the iron until it melts, and then move the solder to the opposite side. The
tiny bit of solder which melts on the iron’s side of the joint forms a layer of
metal which transfers heat very quickly to the joint, so that by the time we
get the rest of the solder to the other side, the joint is hot and ready to melt
more solder. In this way we can solder a connection on a pc board in just a
second or two.

Speed is important too. Applied too long, the soldering iron can burn
the board or loosen a trace so it comes off; both of these are unsightly and
can be difficult to fix. Some companies sell heat sinks - small clips which
are supposed to remove extra heat from connections - and many people
suggest putting a rubber band around the handles of a pair of needle-nose
pliers so they stay closed, and then clipping them on the lead being
soldered. But these do not really solve the basic problem; if anything, they
make it worse because they keep the temperature too low for good solder-
ing. The best solution is to keep the iron clean and hot so that the connection
can be made fast - if a single printed circuit board connection takes you
more than a second or two, you are doing something wrong. 

When finished, the connection should be smooth, bright and shiny, with
no rough edges. Don’t use too much solder - the right amount will just cover
the joint. In fact, it is not even essential to cover all of the joint, as long as
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there is enough solder to form a bridge between the two metals to be joined.
Many technicians believe that it is better to have too little solder than too
much. 

Note that both sides of the board are covered with what looks like a layer
of thin green paint. This is called the solder mask. The entire side of the
board is masked except right around each hole; the purpose of the solder
mask is to keep the solder on a joint from spreading to adjacent joints. Since
many of the solder pads are very tiny, the solder mask helps prevent solder
bridges from shorting to nearby pads. All exposed areas of copper are
plated with a stable, shiny coating which does not corrode. Unlike plain
copper boards, which slowly oxidize and have to be washed or cleaned just
before soldering for best connections, this board does not need such treat-
ment. Do not wash or clean the board prior to soldering. 

Final words - don’t rely on the above. If you have never soldered to a
printed circuit board before, find someone who has and ask them to show
you. 
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Appendix D

Disk Organization

The data on a floppy disk is written in cylindrical paths called tracks.
The most common disk format is to have a 51⁄4" disk with 40 tracks, spaced
1⁄48" apart; this format is often called a 40-track or 48 TPI (tracks per inch)
disk. A somewhat newer format places the tracks half as far apart, resulting
in 80 tracks which are 1⁄96" apart; this is usually called a 96 TPI disk. 31⁄2"
disks also come in 40- and 80-track versions, but their tracks are placed
considerably closer together. Tracks are usually numbered starting at track
0, which is the outermost track, to track 39 or 79, which is the innermost
track. 

In addition, disks can be either single-sided or double-sided, although
almost all modern disk drives write on both sides. Obviously, a double-
sided disk can store twice as much data. Disks are often described as SS for
single-sided or DS for double-sided.

Furthermore, disks can be either single-density, double-density, or
quad-density, depending on how closely the bits are packed together on a
track. The original floppy disks were all single-density, but the more
modern double- and quad-density formats pack roughly twice as many, or
four times as many, bits on a track (although as a practical matter, the actual
improvement is usually about 20% less than expected.) Densities are often
abbreviated as SD for single density, or DD for double density. 

Finally, most floppy disks rotate at 300 rpm, which works out to 5
revolutions per second, although the so-called HD or high-density disks on
IBM computers rotate at 360 rpm (the same speed, in fact, as the really old
8" disks.)

Since many people are familiar with the various disk formats available
on an IBM personal computer, here is a comparison of some of these
common formats:
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C a p a c i t y
(bytes)

Sides Tracks Density RPM Size

180K 1 40 Double 300 51⁄4"

360K 2 40 Double 300 51⁄4"

720K 2 80 Double 300 31⁄2"

1.2 meg 2 80 High 360 31⁄2"

1.44 meg 2 80 High 360 31⁄2"

The original SK68K computer supported only the double-density for-
mats in the above table; now it supports all of the above disk formats
(although older versions require a newer HUMBUG ROM, and a plug-in
IBM-style disk controller).

Although the typical double-density track can theoretically hold almost
6000 bytes, in practice only 4608 bytes are used for actual data storage; the
remaining bytes are wasted. On an IBM disk running MS-DOS, these 4608
bytes are divided into 9 sectors of 512 bytes each; on the SK68K running the
SK*DOS disk operating system, they are divided into 18 sectors of 256 bytes
each. These sectors are then numbered, beginning with sector 1 at the
beginning of a track. 

On an SK*DOS disk, track 0 is used to hold system information, while
the remaining tracks hold program and data files. On track 0, sectors 1 and
2 hold the superboot program which is used when starting (booting) the
system; sector 3 is called the System Information Sector (SIS) because it stores
system information such as how much of the disk is free; sector 4 is used
for testing purposes, and the remaining sectors, beginning with sector 5,
hold the disk directory; if more space is needed for the directory, then it
may be continued on other tracks. 

Each file on the disk has an entry in the directory which contains the
file’s name, size, time and date of creation or last update, location on the
disk, and a one-byte attribute which provides further file information. The
location of the file is specified by the track and sector where the file begins,
and the track and sector where the file ends.

Since only the beginning and ending locations are specified in the
directory, additional information which tells where to find the rest of the
file is contained within the file itself. The first two bytes of every sector in
the file contain a pointer to the next sector of the file, in the form of another
track and sector number. Since each sector therefore points to the next, the
sectors in each file form a chain; this type of disk organization is thus called
a linked chain system.

The free space on the disk is treated as another linked chain of sectors,
whose beginning and ending locations, as well as size, are stored in the SIS,
sector 3 of track 0. As the SK*DOS disk operating system creates or deletes
files, it simply moves sectors between chains. For example, when a file is
deleted, its name is removed from the directory, and its sectors are added
to the end of the chain of free sectors. One neat side-effect of this system is
that, if there is enough free space on the disk, these sectors may not be
overwritten for some time. It is therefore possible to pull back a deleted file,
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sometimes even days or weeks later. SK*DOS is supplied with an UN-
DELETE program which does exactly that.
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