
~~ Advanced
Ar-a..Personal Computer

TM

MSTM_DOS System Programmer's Guide

NEe
NEe Information Systems, Inc.

819-000104-3001 REV 00
9-83

, Important Notice

(1) All rights reserved, This manual is protected by copyright. No part of this manual may be
reproduced in any form whatsoever without the written permission of the copyright owner.

(2) The policy of NEC being that of continuous product improvement, the contents of this manual
are subject to change, from time to time, without notice.

(3) All efforts have been made to ensure that the contents of this manual are correct; however, should
any errors be detected, NEC would greatly appreciate being informed.

(4) NEC can assume no responsibility for errors in this manual or their consequences.

©Copyright 1983 by NEC Corporation.

MSTM-DOS, MACRO-86 Macro Assembler™, MS-LINK Linker UtilityTM, MS-LIB Library Mana
gerTM, MS-CREpTM Cross Reference Utility, EDLIN Line Editor™ are registered trademarks of the
Microsoft Corporation.

PLEASE READ THE FOLLOWING TEXT CAREFULLY. IT
CONSTITUTES A CONTINUATION OF THE PROGRAM

LICENSE AGREEMENT FOR THE SOFTWARE APPLICA
TION PROGRAM CONTAINED IN THIS PACKAGE.

If you agree to all the terms and conditions contained in both parts
of the Program License Agreement. please fill out the detachable
postcard and return it to:

NEe Information Systems, Inc.

LIABILITY

Dept: Publications
1414 Mass. Ave.

Boxborough, MA 01719

In no event shall the copyright holder. the original licensor nor any
intermediate sublicensors of this software be responsible for any
indirect or consequential damages or lost profits arising from the
use of this software.

~~ Advanced
Ar-~Personal Computer

1M

Program Name (as it appears on diskette label)

Serial Number

Dealer Name and City

Your Name

Your Address

City

COPYRIGHT

The name of the copyright holder of this software must be recorded
exactly as it appears on the label of the original diskette as supplied
by NECIS on a label attached to each additional copy you make.

You must maintain a record of the number and location of each
copy of this program.

All NECIS software programs and copies remain the property of the
copyright holder. though the physical medium on which they exist is
the property of the licensee.

MERGING. ALTERATION

Should this program be merged with or incorporated into another
program. or altered in 'any way by the licensee. the terms of the
Warranty contained herein are voided and neither !'IECIS nor the
copyright holder nor any intermediate sublicensors will assure the
conformity of this software to its specification nor refund the license
fee for such nonconformity.

Upon termination of this license for any reason. any such merged or
incorporated programs must be separated from the programs with
which they have been merged or incorporated and any altered
programs must be destroyed.

819-000102-8DOI

NEe
NEe Information Systems, Inc.

Date Purchased

State ZIP
"Warranty Requires Return of This Card"

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 386 LEXINGTON MA

POSTAGE WILL BE PAID BY ADDRESSEE

NEe Information Systems, Inc.
Dept: Publications

1414 Mass. Ave.
Boxborough, MA 01719

111111 NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Contents
Page

Preface. Xl

Chapter 1 What Is in This Guide?

DEVELOPING ASSEMBLY LANGUAGE PROGRAMS............. 1-2
SYNTAX NOTATION.. 1-4

Chapter 2 8086 Assembly Language Elements

GENERAL FACTS ABOUT SOURCE FILES....................... 2-1
Naming Your Source File 0 •• 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 2-1
What Is in a Source File? . 0 • 0 • 0 0 • 0 0 0 0 0 0 0 • 0 • 0 0 0 • 0 0 0 0 0 0 •• 0 0 0 ••• 0 0 2-2
Numeric Notation 0 0 0 •• 0 0 • 0 ••• 0 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 • 0 • 0 • 0 0 •• 0 0 • 0 0 0 0 2-2
Statement Line Format 0 0 0 0 0 ••• 0 0 •• 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 • 2-2

NAME FIELD 0 • 0 0 0 0 0 0 •••• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 •• 0 2-3
ACTION FIELD. 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 ••• 0 • 0 0 0 0 0 00 0 0 0 0 • 0 0 • 0 0 0 2-4
EXPRESSION FIELD 0 0 • .. • 2-5
COMMENT FIELD 0 ••• 0.0000000000 ••• 0 000.0. 0000.00 ••• 00 2-6

NAMES: LABELS, VARIABLES, AND SYMBOLS. 0 0 0 00000 ••• 0000.0 2-7
Labels 0 •• 0 0 0 0 00 0 • 0 0 0 • 00 •• 0 0 0 0 • 0 000 0 0 • 0 0 • 0 0 0·, 0 0 • .; 0 .• 0 0 • 0 0 .. 0 0 0 • ·2-8

SEGMENT ATTRIBUTE 0 0 0 0 2-9
OFFSET ATTRIBUTE 00.00 ... 0 ... 0 0 ~ .. 0.0 0 0 2-9
TYPE ATTRIBUTE 0 0 0 • 0 0 • 0 0 0 0 0 • 0 0 0 0 •••• 0 0 0 0 • 0 0 0 0 0 0 0 • • • • • 2-9

Variables .. 0 • 0 00 0 0 0 0 0 0 • 0 • 0 0 • 0 0 0 0 • 0 0 .; 0 • 0 0 ~ 0 0 0 00 0 ••• 0 0 ~ 000 .; 0 0 ... 2~10
Symbols 0 0 0 0 0 0 00 • 0 • 0 •• 0 •• 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 .0 000 0 • 0 0 0 0 0 0 2-11
Legal Characters for Symbol Names 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 .0 0 0 0 0 0 • 0 0 0 • 0 2-12

EXPRESSIbNS: OPERANDS AND OPERATORS 00000 •• 000000.00000 2-13
Memory Organization 0 • 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 •• 2-13
Operands 0 0 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 •• 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 •••••• o. 2-19

IMMEDIATE OPERANDS .. 0 .. • • • • • .. • 2-20
REGISTER OPERANDS ... 0 •• 0 •••••• 0. 0 •••••• 000 •••• 0.... 2-22
MEMORY OPERANDS 0 .. • • 2-24
STRUCTURE OPERANDS 0 0 •• 0 0 •••• 0 •• 0 •••• 00 0 0 •••••• 0 0 0 2-26

111

iv

Contents (cont'd)
Page

Operators ... 2-27
ATTRIBUTE OPERATORS............................... 2-28
ARITHMETIC OPERATORS 2-39
RELATIONAL OPERATORS............................. 2-40
LOGICAL OPERATORS................................. 2-41

Precedence of Operators in Expression Evaluation. 2-42
ACTION: INSTRUCTIONS AND DIRECTIVES..................... 2-43

Instructions. .. 2-44
GENERAL 2-0PERAND INSTRUCTIONS. 2-49
CALL AND JUMP TYPE INSTRUCTIONS. 2-49
RELATIVE JUMPS 2-49
LOOP INSTRUCTIONS: SAME AS RELATIVE JUMPS...... 2-49
RETURN INSTRUCTION 2-49
NO OPERAND INSTRUCTIONS. 2-50
LOAD INSTRUCTIONS. .. 2-50
MOVE INSTRUCTIONS. .. 2-50
PUSH AND POP INSTRUCTIONS 2-50
SHIFT/ROTATE TYPE INSTRUCTIONS.................. 2-51
INPUT/OUTPUT INSTRUCTIONS........................ 2-51
INCREMENT/DECREMENT INSTRUCTIONS............. 2-51
ARITHMETIC MUL TIPL Y /DIVISION/NEGA TE/NOT 2-51
INTERRUPT INSTRUCTION .. 2-51
EXCHANGE INSTRUCTION. 2-52
MISCELLANEOUS INSTRUCTIONS. .. 2-52
STRING PRIMITIVES................................... 2-52
REPEAT PREFIX TO STRING INSTRUCTIONS............ 2-53

Directives ". .. 2-53
MEMORY DIRECTIVES. .. 2-54
CONDITIONAL DIRECTIVES. 2-79
MACRO DIRECTIVES.. 2-83
LISTING DIRECTIVES 2-96

Chapter 3 Assembling a Macro-86 Source File

SYSTEM REQUIREMENTS FOR RUNNING MACRO-86 3-3
OVERVIEW OF MACRO-86 OPERATIONS........................ 3-4
HOW TO ASSEMBLE A MACRO-86 SOURCE FILE 3-6

Method 1: MASM . 3-7
MACRO-86 COMMAND PROMPTS 3-7

Contents (cont'd)
Page

MACRO-86 COMMAND SWITCHES. 3-9
COMMAND CHARACTERS 3-13

Method 2: MASM filenames [switches] 3-13
FORMATS OF LISTING AND SYMBOL TABLES.................. 3-14

Program Listing. .. 3-15
Symbol Table Format. .. 3-21

NAMES OF MACROS.................................... 3-23
STRUCTURES AND RECORDS 3-23
SEGMENTS AND GROUPS 3-26
SYMBOLS 3-28

MACRO-86 MESSAGES. ... 3-30
Operating Messages. .. 3-31
Error Messages. .. 3-31
I/O Handler Errors. .. 3-39
Runtime Errors .. 3-40

Chapter 4 The MS-LINK Linker Utility

SYSTEM REQUIREMENTS FOR RUNNING MS-LINK.............. 4-1
OVERVIEW OF MS-LINK OPERATIONS.......................... 4-1

How MS-DOS Divides Programs into Executable Portions 4-3
SEGMENT. 4-3
GROUP... 4-3
CLASS... 4-3

How MS-LINK Combines and Arranges Program Segments. 4-4
Files that MS-LINK Uses. 4-6

INPUT FILE EXTENSIONS.............................. 4-7
OUTPUT FILE EXTENSIONS 4-7
VM.TMP FILE .. 4-7

RUNNING MS-LINK .. 4-8
Method 1: LINK ... 4-8

MS-LINK COMMAND PROMPTS.. 4-8
MS-LINK COMMAND SWITCHES 4-12
MS-LINK COMMAND CHARACTERS 4-15

Method 2: LINK <filenames> [/switches]. .. 4-16
Method 3: LINK @ <filespec> .. 4-17

EXAMPLE OF A MS-LINK SESSION.............................. 4-18
EXECUTABLE FILE STRUCTURE AND LOADING............... 4-19
MS-DOS PROGRAM SEGMENTATION........................... 4-21

Environment Information for .EXE and .COM Programs 4-22

v

VI

Contents (cont'd)
Page

Environment Information for .EXE Programs Only 00000000. 00000. 4-24
Environment Information for .COM Programs Only 0 •••••••• 0 0 • • •• 4-24

MS-LINK MESSAGES 0 0 •••• 0 • • .. • .. • • •• 4-26

Chapter 5 The MS-LIB Library Manager

SYSTEM REQUIREMENTS FOR RUNNING MS-LIB 0.... 5-1
OVERVIEW OF MS-LIB OPERATIONS 0 .. 0.................... 5-2
RUNNING MS-LIB 0 ••• 0 ••••••••••••••• 0 ••• 0 5-5

Method I: LIB 0 ••••• 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 •• 0 • 0 0 • 0 0 0 0 • 0 0 0 5-5
MS-LIB COMMAND PROMPTS 0 0 0 0 0 0 • 0 0 0 0 • 0 0 • 0 0 • 0 000 • 0 0 • 5-5
MS-LIB COMMAND CHARACTERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 000 5-8

Method 2: LIB <library> <operations>, <listings> 00000 ••• 0 ••• 00 5-11
Method 3: LIB @ filespec 0 0 • 0 0 • 0 • 0 • 0 0 0 0 0 000 0 0 0 0 0 0 00. 0 0 •••• 0 • • •• 5-13

MS-LIB ERROR MESSAGES 0 0 0 0 0............ 5-14

Chapter 6 The MS-CREF Cross Reference Utility

SYSTEM REQUIREMENTS FOR RUNNING MS-CREF 0.... 6-1
OVERVIEW OF MS-CREF OPERATIONS ... 0 0 •••• 00.............. 6-2
RUNNING MS-CREF .0. 0 ••••••••••••••••••••••••••••••••••• 0 • • • • 6-3

Creating a Cross Reference File 0 ••• 00 ••••••• 0 •••• 0 •• 0 • • • • 6-3
Invoking MS-CREF 0 0 • 0 0 ••• 0 •• 0 •••• 0 • 0 0 0 0 ••• 0 0 0 •••••• 0 •• 0 • • • • 6-3

METHOD I: CREF 0 0 • 0 ••••• 0 0 •••• 0 •• 0 ••••••• 0 • • • • 6-3
METHOD 2: CREF <crfile>, <listing> 00.0.0.. 6-7

FORMAT OF CROSS REFERENCE LISTINGS 0 ••• 0 0 •••••••••• 0 • • • • 6-8
MS-CREF ERROR MESSAGES 0 •• 0 ••• 0 • 0 • 6-9
FORMAT OF MS-CREF COMPATIBLE FILES 0 •••• 000 •••••••• 0.... 6-11

General Description of MS-CREF File Processing 0 ••••••• 0 • • •• 6-11
Format of Source Files 0 .0 .00 .00 •••••• 0 •• 0 0 ••• 0 .0 •• 0. 6-11

FIRST THREE BYTES 0 0 •••• 0 •• 0 0 0 ••• 0 0 0 0 0 ••• 0 0 • 0 • • •• 6-11
RECORD CONTROL SYMBOLS 000.00 •••• 000.000.0 •••••• 0 6-12

Chapter 7 The DEBUG Program

INVOKING DEBUG .. 000 •••• 0 •• 0 ••••••• 0 •••••••• 0 • 0 ••• 0 • •• ••• •• • 7-1
The DEBUG Commands 0 ••••••••••••••• 0 ••• 0... 7-2
DEBUG Command Parameters .. 0 0 •••••••••••••• 0 ••••• 0.0. 0 0... 7-4

DEBUG COMMAND DESCRIPTIONS .. 0 •••• 0 ••••• 0 0 ••• 0 • • • • • • • • • 7-6
A(ssemble) Command ... 0 ••••••••••• 0.0.00 •••• 0 •• 0 •••• 0 •• 0.... 7-7

Contents (cont'd)
Page

C(ompare) Command . 7-9
D(ump) Command ... 7-10
E(nter) Command 7-11
F(ill) Command. .. 7-13
G(o) Command. 7-14
H(ex) Command ... 7-15
I(nput) Command.. 7-16
L(oad) Command .. 7-16
M(ove) Command............... 7-18
N(ame) Command...... 7-18
O(utput) Command. .. 7-21
Q(uit) Command. 7-21
R(egister) Command. 7-22
S(earch) Command .. '. 7-24
T(race) Command. 7-25
U(nassemhle) Command. 7-26
W(rite) Command. .. 7-28

DEBUG ERROR MESSAGES. .. 7-29
Chapter 8 The FC File Comparison Utility

LIMITATIONS ON SOURCE COMPARISONS...................... 8-1
FILE SPECIFICATIONS ... 8-2
INVOKING FC . 8-2
DIFFERENCE REPORTING...................................... 8-4
REDIRECTING FC OUTPUT TO A FILE. 8-5
FILE COMPARISON EXAMPLES................................. 8-5
FC ERROR MESSAGES. 8-9

Chapter 9 The Auxiliary Character Generator Program

AUXILIARY CHARACTER GENERATOR RAM ADDRESS
AND FORMAT.. 9-1

THE AUXILIARY CHARACTER GENERATOR PROGRArv1 9-3
Creating the Auxiliary Character Set. 9-3
Loading the Auxiliary Character File • 9-6 .

DISPLAYING THE AUXILIARY CHARACTER SET 9-7

Chapter 10 The Soft Key Definition Program

SOFT KEY TABLE FORMAT AND ADDRESS..................... 10-1
THE SOFT KEY DEFINITION PROGRAM........................ 10-1

vii

viii

Contents (cont'd)
Page

Creating the Soft Key Table. 10-1
Loading the Soft Key Table. 10-3

KEY FILE FORMAT. 10-5

Chapter 11 Creating Device Drivers

WHAT IS A DEVICE DRIVER? . 11-1
DEVICE HEADERS ... 11-2

Pointer to Next Device Field 11-3
Attribute Field. 11-3
Strategy and Interrupt Fields. 11-4
Name Field. 11-4

HOW TO CREATE A DEVICE DRIVER........................... 11-4
INSTALLATION OF DEVICE DRIVERS.......................... 11-5
THE REQUEST HEADER.. 11-5

Unit Code. 11-6
Command Code Field. .. 11-6
Status Word. 11-8

FUNCTION CALL PARAMETERS 11-10
IN IT .. 11-10
MEDIA CHECK ... 11-11
BUILD BPB (BIOS Parameter Block) 11-11
READ or WRITE .. 11-14
NONDESTRUCTIVE READ NO WAIT 11-15
STATUS .. 11-15
FLUSH ... 11-16
THE CLOCK DEVICE ... 11-16
MS-DOS 2.0 FILE ALLOCATION TABLE FORMAT 11-16
HOW TO USE THE FILE ALLOCATION TABLE 11-17
DEVICE DRIVER LOG I C EXAMPLES .. 11-18

Appendix A The ASCII Character Codes

Appendix B APC Keyboard and Display Codes

Tables

Table Title Page

2-1 MACRO-86 Operands & Operators 2-6
2-2 Numeric Data Forms 2-20
2-3 Notation for Changing the Input Radix 2-21
2-4 Arithmetic Operators 2-39
2-5 Relational Operators 2-41
2-6 Logical Operators .. . 2-42
2-7 8086 Instructions .. . 2-45
3-1 MACRO-86 Command Prompts 3-8
3-2 MACRO-86 Command Switches 3-10
3-3 MACRO-86 Source Program Listing Symbols 3-16
3-4 MA CR 0-86 Error Messages 3-31
3-5 1/0 Handler Error Messages 3-40
4-1 MS-LINK Command Prompts 4-9
4-2 MS-LINK Command Switches 4-12
4-3 MS-LINK Error Messages 4-26
5-1 MS-LIB Command Prompts 5-6
5-2 MS-LIB Command Characters 5-8
5-3 MS-LIB Error Messages 5-14
6-1 MS-CREF Command Prompts 6-4
6-2 MS-CREF Command Characters 6-6
6-3 MS-CREF Error Messages 6-10
6-4 Record Control Characters 6-13
7-1 DEBUG Commands 7-3
7-2 DEBUG Command Parameters 7-4
7-3 Register Command Flags 7-23
7-4 DEBUG Error Messages 7-30
8-1 FC Command Switches 8-2
8-2 FC Error Messages 8-10
9-1 CHR Sub-Commands 9-4
10-1 KEY Sub-Commands 10-2
11-1 Request Header Command Codes 11-6
A-I ASCII Character Codes A-I
B-1 Mnemonic Control Codes and ROM Generator

Display Characters B-2
B-2 ASCII Character Mnemonics and Functions B-3
B-3 APC Control Character Font B-5

IX

x

Illustrations

Figure

1-1
4-1
9-1
9-2
9-3
10-1
11-1
11-2
11-3
B-1
B-2
B-3

Title

Program Development Flow Diagram
Program Segment Prefix
Example of a Bit Pattern for a Graphic Character
Sample Data in Auxiliary CG RAM
.CHR File Format
KEY File Format .. .
Device Header Format
Request Header Format
Boot Sector Format
The APC Keyboard
The APC G RPH 1 Characters
The APC G RPH2 Characters

Page

1-3
4-25

9-2
9-3
9-7

10-5
11-2
11-6

11-13
B-6
B-7
B-8

Preface

The MS™ -DOS System Programmer's Guide presents the system programming
aspects of the MSTM -DOS operating system for the Intel 8086 and 8088 micropro
cessors, modified for the APC. This document assumes you are familiar with
MS-DOS as it operates on the APC. Ifnot, refer to the MSTM-DOS System Reference
Guide. In addition to MS-DOS system characteristics, the reference guide describes
utilities used in program development. Another reference is the MSTM -DOS System
User's Guide, which contains descriptions of the MS-DOS file organization and
commands that execute ba3ic system routines and utilities.

Xl

Chapter 1

What Is In This Guide?
This guide presents several system utilities and programs available for program
development on the APC running with the MSTM-DOS disk operating system.

The assembler used with MS-DOS is Microsoft's MACRO-86 Macro Assembler™
for 8086-based computers. First, the elements of the assembly language subset
utilized to code source files are described. Then, you are instructed on how to
execute MACRO-86.

Designed to work with MACRO-86 are the MS-LINK Linker UtilityTM, MS-LIB
Library Manager™, and MS-CREF Cross Reference UtilityTM. MS-LINK is a
virtual linker that produces relocatable 8086 object modules. MS-LIB is a versatile
utility for creating and maintaining program library files. MS-CREF converts a file
optionally generated by MACRO-86 into a listing of source code symbols.

The DEBUG Debugging Program ™ and the FC Fi)e Comparison UtilityTM aid in
program testing. DEBUG examines binary and executable object files for errors
and corrects them. FC compares the contents of source and object files with like
files to find dissimilarities. Files operated on by each of these programs can be in
any high-level or Intel 8086-compatible assembly language usable in the MS-DOS
system.

Two programs described in this guide direct you on how to access specific APC
facilities from assembly language programs. The Auxiliary Character Generator
displays alternate character sets on the APC screen from the random access
memory reserved for this purpose. The Soft Key Definition Program loads into
memory a soft key table containing the codes assigned to the APC's 16 dual-mode
function keys.

Information is also included for programmers who want to install their own device
drivers under MS-DOS. Chapter 11 tells you how to write character and block
device drivers to perform input and output to peripheral devices.

1-)

What Is In This Guide?

1-2

DEVELOPING ASSEMBLY LANGUAGE PROGRAMS

A series of steps is typically followed in developing an assembly language program.

1. First, you use the EDLIN Line Editor™ or other 8086 editor compatible
with your operating system, to create an 8086 assembly language source
file. Give the source file the filename extension .ASM. (MACRO-86 recog
nizes .ASM as the default.)

2. Next, you assemble the source file with MACRO-86 which outputs an
assembled object file with the default filename extension .OBJ. Assembled

·files, your program files, can be linked together in step 3.

MACRO-86 optionally creates two types of listing file:

• a normal listing file that shows assembled code with .relative addresses,
source statements, and full symbol table

• a cross-reference file that MS-CREF can operate on to create a list
showing the source line number of every symbol's definition and all
references to it. When a cross reference file is created, the normal listing
file (with the .LST filename extension) has line numbers placed into it as
reference line numbers following the symbols in the cross reference
listing.

3. Then, you link one or more .OBJ modules together, using MS-LINK, to
produce an executable object file with the default filename extension .EXE.

While developing your program, you may want to create a library file for
MS-LINK to search to resolve external references. Use MS-LIB to create
userlibrary files from existing library filesandl or user program object files.

4. Finally, you run your assembled and linked program, the .EXE file, under
MS-DOS.

Figure I-I is a flow diagram of the program development process.

What Is In This Guide?

EDLIN

MS-CREF

MS-LINK

MS-LIB

MS-DOS

Figure 1-1 Program Development Flow Diagram

1-3

What Is In This Guide?

1-4

SYNTAX NOTATION

Certain symbols are used in this guide to describe the syntax of commands and
statements entered to MS-DOS from the utilities and programs presented.

[]

< >

CAPS

Square brackets indicate that the enclosed entry is optional.

Angle brackets indicate user-entered data. The angle brackets
enclose lower case text that represents the entry to be made.

Braces indicate that you have a choice between two or more entries.
At least one of the entries enclosed in braces must be chosen unless
the entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many times as
needed or desired.

Capital letters indicate portions of statements or commands that
must be entered. Also, a key that must be pressed at the end of a
command line or statement is indicated by its name in caps.

All other punctuation, such as commas, colons, slash marks, and equal signs, must
be entered exactly as shown.

Enter a value here
to replace the Hdummy"
entry in the angle
brackets.

CALL

f
Enter CAPS
exactly as
shown.

~
(<parameter>

t

You have an option;
you may stop here,
or enter more.

~
[,<parameter> ...])

f f
Enter punctuation as shown.

Enter as many more
parameters as you
want, up to end of
the line.

RETURN ~ Press
RETURN to
enter the
call.

Chapter 2

8086 Assembly Language
Elements
The 8086 assembly language is used with the MACRO-86 Macro Assembler. The
Line Editor (EDLIN) is the program that creates the source files for MACRO-86.
These files are simply program files of source code statements. (If you are not
familiar with EDLIN, refer to the MS-DOS System User's Guide for a description of
this program.)

GENERAL FACTS ABOUT SOURCE FILES

Naming Your Source File

When you create a source file, you will need to name it. Like the other files in the
MS-DOS operating system, a filename (symbol name) for an assembly language
source file may consist of up to 8 legal characters. (Refer to the MS-DOS System
User's Guide for a description of filenames.) MACRO-86 expects a specific three
character filename extension, .ASM. That is, whenever you run MACRO-86 to
assemble your source file, MACRO-86 assumes that your source filename has this
filename extension. However, you may name your source file with any extension
you like. When you run MACRO-86, though, you must remember to specify the
extension. Because of this action by MACRO-86, it is impossible to omit the
filename extension. If you assemble a source file without a filename extension,
MACRO-86 will assume that the extension is .ASM. MACRO-86 will then search
the disk for the file, and not finding the correct file, will either assemble the wrong
file or will return an error message stating that the file cannot be found.

Note, also, that MACRO-86 gives the object file it outputs the default extension
.OBJ. To avoid the destruction of your source file, you will want to avoid giving a
source file an extension of .OBJ. For similar reasons, avoid the extensions .EXE.,
.LST, .CRF, AND .REF.

2-1

8086 Assembly Language Elements

2-2

What Is in a Source File?

A source file for MACRO-86 consists of instruction statements and directive
statements. Instruction statements consist of8086 instruction mnemonics and their
operands, which command the 8086 directly to perform specific processes. Direc
tive statements are commands to MACRO-86 to prepare data for use in and by
instruction.

Statements are usually placed in blocks of code assigned to a specific segment (code,
data, stack, extra). The segments may appear in any order in the source file.
Generally speaking, statements may appear in any order within the segments that
creates a valid program. Some exceptions to random ordering do exist, which will
be discussed under the affected assembler directives.

Every segment must end with an end segment statement (ENDS), every procedure
must end with an end procedure statement (ENDP), and every structure must end
with an end structure statement (ENDS). Likewise, the source file must end with an
END statement, which contains an optional label, to tell MACRO-86 where pro
gram execution begins.

The section Memory Organization describes how segments, groups, the ASSUME
directive, andthe SEG operator relate to one another. This information is impor
tant for developing your programs. It is presented as a prelude to the discussion of
operands and operators.

Numeric Notation

The default input radix for all numeric values is decimal. The output radix for all
listings is hexadecimal for code and data items, and decimal for line numbers. For
more information, refer to the section Data Items.

Statement Line Format

Statements in source files follow a format that allows some variations.

MACRO-86 directive statements consist of four "fields": Name, Action, Expres
sion, and Comment, for example:

FOO DB

t t
Name Action

OD5EH

t
Expression

;create variable FOO
;containing the value OD5EH

t
;Comment

8086 Assembly Language Elements

MACRO-86 instruction statements usually consist of three "fields": Action,
Expression, Comment, for example:

MOV

+ Action

CX,FOO

t .
ExpressIOn

;here's the count number

t ;Comment

An instruction statement may have a name field under certain circumstances. See
the following discussion of names.

NAME FIELD

The name field, when present, is the first entry on the statement line. The name may
begin in any column, although normally names are started in column one.

Names may be any length you choose. However, MACRO-86 considers only the
first 31 characters significant when your source file is assembled.

One other significant use for names is with the MACRO directive. Although all the
rules covering names described here apply to macro names, the discussion of macro
names is better left to the section MACRO DIRECTIVES.

MACRO-86 supports the use of names in a statement line for three purposes: to
represent code, to represent data, and to represent constants.

To make a name represent code, use

• NAME: followed by a directive, instruction, or nothing at all

• NAME LABEL NEAR (for use only inside its own segment)

• NAME LABEL FAR (for use outside its own segment)

• EXTRN NAME:NEAR (for use only outside its own module but inside its
own segment)

• EXTRN NAME:FAR (for use outside its own module and segment.

To make a name represent data, use

• NAME LABEL <Size> (BYTE, WORD, and so on)

• NAME Dx <exp>

• EXTRN NAME: <size> (BYTE, WORD, and so on).

2-3

8086 Assembly Language Elements

2-4

To make a name represent a constant use

• NAME EQU <constant>

• NAME = <constant>

• NAME SEGMENT <attributes>

• NAME GROUP <segment-names>.

ACTION FIELD

The action field contains either an 8086 instruction mnemonic or a MACRO-86
assembler directive. Refer to the section Instructions for more information, includ
ing the list of 8086 instruction mnemonics. The MACRO-86 directives are described
in detail in the section Directives.

If the name field is blank, the action field will be the first entry in the statement
format. In this case, the action may appear starting in any column, 1 through the
maximum line length (less columns for action and expression).

The entry in the action field either directs the processor to perform a specific
function or directs the assembler to perform one of its functions. Instructions
command processor actions. An instruction may have the data and/or addresses it
needs built into it, or data and/or addresses may be found in the expression part of
an instruction.

Example:

I opcode I I operand I ~ ~
I opere I

supplied

I operand I I addr I I addr I

\ //
supplied or found

where: supplied is part of the instruction

found = assembler inserts data and/or address from the information
provided by expression in instruction statements

opcode = the action part of an instruction.

8086 Assembly Language Elements

Directives give the assembler directions for I/O, memory organization, conditional
assembly, listing and cross reference control, and definitions.

EXPRESSION FIELD

The expression field contains entries which are operands and/or combinations of
operands and operators.

Some instructions take no operands, some take one, and some take two. For two
operand instructions, the expression field consists of a destination operand and a
source operand, in that order and separated by a comma, for example:

I opcode I I dest-operand,l I source-operand I
For one operand instructions, the operand is a source or a destination operand,
depending on the instruction. If one or both of the operands is omitted, the
instruction carries that information in its internal coding.

Source operands are immediate operands, register operands, memory operands, or
attribute operands. Destination operands are register operands and memory
operands.

For directives, the expression field usually consists of a single operand, for example:

I directive I I operand I
A directive operand is a data operand, code (addressing) operand, or a constant,
depending on the nature of the directive.

For many instructions and directives, operands may be connected with operators to
form a longer operand that looks like a mathematical expression. These operands
are called complex. Use of a complex operand permits you to specify addresses or
data derived from several places, for example:

MOV FOO[BX], AL

The destination operand is the result of adding the address represented by the
variable FOO and the address found in register BX. The processor is instructed to
move the value in register AL to the destination calculated from these two operand
elements. Another example is

MOV AX,FOO+5 [BX]

2-5

8086 Assembly Language Elements

2-6

In this case, the source operand is the result of adding the value represented by the
symbol FOO plus 5, plus the value found in the BX register.

COMMENT FIELD

Comments are never required for the successful operation of an assembly language
program, but they are strongly recommended to enhance reader understanding.

If you use comments in your program, every comment on every line must be
preceded by a semicolon. If you want to place a very long comment in your
program, you can use the COMMENT directive. The COMMENT directive
releases you from the required semicolon on every line (refer to COMMENT in the
section Directives).

Comments are used to document the processing that is supposed to happen at a
particular point in a program. When comments are used in this manner, they can be
useful for debugging, altering, or updating code. Consider putting comments at the
beginning of each segment, procedure, structure, module, and after each line in the
code that begins a step in the processing.

Comments are ignored by MACRO-86. They do not add to the memory required to
assemble or to run your program, except in macro blocks where comments are
stored with the code.

Table 2-1 lists the operands and operators MACRO-86 supports in the expression
field. Operands and operators are shown in order of precedence.

Table 2-1 MACRO-86 Operands & Operators

OPERANDS

Immediate
(including symbols)

Register

Memory
label
variables
simple
indexed
structures

OPERATORS

LENGTH, SIZE, WIDTH, MASK, FIELD
[], (),

segment override (:)

PTR, OFFSET, SEG, TYPE, THIS,

HIGH, LOW

8086 Assembly Language Elements

Table 2-1 MACRO-86 Operands & Operators (cont'd)

OPERANDS OPERATORS

Attribute *, I, MOD, SHL, SHR
override

PTR +, -(unary), -(binary)
:(seg)
SHORT EQ,NE, LT, LE,GT,GE
HIGH
LOW NOT

value returning
OFFSET AND
SEG
THIS OR, XOR
TYPE
.TYPE SHORT,.TYPE
LENGTH
SIZE

record specifying
FIELD
MASK
WIDTH

NOTE

Some operators can be used as operands or as
part of an operand expression. Refer to the
sections Operands and Operators for details.

NAMES: LABELS, VARIABLES, AND SYMBOLS

Names are used in several capacities throughout MACRO-86, wherever any naming
is allowed or required.

Names are symbolic representations of values. These values may be addresses, data,
or constants. Names may be any length you choose. However, MACRO-86 will
truncate names longer than 31 characters when your source file is assembled.

MACRO-86 supports three types of names in statement lines: labels, variables, and
symbols.

2-7

8086 Assembly Language Elements

2-8

Labels

Labels are names used as targets for JMP, CALL, and LOOP instructions.
MACRO-86 assigns an address to each label as it is defined. When you use a label as
an operand for JMP, CALL, or LOOP, MACRO-86 can substitute the attributes of
the label for the label name, sending processing to the appropriate place.

Labels are defined one of four ways:

• <name>:
Use a name followed immediately by a colon. This defines the name as a
NEAR label. You may prefix <name> : to any instruction and to all
directives that allow a name field. It may also be placed on a line by itself.

Examples:

CLEAR-..SCREEN: MOV AL,20H
FOO: DB OFH
SUBROUTINE3:

• <name> LABEL NEAR
<name> LABEL FAR

Use the LABEL directive. Refer to the discussion of the LABEL directive in
the section MEMORY DIRECTIVES.

NEAR and FAR are discussed belo~ under the type attribute.

Examples:

FOO LABEL NEAR
GOO LABEL FAR

• <name> PROC NEAR
<name> PROC FAR

Use the PROC directive. Refer to the discussion of the PROC directive in
the section MEMORY DIRECTIVES.

NEAR is optional because it is the default if you enter only <name> PROC.
NEAR and FAR are discussed below under the type attribute.

Examples:

REPEAT PROC NEAR
CHECKING PROC ;same as CHECKING PROC NEAR
FIND_CHR PROC FAR

8086 Assembly Language Elements

• EXTRN <name> :NEAR
EXTRN <name> :FAR

Usc the EXTRN directive.

NEAR and FAR are discussed below under the type attribute.

Refer to the discussion of the EXTRN directive in the section MEMORY
DIRECTIVES.

Example:

EXTRN FOO:NEAR
ZOO:FAR

A label has four attributes: segment, offset, type, and the CS ASSUME in effect
when the label is defined. Segment is the segment where the label is defined. Offset is
the distance from the beginning of the segment to the label's location. Type is either
NEAR or FAR.

SEGMENT ATTRIBUTE

Labels are defined inside segments. The segment must be assigned to the CS
segment register to be addressable. The segment may be assigned to a group, in
which case the group must be addressable through CS. Therefore, the segment (or
group) attribute of a symbol is the base address of the segment (or group) where it is
defined.

OFFSET ATTRIBUTE

The offset attribute is the number of bytes from the beginning of the label's segment
to where the label is defined. The offset is a 16-bit unsigned number.

TYPE ATTRIBUTE

Labels are one of two types: NEAR or FAR. NEAR labels are used for references
from within the segment where the label is defined. NEAR labels may be referenced
from more than one module, as long as the references are from a segment with the
same name and attributes, including the same CS ASSUME.

FAR labels are used for references from segments with a different CS ASSUME or
with more than 64K bytes between the label reference, and the label definition.

NEAR and FAR cause MACRO-86 to generate slightly different code. NEAR
labels supply their offset attribute only (a two-byte pointer): FAR labels supply
both their segment and offset attributes (a four-byte pointer).

2-9

8086 Assembly Language Elements

2-10

Variables

Variables are names used in expressions as operands to instructions and directives.
A variable represents an address where a specified value may be found.

Variables look much like labels and are defined in some ways alike. The differences,
however, are important.

Variables are defined three ways:

• <name> <define-dir> ;no colon!
<name> <struc-name> <expression>
<name> <rec-name> <expression>

<define-dir> is any of the five DEFINE directives: DB, DW, DD, DQ, DT.

Example:

START-MOVE 'DW ?

<Struc-name> is a structure name defined by the STRUC directive.

<Tec-name> is a record name defined by the RECORD directive.

Examples:

CORRALSTRUC

ENDS
HORSE CORRAL <'SADDLE'>

Note that HORSE will have the same size as the structural CORRAL.

GARAGE RECORD
SMALL GARAGE

CAR:8='P'
10 DUP(<'Z'>)

Note that SMALL will have the same size as the record GARAGE.

See the DEFINE, STRUC, and RECORD directives in the section
MEMORY DIRECTIVES.

• <name> LABEL <Size>

Use the LABEL directive with one of the size specifiers.

<Size> is one of the following size specifiers:

BYTE - specifies 1 byte
WORD - specifies 2 bytes

IJU86 Assembly Language t,lements

DWORD - specifies 4 bytes
QWORD - specifies 8 bytes
TBYTE - specifies 10 bytes

Example:

CURSOR LABEL WORD

See the LABEL directive in the section MEMORY DIRECTIVES.

• EXTRN <name> : <size>

Use the EXTRN directive with one of the size specifiers described above.
See the EXTRN directive in the section MEMORY DIRECTIVES.

Example:

EXTRN FOO:DWORD

As do labels, variables have three attributes: segment, offset, and type.

Segment and offset are the same for variables as for labels.

The type attribute is different. This attribute is the size of the variable's location, as
specified when the variable is defined. The size depends on which DEFINE directive
was used or which size specifier was used to define the variable.

Directive Type Size

DB BYTE 1 byte
DW WORD 2 bytes
DD DWORD 4 bytes
DQ QWORD 8 bytes
DT TBYTE 10 bytes

Symbols

Symbols are names defined without reference to a DEFINE directive or to code.
Like variables, symbols are used in expressions as operands to instructions and
directives.

Symbols are defined three ways:

• <name> EQU <expression>

Use the EQU directive. See the EQU directive in the section MEMORY
DIRECTIVES.

2-] I

8086 Assembly Language Elements

2-12

<expression> may be another symbol, an instruction mnemonic, a valid
expression, or any other entry, such as text or indexed references.

Examples:

FPP EQI 7H
ZOO EQU FOO

• <name> = <expression>

Use the Equal Sign directive (see the section MEMORY DIRECTIVES).

<expression> may be any valid expression.

Examples:

GOO = OFH
GOO = $+2
GOO = GOO+FOO

• EXTRN <name> : ABS

Use the EXTRN directive with type ABSD (see the section MEMORY
DIRECTIVES).

Example:

EXTRN BAZ:ABS

BAZ must be defined by an EQU or equal sign directive to a valid
expression.

Legal Characters for Symbol Names

The legal characters for symbol names in source files are

A-Z 0-9 ? @ $

Only the numerals (0-9) cannot appear as the first character of a name. A numeral
must, however, appear as the first character of a numeric value.

Additional special characters act as operators or delimiters.

(colon) segment override operator

(period) operator for field name of a record or structure. May be
used in a filename only if it is the first character.

8086 Assembly Language Elements

[]

()

< >

(square brackets) around register names to indicate value in
address in register not value (data) in register.

(parentheses) operator in DUP expressions and operator to
change precedence of operator evaluation.

(angle brackets) operators used around initialization values for
records or a structure, around parameters in IRP macro blocks,
and to indicate literals.

The square brackets and angle brackets are also used for syntax notation in the
discussions of the assembler directives. When these characters are operators and
not syntax notation, you are told explicitly; for example, "angle brackets must be
coded as shown."

EXPRESSIONS: OPERANDS AND OPERATORS

Basically, "expression" is the term used to indicate values on which an 'instruction
or directive performs its functions.

Every expression consists of at least one operand (a value). It may consist of two or
more operands. Multiple operands are joined by operators. The result is a series of

. elements that looks like a mathematical expression.

The discussion of memory organization for a MACRO-86 program acts as a preface
to the descriptions of operands and operators and as a link to names discussed in the
preceding section.

Memory Organization

Most of your assembly language program is written in segments. In the source file, a
segment is a block of code that begins with a SEGMENT directive statement and
ends with an ENDS directive. In an assembled and linked file, a segment is any
block of code that is addressed through the same segment register and is not more
than 64K bytes long.

Note that MACRO-86 leaves everything to do with segments to MS-LINK. MS
LINK resolves all references. For that reason, MACRO-86 does not check (because
it cannot) if your references are entered with the correct distance type. Values such
as OFFSET are also left to the linker to resolve.

2-13

.' 8086 Assembly Language Elements

2-14

Although a segment may not be more than 64K bytes long, you can divide a segment
among two or more modules. The SEGMENT statement in each module must be
the same in every aspect.

When the modules are linked together, the several segments become one. Refer
ences to labels, variables, and symbols within each module acquire the offset from
the beginning of the whole segment, not just from the beginning of their portion of
the whole segment. All divisions are removed.

You have the option of placing several segments into a group, using the GROUP
directive. When you group segments, you tell MACRO-86 that you want to be able
to refer to all of these segments as a single entity. This does not eliminate segment
identity, nor does it make values within a particular segment less immediately
accessible. It makes values relative to a group base. The value of grouping is that
you can refer to data items without worrying about segment overrides and about
changing segment registers often.

With this in mind, you should note that references within segments or groups are
relative to a segment register. Thus, until linking is completed, the final offset of a
reference is relocatable. For this reason, the OFFSET operator does not return a
constant. The major purpose of OFFSET is to cause MACRO-86 to generate an
immediate instruction; that is, to use the address of the value instead of the value
itself.

There are two kinds of references in a program:

• Code references - JMP, CALL, LOOPxx. These references are relative to
the address in the CS register. (You cannot override this assignment.)

• Data references - all other references. These references are usually relative
to the DS register, but this assignment may be overridden.

When you give a forward reference in a program statement, for example:

MOV AX, <ref>

MACRO-86 first looks for the segment of the reference. Next, it scans the segment
registers for the SEGMENT of the reference, then the GROUP, if any, of the
reference.

8086 Assembly Language Elements

However, the use of the OFFSEToperator always returns the offset relative to the
segment. If you want the offset relative to a GROUP, you must override this
restriction by using the GROUP name and the colon operator, for example:

MOV AX,OFFSET <group-name> : <ref>

If you set a segment register to a group with the ASSUME directive, then you may
also override the restriction on OFFSET by using the register name, for example:

MOV AX,OFFSET DS: <ref>

The result of both of these statements is the same.

Code labels have four attributes:

• Segment - What segment the label belongs to

• Offset - The number of bytes from the beginning of its segment

• Type - NEAR or FAR
• CS ASSUME - The CS ASSUME that the label was coded under

When you enter a NEAR JMP or NEAR CALL, you are changing the offset (lP) in
CS. MACRO-86 compares the CS ASSUME of the target where the label is defined
with the current CS ASSUME. If they are different, MACRO-86 returns an error.
You must use a FAR JMP or CALL.

When you enter a FAR JMP or FAR CALL, you are changing both the offset (IP)
in CS and the paragraph number. The paragraph number is changed to the CS
ASSUME of the target address.

Lefs take a common case, a segment (called CODE) and a group (called
DGROUP) that contains three segments (called DATA, CONST, and STACK).

The program statements would be

DGROUP GROUP
ASSUME
MOV

DATA,CONST,STACK
CS:CODE,DS:DGROUP,SS:DGROUP,ES:DGROUP
AX,DGROUP ;CS initialized by entry;

2-15

8086 Assembly Language Elements

MOV DS, AX ;you initialize DS, do this
;as soon as possible, especially
;before any DS relative references

As a diagram, this arrangement could be represented as follows.

-- -- - - -- - - -- -- -- -- -- -- -- -- -- -- CS

CODE

••••••••••••••••••••••••

-- -- -- -- -- -- -- -- -- -- -- -- DS,ES,SS

DATA

••••••••••••••••••••••••

<64K CONST

•••••••••••••••••••••••

STACK

••••••••••••••••••••••••••••••••••

2-16

8086 Assembly Language Elements

Given this arrangement, a statement like

MOV AX, <variable>

causes MACRO-86 to find the "best" segment register to reach this variable. The
best register is the one that requires no segment overrides.

A statement like

MOV AX,OFFSET <variable>

tells MACRO-86 to return the offset of the variable relative to the beginning of the
variable's segment.

If this <variable> is in the CONST segment and you want to reference its offset
from the beginning of DGROUP, you need a statement like

MOV AX,OFFSET DGROUP: <variable>

MACRO-86 is a two-pass assembler. During pass 1, it builds a symbol table and
calculates how much code is generated but does not produce object code. If
undefined items are found (including forward references), assumptions are made
about the reference so that the correct number of bytes are generated on pass 1.
Only certain types of errors are displayed: errors involving items that must· be
defined on pass 1. No listing is produced unless you give a ID switch when you run
the assembler. The ID switch produces a listing for both passes.

On pass 2, the assembler uses the values defined in pass 1 to generate the object
code. Definitions of reference during pass 2 are checked against the pass 1 value,
which is in the symbol table. Also, the amount of code generated during pass 1 must
match the amount of code generated during pass 2. If either is different, MACRO-
86 returns a phase error.

Because pass 1 must keep track of the relative offset, some references must be
known on pass 1. If they are not known, the relative offsets will not be correct.

The following references must be known on pass I:

• IF lIFE <expression>

If expression is not known on pass 1, MACRO-86 does not know how to
assemble the conditional block or which part to assemble if ELSE is used.

2-17

8086 Assembly Language Elements

2-18

On pass 2, the assembler would know and would assemble, resulting in a
phase error.

• <expression> D UP (...)

This operand explicitly changes the relative offset, so <expression> must be
known on pass 1. The value in parentheses need not be known because it
does not affect the number of bytes generated .

• . RADIX <expression>

Because this directive changes the input radix, constants could have a
different value, which could cause MACRO-86 to evaluate IF or DUP
statements incorrectly.

The biggest problem for the assembler is handling forward references. How can it
know the kind of a reference when it still has not seen the definition? This is one of
the main reasons for two passes. And, unless MACRO-86 can tell from the state
ment containing the forward reference what the size, the distance, or any other of its
attributes are, the assembler can only take the safe route and generate the largest
possible instruction in some cases (except for segment override or FAR). This
results in extra code that does nothing. MACRO-86 figures this out by pass 2, but it
cannot reduce the size of the instructions without causing an error, so it puts out
NOP instructions (90H).

For this reason, MACRO-86 includes a number of operators to help the assembler.
These operators tell MACRO-86 what size instruction to generate when it is faced
with an ambiguous choice. As a benefit, you can also reduce the size of your
program by using these operators to change the nature of the arguments to the
instructions.

Examples:

MOV AX,FOO ;FOO = forward constant

This statement causes MACRO-86 to generate a move from a memory instruction
on pass 1. By using the OFFSEToperator~ we can cause MACRO-86 to generate an
immediate operand instruction.

MOV AX,OFFSET FOO ;OFFSET

This instruction says use the address of FOO.

8086 Assembly Language Elements

Because OFFSET tells MACRO-86 to use the address of Faa, the assembler
knows that the value is immediate. This method saves a byte of code.

Similarly, if you have a CALL statement that calls to a label that may be in a
different CS ASSUME, you can prevent problems by attaching the PTR operator to
the label.

CALL FAR PTR <forward-label>

At the opposite extreme, you may have a JMP forward that is fewer than 127 bytes.
You can save yourself a byte if you use the SHORT operator.

JMP SHORT <forward-label>

However, you must be sure that the target is indeed within 127 bytes or MACRO-86
will not find it.

The PTR operator can be used to save yourself a byte when using forward referen
ces. If you defined FOO as a forward constant, you might enter the statement:

MOV [BX],FOO

You may want to refer to FOO as a byte immediate. In this case, you could enter
either of the statements (they are equivalent):

MOV BYTE PTR [BX],FOO

MOV [BX], BYTE PTR FOO

These statements tell MACRO-86 that FOO is a byte immediate. As a consequence,
smaller instruction is generated.

Operands

An operand may be anyone of three types: immediate, register, or memory
operands. There is no restriction on combining the various types of operands.

The following list shows all the types and the operands that comprise them.

Immediate operands
Data items
Symbols

2-19

8086 Assembly Language Elements

2-20

Register operands

Memory operands
Direct

Labels
Variables
Offset (fieldname)

Indexed
Base register
Index register
[constant]
±displacement

Structure

IMMEDIATE OPERANDS

Immediate operands are constant values that you supply when you enter a state
ment line. The value may be entered either as a data item or as a symbol.

Instructions that take two operands permit an immediate operand as the source
operand only (the second operand in an instruction statement), for example:

MOV AS,9

Data Items

The default input radix is decimal. Any numeric values entered without numeric
notation appended will be treated as a decimal value. MACRO-86 recognizes values
in forms other than decimal when special notation is appended. These other values
include ASCII characters as well as numeric values. Table 2-2 summarizes the
numeric data forms.

Table 2-2 Numeric Data Forms

DATE FORM FORMAT EXAMPLE

Binary xxxxxxxxB OlllOOOIB

Octal xxxO 7350 (letter 0)
xxxQ 412Q

8086 Assembly Language Elements

Table 2-2 Numeric Data Forms (cont'd)

DATE FORM FORMAT EXAMPLE

Decimal xxxxx 65535 (default)
xxxxxD 1000D (when .RADIX changes input

radix to nondecimal)

Hexadecimal xxxxH OFFFFH (first digit must be 0-9)

ASCII 'xx' 'OM'-more than two with DB only;
"xx" "OM"-both forms are synonymous

10 real xx.xxE±xx 25.23E-7 (floating point format)

16 real x ... xR 8F76DEA9R (first digit must be 0-9;
the total number of digits
must be 8, 16, or 20; or
9, 17,21 iffirst digit is 0)

The output radix for all listings is hexadecimal for code and data items, and decimal
for line numbers. The output radix can only be changed to octal radix by setting the
/0 switch when MACRO-86 is run (see the section Command Switches).

The input radix may be changed two ways:

• The .RADIX directive (see the section Memory Directives)

• Special notation characters can be appended to a numeric value. Table 2-3
designates .these special notation characters.

Table 2-3 Notation for Changing the Input Radix

RADIX RANGE NOTATION EXAMPLE

Binary 0-1 B 01110100B

Octal 0-7 Q or 735Q
o (letter) 6210

2-21

8086 Assembly Language Elements

2-22

Table 2-3 Notation for Changing the Input Radix (cont'd)

RADIX RANGE NOTATION EXAMPLE

Decimal 0-9 (none) 9384 (default)
orD 8149D

(when .RADIX directive
changes default radix to not
decimal)

Hexadecimal 0-9, H OFFH
80H
(first character must be nu~
meral in range 0-9)

Symbols

Symbols names equated with some form of constant information (see the previous
section Symbols) may be used as immediate operands. Using a symbol constant in a
statement is the same as using a numeric constant. Therefore, using the sample
statement above, you could enter

MOVAX,FOO

assuming FOO was defined as a constant symbol. For example:

Foa EQU9

REGISTER OPERANDS

The 8086 processor contains a number of registers. These registers are identified by
two-letter symbols (reserved) that the processor recognizes.

The registers are appropriated to different tasks: general registers, pointer registers,
counter registers, index registers, segment registers, and a flag register.

Information about some of these registers is as follows:

• The general registers are two sizes: 8-bit and 16-bit. All other registers are
16-bit .

• The general registers are both 8-bit and 16-bit registers. Actually, the 16-bit
general registers are composed of a pair of 8-bit registers, one for the low

8086 Assembly Language Elements

byte (bits 0-7) and one for the high byte (bits 8-15). Note, however, that each
8-bit general register can be used independently from its mate. In this case,
each 8-bit register contains bits 0-7.

• Segment registers are initialized by the user and contain segment base
values. The segment register names (CS, DS, SS, ES) can be used with the
colon segment override operator to inform MACRO-86 that an operand is
in a different segment than specified in an ASSUME statement. (See the
segment override operator in the section ATTRIBUTE OPERATORS.)

• The flag register is one 16-bit register containing nine I-bit flags (six
arithmetic flags and three control flags).

Each of the registers, except for segment registers and flags, can be an operand in
arithmetic and logical operations.

Register/Memory Field Encoding:

MOD=II (Register Mode)

RIM W=O W=l

000 AL AX
001 CL CX
010 DL DX
Oil BL BX
100 AH SP
101 CH BP
110 DH SI
III BH DI

NOTE

The RIM bits are found within the machine
instruction.

Effective Address Calculation:

RIM

000
001
010

MOD=OO

[BX]+[SI]
[BX]+[DI]
[BP]+[SI]

MOD=-I

[BX]+[SI]+ D8
[BX]+[D 1]+ D8
[BP]+[SI]+ D8

MOD-IO

[BX]+[SI]+ D 16
[BX]+[DI]+DI6
[BP]+[SI]+ D 16

2-23

8086 Assembly Language Elements

2-24

011
100
101
110
III

[BP]+[DI]
[SI]
[DI]
DIRECT ADDRESS
[BX]

[BP]+[DI]+D8
[SI]+D8
[DI]+D8
[BP]+D8
[BX]+D8

NOTE

[BP]+[D 1]+ D 16
[SI]+DI6
[DI]+DI6
[BP]+DI6
[BX]+DI6

D8 = a byte value; D 16 = a word value.

Other Registers:

Flags:

Segment:

6 I-bit arithmetic flags

CF carry flag
PF pari ty flag
AF auxiliary flag
AF zero flag
SF sign flag

CS
DS
SS
ES

code segment
data segment
stack segment
extra segment

3 I-bit control flags

D F direction flag
IF interrupt-enable flag
TF trap flag

Note that the BX, BP, SI, and DI registers are also used as memory operands. The
distinction is: when these registers are enclosed in square brackets [], they are
memory operands; when they are not enclosed in square brackets, they are register
operands (see the section Memory Operands).

MEMORY OPERANDS

A memory operand represents an address in memory. When you use a memory
operand, you direct MACRO-86 to an address to find some data or instruction.

A memory operand always consists of an offset from a base address.

Memory operands fit into three categories: those that use a base or index register
(indexed memory operands), those that do not use a register (direct memory
operands), and structure operands.

8086 Assembly Language 1:'lements

Direct Memory Operands

Direct memory operands do not use registers and' consist of a single offset value.
Direct memory operands are labels, simple variables, and offsets.

Memory operands can be used as destination operands as well as source operands
for instructions that take two operands, for example:

MOVAX,FOO
MOVFOO,CX

Indexed Memory Operands

Indexed memory operands use base and index registers, constants, displacement
values, and variables, often in combination. When you combine indexed operands,
you create an address expression.

Indexed memory operands use square brackets to indicate indexing by a register or
by registers, or subscripting (for example, FOO[5]). The square brackets are treated
like plus signs (+). Therefore:

FOO[5] is equivalent to FOO+5
5[FOO] is equivalent to 5+ FOO

The only difference between square brackets and plus signs occurs when a register
name appears inside the square brackets. Then, the operand is seen as indexing.

The types of indexed memory operands are as follows:

Base registers

Index registers

[constant]

±displacement

[BX] and [BP]. BP has SS as its default seg
ment register; all others have DS as the
default.

[DI] and [SI]

An immediate in square brackets. For exam
ple, [8], [FOO].

8-bit or 16-bit value. Used only with another
indexed operand.

2-25

8086 Assembly Language Elements

2-26

These elements may be combined in any order. The only restriction is that neither
two base registers nor two indexed registers can be combined.

[BX + BP] ;illegal
[SI+DI] ;illegal

Some examples of indexed memory operand combinations are

[BP+8]
[SI+BX][4]
16[DI+BP+3]
8[FOO]-8

More examples of equivalent forms are

5[BX][SI]
[BX+5][SI]
[BX+SI+5]
[BX]5[SI]

STRUCTURE OPERANDS

Structure operands take the form <variable>. <field>.

The <variable> is any name you give when coding a statement line that initializes a
structure field. The <variable> may be an anonymous variable, such as an indexed
memory operand.

The <field> is a name defined by a DEFINE directive within a STRUC block.
<field> is a typed constant.

Be sure to include the period (.) in the operand.

Example:

ZOO STRUC
GIRAFFE DE?
ZOO ENDS

LONG-.NECK ZOO 16

MOV AL,LONG-.NECK.GIRAFFE

8086 Assembly Language Elements

MOV AL,[BX].GIRAFFE ;anonymous variable

The use of structure operands can be helpful in stack operations. If you set up the
stack segment as a structure, setting BP to the top of the stack (BPequal to SP), then
you can access any value in the stack structure by field name indexed through BP.
F or example: '

[BP].FL06

BP
I FLDI

FL03 I FL02

FLD4

FLD6 I FLD5

FL07

"-SP
\
/
\

< /
\
/

'}
/

This method makes all values on the stack available all the time, not just the value at
the top. Therefore, this method makes the stack a handy place in which to pass
parameters to subroutines.

Operators
An operator may be one of four types: attribute, arithmetic, relational, or logical.

Attribute operators are used with operands to override their attributes, return the .
value of the attributes, or to isolate fields of records.

Arithmetic, relational, and logical operators are used to combine or compare
operands.

2-27

8086 Assembly Language Elements

2-2~

ATTRIBUTE OPERATORS

Attribute operators used as operands perform one of three functions:

• Override an operand's att .. ib~tes

• Return the values of operand attributes

• Isolate record fields (record specific operators).

The following list shows all the attribute operators by type:

Override operators

PTR
Colon (:) (segment override)
SHORT
THIS
HIGH
LOW

Value returning operators

SEG
OFFSET
.TYPE
LENGTH
SIZE

Record specific operators

Shift count (field name)
WIDTH
MASK

Override Operators

These operators are used to override the segment, offset, type, or distance of
variables and labels. .

Pointer (PTR)

<attribute> PTR <expression>

The PTR operator overrides the type (BYTE, WORD, DWORD) or the distance
(NEAR, FAR) of an operand.

8086 Assembly Language 1:'lements

<attribute> is the new attribute: the new type or new distance.

<expression> is the operand whose attribute is to be overridden.

The most important and frequent use for PTR is to assure that MACRO-86
understands what attribute the expression is supposed to have. This is especially
true for the type attribute. Whenever you place forward references in your program,
PTR will make clear the distance or type of the expression. This way you can avoid
phase errors.

The second use of PTR is to access data by type other than the type in the variable
definition. Most often this occurs in structures. If the structure is defined as WORD
but you want to access an item as a byte, PTR is the operator to use. However, a
much easier method is to enter a second statement that defines the structure in bytes
too. This eliminates the need to use PTR for every reference to the structure. Refer
to the LABEL directive in the section Memory Directives.

Examples:

CALL WORD PTR [BX][SI]
MOV BYTE PTR ARRAY

ADD BYTE PTR FOO,9

Segment Override (.~ (colon)

<segment-register> : <address-expression>
<segment-name> : <address-expression>
<group-name>: <address-expression>

The segment override operator overrides the assumed segment of an address
expression, which may be a label, a variable, or other memory operand.

The colon operator helps with forward references by telling the assembler to what a
reference is relative (segment, group, or segment register).

MACRO-86 assumes that labels are addressable through the current CS register.
MACRO-86 assumes that variables are addressable through the current DS regis
ter, or possibly the ES register, by default. If the operand is in another segment and
you have not alerted MACRO-86 through the ASSUME directive, you will need to
use a segment override operator. Also, if you want to use a nondefault relative base
(that is, not the default segment register), you will need to use the segment override

2-29

8086 Assembly Language Elements

2-30

operator for forward references. Note that if MACRO-86 can reach an operand
through a nondefault segment register, it will use it, but the reference cannot be
forward in this case.

<segment-register> is one of the four segment register names: CS, DS, SS, ES.

<segment-name> is a name defined by the SEGMENT directive.

<group-name> is a name defined by the GROUP directive.

Examples:

MOV AX,ES:[BX +SI]

MOV CSEG;FAR-LABEL,AX

MOV AX,OFFSET DGROUP:VARIABLE

SHORT

SHORT <label>

SHORT overrides NEAR distance attribute of labels used as targets for the JMP
instruction. SHORT tells MACRO-86 that the distance between the JMP statement
and the <label> specified as its operand is not more than 127 bytes in either
direction.

The major advantage of using the SHORT operator is to save a byte. Normally, the
<label> carries a two-byte pointer to its offset in its segment. Because a range of 256
bytes can be handled in a single byte, the SHORT operator eliminates the need for
the extra byte (which would carry 00 or FF anyway). However, you must be sure
that the target is within ±127 bytes of the JMP instruction before using SHORT.

Example:

JMP SHORT REPEAT

8086 Assembly Language Elements

REPEAT:

THIS

THIS <distance>
THIS <type>

The THIS operator creates an operand. The valu~ :)t the operand depends on which
argument you give THIS.

The argument to THIS may be a distance (NEAR or FAR) or a type (BYTE,
WORD, or DWORD).

THIS <distance> creates an operand with the distance attribute you specify, an
offset equal to the current location counter, and the segment attribute (segment
base address) of the enclosing segment.

THIS <type> creates an operand with the type attribute you specify, an offset equal
to the current location counter, and the segment attribute (segment base address) of
the enclosing segment.

Examples:

TAG EQU THIS BYTE same as TAG LABEL BYTE

SPOT_CHECK = THIS NEAR same as SPOT_CHECK LABEL NEAR

HIGH/LOW

HI G H <expression>
LOW <expression>

HIGH and LOW are provided for 8080 assembly language compatibility. HIGH
and LOW are byte isolation operators.

HIGH isolates the high 8 bits of an absolute 16-bit value or address expression.

LOW isolates the low 8 bits of an absolute 16-bit value or address expression.

2-3\

8086 Assembly Language Elements

2-32

Examples:

MOV AH,HIGH WORD_VALUE ;get byte with sign bit

MOV AL,LOW OFFFFH

Value Returning Operators

These operators return the attribute values of the operands that follow them but do
not override the attributes.

The value returning operators take labels and variables as their arguments.

Because variables in MACRO-86 have three attributes, you need to use value
returning operators to isolate single attributes as follows:

SEG

OFFSET

TYPE

. TYPE

SEG

LENGTH and SIZE

SEG <label>
SEG <variable>

Isolates the segment base address.

Isolates the offset value.

Isolates the size of the variable.

Isolates type of the variable .

Isolate the memory allocation.

SEG returns the segment value (segment base address) of the segment enclosing the
label or variable.

Example:

MOV AX,SEG VARIABLE.-NAME
MOV AX,<segment-variable> : <variable>

8086 Assembly Language E'lemcnts

OFFSET

OFFSET <label>
OFFSET <variable>

OFFSET returns the offset value of the variable or label within its segment (the
number of bytes between.the segment base address and the address where the label
or variable is defined).

OFFSET is chiefly used to tell the assembler that the operand is an immediate.

Example:

NOTE

OFFSET does not make the value a constant.
Only MS-LINK can resolve the final value.
Also, OFFSET is not required with uses of the
DW or DO directives. The assembler applies
an implicit OFFSET to variables in address
expressions following DW and DO.

MOV BX,OFFSET FOO

If you use an ASSUME to GROUP, OFFSET will not automatically return offset of
a variable from the base address of the group. Rather, OFFSET will return the
segment offset, unless you use the segment override operator (group-name version).
If the variable GOB is defined in a segment placed in DGROUP and you want the
offset of GOB in the group, you need to enter a statement like:

MOV BX,OFFSET DGROUP:GOB

You must be sure that the GROUP directive precedes any reference to a group
name, including its use with OFFSET.

TYPE

TYPE <label>
TYPE <variable>

2-33

8086 Assembly Language Elements

2-34

If the operand is a variable the TYPE operator returns a value equal to the number
of bytes of the variable type as follows:

BYTE = I
WORD =2
DWORD=4
QWORD=8
TBYTE = 10
STRUC = the number of bytes declared by STRUC

If the operand is a label, the TYPE operator returns NEAR (FFFFH) or FAR
(FFFFH).

Examples:

MOV AX,(TYPE FOO--BAR) PTR [BX+SI]

. TYPE

. TYPE <variable>

The. TYPE operator returns a byte that describes two characteristics of the <varia
ble>: 1) the mode and 2) whether it is external or not. The argument to .TYPE may
be any expression (string, numeric, logical). If the expression is invalid, .TYPE
returns zero.

The byte that is returned is configured so that the lower two bits are the mode. If the
lower two bits are

o the mode is absolute
I the mode is program related
2 the mode is data related.

The high bit (80H) is the external bit. If the high bit is on, the expression contains an
external. If the high bit is off, the expression is not external.

The defined bit is 20H. This bit is on if the expression is locally defined, and it is off if
the expression is undefined or external. If neither bit is on, the expression is invalid .

. TYPE is usually used inside macros, where an argument type may need to be tested
to make a decision regarding program flow. For exam pIe, when conditional assem
bly is involved.

8086 Assembly Language Elements

Example:

FOO MACRO X
LOCAL Z

Z = .TYPEX
IF Z ...

. TYPE tests the mode and type ofX. Depending on the evaluation of X, the block of
code beginning with IF Z ... may be assembled or omitted.

LENGTH

LENGTH <variable>

LENGTH accepts only one variable as its argument.

LENGTH returns the number of type units (BYTE, WORD, DWORD, QWORD,
TBYTE) allocated for that variable.

If the variable is defined by a DUP expression, LENGTH returns the number of
type units duplicated; that is, the number that precedes the first DUP in the
expression.

If the variable is not defined by a DUP expression, LENGTH returns 1.

Examples:

FOO DW JOO DUP(l)

NOV CX,LENGTH FOO ;get number of elements
;in array
;LENGTH returns 100

BAZ DW 100 DUP(l,10 DUP(?»

LENGTH BAZ is still 100,
regardless of the expression following DUP.

GOO DD (?)

LENGTH GOO returns 1 because only one unit is involved.

2-35

8086 Assembly Language Elements

2-36

SIZE

SIZE <variable>

SIZE returns the total number of bytes allocated for a variable.

SIZE is the product of the value of LENGTH times the value of TYPE.

Example:

FOO DW 100 DUP(l)

NOV BX,sIZE FOO ;get total bytes in array

SIZE = LENGTH X TYPE
SIZE = 100 X WORD
SIZE = 100 X 2
SIZE = 200

Record Specific Operators

Record specific operators are used to isolate fields in a record.

Records are defined by the RECORD directive (see the section MEMORY
DIRECTIVES). A record may be up to 16 bits long. The record is defined by fields,
which may be from one to 16 bits long. To isolate one of the three characteristics of a
record field, you use one of the record specific operators as follows:

Shift count

WIDTH

MASK

Number of bits from low end of record to low end of field
(number of bits to right shift the record to lowest bits of record)

The number of bits wide the field or record is (number of bits the
field or record contains)

Value of record if field contains its maximum value and all other
fields are zero (all bits in field contain 1; all other bits contain 0)

In the following discussions of the record specific operators, the following symbols
are used:

• FOO - a record defined by the RECORD directive FOO RECORD
FIELD 1 :3,FIELD2:6,FIELD3:7

8086 Assemhly Language I:lcrnel11s

• BAZ - a variable used to allocate FOO BAZ FOO < >

• FIELD 1, FIELD2, and FIELD3 - the fields of the record FOO

Shift-count - (Record fieldname)

<record-fieldname>

The shift count is derived from the record fieldname to be isolated.

The shift count is the number of bits the field must be right shifted to place the
lowest bit of the field in the lowest bit of the record byte or word.

If a 16-bit record (FOO) contains three fields (FIELD1, FIELD2, and FIELD3),
the record can be diagrammed as follows:

i=ttj=i:ttti:j=tttLLLj
I I I

FIELD 1 FIELD2 FIELD3

Where: FIELDI has a shift count of 13
FIELD2 has a shift count of 7
FIELD3 has a shift count of o.

When you want to isolate the value in one of these fields, you enter its name as an
operand.

Example:

MOVDX,BAZ
MOV CL,FIELD2
SHR DX,CL

FIELD2 is now right shifted, ready for access.

MASK

MASK <record-fieldname>

MASK accepts a field name as its only argument.

2-37

8086 Assembly Language Elements

2-38

MASK returns a bit mask defined by 1 for bit positions included by the field, and 0
for bit positions not included. The value returned. represents the maximum value for
the record when the field is masked.

Using the diagram used for shift count, MASK can be diagrammed as

The MASK of FIELD2 equals IF80H.

Example:

MOVDX,BAZ
AND DX,MASK FIELD2

FIELD2 is now isolated.

WIDTH

WIDTH <record-field name>
WIDTH <record>

When a <record-fieldname> is given as the argument, WIDTH returns the width of
a record field as the number of bits in the record field.

When a <record> is given as the argument, WIDTH returns the width of a record
as the number of bits in the record.

Using the diagram under shift count, WIDTH can be diagrammed as

·I-·I-·I-·-·I-·I-·I-·I-·I-·-·I-·I-·I~·I-·I-·I-·I ----------------
WIDTH =6

8086 Assembly Language l:'lemenls

Where: the WIDTH of FIELD 1 equals 3
the WIDTH of FIELD2 equals 6
the WIDTH of FIELD3 equals 7.

Example:

MOV CT., WIDTH FIELD2

The number of bits in FIELD2 is now in the count register.

ARITHMETIC OPERA TORS

Eight arithmetic operators provide the common mathematical functions (add,
subtract, divide, multiply, modulo, and negation) plus two shift operators.

The arithmetic operators are used to combine operands to form an expression that
results in a data item or an address.

Except for + and - (binary), operands must be constants.

For plus (+), one operand must be a constant.

For minus (-), the first (left) operand may be a nonconstant or both operands may
be nonconstants. But, the right may not be a nonconstant if the left is constant.

Table 2-4 lists the arithmetic operators with appropriate examples.

Table 2-4 Arithmetic Operators

OPERATOR OPERATION EXAMPLE

* MUltiply

/ Divide

MOD Modulo. Divide the left oper- MOV AX,IOO MOD 17
and by the right operand and

j,

return the value of the re- The value moved into AX
mainder (modulo). Both oper.., will be OFH (decimal 15).
ands must be absoiute.

2-39

8086 Assembly Language Elements

2-40

Table 2-4 Arithmetic Operators (cont'd)

OPERATOR OPERATION EXAMPLE

SHR Shift Right. SHR is followed by MOV AX,IIOOOOOB SHR 5
an integer that specifies the
number of bit positions the The value moved into AX
value is to be right shifted. will be lIB (03).

SHL Shift Left. SHL is followed by MOV AX,OIIOB SHL 5
an integer that specifies the
number of bit po~itions the The value moved into AX
value is to be lift shifted. will be OIIOOOOOOB (OCOH).

- (Unary Minus) Indicates that following value
is negative, as in a negative
integer.

+ Add. One operand must be a
constant; one may be a non-
constant.

- Subtract the right operand from
the left operand. The first (left)
operand may be a nonconstant,
or both operands may be non-
constants. But, the right may
be a nonconstant only if the left
is also a nonconstant and in the
same segment.

RELATIONAL OPERATORS

Relational operators compare two constant operands.

If the relationship between the two operands matches the operator, FFFFH is
returned.

If the relationship between the two operands does not match the operator, a zero is
returned.

8086 Assemhly Language i:lemenls

Relational operators are most often used with conditional directives and condi
tional instructions to direct program control.

Table 2-5 summarizes the six relational operators.

Table 2-5 Relational Operators

OPERATOR OPERATION

EQ Equal. Returns true if the operands equal each other.

NE Not equal. Returns true if the operands are not equal to each
other.

LT Less than. Returns true if the left operand is less than the
right operand.

LE Less than or equal. Returns true if the left operand is less
than or equal to the right operand.

GT Greater than. Returns true if the left operand is greater than
the right operand.

GE Greater than or equal. Returns true if the left operand is
greater than or equal to the right operand.

LOGICAL OPERATORS

Logical operators compare two constant operands bitwise.

Logical operators compare the binary values of corresponding bit positions of each
operand to evaluate for the logical relationship defined by the logical operator.

Logical operators can be used in two ways:

• To combine operands in a logical relationship. In this case, all bits in the
operands will have the same value (either 0000 or FFFFH). In fact, it is best
to use these values for true (FFFFH), and false (0000) for the symbols you
will use as operands because in conditionals anything nonzero is true .

• In bitwise operations. In this case, the bits are different, and the logical
operators act the same as the instructions of the same name.

2-41

8086 Assembly Language Elements

2-42

The four logical operators are summarized in Table 2-6.

Table 2-6 Logical Operators

OPERATOR OPERATION

NOT Logical NOT. Returns true ifleft operand is true and right is
false or if right is true and left is false. Returns false if both
are true or both are false.

AND Logical AND. Returns true if both operators are true.
Returns false if either operator is false or if both are false.
Both operands must be absolute values.

OR Logical OR. Returns true if either operator is true or ifboth
are true. Returns false if both operators are false. Both
operands must be absolute values.

XOR Exclusive OR. Returns true if either operator is true and the
other is false. Returns false if both operators are true or if
both operators are false. Both operands must be absolute
values.

Precedence of Operators in Expression Evaluation

Expressions are evaluated high precedence operators first, then left to right for
equal precedence operators.

Parentheses can be used to alter precedence, for example:

MOV AX,lOIB SHL 2*2 = MOV AX,OOlOlOOOB

MOV AX,lOlB SHL (2*2) = MOV AX,OlOlOOOOB

SHL and * are of equal precedence. Therefore, their functions are performed in the
order the operators are encountered (left to right).

8086 Assembly Language Elements

All operators in a single item have the same precedence, regardless of the order
listed within the item. Spacing and line breaks are used for visual clarity, not to
indicate functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parentheses ()

angle brackets < >
square brackets []

structure variable operand: <variable> . <field>

2. Segment override operator: colon (:)

3. PTR, OFFSET, SEG, TYPE, THIS

4. HIGH, LOW

5. *, /, MOD, SHL, SHR

6. +, - (both unary and binary)

7. EQ,NE,LT,LE,GT,GE

8. Logical NOT

9. Logical AND

10. Logical OR, XOR

11. SHORT,.TYPE

ACTION: INSTRUCTIONS AND DIRECTIVES

The action field contains either an 8086 instruction mnemonic or a MACRO-86
assembler directive.

Following a name field entry (if any), action field entries may begin in any column.
Specific spacing is not required. The only benefit of consistent spacing is improved
readability. If a statement does not have a name field entry, the action field is the
first entry.

The entry in the action field either directs the processor to perform a specific
function or directs the assembler to perform one of its functions.

2-43

8086 Assembly Language Elements

2-44

Instructions
Instructions command processor actions. An instruction may have the data and/or
addresses it needs built into it, or data and/or addresses may be found in the
expression part of an instruction. For example:

I opcode I I operand 1 I data I I data I

~~~~ 
supplied \ I /' 

supplied or found 

where supplied = part of the instruction and 

found = assembler inserts data and/or address from the information provid
ed by expression in instruction statements. 

opcode = the binary code for the action of an instruction. 

This guide does not contain detailed descriptions of the 8086 instruction mnemon
ics and their characteristics. For this, you will need to consult other texts. Some 
texts that you can reference are the following: 

Morse, Stephen P. The 8086 Primer. Rochelle Park, NJ: Hayden Publishing 
Co., 1980. 

Rector, Russell and George Alexy. The 8086 Book. Berkeley, CA: Osbourne/ 
McGraw-Hill, 1980. 

The 8086 Family User's Manual. Santa Clara, CA: Intel Corporation, 1980. 

However, Table 2-7 lists the 8086 instructions alphabetically by their mnemonics. 
Following Table 2-7, the mnemonics are listed again, first according to the types of 
instructions they are used in and then by the arguments they take, if any. 



8086 Assembly Language Elements 

Table 2-7 8086 Instructions 

MNEMONIC FULL NAME 

AAA ASCII adjust for addition 
AAD ASCII adjust for division 
AAM ASCII adjust for multiplication 
AAS ASCII adjust for subtraction 
ADC Add with carry 
ADD Add 
AND AND 
CALL CALL 
CBW Convert byte to word 
CLC Clear carry flag 
CLD Clear direction flag 
CLI Clear interrupt flag 
CMC Complement carry flag 
CMP Compare 
CMPS Compare byte or word (of string) 
CMPSB Compare byte string 
CMPSW Compare word string 
CWD Convert word to double word 
DAA Decimal adjust for addition 
DAS Decimal adjust for subtraction 
DEC Decrement 
DIV Divide 
ESC Escape 
HLT Halt 
IDIV Integer divide 
IMUL Integer multiply 
IN Input byte or word 
INC Increment 
INT Interrupt 
INTO Interrupt on overflow 
IRET Interrupt return 
JA Jump on above 
JAE Jump on above or equal 
JB Jump on below 
JBE Jump on below or equal 
JC Jump on carry 
JCXZ Jump on CX zero 
JE Jump on e~ual 

2-45 



8086 Assembly Language Elements 

Table 2-7 8086 Instructions (cont'd) 

MNEMONIC FULL NAME 

JG Jump on greater 
JGE Jump on greater or equal 
JL Jump on less than 
JLE Jump on less than or equal 
JMP Jump 
JNA Jump on not above 
JNAE Jump on not above or equal 
JNB Jump on not below 
JNBE Jump on not below or equal 
JNC Jump on no carry 
JNE Jump on not equal 
JNG Jump on not greater 
JNGE Jump on not greater or equal 
JNL Jump on not less than 
JNLE Jump on not less than or equal 
JNO Jump on not overflow 
JNP Jump on not parity 
JNS Jump on not sign 
JNZ Jump on not zero 
JO Jump on overflow 
JP Jump on parity 
JPE Jump on parity even 
JPO Jump on parity odd 
JS Jump on sign 
JZ Jump on zero 
LAHF Load AH with flags 
LDS Load pointer into DS 
LEA Load effective address 
LES Load pointer into ES 
LOCK LOCK bus 
LODS Load byte or word (of string) 
LODSB Load byte (string) 
LODSW Load word (string) 
LOOP LOOP 
LOOPE LOOP while equal 
LOOPNE LOOP while not equal 
LOOPNZ LOOP while not zero 
LOOPZ LOOP while zero 

2-46 



8086 Assembly Language Elements 

Table 2-7 8086 Instructions (cont'd) 

MNEMONIC FULL NAME 

MOV Move 
MOVS Move byte or word (of string) 
MOVBS Move byte (string) 
MOBSW Move word (string) 
MUL Multiply 
NEG Negate 
NOP No operation 
BIT BIT 
OR OR 
OUT Output byte or word 
POP POP 
POPF POP flags 
PUSH PUSH 
PUSHF PUSH flags 
RCL Rotate through carry left 
RCR Rotate through carry right 
REP Repeat 
RET Return 
ROL Rotate left 
ROR Rotate right 
SAHF Store AH into flags 
SAL Shift arithmetic left 
SAR Shift arithmetic right 
SBB Subtract with borrow 
SCAS Scan byte or word (of string) 
SCASB Scan byte (string) 
SCASW Scan word (string) 
SHL Shift left 
SHR Shift right 
STC Set carry flag 
STD Set direction flag 
STI Set interrupt flag 
STOS Store byte or word (of string) 
STOSB Store byte (string) 
STOSW Store word (string) 
SUB Subtract 

2-47 



8086 Assembly Language Elements 

2-48 

Table 2-7 8086 Instructions (cont' d) 

MNEMONIC FULL NAME 

TEST TEST 
WAIT WAIT 
XCHG Exchange 
XLAT Translate 
XOR Exclusive OR 

In the following sections, the 8086 instruction mnemonics are grouped by instruc
tion type, then by the type of argument(s) they take. In each group showing 
arguments, the instructions are listed alphabetically in the first column. Then, the 
formats of the instructions with the valid argument types are shown in the second 
column. If a format shows OP, that format is legal for all the instructions shown in 
that group. If a format is specific to one mnemonic, the mnemonic is shown in the 
format instead of OP. 

These abbreviations are used in the discussion: 

OP = opcode; instruction mnemonic 

reg = byte register (AL,AH,BL,BH,CL,CH,DL,DH) or 
word register (AX,BX,CX,DX,SI,DI,BP,SP) 

rim = register or memory address or indexed andlor based 

accum = AX or AL register 

immed = immediate 

mem = memory operand 

segreg = segment register (CS,DS,SS,ES) 



8086 Assembly Language Elements 

GENERAL 2 OPERAND INSTRUCTIONS 

ADC OP reg,r/m 
ADD OP r/m,reg 
AND OP accum,immed 
CMP OPr/m,immed 
OR 
SBB 
SUB 
TEST 
XOR 

CALL AND JUMP TYPE INSTRUCTIONS 

o P mem NEAR FAR direction CALL 
JMP OP rim (indirect data -- DWORD, WORD) 

RELA TIVE JUMPS 

OP addr (+129 or -126 of IP at start, or ± at end of jump instruction) 

JA 
JNBE 
JAE 
JNB 
JNC 
JB 

JC 
JNAE 
JBE 
JNA 
JCXZ 
JE 

JZ 
JG 
JNGE 
JGE 
JNL 
JL 

JNGE 
JLE 
JNG 
JNE 
JNZ 
JNO 

JNP 
JPO 
JNS 
JO 
JP 
JPE 
JS 

LOOP INSTRUCTIONS: SAME AS RELATIVE JUMPS 

LOOP LOOPE LOOPZ LOOPNE LOOPNZ 

RETURN INSTRUCTION 

Mnemonic Argument Type 

RET [immed] (optional, number of words to POP) 

2-49 



8086 Assembly Language Elements 

2-50 

NO OPERAND INSTRUCTIONS 

AAA 
AAD 
AAM 
AAS 
CBW 
CLC 

CLD 
CLI 
CMC 
CMPSB 
CMPSW 
CWD 

DAA 
DAS 
HLT 
INTO 
IRET 
LAHF 

LODSB 
LODSW 
MOVSB 
MOVSW 
NOP 
POPF 

PUSHF 
SAHF 
SCASB 
SCASW 
STC 
STD 

LOAD INSTRUCTIONS 

Mnemonics 

LDS 
LEA 
LES 

Argument Type 

OP rim (except that OP reg is illegal) 

MOVE INSTRUCTIONS 

Mnemonic 

MOV 

Argument Types 

OP mem,accum 
OP accum, mem 
OP segreg,r/m (except CS is illegal) 
OP r/m,segreg 
OP r/m,reg 
OP reg,r/m 
OP ret,immed 
OP rim, immed 

PUSH AND POP INSTRUCTIONS 

Mnemonics 

PUSH 
POP 

Argument Types 

OP word-reg 
OP segreg (POP CS is illegal) 
OPr/m 

STI 
STOSB 
STOSW 
WAIT 
XLATB 



SHIFT/ROTATE TYPE INSTRUCTIONS 

Mnemonics 

RCL 
RCR 
ROL 
ROR 
SAL 
SHL 
SAR 
SHR 

Argument Types 

OP rim,! 
OP r/m,CL 

INPUT/OUTPUT INSTRUCTIONS 

Mnemonics 

IN 

OUT 

Argument Types 

IN accum,byte-immed (immed = port 0-255) 
IN accum, DX 
OUT immed, accum 
OUT DX, accum 

INCREMENT/DECREMENT INSTRUCTIONS 

Mnemonics 

INC 
DEC 

Argument Types 

OP word-reg 
OPr/m 

ARITHMETIC MUL TIPL Y /DIVISION/NEGATE/NOT 

Mnemonics 

DIV 
INDIV 
MUL 
IMUL 
NEG 
NOT 

Argument Types 

OP rim (implies AX OP rim, except NEG) 

(NEG implies AX OP NOP) 

8086 Assembly Lanf?uage E'lemenls 

2-51 



8086 Assembly Language Elements 

2-52 

INTERRUPT INSTRUCTION 

Mnemonic 

INT 

Argument Types 

INT 3 (value 3 is one byte instruction) 
INT byte-immed 

EXCHANGE INSTRUCTION 

Mnemonic 

XCHG 

Argument Types 

XCHG accum, reg 
XCHG reg,accum 
XCHG reg,r/m 
XCHG r/m,reg 

MISCELLANEOUS INSTRUCTIONS 

Mnemonics 

XLAT 
ESC 

Argument Types 

XLA T byte-mem (only checks argument, not in opcode) 
ESC 6-bit-numer ,rIm 

STRING PRIMITIVES 

These instructions have bits to record only their operand( s), if they are byte or word, 
and if a segment override is involved. 

Mnemonics 

CMPS 

LODS 

MOVS 

SCAS 

STOS 

Argument Types 

CMPS byte-word,byte-word 
(CMPS right operand is ES) 
LODS byte/word, byte/word 
(LODS one argument = no ES) 
MOVS byte/word,byte/word 
(MOVS Left operand = ES) 
SCAS byte/word, byte/word 
(SeAS one argument = ES) 
STOS byte/word,byte/word 
(STOS one argument = ES) 



808(j Assembly Language Elements 

REPEAT PREFIX TO STRING INSTRUCTIONS 

LOCK REP REPE REPZ REPNE REPNZ 

Directives 

Directives give the assembler directions for input and output, memory organiza
tion, conditional assembly, listing and cross reference control, and definitions. 

In the following discussion, the directives have been divided into groups according 
to the function they perform. Within each group, the directives are described 
alphabetically. 

• Memory Directives 

Directives in this group are used to organize memory. Because there is no 
"miscellaneous" group, the memory directives group contains some direc
tives that do not, strictly speaking, organize memory, such as COMMENT. 

• Conditional Directives 

Directives in this group are used to test conditions of assembly before 
proceeding with assembly of a block of statements. This group contains all 
of the IF and related directives. 

• Macro Directives 

Directives in this group are used to create blocks of code called macros. This 
group also includes some special operators and directives that are used only 
inside macro blocks. The repeat directives are considered macro directives 
for descriptive purposes. 

• Listing Directives 

Directives in this group are used to control the format and, to some extent, 
the content of listings that the assembler produces. 

The following is an alphabetical list of all the directives that MACRO-86 supports. 

ASSUME EVEN IRPC .RADIX 
EXITM RECORD 

COMMENT EXTERN LABEL REPT 
CREF .LALL 

GROUP .LFCOND .SALL 
DB .LIST SEGMENT 
DD IF .SFCOND 

2-53 



8086 Assembly Language Elements 

DQ IFB MACRO STRUC 
DT IFDEF SUBTTL 
DW IFDIF NAME 

IFE .TFCOND 
ELSE IFIDN ORG TITLE 
END IFNB %OUT 
ENDIF IFNDEF .XALL 
ENDM PAGE .XCREF 
ENDP IF! PROC .XLIST 
ENDS IF2 PUBLIC 
EQU IRP PURGE 

The directives listed above are described in the following sections under the direc
tive type. 

MEMORY DIRECTIVES 

ASSUME 

ASSUME <seg-reg>: <seg-name> [, ... ] 

or 

ASSUME NOTHING 

ASSUME tells the assembler that the symbols in the segment or group can be 
accessed using this segment register. When the assembler encounters a variable, it 
automatically assembles the variable reference under the proper segment register. 
You may enter from 1 to 4 arguments to ASSUME. 

The valid <seg-reg> entries are CS, DS, ES, and SS. 

The possible entries for <seg-name> are 

2-54 

• the name of a segment declared with the SEGMENT directive 

• the name of a group declared with the GROUP directive 

• an expression: either SEG <variable-name> or SEG <label-name> (see 
the SEG operator in the section Operands) 

• the key word NOTHING. ASSUME NOTHING cancels all register 
assignments made by a previous ASSUME statement. 



8086 Assembly Language Elements 

If ASSUME is not used or if NOTHING is entered for <seg-name>, each reference 
to variables, symbols, labels, and so forth in a particular segment must be prefixed 
by a segment register (for example, DSLFOO instead of simply FOO). 

Example: 

ASSUME DS:DAT A,SS:DAT A,CS:CGROUP,ES:NOTHING 

COMMENT 

COMMENT <delim> <text> <delim> 

The first non-blank character encountered after COMMENT is the delimiter. The 
following <text> comprises a comment block which continues until the next 
occurrence of <delim>. 

COMMENT permits you to enter comments about your program without entering 
a semicolon (;) before each line. 

If you use COMMENT inside a macro block, the comment block will not appear on 
your listing unless you also place the .LALL directive in your source file. 

Example: 

Using an asterisk as the delimiter, the format of the comment block would be 

COMMENT * 
any amount of text entered 
here as the comment block 

* ;return to normal mode 

DEFINE BYTE 
DEFINE WORD 
DEFINE DOUBLEWORD 
DEFINE QUADWORD 
DEFINE TEN BYTES 

2-55 



8086 Assembly Language Elements 

2-56 

<VARNAME> 
<VARNAME> 
<VARNAME> 
<VARNAME> 
<VARNAME> 

DB 
DW 
DD 
DQ 
DT 

<exp> [,<exp>, ... ] 
<exp> [,<exp>, ... ] 
<exp> [,<exp>, ... ] 
<exp> [,<exp>, ... ] 
<exp> [,<exp>, ... ] 

The DEFINE directives are used to define variables or to initialize portions of 
memory. 

If the optional <varname> is entered, the DEFINE directives define the name as a 
variable. If <varname> has a colon, it becomes a NEAR label instead of a variable. 
(See also the sections Labels and Variables.) 

The DEFINE directives allocate memory in units specified by the second letter of 
the directive. Each define directive may allocate one or more of its units at a time: 

DB allocates one byte (8 bits) 
DW allocates one word (2 bytes) 
DD allocates two words (4 bytes) 
DQ allocates four words (8 bytes) 
DT allocates ten bytes 

<exp> may be one or more of the following: 

• A constant expression 

• The character? for indeterminate initialization. Usually the? is used to 
reserve space without placing any particular value into it. It is the equivalent 
of the DS pseudo-op in MACRO-80. 

• An address expression (for DW and DD only) 

• An ASCII string (longer than two characters for D,B only) 

• <exp> DUP(?) 
When this type of expression is the only argument to a define directive, the 
define directive produces an uninitialized data block. This expression with 
the ? instead of a value results in a smaller object file because only the 
segment offset is changed to reserve space. 

• <exp> DUP( <exp> [, ... ]) 

This expression, like item 5, produces a data block, but initialized with the 
value of the second <exp>. The first <exp> must be a constant greater than 
zero and must not be a forward reference. 



8086 Assembly Language Elements 

Example - Define Byte (DB): 

NUM-BASE DB 
FILLER DB 

ONE_CHAR DB 
MULT_CHAR DB 
MSG DB 

BUFFER DB 

TABLE DB 

NEW-PAGE DB 

ARRAY DB 

Example - Define Word (D W): 

ITEMS DW 
SEGVAL DW 
BSIZE DW 
LOCATION DW 
AREA DW 
CLEARED DW 

NEW-PAGE DB 

ARRAY DB 

Example - Define Doubleword (DD): 

16 
? 
;initialize with 
;indeterminate value 
'M' 
'MARC MIKE ZEBO PAUL BILL' 
'MSGTEST', 13, 10 
;message, carriage return 
;and linefeed 
10 DUP(?) 
;indeterminate block 
100 DUP(5 DUP(4),7) 
;100 copies of bytes with values 4,4,4,4,4,7 
OCH 
;form feed character 
1,2,3,4,5,6,7 

T ABLE,T ABLE+ 10,T ABLE+20 
OFFFOH 
4 * 128 
TOTAL + 1 
100 DUP(?) 
50 DUP(4),7) 
;100 copies of bytes with values 4,4,4,4,4,7 
OCH 
;form feed character 
1,2,3,4,5,6,7 

DBPTR DD TABLE 

SEC-PEILDA Y 

;16-bit OFFSET, then 16-bit 
;SEG base value 

DD 60*60*24 
;arithmetic is performed 
;by the assembler 

2-57 



8086 Assembly Language Elements 

2-58 

LIST DD 'XY',2 DUP(?) 
HIGH DD 4294967295 

;maximum 
FLOAT DD 6.735E2 

;floating point 

Example - Define Quadword (DQ): 

LONG-REAL DQ 3.141597 
;decimal makes it real 

STRING DQ 'AB' 
;no more than 2 characters 

HIGH DQ 18446744073709661615 
;maximum 

LOW DQ -18446744073709661615 
;minimum 

SPACER DQ 2 DUP(?) 
;uninitialized data 

FILLER DQ 1 DUP(?,?) 
;initialized with 
;indeterminate value 

HEX-REAL DQ OFDCBA9A98765432105R 

Example - Define Tenbytes (DT): 

ACCUMULA TOR DT? 
STRING DT 'CD' 

;no more than 2 characters 
PACKEDJ>ECIMAL DT 1234567890 
FLOATING-POINT DT 3.1415926 

END 

END [<exp>] 

The END statement specifies the end of the program. 

If <exp> is present, it is the start address of the program. If several modules are to 
be linked, only the main module may specify the start of the program with the END 
<exp> statement. 



8086 Assembly Lanftuage Elements 

If <exp> is not present, then no start address is passed to MS-LINK for that 
program or module. 

Example: 

END START 

where START is a label somewhere in the program. 

EQU 

<name> EQU <exp> 

EQU assigns the value of <exp> to <name>. If <exp> is an external symbol, an 
error is generated. If <name> already has a value, an error is generated. If you want 
to be able to redefine a <name> in your program, use the Equal Sign (=) directive 
instead. 

In many cases, EQU is used as a primitive text substitution, like a macro. 

<exp> may be anyone of the following: 

• A symbol. <name> becomes an alias for the symbol in <exp>. Shown as an 
Alias in the symbol table. 

• An instruction name. Shown as an Ope ode in the symbol table. 

• A valid expression. Shown as a Number or L (label) in the symbol table. 

• Any other entry, induding text, index references, segment prefix and oper
ands. Shown as Text in the symbol table. 

Example: 

FOO EQU 

B EQU 
P8 EQU 

CBD EQU 
(Opcode) 
All EQU 

BAZ 

[BP+8] 
DS: [BP+8] 

AAD 

DEFREC 2,3,4, 

;must be defined in this 
;module or an error results 
;index reference (Text) 
;segment prefix 
;and operand (Text) 
;an instruction name 

;DEFREC = record name 
;2,3,4, = initial values for fields of record 

2-59 



8086 Assembly Language Elements 

2-60 

EMP EQU 
FPV EQU 

Equal Sign 

<name> 

6 
6.3E7 

<exp> 

;constant value 
;floating point (text) 

<exp> must be a valid expression. It is shown as a Number or L (label) in the 
symbol table (same as <exp> type 3 under the EQU directive above). 

The equal sign (=) allows you to set and to redefine symbols. The equal sign is like 
the EQU directive, except you can redefine the symbol without generating an error. 
Redefinition may take place more than once, and redefinition may refer to a 
previous definition. 

Example: 

FOO = 
FOO EQU 
FOO = 

FOO = 

EVEN 

EVEN 

FOO+3 
6 
7 

FOO+3 

;the same as FOO EQU 5 
;error, FOO cannot be redefined by EQ U 
;FOO can be redefined 
;only by another = 
;redefinition may refer 
;to a previous definition 

The EVEN directive causes the program counter to go to an even boundary, that is, 
to an address that begins a word. If the program counter is not already at an even 
boundary, EVEN causes the assembler to add a NOP instruction so that the counter 
will reach an even boundary. 

An error results if EVEN is used with a byte aligned segment. 

Example: 

Before: the PC points to 0019 hex (25 decimal). 

EVEN 



8086 Assembly Language Elements 

After: the PC points to lA hex (26 decimal); 0019 hex now contains an NOP 
instruction. 

EXTRN 

EXTRN <name> : <type> [, ... ] 

<name> is a symbol that is defined in another module. <name> must have been 
declared PUBLIC in the module where <name> is defined. 

<type> may be anyone of the following, but must be a valid type for <name>. 

• BYTE, WORD, or DWORD 

• NEAR or FAR for labels or procedures (defined under a PROC directive) 

• ABS for pure numbers (implicit size is WORD, but includes BYTE). 

Unlike the 8080 assembler, placement of the EXTRN directive is significant. If the 
directive is given with a segment, MACRO-86 assumes that the symbol is located 
within that segment. If the segment is not known, place the directive outside all 
segments, then use either 

ASSUME <seg-reg> :SEG <name> 

or an explicit segment prefix. 

NOTE 

If a mistake is made and the symbol is not in 
the segment, MS-LINK will take the offset rel
ative to the given segment, if possible. If the 
real segment is not more than 64K bytes away 
from the reference, MS-LINK may find the 
definition. If the real segment is more than 64K 
bytes away, MS-LINK will fail to make the link 
between the reference and the definition, but 
will not return an error message. 

2-61 



8086 Assembly Language Elements 

2-62 

Example: 

In Same Segment: 

In Module 1: 

CSEG SEGMENT 
PUBLIC TAGN 

TAGN: 

CSEG ENDS 

In Module 2: 

CSEG SEGMENT 
EXTRN TAGN:NEAR 

JMPTAGN 
CSEG ENDS 

GROUP 

<name> GROUP 

In Another Segment: 

In Module 1: 

CSEGA SEGMENT 
PUBLICTAGF 

TAGF: 

CSEGA ENDS 

In Module 2: 

EXTRN TAGF:FAR 
CSEGB SEGMENT 

JMPTAGF 
CSEGB ENDS 

<seg-name> [, ... ] 

The GROUP directive collects the segments named after GROUP «seg-name> s) 
under one name. The GROUP is used by MS-LINK so that it knows which 
segments should be loaded together. The order in which the segments are named 
here does not influence the order in which the segments are loaded, that is, handled 
by the CLASS designation of the SEGMENT directive, or by the MS-LINK in 
response to the Object module prompt (where you name the object modules in the 
order they are to be linked). 



8086 Assembly Language Elements 

All segments in a GROUP must fit into 64K bytes of memory. The assembler does 
not check this at all, but leaves the checking to MS-LINK. 

<seg-name> may be one of the following: 

• A segment name, assigned by a SEGMENT directive. The name may be a 
forward reference. 

• An expression: either SEG <var> or SEG <label> 

Both of these entries resolve themselves to a segment name (see the SEG 
operator in the section Operands). 

Once you have defined a group name, you can use the name: 

• As an immediate value. 
Example: 

MOV AX,DGROUP 
MOVDS,AX 

DGROUP is the paragraph address of the base of DGROUP. 

• In an ASSUME statement. 

Example: 

ASSUME DS:DGROUP 

The DS register can now be used to reach any symbol in any segment of the 
group. 

• As an operand prefix for segment override. 

Example: 

MOV BX,OFFSET DGROUP:FOO 
DW DGROUP:FOO 
DD DGROUP:FOO 

DGROUP: forces the offset to be relative to DGROUP, instead of relative 
to the segment in which FOO is defined. 

2-63 



8086 Assembly Language Elements 

2-64 

Example (using GROUP to combine segments): 

In Module A: 

CGROUP 
XXX 

GROUP 
SEGMENT 
ASSUME 

XXX ENDS 
YYY SEGMENT 

YYY ENDS 
END 

In Module B: 

CGROUP GROUP 
ZZZ SEGMENT 

ASSUME 

ZZZ ENDS 
END 

INCLUDE 

INCLUDE <filename> 

XXX,yyy 

CS:CGROUP 

ZZZ 

CS:CGROUP 

The INCLUDE directive inserts source code from an alternate assembly language 
source file into the current source file during assembly. Use of the INCLUDE 
directive eliminates the need to repeat an often-used sequence of statements in the 
current source file. 

The <filename> is any valid file specification for the operating system. If the device 
designation is other than the default, the source filename specification must include 
it. The default device designation is the currently logged drive or device. 



8086 Assembly Language }:,'Iements 

The included file is opened and assembled into the current source file immediately 
following the INCLUDE directive statement. When end-of-file is reached, assem
bly resumes with the next statement following the INCLUDE directive. 

Nested includes are allowed (the file inserted with an INCLUDE statement may 
contain an INCLUDE directive). However, this is not a recommended practice with 
small systems because of the amount of memory that may be required. 

The file specified must exist. If the file is not found, an error is returned and the 
assembly aborts. 

On a MACRO-86 listing, the letter C is printed between the assembled code and the 
source line on each line assembled from an included file. See the section FORMATS 
OF LISTINGS AND SYMBOL TABLES for a description of listing file formats. 

Example: 

INCLUDE ENTRY 
INCLUDE B:RECORD.TST 

LABEL 

<name> LABEL <type> 

By using LABEL to define a <name>, you cause the assembler to associate the 
current segment offset with <name>. 

The item is assigned a length of 1. 

<type> varies depending on the use of <name>. <name> may be used for code or 
for data . 

• For code (for example, as a JMP or CALL operand): 

<type> may be either NEAR or FAR. <name> cannot be used in data 
manipulation instructions without using a type override. 

If you want, you can define a NEAR label using <name>: (the LABEL 
directive is not used in this case). If you are defining a BYTE or WORD 
NEAR label, you can place the <name>: in front of a DEFINE directive. 

When using a LABEL for code (NEAR or FAR), the segment must be 
addressable through the CS register. 

2-65 



8086 Assembly Language Elements 

2-66 

Example: 

SUBRTF LABEL FAR 
SUBRT: (first instruction) ;colon - NEAR label 

• For data: 

<type> may be BYTE, WORD, DWORD, <structure-name>, or <record
name>. When STRUC or RECORD name is used, <name> is assigned the 
size of the structure or record. 

Example: 

BARRAY 
ARRAY 

LABEL BYTE 
DW 100 DUP(O) 

ADD 
ADD 

AL,BARRA Y[99] 
AX,ARRA Y[98] 

;AD D 100th byte to AL 
;AD D 50th word to AX 

By defining the array two ways, you can access entries either by byte or by 
word. Also, you can use this method forSTRUC. It allows youto place your 
data in memory as a table, and to access it without the offset of the STRUC. 

Defining the array two ways also permits you to avoid using the PTR 
operator. The double defining method is especially effective if you access 
the data in a different way. It is easier to give the array a second name than 
to remember to use PTR. 

NAME 

NAME <module-name> 

<module-name> must not be a reserved word. It may be any length, but MACRO-
86 uses only the first six characters and truncates the rest. 

The module name is passed to MS-LINK, but otherwise has no significance for the 
assembler. MACRO-86 does check if more than one module name has been 
declared. 



801M Assembly Language Elements 

Every module has a name. MACRO-86 derives the module name from the 
following: 

• a valid NAME directive statement 

• the first six characters of a TITLE directive statement if the module does not 
contain a NAME statement. The first six characters must be legal as a name. 

Example: 

NAME CURSOR 

ORG 

ORG <exp> 

The location counter is set to the value of <exp>, and the MACRO-86 assigns 
generated code starting with that value. 

All names used in <exp> must be known on pass 1. The value of <exp> must either 
evaluate to an absolute or must be in the same segment as the location counter. 

Example: 

ORG 

ORG 

120H 

$+2 

;2-byte absolute value 
;maximum=OFFFFH 
;skip two bytes 

Example - ORG to a boundary (conditional):· 

CSEG 
BEGIN 

SEGMENT PAGE 
= $ 

IF ($-BEGIN) MOD 256 ;if not already on 
;256 byte· bouhdary 

ORG ($-BEGIN)+256-«$-BEGIN) MOD 256) 
ENDIF 

See the section CONDITIONAL DIRECTIVES for an explanation of conditional 
assembly. 

2-67 



8086 Assembly Language Elements 

2-6R 

PROC 

<procname> 

<procname> 

PROC [NEAR] 

RET 
ENDP 

or FAR 

The default, if no operand is specified, is NEAR. Use FAR if either of these two 
conditions apply. 

• The procedure name is an operating system entry point. 

• The procedure will be called from code which has another ASSUME CS 
value. 

Each PROC block should contain a RET statement. 

The PROC directive serves as a structuring device to make your programs more 
understandable. 

The PROC directive, through the NEAR/FAR option, informs CALLs to the 
procedure to generate a NEAR or a FAR CALL, and RETs to generate a NEAR or 
a FAR RET. PROC is used, therefore, for coding simplification so that you do not 
have to worry about NEAR or FAR for CALLs and RETs: 

A NEAR CALL or RETURN changes the IP bu t not the CS register. A FAR CALL 
or RETURN changes both the IP and the CS registers. 

Procedures are executed either in-line, from a JMP, or from a CALL. 

PROCs may be nested, which means that they are put in-line. 

Combining the PUBLIC directive with a PROC statement (both NEAR and FAR), 
permits you to make external CALLs to the procedure or to make other external 
references to the procedure. 



lW86 Assembly Language Elements 

Example: 

FAR..-NAME 

FAR..-NAME 

NEAR..-NAME 

NEAR..-NAME 

PUBLIC 
PROC 
CALL 
RET 
ENDP 

PUBLIC 
PROC 

RET 
ENDP 

FAR~AME 

FAR 
NEAR..-NAME 

NEAR..-NAME 
NEAR 

The second subroutine above can be called directly from a NEAR segment, that is, a 
segment addressable through the same CS and within 64K. 

CALL NEAR..-NAME 

A FAR segment, that is, any other segment that is not a NEAR segment, must call to 
the first subroutine, which then calls the second (an indirect call). 

CALL FAR..-NAME 

PUBLIC 

PUBLIC <symbol> [, ... ] 

Place a PUBLIC directive statement in any module that contains symbols you want 
to use in other modules without defining the symbol again. PUBLIC makes the 
listed symbol(s), which are defined in the module where the PUBLIC statement 
appears, available for use by other modules to be linked with the module that 
defines the symbol(s). This information is passed to MS-LINK. 

<Symbol> may be a number, a variable, a label (including PROC labels). 

<Symbol> may not be a register name or a symbol defined (with EQU) by floating 
point numbers or by integers larger than two bytes. 

2-69 



8086 Assembly Language Elements 

2-70 

Example - valid PUBLIC: 

GETINFO 

GETINFO 

PUBLIC 
PROC 
PUSH 
MOV 

POP 
RET 
ENDP 

Example - illegal PUBLIC: 

GETINFO 
FAR 
BP 
BP,sP 

BP 

;save caller's register 
;get address parameters 
;body of subroutine 
;restore caller's reg 
;return to caller 

PUBLIC PIE-BALD,HIGH_VALUE 
PIE-BALD EQU 3.1416 
HIGH_VALUE EQU 999999999 

.RADIX 

.RADIX <exp> 

The default input base (or radix) for all constants is decimal. The .RADIX directive 
permits you to change the input radix to any base in the range 2 to 16. 

<exp> is always in decimal radix, regardless of the current input radix. 

Example: 

MOV 
.RADIX 
MOV 

BX,OFFH 
16 
BX,OFF 

The two MOVs in this example are identical. 

The .RADIX directive does not affect the generated code values placed in the .OBJ, 
.LST, OR .CRF output files. 

The .RADIX directive does not affect the DD, DQ, or DT directives. Numeric 
values entered in the expression of these directives are always evaluated as decimal 
unless a data type suffix is appended to the value. 



8086 Assembly Language Elements 

Example: 

NUMJlAND 
HOTJlAND 
COOLJlAND 

RECORD 

.RADIX 16 
DT 773 
DQ 773Q 
DD 773H 

;773 = decimal 
;773 = octal here only 
;now 773 = hexadecimal 

<recordname> RECORD <fieldname> : <width> [=<exp>],[, ... ] 

<fieldname> is the name of a field. <width> specifies the number of bits in the field 
defined by <fieldname>. <exp> contains the initial (or default) value for the field. 
Forward references are not allowed in a RECORD statement. 

<fieldname> becomes a value that can be used in expressions. When you use 
<fieldname> in an expression, its value is the shift count to move the field to the far 
right. Using the MASK operator with the <fieldname> returns a bit mask for that 
field. 

<width> is a constant in the range 1 to 16 that specifies the number of bits 
contained in the field defined by <field name>. The WIDTH operator returns this 
value. If the total width of all declared fields is larger than eight bits, then the 
assembler uses two bytes. Otherwise, only one byte is used. 

The first field you declare goes into the most significant bits of the record. Succes
sively declared fields are placed in the succeeding bits to the right. If the fields you 
declare do not total exactly 8 bits or exactly 16 bits, the entire record is right shifted 
so that the last bit of the last field is the lowest bit of the record. Unused bits will be 
in the high end of the record. 

Example: 

FOO RECORD HIGH:4,MID:3,LOW:3 

Initially, the bit map would be 

. .. ..... . 
- - - - - - - - - - - - - - - -

<HIGH-> <MID> <LOW> 

2-71 



8086 Assembly Language Elements 

2-72 

If the total bits are >8, a word is used. If the total bits are <16, they are right shifted 
with undeclared bits placed at high end of word, thus: 

000 0 0 0 
e - - - -

not 
declared 

1 0 0 0 0 0 0 <---MASK 
_e_e_e __ e_e_e_e_e_ 

<HIGH-> <MID> <LOW> 
--------------- -----------------------> 

WIDTH shift count 

<exp> contains the initial value for the field. If the field is at least seven bits wide, 
you can use an ASCII character as the <exp>, for example: 

HIGH:7='Q' 

To initialize records, use the same method used for DB. The format is 

[<name>] <recordname> <[exp][, ... ]> 
or 
[<name>] <recordname> [<exp> DUP«[exp][, ... ]» 

<name> is optional. When given, it is a label for the first byte or word of the record 
storage area. 

<recordname> is the name used as a label for the RECORD directive. 

<exp> (both forms) contains the values you want placed into the fields of the 
record. In the latter case, the parentheses and angle brackets are required only 
around the second exp (following DUP). If <exp> is left blank, either the default 
value applies (the value given in the original record definition), or the value is 
indeterminate (when not initialized in the original record definition). For fields that 
are already initialized to values you want, place consecutive commas to skip over 
(use the default values of) those fields, for example: 

FOO <,,7> 

From the previous example, the 7 would be placed into the LOW field of the record 
FOO. The fields HIGH and MID would be left as declared (in this case, unitialized). 



8086 Assembly Language /:'fcmenls 

Records may be used in expressions as an operand in the form: 

recordname <[value[, ... ]]> 

The value entry is optional. The angle brackets must be coded as shown, even if the 
optional values are not given. A value entry is the value to be placed into a field of 
the record. For fields that are already initialized to values you want, place consecu
tive commas to skip over (use the default values of) those fields, as shown above. 

Example: 

FOO RECORD HIGH:5,MID:3,LOW:3 

BAX 
JANE 

SEGMENT 

FOO 
FOa 

MOV 

AND 
MOV 
SHR 
MOV 

<segname> 

<segname> 

< >; leave indeterminate here 
10 DUP( <16,8» ;HIGH=16,MID=8,LOW=? 

DX,OFFSET JANE [2] 
;get beginning record address 
DX,MASKMID 
CL,MID 
DX,CL 
CL,WIDTH MID 

SEGMENT [<align>] [<combine>] [<'class'>] 

ENDS 

At runtime, all instructions that generate code and data are in (separate) segments. 
Your program may be a segment, part of a segment, several segments, parts of 
several segments, or a combination of these. If a program has no SEGMENT 
statement, an MS-LINK error (invalid object) will result at link time. 

The <segname> must be an unique, legal name. It must not be a reserved word. 

2-73 



8086 Assembly Language Elements 

2-74 

<align> may be PARA (paragraph - default), BYTE, WORD, or PAGE. 

<combine> may be PUBLIC, COMMON, AT <exp>, STACK, MEMORY, or no 
entry (which defaults to "not combinable," or private). 

<'class'> name is used to group segments at link time. 

All three operands are passed to MS-LINK. 

The <align> operand 

The alignment tells the linker on what kind of boundary you want the segment to 
begin. The first address of the segment will be, for each alignment type: 

PAGE - address is xxxOOH (low byte is 0) 

PARA - address is xxxxOH (low nibble is 0) 
bit map - x x x x 0 0 0 0 

WORD - address is xxxxeH (e=even number; low bit is 0) 
bit map - x x x x x x x 0 

BYTE - address is xxxxxH (placed anywhere) 

The <combine> operand 

The combine type tells MS-LINK how to arrange the segments of a particular class 
name. The segments are mapped as follows for each combine type: 

None (not combinable or private) 

o 

tBo 
Public and stack 

Private segments are loaded separately and remain sepa
rate. They may be physically but not logically contiguous, 
even if the segments have the same name. Each private 
segment has its own base address. 



8086 Assembly Language 1:'lemenls 

Common 

Memory 

Public segments of the same name and class name are 
loaded contiguously. Offset is from beginning of first seg
ment loaded through the end of the last segment loaded. 
There is only one base address for all public segments of the 
same name and class name. (Combine type stack is treated 
the same as public. However, the stack pointer is set to the 
first address of the first stack segment. MS-LINK requires 
at least one stack segment.) 

Common segments of the same name and class name are 
loaded overlapping one another. There is only one base 
address for all common segments of the same name. The 
length of the common area is the length of the longest 
segment. 

Ostensibly, the memory combine type causes the segment(s) to be placed as the 
highest segments in memory. The first memory combinable segment encounter is 
placed as the highest segment in memory. Subsequent segments are treated the same 
as common segments. 

At <exp> 

NOTE 

This feature is not supported by MS-LINK. 
MS-LINK treats memory segments the same as 
public segments. 

The segment is placed at the P ARAG RAPH address specified in <exp>. The 
expression may not be a forward reference. Also, the AT combine type may not be 
used to force loading at fixed addresses. Rather, the AT combine type permits labels 
and variables to be defined at fixed offsets within fixed areas of storage, such as 
ROM or the vector space in low memory. 

NOTE 

This restriction is imposed by MS-LINK and 
MS-DOS. 

2-75 



8086 Assembly Language Elements 

2-76 

The <'class'> operand 

<'class'> name must be enclosed in quotation marks. It may be any legal name. 
Refer to Chapter 4 on MS-LINK for more discussion. 

Segment definitions may be nested. When segments are nested, the assembler acts as 
if they are not and handles them sequentially by appending the second part of the 
split segment to the first. At ENDS for the split segment, MACRO-86 takes up the 
nested segment as the next segment, completes it, and goes on to subsequent 
segments. Overlapping segments are not permitted. 

Example 1: 

A SEGMENT A SEGMENT 

B SEGMENT A ENDS 
B SEGMENT 

---> 

B ENDS 
B ENDS 
A SEGMENT 

A ENDS 

A ENDS 

The following arrangement is not allowed. 

A SEGMENT 

B SEGMENT 

A ENDS ;This is illegal! 

B ENDS 



8086 Assembly Language Elements 

Example 2: 

In module A: 

SEGA SEGMENT 
ASSUME 

SEGA ENDS 
END 

In module B: 

SEGA SEGMENT 
ASSUME 

SEGA ENDS 
END 

STRUC 

<structurename> 

<structurename> 

PUBLIC 'CODE' 
CS:SEGA 

PUBLIC 'CODE' 
CS:SEGA 
;MS-LINK adds this segment to the 
;same named segment in module A (and 
;others) if class name is the same. 

STRUC 

ENDS 

The STRUC directive is very much like RECORD, except that STRUC has a 
multiple byte capability. The allocation and initialization of a STRUC block is the 
same as for RECORDS. 

Inside the STRUC/ENDS block, the DEFINE directives (DB, DW, DD, DQ, DT) 
may be used to allocate space. The DEFINE directives and comments set off by 
semicolons (;) are the only statement entries allowed inside a STRUC block. 

Any label on a DEFINE directive inside a STRUC/ENDS block becomes a 
<fieldname> of the structure. This is how structure fieldnames are defined. Initial 

2-77 



8086 Assembly Language Elements 

2-78 

values given to fieldnames in the STRUC/ENDS block are default values for the 
various fields. These values of the fields are one of two types: overridable or not 
overridable. A simple field, a field with only one entry (but not a DUP expression), 
is overridable. A multiple field, a field with more than one entry, is not overridable. 

Example: 

FOO 
BAZ 
ZOO 

DB 
DB 
DB 

1,2 
10 DUP(?) 
5 

;is not overridable 
;is not overridable 
;is overridable 

If the <exp> following the DEFINE directive contains a string, it may be overrid
den by another string. However, if the overriding string is shorter than the initial 
string, the assembler will pad with spaces. If the overriding string is longer, the 
assembler will truncate the extra characters. 

Usually, structure fields are used as operands in an expression. The format for a 
reference to a structure field is 

<variable> . <field> 

where <variable> represents an anonymous variable usually set up when the 
structure is allocated. To allocate a structure, use the structure name as a directive 
with a label (the anonymous variable of a structure reference) and any override 
values in angle brackets. 

Faa STRUCTURE 

Faa ENDS 

GOO Faa <,7,,'JOE'> 

.<field> represents a label given to a DEFINE directive inside a STRUC/ENDS 
block (the period must be coded as shown). The value of <field> will be the offset 
within the addressed structure. 



8086 Assembly Language Elemenl5 

Examples: 

Assume you define a structure: 

STRUC 
DB 
DB 

1,2 
10 DUP(?) 

S 
FIELDI 
FIELD2 
FIELD3 
FIELD4 
S 

DB 
DB 
ENDS 

5 
'DOBOSKY' 

~not overridable 
;not overridable 
; overrida b Ie 
;overridable 

The DEFINE directives in this example define the fields of the structure and the 
field order corresponds to the order values are given in the initialization list when 
the structure is allocated. Every DEFINE directive statement line inside a STRUC 
block defines a field, whether or not the field is named. 

To allocate the structure, you write: 

DBAREA S <,,7,'ANDY'> ;overrides 3rd and 4th 
;fields only 

To refer to the structure .FIELD, you append it to the operand as follows: 

MOV 
MOV 

AL,[BX]. FIELD3 
AL,DBAREA.FIELD3 

CONDITIONAL DIRECTIVES 

Conditional directives allow you to design blocks of code that test for specific 
conditions, then to proceed accordingly. 

All conditionals follow the format: 

IFxxxx [argument] 

[ELSE 

.] 
ENDIF 

2-79 



8086 Assembly Language Elements 

2-80 

Each IFxxxx must have a matching ENDIF to terminate the conditional. Other
wise, an "unterminated conditional" message is generated at the end of each pass. 
An ENDIF without a matching IF causes a Code 8, "not in conditional block" 
error. 

Each conditional block may include the optional ELSE directive, which allows 
alternate code to be generated when the opposite condition exists. Only one ELSE is 
permitted for a given IF. An ELSE is always bound to the most recent, open IF. A 
conditional with more than one ELSE or an ELSE without a conditional will cause 
a Code 7, "already had ELSE clause" error. 

Conditionals may be nested up to 255 levels. Any argument to a conditional must be 
known on pass 1 to avoid phase errors and incorrect evaluation. For IF and IFE, 
the expression must involve values that were previously defined, and the expression 
must be absolute. If the name is defined after an IFDEF or IFNDEF, pass 1 
considers the name to be undefined, but it will be defined on pass 2. 

MACRO-86 evaluates the conditional statement to TRUE (which equals any 
non-zero value), or to FALSE (which equals OOOOH). If the evaluation matches the 
condition defined in the conditional statement, the assembler either assembles the 
whole conditional block or, if the conditional block contains the optional ELSE 
directive, assembles from IF to ELSE. The ELSE to ENDIF portion of the block is 
ignored. If the evaluation does not match, the assembler either ignores the condi
tional block completely or, if the conditional block contains the optional ELSE 
directive, assembles only the ELSE to ENDIF portion. The IF to ELSE portion is 
ignored. 

IF <exp> 

If <exp> evaluates to nonzero, the statements within the conditional block are 
assembled. 

IFE <exp> 

If <exp> evaluates to 0, the statements in the conditional block are assembled. 

IFl - Pass 1 conditional 

If MACRO-86 is in pass l, the statements in the conditional block are assembled. 
IF 1 takes no expression. 

IF2 - Pass 2 conditional 



~()86 Assembly Language I:'/emenls 

If MACRO-86 is in pass 2, the statements in the conditional block are assembled. 
IF2 takes no expression. 

IFDEF <symbol> 

If <symbol> is defined or has been declared external, the statements In the 
conditional block are assembled. 

IFNDEF <symbol> 

If <symbol> is not defined or not declared external, the statements in the condi
tional block are assembled. 

IFB <arg> 

The angle brackets around <arg> are required. 

If <arg> is blank (none given) or null (two angle brackets with nothing in between), 
the statements in the conditional block are assembled. 

IFB (and IFNB) are normally used inside macro blocks. The expression following 
the IFB directive is typically a dummy symbol. When the macro is called, the 
dummy will be replaced by a parameter passed by the macro call. If the macro call 
does not specify a parameter to replace the dummy following IFB, the expression is 
blank and the block will be assembled. (FNB is the opposite case.) Refer to the 
section MACRO DIRECTIVES for a full explanation. 

IFNB <arg> 

The angle brackets around <arg> are required. 

If <arg> is not blank, the statements in the conditional block are assembled. 

IFNB (and IFB) are normally used inside macro blocks. The expression following 
the IFNB directive is typically a dummy symbol. When the macro is called, the 
dummy will be replaced by a parameter passed by the macro call. If the macro call 
specifies a parameter to replace the dummy following IFNB, the expression is not 
blank and the block will be assembled. (IFB is the opposite case.) Refer to the 
section MACRO DIRECTIVES for a full explanation. 

IFIDN <argl>,<arg2> 

The angle brackets around <argl> and <arg2> are required. 

2-X I 



8086 Assembly Language Elements 

2-82 

If the string <argl> is identical to the string <arg2>, the statements in the 
conditional block are assembled. 

IFIDN (and IFDIF) are normally used inside macro blocks. The expression follow
ing the IFIDN directive is typically two dummy symbols. When the macro is called, 
the dummys will be replaced by parameters passed by the macro call. If the macro 
call specifies two identical parameters to replace the dummys, the block will be 
assembled. (IFDIF is the opposite case.) Refer to the section MACRO DIREC
TIVES for a full explanation. 

IFDIF <argl>,<arg2> 

The angle brackets around <argl> and <arg2> are required. 

If the string <argl> is different from the string <arg2>, the statements in the 
conditional block are assembled. 

IFDIF (and IFIDN) are normally us'ed inside macro blocks. The expression follow
ing the IFDIF directive is typically two dummy symbols. When the macro is called, 
the dummys will be replaced by parameters passed by the macro call. If the macro 
call specifies two different parameters to replace the dummys, the block will be 
assembled. (IFIDN is the opposite case.) 

ELSE 

The ELSE directive allows you to generate alternate code when the opposite 
condition exists. This directive may be used with any of the conditional directives. 
Only one ELSE is allowed for each IFxxxx conditional directive. ELSE takes no 
expression. 

ENDIF 

This directive terminates a conditional block. An ENDIF directive must be given 
for every IFxxxx directive used. ENDIF takes no expression. ENDIF closes the 
most recent, unterminated IF. 



8086 Assembly Language Elements 

MACRO DIRECTIVES 

The macro directives allow you to write blocks of code that can be repeated without 
recording. The blocks of code begin with either the macro definition directive or one 
of the repetition directives, and end with the ENDM directive. All of the macro 
directives may be used inside a macro block. In fact, nesting of macros is limited 
only by memory. 

The macro directives used by MACRO-86 include: 

Macro definition directive 

MACRO 

Termination directives 

ENDM 
EXITM 

Directive to create unique symbols within macro blocks 

LOCAL 

Directive to undefine a macro 

PURGE 

Repeat directives 

REPT (repeat) 
IRP (indefinite repeat) 
IRPC (indefinite repeat character) 

The macro directives also include some special macro operators: 

&;; % 

Macro Definition Directive 

MACRO 

<name> MACRO [<dummy>, ... ] 

ENDM 

2-83 



8086 Assembly Language Elements 

2-84 

The block of statements from the MACRO statement line to the ENDM statement 
line comprises the body of the macro, or the macro's definition. 

<name> is like a LABEL and conforms to the rules for forming symbols. After the 
macro has been defined, <name> is used to invoke the macro. 

A <dummy> is formed as any other name is formed. It is a place holder that is 
replaced by a parameter in a one-for-one text substitution when the MACRO block 
is used. You should include all dummys used inside the macro block on this line. 
The number of dummys is limited only by the length of a line. If you specify more 
than one dummy, they must be separated by commas. MACRO-86 interprets a 
series of dummys the same as any list of symbol names. 

NOTE 

A dummy is always recognized exclusively as a 
dummy. Even if a register name (such as AX or 
BH) is used as a dummy, it will be replaced by a 
parameter during expansion. 

One alternative is to list no dummys. 

<name> MACRO 

This type of macro block allows you to call the block repeatedly, even if you do not 
want or need to pass parameters to the block. In this case, the block will not contain 
any dummys. 

A macro block is not assembled when it is encountered. Rather, when you call a 
macro, the assembler "expands" the macro call statement by bringing in and 
assembling the appropriate macro block. 

MACRO is an extremely powerful directive. With it, you can change the value and 
effect of any instructions: mnemonic, directive, label, variable, or symbol. When 
MACRO-86 evaluates a statement, it first looks at the macro table it builds during 
pass 1. If it sees a name there that matches an entry in a statement, it acts 
accordingly. (Remember: MACRO-86 evaluates macros, then instruction mnemo
nics/directives. ) 



8086 Assemhly Language I:'/emenls 

If you want to use the TITLE, SUBTTL, or NAME directives for the portion of 
your program where a macro block appears, you should be careful about the form 
of the statement. If, for example, you enter "SUBTTL MACRO DEFINITIONS," 
MACRO-86 will assemble the statement as a macro definition with SUBTTL as the 
macro name and DEFINITIONS as the dummy. To avoid this problem, alter the 
word MACRO in some way; for example, MACROS. 

To use a macro, enter a macro call statement in the format: 

<name> [ <parameter>, ... J 

<name> is the name of the macro block. A <parameter> replaces a dummy on a 
one-far-one basis. The number of parameters is limited only by the length of a line. 
If you enter more than one parameter, they must be separated by commas, spaces, 
or tabs. If you place angle brackets around parameters separated by commas, 
MACRO-86 will pass all the items inside the angle brackets as a single parameter. 

For exam pIe: 

Faa 1,2,3,4,5 

passes five parameters to the macro, but 

Faa <1,2,3,4,5> 

passes only one. 

The number of parameters in the macro call statement need not be the same as the 
number of dummys in the macro definition. If there are more parameters than 
dummys, the extra dummys will be made null. The assembled code will include the 
macro block after each macro call statement. 

Example: 

GEN MACRO 
MOV 
ADD 
MOV 
ENDM 

XX,YY,ZZ 
AX,XX 
AX,YY 
ZZ,AX 



8086 Assembly Language Elements 

2-86 

If you then enter a macro call statement: 

GEN DUCK,DON,FOO 

MACRO-86 generates the statements: 

MOV 
ADD 
MOV 

AX,DUCK 
AX,DON 
FOO,AX 

On your program listing, these statements will be preceded by a plus sign (+) to 
indicate that they came from a macro block. 

Termination Directives 

End Macro 

ENDM 

ENDM tells the assembler that the MACRO or repeat block is ended. 

Every MACRO, REPT, IRP, and IRPC must be terminated with the ENDM 
directive. Otherwise, the "Unterminated REPT/IRP/IRPC/MACRO" message is 
generated at the end of each pass. An unmatched ENDM also causes an error. 

If you wish to be able to exit from a MACRO or repeat block before expansion is 
completed, use EXITM. 

Exit Macro 

EXITM 

The EXITM directive is used inside a MACRO or repeat block to terminate an 
expansion when some condition makes the remaining expansion unnecessary or 
undesirable. Usually EXITM is used in conjunction with a conditional directive. 

When an EXITM is assembled, the expansion is exited immediately. Any remaining 
expansion or repetition is not generated. If the block containing the EXITM is 
nested within another block, the outer level continues to be expanded. 



8086 Assembly Language Elements 

Example: 

FOO 
X 

X 

MACRO 
= 
REPT 
= 
IFE 
EXITM 
ENDIF 
DB 
ENDM 
ENDM 

X 
o 
X 
X+l 
X=OFFH ;test X 
;if true, exit REPT 

x 

Directive for Unique Symbol Creation within a Macro 

LOCAL 

LOCAL <dummy> [,<dummy> ... J 

The LOCAL directive is allowed only inside a MACRO definition block. A 
LOCAL statement must precede all other types of statements in the macro 
definition. 

When LOCAL is executed, MACRO-86 creates a unique symbol for each 
<dummy> and substitutes that symbol for each occurrence of <dummy> in the 
expansion. These unique symbols are usually used to define a label within a macro, 
thus eliminating multiple-defined labels on successive expansions of the macro. The 
symbols created by the assembler range from ??OOOO to ??FFFF. You should avoid 
the form ??nnnn for your own symbols. 

2-87 



8086 Assembly Language Elements 

2-88 

Example: 

0000 FUN 

FOO 

A: 
B: 
C: 
D: 
E: 

0000 07 + ??OOOO: 
0001 08 + nOOOl: 
0002 BE + nOO02: 
0003 OOBF + ??0003: 
0005 OCOI + ??0004: 
0007 EB F7 + 

0009 07 + nOO05: 
OOOA 08 + ??0006: 
OOOB FF + nOO07: 
OOOC 0100 + ??0008: 
OOOE 03Cl + nOO09: 
0010 EB F7 + 
0012 FUN 

SEGMENT 
ASSUME 
MACRO 
LOCAL 
DB 
DB 
DB 
DW 
DW 
JMP 
ENDM 
FOO 
DB 
DB 
DB 
DW 
DW 
JMP 
FOO 
DB 
DB 
DB 
DW 
DW 
JMP 
ENDS 
END 

CS:FUN,DS:FUN 
NUM,Y . 
A,B,C,D,E 
7 
8 
Y 
Y+l 
NUM+l 
A 

OCOOH,OBEH 
7 
8 
OBEH 
OBEH+l 
OCOOH+l 
noooo 
03COH,OFFH 
7 
8 
OFFH 
OFFH+l 
03COH+l 
n0005 

Notice that MACRO-86 has substituted LABEL names in the form nnnnn for the 
instances of the dummy symbols. 

Macro U ndefine Directive 

PURGE 

PURGE <macro-name> [, ... ] 

PURGE deletes the definition of the macro(s) listed after it. 



8086 Assembly Language /:'Iemenfs 

PURGE provides three benefits: 

• It frees text space of the macro body. 

• It returns any instruction mnemonics or directives that were redefined by 
macros to their original function. 

• It allows you to "edit out" macros from a macro library file. You may find it 
useful to create a file that contains only macro definitions. This method 
allows you to use macros repeatedly with easy access to their definitions. 
Typically, you would then place an INCLUDE statement in your program 
file. Following the INCLUDE statement, you could place a PURGE state
ment to delete any macros you will not use in this program. 

It is not necessary to PURGE a macro befoe redefining it. Simply place 
another MACRO statement in your program, reusing the macro name. 

Example: 

INCLUDE 
PURGE 
MAC! 

Repeat Directives 

MACRO.LIB 
MAC! 

;tries to invoke purged macro 
;returns a syntax error 

The directives in this group allow the operations in a block of code to be repeated 
for the number of times you specify. The major differences between the repeat 
directives and MACRO directive are the following. 

• MACRO gives the block a name by which to call in the code wherever and 
whenever needed. The macro block can be used in many different programs 
by simply entering a macro call statement. 

• MACRO allows parameters to be passed to the MACRO block when a 
macro is called; hence, parameters can be changed. 

Repeat directive parameters must be assigned as a part of the code block. If the 
parameters are known in advance and will not change, and if the repetition is to be 
performed for every program execution, then repeat directives are convenient. With 
the MACRO directive, you must call in the MACRO each time it is needed. 

Note that each repeat directive must be matched with the ENDM directive to 
terminate the repeat block. 



8086 Assembly Language Elements 

2-90 

Repeat 

REPT <exp> 

ENDM 

Repeats the block of statements between REPT and ENDM <exp> times. <exp> is 
evaluated as a 16-bit unsigned number. If <exp> contains an external symbol or 
undefined operands, an error is generated. 

Example: 

X = 0 
REPT 10 ;generates DB 1 - DB 10 

X = X+l 
DB X 
ENDM 

assembles as: 

0000 X = 0 
X REPT 10 ;generates DB 1 - DB 10 
X = X+l 

DB X 
ENDM 

0000' 01 + DB X 
0001' 02 + DB X 
0002' 03 + DB X 
0003' 04 + DB X 
0004' 05 + DB X 
0005' 06 + DB X 
0006' 07 + DB X 
0007' 08 + DB X 
0008' 09 + DB X 
0009' OA + DB X 

END 



8086 Assembly Language Elements 

Indefinite Repeat 

IRP <dummy>, <parameters inside angle brackets> 

ENDM 

Note that parameters must be enclosed in angle brackets. Parameters may be any 
legal symbol, string, numeric, or character constant. The block of statements is 
repeated for each parameter. Each repetition substitutes the next parameter for 
every occurrence of <dummy> in the block. If a parameter is null (i.e., < », the 
block is processed once with a null parameter. 

Example: 

IRP X,<1,2,3,4,5,6,7,8,9,10> 
DBX 
ENDM 

This example generates the same bytes (DB 1 - DB 10) as the REPT example. 

When IRP is used inside a MACRO definition block, angle brackets around 
parameters in the macro call statement are removed before the parameters are 
passed to the macro block. The following example, which generates the same code 
as above, illustrates the removal of one level of brackets from the parameters: 

FOO MACRO 
IRP 
DB 
ENDM 
ENDM 

x 
Y,<X> 
Y 

2-9\ 



8086 Assembly Language Elements 

2-92 

When the macro call statement: 

FOO <1,2,3,4,5,6,7,8,9,10> 

is assembled, the macro expansion becomes 

IRP Y,<1,2,3,4,5,6,7,8,9,10> 
DBY 
ENDM 

The angle brackets around the parameters are removed and all items are passed as a 
single parameter. 

Indefinite Repeat Character 

IRPC <dummy> , <string> 

ENDM 

The statements in a macro block are repeated once for each character in <string>. 
Each repetition substitutes the next character in the string for every occurrence of 
<dummy> in the block. 

Example: 

IRPC 
DB X+l 
ENDM 

X,0123456789 

This example generates the same code (CB 1 - DB 10) as the two previous examples. 

Special Macro Operators 

Several special operators can be used in a macro block to select additional assembly 
functions. 

$ An ampersand concatenates text or symbols. (The & may not be used in a 
macro call statement.) A dummy parameter in a quoted string will not be 
substituted in expansion unless preceded immediately by &. To form a 
symbol from text and a dummy, put & between them. 



?W86 Assembly /,anguagc /:'Iements 

Example: 

ERRGEN 
ERROR&X: 

MACRO 
PUSH 
MOV 
JMP 
ENDM 

X 
BX,'A' 
BX,'&X' 
ERROR 

The call ERRGEN A will then generate 

ERRORA: PUSH 
MOV 
JMP 

B 
BX,'A' 
ERROR 

In MACRO-86, unlike MACRO-80, the ampersand will not appear in the 
expansion. One ampersand is removed each time a dummy& or &dummy 
is found. For complex macros, where nesting is involved, extra amper
sands may be needed. You need to supply as many ampersands as there 
are levels of nesting. 

Example: 

Correct form 

FOO 

X&&Z 

MACRO 
IRP 
DB 
ENDM 
ENDM 

x 
Z,<1,2,3> 
Z 

Incorrect form 

FOO 

X&Z 
IRP 
DB 
ENDM 
ENDM 

MACRO X 
2<1,2,3> 
2 

When called, for example, by FOO BAZ, the expansion would be cor
rect in the left column, incorrect in the right. The operation would 
proceed as follows: \ 

1. MACRO build. Find dummies and change to dl. 

dl&Z 
IRP 
DB 
ENDM 

Z,<1,2,3> 
Z dlZ 

IRP 
DB 
ENDM 

Z,<1,2,3> 
Z 

2-93 



8086 Assembly Language Elements 

2-94 

2. MACRO expansion. Substitute parameter text for di. 

IRP Z,<1,2,3> IRP Z,<1,2,3> 
BAZ&Z DB Z BAZZ DB Z 

ENDM ENDM 

3. IRP build. Find dummies and change to dl. 

BAS&dI DB dl BAZZ DB dl 

4.IRP expansIOn. Substitute parameter text for dl. 

BAZI DB 1 BAZZ DB I 
BAZ2 DB 2 BAZZ DB 2 
BAZ3 DB 3 BAZZ DB 3 

;here it's an error, 
;multi-defined symbol 

<text> Angle brackets cause MACRO-86 to treat the text between the angle 
brackets as a single literal. Placing either the parameters to a macro call 
or the list of parameters following the IRP directive inside angle brackets 
has two results: 

.. 
" 

• All text within the angle brackets are seen as a single parameter, 
even if commas are used . 

• Characters that have special functions are taken as literal charac
ters. For example, the semicolon inside angle brackets <;> 
becomes a character, not the indicator that a comment follows. 

One set of angle brackets is removed each time the parameter is used in a 
macro. When using nested macros, you will need to supply as many sets 
of angle brackets around parameters as there are levels of nesting. 

In a macro or repeat block, a comment preceded by two semicolons is not 
saved as a part of the expansion. 

The default listing condition for macros is .XALL (see the section LIST-
1NG DIRECTIVES). Under the influence of .XALL, comments in 
macro blocks are not listed because they do not generate code. 



8086 Assembly Language E'lemenls 

If you decide to place the .LALL listing directive in your program, then 
comments inside macro and repeat blocks are saved and listed. This can 
be the cause of an out of memory error. To avoid this error, place double 
semicolons before comments inside macro and repeat blocks, unless you 
specifically want a comment to be retained. 

An exclamation point may be entered in an argument to indicate that the 
next character is to be taken literally. Therefore, !; is equivalent to <;>. 

% The percent sign is used only in a macro argument to convert the 
expression that follows it (usually a symbol) to a number in the current 
radix. During macro expansion, the number derived from converting the 
expression is substituted for the dummy. Using the % special operator 
allows a macro call by value. Usually, a macro call is a call by reference 
with the text of the macro argument substituting exactly for the dummy. 

The expression following the % must evaluate to an absolute (non
relocatable) constant. 

Example: 

PRINTE 

SYMI 
SYM2 

MACRO 
%OUT 
ENDM 
EQU 
EQU 
PRINTE 

MSG,N 
* MSG,N * 

100 
200 
<SYMI + SYM2 =>,%(SYMI + SYM2) 

Normally, the macro call statement would cause the string (SYMI + 
SYM2) to be substituted for the dummy N. The result would be 

%OUT * SYM 1 + SYM2 = (SYM 1 + SYM2) * 

When the % is placed in front of the parameter, the assembler generates 

%OUT * SYMI Iml SYM2 = 300 * 

2-95 



8086 Assembly Language Elements 

2-96 

LISTING DIRECTIVES 

Listing directives perform two general functions: format control and listing control. 
Format control directives allow the programmer to insert page breaks and direct 
page headings. Listing control directives turn on and off the listing of all or part of 
the assembled file. 

PAGE 

PAGE [<length> ][, <width>] 
PAGE [+] 

P AG E with no arguments or with the optional [+] argument causes MACRO-86 to 
start a new output page. The assembler puts a form feed character in the listing file 
at the end of the page. 

The PAGE directive with either the length or width arguments does not start a new 
listing page. 

The value of <length>, if included, becomes the new page length (measured in lines 
per page) and must be in the range 10 to 255. The default page length is 50 lines per 
page. 

The value of <width>, if included, becomes the new page width (measured in 
characters) and must be in the range 60 to 132. The default page width is 80 
characters. 

The plus sign increments the major page number and resets the minor page number 
to 1. Page numbers are in the form major-minor. The PAGE directive without the + 
increments only the minor portion of the page number. 

Example: 

PAGE + ;increment major, set minor to 1 

PAGE 58,60 ;page length=58 lines, 
;width=60 characters 



8086 Assemhly Language Elements 

TITLE 

TITLE <text> 

TITLE specifies a title to be listed on the first line of each page. The <text> may be 
up to 60 characters long. If more than one TITLE is given, an error results and the 
first six characters of the title, iflegal, are used as the module name, unless a NAME 
directive is used. 

Example: 

TITLE PROG 1 -- 1st Program 

If the NAME directive is not used, the module name is now PROG 1 -- 1st Program. 
This title text will appear at the top of every page of the listing. 

SUBTITLE 

SUBTTL <text> 

SUBTTL specifies a subtitle to be listed in each page heading on the line after the 
title. The <text> is truncated after 60 characters. 

Any number of SUBTTLs may be given in a program. Each time MACRO-86 
encounters SUBTTL, it replaces the <text> from the previous SUBTTL with the 
<text> from the most recently encountered SUBTTL. To turn off SUBTTL for 
part of the output, enter a SUBTTL with a null string for <text>. 

Example: 

SUBTTL SPECIAL I/O ROUTINE 

SUBTTL 

2-97 



8086 Assembly Language Elements 

2-98 

The first SUBTTL causes the subtitle SPECIAL I/O ROUTINE to be printed at the 
top of every page. The second SUBTTL turns off the subtitle (the subtitle line on the 
listing is left blank). 

%OUT 

%OUT <text> 

%OUT is useful for displaying progress through a long assembly or for displaying 
the value of conditional assembly switches. <text> is listed on the console during 
assembly. 

%OUT will output on both assembler passes. If only one printout is desired, use the 
1Ft or IF2 directive, depending on which pass you want displayed. See the section 
CONDITIONAL DIRECTIVES for descriptions of the 1Ft and IF2 directives. 

Example: 

The assembler will send the following messages to the APC screen for passes t and 2 
of program assembly when the %OUT statements are encountered: 

1Ft 
%OUT *Pass 1 started* 
ENDIF 

IF2 
%OUT *Pass 2 started* 
ENDIF 

.LIST 

.XLIST 

.LIST lists all lines with their code (the default condition) on the printer. 

.XLIST suppresses all listing. 

If you specify a listing file following the listing prompt, a listing file with all the 
source statements included will be listed. 

When .XLIST is encountered in the source file, source and object code will not be 
listed .. XLIST remains in effect until a .LIST is encountered. 



8086 Assembly Language Elements 

.XLIST overrides all other listing directives. So, nothing will be listed, even if 
another listing directive (other than .LIST) is encountered. 

Example: 

.XLIST ;listing suspended here 

.LIST ;listing resumes here 

.SFCOND 

.SFCOND suppresses portions of the listing containing conditional expressions 
that evaluate as false . 

. LFCOND 

.LFCOND assures the listing of conditional expressions that evaluate false. This is 
the default condition . 

. TFCOND 

.TFCOND toggles the current setting. It operates independently from .LFCOND 
and .SFCOND. It toggles the default setting, which is set by the presence or absence 
of the IX switch when running the assembler. When IX is used, .TFCOND will 
cause false conditionals to list. When IX is not used, .TFCOND will suppress false 
conditionals . 

. XALL 

.XALL is the default. It lists source code and object code produced by a macro, but 
source lines that do not generate code are not listed . 

. LALL 

.LALL lists the complete macro text for all expansions, including lines that do not 
generate code. Comments preceded by two semicolons (;;) will not be listed . 

. SALL 

.SALL suppresses listing of all text and object code produced by macros. 

2-99 



8086 Assembly Language Elements 

2-100 

.CREF 

.XCREF [ <variable list> ] 

.CREF is the default condition .. CREF remains in effect until MACRO-86 encoun
ters .XCREF . 

. XCREF without arguments turns off the .CREF (default) directive .. XCREF 
remains in effect until MACRO-86 encounters .CREF. Use .XCREF to suppress 
the creation of cross references in selected portions of the source file. Use .CREF to 
restart the creation of a cross reference file after using the .XCREF directive. 

If you include one or more variables following .XCREF, these variables will not be 
placed in the listing or cross reference file. All other cross referencing, however, is 
not affected by an .XCREF directive with arguments. Separate the variables with 
commas. 

Neither .CREF nor .XCREF without arguments takes effect unless you specify a 
cross reference file when running the assembler. .XCREF variable list suppresses 
the variables from the symbol table listing regardless of the creation of a cross 
reference file. 

Example: 

.XCREF CURSOR, FOO GOO, BAZ, ZOO 
;these variables will not be 
;in the listing or cross reference file 



Chapter 3 

Assembling a Macro-86 
Source File 

Microsoft's MACRO-86 Macro Assembler is a very rich and powerful assembler for 
8086 based computers. MACRO-86 incorporates many features usually found only 
in large computer assemblers. Macro assembly, conditional assembly, and a variety 
of assembler directives provide all the tools necessary to derive full use and full 
power from an 8086 or 8088 microprocessor. Even though MACRO-86 is more 
complex than any other microcomputer assembler, it is easy to use. 

MACRO-86 produces relocatable object codes. Each instruction and directive 
statement is given a relative offset from its segment base. The assembled code can 
then be linked using the MS-LINK Linker Utility to produce relocatable, executable 
object code. Relocatable code can be loaded anywhere in memory. Thus, the 
program can execute where it is most efficient, not only in some fixed range of 
memory addresses. 

In addition, relocatable code means that programs can be created in modules, each 
of which can be assembled, tested, and perfected individually. This saves recoding 
time because testing and assembly is performed on smaller pieces of program code. 
Also, all modules can be error free before being linked together into larger modules 
or into the whole program. The program is not a huge monolith of code. 

MACRO-86 supports Microsoft's complete 8080 macro facility, which is Intel 8080 
standard. The macro facility permits the writing of blocks of code for a set of 
instructions used frequently. The need for recoding these instructions each time they 
are needed is eliminated. 

3-1 



Assembling a Macro-86 Source File 

3-2 

This blockof code is given a name, called a macro. The instructions are the macro 
definition. Each time the set of instructions is needed, instead of recoding the set of 
instructions, a simple "call" to the macro is placed in the source file. MACRO-86 
expands the macro call by assembling the block of instructions into the program 
automatically. The macro call also passes parameters to the assembler for use 
during macro expansion. The use of macros reduces the size of a source module 
because the macro definitions are given only once, then other occurrences are one 
line calls. 

Macros can be "nested," that is, a macro can be called from inside another macro. 
Nesting of macros is limited only by memory. 

The macro facility includes repeat, indefinite repeat, and indefinite repeat character 
directives for programming repeat block operations. The MACRO directive can 
also be used to alter the action of any instruction or directive by using its name as the 
macro name. When any instruction or directive statement is placed in a program, 
MACRO-86 first cheCks the symbol table it created to see if the instruction or 
directive is a macro name. If it is, MACRO-86 "expands" the macro call statement by 
replacing it with the body of instructions in the macro's definition. If the name is not 
defined as a macro MACRO 86 tries to match the name with an instruction or 
directive. The MACRO directive also supports local symbols and conditional 
exiting from the block if further expansion is unnecessary. 

MACRO-86 supports an expanded set of conditional directives. Directives for 
evaluating a variety of assembly conditions can test assembly results and branch 
where required. Unneeded or unwanted portions of code will be left unassembled. 
MACRO-86 can test for blank or non-blank arguments, for defined or not..:defined 
symbols, for equivalence, and for first assembly pass or second. MACRO-86 can 
compare strings for identity or difference. The conditional directives simplify the 
evaluation of assembly results, and make programming the testing code for condi
tions easier as well as more powerful. 

MACRO-86's conditional assembly facility also supports the conditionals inside 
conditionals (nesting). Conditional assembly blocks can be nested up to 255 levels. 

MACRO-86 supports all the major 8080 directives found in Microsoft's MACRO-
80 Macro Assembler. This means that any conditional, macro, or repeat blocks 
programmed under MACRO-80 can be used under MACRO-86. Processor instruc
tions and some directives(for example, PHASE, CSEG, DSEG) within the blocks, 
if any, will need to be converted to the 8086 instruction set. All the major MACRO-
80 directives (pseudo-ops) that are supported under MACRO-86 will assemble as is, 



Assembling a Macro-86 Source File 

as long as the expressions to the directives are correct for the processor and the 
program. The syntax of directives is unchanged. MACRO-86 is upward compatible, 
with MACRO-80 and with Intel's ASM86, except Intel code macros and macros. 

MACRO-86 provides some relaxed typing. Some 8086 instructions take only one 
operand type. If a typeless operand is entered for an instruction that accepts only 
one type of operand (for example, in the instruction PUSH [JBS], [BX] has no size, 
but PUSH only takes a word), it seems wasteful to return an error for a lapse of 
memory or a typographical error. When the wrong type choice is given, MACRO-86 
returns an error message but generates the "correct" code. That is, it always puts out 
insructions, not just NOPs. For example, if you enter 

MOV AL, WORDLBL 

You may have meant one of three instructions: 

MOV AL, BYTE PTR WORDLBL 
MOV AL, other 
MOV AX, WORDLBL 

MACRO-86 generates the second instruction because it assumes that when you 
specify a register, you mean that register is that size; the other operand is the "wrong 
size." MACRO-86 accordingly modifies the wrong operand tofit the register size (in 
this case) or the size of whatever is the most likely "correct" operand in an expres
sion. This eliminates some mundane debugging chores. An error message is still 
returned, however, because you may have misstated the operand that MACRO-86 
assumes is correct. 

SYSTEM REQUIREMENTS FOR RUNNING MACRO-86 

The MACRO-86 Macro Assembler requires 96K bytes of memory minimum to 
execute: 64K bytes for code and static data, and 32K bytes for run space. For a 
peripheral device, MACRO-86 needs one disk drive, if and only if output is sent to 
the same physical diskette from which the input was taken. MACRO-86 does not 
allow time to swap diskettes during operation on a one-drive configuration. There
fore, two disk drives is a more practical configuration. 

3-3 



Assembling a Macro-86 Source File 

3-4 

OVERVIEW OF MACRO-86 OPERATIONS 

This first task is to create a source file. Use EDLIN, the resident editor in MS-DOS 
operating system (or other 8086 editor compatible with your MS-DOS operating 
system) to create the MACRO-86 source file. MACRO-86 assumes a default file 
name extension of .ASM for the source file. Creating the source file involves coding 
instruction and directive statements that follow the rules and constraints described 
in Chapter 2 of this guide. When the source file is ready, run MACRO-86. 

MACRO-86 is a two-pass assembler. This means that the source file is assembled 
twice. However, slightly different actions occur during each pass. 

During the first pass, the assembler evaluates the statements and expands macro call 
statements; calculates the amount of the code it will generate; and builds a symbol 
table where all symbols, "Variables, labels, and macros are assigned values. During 
the second pass, the assembler fills in the symbol, variable, labels and expression 
values from the symbol table; expands macro call statements; and emits the relocat
able object code into a file that is suitable for processing with MS-LINK. The .OBJ 
file can be stored as part of a libary of object programs, which later can be linked 
with one or more .OBJ modules by MS-LINK. The .OBJ modules can also be 
processed with the MS-LIB Library Manager. 

The source file can also be assembled without creating an .OBJ file. All the other 
assembly steps are performed, but the object code is not sent to disk. Only erroneous 
source statements are displayed on the console screen. This practice is useful for 
checking the source code for errors. It is faster than creating an .OBJ file because no 
file creating or writing is performed. Modules can be tested, assembled quickly and 
errors corrected before the object code is put on disk. Modules that assemble with 
errors db not clutter the disk. 

The following illustrates the operations of MACRO-86 during its two passes: 



PASS 1 

MACRO-86 

symbol - def 
~ymbol- def 
variable - def 
variable - def 
label - def 
macro name 

statement 
statement 
macro call 

statement 

Assembling a Macro-86 Source File 

----------14--_ 

exact amount 
of code to 

----------- ...------------ be genera ted 

PASS 2 

MACRO-86 

symbol 
tabk 

3-5 



Assembling a Macro-86 Source File 

3-6 

MACRO-86 will create, on command, a listing file and a cross-reference file. 

The listing file contains the beginning relative addresses (offsets from the segment 
base) assigned to each instruction, the machine code translation of each statement 
(in hexadecimal values), and the statement itself. The listing that is generated 
contains a symbol table that shows the values of all symbols, labels, and variables, 
plus the names of all macros. The listing file is given the default filename extension 
.LST. 

The cross reference file contains a compact representation of variables, labels, and 
symbols. This file is given the default filename extension .CRF. When the cross 
reference file is processed by MS-CREF, it is converted into an expanded symbol 
table that lists all the variables, labels, and symbols in alphabetical order, followed 
by the line number in the source program where each is defined, followed by the line 
numbers where each is used in the program. The final cross reference listing receives 
the filename extension .REF. (Refer to Chapter 5, THE CROSS REFERENCE 
UTILITY for further explanation and instructions.) 

HOW TO ASSEMBLE A MACRO-86 SOURCE FILE 

Assembling with MACRO-86 requires invoking MACRO-86 and answering com
mand prompts. In addition, four switches control alternate MACRO-86 features. 
Usually, you will enter all the commands to MACRO-86 at the keyboard. As an 
option, answers to the command prompts and any switches may be contained in a 
batch file (see the MS-DOS System User's Guide for batch file processing instruc
tions). Some command characters are provided to assist you in entering assembler 
commands. 

MACRO-86 may be invoked two ways. By the first method, you enter the com
mands as answers to individual prompts. By the second method, you enter all 
commands on the command line used to invoke MACRO-86. 



Assembling a Macro-86 Source File 

Method 1: MASM 

Enter 

MASM 

MACRO-86 is loaded into memory, then returns a series of four text prompts. You 
must answer the prompts as commands to MACRO-86. 

At the end of each line, you may enter one or more switches, each of which must be 
preceded by a slash mark. If a switch is not included, MACRO-86 defaults to not 
performing the function described for the switches. 

MACRO-86 COMMAND PROMPTS 

MACRO-86 prompts you for the names of source, object, listing, and cross refer
ence files. 

All command prompts accept a file specification as a response. You may enter 

a filename only, 

a device designation only, 

a filename and a filename extension, 

a device designation and filename, 

or a device designation, filename, and filename extension. 

You may not enter only a filename extension. 

Table 3-1 summarizes the MACRO-86 command prompts. 

3-7 



Assembling a Macro-86 Source File 

Table 3-1 MACRO-86 Command Prompts 

PROMPT RESPONSE 

Source filename [.ASM]: Enter the filename of your source 
program. MACRO-86 assumes by de-
fault that the filename extension is 
.ASM, as shown in square brackets in 
the prompt text. If your source program 
has any other filename extension, you 
must enter it along with the filename. 
Otherwise, the extension may be 
omitted. 

Object filename [source.OBJ]: Enter the name of the file you want to 
receive the generated object code. If you 
simply press RETURN when this prompt 
appears, the object file will be given the 
same name as the source file, but with 
the filename extension .OBJ. If you want 
your object file to have a different name 
or a different filename extension, you 
must enter your choice(s) in response to 
this prompt. If you want to change only 
the filename but keep the .OBJ exten-
sion, enter the filename only. To change 
the extension only, you must enter both 
the filename and the extension. 

Source listing [NUL.LST]: Enter the name of the file, if any, you 
want to receive the source listing. If you 
press RETURN, MACRO-86 does not 
produce this listing file. If you enter a 
filename only, the listing is created and 
placed in a file with the name you enter 
plus the filename extension .LST. You 
may also enter your own extension. 

The source listing file will contain a list 
of all the statements in your source pro-
gram and will show the code and offsets 
generated for each statement. The listing 
will also show any error messages gener-
ated during the session. 

3-8 



Assembling a Macro~~6 Source File 

Table 3-1 MACRO-86 Command Prompts (cont'd) 

PROMPT RESPONSE 

Cross reference [NUL. CRF]: Enter the name of the file, if any, you 
want to receive the cross reference file. If 
you press only RETURN, MACRO-86 
does not produce this cross reference 
file. If you enter a filename only, the 
cross reference file is created and placed 
in a file with the name you enter plus the 
filename extension .CRF. You may also 
enter your own extension. 

The cross reference file is used as the 
source file for the MS-CREF Cross Ref-
erence Utility. MS-CREF converts this 
cross reference file into a cross reference 
listing, which you can use to aid you 
during program debugging. 

The cross reference file contains a series 
of control sym boIs that identify records 
in the file. MS-CREF uses these control 
symbols to create a listing that shows all 
occurrences of every symbol in your 
program. The occurrence that defines 
the symbol is also identified. 

MACRO-86 COMMAND SWITCHES 

The three MACRO-86 command switches, ID, 10, and IX, control various 
assembler functions. These switches must be entered at the end of a prompt 
response, regardless of which method is used to invoke MACRO-86. They may be 
grouped at the end of anyone of the responses, or may be scattered at the end of 
several. If more than one switch is entered at the end of one response, each switch 
must be preceded by the slash mark (I). You may not enter only a switch as a 
response to a command prompt. 

Table 3-2 contains the descriptions of the MACRO-86 command switches. 

3-9 



Assembling· a Macro-86 Source File 

Table 3-2 MACRO-86 Command Switches 

SWITCH FUNCTION 

ID Produces a source listing on both assem-
bler passes. The listings will, when com-
pared, show where in the program phase 
errors occur and possibly, give you a 
clue as to why the errors occur. The ID 
switch does not take effect unless you 
command MACRO-86 to create a source 
listing (enter a filename in response to 
the Source listing command prompt). 

10 Prints the listing file in octal radix. The 
generated code and the offsets shown on 
the listing will all be given in octal. The 
actual code in the object file will be the 
same as if the 10 switch were not given. 
The 10 switch affects only the listing 
file. 

IX Suppresses the listing of false condi-
tionals. If your program contains condi-
tional blocks, the listing file will show 
the source statements but no code if the 
condition evaluates false. To avoid the 
clutter of conditional blocks that do not 
generate code, use the IX switch to 
suppress the blocks that evaluate false 
conditionals from your listing. 

The IX switch does not affect any block 
of code in your file that is controlled by 
either the .SFCOND or .LFCOND direc-
tives. 

3-10 



Assembling a Macro-86 Source rile 

Table 3-2 MACRO-86 Command Switches (cont'd) 

SWITCH FUNCTION 

If your source program contains the 
· TFCOND directive, the IX switch has 
the opposite effect. That is, normally the 
· TFCOND directive causes the listing or 
suppressing of blocks of code that it 
controls. The first .TFCOND directive 
suppresses false conditionals, and so on. 
When you use the IX switch, false 
conditionals are already suppressed. 
When MACRO-86 encounters the first 
· TFCOND directive, listing of false 
conditionals is restored. \\-Then the second 
· TFCOND is encountered (and the IX 
switch is used), false conditionals are 
again suppressed from the listing. 

Of course, the IX switch has no effect if 
no listing is created. See additional dis
cussion under the .TFCOND directive 
in Chapter 2. 

3-11 



Assembling a Macro-86 Source File 

3-12 

The following information represents the effects of the conditional listing directives 
in combination with the IX switch. 

PSEUDO-OP 

(none) 

.SFCOND 

.LFCOND 

.TFCOND 

.TFCOND 

.SFCOND 

.TFCOND 

.TFCOND 

.TFCOND 

NOIX 

ON 

OFF 

ON 

OFF 

ON 

OFF 

OFF 
ON 

OFF 

IX 

OFF 

OFF 

ON 

ON 

OFF 

OFF 

ON 
OFF 

ON 



Assembling a Macro-86 Source File 

COMMAND CHARACTERS 

MACRO-86 provides two command characters. 

Example: 

Use a single semicolon (;), followed immediately by RETURN, any 
time after responding to the first prompt (from Source filename on) 
to select default responses to the remaining prompts. This feature 
saves time. 

NOTE 

Once the semicolon has been entered, you can 
no longer respond to any of the prompts for 
that assembly. Therefore, do not use the semi
colon to skip over prompts. For this, use the 
RETURN key. 

Source filename [.ASM]: FUN RETURN 
Object filename [FUN.OBJ]: ; RETURN 

The remaining prompts will not appear, and MACRO-86 will use the default values 
(including no listing file and no cross reference file). 

To achieve exactly the same result, you could alternatively enter 

Source filename [.ASM]: FUN; RETURN 

This response produces the same files as the previous example. 

CTRL-C Use CTRL-C at any time to abort the assembly. If you enter an 
erroneous response, such as the wrong filename or an incorrectly 
spelled filename, you must press CTRL·C to exit MACRO-86 then 
reinvoke MACRO-86 and start over. If the error has been typed and 
not entered, you may delete the erroneous characters, but for that 
line only. 

Method 2: MASM filenames [switches] 

Enter 

MASM <source>, <object>, <listing>, <cross-ref> [/switch ... ] 

3-13 



Assembling a Macro-86 Source File 

3-14 

MACRO-86 is loaded into memory, then immediately begins assembly. The entries 
following MASM are responses to the command prompts. The entry fields for the 
different prompts must be separated by commas, 

where: <source> is the source filename 

<object> is the name of the file to receive the relocatable output 

<listing> is the name of the file to receive the listing 

<cross-ref> is the name of the file to receive the cross reference 
output 

Iswitch are optional switches, which may be placed following any of 
the response entries Uust before any of the commas or after the 
<cross-ref>, as shown). 

To select the default for a field, simply enter a second comma without space in 
between. 

Example: 

MASM FUN "FUN/D/X,FUN 

This example causes MACRO-86 to be loaded, then causes the source file 
FUN.ASMto be assembled. MACRO-86 then outputs the relocatable object code 
to a file named FUN .OBl (default caused by two commas in a row), creates a listing 
file named FUN.LST for both assembly passes but with false conditionals sup
pressed, and creates a cross reference file named FUN.CRF. Iffilenames are not 
entered for listings and a cross reference, these files are not to be created. If listing 
file switches are given but no filename, the switches are ignored. 

FORMATS OF LISTINGS AND SYMBOLS TABLES 

The source listing produced by MACRO-86 (created when you specify a filename in 
response to the Source listing prompt) is divided into two parts. 



Assembling a Macro-86 Source File 

The first part of the listing shows: 

• the line number for each line of the source file, if a cross reference file is also 
being created 

• the offset of each source line that generates code 

• the code generated by each source line 

• a plus sign (+) if the code came from a macro or a letter C if the code came 
from an INCLUDE file 

• and the source statement line. 

The second part of the listing shows: 

• Macros - name and length in bytes 

• Structures and records - name, width and fields 
Segments and groups - name, size, align, combine, and class 

• Symbols - name, type, value, and attributes 

• The number of warning errors and severe errors 

Program Listing 

The program portion of the listing is essentially your source program file with the 
line numbers, offsets, generated code, and (where applicable) a plus sign to indicate 
that the source statements are part of a macro block or a letter C to indicate that the 
source statements are from a file input by the INCLUDE directive. 

If any errors occur during assembly, the error message will be printed directly below 
the statement where the error occurred. 

3-15 



Assembling a Macro-86 Source File 

3-16 

On the next page is part of a listing file, with notes explaining what the various 
entries represent. 

The comments have been moved down one line because of format restrictions. If 
you print your listing on 132 column paper, the comments shown here would easily 
fit on the same line as the rest of the statement. 

Explanatory notes are spliced into the listing at points of special interest. 

Table 3-3 provides a summary of listing symbols. 

Table 3-3 MACRO-86 Source Program Listing Symbols 

LISTING 
SYMBOL ACTION 

R Linker resolves entry to left of R. 

E External 

nn: 

nn/ 

Segment name, group name, or segment variable used in MOV AX, ---
DD ----, JMP ----, and so on. 

Statement has an EQU or = directive. 

Statement contains a segment override. 

REPxx or LOCK prefix instruction. For example: 

003C F3/ AS REP MOVSW ;move DS:SI to ES:DI until CX=O 
T =r 

[ DUP expression; xx is the value in parentheses 
xx following DUP. For example: DUP(?) places "??" 

] where "xx" is shown here. 

+ Line comes from a macro expanSIOn. 

C Line comes from file named in INCLUDE directive statement. 



Assembling a Macro-86 Source File 

A sample of a source listing for an assembled program follows. Several items have 
been underlined and notated to improve readability. 

Microsoft MACRO-86 MACRO Assembler I-Dec-81 

ENTX PASCAL entry for initializing programs 

, 
0000 STACK SEGMENT WORD STACK 'STACK' 
= 0000 HEAPbeg EQU THIS BYTE 

Indicates EQU or = directive 

~Base of heap before init 
done 
0000 14 [ DB 20DUP(?) 

??~ shows value in parentheses 

~cates DUP expression -------' 
= 0014 SKTOP EQU THIS BYTE 
0014 STACK ENDS 

0000 MAINSTARTUP SEGMENT 'MEMORY' 
DGROUP GROUP 

ASSUME 

PUBLIC 

0000 BEGXQQ PROC 
0000 B8 ---- R MOV 

DA T A,ST ACK,CONST, 
HEAP,MEMORY 
CS:MAINSTARTUP, 
DS:DGROUP, ES:DGROUP, 
SS:DGROUP 

BEGXQQ ;Main entry 

FAR 
AX,DGROUP 
;get assumed data segment 

3-17 



Assembling a Macro-86 Source File 

3-18 

Microsoft MACRO-86 MACRO Assembler I-Dec-81 

ENTX PASCAL entry for initializing programs 

value 
0003 8E 08 MOV OS,AX ;Set OS seg 

ENTX PASCAL entry for initializing programs 

0005 

T 
offset 

8C 06 0022 R 

generated 
code 

T name 

MOV CESXQQ,ES 

T 
actIOn f comment 

expressIon 

OOOC 26: 8B IE 0002 MOV BX,ES:2 ;Highest paragraph 

T .... -----segment override-------+ 

0011 2B 08 
0013 81 FB 1000 
0017 7E 03 
0019 BB 1000 
64K 

SUB 
CMP 
JLE 
MOV 

BX,AX ;Get t-t paras for DS 
BX,4096 ;More than 64K? 
SMLSTK ;No, use what we have 
BX,4096 ;Can only address 64K 



Assembling a Macro-86 Source File 

Microsoft MACRO-86 MACRO Assembler I-Dec-81 

ENTX PASCAL entry for initializing programs 

OOIC 01 E3 

OOIE 01 E3 

0020 01 E3 

0022 01 E3 

macro 
block 

0024 8B E3 

[SMLSTK: 

+ 

+ 

+ 

+ 

t 
these lines 
from macro 

REPT 
SHL 

4 .... -----...... 
BX,I 

:Convert para to offset 
ENOM 

SHL BX,I 
;Convert para to offset 

SHL BX,I 
;Convert para to offset 

SHL BX,I 
;Convert para to offset 

SHL BX,! 
;Convert para to offset 

macro number of ____ ~ 
directive repetitions 

MOV SP,BX 
;Set stack to top of memory 

0069 EA 0000 ---- R JMP FAR PTR ST ARTmain 

l tSignal to linker segment+variable 

006E 

007E 

linker resolves: indicates segment name, group name, 
or segment variable used in MOV AX, ----

00.---.; JMP.---., etc. (See other 
examples in this listing.) 

BEGXQQ ENOP 

MAINST ARTUP ENOS 

3-19 



Assembling a Macro-86 Source File 

3-20 

Microsoft MACRO-86 MACRO Assembler I-Dec-8I 

ENTX 

0000 

0000 
0000 

0005 

0005 

OOOA 

OOOF 

PASCAL entry for initializing programs 

9 A 0000 ---- E 

9 A 0000 ---- E 

9 A 0000 ---- E 

9 A 0000 ---- E 

ENTXCM SEGMENT WORD 'CODE' 
ASSUME CS:ENTXCM 

STARTmain 

ENDXQQ 

PUBLIC ENDXQQ,DOSXQQ 

PROC 
CALL 

LABEL 

CALL 

CALL 

CALL 

FAR ;This code remains 
ENTGQQ 

;call main program 

FAR 
;termination entry point 

ENDOQQ 
;user system termination 

ENDYQQ 
;close all open files 

ENDUQQ 
;file system termination 

0014 CJ 06 0020 R 0000 MOV DOSOFF,O 

T 
Offset 

00 2E 0020 R 

001E 

0037 

linker 
signal; 
goes with 

External 
symbol 

number to left; shows DOSOFF is in segment 

JMP 

ST ARTmain ENDP 

ENTXCM ENDS 
END 

DWORD PTR DOSOFF 
;return to DOS 

BEGXQQ 



Assembling a Macro-86 Source File 

There are differences between the pass I and pass 2 listings. 

If you give the 10 switch when you run MACRO-86to assemble your file, the 
assembler produces a listing for both passes. The option is especially helpful for 
finding the source of phase errors. 

The following example was taken from a source file that assembled without report
ing any errors. When the source file was reassembled using the 10 switch, an error 
was produced on pass 1, but not on pass 2 (which is when errors are usually 
reported). 

Example: 

During pass 1 a jump with a forward reference produces: 

0017 7E 00 
Error 
0019 BB 1000 
001C 

JLE 
9:Symbol not defined 

MOV 
SMLSTK: REPT 

SMLSTK ;No, use what we have 

BX,4096 :Can only address 64K 
4 

During pass 2 this same instruction is fixed and does not return an error. 

0017 7E 00 
0019 BB 1000 
001C SMLSTK: 

JLE 
MOV 
REPT 

SMLSTK ;No, use what we have 
BX,4096 :Can only address 64K 
4 

Note that the JLE instructions code now contain 03 instead of 00; ajump of 3 bytes. 

The same amount of code was produced during both passes, so there was no phase 
error. In this case the only difference is one of content instead of size. 

Symbol Table Format 

The symbol table portion of a listing separates all "symbols" into their respective 
categories, showing appropriate descriptive data. This data gives you an idea how 
your program is using various symbolic values. Use this information to help you 
debug. 

Also, you can use a cross reference listing, produced by MS-CREF, to help you 
locate uses of the various symbols in your program. 

On the next few pages is a complete symbol table listing. Following this complete 
listing, sections from different symbol tables are shown with explapatory notes. 

3-21 



Assembling a Macro-86 Source File 

3-22 

For all sections of symbol tables, this rule applies: if there are no symbolic values in 
your program for a particular category, the heading for the category will be omitted 
from the symbol table listing. For example, if you use no macros in your program, 
you will not see a macro section in the symbol table. 

Microsoft MACRO-86 MACRO 
Assembler date PAGE Symbols-1 
CALLER - SAMPLE ASSEMBLER ROUTINE (EXMP1M.ASM) 

Macros: 

Name 

BIOSCALL ........... . 
DISPLAy ............. . 
DOSCALL ............ . 
KEyBOARD .......... . 
LOCATE ............. . 
SCROLL .............. . 

Structures and records: 

Name 

PARMLIST ........... . 
BUFSIZE ........... . 
NAMESIZE ......... . 
NAMETEXT ........ . 
TERMINATOR ...... . 

Segments and groups: 

Name 

CSEG ................ . 
STACK ............... . 
WORKAREA ........ .. 

Length 

0002 
0005 
0002 
0003 
0003 
0004 

Width 
Shift 

001C 
0000 
0001 
0002 
001B 

Size 

0044 
0200 
0031 

# fields 
Width Mask 

0004 

align 

PARA 
PARA 
PARA 

combine 

PUBLIC 
STACK 
PUBLIC 

Initial 

class 

'CODE' 
'STACK' 
'DATA' 



Assembling a Macro-86 Source File 

Symbols: 

Name 

CLS .................. . 
MAXCHAR ........... . 
MESSG ................ . 
PARMS ............... . 
RECEIVR ............. . 
START ............... . 

Warning 
Errors 
o 

Severe 
Errors 
o 

NAMES OF MACROS 

type 

NPROC 
Number 
L BYTE 
L OOlC 
L FAR 
FPROC 

Value 

0036 
0019 
OOlC 
0000 
0000 
0000 

Attr 

CSEG Length =OOOE 

WORKAREA 
WORKAREA 

External 
CSEG Length =0036 

This section of a symbol table tells you the names of your macros and how big they 
are in 32-byte block units. In this listing, the macro DISPLAY is 5 blocks long or (5 
X 32 bytes =) 160 bytes long. 

Example: 

Macros: 

Name 

BIOSCALL ........... . 
DISPLAy ............. . 
DOSCALL ............ . 
KEYBOARD ' .......... . 
LOCATE ............. . 
SCROLL .............. . 

Length...-number of 32 byte blocks 

0002 
0005 
0002 
0003 
0003 
0004 

macro occupIes 
10 memory 

STRUCTURES AND RECORDS 

This section of a symbol table lists your structures and/or records and their fields. 
The upper line of column headings applies to structure names, record names, and to 
field names of structures. The lower line of column headings applies to field names 
of records. 

3-23 



Assembling a Macro-86 Source File 

3-24 

For structures: 

Width (upper line) shows the number of bytes your structure occupies in 
memory. 

# fields shows how many fields comprise your structure. 

For records: 

Width (upper line) shows the number of bits your record occupies. 

# fields shows how many fields comprise your record. 

For fields of structures: 

Shift shows the number of bytes the fields is offset into the structure. The other 
columns are not used for fields of structures. 

For fields of records: 

Shift is the shift count to the right. 

Width (lower line) shows the number of bits this field occupies. 

Mask shows the maximum value of record, expressed in hexadecimal, if one 
field is masked and ANDed (field is set to all I's and all other fields are set to all 
O's). 

Using field BZI of the record BAZI above to illustrate: 

o 0 0 0 0 I I I I I I I I 0 0 0 0 ---MASK = 07F8 

.----~-------~----------------- ---

15 II I-~-----f------ __ ~.. I 0 
shift count = 0003 

WIDTH =0008 



Assembling a Macro-86 Source File 

Initial shows the value specified as the initial value for the field, if any. 

When naming the field, you specified: 

fieldname:# = value 

where: fieldname is the name of the field 

# is the width of the field in bits, and 

value is the initial value you want this field to hold. The symbol table 
shows this value as ifit is placed in the field and all other fields are masked 
(equal 0). Using the example and diagram from above: 

ooooo~oooooo~oooo 
.----- ------ ----
----- -----------

initial = 80H 
80H = 128 decimal 

Example for structures: 

Name 

PARMLIST 
of records 

BUFSIZE ........... . 
NAMESIZE ......... . 
NAMETEXT ........ . 
TERMINATOR ...... . 

Width 
Shift 

OOIC 

0000 
0001 
0002 
001B 

<---Initial = 0400 

This line applies to structure names 

# field J (being in column 1) 

Width Mask Initial..-This line 

0004 

\ (indented), 

Number of fields in 
structure 

for fields 

field names of 
PARMLIST Structure into structure 

The number of bytes 
wide of structure 

3-25 



Assembling a Macro-86 Source File 

3-26 

Example for records: 

Name 

BAZ .................. . 

FLDl ............... . 
FLD2 ............... . 
FLD3 ............... . 

BAZl ................. . 

BZl 

BZ2 

number of 
bits in record 

SEGMENTS AND GROUPS 

Width 
Shift 

0008 

0006 
0004 
0000 
OOOB 

0003 

0000 

# fields 
Width Mask Initial~ This line 

for fields 
of records 

0003 --------number of 
fields in record 

0002 
0003 
0003 
0002 

0008 

0003 

oDeD 0040 
0038 0000 initial value 
0007", 0003 

~--MASKof 

07F8 

0007 

field 
0400 (maximum 

value) 
0002 

shift 
count 

to right 

number of 
bits in field 

This section of a symbol table lists group and segment names and their attributes. 

For groups: 

The name of the group will appear under the name column, beginning in column 1 
with the applicable segment names indented 2 spaces. The word group will appear 
under the size column. 

For segments: 

The segment names may appear in column 1 (as here) if you do not declare them part 
of a group. If you declare a group, the segment names will appear indented under 
their group name. 



Assembling a Macro-86 Source File 

For all segments, whether a part of a group or not: 

Size is the number of bytes the segment occupies. 

Align is the type of boundary where the segment begins: 

PAGE = page - address is xxxOOH (low byte = 0); begins on a 256 byte 
boundary 

PARA = paragraph - address is xxxxOH 
(low nibble = 0); default 

WORD = word - address is xxxxeH 
(e even number; 
low bit of low byte = 0) 

bit map -Ixlxlxlxlxlxlxlol 
BYTE = byte = address is xxxxxxH (anywhere) 

Combine describes how MS-LINK will combine the various segments. (See 
Chapter 4 on MS-LINK for a full description.) 

Class is the class name under which MS-LINK will combine segments in 
memory. (See Chapter 4 on MS-LINK for a full description.) 

Segments and groups: 

Name 

AAAXQQ ............. . 
DGROUP ... ~ ......... . 

DATA .............. . 
STACK ............. . 
CONST ............. . 
HEAP .............. . 
MEMORy ......... .. 

ENTXCM ............. . 
MAIN-STARTUP ...... . 

Size Align Combine Class 
r:-called private 

If for MS-LINK 
0000 WORD NONE 'CODE'~ segment 
GROUP .. group 
0024 WORD PUBLIC 'DATA' 
0014 WORD STACK 'STACK' segments 
0000 WORD PUBLIC 'CONST' of 
0000 WORD PUBLIC 'MEMORY' DGROUP 
0000 WORD PUBLIC 'MEMORY' 
0037 WORD NONE 'CODE' 
007E PARA NONE 'MEMORY' 
length statement hne entnes 
of 

segment 

3-27 



Assembling a Macro-86 Source File 

3-28 

SYMBOLS 

This section of a symbol table lists all other symbolic values in your program that do 
not fit under the other categories. 

Type shows the symbol's type: 

L = Label 
F = Far 
N = Near 
PROC = Procedure 
Number 

Alias } 
Text all defined by EQU or = directive 
Ope ode 

These entries may be combined to form the various types shown in the example. 

For all procedures, the length of the procedure is given after its attribute (segment). 

You may also see an entry under type like: 

L 0031 

This entry results from code such as the following: 

BAZ LABEL Faa 

where Faa is a STRUC that is 31 bytes long. 

BAZ will be shown in the symbol table with the L 0031 entry. Basically, Number 
(and some other similar entries) indicates that the symbol was defined by an EQU or 
= directive. 

Value (usually) shows the numeric value the symbol represents. (In some cases, the 
Value column will show some text -- when the symbol was defined by EQU or 
= directive.) 

Attr always shows the segment of the symbol, ifknown. Otherwise, the Attr column 
is blank. Following the segment name, the table will show either External, Global, 
or a blank (which means not declared with either the EXTRN or PUBLIC directive). 
The last entry applies to PROC types only. This is a length = entry, which is the 
length of the procedure. 



Assembling a Macro-86 Source File 

If type is Number, Opcode, Alias, or Text, the Symbols section of the listing will be 
structured differently. Whenever you see one of these four entries under type, the 
symbol was created by an EQU directive or an = directive. All information that 
follows one of these entries is considered its "value," even if the "value" is simple text. 

Each of the four symbol types shows a value as follows: 

• Number shows a constant numeric value. 

• Opcode shows a blank. The symbol is an alias for an instruction mnemonic, 
for example: 

FOO EQU ADD 

• Alias shows a symbol name that the named symool equals, for example: 

FOO EQU BAX 

• Text shows the "text" the symbol represents. "Text" is any other operand to 
an EQU directive that does not fit one of the other three categories above, 
for example, the directive statements: 

Examples: 

Symbols: 

FOO 
FOOl 
F002 
F003 
F004 
F005 

Symbols: 

GOO EQU 'WOW' 
BAZ EQU DS:8[BX] 
ZOO EQU 1.234 

Name Type 

Number 
Text 
Number 
Alias 
Text 
Opcode 

Name Type 

BEGHQQ ............. L WORD 
BEGOQQ ............. L FAR 

Value 

0005 ] 1.234 
0008 
FOO 
5 [BP] [DI] 

Value 

Attr 

all formed by 
EQU or = 
directive 

Attr 

DATA 
External 

Global 

BEGXQQ ............. F PROC 

0012 
0000 
0000 
0022 

MAIN~TARTUP Global Length =0006E 
CESXQQ .............. L WORD DATA Global 

3-29 



Assembling a Macro-86 Source File 

3-30 

CLNEQQ ............. 
CRCXQQ ............. 
CRDXQQ ............. 
CSXEQQ .............. 
CURHQQ ............. 
DOSOFF .............. 
DOSXQQ ............. 
ENDHQQ ............. 
ENDOQQ ............. 
ENDUQQ ............. 
ENDXQQ ............. 
ENDYQQ ............. 
ENTGQQ ............. 
FREXQQ ............. 
HDRFQQ ............. 
HDRVQQ ............. 
HEAPBEG ............ 
HEAPLOW ............ 
INIUQQ .............. 
PNUXQQ ............. 
RECEQQ .............. 
REFEQQ .............. 
REPEQQ .............. 
RESEQQ .............. 
SKTOP ............... 
SMLSTK .............. 
STARTMAIN .......... 
STKBQQ .............. 
STKHQQ ............. 

MACRO-86 MESSAGES 

LWORD 0002 DATA Global 
LWORD 001C DATA Global 
LWORD 001E DATA Global 
LWORD 0000 DATA Global 
LWORD 0014 DATA Global 
LWORD 0020 DATA 
F PROC 001E ENTXCM Global Length =0019 
LWORD 0016 DATA Global 
L FAR 0000 External 
L FAR 0000 External 
L FAR 0005 ENTXCM Global 
L FAR 0000 Global 
L FAR 0000 External 
F PROC 006E MAIN--.STARTUP Global Length =0010 
LWORD 0006 DATA Global 
LWORD 0008 DATA Global 
BYTE 0000 STACK EQU stateme 
BYTE 0000 HEAP showing segn 
LFAR 0000 External 
LWORD 0004 DATA Global 
LWORD 0010 DATA Global 
LWORD OOOC DATA Global 
LWORD OOOE DATA Global 
LWORD OOOA DATA Global 
BYTE 0014 STACK 
LNEAR OOIC MAIN--.ST ARTUP 
F PROC 0000 ENTXCM Length =001 E 
LWORD 0018 DATA Global 
LWORD OOIA DATA Global 

IfMACRO-86 knows this length as one of the type lengths (BYTE, WORD, 
DWORD, QWORD, TBYTE), it shows that type name here. 

Most of the messages generated by MACRO-86 are error messages. The nonerror 
messages from MACRO-86 are the banner MACRO-86 displays when first invoked, 
the command prompt messages, and the successful end of assembly message. These 
nonerror messages are classified here as operating messages. The error messages are 
categorized as either assembler errors, 1/0 handler errors, or runtime errors. 



Assembling a Macro-86 Source File 

Operating Messages 

The MACRO-86 banner message and command prompts appear on the APC screen 
as follows: 

MACRO-86 v 1.0 Copyright (C) Microsoft, Inc. 

Source filename [.ASM]: 
Object filename [source.OBJ]: 
Source listing [NUL.LST]: 
Cross reference [NUL.CRF]: 

The end of assembly message looks like this: 

Warning 
Errors 
n 

Fatal 
Errors 
n (n=number of errors) 

(The MS-DOS system prompt) 

Error Messages 

If MACRO-86 encounters errors, error messages are output, along with the 
numbers of warning and fatal errors, and control is returned to MS-DOS. The 
message is output either to your APC screen or to the listing file if you command one 
be created. 

Error messages are divided into three categories: assembler error, I/O handler error, 
and runtime error messages. The assembler and I/O handler messages are listed in 
tables in numerical order. 

Table 3-4 MACRO-86 Error Messages 

ERROR ERROR 
MESSAGE CODE MEANING 

Block nesting error 0 Nested procedures, segments, struc-
tures, macros, IRC, IRP,or REPT are 
not properly terminated. An example 
of this error is the close of an outer 
ievel of nesting with inner level(s) still 
open. 

3-3\ 



Assembling a Macro-86 Source File 

Table 3-4 MACRO-86 Error Messages (Coot'd) 

ERROR ERROR 
MESSAGE CODE MEANING 

Extra characters on line 1 This occurs when sufficient informa-
tion to define the instruction directive 
has been received on a line and super-
fluous characters beyond are received. 

Register already defined 2 This will only occur if the assembler 
has internal logic errors. 

Unknown symbol type 3 Symbol statement has something in 
the type field that is unrecognizable. 

Redefinition of symbol 4 This error occurs on pass 2 and suc-
ceeding definitions of a symbol. 

Symbol is multi-defined 5 This error occurs on a symbol that is 
later redefined. 

Phase error between passes 6 The program has ambiguous instruc-
tion directives such that the location 
of a label in the program changed in 
value between pass 1 and pass 2 of the 
assembler. An example of this is a 
forward reference coded without a 
segment override where one is required. 
There would be an additional byte (the 
code segment override) generated in 
pass 2 causing the next label to change. 
You can use the ID switch to produce 
a listing to aid in resolving phase 
errors between passes (see the section 
on switches in this chapter). 

Already had ELSE clause 7 Attempt to define an ELSE clause 
within an existing ELSE clause (you 
cannot nest ELSE without nesting 
IF ... ENDIF). 

3-32 



Assembling a Macro-86 Source File 

Table 3 ... 4 MACRO·86 Error Messages (Cont'd) 

ERROR ERROR 
MESSAGE CODE MEANING 

Not in conditional block 8 An ENDIF or ELSE is specified with-
out a previous conditional assembly 
directive action. 

Symbol not defined 9 A symbol is used that has no defini-
tion. 

Syntax error 10 The syntax of the statement does not 
match any recognizable syntax. 

Type illegal in context 11 The type specified in of an unaccept-
able size. 

Must be declared in pass 1 13 Assembler expecting a constant value 
but got something else. An example of 
this might be a vector size being a for-
ward reference. 

Symbol type usage illegal 14 Illegal use of a PUBLIC symbol. 

Symbol already different kind 15 Attempt to define a symbol differently 
from a previous definition. 

Symbol is reserved word 16 Attempt to use an assembler reserved 
word illegally. (For example, to de-
clare MOV as a variable.) 

Forward reference is illegal 17 Attempt to forward reference some-
thing that must be defined in pass 1. 

Must be register 18 Register unexpected as operand but 
user furnished symbol -- was not a 
register. 

3-33 



Assembling a Macro-86 Source File 

Table 3-4 MACRO-86 Error Messages (Cont'd) 

ERROR ERROR 
MESSAGE CODE MEANING 

Wrong type of register 19 Directive or instruction expected one 
type of register, but another was speci-
fied. For example, INC CS. 

Must be segment or group 20 Expecting segment or group and 
something else was specified. 

Symbol has no segment 21 Trying to use a variable with SEG, and 
the variable has no known segment. 

Already defined locally 23 Tried to define a symbol as EXTER-
NAL that had already been defined 
locally. 

Segment parameters are changed 24 List of arguments to SEG MENT were 
not identical to the first time this seg-
ment was used. 

Not proper align/combine type 25 SEGMENT parameters are incorrect. 

Reference to multi-defined 26 The instruction references something 
that has been multi-defined. 

Operand was expected 27 Assembler is expecting an operand but 
an operator was received. 

Operator was expected 28 Assembler was expecting an operator 
but an operand was received. 

Division by 0 or overflow 29 An expression is given that results in a 
divide by O. 

Shift count is negative 30 A shift expression is genera ted that 
results in a negative shift count. 

3-34 



Assembling a Macro-86 Source File 

Table 3-4 MACRO-86 Error Messages (Cont'd) 

ERROR 
MESSAGE 

Operand types must match 

Illegal use of External 

Must be record field name 

Must be record or field name 

Operand must have size 

Left operand must have segment 

One operand must be const 

Operands must be same or 1 abs 

Normal type operand expected 

Constant was expected 

Operand must have segment 

ERROR 
CODE 

31 

32 

33 

34 

35 

38 

39 

40 

41 

42 

43 

MEANING 

Assembler gets different kinds or sizes 
of arguments in a case where they 
must match. For example, MOV. 

Use of an external in some illegal 
manner. For example, BD M DUP(?) 
where M is declared external. 

Expecting a record field name but got 
something else. 

Expecting a record or field name and 
received something else. 

Expected an operand to have a size, 
but it did not. 

Used something in the right operand 
that required a segment in the left ope
rand. (For example, ":.") 

This is an illegal use of the addition 
operator. 

Illegal use of the subtraction operator. 

Received STRUC, FIELDS, NAMES, 
BYTE, WORD, or OW when expect
ing a variable label. 

Expecting a constant and received 
something else. 

Illegal use of SEG directive. 

3-35 



Assembling a Macro-86 Source File 

3-36 

Table 3-4 MACRO-86 Error Messages (Coot'd) 

. ERROR 
MESSAGE 

Must be associated with data 

Must be associated with code 

Already have base register 

Already have index register 

Must be index or base register 

Illegal use of register 

Value is out of range 

Operand not in IP segment 

Improper operand type 

Relative jump out of range 

ERROR 
CODE MEANING 

44 Use of code related item where a data
related item was expected. For exam
ple, MOV AX, code-label. 

45 

46 

47 

48 

49 

50 

51 

52 

53 

Use of data related item code item was 
expected. 

Trying to double base register. 

Trying to double index address. 

Instruction requires a base or index 
register and some other register was 
specified in square brackets, [ ]. 

Use of a register with an instruction 
where there is no 8086 or 8088 instruc
tion possible. 

Value is too large for expected use. 
For example, MOV AL,5000. 

Access of an operand is impossible 
because it is not in the current IP seg
ment. 

Use of an operand such that the opcode 
cannot be generated. 

Relative jumps must be within the 
range -128 to + 127 of the current 
instruction, and the specific jump is 
beyond this range. 

Index displ. must be constant 54 



Assembling a Macro-86 Source File 

Table 3-4 MACRO-86 Error Messages (cont'd) 

ERROR 
MESSAGE 

Illegal register value 

Illegal size for item 

Byte register is illegal 

CS register illegal usage 

Must be AX or AL 

Improper use of segment reg 

No or unreachable CS 

Operand combination illegal 

Label can't have seg. override 

Can't override ES segment 

ERROR 
CODE MEANING 

55 The register value specified does not 
fit into the "reg" field (the reg field is 
greater than 7). 

57 Size of referenced item is illegal. For 
example, shift of a double word. 

58 Use of one of the byte registers in con
text where it is illegal. For example, 
PUSH AL. 

59 Trying to use the CS register illegally. 
For example, XCHG CS, AX. 

60 Specification of some register other 
than AX or AL where only these are 
acceptable. For example, the IN 
instruction. 

61 

62 

63 

65 

67 

Specification of a segment register 
where this is illegal. For example, an 
immediate move to a segment register. 

Trying to jump to a label that is 
unreachable. 

Specification of a two-operand instruc
tion where the combination specified 
is illegal. 

Illegal use of segment override. 

Trying to override the ES segment is 
an instruction where this override is 
not legal. For example, store string. 

3-37 



Assembling a Macro-86 Source File 

Table 3-4 MACRO-86 Error Messages (cont'd) 

3-38 

ERROR 
MESSAGE 

Can't reach with segment reg 

Must be in segment block 

Can't use EVEN on BYTE 
segment 

Forward needs override 

Illegal value for DUP count 

Symbol already external 

DUP is too large for linker 

Usage of? (indeterminate) bad 

More values than defined with 

Only initialize list legal 

Directive illegal in STRUC 

ERROR 
CODE MEANING 

68 There is no assume value that makes 
the variable reachable. 

69 Attempt to generate code when not in 
a segment. 

70 Segment was declared to be byte seg
ment and attempt to use EVEN was 
made. 

71 This message not currently used. 

72 DUPcounts must be a constant that is 
not 0 or negative 

73 

74 

75 

76 

77 

78 

Attempt to define a symbol as local 
that is already external. 

Nesting of DUP's was such that too 
large a record was created for 
MS-LINK. 

Improper use of the "?". For example, 
?+5. 

Too many fields given in the REC or 
STRUC allocation. 

Attempt to use STRUC name without 
angle brackets. 

All statements within STRUC blocks 
must either be comments preceded by 
a semicolon (;), or one of the DEFINE 
directives. 



Assembling a Macro-86 Source File 

Table 3-4 MACRO-86 Error Messages (cont'd) 

ERROR 
MESSAGE 

Override with DUP is illegal 

Field cannot be overridden 

Override is of wrong type 

ERROR 
CODE MEANING 

79 In a STRUC initialization statement, 
you tried to use DUP in an override. 

80 In a STRUC initialization statement, 
you tried to give a value to a field that 
cannot be overridden. 

81 In a STRUC initialization statement, 
you tried to use the wrong size on 
override. For example, 'HELLO' for 
DW field. 

Register can't be forward ref 82 

Circular chain of EQU aliases 

Should have been group name 

v 0 Handler Errors 

83 An alias EQU eventually points to 
itself. 

Expecting a group name but some
thing~ other than this was given. 

These error messages are generated by the I/O handlers. These messages appear in a 
different format from the assembler errors: 

MASM Error -- error-message-text 
m: filename 

The filename is the name of the file being handled when the error occurred. 

The error-message-text is one of the messages in Table 3-5. This table lists the I/O 
handler error messages in code number order. 

3-39 



Assembling a Macro-86 Source File 

3-40 

Table 3-5 110 Handler Error Messages 

ERROR ERROR 
CODE MESSAGE 

114 Data format 
108 Device full 
102 Device name 
105 Device offline 
112 File in use 
107 File name 
110 File not found 
113 File not open 
104 File system 
101 Hard data 
115 Line too long 
106 Lost file 
103 Operation 
111 Protected file 
109 Unknown device 

Runtime Errors 

These messages may be displayed as your assembled program is being executed. 

Internal Error - Usually caused by an arithmetic check. If it occurs, notify your 
APe service representative. 

Out of Memory - This message has no corresponding number. Either the source 
was too big or too many labels are in the symbol table. 



Chapter 4 

The MS-Link Linker Utility 

The MS-LINK Linker Utility is a relocatable linker designed to combine separately 
produced modules of 8086 object code. The object modules must be 8086 files only. 

MS-LINK is user-friendly. It prompts you for all the necessary and optional 
commands. Your answers to the prompts are the commands for MS-LINK. 

The output file from MS-LINK (run file) is not bound to specific memory addresses 
and, therefore, can be loaded and executed at any convenient address by your 
MS-DOS operating system. 

MS-LINK uses a dictionary-indexed library search method, which substantially 
reduces link time for sessions involving library searches. 

MS-LINK is capable of linking files totaling 384K bytes. 

SYSTEM REQUIREMENTS FOR RUNNING MS-LINK 

MS-LINK requires 49K bytes of memory minimum: 40K bytes for code and data, 
and 10K bytes for run space. 

For disk storage, MS-LINK needs one disk drive, if and only if, output is sent to the 
same physical disk from which the input was taken. MS-LINK does not allow time 
to swap disks during operation on a one-drive configuration. Therefore, two disk 
drives are a more practical configuration on which to use MS-LINK. 

OVERVIEW OF MS-LINK OPERATIONS 

MS-LINK combines several object modules into one relocatable load module, or 
run file. 

4-1 



The MS-Link Linker Utility 

4-2 

As it combines modules, MS-LINK resolves external references between object 
modules. It also searches mUltiple library files for definitions of any external 
references left unresolved. 

MS-LINK alsQ produces a list file that shows external references resolved and any 
error messages. 

MS-LINK uses available memory as much as possible.When available memory is 
exhausted, MS-LINK then creates a disk file and becomes a virtual linker. The 
following illustrates the MS-LINK's operations. 

High Level 
Language 
Compiler 

Compiler 

Up to 8 libraries 
may be searched 

U sed only if run 
file is larger 
than memory 

MACRO-86 

Assembler 

MS-LINK 

PUBLIC symbols 
cross referenced 



The MS-Link Linker Utility 

How MS-DOS Divides Programs into Executable Portions 

When programs are executed, MS-DOS places portions of the linked object code in 
memory according to their size and designated order of execution. Object code is 
divided into segments and groups of segments. Segments are assigned to classes for 
placement in memory at execution time. 

SEGMENT 

A segment is a contiguous area of memory up to 64K bytes in length. A segment may 
be located anywhere in 8086 memory on a "paragraph" (16 byte) boundary. The 
contents of a segment are addressed by a segment-register/offset pair. 

GROUP 

A group is a collection of segments that fit within 64K bytes of memory. The 
segments are named to the group by the MACRO-86, by the compiler, or by you. 
The group name is given by you in the assembly language program. For the 
high-level languages (BASIC, FORTRAN, COBOL, Pascal), the naming is carried 
out by the compiler. 

The group is used for addressing segments in memory. Each group is addressed by a 
single segment register. The segments within the Group are addressed by a segment 
register plus an offset. MS-LINK checks to see that the object modules of a group 
meet the 64K byte constraint. 

CLASS 

A class is a collection of segments. The naming of segments to a class controls the 
order and relative placement of segments in memory. The class name is given by you 
in the assembly language program. For the high-level languages (BASIC, FOR
TRAN, COBOL, Pascal), the naming is carried out by the compiler. The segments 
are named to a class at compile or assembly time. The segments of a class are loaded 
into memory contiguously. The segments are ordered within a class in the order 
MS-LINK encounters the segments in the object files. One class precedes another in 
memory only if a segment for the first class precedes all segments for the second class 
in the input to MS-LINK. Classes may be loaded across 64K byte boundaries. The 
classes will be divided into groups for addressing. 

4-3 



The MS-Link Linker Utility 

4-4 

How MS-LINK Combines and Arranges Program Segments 

MS-LINK works with four combine types, which are declared in the source module 
for the assembler or compiler: private, public, stack, and common. The memory 
combine type available in Microsoft's MACRO-86 is treated the same as public. 
MS-LINK does not automatically place the memory combine type as the highest 
segments. 

MS-LINK combines segments for these combine types as follows: 

Private 

Public 

Common 

o 

Ef 

Private segments are loaded separately and remain separ
ate. They may be physically but not logically, contiguous 
even if the segments have the same name. Each private 
segment has its own base address. 

Public segments of the same name and class name are 
loaded contiguously. Offset is from beginning of first seg
ment loaded through last segment loaded. There is only 
one base address for all public segments of the same name 
and class name. (Combine types stack and memory are 
treated the same as public. However, the stack pointer is 
set to the first address of the first stack segment.) 

Common segments of the same name and class name are 
loaded overlapping one another. There is only one base 
address for all common segments of the same name. The 
length of the common area is the length of the longest 
segment. 



The MS-Link Linker Utility 

Placing segments in a group for MACRO-86 provides offset addressing of items 
from a single base address for all segments in that group. 

DS:DGROUP--.XXXXOH 0 -- relative offset 
-~A----

Any number of L~------
other segments B 
may intervene _______ ~ ~ __ FOO An operand of 
between segments DGROUP:FOO 
of a group. Thus, returns the offset of 
the offset of Faa Faa from the beginning 
may be greater than the of the first segment 
size of the segments DGROUP (segment A here) 
in a group combined, but 
no larger than 64K. 

Segments are grouped by declared class names. MS-LINK loads all the segments 
belonging to the first class name encountered, then loads all the segments of the next 
class name encountered, and so on until all classes have been loaded. 

If your program contains: 

A SEGMENT 'Faa' 
B SEGMENT 'BAZ' 
C SEGMENT 'BAS' 
D SEGMENT 'zoo' 
E SEGMENT 'Faa' 

They will be loaded as: 

'Faa' 
A 
E 

'BAS' 
B 
C 

'zoo' 
D 

If you are writing assembly language programs, you can exercise control over the 
ordering of classes in memory by writing a dummy module and listing it first after 
the MS-LINK Object Modules prompt. The dummy module declares segments into 
classes in the order you want the classes loaded. 

4-5 



The MS-Link Linker Utility 

4-6 

CAUTION 

Do not use this method with BASIC, COBOL, 
FORTRAN, or Pascal programs. Allow the 
compiler and the linker to perform their tasks 
in the normal way. 

Example 

A SEGMENT 'CODE' 
A ENDS 
B SEGMENT 'CONST' 
BENDS 
C SEGMENT 'DATA' 
C ENDS 
D SEGMENT STACK 'STACK' 
D ENDS 
E SEGMENT 'MEMORY' 
E ENDS 

You should be careful to declare all classes to be used in your program in this 
module. If you do not, you lose absolute control over the ordering of classes. 

Also, if you want the memory combine type to be loaded as the last segments of your 
program, you can use this method. Simply add MEMORY between SEGMENT and 
'MEMORY' in the E segment line above. Note, however, that these segments are 
loaded last only because you imposed this control on them, not because of any 
inherent capability in the linker or assembler operations. 

Files That MS-LINK Uses 

MS-LINK works with one or more input files, produces two output files, may create 
a virtual memory file, and may be directed to search one to eight library files. For 
each type of file, you may give a three part file specification. The format for 
MS-LINK file specifications is the same as that of a disk file: 

[d:] <filename> [ <.ext> ] 

where: d: is the drive designation. Permissible drive designations for MS-LINK 
are A: through 0: The colon is always required as part of the drive 
designation. 



The MS-Link Linker Utility 

<filename> is any legal filename of one to eight characters. 

<.ext> is a one- to three-character extension to the filename. The period is 
always required as part of the extension. 

INPUT FILE EXTENSIONS 

If no extensions are given in the input (object) file specifications, MS-LINK recog
nizes by default: 

File 

Object 
Library 

Default Extension 

.OBJ 

.LIB 

OUTPUT FILE EXTENSIONS 

MS-LINK appends to the output (run and list) files the following default extensions: 

File Default Extension 

Run 
List 

VM.TMP FILE 

.EXE 

.MAP 
(may not be overridden) 
(may be overridden) 

MS-LINK uses available memory for the link session. If the files to be linked create 
an output file that exceeds available memory, MS-LINK creates a temporary file 
and names it VM.TMP. If MS-LINK needs to create VM.TMP, it displays the 
message: 

VM. TMP has been created. 
Do not change disk in drive, d: 

Once this message is displayed, you must not remove the disk from the default drive 
until the link session ends. If the disk is removed, the operation of MS-LINK is 
unpredictable, and MS-LINK might return the error message 

Unexpected end of file on VM.TMP 

4-7 



The MS-Link Linker Utility 

4-8 

MS-LINK uses VM.TI\1P as a virtual memory. The contents of VM.TMP are 
subsequently written to the file named for the Run File prompt. VM.TMP is a 
working file only and is deleted at the end of the linking session. 

CAUTION 

Do not use VM.TMP as a filename for any file. 
If you have a file named VM.TMP on the 
default drive and MS-LINK requires the 
VM.TMPfile, MS-LINK will delete the VM.TMP 
on disk and create a new VM.TMP. Thus, the 
contents of the previous VM.TMP file will be 
lost. 

RUNNING MS-LINK 

Running MS-LINK requires a command to invoke MS-LINK and answers to 
command prompts. In addition, six switches control alternative MS-LINK features. 
Usually, you will enter all the commands to MS-LINK at the APC keyboard. As an 
option, answers to the command prompt and any switches can be contained in a 
"response file." Some special command characters are provided to assist you in' 
entering linker commands. 

MS-LINK can be involved in three ways. By the first method, you enter the 
commands as answers to individual prompts. By the second method, you enter all 
commands on the line used to invoke MS-LINK. By the third method, you create a 
response file that contains all the necessary commands. 

Method 1: LINK 

Enter 

LINK 

MS-LINK is to be loaded into memory. Then, it returns a series offour text prompts 
for your commands to MS-LINK. At the end of each command line, you may enter 
one or more switches, each of which must be preceded by a slash mark. Ifa switch is 
not included, MS-LINK defaults to not performing the function for the switch. 

MS-LINK COMMAND PROMPTS 

MS-LINK prompts you for the names of object, run, and list files, and for libraries 
that you want to search. 



The MS-Link Linker Utility 

Table 4-1 lists the MS-LINK command prompts. 

Table 4-1 MS-LINK Command Prompts 

PROMPT 

Object Modules [.OBJ]: 

Run File [First-Object
filename.EXE]: 

RESPONSE 

Enter a list of the object modules to be 
linked. MS-LINK assumes by default that 
the filename extension is .OBJ. If an object 
module has any other filename extension, 
the extension must be given here. Otherwise, 
the extension may be omitted. 

Modules must be separated by plus signs (+). 

Remember that MS-LINK loads segments 
into classes in the order in which the object 
modules are encountered. Use this informa
tion for setting the order in which the object 
modules are entered. 

The file name entered here will be created to 
store the run (executable) file that results 
from the link session. All run files receive the 
filename extension .EXE, even if you specify 
another extension. The user-specified exten
sion is ignored. 

If no response is entered to the Run File 
prompt, MS-LINK uses the first filename 
entered in response to the Object Modules 
prompt as the RUN file name. 

Example: 

Run File [FUN.EXE]: B:PAYROLL/P 

This response directs MS-LINK to create the 
run file PA YROLL.EXE on drive B:. Also, 
MS-LINK will pause, which allows you to 
insert a new disk to receive the run file. 

4-9 



The MS-Link Linker Utility 

Table 4-1 MS-LINK Command Prompts (cont'd) 

4-10 

PROMPT 

List File 
[Run-filename.MAP]: 

Libraries [ ]: 

RESPONSE 

The list file contains an entry for each seg
ment in the input (object) modules. Each 
entry also shows the offset (addressing) in 
the run file. The default response is the run 
filename with the default file name extension 
.MAP. 

The valid responses are one to eight library 
filenames or simply a RETURN. A carriage 
return meanS no library search. Library files 
must have been created using a library util
ity. MS-LINK assumes by default that the 
filename extension is .LIB for library files. 

Library filenames must be separated by 
blank spaces or plus signs (+). 

MS-LINK searches the library files in the 
order listed to resolve external references. 
When it finds the module that defines the 
external symbol, MS-LINK processes the 
module as another object module. 

IfMS-LINK cannot find a library file on the 
disks in the disk drives, it returns the mes
sage: 

Cannot find library library-name 

Enter new drive letter: 

Simply press the letter for the drive designa
tion (for example, B). 



The MS-Link Linker Utility 

Table 4-1 MS-LINK Command Prompts (cont'd) 

PROMPT RESPONSE 

MS-LINK does not search within each 
library file sequentially. MS-LINK uses a 
method called the dictionary-indexed library 
search. This means that MS-LINK finds 
definitions for external references by index 
access rather than searching from the begin-
ning of the file to the end for each reference. 
This indexed search reduces substantially 
the link time for any sessions involving 
library searches. 

4-11 



The MS-Link Linker Utility 

4-12 

MS-LINK COMMAND SWITCHES 

Six switches control alternate linker functions: IDSALLOCA TE, IHIGH, 
ILINENUMBERS, IMAP, IPA USE, and ISTACK. These switches must be 
entered at the end of a prompt response, regardless of which method is used to 
invoke MS-LINK. Switches may be grouped at the end of anyone of the responses, 
or may be scattered at the end of severaL If more than one switch is entered at the 
end of one response, each switch must be preceded by the slash mark (I). 

All switches may be abbreviated, from a single letter through the whole switch 
name. The only restriction is that an abbreviation must be a sequential sub-string 
from the first letter through the last entered. No gaps or transpositions are allowed, 
for example: 

Legal 

ID 
IDS 
IDSA 
IDSALLOCA 

Illegal 

IDSL 
IDAL 
IDLC 
IDSALLOCT 

The MS-LINK command switches are summarized in Table 4-2. 

Table 4-2 MS-LINK Command Switches 

SWITCH FUNCTION 

IDSALLOCATE When the IDSALLOCA TE switch is used, MS-LINK 
loads all data (DGroup) at the high end of the data 
segment. Otherwise, MS-LINK loads all data at the 
low end of the data segment. At runtime, the DS poin-
ter is set to the lowest possible address and allows the 
entire DS segment to be used. Use of the IDSALLO-
CA TE switch in combination with the default load low 
(that is, the IHIGH switch is not used), permits the 
user application to allocate dynamically any variable 
memory below the area specifically allocated within 
DGroup, yet to remain addressable by the same DS 
pointer. This dynamic allocation is needed for Pascal 
and FORTRAN programs. 



Table 4-2 MS-LINK Command Switches (cont'd) 

SWITCH 

IHIGH 

ILINENUMBERS 

IMAP 

FUNTION 

NOTE 

The application program may dynamically 
allocate up to 64K bytes or the actual amount 
available less the amount allocated within 
DGroup. 

When the IHIGH switch is used, MS-LINK places the 
Run image as high as possible in memory. Otherwise, 
MS-LINK places the run file as low as possible. 

CAUTION 

Do not use the IHIGH switch with Pascal or 
FORTRAN programs. 

When the ILINENUMBERS switch is used, MS-LINK 
includes in the list file the line numbers and addresses 
of the source statements in the input modules. Other
wise, line numbers are not included in the list file. 

NOTE 

Not all compilers produce object modules that 
contain line number information. In these 
cases, of course, MS-LINK cannot include line 
numbers. 

The IMAP switch directs MS-LINK to list all public 
(global) symbols defined in the input modules. If 
IMAP is not given, MS-LINK will list only errors 
(which includes undefined globals). 

The symbols are listed alphabetically. For each sym
bol, MS-LINK lists its value and its segment: the offset 
location in the run file. The symbols are listed at the 
end of the list file. 

The MS-Link Linker Utility 

4-13 



The MS-Link Linker Utility 

Table 4-2 MS-LINK Command Switches (cont'd) 

SWITCH FUNTION 

IPAUSE The IPAUSE switch directs MS-LINK to pause in the 
link session when the switch is encountered. Normally, 
MS-LINK performs the linking session without stop 
from beginning to end. This allows you to swap the 
disks before MS-LINK outputs the run (.EXE) file. 

When MS-LINK encounters the IPAUSE switch, it 
displays the message: 

About to generate .EXE file 
Change disks hit any key 

MS-LINK resumes processing when you press any key. 

CAUTION 

Do not swap the disk that will receive the List 
file, or the disk used for the VM. TMP file, . 
if created. 

1ST ACK: number The number represents any positive numeric value (in 
hexadecimal radix) up to 65536 bytes. If the 1ST ACK 
switch is not specified for a link session, MS-LINK 
calculates the necessary stack size automatically. 

If a value from 1 to 511 is entered, MS-LINK uses 512. 

All compilers and assemblers should provide informa-
tion in the object modules that allow the linker to 
compute the required stack size. 

At least one object (input) module must contain a stack 
allocation statement. If not, MS-LINK will return a 
WARNING: NO STACK STATEMENT error mes-
sage. 

4-14 



The MS-Link Linker Utility 

MS .. LINK COMMAND CHARACTERS 

MS-LINK provides three command characters. 

+ Use the plus sign (+) to separate entries and to extend the current 
physical line following the Object Modules and Libraries prompts. (A 
blank space may be used to separate object modules.) To enter a large 
number of responses (each which may also be very long), enter a plus 
sign/carriage return at the end of the physical line (to extend the logical 
line). If the plus sign/carriage return is the last entry following these 
two prompts, MS-LINK will prompt the user for more modules names. 
When the Object Modules or Libraries prompt appears again, con
tinue to enter responses. When all the modules to be linked have been 
listed, be sure the response line ends with a module name and a carriage 
return and not a plus sign/carriage return. 

Example: 

Object Modules [.OBJ]: FUN TEXT TABLE 
CARE+RETURN 
Object Modules [.OBJ]: 
FOO+FLIPFLOP+JUNQUE+RETURN 
Object Modules [.OBJ]: CORSAIR RETURN 

Use a single semicolon (;) followed immediately by RETURN at any 
time after the first prompt (from Run File on) to select default 
responses to the remaining prompts. This feature saves time and 
overrides the need to enter a series of carriage returns. 

Example: 

NOTE 

Once the semicolon has been entered, the user 
can no longer respond to any of the prompts 
for that link session. Therefore, do not use the 
semicolon to skip over some prompts. For this, 
use RETURN. 

Object Modules [.OBJ]: FUN TEXT TABLE CARE RETURN 
Run Module (FUN.EXE]: ;RETURN 
The remaining prompts will not appear, and MS-LINK will use 
the default values (including FUN.MAP for the List File). 

4-15 



The MS-Link Linker Utility 

4-16 

CTRL-C Use CTRL-C at any time to abort the link session. If you enter an 
erroneous response, such as the wrong filename or an incorrectly 
spelled filename, you must press CTRL-C to exit MS-LINK then 
reinvoke MS-LINK and start over. If the error has been typed but 
not entered, you may delete the erroneous characters, but for that 
line only. 

Method 2: LINK <filenames>[/switches) 

Enter 

LINK <object-list>, <runfile>, <lib-list>[/switch ... ] 

The entries following LINK are responses to the command prompts. The 
entry fields for the different prompts must be separated by commas. 

where: <object list> is a list of object modules, separated by plus signs 

<runfile> is the name of the file to receive the executable output 

<listfile> is the name of the file to receive the listing 

<lib-list> is a list of library modules to be searched 

Iswitch are optional switches, which may be placed following any of the 
response entries (just before any of the commas or after the <lib-list>, as 
shown). 

To select the default for a field, simply enter a second comma without 
spaces in between (see the example below). 

Example: 

LINK FUN+TEXT+TABLE+CARE/P/M"FUNLIST,COBLIB.LIB 

This example first causes MS-LINK to be loaded, followed by the object module 
FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and CARE.OBJ. MS-LINK then pauses 
(caused by the IP switch). When you press any key, MS-LINK links the object 
modules, produces a global symbol map (the 1M switch), defaults to the FUN.EXE 
run file, creates a list file named FUNLIST.MAP, and searches the library file 
COBLIB.LIB. 



The MS-Link Linker Utility 

Method 3: LINK @ <filespec> 

Enter 

LINK @ <filespec> 

where: <filespec> is the name of a response file. A response file contains answers 
to the MS-LINK prompts (shown under method 1 for invoking the linker), 
and may also contain any of the switches. Method 3 may also contain any 
of the switches. It permits you to conduct the MS-LINK session without 
interactive (direct) user responses to the MS-LINK prompts. 

NOTE 

Before using method 3 to invoke MS-LINK, 
you must first create the response file. 

A response file has text lines, one for each prompt. Responses must appear in the 
same order as the command prompts appear on the screen. 

Use switches and command characters in the response file the same way as they are 
used for responses entered at the APC keyboard. 

When the MS-LINK session begins, each prompt will be displayed in turn with the 
responses from the response file. If the response file does not contain answers for all 
the prompts, either in the form of filenames or the semicolon special character or 
carriage returns, MS-LINK will, after displaying the prompt which does not have a 
response, wait for you to enter a legal response. When a legal response has been 
entered, MS-LINK continues the link session. 

Example: 

FUN TEXT TABLE CARE 
IPAUSE/MAP 
FUNLIST 
COBLIB.LIB 

This response file will cause MS-LINK to load the four object modules named. It 
will pause before creating and producing a public symbol map to permit you to swap 
diskettes. When you press any key, the output files will be named FUN.EXE and 
FUNLIST.MAP. MS-LINK will search the library file COBLIB.LIB and will use 
the default settings for the flags. 

4-17 



The MS-Link Linker Utility 

4-18 

EXAMPLE OF A MS-LINK SESSION 

This example shows you the type of information that is displayed during an 
MS-LINK session. 

In response to the MS-DOS prompt, enter 

LINK 

The system displays the MS-LINK banner and then the command prompts. Then 
you make your responses to the prompts. 

Microsoft Object Linker V.2.00 
(C) Copyright 1982 by Microsoft Inc. 

Object Modules [.OBJ]: IBMBIO SYSINIT 
Run File [IBMBIO.EXE]: 
List File [NUL.MAP]: IBMBIO -MAP 
Libraries [.LIB]: ; 

Some options you have in entering responses are the following. 

• By specifying -MAP for the List File prompt, you get both an alphabetic 
listing and a chronological listing of public symbols. 

• By responding PRN to the List File prompt, you can redirect your output to 
the printer. 

• By specifying the -LINE switch, MS-LINK gives you a listing of all line 
numbers for all modules. (Note that the -LINE switch can generate a large 
volume of output.) 

• By pressing RETURN in response to the Libraries prompt, an automatic 
library search is performed. 

Once MS-LINK locates all libraries, the linker map displays a list of segments in the 
order of their appearance within the load module. The list might look like this: 

Start 
OOOOOH 
009FOH 

Stop 
009ECH 
01l66H 

Length 
09EDH 
0777H 

Name 
CODE 
SYSINITSEG 

The information in the Start and Stop columns shows the 20-bit hex address of each 
segment relative to location zero. Location zero is the beginning of the load module. 



The MS-Link Linker Utility 

The addresses displayed are not the absolute addresses where these segments are 
loaded. Consult the section EXECUTABLE FILE STORING AND LOADING 
for information on how to determine where relative zero is actually located and also, 
on how to determine the absolute address of a segment. 

When the -MAP switch is used, MS-LINK displays the public symbols by name and 
value. For example: 

ADDRESS 
009F:0012 
009F:0005 
009F:OOll 
009F:OOOB 
009F:0013 
009F:0009 
009F:OOOF 
009F:OOOO 

ADDRESS 
009F:OOOO 
009F:0005 
009F:0009 
009F:OOOB 
009F:OOOF 
009F:OOll 
009F:0012 
009F:0013 

PUBLICS~Y ~AME 

BUFFERS 
CURRENT -DOS-LOCA TION 
DEFAULT-DRIVE 
DEVICE-LIST 
FILES 
FINAL-DOS--LOCA TION 
MEMORY --.-SIZE 
SYSINIT 

PUBLICS BY VALUE 
SYSINIT 
CURRENT -DOS-LOCA TION 
FINAL-DOS-LOCA TION 
DEVICE-LIST 
MEMORY --.-SIZE 
DEFAULT-DRIVE 
BUFFERS 
FILES 

EXECUTABLE FILE STRUCTURE AND LOADING 

MS-LINK procedures produce executable modules in the form of .EXE files. These 
.EXE files consist of two parts: control and relocation information, and the load 
module. 

The control and relocation information, which is described below, is at the begin
ning of the file in an area known as the header. The load module immediately 
follows the header. The load module begins on a sector boundary and is the memory 
image of the module constructed by the linker. 

4-19 



The MS-Link Linker Utility 

4-20 

The header is formatted as follows: 

Hex Offset 

00-01 

02-03 

04-05 

06-07 

08-09 

OA-OB 

OC-OD 

OE-OF 

10-11 

12-13 

14-15 

16-17 

18-19 

lA-IB 

Contents 

4DH, 5AH - This is the MS-LINK program's signature to mark the 
file as a valid .EXE file. 

Length of image mod 512 (remainder after dividing the load 
module image size by 512). 

Size of the file in 512-byte increments (pages), including the header. 

Number of relocation table items that follow the formatted posi
tion of the header. 

Size of the header in 16-byte increments (paragraphs). This is used 
to locate the beginning of the load module in the file. 

Minimum number of 16-byte paragraphs required above the end of 
the loaded program. 

Maximum number of 16-byte paragraphs required above the end of 
the loaded program. 

Offset of stack segment in load module (in segment form). 

Value to be given in the SP register when the module is given 
control. 

Word checksum - negative sum of all the words in the file, 
ignoring overflow. 

Value to be given in the IP register when the module is given 
control. 

Offset of code segment within load module (in segment form). 

Offset of the first relocation item within the file. 

Overlay number (0 for resident part of the program). 

The relocation table follows the formatted area just described. The relocation table 
is made up of a variable number of relocation items. The number of items is 
contained at offset 06-07. The relocation item contains two fields: a two-byte offset 
value, followed by a two-byte segment value. These two fields contain the offset into 
the load module of a word that requires modification before the module is given 



The MS-Link Linker Utility 

control. This process is called relocation and is accomplished in the following 
manner: 

1. A Program Segment Prefix is built following the resident portion of the 
program that is performing the load operation. 

2. The formatted part of the header is read into memory (its size is at offset 
08-09). 

3. The load module size is determined by subtracting the header size from the 
file size. Offsets 04-05 and 08-09 can be used for this calculation. The actual 
size is downward-adjusted based on the contents of offsets 02-03. Note that 
all files created by pre-release 1.10 MS-LINK programs always placed a 
value of 4 at that location, regardless of actual program size. Therefore, this 
field should be ignored ifit contains a value of 4. Based on the setting of the 
high/low loader switch, an appropriate segment is determined at which to 
load the load module. This segment is called the start segment. 

4. The load module is read into memory beginning with the start segment. 

5. The relocation table items are read into a work area (one or more at a time). 

6. Each relocation table item segment value is added to the start segment 
value. This calculated segment, in conjunction with the relocation item 
offset value, points to a word in the load module to which is added the start 
segment value. The result is placed back into the word in the load module. 

7. Once all relocation items have been processed, the SS and SP registers are 
set from the values in the header and the start segment value is added to SS. 
The ES and DS registers are set to the segment address of the Program 
Segment Prefix. The start segment value is added to the header CS register 
value. The result, along with the header IP value, is used to give the module 
control. 

MS-DOS PROGRAM SEGMENTATION 

When you enter an external command or invoke a program through the EXEC 
function call, MS-DOS determines the lowest available address to use as the start of 
available memory for the program being invoked. This area is called the Program 
Segment. It must not be moved. 

At offset 0 within the Program Segment, MS-DOS builds the Program Segment 
Prefix control block (see Figure 4-2). EXEC loads the program at offset IOOH and 
gives it control. 

4-21 



The MS-Link Linker Utility 

4-22 

The program returns from EXEC by one of four methods: 

• a long jump to offset 0 in the Program Segment Prefix 

• issuing an INT 20H 

• issuing an INT 21H with register AH=O with CS:O pointing at the PSP, or 
4CH and no restrictions on CS 

• calling location SOH in the Program Segment Prefix with AH=O or 4CH 

NOTE 

You must make sure that the CS register con
tains the segment address of the Program Seg
ment Prefix for a program when terminating 
via any of these methods, except for a call to 
Function 4CH. For this reason, a call to func
tion 4CH is preferred to using AH=O. 

All four methods result in transferring control to the program that issued the EXEC. 
During this returning process, interrupt vectors 22H, 23H, and 24H (Terminate 
Address, CTRL-C Exit Address, and Fatal Error Abort Address) addresses are 
restored from the values and saved in the Program Segment Prefix of the terminat
ing program. Control is then given to Terminate Address. If this is a program 
returning to COMMAND.COM, control transfers to its resident portion. If a batch 
file was in process, it is continued. Otherwise, COMMAND. COM performs a 
checksum on its transient part, reloads that if necessary, then issues the system 
prompt and waits for the next command to be entered from the keyboard. 

When a program receives control, certain conditions are in effect. 

Environment Information for .EXE and .COM Programs 

The segment address of the passed environment is contained at offset 2CH in the 
Program Segment Prefix. 

The environment is a series of ASCII strings (totaling less than 32K) in the form: 

N AME=parameter 

Each string is terminated by a byte of zeros, and the entire set of strings is terminated 
by another byte of zeros. The environment built by the Command Processor (and 
passed to all programs it invokes) will contain a COMSPEC= string at a minimum 



The MS-Link Linker Utility 

(the parameters on COMSPEC define the path used by MS-DOS to locate COM
MAND.COM on disk), The last PATH and PROMPT commands issued will also be 
in the environment, along with any environment strings entered through the MS
DOS SET command. 

The environment that you are passed is actually a copy of the invoking process 
environment. If your application uses a "terminate and stay resident" concept, you 
should be aware that the copy of the environment passed to you is static. That is, it 
will not change even if subsequent SET, PATH, or PROMPT commands are issued. 

Offset 50H in the Program Segment Prefix contains code to call the MS-DOS 
function dispatcher. Thus, by placing the desired function number in AH, a pro
gram can issue a long call to PSP +50 to invoke an MS-DOS function, rather than 
issuing an interrupt type 21H. Since this is a call and not an interrupt, MS-DOS may 
place any code appropriate to making a system call at this position. This makes the 
process of calling the system portable. 

Disk transfer address (DTA) is set to 80H (default DT A in the Program Segment 
Prefix). 

File control blocks at 5CH and 6CH are formatted from the first two parameters 
entered when the command was invoked. If either parameter contained a pathname, 
then the corresponding FCB will contain only the valid drive number. The filename 
field will not be valid. 

An unformatted parameter area at 81 H contains all the characters entered after the 
command name (including leading and imbedded delimiters), with 80H set to the 
number of characters. If the >, or parameters were entered on the command line, 
they (and the filenames associated with them) will not appear in this area, because 
redirection of standard input and output is transparent to applications. 

Offset 6 (one word) contains the number of bytes available in the segment. 

Register AX reflects the validity of drive specifiers entered with the first two 
parameters as follows: 

• AL=FF if the first parameter contained an invalid drive specifier (otherwise 
AL=OO) 

• AH=FF if the second parameter contained an invalid drive specifier (other
wise AH=OO) 

4-23 



The MS-Link Linker Utility 

4-24 

Environment Information for .EXE Programs Only 

DS and ES registers are set to point to the Program Segment Prefix. 

CS,IP,SS, and SP registers are set to the values passed by MS-LINK. 

Environment Information for .COM Programs Only 

All four segment registers contain the segment address of the initial allocation 
block that starts with the Program Segment Prefix control block. 

All of user memory is allocated to the program. If the program invokes another 
program through the EXEC function call, it must first free some memory 
through the Set Block (4AH) function call, to provide space for the program 
being invoked. 

The Instruction Pointer (IP) is set to IOOH. 

The SP register is set to the end of the program's segment. The segment size at 
offset 6 is reduced by lOOH to allow for a stack of that size. 

A word of zeros is placed on top of the stack. 

The Program Segment Prefix (with offsets in hexadecimal) 
is formatted as shown in Figure 4-1. 



The MS-Link Linker Utility 

Long call to 
dispatcher 
(5 bytes) 

o (Offsets are in hex) 

*Top of I Reserved 
Number of 

INT hex 20 bytes available memory in segment 
8 

Terminate CTRL-C exit 
address (IP,CS) address (IP) 

10 
CTRL-C exit CRITICAL ERROR 
address (CS) exit address (IP,CS) 

Used by DOS 

~ ... 
2C I 

+-

50 

--. 

5C I 
Formatted parameter area 1 

formatted as standard unopened FCB 

6CJ 

Formatted parameter area 2 formatted as standard 
unopened FCB(overlaid if FCB at hex 5C is opened) 

80 
... Unformatted parameter area ...... 

1'- (default disk transfer area) " 100 1 ______________ ---') 

Figure 4-1 Program Segment Prefix 

Notes: 

Segment address of 
past environment 

*First segment of available memory is in segment (paragraph) form (for example, 
IOOH would represent 64K). 

**The word at offset 6 contains the number of bytes available in the segment. 
***Offset 2CH contains the segment address of the environment. 

CAUTION 

Programs must not alter any part of the PSP 
below offset 5CH. 

4-25 



The MS-Link Linker Utility 

4-26 

MS-LINK MESSAGES 

Most of the messages generated by MS-LINK are error messages. These messages 
are described in Table 4-3. Note that all errors cause the link session to abort. 
Therefore, after the cause is found and corrected, MS-LINK must be rerun. 

MS-LINK also produces I/O handler errors and runtime errors. 

Table 4-3 MS-LINK Error Messages 

ERROR MESSAGE 

Attempt to access data outside 
of segment bonds, possibly bad 
object module 

Bad numeric parameter 

Cannot open temporary file 

Error: Dup record too complex 

Error: Fixup offset exceeds field 
width 

Input file read error 

Invalid object module 

Symbol defined more than once 

MEANING 

Probably a bad object file. 

Numeric value not in digits. 

MS-LINK is unable to create the file 
VM.TMP because the disk directory is full. 
Designate a new disk. Do not change the 
disk that will receive the "list.MAP" file. 

DUP record in the assembly language 
module is too complex. Simplify the DUP 
record. 

An assembly language instruction refers to 
an address with a short instruction instead of 
a long instruction. Edit the assembly lan
guage source and reassemble. 

Probably a bad object file. 

Object module(s) incorrectly formed or in
complete (as when assembly was stopped). 

MS-LINK found two or more modules that 
define a single symbol name. 



The MS-Link Linker Utility 

Table 4-3 MS-LINK Error Messages (cont'd) 

ERROR MESSAGE 

Program size or number of 
segments exceeds capacity 
of linker 

Request stacked size exceed 64K 

Segment size exceeds 64K 

Symbol table capacity exceeded 

Too many external symbols in 
one module 

Too many groups 

Too many libraries specified 

Too many public symbols 

Too many segments or classes 

Unresolved externals: 
list 

VM read error: 

Warning: No stack segment 

Warning: Segment of absolute 
or unknown type 

MEANING 

The total size may not exceed 384K bytes 
and the number of segments may not exceed 
255. 

Specify a size of 64K bytes with the 1ST ACK 
switch. 

64K bytes is the addressing system limit. 

Very many, very long names entered exceed
ing approximately 25K bytes. 

The limit is 256 external symbols per 
module. 

The limit IS 10 groups. 

The limit is 8 libraries. 

The limit IS 1024 public symbols. 

The limit is 256 segments and classes taken 
together. 

The external symbols listed have no defining 
module among the modules or library files 
specified. 

A disk problem; not MS-LINK caused. 

None of the object modules specified con
tains a statement allocating stack space, but 
you entered the 1ST ACK switch. 

A bad object module or an attempt to link 
modules MS-LINK cannot handle (for 
example, an absolute object module). 

4-27 



The MS-Link Linker Utility 

Table 4-3 MS-LINK Error Messages (cont'd) 

ERROR MESSAGE MEANING 

Write error in tmp file No more disk space remaining to expand the 
VM.TMP file. 

Write error on run file Usually, not enough disk space for the run 
file. 

4-28 



Chapter 5 

The MS-LIB Library 
Manager 
The MS-LIB Library Manager creates and modifies library files that are used with 
MS-LINK. MS-LIB can add object files to a library and delete modules from a 
library. It can extract modules from a library and place the extracted modules into 
separate object files. 

With MS-LIB you can create a library for several object files or for one program 
only. Placing just one program module in a library can make for very fast linking 
and possibly more efficient execution. 

You can modify individual modules within a library by extracting the modules, 
making changes, then adding the modules to the library again. You can also replace 
an existing module with a different module or with a new version of an existing 
module. 

The command scanner in MS-LIB is the same as the one used in MS-LINK. If you 
have used any of these products, using MS-LIB is familiar to you. Command syntax 
is straightforward and MS-LIB prompts you for any of the commands it needs that 
you have not supplied. There are no suprises in the user interface. 

SYSTEM REQUIREMENTS FOR RUNNING MS-LIB 

MS-LIB requires 38 bytes of memory minimum: 28K bytes for code and 10K bytes 
for run space. 

For disk storage space, it requires 1 disk drive if and only if output is sent to the same 
physical disk from which the input was taken. There is no time to swap disks during 
operation on a one-drive configuration. Therefore, two disk drives is a more 
practical configuration to use MS-LIB on. 

5-1 



The MS-LIB Librar), Manager 

5-2 

OVERVIEW OF MS-LIB OPERATIONS 
MS-LIB performs two basic actions: it deletes modules from a library file, and it 
changes object files into modules and appends them to a library file. These two 
actions underlie five library functions: 

• deleting a module 

• extracting a module to place it in a separate object file 

• appending an object file as a module of a library 

• replacing a module in the library file with a new version of that module 

• creating a library file. 

During a library session, MS-LIB first deletes or extracts modules, then appends 
new ones. In a single operation, MS-LIB reads each module into memory, checks it 
for consistency of format, and writes it back to the file. If you delete a module, 
MS-LIB reads in that module but does not write it back to the file. When MS-LIB 
writes back the next module to be retained, it places the module at the end of the last 
module written. This procedure effectively "closes up" the disk space to keep the 
library file from growing larger than necessary. When MS-LIB has read through the 
whole library file, it appends any new modules to the end of the file. Finally, MS-LIB 
creates the index, which MS-LINK uses to find modules and symbols in the library 
file, and outputs a cross reference listing of the PUBLIC symbols in the library, if 
you request such a listing. Building the library index may take some extra time, up to 
20 seconds in some cases. 

Example: 

LIB PASCAL+HEAP-HEAP; 

first deletes the library module HEAP from the library file, then adds the file 
HEAP.OB] as the last module in the library. This order of execution prevents 
confusion in MS-LIB when a new version of a module replaces an older version in 
the library file. Note that the replace function is simply the delete-append functions 
in succession. Also note that you can specify delete, append, or extract functions in 
any order; the order is insignificant to the MS-LIB command scanner. 

The following illustrates the manipulation of member modules under the several 
functions of MS-LIB: 



Consistency 
check only. 

Delete 
Module C; 
Module D 
written to 
space of 
Module C. 

The MS-LIB Library Manager 

MS-LIB [~=~~=, 
I 

!-l-~----=-(-)=-I

~]D MS-LIB [a-G-C/i 
t- ~ 

1 

5-3 



The MS-LIB Library Manager 

5-4 

@<+)-. 
Append 
object file 
E.OBJ as new 
Module Eat 
end of 
library file. 

Extract 
Module E; 
place in a 
separate 
object file; 
return to library. 

A_(*) 
~ 

I I 
f]D 
I 

MS-LIB ~=~-I 
(+) 

------(*)---------. 

MS-LIB ~-0-§]-E 
t-t--'-' I 



The MS-LIB Library Manager 

Do a consistency 
Check, then 
output a 
cross 
reference 
listing of 
PUBLIC 
symbols. 

RUNNING MS-LIB 

MS-LIB 

l 

I I [0-0-§]-0) 
'+-t-'-

~ 

Running MS-LIB requires invoking MS-LIB and answering command prompts. 
Usually you will enter all the commands to MS-LIB at the APC keyboard. Option
ally, answers to the command prompts may be contained in a "response file." Some 
special command characters exist. Some are used as a required part of MS-LIB 
commands. Others assist you while entering MS-LIB commands. 

MS-LIB may be invoked three ways. By the first method, you enter the commands 
as answers to individual prompts. By the second method, you enter all commands 
on the command line used to invoke MS-LIB. By the third method, you create a 
response file that contains all the necessary commands. 

Method 1: LIB 

Enter 

LIB 

MS-LIB is loaded into memory, then, returns a series of three text prompts. 

MS-LIB COMMAND PROMPTS 

MS-LIB prompts you for the name of the library file, the operation(s) you want to 
perform, and the name you want to give to a cross reference listing file, if any. 

5-5 



The MS-LIB Library Manager 

Table 5-1 describes the MS-LIB command prompts. 

Table 5-1 MS-LIB Command Prompts 

PROMPT RESPONSE 

Library file: Enter the name of the library file that you want to manipulate. 
MS-LIB assumes that the filename extension is .LIB. You can 
override this assumption by giving a filename extension when 
you enter the library filename. Because MS-LIB can manage 
only one library file at a time, only one filename is allowed in 
response to this prompt. Additional reponses, except the semi-
colon command character, are ignored. 

If you enter a library filename and follow it immediately with a 
semicolon command character, MS-LIB will perform a consis-
tency check only, then return to the operating system. Any 
errors in the file will be reported. 

If the filename you enter does not exist, MS-LIB returns the 
prompt: 

Library file does not exist. Create? 

You must enter either Yes or No, in either upper or lower (or 
mixed) case. Actually, MS-LIB checks the response for the 
letter Y as the first character. If any other character is entered 
first, MS-LIB terminates and control returns to the operating 
system. 

Operation: Enter one of the three command characters for manipulating 
modules (+, -, *), followed immediately (no space) by the 
module name or the object filename. The plus sign appends an 
object file as the last module in the library file (see further 
discussion under the description of the plus sign below). The 
minus sign deletes a module from the library file. The asterisk 
extracts a module from the library and places it in a separate 
object file with the filename taken from the module name and a 
filename extension .OBJ. 

5-6 



The MS-LIB Library Manager 

Table 5-1 MS-LIB Command Prompts (cont'd) 

PROMPT RESPONSE 

When you have a large number of modules to manipulate 
(more than can be typed on one line), enter an ampersand (&) 
as the last character on the line. MS-LIB will repeat the Opera-
tion prompt, which permits you to enter additional module 
names and object filenames. 

MS-LIB allows you to enter operations on modules and object 
files in any order you want. 

More information about order of execution and what MS-LIB 
does with each module is given in the descriptions of each 
command character. 

List file: If you want a cross reference first of the PUBLIC symbols in 
the modules in the library file after your manipulations, enter 
the filename of the file in which you want MS- LIB to place the 
cross reference listing. If you do not enter a filename, no cross 
reference listing is generated (a NUL file). 

The response to the List file prompt is a file specification. 
Therefore, you can specify, along with a filename, a drive (or 
device) designation and a filename extension. The list file is not 
given a default filename extension. If you want the file to have 
a filename extension, you must specify it when entering the 
filename. 

The cross reference listing file contains two lists. The first list is 
an alphabetical listing of all PUBLIC symbols. Each symbol 
name is followed by the name of its module. The second list is 
an alphabetical list of the modules in the library. Under each 
module name is an alphabetical listing of the PUBLIC symbols 
in that module. 

5-7 



The MS-LIB Library Manager 

5-8 

MS-LIB COMMAND CHARACTERS 

MS-LIB provides six command characters: 

• Three of the command characters are required in responses to the Operation 
prompt 

• The other three command characters provide additional commands. 

Table 5-2 describes the MS-LIB command characters. 

Table 5-2 MS-LIB Command Characters 

COMMAND 
CHARACTER DESCRIPTION 

+ The plus sign followed by an object filename appends the 
object file as the last module in the library named in response to 
the Library file prompt. When MS-LIB sees the plus sign, it 
assumes that the filename extension is .OBJ. You may override 
this assumption by specifying a different filename extension. 

MS-LIB strips the drive designation and the extensionfrom the 
object file specification, leaving only the filename. For exam-
ple, if the object file to be appended as a module to a library is 

B:CURSOR.OBJ 

a response to the Operation prompt of 

+B:CURSOR.OBJ 

causes MS-LIB to strip off the B: and the .OBJ, leaving only 
CURSOR, which becomes a module named CURSOR in the 
library. 

NOTE 

The distinction between an object file and a 
module (or object module) is that the file pos-
sesses a drive designation (even if it is the 
default drive) and a filename extension. Object 
modules possess neither of these. 



The MS-LIB Library Manager 

Table 5-2 MS-LIB Command Characters (cont'd) 

COMMAND 
CHARACTER DESCRIPTION 

- The minus sign followed by a module name deletes that module 
from the library file. MS-LIB then" closes up" the file space left 
empty by the deletion. This cleanup action keeps the library file 
from growing larger than necessary with empty space. 
Remember that new modules, even replacement modules are 
added to the end of the file, not placed into space vacated by 
deleted modules. 

* The asterisk followed by a module name extracts that module 
from the library file and places it into a separate object file. The 
module will still exist in the library (extract means, essentially, 
copy the module to a separate object file). The module name is 
used as the filename. MS-LIB adds the default drive designa-
tion and the filename extension .OBJ. For example, if the 
module to be extracted is 

CURSOR 

and the current default disk drive is A:, a response to the 
Operation prompt of 

*CURSOR 

causes MS-LIB to extract the module named CURSOR from 
the library file and to set it up as an object file with the file 
specification of 

default drive:CURSOR.OBJ 

(The drive designation and filename extension cannot be over-
ridden. You can, however, rename the file, giving a new file-
name extension, and/or copy the file to a new disk drive, giving 
a new filename and/or filename extension.) 

, Use a single semicolon (;) followed immediately by RETURN 
any time after responding to the first prompt (from Library file 
on) to select default repsonses to the remaining prompts. This 
feature saves time and eliminates answering additional prompts. 

5-9 



The MS-LIB Library Manager 

Table 5-2 MS-LIB Command Characters (cont'd) 

COMMAND 
CHARACTER DESCRIPTION 

NOTE 

Once the semicolon has been entered, you can 
no longer respond to any of the prompts for 
that library session. Therefore, do not use the 
semicolon to skip over some prompts. For this, 
press RETURN . 

. Example: 

Library file: FUN RETURN 
Operation: +CURSOR; RETURN 

The remaining prompts will not appear, and MS-LIB will 
use the default value (no cross reference file). 

& Use the ampersand to extend the current physical line. This 
command character will only be needed for the Operation 
prompt. MS-LIB can perform many functions during a single 
library session. The number of modules you can append is 
limited only by disk space. The number of modules you can 
replace or extract is also limited only by disk space. The 
number of modules you can delete is limited only by the 
number of modules in the library file. However, the line length 
for a response to any prompt is limited to the command line 
length. For a large number of responses to the Operation 
prompt, place an ampersand at the end of a line. MS-LIB will 
display the Operation prompt again, then enter more re-
sponses. You may use the ampersand character as many times 
as you need. 

Example: 

Library file: FUN RETURN 
Operation: +CURSOR-HEAP+ HEAP*FO IBLES& 
Operation: *INIT+ASSUME+RIDE; RETURN 

5-10 



The MS-LIB Library Manager 

Table 5-2 MS-LIB Command Characters (cont'd) 

COMMAND 
CHARACTER DESCRIPTION 

MS-LIB will delete the module HEAP, extract the 
modules FOIBLES and INIT (creating two files, FOI-
BLES.OBJ and INIT.OBJ), then append the object files 
CURSOR, HEAP, ASSUME, and RIDE. Note, however, 
that MS-LIB allows you to enter operation responses in 
any order. 

CTRL-C Use CTRL-C at any time to abort the library session. If you 
enter an erroneous response such as the wrong filename or a 
module name, or an incorrectly spelled filename or module 
name), you must press CRTL-C to exit MS-LIB then reinvoke 
MS-LIB and start over. If the error has been typed but not 
entered, you may delete the erroneous characters, but for that 
line only. 

Method 2: LIB <library> <operations>, <listing> 

Enter 

LIB <library><operations>, <listing> 

The entries following LIB are responses to the command prompts. The <library> 
and <operations> fields and all operations entries must be separated by one of the 
command characters plus (+), minus( -), or asterisk (*). If a cross reference listing is 
wanted, the name of the file must be separated from the last operations entry by a 
comma. 

The entry fields are described as follows: 

<library> is the name of a library file. MS-LIB assumes that the filename 
extension is .OBJ, which you may override by specifying a different extension. 
If the filename given for the library field does not exist, MS-LIB will prompt 
you with 

Library file does not exist. Create? 

5-11 



The MS-LIB Library Manager 

5-12 

Enter Yes (or any response beginning with Y) to create a new library file. Enter 
No (or any other response not beginning with N) to abort the library session. 

<operations> is the action of deleting a module, appending an object file as a 
module, or extracting a module as an object file in the library file. Use the three 
command characters plus (+), minus (--), and asterisk (*), to direct MS-LIB 
what to do with each module or object file. 

<listing> is the name of the file you want to receive the cross reference listing of 
PUBLIC symbols in the modules in the library. The list is compiled after all 
module manipulation has taken place. 

To select the default for remaining field(s), you may enter the semicolon command 
character. 

If you enter a library filename followed immediately by a semicolon, MS-LIB will 
read through the library file and perform a consistency check. No changes will be 
made to the modules in the library file. 

If you enter a library filename followed immediately by a comma and a list filename, 
MS-LIB will perform its consistency check of the library file, then produce the cross 
reference listing file. 

Example: 

LIB PASCAL-HEAP+HEAP; 

This example causes MS-LIB to delete the module HEAP from the library file 
PASCAL.LIB, then append the object file HEAP.OBJ as the last module of 
PASCAL. LIB (the module will be named HEAP). 

If you have many operations to perform during a library session, use the ampersand 
(&) command character to extend the line so that you can enter additional object 
filenames and module names. Be sure to always include one of the command 
characters for operations (+, --, *) before the name of each module or object 
filename. 

Example: 

LIB PASCAL RETURN 

causes MS-LIB to perform a consistency check of the library file PASCAL.LIB. No 
other action is performed. 



The MS-LIB Library Manager 

Example: 

LIB PASCAL,PASCROSS.PUB 

causes MS-LIB to perform a consistency check of the library file PASCAL.LIB, 
then to output a cross reference listing file named PASCROSS.PUB. 

Method 3: LIB @ filespec 

Enter 

LIB @ <filespec> 

where <filespec> is the name of a response file. A response file contains answers 
to the MS-LIB prompts (summarized under method 1 for invoking). 
Method 3 permits you to conduct the MS-LIB session without interactive 
(direct) response to the MS-LIB command prompts. 

NOTE 

Before using method 3 to invoke MS-LIB, you 
must first create the required response file. 

A response file has text lines, one for each prompt. Responses must appear in the 
same order as the command prompts appear on the screen. 

Use command characters in the response file the same way as they are used for 
responses entered from the APC keyboard. 

When the library session begins, each prompt will be displayed in turn with the 
responses from the response file. If the response file does not contain answers for all 
the prompts, MS-LIB will use the default responses (no changes to the modules 
currently in the library file for operation, and no cross reference listing file created). 

If you enter a library filename followed immediately by a semicolon, MS-LIB will 
read through the library file and perform a consistency check. No changes will be 
made to the modules in the library file. 

If you enter a library filename only press RETURN for operations, then type a 
comma and a list filename, MS-LIB will perform its consistency check of the library 
file, and produce the cross reference listing file. 

5-13 



The MS-LIB Library Manager 

5-14 

Example: 

PASCAL CR 
+CURSOR+HEAP-HEAP*FOIBLES CR 
CROSSLST CR 

This response file will cause MS-LIB to delete the module HEAP from the PAS
CAL.LIB library file, extract the module FOIBLES and place it in an object file 
named FOIBLES.OB], and then append the object files CURSOR.OB] and 
HEAP.OB] as the last two modules in the library. Finally, MS-LIB will create a 
cross reference file named CROSSLST. 

MS-LIB ERROR MESSAGES 

MS-LIB generates the error messages listed in Table 5-3. 

Table 5-3 MS-LIB Error Messages 

ERROR MESSAGE 

Symbol is a multiply-defined 
pUblic. Proceed? 

Allocate error on VM.TMP 

Cannot create extract file 

Cannot create list file 

Cannot open VM. TMP 

Cannot write library file 

Close error on extract file 

Error: An internal error has 
occurred 

MEANING 

Two modules define the same public symbol. 
You are asked to confirm the removal of the 
definition of the old symbol. A No response 
leaves the library in an undetermined state. 
Remove the PUBLIC declaration from one of 
the object modules and recompile or reas
semble. 

Out of space. 

No room in directory for the extract file. 

"@filespec" in response (or indirect) file 

No room for VM.TMP in disk directory. 

Out of space. 

Out of space. 

Contact your APC serVIce representative 



The MS-LIB Library Manager 

Table 5-3 MS-LIB Error Messages (coot'd) 

ERROR MESSAGE 

Fatal error: Cannot open 
input file 

Fatal error: Module is not in 
the library 

Input file read error 

Invalid object module/library 

Library disk is full 

No library file specified 

Read error on VM.TMP 

Symbol table capacity exceeded 

Too many object modules 

Too many public symbols 

Write error on library/extract 
file 

Write error on VM. TMP 

MEANING 

Mistyped object file name. 

Trying to delete a module that is not in the 
library. 

Bad object module or faulty disk. 

Bad object and/or library. 

Out of space. 

No response to Library file prompt. 

Disk not ready for read. 

Too many public symbols (about 30K charac
ters in symbols). 

More than 500 object modules. 

1024 public symbols maximum. 

Out of space. 

Out of space. 

5-15 





Chapter 6 

The MS-CREF Cross 
Reference Utility 

The MS-CREF Cross Reference Utility can aid you in debugging your assembly 
language programs. MS-CREF produces an alphabetical listing of all the symbols in 
a special file produced by MACRO-86. With this listing, you can quickly locate all 
occurrences of any symbol in your source program by line number. 

The MS-CREF produced listing is meant to be used with the symbol table produced 
by MACRO-86. 

The MACRO-86 symbol table listing shows the value of each symbol, its type, and 
its length. This information is needed to correct erroneous symbol definitions or 
uses. 

The cross reference listing produced by MS-CREF provides you the locations of 
symbols, speeding your search and allowing faster debugging. 

SYSTEM REQUIREMENTS FOR RUNNING MS-CREF 

MS-CREF requires 24K bytes of memory minimum: 14K bytes for code and 10K 
bytes for run space. 

The peripheral devices needed are 

• One disk drive if and only if output is sent to the same physical disk from 
which the input was taken. There is no time to swap disks during operation 
on a one-drive configuration. Therefore, two disk drives is a more practical 
configuration for using MS-CREF . 

• A printer for printed output. 

6-1 



The MS-CREF Cross Reference Utility 

6-2 

OVERVIEW OF MS-CREF OPERATIONS 

MS-CREF produces a file with cross references for the symbolic names in your 
program. 

First, you must create a cross reference file with MACRO-86. Then, MS-CREF 
takes this cross reference file, which has the filename extension .CRF, and turns it 
into an alphabetical listing of the symbols in the file. The cross reference listing file is 
given the default filename extension .REF. 

Beside each symbol in the listing, MS-CREF lists in ascending sequence the line 
numbers in the source program where the symbol occurs. The line number where the 
symbol is defined is indicated by a pound sign (#). 

The following illustrates MS-CREF's operations: 

MACRO-86 

MS-CREF 

Faa 20 64 123# 145 .. . 
GAD 21 45# 49 120 .. . 



The MS-CREF Cross Reference Utility 

RUNNING MS-CREF 

Running MS-CREF requires invoking MS-CREF and answering command prompts. 
You will enter all the commands to MS-CREF at the APC keyboard. Some special 
command characters exist to assist you in entering MS-CREF commands. 

Before you can use MS-CREF to create the cross reference listing, you must first 
have created a cross reference file using MACRO-86. 

Creating a Cross Reference File 

A cross reference file is created during an assembly session. To create this file, you 
answer the fourth MACRO-86 command prompt with the name of the file you want 
to receive the cross reference file. 

The fourth assembler prompt is 

Cross reference [NUL.CRF]: 

If you do not enter a filename in response to this prompt, or if you in any other way 
use the default response to this prompt, the assembler will not create a cross 
reference file. Therefore, you must enter a filename. You may also specify which 
drive you want to receive the file and what filename extension you want the file to 
have, if different from .CRF. If you change the filename extension from .CRF to 
anything else, you must remember to specify the filename extension when naming 
the file in response to the first MS-CREF command prompt. 

When you have given a filename in response to the fourth MACRO-86 prompt, the 
cross reference file will be generated during the assembly session. 

You are now ready to convert the cross reference file produced by the assembler into 
a cross reference listing using MS-CREF. 

Invoking MS-CREF 

MS-CREF may be invoked two ways. By the first method, you enter the commands 
as answers to individual prompts. By the second method, you enter all commands 
on the command line used to invoke MS-CREF. 

METHOD 1: CREF 

Enter 

CREF 

6-3 



The MS-CREF Cross Reference Utility 

6-4 

MS-CREF is loaded into memory, then displays two prompts. 

MS-CREF Command Prompts 

MS-CREF prompts you for the names of the cross reference file for conversion and 
the cross reference listing file to be produced. 

Table 6-1 describes the MS-CREF command prompts. 

Table 6-1 MS-CREF Command Prompts 

PROMPT RESPONSE 

Cross reference 
[.CRF]: Enter the name of the cross reference file you 

want MS-CREF to convert into a cross refer-
ence listing. The name of the file is the name 
you gave to MACRO-86 when you directed it 
to produce the cross reference file. 

MS-CREF assumes that the filename extension 
is .CRF. If you do not specify a filename exten-
sion when· you enter the cross reference file-
name, MS-CREF will look for a file with the 
name you specify and the filename extension 
.CRF. If your cross reference file has a different 
extension, specify that extension when entering 
the filename. 

See the section FORMAT OF MS-CREF 
COMPA TIBLE FILES for a description of 
what MS-CREF expects to see in the cross 
reference file. You will need this information 
only if your cross reference file was not pro-
duced by a Microsoft assembler. 



The MS-CREF Cross Reference Utility 

Table 6-1 MS-CREF Command Prompts (cont'd) 

PROMPT RESPONSE 

Listing 
Enter the name you want the cross reference [crffile.REF]: 
listing file to have. MS-CREF will automati-
cally give the cross reference listing the file-
name extension .REF. 

If you want your cross reference listing to have 
the same filename as the cross reference file but 
with the filename extension .REF, simply press 
RETURN when the Listing prompt appears. if 
you want your cross reference listing file to be 
named anything else and/or to have any other 
filename extension, you must enter a response 
following the Listing prompt. 

If you want the listing file placed on a drive or 
device other than the default drive, specify the 
drive or device when entering your response to 
the Listing prompt. 

MS-CREF Command Characters 

Two command characters can be used in entering MS-CREF commands. An 
override command character allows you to select default reponses to the MS-CREF 
command prompts. CTRL-C aborts MS-CREF execution. 

6-5 



The MS-CREF Cross Reference Utility 

6-6 

Table 6-2 describes the MS-CREF command characters. 

Table 6-2 MS-CREF Command Characters 

COMMAND CHARACTER 

CTRL-C 

DESCRIPTION 

Use a single semicolon (;) followed imme
diately by a RETURN at any time after re
sponding to the Cross reference prompt to 
select the default response for the Listing 
prompt. This feature saves time and overrides 
the need to answer the Listing prompt. 

If you use the semicolon, MS-CREF gives the 
listing file the filename of the cross reference 
file and the default filename extension .REF. 

Example: 

Cross reference.[.CRF]: FUN; 

MS-CREF will process the cross reference file 
named FUN.CRF and output a listing file 
named FUN. REF. 

Use CTRL-C at any time to abort the MS
CREF session. If you enter an erroneous 
response (the wrong filename, or an incorrectly 
spelled filename), you must press CTRL-C to 
exit MS-CREF, then reinvoke MS-CREF and 
start over. If the error has been typed but not 
entered, you may delete the erroneous charac
ters, but for that line only. 



The MS-CREF Cross Reference Utility 

METHOD 2: CREF <CRFFILE>, <LISTING> 

Enter 

CREF <crffile>, <listing> 

MS-CREF will be loaded into memory. Then, MS-CREF immediately procedes to 
convert your cross reference file into a cross reference listing. 

The entries following CREF are responses to the command prompts. The crffile and 
listing fields must be separated by a comma. 

The entry fields are described as follows: 

<crffile> is the name of a cross reference file produced by MACRO-86. MS
CREF assumes that the filename extension is .CRF, which you may override by 
specifying a different extension. If the file named for the crffile does not exist, 
MS-CREF will display the message: 

Fatal I/O Error 110 
in File: <crffile> .CRF 

Control then returns to MS-DOS. 

<listing> is the name of the file you want to receive the cross reference listing of 
symbols in your program. 

To select the default filename and extension for the listing file, enter a semi
colon after you enter the crffile name. 

Example: 

CREF FUN; RETURN 

This example causes MS-CREF to process the cross reference file FUN.CRF 
and to produce a listing file named FUN.REF. 

To give the listing file a different name, extension, or destination, simply specify 
these differences when entering the command line. 

CREF FUN,B:WORK.ARG 

6-7 



The MS-CREF Cross Reference Utility 

6-8 

This example causes MS-CREF to process the cross reference file named 
RUN.CRF and to produce a listing file named WORK.ARG, which will be 
placed on the disk in drive B:. 

FORMAT OF CROSS REFERENCE LISTINGS 

An example of a cross reference listing produced by MS-CREF is provided in the 
next few pages. 

Each page is headed with the title of the program or program module. 

Then comes the alphabetical list of symbols. Following each symbol name is a list of 
the line numbers where the .symbols occur in the program. The line number for the 
definition has a pound sign (#) appended to it. 

MS-CREF (vers no.) (date) 

ENTX PASCAL entry for initializing programs ............. --

Symbol Cross Reference (# is definition) 

AAAXQQ .............. 37# 38 

BEGHQQ .............. 83 84# 154 176 
BEGOQQ .............. 33 162 
BEGXQQ .............. 113 126# 164 223 

CESXQQ ............... 97 99# 129 
CLNEQQ .............. 67 68# 
CODE ................. 37 182 
CONST ................ 104 104 105 110 
CRCXQQ .............. 93 94# 210 215 
CRDXQQ .............. 95 96# 216 
CSXEQQ ............... 65 66# 149 
CURHQQ .............. 85 86 155 

DATA ................. 64# 64# 100 110 
DGROUP .............. 110# 111 111 111 127 
DOSOFF ............... 98# 198 199 
DOSXQQ .............. 184 204# 219 

comes from 
TITLE directive 

153 171 172 



The MS-CREF Cross Reference Utility 

ENDHQQ .............. 87 88# 158 
ENDOQQ .............. 33# 195 
ENDUQQ .............. 31# 197 
ENDXQQ .............. 184 194# 
ENDYQQ .............. 32# 196 
ENTGQQ .............. 30# 187 
ENTXCM .............. 182# 183 221 
FREXQQ .............. 169 170# 178 
HDRFQQ .............. 71 72# 151 
HDRVQQ .............. 73 74# 152 
HEAP ................. 42 44 110 
HEAPBEG ............. 54# 153 172 
HEAPLOW ............ 43 171 
INIUQQ ............... 31 161 
MAIN..-STARTUP ...... 109# 111 180 
MEMORy .............. 42 48# 48 49 109 110 

PNUXQQ .............. 69 70 150 

RECEQQ .............. 81 82# 
REFEQQ ............... 77 78# 
REPEQQ ............... 79 80# 
RESEQQ ............... 75 76# 148 
SKTOP ................ 59# 
SMLSTK ............... 135 137# 
STACK ................ 53# 53 60 110 
STARTMAIN ........... 163 186# 200 
STKBQQ ............... 89 90# 146 
STKHQQ .............. 91 92# 160 

MS-CREF ERROR MESSAGES 

All errors cause MS-CREF to abort. Control is returned to MS-DOS. 

Error messages are displayed in the format: 

Fatal I/O Error error number 
in File: filename 

where: filename is the name of the file where the error occurs 

error number is one of the numbers in the following list of errors. 

6-9 



The MS-CREF Cross Rejereflce Utility 

6-10 

Table 6-3 lists the error messages for MS-CREF in the numerical order of their code 
numbers. 

ERROR 
CODE 

101 

101 

103 

104 

Table 6-3 MS-CREF Error Messages 

MEANING 

Hard data error. Unrecoverable disk 1/0 error. 

Device name error. Illegal device specification (for example, 
X:FOO.CRF). 

Internal error. Report to your APC service representative. 

Internal error. Report to your APC service representative. 

105 Device offline. Disk drive door open, no printer attached, and so on. 

106 Internal error. Report to your APC service representative. 

108 Disk full. 

110 Fatal 1/0 error. File not found. 

111 Disk is write-protected. 

112 Internal error. Report to your APC service representative. 

113 Internal error. Report to your APC service representative. 

114 Internal error. Report to your APC service representative. 

115 Internal error. Report to your APC service representative. 



The MS-CREF Cross Reference Utility 

FORMAT OF MS-CREF COMPATIBLE FILES 

MS-CREF will process files other than those generated by MACRO-86 as long as 
the file conforms to the format that MS-CREF expects. 

General Description of MS-CREF File Processing 

In essence, MS-CREF reads a stream of bytes from the cross reference input file, 
sorts them, then emits them as a printable listing file (the .REF file). The symbols are 
held in memory as a sorted tree. References to the symbols are held in a linked list. 

MS-CREF keeps track of line numbers in the source file by the number of end-of
line characters it encounters. Therefore, every line in the source file must contain at 
least an end-of-line character (see Table 6-4). 

MS-CREF attempts to place a heading at the top of every page passed by your 
assembler from a TITLE (or similar) directive in your source program. The title 
must be followed by a title symbol (see Table 6-4). If MS-CREF encounters more 
than one title symbol in the source file, it uses the last title read for all page headings. 
If MS-CREF does not encounter a title symbol in the file, the title line on the listing 
is left blank. 

Format of Source Files 

MS-CREF uses the first three bytes of the source file as format specification data. 
The rest of the file is processed as a series of records that either begin or end with a 
byte identifing the type of record. 

FIRST THREE BYTES 

The first byte of the source file contains the number of lines to be printed per page 
(page length range is from 1 to 255 characters). 

The second byte indicates the number of characters per line (line length range is 
from 1 to 132 characters). 

The third byte is the page symbol (07) that tells MS-CREF that the two preceding 
bytes define listing page size. 

The P AG E directive in your assembler, that takes arguments for page length and 
line length, will pass the above information to the cross reference file. 

If MS-CREF does not see these first three bytes in the cross reference file, it uses 
default values for page size (page length: 58 lines; line length: 80 characters). 

6-11 



The MS-CREF Cross Reference Utility 

6-12 

RECORD CONTROL SYMBOLS 

The information given below shows the types of records that MS-CREF recognizes 
and the byte values and placement it uses to recognize record types. 

Records have a control symbol (which identifies the record type) either as the first 
byte or the last byte of the record. 

Records that begin with a control symbol: 

Byte Value Control Symbol 

01 Reference symbol 

02 Define symbol 

04 End of line 
05 End of file 

Records that end with a control symbol: 

Byte Value 

06 

07 

Control Symbol 

Title defined 

Page length/ 
line length 

Subsequent Bytes 

Record is a reference to a 
symbol name (1 to 80 char-
acters) 
Record is a definition of a 
symbol name (1 to 80 char-
acters) 
(none) 
lAH 

Preceding Bytes 

Record is title text (1 to 80 
characters) 

One byte for page length 
followed by one byte for 
line length 

For all record types, the byte value represents a control character as follows: 

01 CTRL-A 
02 CTRL-B 
04 CTRL-D 
05 CTRL-E 
06 CTRL-F 
07 CTRL-G 

The record control symbols are defined in Table 6-4. 



The MS-CREF Cross Rl/crcnce Utility 

Table 6-4 Record Control Symbols 

CONTROL SYMBOL 

Reference symbol 

Define symbol 

End of line 

End of file 

Title defined 

Page length/line length 

DEFINITION 

The record contains the name of a symbol that 
is referenced. The name may be from 1 to 80 
ASCII characters long. Additional characters 
are truncated. 

The record contains the name of a symbol that 
is defined. The name may be from 1 to 80 
ASCII characters long. Additional characters 
are truncated. 

The record is an end of line symbol character 
only (04H or Control-D). 

The record is the end of file character (1 AH). 

ASCII characters of the title to be printed at 
the top of each listing page. The title may be 
from 1 to 80 characters long. Additional char
acters are truncated. The last title definition 
record encountered is used for the title placed 
at the top of all pages of the listing. If a title 
definition record is not encountered, the title 
line on the listing is left blank. 

The first byte of the record contains the 
number oflines to be printed per page (range is 
from 1 to 255 lines). The second byte contains 
the number of characters to be printed per page 
(range is from 1 to 132 characters). The default 
page length is 58 lines. The default line length is 
80 characters. 

6-13 



The MS-CREF Cross Reference Utility 

The .CRF file record contents are the following: 

6-14 

Byte Contents 

01 symbol name 
02 symbol name 
04 
051A 
title text 06 
PL LL 07 

Length of Record 

2-81 bytes 
2-81 bytes 
1 byte 
2 bytes 
2-81 bytes 
3 bytes 



Chapter 7 

The DEBUG Program 
The Debugging Program (DEBUG) is used to examine and make corrections to 
binary and executable object files. As the Line Editor (EDLIN) is used to alter 
source files, DEBUG modifies binary files. 

With DEBUG, you do not need to reassemble or recompile a program to see if a 
problem has been fixed by a minor change. You can alter the contents of a file or a 
CPU register, and then immediately reexecute a program to check the validity of the 
changes. 

The DEBUG commands may be aborted at any time by pressing CTRL-C. CTRL-S 
suspends the display, so that you can read it before the output scrolls away. 
Entering any key other than CTRL-C or CTRL-S restarts the display. All of these 
commands are consistent with the control character functions available at the 
MS-DOS command level. 

INVOKING DEBUG 

To invoke DEBUG, enter 

DEBUG [<filespec> [<arglist>]] 

For example, if a <filespec> is specified, then the following is a typical invocation: 

DEBUG FILE.EXE 

DEBUG then loads FILE.EXE into memory starting at 100 hexadecimal in the 
lowest available segment. The BX:CX registers are loaded with the number of bytes 
placed into memory. Then, DEBUG returns its command prompt. The DEBUG 
prompt is a right angle bracket (». 

7-1 



The DEBUG Program 

7-2 

An <arglist> may be specified if <filespec>is present. These are filename parame
ters and switches that are to be passed to the program <filespec>. Thus, when 
<filespec> is loaded into memory, it is loaded as if it had been invoked with the 
command: 

<filespec> <arglist> 

Here, <filespec> is the file to be debugged, and <arglist> is the rest of the 
command line that is used when <filespec> is invoked and loaded into memory. 

If no <filespec> is specified, then DEBUG is invoked as follows: 

DEBUG 

DEBUG then returns with the prompt, signaling that it is ready to accept your 
commands. Since no filename has been specified, current memory, disk sectors, or 
disk files can be worked on by invoking later commands. 

The DEBUG Commands 

Each DEBUG command consists of a single letter followed by one or more 
parameters. Additionally, the control character and the dual-mode (PF) key func
tions that work on the command line all apply inside DEBUG. (See the MS-DOS 
System User's Guide for a description of the functions mentioned above.) 

If a syntax error occurs in a DEBUG command, DEBUG reprints the command 
line and indicates the error with an up-arrow (",') and the word error. 

For example: 

dcs: 100 cs: 110 
A error 

All commands and parameters may be entered in either upper or lower case. Any 
combination of upper and lower case may be used in commands. 

The DEBUG commands are summarized in Table 7-1 and are described in detail 
with examples in the section DEBUG COMMAND DESCRIPTIONS. 



The DEBUG Program 

Table 7-1 DEBUG Commands 

COMMAND FUNCTION 

A [<address>] Assemble 

C<range> <address> Compare 

D[<range>] Dump 

E<address> [<list>] Enter 

F <range> [<list>] Fill 

G[ =<address> [<address> ... ]] Go 

H <address> <address> Hex 

I<value> Input 

L[ <address> [<drive> <record> <record>]] Load 

M <range> <address> Move 

N <filespec> Name 

O<value> <byte> Output 

Q Quit 

R[ <register-name>] Register 

S<range> <list> Search 

T[=<address>] [<value>] Trace 

U[<range>] Unassemble 

W[ <address> [<drive> <record> <record>]] Write 

7-3 



The DEBUG Program 

7-4 

DEBUG Command Parameters 
As Table 7-1 shows, all DEBUG commands accept parameters, except the Quit 
command. Parameters may be separated by delimiters (spaces or commas), but a 
delimiter is required only between two consecutive hexadecimal values. Thus, the 
following commands are equivalent: 

dcs: 100 110 
d cs: 100 110 
d,cs: 100,110 

Also, entries may be made in any combination of upper or lower case letters. 

Table 7-2 lists the DEBUG command parameters, describing their legal values. 

Table 7-2 DEBUG Command Parameters 

PARAMETER DEFINITION 

<drive> A one-digit hexadecimal value to indicate which drive a 
file will be loaded from or written to. The legal values are 
0-7. These values designate the drives as follows: O=A 
(FD1), l=A (FD2D), 2=B (FDl). 

<byte> A two-digit hexadecimal value to be placed in or read 
from an address or register. 

<record> A one- to three-digit hexadecimal value used to indicate 
the logical record number on the disk and the number of 

-.-.------.-.. -----~-.--- --"- - - .. ~-.-.-- ------" disk sectors -to be written oi--loadecCTo-gTcaT-reco-ids----
correspond to sectors. However, their numbering differs, 
since they represent the entire disk space. 

<value> A hexadecimal value of up to four digits used to specify a 
port number or the number of times a command should 
repeat its functions. 



The DEBUG Program 

Table 7-2 DEBUG Command Parameters (cont'd) 

PARAMETER DEFINITION 

<address> A two-part designation consisting of either an alphabetic 
segment register designation or a four-digit segment 
address plus an offset value. The segment designation or 
segment address may be omitted, in which case the 
default segment is used. DS is the default segment for all 
commands except G. L, T, U, and W, for which the 
default segment is CS. All numeric values are hexadeci-
mal. 

<range> For example: 

CS:OIOO 
04BA:OIOO 

The colon is required between a segment designation 
(whether numeric or alphabetic) and an offset. 

<range> can be expressed as: 

• two addresses; <address> <address> 

• one address, an L, and a value; <address>L<value> 
(where <value> is the number of lines the command 
should operate on) 

• simply <address>, where L80 is assumed. 

The last form cannot be used if another hex value 
follows the <range>, since the hex value would be 
interpreted as the second address of the <range>. 

Examples: 

C5:100 110 
CS:I00 L 10 
CS:I00 

The following is illegal: 

CS/IOO CS: 110 
A Error 

The limit for <range> is 10000 hex. To specify a 
<value> of 10000 hex within four digits, enter 0000 
(or 0). 

7-5 



The DEBUG Program 

Table 7-2 DEBUG Command Parameters (cont'd) 

PARAMETER 

<list> 

<string> 

DEFINITION 

A series of <byte> values or of <string>S.line. <list> 
must be the last parameter on the command line. 

Example: 

[fcs: 100 42 45 52 54 41 

Any number of characters enclosed in quote marks. 
Quote marks may be either single (') or double ("). 
Within <string>s, the opposite set of quote marks may 
be used freely as literals. If the delimiter quote marks 
must appear within a <String>, the quote marks must 
be doubled. For example, the following strings are 
legal. 

'This is a "string" is okay.' 
'This is a ' 'string' , isokay.' 

However, this string is illegal. 

'This is a 'string' is not.' 

Similarly, these strings are legal. 

"This is a 'string' is okay." 
"This is a " "string" " is okay." 

However, this string is illegal. 

-----------f-------------- ------- --------------"This is_a~~s_tring~js~QL~------------ ----- - .. ---
Note that the double quotations are not necessary in 
the following strings: 

7-6 

"This is a ' 'string' , is not necessary." 
'This is a " "string" " is not necessary.' 

The ASCII values of the characters in the string are 
used as a <list> of byte values. 

DEBUG COMMAND DESCRIPTIONS 

Descriptions of the DEBUG commands listed in Table 7-2 are given in the follow
ing pages. 



A(ssemble) Command 
Format: 

A[ <address>] 

Function: 

Assembles 8086/8087/8088 mnemonics directly into memory. 

Remarks: 

All numeric input to the Assemble command is in hexadecimal. The assembly 
statements you enter are assembled into memory at successive locations, starting 
with the address specified in <address>. If no <address> is specified, the state
ments are assembled into the area at CS:OIOO if no previous Assemble command 
was used, or into the location following the last instruction assembled by a previous 
Assemble command. When all desired statements have been entered, press 
RETURN at the prompt for the next statement, to return to the DEBUG prompt. 

If a syntax error is encountered, DEBUG responds with 

A Error 

and redisplays the current assembly address. 

Observe the following rules when using the Assemble command. 

• All numeric values are hexadecimal and may be entered as one to four 
characters. 

• Prefix mnemonics must be entered in front of the opcode to which they 
refer. They may also be entered on a separate line. 

• The segment override mnemonics are CS:, DS:, ES:, and SS:. 

• String manipulation mnemonics must explicitly state the string size. For 
example, the MOVSW must be used to move word strings and MOVSB 
must be used to move byte strings. 

• The mnemonic for the far return is RETF. 

The DEBUG Program 

7-7 



The DEBUG Program 

• The assembler will automatically assemble short, near, or far jumps and 
calls depending on byte displacement to the destination address. These may 
be overridden with the NEAR or FAR prefix. For example: 

0100:0550 JMP 502 ; a 2 byte short jump 
0100:0502 JMP NEAR 505; a 3 byte near jump 
0100:0505 JMP FAR 50A ; a 5 byte far jump 

• The NEAR prefix can be abbreviated to NE, but the FAR prefix cannot be 
abbreviated. 

DEBUG cannot tell whether some operands refer to a word memory location or a 
byte memory location. In this case, the data type must be explicitly stated with the 
prefix "WORD PTR" or "BYTE PTR." DEBUG will also accept the abbreviations 
"WO" or "BY." For example: 

NEG 
DEC 

BYTE PTR [128] 
WO[SI] 

DEBUG also cannot tell whether an operand refers to a memory location or to an 
immediate operand. DEBUG uses the common convention that operands enclosed 
in square brackets refer to memory. For example: 

MOV AX,21 
MOV AX,[21] 

;Load AX with 21H 
;Load AX with the contents 
; of memory location 21H 

Two popular pseudo-instructions have also been included. The DB ope ode will 
------------as-sembk--b-yre-val-~~.--Xhe:_D-W-Op-corle-wilLasse-mble---wHr.cL_________________ .. _ _ _____ _ 

values directly into memory. For example: 

DB 1,2,3,4, "THIS IS AN EXAMPLE" 
DB 'THIS IS A QUOTE:" , 
DB "THIS IS A QUOTE:' " 

DW 1000,2000,3000,"BACH" 

All forms of the register indirect commands are supported. For example: 

ADD 
POP 
PUSH 

BX,34[BP+2].[SI-l] 
[BP+DI] 
[SI] 



All opcode synonyms are supported. For example: 

LOOPZ 
LOOPE 

JA 
JNBE 

100 
100 

200 
200 

For 8087 opcodes, the WAIT or FW AIT prefix must be explicitly specified. For 
example: 

FWAIT FADD ST,ST(3) 

FLD TBYTE PTR [BX] 

Example: 

C>debug 
-a200 
08B4:0200 xor ax,ax 
08B4:0202 mov [bx],ax 
08B4:0204 ret 
08B4:0205 

C( ompare) Command 

Format: 

C<range> <address> 

Function: 

;This line will assemble 
;a FW AIT prefix 

;This line will not 

Compares the portion of memory specified by <range> to a portion of the same 
size beginning at <address>. 

Remarks: 

If the two areas of memory are identical, there is no display and DEBUG returns 
with the DEBUG prompt. If there are differences, they are displayed as 

<address 1 > <byte 1 > <byte2> <address2> 

The DEBUG Program 

7-9 



The DEBUG Program 

7-10 

Example: 

The followIng commands have the same effect: 

CI00,IFF 300 

or 

CI00LI00 300 

Each command compares the block of memory from 100 to 1 FFH with the 
block of memory from 300 to 3FFH. 

D(ump) Command 
Format: 

D[<range>] 

Function: 

Displays the contents of the specified region of memory. 

Remarks: 

If a range of addresses is specified, the contents of the range are displayed. If the D 
command is entered without parameters, 128 bytes are displayed at the first address 
(DS: 100) after the one displayed by the previous Dump command. 

The dump is displayed in two portions: a hexadecimal dump (each byte is shown in 
hexadecimal value) and an ASCII dump (the bytes are shown in ASCII characters). 
Nonprinting characters are denoted by a period (.) in the ASCII portion of the 
display. Each display line shows sixteen bytes with a hyphen between the eighth and 
ninth bytes. Each displayed, line, except possibly the first, begins on a 16-byte 
boundary. 



Examples: 

If you enter the command: 

dcs:lOO 110 

DEBUG displays 

04BA:OI00 42 45 52 54 41 ... 4E 44 BERTA T. BORLAND 

If the following command is entered: 

D 

the display is formatted as described above. Each line of the display begins with 
an address incremented by 16 from the address on the previous line. Each 
subsequent D (entered without parameters) displays the bytes immediately 
following those last displayed. 

If you enter the command: 

DCS:I00 L 20 

the display is formatted as described above, but 20H bytes are displayed. 

If you enter the command: 

DCS:I00 115 

the display is formatted as described above, but all the bytes in the range of 
lines from 100H to 115H in the CS segment are displayed. 

E(nter) Command 
Format: 

E<address> [<list>] 

Function: 

Enters byte values into memory at the specified <address>. 

The DEBUG Program 

7-11 



The DEBUG Program 

7-12 

Remarks: 

If the optional <list> of values is entered, the replacement of byte values occurs 
automatically. (If an error occurs, no byte values are changed.) If the <address> is 
entered without the optional <list>, DEBUG displays the address and its contents, 
then repeats the address on the next line and waits for your input. At this point, the 
Enter command waits for you to perform one of the following actions: 

• Replace a byte value with a value you type in. You simply type the value 
after the current value. If the value typed in is not a legal hexadecimal value 
or if more than two digits are typed, the illegal or extra character is not 
echoed. 

• Press the space bar to advance to the next byte. To change the value, simply 
enter the new value as described above. If you space beyond an eight-byte 
boundary, DEBUG starts a new display line with the address displayed at 
the beginning. 

• Type a hyphen (-) to return to the preceding byte. If you decide to change a 
byte behind the current position, typing the hyphen returns the current 
position to the previous byte. When the hyphen is typed, a new line is started 
with the address and its byte value displayed. 

• Press RETURN to terminate the Enter command. The RETURN key may 
be pressed at any byte position. 

Example: 

Assume the following command is entered: 

ESC:100 

DEBUG displays 

04BA:0 100 EB._ 

To change this value to 41, enter "41" as shown. 

04BA:0100 EB.41_ 

To step through the subsequent bytes, press the space bar to see 

04BA:0100 EB.41 10. 00. 



To change BC to 42: 

04BA:OI00 EB.41 10. 00. BC.42_ 

Now, realizing tha t 10 should be 6F, enter the hyphen as many times as needed 
to return to byte 0101 (value 10), then replace 10 with 6F. 

04BA:OI00 EB.41 
04BA:OI0200.-_ 
04BA:OI0l 10.6F_ 

10. 00. BC.42-

Pressing RETURN ends the Enter command and returns to the DEBUG 
command level. 

F(ill) Command 

Format: 

F <range> <list> 

Function: 

Fills the addresses in the <range> with the values in the <list>. 

Remarks: 

If the <range> contains more bytes than the number of values in the <list>, the 
<list> will be used repeatedly until all bytes in the <range> are filled. If the <list> 
contains more values than the number of bytes in the <range>, the extra values in 
the <list> will be ignored. If any of the memory in the <range> is not valid (bad or 
nonexistent), the error will be propagated into all succeeding locations. 

Example: 

Assume the following command is entered: 

F04BA:I00 L 1004245 52 5441 

DEBUG fills memory locations 04BA:I00 through 04BA:IFF with the bytes 
specified. The five values are repeated until all 100H bytes are filled. 

The DEBUG Program 

7-lJ 



The DEBUG Program 

7-14 

G( 0) Command 
Format: 

G[ =<address>][ <address> ... ]] 

Function: 

Executes the program currently in memory. 

Remarks: 

If the Go command is entered alone, the program executes as if the program had run 
outside DEBUG. 

If=<address> is set, execution begins at the address specified. The equal sign (=) is 
required, so that DEBUG can distinguish the start =<address> from the break
point <address>es. 

With the other optional addresses set, execution stops at the first <address> 
encountered, regardless of that address' position in the list of addresses to halt 
execution. This happens no matter which branch the program takes. When pro
gram execution reaches a breakpoint, the registers, flags, and the decoded instruc
tion are displayed for the last instruction executed. (The result is the same as if you 
had entered the Register command for the breakpoint address.) 

Up to ten breakpoints may be set. Breakpoints may be set only at addresses 
containing the first byte of an 8086 opcode. If more than 1 o breakpoints are set, 
DEBUG returns the BP Error message. 

The user stack pointer must be valid and have six bytes available for this command. 
The G command uses an IRET instruction to cause a jump to the program under 
test. The user stack pointer is set, and the user Flags, Code Segment register, and 
Instruction Pointer are pushed on the user stack. (Thus, if the user stack is not valid 
or is too small, the operating system may crash.) An interrupt code (OCCH) is 
placed at the specified breakpoint addressees). When an instruction with the break
point code is encountered, all breakpoint addresses are restored to their original 
instructions. If execution is not halted at one of the breakpoints, the interrupt codes 
are not replaced with the original instructions. 



Example: 

Assume the following command is entered. 

GCS:7550 

The program currently in memory executes up to the address 7550 in the CS 
segment. Then DEBUG displays registers and flags, after which the Go com
mand is terminated. 

After a breakpoint has been encountered, if you enter the Go command again, 
then the program executes just as if you had entered the filename at the 
MS-DOS command level. The only difference is that program execution begins 
at the instruction after the breakpoint rather than at the usual start address. 

H(ex) Command 

Format: 

H <value> <value> 

Function: 

Performs hexadecimal arithmetic on two specified parameters. 

Remarks: 

First, DEBUG adds the two parameters. Then, it subtracts the second parameter 
from the first. The results of the arithmetic is displayed on one line; first the sum, 
then the difference. 

Example: 

Assume the following command is entered. 

Bl9F lOA 

DEBUG performs the calculations and then returns the results 

02A90095 

The DEBUG Program 

7-15 



The DEBUG Program 

7-16 

I(nput) Command 
Format: 

I<value> 

Function: 

Inputs and displays one byte from the port specified by <value>. 

Remarks: 

A 16-bit port address is allowed. 

Example: 

Assume the following command is entered. 

I2F8 

Assume also that the byte at the port is 42H. DEBUG inputs the byte and 
displays the value: 

42 

L( oad) Command 
Format: 

L[ <address> [<drive> <record> <record>]] 

Function: 

Loads a file into memory. 

Remarks: 

Set BX:CX to the number of bytes read. The file must have been named either with 
the DEBUG invocation command or with the N command (see the Name com
mand). Both the invocation and the N commands format a filename in the normal 
format of a file control block at CS:5C. 



If the L command is given without any parameters, DEBUG loads the file into 
memory beginning at address CS: 100 and sets BX:CX to the number of bytes 
Loaded. If the L command is given with an address parameter, loading begins at the 
memory <address> specified. If L is entered with all parameters, absolute disk 
sectors are loaded; not a file. The <record>S are taken from the <drive> specified 
(the drive designation is numeric here - O=A:(FDI), I=A:(FD2D), 2=B:(FDl), 
etc.). DEBUG begins loading with the first <record> specified, and continues until 
the number of sectors specified in the second <record> have been loaded. 

Example: 

Assume the following commands are entered: 

A:DEBUG 
NFILE.COM 

Now, to load FILE.COM, enter 

L 

DEBUG loads the file and returns the DEBUG prompt. Assume you want to 
load only portions of a file or certain records from a disk. To do this, enter 

L04ba:100 2 OF 6D 

DEBUG then loads 109 (6D hex) records beginning with logical record 
number 15 into memory beginning at address 04BA:OI00. When the records 
have been loaded, DEBUG simply returns its prompt. 

If the file has an .EXE extension, then it is relocated to the load address 
specified in the header of the .EXE file; the <address> parameter is always 
ignored for .EXE files. Note that the header itself is stripped off the .EXE file 
before it is loaded into memory. Thus, the size of a .EXE file on disk will differ 
from its size in memory. J 

If the file named by the Name command or specified on invocation is a .HEX 
file, then entering the L command with no parameters loads the file beginning 
at the address specified in the .HEX file. If the L command includes the option 
<address>, DEBUG adds the specified address to the address found in the 
.HEX file in order to determine the start address for loading the file. 

The DEBUG Program 

7-17 



The DEBUG Program 

7-18 

M( ove) Command 

Format: 

M <range> <address> 

Function: 

Moves the block of memory specified by <range> to the location beginning at the 
<address> specified. 

Remarks: 

Overlapping moves (moves where part of the block overlaps some of the current 
addresses) are always performed without loss of data. Addresses that could be 
overwritten are moved first. The sequence for moves from higher addresses to lower 
addresses is to move the data beginning at the block's lowest address, working 
towards the highest. The sequence for moves from lower addresses to higher 
addresses is to move the data beginning at the block's highest address, working 
towards the lowest. 

Note that if the addresses in the block being moved will not have new data written to 
them, the data there before the move will remain; that is, the M command really 
copies the data from one area into another, in the sequence described, and writes 
over the new addresses. This is why the sequence of the move is important. 

Example: 

Assume you enter 

MCS: 100 110 C5:500 

DEBUG first moves address CS:II0 to address CS:510, then CS:I0F to 
CS:50F, and so on, until CS:I00 is moved to CS:500. You should enter the D 
command, using the <address> entered for the M command, to review the 
results of the move. 

N(ame) Command 

Format: 

N <filename> [<filename> ... ] 



Function: 

Sets filenames. 

Remarks: 

The Name command performs two distinct functions, both having to do with 
filenames. First, Name is used to assign a filename for a later Load or Write 
command. Thus, if you invoke DEBUG without naming any file to be debugged, 
then the N <filename> command must be given before a file can be loaded. Second, 
N arne is used to assign filename parameters to the file being debugged. In this case, 
N arne accepts a list of parameters that are used by the file being debugged. 

These functions overlap. Consider the following set of DEBUG commands. 

>NFILEI.EXE 
>L 
>G 

Because of the two-pronged effect of the Name command, the following happens. 

1. N(ame) assigns the filename FILE1.EXE to the filename to be used in any 
later Load or Write commands. 

2. N (arne) also assigns the filename FILE.EXE to the first filename parameter 
to be used by any program that is later debugged. 

3. L(oad) loads FILE.EXE into memory. 

4. G( 0) causes FILE.EXE to be executed with FILE.EXE as the single 
filename parameter. (That is, FILE.EXE is executed as if FILE.EXE had 
been typed at the command level.) 

A more useful chain of commands might go like this: 

>NFILEl.EXE 
>L 
>NFILE2.DA T FILE3.DA T 
>G 

Here, Name sets FILE1.EXE as the filename for the subsequent Load command. 
The Load command loads FILE 1.EXE into memory, and then the Name command 
is used again, this time to specify the parameters to be used by FILE 1.EXE. Finally, 

The DEBUG Program 

7-19 



The DEBUG Program 

7-20 

when the Go command is executed, FILE 1.EXE is executed as if FILE 1 FILE2-
.DAT FILE3.DA T had been typed at the MS-DOS command level. Note that if a 
Write command were executed at this point, then FILEl.EXE - the file being 
debugged - would be saved with the name FILE2.DAT! To avoid such undesira
ble results, you should always execute a Name command before either a Load or a 
Write. 

There are four distinct regions of memory that can be affected by the Name 
command: 

CS:5C FCB for file 1 
CS:6C FCB for file 2 
CS:80 Count of characters 
CS:81 All characters entered 

A File Control Block (FeB) for the first filename parameter given to the Name 
command is set up at CS:5C. If a second filename parameter is given, then an FC8 is 
set up for it beginning at CS:6C. The number of characters typed in the Name 
command (exclusive of the first character, N) is given at location CS:80. The actual 
stream of characters given by the Name command (again, exclusive of the letter N) 
begins at CS:81. Note that this stream of characters may contain switches and 
delimiters that would be legal in any command typed at the MS-DOS command 
level. 

Example: 

A typical use of the Name command would be 

DEBUG PROG.COM 
-NPARAMI PARAM2/C 
-G 

In this case, the Go command executes the file in memory as if the following 
command line had been entered: 

PROG PARAMI PARAM2/C 

Testing and debugging therefore reflect a normal runtime environment for 
PROG.COM. 



O( utput) Command 
Format: 

O<value> <byte> 

Function: 

Sends the <byte> specified to the output port specified by <value>. 

Remarks: 

A 16-bit port address is allowed. 

Example: 

Enter 

02F84F 

DEBUG outputs the byte value 4F to output port 2F8. 

Q(uit) Command 
Format: 

Q 

Function: 

Terminates the debugger.. 

Remarks: 

The Q command takes no parameters and exits DEBUG without saving the file 
currently being operated on. You return to the MS-DOS command level. 

Example: 

To end the debugging session, enter 

Q 

DEBUG is terminated, and control returns to the MS-DOS command level. 

The DEBUG Program 

7-21 



The DEBUG Program 

7-22 

R( egister) Command 

Format: 

R[ <register-name>] 

Function: 

Displays the contents of one or more CPU registers. 

Remarks: 

Ifno <register-name> is entered, the R command dumps the register save area and 
displays the contents of all registers and flags. 

If a register name is entered, the 16-bit value of that register is displayed in 
hexadecimal, and then a colon appears as a prompt. You then either enter a 
<value> to change the register, or simply press RETURN if no change is wanted. 

The only valid <register-name>S are 

AX 
BX 
CX 
DX 
SP 

BP 
SI 
DI 
DS 
ES 

SS 
CS 
IP 
PC 
F 

(IP and PC both refer to the 
instruction pointer.) 

Any other entry for <register-name> results in a 'BR Error message. 

If F is entered as the <register-name>, DEBUG displays each flag with a two
character alphabetic code. To alter any flag, enter the opposite two-letter code. The 
flags are either set or clear. 

The flags with their codes for set and clear are listed in Table 7-3. 



Table 7-3 Register Command Flags 

FLAG NAME SET CODE CLEAR CODE 

Overflow OV NV 

Direction DN Decrement UP Increment 

Interrupt EI Enabled DI Disabled 

Sign NG Negative PL Plus 

Zero ZR NZ 

Auxiliary Carry AC NA 

Parity PE Even PO Odd 

Carry CY NC 

Whenever you enter the command RF, the flags are displayed in the order shown 
above in a row at the beginning of a line. At the end of the list of flags, DEBUG 
displays a hyphen (-). You may enter new flag values as alphabetic pairs. The new 
flag values can be entered in any order. You are not required to leave spaces between 
the flag entries. To exit the R command, press RETURN. Flags for which new 
values were not entered remain unchanged. 

If more than one value is entered for a flag, DEBUG returns a DF error message. If 
you enter a flag code other than those shown above, DEBUG returns a BF error 
message. In both cases, the flags up to the error in the list are changed; flags at and 
after the error are not. 

At start up, the segment registers are set to the bottom of free memory, the 
instruction pointer is set to OlOOH, all flags are cleared, and the remaining registers 
are set to zero. 

The DEBUG Program 

7-23 



The DEBUG Program 

7-24 

Example: 

Enter 

R 

DEBUG displays all registers, flags, and the decoded instruction for the 
current location. If the location is CS: l1A, then DEBUG might display: 

AX=OEOO BX=OOFF CX=0007 DX=OIFF SP=039D BP=OOOO 
SI=005C DI=OOOO DS=04BA ES=04BA SS=04BA CS=04BA 
IP=OIIA NV UP DI NG NZ AC PE NC 
04BA:OIIA CD21 INT 21 

If you enter 

RF 

DEBUG displays the flags: 

NV UP DI NO NZ AC PE NC - _ 

Now enter any valid flag designation, in any order, with or without spaces. 

For example, you enter 

NV UP DI NG NZ AC PE NC - PLEICY 

DEBUG responds only with the DEBUG prompt. To see the changes, entel 
either the R or RF command. 

NV UP EI PL NZ AC PE CY - _ 

Press RETURN to leave the flags this way or to enter different flag values. 

S(earcb) Command 

Format: 

S<range> <list> 



Function: 

Searches the range specified for the list of bytes specified. 

Remarks: 

The <list> may contain one or more bytes, each separated by a space or comma. If 
the <list> contains more than one byte, only the first address of the byte string is 
returned. If the <list> contains only one byte, all addresses of the byte in the 
<range> are displayed. 

Example: 

If you enter 

SCS: 100 11041 

DEBUG might return the response: 

04BA:OI04 
04BA:OIOD 

T(race) Command 

Format: 

T[=<address>][ <value>] 

Function: 

Executes one instruction and displays the contents of all registers, flags, and the 
decoded instruction. 

Remarks: 

If the optional =<address> is entered, tracing occurs at the address specified. The 
optional value causes DEBUG to execute and trace the number of steps specified by 
<value>. 

The DEBUG Program 

7-25 



The DEBUG Program 

7-26 

The T command uses the hardware trace mode of the 8086 or 8088 microprocessor. 
Consequently, you may also trace instructions stored in ROM. 

Example: 

Enter 

T 

DEBUG returns a display of the registers, flags, and decoded instruction for 
that one instruction. Assume that the current position is 04BA:OIIA; then 
DEBUG might return the display: 

AX=OEOO BX=OOFF CX=0007 DX=OIFF SP=039D BP=OOOO 
SI=005C DI=OOOO DS=04BA ES=04BA SS=04BA CS=04BA 
IP=OIIA NV UP DI NG NZ AC PE NC 
04BA:OIIA CD21 INT 21 

Now enter 

T=OllA 10 

DEBUG executes sixteen (10 hex) instructions beginning at OIIA in the current 
segment and then displays all registers and flags for each instruction as it is 
executed. The display scrolls away until the last instruction is executed. Then 
the display stops, and you can see the register and flag values for the last few 
instructions performed. Remember that CTRL-S suspends the display at any 
point, so that you can study the registers and flags for any instruction. 

U(nassembJe) Command 
Format: 

U[<range>] 

Function: 

Disassembles bytes and displays the source statements that correspond to them, 
along with addresses and byte values. 



Remarks.' 

The display of disassembled code looks like a listing for an assembled file. If you 
enter the U command without parameters, 20 hexadecimal bytes are disassembled 
at the first address after that displayed by the previous U nassemble command. If 
you enter the U command with the <range> parameter, then D EBU G disassembles 
all bytes in the range. If the <range> is given as an address only, then 20H bytes are 
disassembled, not 80H. 

Example.' 

Enter 

U04BA:IOO LIO 

DEBUG disassembles 16 bytes beginning at address 04BA:OI00. 

04BA:OI00 206472 AND [SI+72],AH 
04BA:OI03 69 DB 69 
04BA:OI04 7665 JQE 016B 
04BA:OI06 207370 AND [BP+DI+70],DH 
04BA:OI09 65 DB 65 
04BA:OI0A 63 DB 63 
04BA:OI0B 69 DB 69 
04BA:OI0C 66 DB 66 
04BA:OI0D 69 DB 69 
04BA:OI0E 63 DB 63 
04BA:OIOF 61 DB 61 

If you enter 

u04ba:O 1 00 0 I 08 

The display shows 

04BA:OI00 206472 AND [SI+72],AH 
04BA:OI03 69 DB 69 
04BA:OI04 7665 JBE 016B 
04BA:OI06 207370 AND [BP+DI+70],DH 

If the bytes in some addresses are altered, the disassembler alters the instruc-

The DEBUG Program 

7-27 



The DEBUG Program 

7-28 

tion statements. The U command can be entered for the changed locations, the 
new instructions viewed and the disassembled code used to edit the source file. 

w ( rite) Command 
Format: 

W[ <address> [<drive> <record> <record>]] 

Function: 

Writes the file being debugged to a disk file. 

Remarks: 

If only the W appears, BX:CX must already be set to the number of bytes to be 
written. The file is written beginning from CS: 100. If the W command is given with 
just an address, then the file is written beginning at that address. If a G or T 
command was used, BX:CX must be reset before using the Write command without 
parameters. (Note that if a file is loaded and modified, the name, length, and 
starting address are all set correctly to save the modified file as long as the length has 
not changed.) 

The file must have been named either with the DEBUG invocation command or 
with the N command (see the Name command). Both the invocation and the N 
commands format a file name in the normal format of a File Control Block at 
CS:5C. 

If the W command is given with parameters, the write begins from the memory 
address specified. The file is written to the <drive> specified (the drive designation 
is numeric here - D=A:(FDI), I=A:(FD2D), 2=B:(FDI), etc.). DEBUG writes 
the file beginning at the logical record number specified by the first record and 
continues until the number of sectors specified in the second record have been 
written. 

CAUTION 

Writing to absolute sectors is extremely dan
gerous, because the process bypasses the file 
handler. 



Examples: 

Enter 

W 

DEBUG writes out the file to disk then displays the DEBUG prompt. 

W 
>-

Another example is as follows: 

WCS:I00 1 37 2B 

DEBUG writes out the contents of memory, beginning with the address 
CS: 100 to the disk in drive B. The data written out starts in disk logical record 
number 37H and consists of 2BH records. When the write is complete, 
DEBUG displays the prompt: . 

WCS:I00 1 37 2B 
>-

DEBUG ERROR MESSAGES 

During the DEBUG session, you may receive any of the error messages shown in 
Table 7-4. Each error terminates the DEBUG command with which it is associated, 
but does not terminate DEBUG itself. 

The DEBUG Program 

7-29 



The DEBUG Program 

Table 7-4 DEBUG Error Messages 

ERROR CODE DEFINITION 

BF Bad flag. You attempted to alter a flag, but the charac-
ters entered were not one of the acceptable pairs of flag 
values. See the Register command for the list of accept-
able flag entries. 

BP Too many breakpoints. You specified more than ten 
breakpoints as parameters to the G command. Reenter. 
the Go command with ten or fewer breakpoints. 

BR Bad register. You entered the R command with an 
invalid register name. See the Register command for the 
list of valid register names. 

DF Double flag. You entered a two values for one flag. The 
user may specify a flag va]ue only once per RF com-
mand. 

7-30 



Chapter 8 

The FC File Comparison 
Utility 
It is sometimes useful to compare files on your disks. If you have copied a file and 
later want to compare copies to see which one is current, you can use the File 
Comparison Utility (FC). 

FC compares the contents of two files. The differences between the two files can be 
output to the console or to a third file. The files being compared may be either text 
files (source files containing source statements of a programming language or data 
files) or binary files (files output by the MACRO-86 Macro Assembler, the MS
LINK Linker Utility, or by a high-level language compiler). 

The comparisons are made in one of two ways: on a line-by-line or a byte-by-byte 
basis. The line-by-line comparison isolates blocks oflines that are different between 
the two files and prints those blocks oflines. The byte-by-byte comparison displays 
the bytes that are different between the two files. 

LIMITATIONS ON SOURCE COMPARISONS 

FC uses a large amount of memory as buffer (storage) space to hold the source files. 
If source files are larger than available memory, FC will compare what can be 
loaded into the buffer space. If no lines in the portions of these files match, FC will 
only display the message: 

FILES ARE DIFFERENT 

For binary files larger than available memory, FC compares both files completely, 
overlaying the portion of the file in memory with its next portion from disk. All 
differences are output in the same manner as for files that fit completely in memory. 

8-1 



The FC File Comparison Utilit},! 

8-2 

FILE SPECIFICATIONS 

All file specifications centered for FC l:lse the following syntax: 

[d:] <filename> [<.ext>] 

where d: is the letter designating a disk drive. If the drive designation is omitted, 
FC defaults to the current default drive. 

<.filename> is the one- to eight-character name of a file. 

< ext> is a one- to three-character extension to the filename. 

INVOKING FC 

The syntax of the command FC is as follows: 

FC [/# IB /W IC] <filenamel> <filename2> 

FC matches the first file (filenamel) against the second (filename2) and reports any 
differences between them. Both filenames can be pathnames. For example: 

FC B: \FOO\BAR\FILEl.TXT \BAR\FILE2.TXT 

FC takes FILE I.TXT in the \FOO\BAR directory of disk B and compares it with 
FILE2.TXT in the \BAR directory. Since no drive is specified for filename2, FC 
assumes that the \BAR directory is on the disk in the default drive. 

You can use four switches with FC. These switches are summarized in Table 8-1. 

SWITCH 

IB 

Table 8-1 FC Command Switches 

DESCRIPTION 

Forces a binary comparison of both files. The two files are com
pared byte-to-byte, with no attempt to re-synchronize after a 
mismatch. The mismatches are printed as follows: 

--AD D RS----F 1----F2-
xxxxxxxx yy zz 

where: xxxxxxxx is the relative address of the pair of bytes from the 
beginning of the file. 



SWITCH 

/# 

/W 

The FC File Comparison Utility 

Table 8-1 Fe Command Switches (cont'd) 

DESCRIPTION 

Addresses start at 00000000; yy and zz are mismatched bytes from 
filename 1 (F 1) and filename2 (F2), respectively. If one of the files 
contains less data than the other, then a message is printed out. For 
example, if filename 1 ends before filename2, then FC displays 

***Data left in F2*** 

# stands for a number from 1 to 9. This switch specifies the number 
of lines required to match for the files to be considered as matching 
again after a difference has been found. If this switch is not 
specified, it defaults to 3. This switch is used only in source 
comparisons. 

Causes FC to compress whites (tabs and spaces) during the com
parison. Thus, multiple contiguous whites in any line will be 
considered as a single white space. Note that although FC com
presses whites, it does not ignore them. The two exceptions are 
beginning and ending whites in a line, which are ignored. For 
example (note that an underscore represents a white), 

will match with 

and with 

but will not match with 

This switch is used only in source comparisons. 

8-3 



The FC File Comparison Utility 

8-4 

Table 8-1 Fe Command Switches (cont'd) 

SWITCH DESCRIPTION 

IC Causes the matching process to ignore the case ofletters. All letters 
in the files are considered uppercase letters. For example, 

MuchJ10RE_data--IS~OTJOUND 

will match 

much-ffiore_data~sJlotJound 

Ifboth the IW and/C options are specified, then FC will compress 
whites and ignore case. For example, 

-DA T A_wasJound __ 

will match 

data_wasJound 

This switch is used only in source comparisons. 

DIFFERENCE REPORTING 

FC reports the differences between the two files you specify by displaying the first 
filename, followed by the lines that differ between the files, followed by the first line 
to match in both files. (The matches serve as delimiters to resynchronize the files for 
the continuing comparison.) FC then displays the name of the second file followed 
by the lines that are different, followed by the first line that matches. The default for 
the number of lines to match between the files is 3. If you want to change this 
default, specify the number of lines with the 1# switch. For example: 

----------<filename I> 
<difference> 
<1st line to match filename2 in filename1> 



The FC File Comparison Utility 

----------<filename2> 
<difference> 
<1st line to match filename I in filename2> 

FC will continue to list each difference. 

If there are too many differences (involving too many lines), the program will 
simply report that the files are different and stop. 

If no matches are found after the first difference is found, FC will display 

*** Files are different *** 

and will return to the system prompt. 

REDIRECTING FC OUTPUT TO A FILE 

The differences and matches between the two files you specify will be displayed on 
your screen unless you redirect the output to a file. This is accomplished in the same 
way as MS-DOS command redirection. (Refer to the MS-DOS System User's Guide 
for more information on the redirection feature.) 

For example, to compare Filel and File2 and then send the FC output to DIF
FER.TXT, enter 

FC Filel File2 > DIFFER.TXT 

The differences and matches between Filel and File2 will be put into DIFFER.TXT 
on the default drive. 

FILE COMPARISON EXAMPLES 

Three examples of file comparison are given in the next few pages. 

8-5 



The FC File Comparison Utility 

8-6 

Example 1: 

Assume the following two ASCII files are on disk. 

ALPHA.ASM BETA.ASM 

FILE A FILE B 

A A 
B B 
C C 
D G 
E H 
F I 
G J 
H 1 
I 2 
M P 
N Q 
0 R 
P S 
0 T 
R U 
S V 
T 4 
U 5 
V W 
W X 
X Y 
Y Z 
Z 

To compare the two files and display the differences on the APC screen, enter 

FC ALPHA.ASM BET A.ASM 

FC compares ALPHA.ASM with BET A.ASM and displays the differences on the 
APC screen. All other defaults remain intact. (The defaults are: "do not use tabs, 
spaces, or comments for matches," and "do a source comparison on the two files.") 



The FC File Comparison Utility 

The output will appear as follows on the APe screen (not including the notes): 

----------ALPHA.ASM 
D 
E 
F 
G 

----------BET A.ASM 
G 

----------ALPHA .ASM 
M 
N 
o 
P 

----------BET A.ASM 
1 
1 
2 
P 

----------ALPHA.ASM 
W 

----------BETA.ASM 
4 
5 
W 

Example 2: 

NOTE: ALPHA file 
contains DEFG, 
BETA contains G. 

NOTE: ALPHA file 
contains MNO where 
BETA contains 112. 

NOTE: ALPHA file 
contains W where 
BETA contains 45W. 

You can print the differences between the same two source files on the line printer. 
In this example, four successive lines must be the same to constitute a match. 

8-7 



The FC File Comparison Utility 

8-8 

Enter 

Fe -4 ALPHA.ASM BETA.ASM > PRN 

The following output will appear on the line printer. 

----------ALPHA.ASM 
D 
E 
F 
G 
H 
I 
M 
N 
a 
p 

----------BET A.ASM 
G 
H 
I 
J 
I 
2 
P 

----------ALPHA.ASM 
W 

----------BETA.ASM 
4 
5 
W 

NOTE: P is the first of 
a string of 4 matches. 

NOTE: W is the first of 
a string of 4 matches. 



The FC File Comparison Utility 

Example 3: 

This example forces a binary comparison and then displays the differences on the 
APC screen using the same two source files as were used in the previous examples. 

Enter 

FC IB ALPHA.ASM BETA.ASM 

The IB switch in this example forces a binary comparison. This switch and any 
others must be typed before the filenames in the FC command line. The following 
display should appear. 

--AD D RS----F 1---F2--
00000009 
OOOOOOOC 
OOOOOOOF 
00000012 
00000015 
00000018 
000000IB 
000000IE 
00000021 
00000024 
00000027 
0000002A 
0000002D 
00000030 
00000033 
00000036 
00000039 
0000003C 
0000003F 
00000042 

44 47 
45 48 
46 49 
47 4A 
48 31 
49 32 
4D 50 
4E 51 
4F 52 
50 53 
51 54 
52 55 
53 56 
54 34 
55 35 
56 57 
57 58 
58 59 
59 5A 
5A lA 

FC ERROR MESSAGES 

When the File Comparison Utility detects an error, one or more of the error 
messages will be displayed in Table 8-2. 

8-9 



The FC File Comparison Utility 

Table 8-2 Fe Error Messages 

ERROR MESSAGE MEANING 

Incorrect DOS version You are running Fe under a version of 
MS-DOS that is not 2.0 or higher. 

Invalid- parameter: <option> One of the switches that you have speci-
fied is invalid. 

File not found: <filename> Fe could not find the filename you speci-
fied. 

Read error in: <filename> Fe could not read the entire file. 

Invalid number of parameters You have specified the wrong number of 
options on the Fe command line. 

8-10 



Chapter 9 

The Auxiliary Character 
Generator Program 
It is possible under MS-DOS to write assembly language programs that display 
specially created 8 by 16 matrix characters on the APC screen instead of the 
characters from the computer's default set. Before a special character set can be 
displayed, it must be created using the Auxiliary Character Generator Program and 
loaded by this same program to a reserved portion of random access memory, called 
the auxiliary character generator (CG) RAM. 

This chapter reviews the Auxiliary Character Generator Program, originally pre
sented in the MS-DOS System User's Guide. 

It also describes the auxiliary character generator (CG) RAM address and format, 
and explains how you direct the loading of a character set. 

AUXILIARY CHARACTER GENERATOR RAM ADDRESS AND FORMAT 

The following illustration represents the format of the auxiliary CG RAM. 

9-1 



The Auxiliary CharaCter Generator Program 

9-2 

D8000H .. 

D9FEOH 

, , 
1<----- 32 bytes ----->1 
I I 
I I 
I I 
I I 
I I 

character 0 

character 1 

character 2 

character 255 

Corresponding 
Auxiliary 

Character Code 

00 H 

01 H 

02 H 

FFH 

The starting address of the auxiliary CG RAM is D8000H. Each character is made 
up of a 32-byte bit pattern. You must transfer a character set to the auxiliary CO 
RAM in words, not bytes. This is a hardware restriction. 

Figure 9-1 is an example of the bit pattern for a graphic character. 

o 

2 
3 
4 

5 
(i 

7 
8 
9 

A 
B 
C 
o 
F 
r 

1 2 1 4 5 (i 7 X 9 ABC D Fr 

0 () 0 oAO 0 0,0 0 0 0 0 () () 

0 0 o ./ 0 " 0 0'0 0 () 0 () 0 () 

0 o (0 () o 'i 0 1 
/ 

0 o .. "-.0 0 0) o· / 
0 0 o'l....% 01 I 
0 0 0 o " /0 0 o. l 

• \ 
0 0 0 0 0 0 0 1 \ 
0 0 0 o /~ 0 0 o. \ 
0 0 o /,0 '1 0 o· 
0 Of 0 o ~ 0 o· 
0 0 0 0 o "- o' 
0 0 0 0 0 0 1 .f 
0 0 0 0 0 01 

, 
0 0 0 0 0 0:0 0 () () 0 0 0 

t-- 0 0 0 0 --\ , 0 0 0 () 0 0 0 

Figure 9-1 Example of a Bit Pattern for a Graphic Character 

OxH.OOH 
14H.00h 

22H. 
22H. 
14H. 
OXH. 
FFH. 
OXH. 
OXH. 
14H. 

24H. 
42H. 

42H. 
42H. 
42H. 

OH.OOH 



The Auxiliary Character Generator Program 

The following illustration demonstrates how the bit pattern in Figure 9-1 would be 
stored in the auxiliary CG RAM. 

RELATIVE 
ADDRESS DATA 

o 
2 
4 
6 
8 
A 

C 
E 

10 
12 
14 

16 
18 

IA 
IC 
IE 

08 I 00 
14 1 00 

22 I 00 
22 1 00 
14 00 
08 I 00 

FF : 00 

08 J 00 
08 00 

14 I 00 
24 I 00 
42 00 
42 I 00 

42~ 00 
42 00 
C3 00 

I - 20-- - - I I I I I 

14 ~I. ~' 
I I I 

BYTE BYTE 

Figure 9-2 Sample Data in Auxiliary CG RAM 

THE AUXILIARY CHARACTER GENERATOR PROGRAM 

The Auxiliary Character Generator Program (CHR) is invoked by entering the 
CHR external command to MS-DOS. This program both generates the character 
set and loads it into the auxiliary CG RAM. 

Creating the Auxiliary Character Set 

CHR creates (and updates) an auxiliary character set stored in a data file with the 
file extension CHR. Any number of character sets can be created, each containing 
up to 256 character patterns identified by the hexadecimal values 00 to FF. Each 
auxiliary character is within a set is constructed in an 8 by 16 matrix. 

To invoke the Auxiliary Character Generator Program, enter CHR at the system 
prompt. 

The following prompt appears. 

UPDATE OR LOAD (U,L)? 

9-1 



The Auxiliary Character Generator Program 

9-4 

If you enter L, you must identify the input filename In one of two formats: 
<filename> or <d:filename>. 

If you only press RETURN, CHR automatically searches the default advice for the 
filename AUXCG.CHR, which is the default auxiliary character file. When the 
input file is located, the auxiliary character set is loaded into memory starting at 
hexadecimal address OD8000. 

If you enter U to update an auxiliary character file, the filename you enter for the 
input file determines whether you will be maintaining an existing file or creating a 
new one. If the specified filename does not exist, CHR creates a file on drive d: (the 
default) using the name you entered. 

Next, you must enter an output file specification. The output file will store the 
changed version of the character set. The entry format is the same as for the input 
file specification. If you only press RETURN, the filename of the output file is the 
same as that for the input file. 

When you press certain keys during CHR's operations you issue sub-commands. 
Table 9-1 lists the keys you can use and the functions they perform. 

Table 9-1 CHR Sub-Commands 

SUB-COMMAND KEY USED FUNCTION 

Cursor Up t Moves the cursor upward one row at a 
time within the matrix. 

Cursor Down 

+ 
Moves the cursor downward one row 
at a time within the matrix. 

Cursor Left + Moves the cursor to the left one 
column at a time within the matrix. 

Cursor Right - Moves the cursor to the right one 
column at a time within the matrix. 



The Auxiliary Character Generator Program 

Table 9-1 CHR Sub-Commands (cont'd) 

SUB-COMMAND KEY USED FUNCTION 

Bit Off Space Turns off the bit or graphic block at the 
current cursor position by overtyping 
with a space. The cursor then moves 
forward one position. 

Bit On * Turns on the bit at the current cursor 
position. The graphic block at the posi-
tion appears highlighted, and the cur-
sor moves forward one position. 

Cursor Home CLEAR HOME Moves the cursor to the home position, 
the upper left corner of the matrix 
(0,0). 

Display D Displays or redisplays the current 
character following modifications. 

Next RETURN Displays the next character in the aux-
iliary character set according to the 
next hexadecimal code in sequence. 
Pressing RETURN at the first charac-
ter in the file (code=FF) redisplays the 
first character (code=OO). 

Back B Displays the preceding character in the 
auxiliary character set according to the 
preceding hexadecimal code. Pressing 
B at the first character in the file 
(code=OO) redisplays the last character 
(code=FF). 

Load L Loads all the characters of the auxil-
iary character set being updated or 
created into memory. 

9-5 



The Auxiliary Character Generator Program 

9-6 

Table 9-1 HCR Sub-Commands (cont'd) 

SUB-COMMAND KEY USED FUNCTION 

Search Code C Prompts for input of a hexadecimal 
code, then displays the character cor-
responding to that code. Pressing 
RETURN instead of entering a code 
redisplays the most recently displayed 
character on the screen. 

End E Displays a prompt confirming the end 
of auxiliary character set updating. 
Enter Y to end the program. When you 
are creating a new file, a prompt asking 
"CREA TE filename?" appears. When 
you are updating an existing file, a 
prompt asking "UPDATE filename?" 
appears. 

Loading the Auxiliary Character File 

Use the following procedure to load the auxiliary CG RAM with data from the 
CRR file. 

1. Open the .CHR file. 

2. Read the .CRR file into the user buffer. (See the file format below.) 

3. Transfer the data (8K bytes) in the user buffer to the auxiliary CG RAM, 
starting at D8000R, by word. 

The following illustrates the .CRR file format. 



The Auxiliary Character Generator Program 

Header (128 bytes) reserved 
for future use 

character character character character 
0 1 2 3 

4 5 6 7 

8 9 10 11 

Figure 9-3 .CHR File Format 

DISPLAYING THE AUXILIARY CHARACTER SET 

Once an auxiliary character set has been loaded in the auxiliary CG RAM, it can be 
displayed using the external command DISP. 

At the system prompt, enter 

DISP 

When you invoke DISP, the characters for all 256 hexadecimal codes in the 
currently loaded set are displayed in a matrix on the APC screen. Codes without 
assigned characters appear as blanks or miscellaneous images. If no auxiliary 
character set is currently loaded, all positions hold miscellaneous images. 

Note that the default APC character set can also be displayed. The DISPI external 
command does this. 

9-7 





Chapter 10 

The Soft Key Definition 
Program 
Assembly language programs can access a soft key table in the 1/0 System contain
ing data strings or control characters assigned to the dual-mode function keys PF 1 
through P 16. This chapter describes the Soft Key Definition Program that generates 
the function key definitions and loads them into the Soft Key Table. It also includes 
a description of the Soft Key Table address and format, as well as an explanation of 
how to load key definitions to it. 

SOFT KEY TABLE FORMAT AND ADDRESS 
The Soft Key Table address in memory and its format can be illustrated as follows. 

THE SOFT KEY DEFINITION PROGRAM 
The Soft Key Definition Program allows you to create, display, change, and delete 
the dual-mode function key definitions. The external command KEY invokes this 
program. 

KEY requires a data file with the file extension KEY for input. 

A total of 32 functions can be defined in each .KEY file considering the shifted 
position for each key. The shifted function of PFI through PF16 is accessed by 
simultaneously pressing the function key and FNC. 

Creating the Soft Key Table 

To invoke KEY, you enter the KEY external command at the system prompt. The 
following prompt appears: 

SOFT KEY DEFINITION PROGRAM VI.I 
UPDATE OR LOAD (U,L)? 

10-1 



The Soft Key Definition Program 

10-2 

I( you enter L, you must then identify the input filename in one of two formats: 
<filename> or <d:filename>. 

If you type U to update a function key file, the filename you enter for the input file 
determines whether you will be maintaining an existing file or creating a new one. If 
the filename entered does not exist, KEY creates a file by that on d:, the default 
drive. 

An output file specification must then be entered. The output file stores the new or 
changed function key set. The entry format is the same as for the input file. If you 
press only RETURN, the output file is the same as the input file. 

KEY has the sub-commands listed in Table 10-1. 

Table 10-1 KEY Sub-Commands 

SUB-COMMAND ACTION 

~~XXXXXXXXXXXXXX~ Assigns a function to a particular key. 
The ## identifies the number of the key 
(1-16) you are assigning the function 
to. The optional F before the number 
indicates that there is also a function 
assigned to the key in its shifted moved. 
The Xs represent the actual function 
assigned, expressed in no more than 15 
characters. 

D Displays all function key assignments 
currently in memory. 

E Ends function key assignment. 

In addition to data strings, you can also include standard ASCII and MS-DOS 
control codes within function key assignments. To invoke a carriage return as a part 
of the data string, use the A character. 



The Soft Key Definition Program 

The following represent valid function key assignments that you can make after you 
enter input and output file specifications. 

I,COPY B:*.*A 

The /'. performs a carriage return after the command COPY B:*. * is entered by 
pressing PF I. 

If you enter the following assignment: 

FI6,KEYA 

The A performs a carriage return after the KEY command is entered when FNC and 
PFI6 are pressed simultaneously. 

The soft key routine in the I/O System recognizes the end of the character string by 
the code OOH. 

Loading the Soft Key Table 

Use the following procedure to load the Soft Key Table file generated by the Soft 
Key Definition Program. 

1. Open the KEY file. 

2. Read the KEY file. (See file format below.) 

3. Transfer the data to the Soft Key Table in two moves. Load the first 256 
bytes starting at the address of the table. This address can be found in the 
Configuration Table loaded by CONFIG.SYS. Load the next 256 bytes 
starting at 352 plus the start address of the Soft Key Table. 

10-3 



The Soft Key Definition Program 

40:0003 H 

, 

40:XXX ~ 

I 

soft key table 

325 bytes ~~ 

~--- 16 bytes --- ... 

I 

character stri ng '0 
• 

character stri ng i .0 
• , 

character stri ng '0 
! 

I 
I 
I 

~~ 

offset to config-table 

offset address 

segment address 

corresponding to: 

PF1 key 

PF2 

PF3 

PF16 

~---------------- -
reserved for system - 96 bytes 

- , 
character string :0 

• 
shift + PF 1 key 

charactor string 
I 

10 shift + PF2 
I 

325 bytes 

:: ~~ 

reserved for system - 96 bytes 
--1 

shift + PF 16 

Table size = 704 bytes 

10-4 



The Soft Key Definition Program 

KEY FILE FORMAT 

FFILIHI 

Header (128 bytes) 

Character string 
PFI I 
pt6 16x16 bytes 

Character string 
FNC+PFI I l 16x16 bytes 

FNC+PFI6 

<-------- 16 bytes ------> 

Figure 10-1 KEY File Format 

The last six function keys on the keyboard, unshifted and shifted, produce the 
following predefined escape sequences. 

ESCOO 
ESCOP 
ESCOQ 
ESCOR 
ESCOS 
ESCOT 

ESCOU 
ESCOV 
ESCOW 
ESCOX 
ESCOY 
ESCOZ 

These sequences do not actually perform any function. They must be implemented 
by an application program, which establishes an action or series of operations for 
each escape sequence. 

10-5 



The Soft Key Definition Program 

10-6 

The last six dual-mode function keys on the keyboard, unshifted and shifted, 
produce the following predefined escape sequences. 

ESCOO 
ESCOP 
ESCOQ 
ESCOR 
ESCOS 
ESCOT 

ESCOU 
ESCOV 
ESCOW 
ESCOX 
ESCOY 
ESCOZ 



Chapter 11 

Creating Device Drivers 
MS-DOS allows you to create the device drivers for controlling input and output to 
the serial I/O devices attached to the APC. 

WHAT IS A DEVICE DRIVER? 

A device driver under MS-DOS is a binary file of code that manipulates the 
peripheral devices while providing a consistent interface to the operating system. 
This file has a special header at the beginning that identifies it as a device, defines the 
strategy and interrupt entry points, and describes various attributes of the device. 

There are two kinds of device drivers: character device drivers and block device 
drivers. 

Character devices are designed to perform serial character I/O. These devices are 
given names (for example, CON, AUX, PRN, and CLOCK), so user programs open 
channels (FCBs) to do I/O to them. 

Block devices are the "disk drives" on the system, which perform random I/O in 
blocks (usually the physical sector size). These devices are not named as the 
character devices are, and therefore cannot be opened directly. Instead they are 
identified by the drive letters: A,B,C, and so on. 

Block devices also have units. A single driver may be responsible for one or more 
disk drives. For example, block device driver ALPHA may be responsible for drives 
A: ,B: ,C:, and D:. This means that it has four units (0-3) defined and, therefore, takes 
up four drive letters. The position of the driver in the list of all drivers determines 
which units correspond to which drive letters. If driver ALPHA is the first block 
driver in the device list and it defines 4 units (0-3), its devices will be A:,B:,C:, and 
D:. If BETA is the second block driver and defines three units (0-2), the devices will 
be E:,F:, G:, and so on. MS-DOS 2.0 is not limited to 16 block device units, as 
previous versions were. The theoretical limit is 63 (26 - 1), but note that after 26 the 
drive letters are unconventional. 

11-1 



Creating Device Drivers 

11-2 

NOTE 

Character devices cannot define multiple units 
because they have only one name. 

DEVICE HEADERS 

A device header is required at the beginning of a device driver. A device header is 
illustrated in Figure 11-1. 

DWORD pointer to next device defined by this 
driver 
(Must be set to -1 for last device defined in the 
driver) 

WORD attributes 
Bit 15 = 1 if char device 0 is blk if bit 15 is 1 
Bit 0 = 1 if current sti device 

Bit 1 = 1 if current sto output 
Bit 2 = 1 if current NUL device 
Bit 3 = 1 if current CLOCK dev 
Bit 4 = 1 if special 
Bits 5-12 Reserved; must be set to 0 

Bit 14 is the IOCTL bit 
Bit 13 is the NON IBM FORMAT bit 

WORD pointer to device strategy entry point 

WORD pointer to device interrupt entry point 

8-BYTE character device name field 
Character devices set a device name. 
For block devices the first byte is the number of units 

Figure 11-1 Device Header Format 

Note that the device entry points are words. They must be offsets from the same 
segment number used to point to this table. For example, ifXXX:YYY points to the 
start of the table, then XXX:strategy and XXX:interrupt are the entry points. 



Pointer to Next Device Field 

The pointer to the next device header field is a double word field (offset followed by 
the segment) that is set by MS-DOS to point at the next driver in the system list at 
the time the device driver is loaded. It is important that this field be set to -1 prior to 
load (when it is on the disk as a file) unless there is more than one device driver in the 
file. If there is more than one driver in the file, the first word of the double word 
pointer should be the offset of the next driver's device header. 

Attribute Field 

NOTE 

The last driver in the .COM file must have the 
pointer to the next device header field set to -1. 

The attribute field is used to tell the system whether a device is a block or character 
device (bit 15). Other bits of the field are used to give selected character devices 
certain special treatment. (Note that these bits mean nothing on a block device.) For 
example, assume that you have a new device driver that you want to be the standard 
input and output device. Besides installing the driver, you must tell MS-DOS that 
you want the new driver to override the current standard input and standard output 
(the CON device). This is accomplished by setting the attributes to the desired 
characteristics (bits 0 and 1 to 1). Note that they are separate! 

Similarly, a new CLOCK device could be installed by setting that attribute. (Refer 
to the section THE CLOCK DEVICE in this chapter for more information.) 

Although there is a NUL device attribute, the NUL device cannot be reassigned. 
This attribute exists so that MS-DOS can determine if the NUL device is being used. 

The NON IBM FORMAT bit applies only to block devices and affects the opera
tion of the BUILD BPB (Bios 1/0 System Parameter Block) device call. (Refer to 
the section MEDIA CHECK AND BUILD BPD for further information on this 
call.) 

The 10CTL bit has meaning on character and block devices. This bit tells MS-DOS 
whether the device can handle control strings (via the 10CTL system call, Function 
44H. If a driver cannot process control strings, it should initially set this bit to O. 
This tells MS-DOS to return an error if an attempt is made (via Function 44H) to 
send or receive control strings to this device. A device that can process control 

Creating Device Drivers 

11-3 



Creating Device Drivers 

11-4 

strings should initialize the 10CTL bit to 1. For drivers of this type, MS-DOS will 
make calls to the IOCTL INPUT and OUTPUT device functions to send and 
receive 10CTL strings. 

The 10CTL functions allow data to be sent and received by the device for its own 
use (for example, to set baud rate, stop bits, and form length), instead of passing 
data over the device channel as for a normal read or write. The interpretation of the 
passed information is up to the device, but it must not be treated as a normal I/O 
request. 

Strategy and Interrupt Fields 

These two fields are the pointers to the entry points of the strategy and interrupt 
routines. They are word values, so they must be in the same segment as the device 
header. 

Name Field 

This is an 8-byte field that contains the name of a character device or the number of 
units of a block device. If it names a block device, the number of units can be put in 
the first byte. This is optional, because MS-DOS wiUfill this location with the value 
returned by the driver's INIT code. Refer to the section INSTALLATION OF 
DEVICE Drivers in this chapter for more.information. 

HOW TO CREATE A DEVICE DRIVER 

In order to create a device driver that MS-DOS can install, you must write a binary 
file with a device header at the beginning of the file. Note that for device drivers, the 
code should not originate at IOOH, but rather at 0 (ORG 0 or no ORG statement in 
the source code). This is because files are not loaded using the Program Segment 
Prefix. The link field (pointer to next device header) should be -I, unless there is 
more than one device driver in the file. The attribute field and entry points must be 
set correctly. 

If the device is a character device, the name field should contain the name of that 
character device. The name can be any legal 8-character filename. 

MS-DOS always processes installable device drivers before handling the default 
devices, so to install a new CON device, simply name the device CON. Remember to 
set the standard input device and standard output device bits in the attribute word 
on a new CON device. The scan of the device list stops on the first match, so the 
installable device driver takes precedence. 



NOTE 

Because MS-DOS can install the driver any
where in memory, care must be taken in any far 
memory references. You should not expect 
that your driver will always be loaded in the 
same place every time. 

INSTALLATION OF DEVICE DRIVERS 

MS-DOS 2.0 allows new device drivers to be installed dynamically at boot time. 
This is accomplished by the INIT code in the I/O System, which reads and processes 
the CONFIG.SYS file. 

MS-DOS calls the device drivers in the following manner: 

• MS-DOS makes a far call to the strategy entry, and passes (in a request 
header) the information describing the functions of the device driver. 

• Until the request header is marked "done" (see description of done bit in the 
section, Status Word), MS-DOS continues to make far calls to the interrupt 
entry point with no parameters. 

This set of operations allows you to program an interrupt-driven device driver, for 
example, to perform local buffering in a printer. 

THE REQUEST HEADER 

When MS-DOS calls a device driver to perform a function, it passes a request 
header in ES:BX to the strategy entry point. This is a fixed length header, followed 
by data pertinent to the operation being performed. Note that it is the device 
driver's responsibility to preserve the machine state (for example, save all registers 
on entry and restore them on exit). There is enough room on the stack when strategy 
or interrupt is called to do about 20 pushes. If more stack is needed, the driver 
should set up its own stack. 

Crea ling Device Drivers 

11-5 



Creating Device Drivers 

11-6 

Figure 11-2 illustrates the format of request header. 

BYTE length of record 
Less the length of this request header 

BYTE unit code 
The subunit operation is for the minor device 
(no meaning on character devices). 

BYTE command code 

WORD status 

8 bytes reserved here for two DWORD links. One 
will be a link for MS-DOS queue, the other for the 
device queue. 

Figure 11-2 Request Header Format 

Unit Code 

The unit code field identifies which unit in your device driver the request is for. For 
example, if your device driver has 3 units, then the possible values of the unit code 
field would be 0, 1, and 2. 

Command Code Field 

The command code field in the request header can have one of the values shown in 
Table 11-1. 

Table 11-1 Request Header Command Codes 

COMMAND 
CODE FUNCTION 

° INIT 
1 MEDIA CHECK (Block only, NOP for character) 
2 BUILD BPB (Block only, NOP for character) 
3 IOCTL INPUT (Only called if device has IOCTL) 
4 INPUT (read) 
5 NON-DESTRUCTIVE INPUT NO WAIT (Char devs only) 
6 INPUT STATUS (Char devs only) 
7 INPUT FLUSH (Char devs only) 



Table 11-1 Request Header Command Codes (cont'd) 

COMMAND 
CODE FUNCTION 

8 OUTPUT (write) 
9 OUTPUT (write) with verify 

10 OUTPUT STATUS 
11 OUTPUT FLUSH 
12 IOCTL OUTPUT (Only called if device has IOCTL) 

MEDIA CHECK and BUILD BPB are used with block devices ~nly. 

MS-DOS first calls MEDIA CHECK for a drive unit. Then, MS-DOS passes its 
current media descriptor byte. (Refer to the section BUILD BPB (BIOS Parameter 
Block) for information on the media descriptor byte.) MEDIA CHECK returns the 
following status information: 

• Media not changed. Current BPB and media byte are OK. 

• Media changed. Current BPB and media are wrong. MS-DOS invalidates 
any buffers for this unit and calls the device driver to build the BPB with the 
media byte and buffer. 

• Not sure. If there are dirty buffers (buffers with changed data, not yet 
written to disk) for this unit, MS-DOS assumes the BPB and media byte are 
OK (media not changed). If buffers are clean, MS-DOS assumes the media 
has changed. It invalidates any buffers for the unit and calls the device 
driver to build the BPB with the media byte and buffer. 

If an error occurs, MS-DOS sets the error code accordingly. 

MS-DOS will call BUILD BPB under the following conditions: 

• if "media changed" is returned 

• if "not sure" is returned, and there are no dirty buffers. 

The BUILD BPB call also gets a pointer to a one-sector buffer. What this buffer 
contains is determined by the NON IBM FORMAT bit in the attribute field. If the 
bit is zero (device is IBM format-compatible), then the buffer contains the first 
sector of the first File Allocation Table (FAT). The FAT ID byte is the first byte of 

Creating Device Drivers 

11-7 



Creating Device Drivers 

11-8 

this buffer. Note that the BPB must be the same, as far as location of the FAT is 
concerned, for all possible media because this first FAT sector must be read before 
the actual BPB is returned. If the NON IBM FORMAT bit is set, then the pointer 
points to one sector of scratch space (which may be used for anything). 

Status Word 

The following illustration represents the format of the status word in therequest 
header. 

15 14 13 12 11 1098 765 432 1 0 

E B 
R RESERVED U 
R S 

D 
o ERROR CODE (bit 15 on) 
N 

The status word is zero on entry and is set by the driver interrupt routine on return. 

Bit 8 is the done bit. When set, it means the operation is complete. For MS-DOS 2.0, 
the driver sets it to 1 when it exits. 

Bit 15 is the error bit. If it is set, then the low 8 bits indicate the error. The error can 
be any of the following: 

0 Write protect violation 
(NEW) 1 Unknown unit 

2 Drive not ready 
(NEW) 3 Unknown command 

4 CRC error 
(NEW) 5 Bad drive request structure length 

6 Seek error 
(NEW) 7 Unknown media 

8 Sector not found 
(NEW) 9 Printer out of paper 

A Write fault 
(NEW) B Read fault 

C General failure 



Bit 9 is the busy bit, which is set only by status calls. 

For output on character devices: 

If bit 9 is 1 on return, a write request (ifmade) waits for completion ofa current 
request. 

If it is 0, there is no current request, and a write request (if made) starts 
immediately. 

For input on character devices with a buffer: 

If bit 9 is 1 on return, a read request (if made) goes to the physical device. 

If this bit is 0 on return, then there are characters in the device buffer and a read 
returns quickly. A 1 for bit 9 also indicates that you have typed something. 
MS-DOS assumes all character devices have an input type-ahead buffer. 
Devices that do not have a type-ahead buffer should always return busy = 0, so 
that MS-DOS will not continuously wait for something to get into a buffer that 
does not exist. 

One of the functions defined for each character and block device is INIT. This 
routine is called only once when the device is installed. The INIT routine returns a 
location (DS:DX), which is a pointer to the first free byte of memory after the device 
driver (similar to the Terminate and Stay Resident interrupt). This pointer method 
can be used to delete initialization code that is only needed once, thus saving on 
space. 

In addition to a first free byte pointer, block devices return other information . 

• The number of units determining logical device names. If the current 
maximum logical device letter is F at the time of the install call, and the 
INIT routine returns 4 as the number of units, then they will have logical 
names G, H, I and J. This mapping is determined by the position of the 
driver in the device list, and by the number of units on the device (stored in 
the first byte of the device name field) . 

• A pointer to a BPB pointer array. There is one table for each unit defined. 
These blocks will be used to build an internal DOS data structure for each of 
the units. The pointer passed to the DOS from the driver points to an array 
of n word pointers to BPBs, where n is the number of units defined. In this 
way, if all units are the same, all of the pointers can point to the same BPB, 
saving space. Note that this array must be protected (below the free pointer 

Creating Device Drivers 

11-9 



Creating Device Drivers 

11-10 

set by the return) since the internal DOS structure will be built starting at the 
byte pointed to by the free pointer. The sector size defined must be less than 
or equal to the maximum sector size defined at default I/O System INIT 
time. If it isn't, the install will fail. 

• The last item that INIT of a block device must pass back is the media 
descriptor byte. This byte means nothing to MS-DOS, but it is passed to 
devices so that they know what parameters MS-DOS is currently using for a 
particular drive unit. 

Block devices may take several approaches; they may be dumb or smart. A dumb 
device defines a unit (and therefore an internal DOS structure) for each possible 
media drive combination. For example, unit 0 = drive 0 (single ... sided), unit I = drive 
o (double ... sided). For this approach, media descriptor bytes do not mean anything. 
A smart device allows multiple media per unit. In this case, the BPB table returned 
at INIT must define space large enough to accommodate the largest possible media 
supported. Smart drivers will use the media descriptor byte to pass information 
about what media is currently in a unit. 

FUNCTION CALL PARAMETERS 

All strategy routines are called with ES:BX pointing to the request header. The 
interrupt routines get the pointer to the request header from the queue that the 
strategy routines store them in. The command code in the request header tells the 
driver which function to perform. 

INIT 

NOTE 

All DWORD pointers are stored with the 
offset first, then the segment. 

Command code = 0 

INIT - ES:BX ... > 

I3-BYTE request header 

BYTE # of units 

DWORD break address 

DWORD pointer to BPB array 
(N ot set by character devices) 



The number of units, break address, and BPB pointer are set by the driver. On entry, 
the DWORD that is to be set to the BPB array (on block devices) points to the 
character after the "=" on the line in the Configuration File (CON FIG .SYS) that 
loaded this device. This allows drivers to scan the CONFIG .SYS invocation line for 
arguments. 

NOTE 

If there are multiple device drivers in a single 
.COM file, the ending addre~s returned by the 
last INIT called will be the one MS-DOS uses. 
It is recommended that all of the device drivers 
in a single .COM file return the same ending 
address. 

MEDIA CHECK 

Command Code = 1 

MEDIA CHECK - ES:BX -> 

13-BYTE request header 

BYTE media descriptor from DPB (Disk Parameter Block) 

BYTE returned 

In addition to the status word, the driver must set the return byte to one of the 
following: 

-1 Media has been changed. 
o Don't know if media has been changed. 
1 Media has not been changed. 

If the driver can return -lor 1 (by having a door-lock or other interlock mecha
nism), MS-DOS performance is enhanced because MS-DOS does not need to 
reread the FAT for each directory access. 

BUILD BPB (BIOS Parameter Block) 

Command code = 2 

Creating Device Drivers 

11-11 



Creating Device Drivers 

11-12 

BUILD BPB - ES:BX -> 

13-BYTE request header 

BYTE media descriptor from DPB (Disk Parameter Block) 

DWORD transfer address 
(Points to one sector worth of scratch space or first sector 
of FAT depending on the value of the NON IBM FORMAT bit) 

DWORD pointer to BPB 

If the NON IBM FORMAT bit of the drvice is set, then the DWORD transfer 
address points to a one sector buffer, which can be used for any purpose. If the NON 
IBM FORMAT bit is 0, then this buffer contains the first sector of the first FAT and 
the driver must not alter this buffer. 

If the IBM compatible format is used (NON IBM FORMAT BIT = 0), then the first 
sector of the first FAT must be located at the same sector on all media. This is 
because the FAT sector will be read before the media is actually determined. Use 
this mode if all you want is to read the F AT ID byte. 

In addition to setting status word, the driver must set the pointer to the BPB on 
return. 

In order to allow for many different OEMs to read each other's disks, it is suggested 
you keep the information relating to the BPB for a particular piece of media in the 
boot sector for the medium. The format of the boot sector is illustrated in Figure 
11-3. The information on bytes per sector and sectors per track are part of the Disk 
Parameter Block (CPB). 

3 BYTE near JUMP to boot code 

8 BYTES OEM name and version 



WORD bytes per sector 

B 
P 
B 

B 
p 
B 

BYTE sectors per allocation unit 

WORD reserved sectors 

BYTE number of FATs 

WORD number of root dir entries 

WORD number of sectors in logical image 

BYTE media descriptor 

WORD number of FAT sectors 

WORD sectors per track 

WORD number of heads 

WORD number of hidden sectors 

Figure 11-3 Boot Sector Format 

The three words at the end (sectors per track, number of heads, and number of 
hidden sectors) are optional. They are intended to help the 1/0 System identify the 
attributes of the medium. Sectors per track may be redundant (could be calculated 
from total size of the disk). Number of heads is useful for supporting different 
multi-head drives that have the same storage capacity but different numbers of 
surfaces. Number of hidden sectors may be used to support drive-partitioning 
schemes. 

Currently, the media descriptor byte has been defined for two media types: 

5 'l'4-inch disks 

Flag bits: 

OlH - on --> double-sided 
All other bits must be on. 

Creating Device Drivers 

11-13 



Creating Device Drivers 

11-14 

8-inch disks 

FFG - APC format: single-sided, single-density, 128 bytes per sector, soft 
sectored, 4 sectors per allocation unit, 1 reserved sector, 2 FATs, 68 directory 
entries, 77*26 sectors 

For the IBM 3740, FEH is assigned and used for the same format. 

FDH - IBM 3740 format, single-sided, single-density, 128 bytes per sector, soft 
sectored, 4 sectors per allocation unit, 4 reserved sectors, 2 FATs, 68 directory 
entries, 77*26 sectors 

FEH - double-sided, double-density, 1024 bytes per sector, soft sectored, 1 
sector per allocation unit, 1 reserved sector, 2 FATs, 192 directory entries, 
77*8*2 sectors 

NOTE 

The two media descriptor bytes that are the 
same for 8-inch disks (FEH) is not a misprint. 
To establish whetner a disK is single- or double
density, a read of a single-density address mark 
should be made. If an error occurs, the media is 
double-density. 

Although these media bytes map directly to FAT ID bytes (which are constrained to 
the 8 values F8-FF), media bytes can, in general, be any value in the range O-FF. 

READ or WRITE 

Command codes = 3,4,8,9, and 12 

READ or WRITE - ES:BX (Including IOCTL)-> 

13-BYTE request header 

BYTE media descriptor from DPB (Disk Parameter Block) 

DWORD transfer address 

WORD byte/sector count 

WORD starting sector number 

(Ignored on character devices) 



In addition to setting the status word, the driver must set the sector count to the 
actual number of sectors (or bytes) transferred. No error check is performed on an 
10CTL I/O call. The driver must correctly set the return sector (byte) count to the 
actual number of bytes transferred. 

The following applies to block device drivers: 

Under certain circumstances the I/O System may be asked to perform a write 
operation of64K bytes, which seems to be a "wrap around" of the transfer address 
in the I/O packet. This request arises due to an optimization added to the write code 
in MS-DOS. It will only manifest on user writes that are within a sector size of64K 
bytes on files "growing" past the current EOF. It is allowable for the I/O System to 
ignore the balance of the write that wraps around ifit so chooses. For example, a 
write of IOOOOH bytes worth of sectors with a transfer address of XXX: I could 
ignore the last two bytes. A user program can never request an I/O of more than 
FFFFH bytes and cannot wrap around (even to 0) in the transfer segment. There
fore, the last two bytes can be ignored in this case. 

NONDESTRUCTIVE READ NO WAIT 

Command code = 5 

NONDESTRUCTIVE READ NO WAIT - ES:BX -> 

I3-BYTE request header 

BYTE read from device 

If the character device returns busy bit = 0 (characters in buffer), then the next 
character that would be read is returned. This character is not removed from the 
input buffer (hence the term "Non Destructive Read"). Basically, this call allows 
MS-DOS to look ahead one input character. 

STATUS 

Command codes = 6 and 10 

STATUS Calls - ES:BX-> 

I3-BYTE request header 

Creating Device Drivers 

11-15 



Creating Device Drivers 

11-16 

All the driver must do is set the status word and the busy bit as follows: 

• For output on character devices: If bit 9 is 1 on return, a write request (if 
made) waits for completion ofa current request. Ifit is 0, there is no current 
request and a write request (if made) starts immediately . 

• For input on character devices with a buffer: A return of I means a read 
request (if made) goes to the physical device. If it is 0 on return, then there 
are characters in the devices buffer and a read returns quickly. A return of 0 
also indicates that the user has typed something. MS-DOS assumes that all 
character devices have an input type-ahead buffer. Devices that do not have 
a type-ahead buffer should always return busy = 0 so that the DOS will not 
hang waiting for something to get into a buffer that doesn't exist. 

FLUSH 

Command codes = 7 and 11 

FLUSH Calls - ES:BX -> 

I 13-BYTE request header 

The FLUSH call tells the driver to flush (terminate) all pending requests. This call is 
used to flush the input queue on character devices. 

THE CLOCK DEVICE 

One of the most popular add-on boards is the real time clock board. To allow this 
board to be integrated into the system for TIME and DATE, there is a special device 
(determined by the attribute word), called the CLOCK device. The CLOCK device 
defines and performs functions like any other character device. Most functions will 
be "set done bit, reset error bit, return." When a read or write to this device occurs, 
exactly 6 bytes are transferred. The first two bytes are a word, which is the count of 
days since 1-1-80. The third byte is minutes, the fourth is hours, the fifth is 
hundredths of seconds, and the sixth is seconds. Reading the CLOCK device gets 
the date and time; writing to it sets the date and time. 

MSMDOS 2.0 FILE ALLOCATION TABLE FORMAT 

This section explains how MS-DOS uses the File Allocation Table (FAT) to convert 
the clusters of a file to logical sector numbers. The device driver is then responsible 
for locating the logical sector on disk. This information should not be used for any 
other purpose. System utilities should use the MS-DOS file management functions 
rather than interpret the FAT. 



The File Allocation Table is used by MS-DOS to allocate disk space for a file, one 
cluster at a time. The FAT consists of a 12-bit entry (1.5 bytes) for each cluster on 
the disk. The first two FAT entries map a portion of the directory. These FAT 
entries contain indicators of the size and format of the disk. The second and third 
bytes always contain FFFFH. 

The third FAT entry begins the mapping of the data area (cluster 002). Each entry 
contains three hexadecimal characters, which can be one of the following. 

000 

FF7 

The cluster is unused and available. 

The cluster has a bad sector within it. MS-DOS will not allocate 
such a cluster. The CHKDSK utility counts the number of bad 
clusters for its report. These bad clusters are not part of any 
allocation chain. 

FF8-FFF The cluster is the last cluster of a file. 

xxx XXX represents any other hexadecimal characters that are the 
cluster number of the next cluster in the file. The cluster number 
of the first cluster in the file is kept in the file's directory entry. 

The File Allocation Table always begins on the first section after the sectors. If the 
FA T is larger than one sector, the sectors are contiguous. Two copies of the FAT 
are usually written, one following the other, for integrity. The FAT is read into one 
of the MS-DOS buffers whenever needed (open, allocate more space, reserved on 
the disk for MS-DOS and so on). For performance reasons, this buffer is given a 
high priority to keep it in memory as long as possible. 

HOW TO USE THE FILE ALLOCATION TABLE 

Obtain the starting cluster of the file whose cluster is to be changed to a logical 
sector from the directory entry. 

Now, to locate each subsequent cluster of the file: 

1. Multiply the cluster number just used by 1.5. (Each FAT entry is 1.5 bytes 
long.) 

2. The whole part of the product is an offset into the FAT, pointing to the 
entry that maps the cluster just used. That entry contains the cluster 
number of the next cluster of the file. 

Creating Device Drivers 

11-17 



Creating Device Drivers 

11-18 

3. Use a MOV instruction to move the word at the calculated FAT offset into 
a register. 

4. If the last cluster used was an even number, keep the low-order 12 bits of the 
register by ANDing it with FFF. Otherwise, keep the high-order 12 bits by 
shifting the register right 4 bits with a SHR instruction. 

5. If the resultant 12 bits are FF8H-FFFH, there are no more clusters in the 
file. Otherwise, the 12 bits contain the cluster number of the next cluster in 
the file. 

To convert the cluster to a logical sector number (relative sector, such as that used 
by Interrupts 25H and 26H and by DEBUG): 

1. Subtract 2 from the cluster number. 

2. Multiply the result by the number of sectors per cluster. 

3. Add the logical sector number of the beginning of the data area. 

DEVICE DRIVER LOGIC EXAMPLES 

For examples of device driver logic, refer to the assembly listings of the I/O System 
supplied on the MS-DOS listing diskette. 



Appendix A 

The ASCII Character Codes 
Table A-I lists the standard ASCII character codes with the corresponding decimal 
and hexadecimal values for reference. 

Table A-I ASCII Character Codes 

Dec Hex CHR Dec Hex CHR Dec Hex CHR 

000 OOH NUL 043 2BH + 086 56H V 
001 01H SOH 044 2CH 

, 
087 57H W 

002 02H STX 045 2DH - 088 58H X 
003 03H ETX 046 2EH 089 59H Y 
004 04H EOT 047 2FH / 090 5AH Z 
005 05H ENQ 048 30H 0 091 5BH [ 
006 06H ACK 049 31H I 092 5CH 
007 07H BEL 050 32H 2 093 5DH ] 
008 08H BS 051 33H 3 094 5EH 
009 09H HT 052 34H 4 095 5FH -
010 OAH LF 053 35H 5 096 60H 

, 

011 OBH VT 054 36H 6 097 61H a 
012 OCH FF 055 37H 7 098 62H b 
013 ODH CR 056 38H 8 099 63H c 
014 OEH SO 057 39H 9 100 64H d 
015 OFH SI 058 3AH 101 65H e 
016 10H DLE 059 3BH , 102 66H f 
017 llH DCl 060 3CH 103 67H g 
018 12H DC2 061 3DH = 104 68H h 
019 13H DC3 062 3EH 015 69H i 
020 14H DC4 063 3FH ? 106 6AH J 
021 15H NAK 064 40H @ 107 6BH k 
022 16H SYN 065 41H A 108 6CH 1 
023 17H ETB 066 42H B 109 6DH m 
024 18H CAN 067 43H C 110 6EH n 

A-I 



The ASCII Character Codes 

. Table A-I ASCII Character Codes (cont'd) 

Dec Hex CHR Dec Hex CHR Dec Hex CHR 

025 19H EM 068 44H D 111 6FH 0 

026 lAH SUB 069 45H E 112 70H p 
027 IBH ESCAPE 070 46H F 113 71H q 
028 lCH FS 071 47H G 114 72H r 
029 IDH GS 072 48H H 115 73H s 
030 lEH RS 073 49H I 116 74H t 
031 IFH US 074 4AH J 117 75H u 
032 20H SPACE 075 4BH K 118 76H v 
033 21H ! 076 4CH L 119 77H w 
034 22H 1/ 077 4DH M 120 78H x 
035 23H # 078 4EH N 121 79H y 
036 24H $ 079 4FH 0 122 7AH z 
037 25H % 080 50H P 123 7BH 
038 26H & 081 51H Q 124 7CH 
039 27H 

, 
082 52H R 125 7DH 

040 28H ( 083 53H S 126 7EH 
041 29H ) 084 54H T 127 7FH DEL 
042 2AH * 085 55H U 

Dec=decimal, Hex=hexadecimal (H), CHR=character. 
LF=Line Feed, FF=Form Feed, CR=Carriage Return, Del=Rubout. 

A.-2 



Appendix B 

APC Keyboard and 
Display Codes 
The APC keyboard generates standard ASCII and other codes specific to the APC 
when keys are pressed. 

Table B-1 shows the ASCII and APC graphic display characters, along with their 
corresponding decimal and hexadecimal codes. 

B-1 



APC Keyboard and Display Codes 

Ta~le B-1 Mnemonic Control Codes and ROM Generator Display Characters 

SECOND 
HEX 

DIGIT 0 I 

0 NUL OLE 
00 Ib 

SOH DCI I 01 ]7 

STX DC2 2 O? 18 

ETX DCl 3 OJ 19 

EOT DC4 4 04 20 

ENQ NAK 5 05 21 

ACK SYN 
6 Ot> " 

BEL ETB 7 07 2.1 

8 
BS CAN 
M 24 

9 HT EM 
09 25 

A LF SUB 
10 2(' 

VT ESC B 
II 27 

FF FS C 12 28 

0 CR GS 
1.1 29 

E SO RS 
14 30 

F SI US 
15 .11 

B-2 

2 3 4 

SP 0 @ 
32 48 04 

t I A 
.1.1 49 (,5 

" 2 B 
34 50 b(' 

11 l C 
.15 51 (,7 

$ 4 0 
3b 52 (,X 

c' ( 5 E 
.1; 5.1 /'19 

& 6 F 
.18 54 70 

7 G 
.19 55 71 

( 8 H 
40 5h 72 

) 9 I 
41 57 7.1 

* J 
42 58 74 

+ K 
4.1 59 75 

< L 
44 f>() 76 

- == M 
45 61 77 

> N 
46 62 78 

/ ? 0 
47 63 79 

ASCII Character 
or 

Graphics Character 

5 

P 
80 

Q 
X I 

R 
8~ 

S 
83 

T 
84 

U 
85 

V 
8<' 

W 
87 

X 
88 

Y 
89 

Z 
90 

[ 
91 

'\ 
9' 

J 
9.1 

1\ 
'l4 

-
95 

FIRST HEX DIGIT 

6 7 8 9 A B C D E F 

P ~ 00 a 20i 
~ ~ 96 112 -- 1144 If>() 117b 19~ ~ 

a q 
3 ~ 1-,... ~ V W ~---97 113 - 1171 2M I' ~5 ~ , ~41 1(,1 19.1 

b r 
~ 

~ ~ . T :::::; 
98 114 ~ ~ 124~ Ib~ 178 194 ~IO 

c s * 4 
B "Y ~ ~ ~--99 115 ~ 1241 114, 16.1 179 19~ 211 

d t 5 
~ 

7 
~ ..-

100 116 
148 1M 180 19t> ~ 12 

~ 

u / 6 8 e 17 --
101 117 

1149 11t>5 181 1197 21.1 
15 ___ 

f 
. 9 v E 0 ~-102 1111 11 166 182 198 214 124~ 

g w 

Ill/'1J 

1 

~4t-p L 
10.1 119 

1t51 183 1199 215 ~23 I 

h x 

1l52r 

} a + 4> + 1248r 
104 120 

1682 ])6 184 200 216 bJ2 

I Y tJ 116J 1851/; 
v '* '2~ 105 121 

I.H 201 217 I ~.13 

J z L n 7r X ~.1' ""'" ..-
lOt> 12~ 

138 154 170 186 202 218 250 

k I 1\ 
0 

~.1t Q -... r 107 12.1 
1171 187 203 219 ~5 ..... 

I 0 2 ~ 

~J' 
-

108 124 
156r 

+ 
172 188 204 220 ~5~ 

m J ( 0 i20~ r I~P 1M 125 
'157 ]7.1 189 221 bj" 

n - \.. 
17) 

-
222A ltC 125X" 

K 110 12/'1 
1158 190 120t> 

0 DEL J 
175t 1: - /A ~ 125? 

III m(;T 1159 191 207 ~~3 



APC Keyboard and Display Codes 

ASCII codes NUL through US and DEL are the standard ASCII control codes. 
ASCII hexadecimal codes 20 through 7E display the characters that make up the 
APC default character set (also ASCII). The hexadecimal codes 80 to FF have been 
designated as graphics characters. 

Table B-2 identifies the functions performed by the standard ASCII control codes. 
As noted in the table, some of the codes perform no operations on the APC itself, 
but can be used in data communications with other devices. 

Table B-2 ASCII Character Mnemonics and Functions 

MNEMONIC ASCII DEFINITION APC FUNCTION 

NUL Null 
SOH Start of Heading 
STX Start Text 
ETX End Text 
EOT End of Transmission 
ENQ Enquiry 
ACK Acknowledge 
BEL Bell Sounds Beep 
BS Backspace Backspace 
HT Horizontal Tab Tab 
LF Line Feed Line Feed (cursor down) 
VT Vertical Tab Cursor Up 
FF Form Feed Cursor Forward 
CR Carriage Return Carriage Return 
SO Shift Out 
SI Shift In 
DLE Data Link Escape 
DCI Device Control I 
DC2 Device Control 2 
DC3 Device Control 3 
DC4 Device Control 4 
NAK Negative Acknowledge 
SYN Synchronous Idle 
ETB End Transmission Block 
CAN Cancel 
EM End of Medium 
SUB Substitute Clear Screen 

B-3 



APe key/Joard alld Display Codes 

B-4 

Table 8-2 ASCII Character Mnemonics and Functions (confd) 

MNEMONIC ASCII DEFINITION APC FUNCTION 

ESC Escape Begin Escape Sequence 
FS Form Separator 
GS Group Separator 
RS Record Separator 
US Unit Separator 
SP Space 
DEL Delete 

NOTE: The ASCII mnemonics for which no functions are given are not used 
on the APC. 

Certain ASCII codes in the range OOH to 1 FH have also been assigned special 
characters to display. Others are associated with a specific APC function. Table B-3 
identifies these codes. For the functions assigned to some of the control codes 
shown in the table, refer to Table B-2. 



APC Keyboard and Di!)1J/ay Codes 

Table B .. 3 APC Control Character Font 

SECOND FIRST 
HEX HEX 

DIGIT DIGIT 

0 1 

0 E3 
00 I~ 

1 ~ 
01 17 

~ 
I---

2 
O~ IH 

3 m --0.1 19 

4 Z -+-
04 ~o 

5 21 X 
05 21 

6 OK 
O~ ~-i 

7 ~ 0 
0' 2J 

8 ... I 
08 24 

9 .. • 09 25 

A 0 
10 2~ 

B ... r--r· ... 
L..l_-' 

II ~7 

C V---'J t-~ 
I ~ 2~ 

D ~ ~j 
\1 ~9 

E * i ) 

14 .10 

F [IJ cJ 
15 .11 

APC --Gt-
Character Decimal 

Code 

NOTE: Only characters that are not associated with a specific APe function are 
displayed on the screen. 

B-5 



The ASCII Character Codes 

B-6 

In the next few pages, figures illustrate the APe keyboard as it appears to the user, 
and the GRPHI and GRPH2 key assignments made to them. 

Figure B-1 The APe Keyboard 



The ASCII Character Codes 

z [2] OK o~ ~ -+ 0 " N +-06 08 

I I • D I 6 
12 18 

D 
IF 

NOTE: Characters associated with a specific APC function are not displayed. 

A. UNSHIFTED (SHIFT KEY UP) 

Graphics 
Character 

Hex Code 

B. SHIFTED (SHIFT KEY DOWN) 

NOTES: I GRPH I CHARACTERS ARE PRODUCED WHEN THE 
GRPH I KEY IS PRESSED. 

2 GRAPHICS SYMBOLS ASSOCIATED WITH A SPECIFIC 
APC FUNCTION ARE NOT DISPLA YED ON THE SCREEN. 
INSTEAD. THE FUNCTION IS PERFORMED. 

3 THE ALPHANUMERIC SYMBOLS ASSOCIATED WITH 
THE GRAPHIC SYMBOLS ARE THE HEXADECIMAL (HEX) 
CODES GENERATED BY PRESSING THE KEYS. 

Figure B-2 The APC GRPHI Characters 

- 6 
IA 

B-7 



The ASCII Character Codes 

L~ • (j ¥ EB / . ( ) - + + 

~/ • ~~ ~/ ~/, ~/ ~/ ~~ ~/ ~/ ~/ ~/ ~/ ~/ 

B-~ 

I ~/r ! ~/I 

/ A-/ 

(oIH'II? 
( h,H,llIO 

fin 
( odt" 

:S 

~/ 
H ~1I11 1I1)(~1i11 1 KI' DOWN} 

('hdra'.lrr 

nn Kn ("dr 

~ * M V 

NO'll- CjRPH2 CHARACTFRS ARF PRODUCTD WHI'N TIH. GRPH2 
KFY IS PRfSSI:D 

Figure B-3 The APC GRPH2 Characters 

V 0 



I 
I 
I 
I 
I 
I 
I 
I 

I 
I~ :.c 

I~ 
c;j 

f ~ 
~ 
u c:: 

~ ... Advanced 
..... .-... Personal Computer 

NEe 
NEe Information Systems, Inc . 

USER'S COMMENTS FORM 

Document: MS-DOS System Programmer's Guide 

Document No.: 819-000104-3001 Rev. 00 

Please suggest improvements to this manual. 

Please list any errors in this manual. Specify by page. 

From: 
Name ____________________________________________________________________ _ 

Title ____________________________________________________ _ 

Company ____________________________________________________________________ _ 

Address _________________________________________________________________________ __ 

Dealer Name ________________________________________________________________________ _ 

Date: 



Seal or tape ali edges for mailing-do not use staples. 

FOLD HERE 

111111 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 386 LEXINGTON, MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

NEe Information Systems, Inc. 
Dept: Publications 
1414 Mass. Ave. 
Boxborough, MA 01719 

FOLD HERE 

Seal or tape ali edges for mailing-do not use staples. 

NO POSTAGf 
NECrSSARY 

IF MAILED 
IN THE 

UNITFD STATES 


