
15. sdb-THE SYMBOLIC DEBUGGER

Introduction
This chapter describes the symbolic debugger, sdb(l), as implemented for C
language and Fortran 77 programs on the operating system. The sdb program is
useful both for examining core images of aborted programs and for providing an
environment in which execution of a program can be monitored and controlled.

The sdb program allows interaction with a debugged program at the source
language level. When debugging a core image from an aborted program, sdb
reports which line in the source program caused the error and allows all variables
to be accessed symbolically and to be displayed in the correct format.

When executing, breakpoints may be placed at selected statements or the program
may be single stepped on a line-by-line basis. To facilitate specification of lines in
the program without a source listing, sdb provides a mechanism for examining
the source text. Procedures may be called directly from the debugger. This
feature is useful both for testing individual procedures and for calling user
provided routines, which provide formatted printouts of structured data.

Using sdb
To use sdb to its full capabilities, it is necessary to compile the source program
with the -g option. This causes the compiler to generate additional information
about the variables and statements of the compiled program. When the -g option
has been specified, sdb can be used to obtain a trace of the called functions at the
time of the abort and interactively display the values of variables.

A typical sequence of shell commands for debugging a core image is:

cc -g prgm.c -o prgm
pr gm
Bua error - core dumped
sdb prgm
main:26: x[i] = O;

*
The program prgm was compiled with the -g option and then executed. An error
occurred, which caused a core dump. The sdb program is then invoked to
examine the core dump to determine the cause of the error. It reports that the
bus error occurred in function main at line 25 (line numbers are always relative to
the beginning of the file) and outputs the source text of the offending line. The

MU43815PG/D2 15-1 12/01/87

II

II sdb-THE SYMBOLIC DEBUGGER

sdb program then prompts the user with an•, which shows that it is waiting for
a command.

It is useful to know that sdb has a notion of current function and current line. In
this example, they are initially set to main and 25, respectively.

Here sdb was called with one argument, prgm. In general, it takes three
arguments on the command line. The first is the name of the executable file that
is to be debugged; it defaults to a.out when not specified. The second is the
name of the core file, defaulting to core; and the third is the list of the directories
(separated by colons) containing the source of the program being debugged. The
default is the current working directory. In the example, the second and third
arguments defaulted to the correct values, so only the first was specified.

If the error occurred in a function that was not compiled with the -g option, sdb
prints the function name and the address at which the error occurred. The
current line and function are set to the first executable line in main. If main was
not compiled with the -g option, sdb will print an error message, but debugging
can continue for those routines that were compiled with the -g option.

Figure 15-1, at the end of the chapter, shows a more extensive example of sdb
use.

Printing a Stack Trace

It is often useful to obtain a listing of the function calls that led to the error. This
is obtained with the t command. For example:

•t
•ub(x=2,7=3) [prgm.c:26]
intar(i=16012) [prgm.c:96]
m&in(argc=1,&rgv=Ox7fffff64,envp=Ox7fffff6c) [prgm.c:16]

This indicates that the program was stopped within the function sub at line 25 in
file prgm.c. The sub function was called with the arguments x=2 and y=3 from
Inter at line 96. The Inter function was called from main at line 15. The main
function is always called by a startup routine with three arguments often referred
to as argc, argv, and envp. Note that argv and envp are pointers, so their values
are printed in hexadecimal.

MU43815PG/D2 15-2 12/01/87

sdb---THE SYMBOLIC DEBUGGER

Examining Variables
The adb program can be used to display variables in the stopped program.
Variables are displayed by typing their name followed by a slash, so:

•errflag/

causes sdb to display the value of variable errflag. Unless otherwise specified,
variables are assumed to be either local to or accessible from the current function.
To specify a different function, use the form:

•sub:i/

to display variable i in function sub. FORTRAN 77 users can specify a common
block variable in the same way, provided it is on the call stack.

The adb pMgram supports a limited form of pattern matching for variable and
function names. The symbol * is used to match any sequence of characters of a
variable name and ? to match any single character. Consider the following
commands:

X/
•sub:y?/
...... ,

The first prints the values of all variables beginning with x, the second prints the
values of all two letter variables in function sub beginning with y, and the last
prints all variables. In the first and last examples, only variables accessible from
the current function are printed. The command:

**:•/

displays the variables for each function on the call stack.

~ sdb program normally displays the variable in a format determined by its
type as declared in the source program. To request a different format, a specifier
is placed after the slash. The specifier consists of an optional length specification
followed by the format. The length specifiers are:

b one byte

h two bytes (half word)

I four bytes (long word)

The length specifiers are effective only with the formats d, o, x, and u. If no
length is specified, the word length of the host machine is used. A number can

MU43815PG/D2 15-3 12/01/87

II

II sdb-THE SYMBOUC DEBUGGER

be used with the a or a formats to control the number of characters printed. The
a and a formats normally print characters until either a null is reached or 128
characters have been printed. The number specifies exactly how many characters
should be printed.

There are a number of format specifiers available:

c character

d decimal

u decimal unsigned

o octal

x hexadecimal·

f 32-bit single-precision floating point

g 64-bit double-precision floating point

a Assume variable is a string pointer and print characters starting at the
address pointed to by the variable until a null is reached.

a Print characters starting at the variable's address until a null is reached.

p Pointer to function.

Interpret as a machine-language instruction.

For example, the variable I can be displayed with:

•i/x

which prints out the value of I in hexadecimal.

sdb also knows about structures, arrays, and pointers so that all the follodig
commands work.

•array [2] [3] I
•aym.id/
•paym->uaage/
•xaym[20].p->uaage/

The only restriction is that array subscripts must be numbers. Note that as a
special case, the command:

•paym[O]

displays the structure pointed to by psym in decimal.

MU43815PG/D2 15-4 12/01/87

sdb---THE SYMBOLIC DEBUGGER

Core locations can also be displayed by specifying their absolute addresses. The
command:

•1024/

displays location 1024 in decimal. As in C language, numbers may also be
specified in octal or hexadecimal, so the above command is equivalent to both:

•02000/

and:

•Ox400/

It is possible to mix numbers and variables so that the command:

•1000.x/

•

refers to an element of a structure starting at address 1000, and the command:

•1000->x/

refers to an element of a structure whose address is at 1000. For commands of the
type '''1000.x/ and •1000->x/, the sdb program uses the structure template of the
last structured referenced.

The address of a variable is printed with =, so the command:

displays the address of I. Another feature whose usefulness will become apparent
later. is the command:

•./

which redisplays the last variable typed.

Source File Display and Manipulation

The sdb program has been designed to make it easy to debug a program without
constant reference to a current source listing. There are facilities that perform
context searches within the source files of the program being debugged and that
display seleded portions of the source files. The commands are similar to those
of the operating system text editor ed(l). Like the editor, sdb has a notion of
current file and line within the current file. sdb also knows how the lines of a file
are partitioned into functions, so it also has a notion of current function. As
noted in other parts of this document, the current function is used by a number of
sdb commands.

MU43815PG/D2 15-5 12/01/87

II

II sdb-THE SYMBOLIC DEBUGGER

Displaying the Source File

Four commands exist for displaying lines in the source file. They are useful for
perusing the source program and for determining the context of the current line.
The commands are:

p Prints the current line.

w Window; prints a window of ten lines around the current line.

tt Prints ten lines starting at the current line. Advances the current
line by ten.

control-cf Scrolls; prints the next ten lines and advances the current line by
ten. This command is used to cleanly display long segments of
the program.

When a line from a file is printed, it is preceded by its line number. This not only
indicates its relative position in the file, but it is also used as input by some sdb
commands.

Changing the Current Source Fiie or Function

Thee command is used to change the current source file. Either of the following
forms may be used:

*• :funct.ion
*• :file.c

may be used. The first causes the file containing the named function to become
the current file, and the current line becomes the first line of the function. The
other form causes the named file to become current. In this case, the current line
is set to the first line of the named file. Finally, an e command with no argument
causes the current function and file named to be printed.

Changing the Current Line in the Source File

The z and control-cf commands have a side effect of changing the current line in
the source file. The following paragraphs describe other commands that change
the current line.

MU43815PG/D2 15-6 12/01/87

sdb-THE SYMBOLIC DEBUGGER

There are two commands that search for instances of regular expressions in source
files. They are:

•/regular expression/
•?regular expression?

The first command searches forward through the file for a line containing a string
that matches the regular expression and the second searches backwards. The
trailing I and ? may be omitted from these commands. Regular expression
matching is identical to that of ad(l).

The + and - commands may be used to move the current line forward or
backward by a specified number of lines. Typing a new-line advances the current
line by one, and typing a number causes that line to become the current line in
the file. These commands may be combined with the display commands so that
the command:

•+16z

advances the current line by 15 and then prints ten lines.

A Controlled Environment for Program Testing
One useful feature of sdb is breakpoint debugging. After entering sdb,
breakpoints can be set at certain lines in the source program. The program is then
started with an sdb command. Execution of the program proceeds as normal
until it is about to execute one of the lines at which a breakpoint has been set.
The program stops and sdb reports the breakpoint where the program stopped.
Now, sdb commands may be used to display the trace of function calls and the
values of variables. If the user is satisfied the program is working correctly to this
point, some breakpoints can be deleted and others set; then program execution
may be continued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping. sdb can be
requested to execute the next line of the program and then stop. This feature is
especially useful for testing new programs, so they can be verified on a
statement-by-statement basis. If an attempt is made to single step through a
function that has not been compiled with the -g option, execution proceeds until
a statement in a function compiled with the -g option is reached. It is also
possible to have the program execute one machine level instruction at a time.
This is particularly useful when the program has not been compiled with the -g
option.

MU43815PG/D2 15-7 12/01/87

II

II sdb-THE SYMBOLIC DEBUGGER

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function compiled with the -g option. The
command format is:

•12b
•proc:12b
•proc:b
•b

The first form sets a breakpoint at line 12 in the current file. The line numbers are
relative to the beginning of the file as printed by the source file display
commands. The second form sets a breakpoint at line 12 of function proc, and
the third sets a breakpoint at the first line of proc. The last sets a breakpoint at
the current line.

Breakpoints are deleted similarly with the d command:

•12d
•proc:12d
•proc:d

In addition, if the command d is given alone, the breakpoints are deleted
interactively. Each breakpoint location is printed, and a line is read from the user.
If the line begins with a y or d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command, and the
D command deletes all breakpoints. It is sometimes desirable to have sdb
automatically perform a sequence of commands at a breakpoint and then have
execution continue. This is achieved with another form of the b command:

•12b t.;x/

causes both a trace back and the value of x to be printed each time execution gets
to line 12. The a command is a variation of the above command. There are two
forms:

•proc:a
•proc:12a

The first prints the function name and its arguments each time it is called, and the
second prints the source line each time it is about to be executed. For both forms
of the a command, execution continues after the function name or source line is
printed.

MU43815PG/D2 15-8 12/01/87

sdb---THE SYMBOUC DEBUGGER

Running the Program

The r command is used to begin program execution. It restarts the program as if
it were invoked from the shell. The command:

•r arga

runs the program with the given arguments as if they had been typed on the shell
command line. If no arguments are specified, then the arguments from the last
execution of the program within sdb are used. To run a program with no
arguments, use the R command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as INTERRUPT or QUIT occurs, or the program
terminates. In all cases after an appropriate message is printed, control returns to
the user.

The c command may be used to continue execution of a stopped program. A line
number may be specified, as in:

•proc:12c

This places a temporary breakpoint at the named line. The breakpoint is deleted
when the c command finishes. There is also a C command that continues but
passes the signal that stopped the program back to the program. This is useful
for testing user-written signal handlers. Execution may be continued at a
specified line with the g command. For example, the command:

'''17 g

continues at line 17 of the current function. A use for this command is to avoid
executing a section of code that is known to be bad. The user should not attempt
to continue execution in a function different from that of the breakpoint.

The s command is used to run the program for a single statement. It is useful for
slowly executing the program to examine its behavior in detail. An important
alternative is the S command. This command is like the s command but does not
stop within called functions. It is often used when one is confident that the called
function works correctly but is interested in testing the calling routine.

The I command is used to run the program one machine level instruction at a time
while ignoring the signal that stopped the program. Its uses are similar to the s
command. There is also an I command that causes the program to execute one
machine level instruction at a time, but also passes the signal that stopped the
program back to the program.

MU43815PG/D2 15-9 12/01/87

II

II sdb---THE SYMBOLIC DEBUGGER

Calling Functions

It is possible to call any of the functions of the program from sdb. This feature is
useful both for testing individual functions with different arguments and for
calling a user-supplied function to print structured data.

There are two ways to call a function:

•proc (arg1 , arg2, ...)
•proc(arg1, arg2, ...)/m

The first simply executes the function. The second is intended for calling
functions (it executes the function and prints the value that it returns). The value
is printed in decimal unless some other format is specified by m. Arguments to
functions may be integer, character or string constants, or variables that are
accessible from the current function.

An unfortunate bug in the current implementation is that if a function is called
when the program is not stopped at a breakpoint (such as when a core image is
being debugged) all variables are initialized before the function is started. This
makes it impossible to use a function that formats data from a dump.

Machine Language Debugging

The sdb program has facilities for examining programs at the machine language
level. It is possible to print the machine language statements associated with a
line in the source and to place breakpoints at arbitrary addresses. The sdb
program can also be used to display or modify the contents of the machine
registers.

Displaying Machine Language Statements

To display the machine language statements associated with line 25 in function
main, use the command:

•main:25?

The ? command is identical to the I command except that it displays from text
space. The default format for printing text space is the i format, which interprets
the machine language instruction. The control-cl command may be used to print
the next ten instructions.

Absolute addresses may be specified instead of line numbers by appending a : to
them, so that the command:

•Ox1024:?

displays the contents of address Ox1024 in text space.

MU43815PG/D2 15-10 12/01/87

sdb-THE SYMBOLIC DEBUGGER

Note that the command:

•O::x:1024?

displays the instruction corresponding to line Ox1024 in the current function. It is
also possible to set or delete a breakpoint by specifying its absolute address the
command:

•O::x:1024:b

sets a breakpoint at address Ox1024.

Manipulating Registers

The x command prints the values of all the registers. Also, individual registers
may be named by appending a % sign to their name so that the command:

•r31

displays the value of register r3.

Other Commands
To exit sdb, use the q command.

The I command (when used immediately after the * prompt) is identical to that in
ed(l) and is used to have the shell execute a command. The I can also be used to
change the values of variables or registers when the program is stopped at a
breakpoint. This is done with the command:

•variab1elva1ue
•r3!va1ue

which sets the variable or the named register to the given value. The value may
be a number, character constant, register, or the name of another variable. If the
variable is of type float or double, the value can also be a floating-point constant
(specified according to the standard C language format).

An sdb Session

An example of a debugging session using sdb is shown in Figure 15-1.
Comments (preceded by a pound sign, #) have been added to help you see what
is happening.

MU43815PG/D2 15-11 12/01/87

II

II sdb--THE SYMBOLIC DEBUGGER

•db myoptim - .: .. /common# enter •db command
Source path: .: .. /common
No core image
•window:b # ••t a breakpoint at •tart of window
Ox2462 (window:1469+2) b
•r < m.• > out.m.• # run th• program
Breakpoint at
Ox2462 in window:1469: window(•ize, func) regi•t•r int aiz•;
boolean(•func) (); {
•t # print •tack trace
window(•ize=2,func=w2opt) [optim.c:1469]
peep() [peep.c:34]
p•eudo(•=.def•Imain;•I.va1·I.;•I.•cl•I-1;·I.endef) [local.c:483]
yylex () [local. c: 229]
main(argc=O,argv=Ox1FFFE43,-1073810300) [optim.c:227]
•z # print 10 lin•• of source
1469: window(•iz•, func) regi•t•r int •ize; boolean (•func)(); {
1460:
1481:
1462:
1483:
1464:
1466:
1488:
1467:
1468:

extern NODE •initw();
regi•t•r NODE •pl;
regi•t•r int i;

TRACE(window);

I• find fir•t window •/

•• # •t•p
window:1469: window(•ize, func) regi•t•r int •ize; boolean (•func) (); {
•• # •t•p
window:1486: TRACE(window);

••
window:1489:

••
window: 1470:
•S
window: 1476:
•pl
Ox88b38
•x

rO/ Ox88b38
r3/ Ox86830
r6/ Ox1FFFB87
ap/ Ox1FFFD23

paw/ Ox2004

•t•p
w•iz• = •ize;

•t•p
if ((pl= initw(nO.forw)) ==NULL)

•t•p through procedure call
for (opf = pf->back; ; opf = pf->back) {

•how variable pl

print the register
r1/ 0
r4/ Ox1FFFB8F

r7/ Ox86b38
fp/ Ox1FFFCF7

pc/ Ox24b0

co11.te11.ta
r2/ Ox8798c
r6/ Ox1FFF907
re/ 2

ap/ Ox1FFFCF7

Ox24b0 (window:1476): uovw Ox80d8c,•ro [-Ox7f77f274,.r0]

Figure 15-1. Example of sdb Usage (Sheet 1of2)

MU43815PG/D2 15-12 12/01/87

sdb-THE SYMBOLIC DEBUGGER

•pl [O]
pl[O].forw/ Ox86b6c
pl[O].back/ Ox86ac8
pl[O].opa[O]/ mov.w
pl[O].uniqid/ O
pl[O].op/ 123
pl[O].nlive/ 3688
pl[O].ndead/ 4096

dereference the pointer

•pl->forw[O] # dereference the pointer
pl->forw[O] .forw/ Ox86ca0
pl->forw[O].back/ Ox86b38
pl->forw[O] .opa[O]/ call
pl->forw[O].uniqid/ 0
pl->forw[O].op/ 9
pl->forw[O].nlive/ 3684
pl->forw[O] .ndead/
•pl!pl->forw
•pl
Ox86b6c

4099
replace pl with pl->forw
ahow pl

•c # continue
Breakpoint at
Ox2462 in window:1469: window(aiz•, func) regiater int aize;
boolean (•func)(); {
•• # •t•p
window:1469: window(aize, func) r•giater int •ize; boolean (•func) (); {
•• # •t•p
window:1466: TRACE(window);
•aize # ahow function argument •iz•
3
•D # delete all breakpoint•
All breakpoint• deleted
•c # continue
P·roc••• terminated
•q # quit adb

•
Figura 15-1. Example of sdb Usage (Sheet 2 of 2)

MU43815PG/D2 15-13 12/01/87

II

II

