
11. COMMON OBJECT FILE FORMAT (COFF)

The Common Object File Format (COFF)
This section describes the Common Object File Format (COFF), the format of the
output file produced by the assembler, as, and the link editor, Id.

Some key features of COFF are:

• applications can add system-dependent information to the object file without
causing access utilities to become obsolete

• space is provided for symbolic information used by debuggers and other
applications

• programmers can modify the way the object file is constructed by providing
directives at compile time

The object file supports user-defined sections and contains extensive information
for symbolic software testing. An object file contains:

• a file header

• optional header information

• a table of section headers

• data corresponding to the section headers

• relocation information

• line numbers

• a symbol table

• a string table

Figure 11-1 shows the overall structure.

MU43815PG/D2 11-1 12101/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

FILE HEADER
O_J>_tionallnformation

Section 1 Header
...

Section n Header
Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Sect. 1
...

Relocation Info for Sect. n
Line Numbers for Sect. 1

...
Line Numbers for Sect. n

SYMBOL TABLE
STRING TABLE

Figure 11·1. Object File Fonnat

The last four sections (relocation, line numbers, symbol table, and the string table)
may be missing if the program is linked with the -s option of the Id command or
if the line number information, symbol table, and string table are removed by the
strip command. The line number information does not appear unless the
program is compiled with the -g option of the cc command. Also, if there are no
unresolved external references after linking, the relocation information is no
longer needed and is absent. The string table is also absent if the source file does
not contain any symbols with names longer than eight characters.

An object file that contains no errors or unresolved references is considered
executable.

MU43815PG/02 11-2 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Definitions and Conventions
Before proceeding further, you should become familiar with the following terms
and conventions.

Sections

A section is the smallest portion of an object file that is relocated and treated as
one separate and distinct entity. In the most common case, there are three
sections named .text, .data, and .bss. Additional sections accommodate
comments, multiple text or data segments, shared data segments, or user
specified sections. However, the operating system loads only .text, .data, and
.bss into memory when the file is executed.

NOTE

It is a mistake to assume that every COFF file will
have a specific number of sections, or to assume
characteristics of sections such as their order, their
location in the object file, or the address at which
they are to be loaded. This information is
available only after the object file has been
created. Programs manipulating COFF files
should obtain it from file and section headers in
the file.

Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that section or symbol
from address zero of the address space. The term physical address as used in
COFF does not correspond to general usage. The physical address of an object is
not necessarily the address at which the object is placed when the process is
executed. For example, on a system with paging, the address is located with
respect to address zero of virtual memory and the system performs another
address translation. The section header contains two address fields, a physical
address, and a virtual address; but in all versions of COFF, the physical address is
equivalent to the virtual address.

MU43815PG/D2 11-3 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

Target Machine

Compilers and link editors produce executable object files that are intended to be
run on a particular computer. In the case of cross-compilers, the compilation and
link editing are done on one computer with the intent of creating an object file
that can be executed on another computer. The term target machine refers to the
computer on which the object file is destined to run. Usually, the target machine
is the same computer on which the object file is being created.

File Header
The file header contains the 20 bytes of information shown in Figure 11-2. The
last two bytes are flags that are used by Id and object file utilities.

Bytes Declaration Name Description

0-1 uns~ned short f ml!!9_iC Magic number

2-3 uns~ned short f_nscns Number of sections

4-7 long int f_timdat Time and date stamp
indicating when the file was
created, expressed as the
number of elapsed seconds
since 00:00:00 GMT, January 1,
1970

8-11 long Int f_symptr File pointer containing the
starting address of the symbol
table

12-15 long int f_nsyms Number of entries in the
symbol table

16-17 unsigned short f_opthdr Number of bytes in the
optional header

18-19 unsigned short f fl1!9._S Flags J_see F~re 11-3)

Figure 11 ·2. File Header Contents

MU43815PG/D2 11-4 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Magic Numbers

The magic number specifies the target machine on which the object file is
executable.

Flags

The last two bytes of the file header are flags that describe the type of the object
file. Currently defined flags are found in the header file fllehdr.h, and are shown
in Figure 11-3.

Mnemonic Flag Meaning

F_RELFLG 00001 Relocation information stripped from the
file

F_EXEC 00002 File is executable (i.e., no unresolved
external referencesl

F_LNNO 00004 Line numbers s~d from the file

F_LSYMS 00010 Local S_.Y!!!.bols s~d from the file

F_MINMAL 00020 Not used ~SYSTEM V/68

F_UPDATE 00040 Not used ~SYSTEM V/68

F_SWABD 00100 Not used ~SYSTEMV/68

F_AR16WR 00200. File has the byte ordering used by the
PDP-11/70 _E!ocessor

F_AR32WR 00400 File has the byte ordering used by the
V AX-11/780 (i.e., 32 bits per word, least
s!8!!!ficant ~e firstl_

F_AR32W 01000 File has the byte ordering used by the
M68K computers (i.e., 32 bits per word,
most sigrlificant ~e firstl_

F PATCH 02000 Not used ~SYSTEMV/68

Figure 11-3. File Header Flags

MU43815PG/D2 11-5 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

File Header Declaration

The C structure declaration for the file header is given in Figure 11-4. This
declaration may be found in the header file filehdr.h.

struct filehdr
{

unsigned ahort f Jll&g i c ;
unaigned ahort f_Jl.BCns;

long f_timda.t;

long f_symptr;

long f_Jlsyms;

unaigned ahort f_opthdr;

unaigned ahort f_flaga;
};

#define FILHDR struct filehdr
#define FILHSZ aizeof(FILHDR)

I•
I•

I•

I•

I•

I•

I•

magic number •/
number of aection •I

time and date stamp •I

file ptr to symbol ta.bl• •I

number entries in the symbol

aize of optional header •/

flags •I

Figure 11-4. File Header Declaration

Optional Header Information

table •I

The template for optional information varies among different systems that use
COFF. Applications place all system-dependent information into this record.
This allows different operating systems access to information that only that
operating system uses without forcing all COFF files to save space for that
information. General utility programs (for example, the symbol table access
library functions, the disassembler, etc.) are made to work properly on any
common object file. This is done by seeking past this record using the size of
optional header information in the file header field f_opthdr.

Standard Operating System a.out Header

By default, files produced by the link editor for the operating system always have
a standard operating system a.out header in the optional header field. The
operating system a.out header is 28 bytes. The fields of the optional header are
described in Figure 11-5.

MU43815PG/D2 11-6 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Bytes Declaration Name Description

0-1 short m~c Magic number

2-3 short vstam-2_ Version stam..E_

4-7 lon_g_lnt tsize Size of text in b_ytes

8-11 lon_aint dsize Size of initialized data in b_ytes

12-15 lon_g_lnt bsize Size of uninitialized data in ~es

16-19 lon_g_ int en!_ry En~nt

20-23 lon_g_lnt text_ start Base address of text

24-27 long int data_ start Base address of data

Figure 11-5. Optional Header Contents

Whereas, the magic number in the file header specifies the machine on which the
object file runs, the magic number in the optional header supplies information
telling the operating system on that machine how that file should be ex'rcuted.
The magic numbers recognized by the operating system are given in Figure 11-6.

Value Meaning

0407 The text segment is not write-protected or sharable; the data segment
is contiguous with the text segment.

0410 The data segment starts at the next segment following the
text segment and the text segment is write protected.

0413 Text and data segments are aligned within a.out
so it can be directly paged.

Figure 11-6. Operating System Magic Numbers

MU43815PG/D2 11-7 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

Optional Header Declaration

The C language structure declaration currently used for the operating system
a.out file header is given in Figure 11-7. This declaration may be found in the
header file aouthdr.h.

t7pedef •truc:t aouthdr
{

•hort magic:; I• magic: number •/
•hort v•tamp; I• ver•ion •tamp •I
long t•ize; I• text •ize in b7te•, padded •I

I• to full word boundar7 •I

long d•ize; I• initialized data •ize •I

long b•ize; I• uninitialized data •ize •I

long entr7; I• entr7 point •/

long text_•tart; I• ba•e Of text for thi• file •I

long data_•tart I• ba•e of data for thi• file •I

} AOUTHDR;

Figura 11·7. aouthdr Declaration

Section Headers
Every object file has a table of section headers to specify the layout of data within
the file. The section header table consists of one entry for every section in the
file. The information in the section header is described in Figure 11-8.

MU43815PG/D2 11-8 12101/87

COMMON OBJECT FILE FORMAT (COFF)

Bytes Declaration Name Description

0-7 char s_name 8-character null _£_added section name

8-11 lon_g_ int s~addr P1!Y_sical address of section

12-15 lon_g_ Int s_vaddr Virtual address of section

16-19 lon_g_ int s_size Section size in ~tes

20-23 lon_g_ int s_scn_J!tr File ~nter to raw data

24-27 101'!.9. int s_re~tr File ~nter to relocation entries

28-31 long Int s_lnnoJ!tr File ~nter to line number entries

32-33 unsigned s_nreloc Number of relocation entries
short

34-35 unsigned s_nlnno Number of line number entries
short

36-39 long int s_flags Flags (see Figure 11-9)

Figure 11 ·8. Section Header Contents

The size of a section is padded to a multiple of 4 bytes. File pointers are byte
offsets that can be used to locate the start of data, relocation, or line number
entries for the section. They can be readily used with the operating system
function fseek(3S).

MU43815PG/D2 11-9 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

Flags

The lower 2 bytes of the flag field indicate a section type. The flags are described
in Figure 11-9.

Mnemonic Flag Meaning

STYP REG OxOO Regular section _(allocated, relocated, loadedl
STYP_DSECT OxOl Dummy section (not allocated, relocated, not

loadedl
STYP _NOLOAD 0x02 Noload section (allocated, relocated, not

loadedl
STYP GROUP Ox04 Grouped section Jformed from in_Q_ut section~
STYP_PAD OxOS Padding section (not allocated, not relocated,

loaded}~
STYP_COPY OxlO Copy section (for a decision function used in

updating fields; not allocated, not relocated,
loaded, relocation and line number entries
EOCessed normal!Y}_

STYP_TEXT Ox20 Section contains executable text
STYP_DATA Ox40 Section contains initialized data
STYP_BSS Ox80 Section contains on!Y_ uninitialized data
STYP_INFO Ox200 Comment section (not allocated, not relocated,

not loadedl
STYP_OVER Ox400 Overlay section (relocated, not allocated, not

loadedl
STYP_LIB Ox800 For .lib section _(treated like STYP _INFOl

Figure 11-9. Section Header Flags

MU43815PG/D2 11-10 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Section Header Declaration

The C structure declaration for the section headers is described in Figure 11-10.
This declaration may be found in the header file scnhdr.h.

struct scnhdr
{

char s_n.ame [8] ;
long s_pa.ddr;
long s_va.ddr;
long s_size;
long s_scnptr;

long s_relptr;

long s_lnnoptr;

unsigned short s_n.reloc;

unsigned short s_n.lnno;

long s_flags;

};

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

I•
I•
I•
I•
I•

I•

I•

I•

I•

I•

section name •I
physical address •I
virtual address •I
section size •I
file ptr to section raw data. •I

file ptr to relocation •I

file ptr to line number •I

number of relocation entries •I

number of line number entries •I

flags •I

Figure 11-10. Section Header Declaration

.bss Section Header

The one deviation from the normal rule in the section header table is the entry for II
uninitialized data in a .bss section. A .bss section has a size and symbols that
refer to it, and symbols that are defined in it. At the same time, a .bss section
has no relocation entries, no line number entries, and no data. Therefore, a .bss
section has an entry in the section header table but occupies no space elsewhere
in the file. In this case, the number of relocation and line number entries, as well
as all file pointers in a .bss section header, are 0. The same is true of the
S1YP _NO LOAD and S1YP _DSECT sections.

MU43815PG/D2 11-11 12/01/87

II

CO:MMON OBJECT FILE FORMAT (COFF)

Sections
Figure 11-1 shows that section headers are followed by the appropriate number of
bytes of text or data. The raw data for each section begins on a four-byte
boundary in the file.

Link editor SECTIONS directives (see Chapter 12) allow users to, among other
things:

• describe how input sections are to be combined

• direct the placement of output sections

• rename output sections

If no SECTIONS directives are given, each input section appears in an output
section of the same name. For example, if several object files, each with a .text
section, are linked together the output object file contains a single .text section
made up of the combined input .text sections.

Relocation Information

Object files have one relocation entry for each relocatable reference in the text or
data. The relocation information consists of entries with the format described in
Figure 11-11.

Bytes Declaration Name Description

0-3 long Int r_vaddr (Virtual)
address
of reference

4-7 long int r_symndx Symbol
table
index

8-9 unsigned short r_type Relocation
type

Figure 11-11. Relocation Section Contents

The first four bytes of the entry are the virtual address of the text or data to which
this entry applies. The next field is the index, counted from 0, of the symbol table
entry that is being referenced. The type field indicates the type of relocation to be
applied.

MU43815PG/D2 11-12 12/01/87

COMNION OBJECT FILE FORMAT (COFF)

As the link editor reads each input section and performs relocation, the relocation
entries are read. They direct how references found within the input section are
treated. The currently recognized relocation types are given in Figure 11-12.

Mnemonic Flag Meaning

R_ABS 0 Reference is absolute; no relocation is
necess'!!Y: The en!!:Y_ will be !8!!._ored.

R_RELBYTE 017 Direct 8-bit reference to the symbol's
virtual address.

R_RELWORD 020 Direct 16-bit reference to the symbol's
virtual address.

R_RELLONG 021 Direct 32-bit reference to the symbol's
virtual address.

R_PCRBYTE 022 A "PC-relative" 8-bit reference to the
~bol's virtual address.

R_PCRWORD 023 A "PC-relative" 16-bit reference to the
~bol's virtual address.

R_PCRLONG 024 A ''PC-relative" 32-bit reference to the
symbol's virtual address.

Figure 11-12. Relocation Types

Relocation Entry Declaration

The structure declaration for relocation entries is given in Figure 11-13. This
declaration may be found in the header file reloc.h.

MU43815PG/D2 11-13 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

•truct reloc
{

long r_vaddr; /• virtual addre•• of reference •/

long r_•ymndx; I• index into •7mbol table •/

/• relocation t7pe •/
};

#define RELOC •truct reloc

#define RELSZ iO

Figure 11-13. Relocation Entry Declaration

Line Numbers
When invoked with the -g option, the cc and m commands cause an entry in
the object file for every source line where a breakpoint can be inserted. You can
then reference line numbers when using a software debugger like sdb. All line
numbers in a section are grouped by function as shown in Figure 11-14.

~bolindex 0
..E_h_ysical address line number
_p_hy_!;ical address line number

~bolindex 0
Rh...Y!'ical address line number
physical address line number

Figure 11-14. Line Number Grouping

The first entry in a function grouping has line number 0 and has, in place of the
physical address, an index into the symbol table for the entry containing the
function name. Subsequent entries have actual line numbers and addresses of the

MU43815PG/D2 11-14 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

text corresponding to the line numbers. The line number entries are relative to
the beginning of the function, and appear in increasing order of address.

Line Number Declaration

The structure declaration currently used for line number entries is given in Figure
11-15.

struct lineno
{

union
{

long l_s ymndx:; I• symtbl index of func name •/

long l_paddr; /• paddr of line number •/
} l_addr;
unsigned short l_lnno; I• line number •/

};

#define LINENO
#define LINESZ

Symbol Table

struct lineno
6

Figure 11 ·15. Line Number Entry Declaration

Because of symbolic debugging requirements, the order of symbols in the symbol
table is very important. Symbols appear in the sequence shown in Figure 11-16.

MU43815PG/D2 11-15 12101187

II

II

CO:MMON OBJECT FILE FORMAT (COFF)

filename 1
function 1

local symbols
for function 1

function 2
local symbols
for function 2

...
statics
...

filename 2
function 1

local symbols
for function 1

...
statics
...

defined global
~mbols

undefined global
symbols

Figure 11·16. COFF Symbol Table

The word statics in Figure 11-16 means symbols defined with the C language
storage class static outside any function. The symbol table consists of at least one
fixed-length entry per symbol with some symbols followed by auxiliary entries of
the same size. The entry for each symbol is a structure that holds the value, the
type, and other information.

MU43815PG/D2 11-16 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Special Symbols

The symbol table contains some special symbols that are generated by as. It
contains other tools as well. These symbols are given in Figure 11-17.

Symbol Meaning

.file filename

.text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

.ta~et ..£.Ointer to the structure or union returned ~a function

.xfake dumm_y t~ name for structure, union, or enumeration

.eos end of members of structure, union, or enumeration

etext next available address after the end of the
ol!!E_ut section .text

edata next available address after the end of the
ou!E_ut section .data

end next available address after the end of the
output section .bss

Figure 11-17. Special Symbols in the Symbol Table

Six of these special symbols occur in pairs. The .bb and .eb symbols indicate the
boundaries of inner blocks; a .bf and .ef pair brackets each function. An .xfake
and .eos pair names and defines the limit of structures, unions, and enumerations
that were not named. The .eos symbol also appears after named structures,
unions, and enumerations.

MU43815PG/D2 11-17 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

When a structure, union, or enumeration has no tag name, the compiler invents a
name to be used in the symbol table. The name chosen for the symbol table is
.xfake, where x is an integer. If there are three unnamed structures, unions, or
enumerations in the source, their tag names are .Ofake, .1fake, and .2fake. Each
of the special symbols has different information stored in the symbol table entry
as well as the auxiliary entries.

Inner Blocks

The C language defines a block as a compound statement that begins and ends
with braces: { and }. An inner block is a block that occurs within a function
(which is also a block).

For each inner block that has local symbols defined, a special symbol, .bb, is put
in the symbol table immediately before the first local symbol of that block. Also a
special symbol, .eb, is put in the symbol table immediately after the last local
symbol of that block. The sequence is shown in Figure 11-18 .

. bb
local symbols
for that block ..
. eb

Figure 11-18. Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested. See Figure 11-19.

MU43815PG/D2 11-18 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

{ I• block 1 •I
int. i;
char c· .
{ I• block 2 •/

long a;

{ I• block 3 •I
int. x;

} I• block 3 •I

} I• block 2 •I

{ I• block 4 •I
long i;

} I• block 4 •I
} I• block 1 •/

Figure 11-19. Nested blocks

The symbol table would look like Figure 11-20.

II

MU43815PG/D2 11-19 12/01/87

II

COMMON OBJECT FILE FORMAT (COFF)

.bb for block 1
i
c

.bb for block 2
a

.bb for block 3
x

.eb for block 3

.eb for block 2

.bb for block 4
i

.eb for block 4

.eb for block 1

Figure 11-20. Example of the Symbol Table

Symbols and Functions

For each function, a special symbol .bf is put between the function name and the
first local symbol of the function in the symbol table. Also, a special symbol .ef is
put immediately after the last local symbol of the function in the symbol table.
The sequence is shown in Figure 11-21.

MU43815PG/D2

function name
.bf

local~bol

.ef

Figure 11-21. Symbols for Functions

11-20 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Symbol Table Entries

All symbols, regardless of storage class and type, have the same format for their
entries in the symbol table. The symbol table entries each contain 18 bytes of
information. The meaning of each of the fields in the symbol table entry is
described in Figure 11-22. Note that indices for symbol table entries begin at 0
and count upward. Each auxiliary entry also counts as one symbol.

Bytes Declaration Name Description

0-7 (see text below) _n These 8 bytes contain either a
symbol name or an index to a
~bol

8-11 long int n_value Symbol value; storage class
d~ndent

12-13 short n_scnum Section number of ~bol

14-15 unsigned short n_type Basic and derived type
~cification

16 char n_sclass Storag_e class of ~bol

17 char n_numaux Number of auxiliary entries

Figure 11·22. Symbol Table Entry Format

Symbol Names

The first eight bytes in the symbol table entry are a union of a character array and II
two longs. If the symbol name is eight characters or less, the (null-padded)
symbol name is stored there. If the symbol name is longer than eight characters,
then the entire symbol name is stored in the string table. In this case, the eight
bytes contain two long integers, the first is zero, and the second is the offset
(relative to the beginning of the string table) of the name in the string table. Since
there can be no symbols with a null name, the zeroes on the first four bytes serve
to distinguish a symbol table entry with an offset from one with a name in the
first eight bytes as shown in Figure 11-23.

MU43815PG/D2 11-21 12/01/87

II

COMMON OBJECT FILE FORMAT (COFF)

Bytes Declaration Name Description

0-7 char n_name 8-character null-padded symbol
name

0-3 long n_zeroes Zero in this field indicates the
name is in the strin__g_ table

4-7 long n_offset Offset of the name in the
string table

Figure 11-23. Name Field

Special symbols generated by the C Compilation System are discussed above
under ''Special Symbols."

Storage Oasses

The storage class field has one of the values described in Figure 11-24. These
#define' s may be found in the header file storclass.h.

MU43815PG/D2 11-22 12/01/87

COMMON OBJECT FILE FORMAT {COFF)

Mnemonic Value Storage Class

C_EFCN -1 _p_h_y_sical end of a function

C NULL 0 -
C_AUTO 1 automatic variable
C EXT 2 external ~bol
C_STAT 3 static
C_REG 4 r~ster variable
C_EXTDEF 5 external definition
C_LABEL 6 label
C_ULABEL 7 undefined label
C_MOS 8 member of structure
C_ARG 9 function ar&!!_ment
C_STRTAG 10 structure t'!&_
C_MOU 11 member of union
C_UNTAG 12 union ta_g_
C 1PDEF 13 ~definition

C_USTATIC 14 uninitialized static
C ENTAG 15 enumeration ~
C_MOE 16 member of enumeration
C REGPARM 17 n:g_ister_E.arameter
C FIELD 18 bit field
C_BLOCK 100 be~nnil!& and end of block
C_FCN 101 begi.nniJ!& and end of function
C_EOS 102 end of structure
C_FILE 103 filename
C LINE 104 used onl_y ~ util!!Y£_r~ams
C_ALIAS 105 du_e,licated t'!.8,
C_HIDDEN 106 like static, used to avoid name II

conflicts

Figure 11-24. Storage Oasses

MU43815PG/D2 11-23 12/01/87

II

COMMON OBJECT FILE FORMAT (COFF)

All these storage classes except for C_AUAS and C_ffiDDEN are generated by
the cc or as commands. The compress utility, cprs, generates the C_ALIAS
mnemonic. This utility (described in the User's Reference Manual) removes
duplicated structure, union, and enumeration definitions and puts alias entries in
their places. The storage class C_lilDDEN is not used by any operating system
tools.

Some of these storage classes are used only internally by the C Compilation
Systems. These storage classes are C_EFCN, C_EXTDEF, C_ULABEL,
C_USTATIC, and C_LINE.

Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes. They are given in
Figure 11-25.

Special Symbol Storage Class

.flle C_FILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

.ta111_et C_AUTO

.xfake C_STRTAG, C_UNTAG, C_ENTAG

.eos C_EOS

.text C_STAT

.data C_STAT

.bss C_STAT

Figure 11-25. Storage Oass by Special Symbols

MU43815PG/D2 11-24 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Also some storage classes are used only for certain special symbols. They are
summarized in Figure 11-26.

Storage Class Spacial Symbol

C_BLOCK .bb, .eb

C_FCN .bf, .ef

C_EOS .eos

C_FILE .file

Figura 11-26. Restricted Storage Oasses

Symbol Value Field

The meaning of the value of a symbol depends on its storage class. This
relationship is summarized in Figure 11-27.

MU43815PG/D2 11-25 12101/87

II

COMMON OBJECT FILE FORMAT (COFF)

Storage Class Meaning of Value

C_AUTO stack offset in ~es

C_EXT relocatable address

C_STAT relocatable address

C_REG r~ster number

C_LABEL relocatable address

C_MOS offset in ~es

C_ARG stack offset in b_.Y.tes

C_STRTAG 0

C_MOU 0

C_UNTAG 0

C_TPDEF 0

C_ENTAG 0

C_MOE enumeration value

C_REGPARM r~ister number

C_FIELD bit di~acement

C_BLOCK relocatable address

C_FCN relocatable address

II C_EOS size

C_FILE _{_see text below_l

C_ALIAS t'!S_ index

C_HIDDEN relocatable address

Figure 11-27. Storage Class and Value

MU43815PG/D2 11-26 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

If a symbol has storage class C_FILE, the value of that symbol equals the symbol
table entry index of the next .file symbol. That is, the .file entries form a one-way
linked list in the symbol table. If there are no more .file entries in the symbol
table, the value of the symbol is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of that symbol.
When the section is relocated by the link editor, the value of these symbols
changes.

Section Number Field

Section numbers are listed in Figure 11-28.

Mnemonic Section Number Meaning

N_DEBUG -2 Special symbolic debugging
symbol

N_ABS -1 Absolute symbol

N UNDEF 0 Undefined external symbol

N_SCNUM 1-077777 Section number where symbol
is defined

Figure 11-28. Section Number

A special section number (-2) marks symbolic debugging symbols, including
structure/union/enumeration tag names, typedefs, and the name of the file. A
section number of -1 indicates that the symbol has a value but is not relocatable.
Examples of absolute-valued symbols include automatic and register variables,
function arguments, and .eos symbols.

With one exception, a section number of 0 indicates a relocatable external symbol
that is not defined in the current file. The one exception is a multiply defined
external symbol (i.e., FORTRAN common or an uninitialized variable defined
external to a function in C). In the symbol table of each file where the symbol is
defined, the section number of the symbol is 0 and the value of the symbol is a
positive number giving the size of the symbol. When the files are combined to
form an executable object file, the link editor combines all the input symbols of
the same name into one symbol with the section number of the .bss section. The
maximum size of all the input symbols with the same name is used to allocate

MU43815PG/D2 11-27 12/01/87

II

II

COMM:ON OBJECT FILE FORMAT (COFF)

space for the symbol and the value becomes the address of the symbol. This is
the only case where a symbol has a section number of 0 and a non-zero value.

Section Numbers and Storage Oasses

Symbols having certain storage classes are also restricted to certain section
numbers. They are summarized in Figure 11-29.

Storage Class Section Number

C_AUTO N_ABS
C_EXT N_ABS, N UNDEF, N_SCNUM

C_STAT N_SCNUM

C REG N_ABS
C_LABEL N_UNDEF, N_SCNUM
C_MOS N_ABS
C_ARG N_ABS
C_STRTAG N_DEBUG
C_MOU N_ABS
C_UNTAG N_DEBUG
C_TPDEF N_DEBUG
C_ENTAG N_DEBUG
C_MOE N_ABS
C_REGPARM N_ABS
C_FIELD N_ABS
C_BLOCK N_SCNUM
C_FCN N SCNUM
C_EOS N_ABS
C_FILE N_DEBUG
C_AUAS N_DEBUG

Figure 11-29. Section Number and Storage Oass

MU43815PG/D2 11-28 12101/87

COMMON OBJECT FILE FORMAT (COFF)

Type Entry

The type field in the symbol table entry contains information about the basic and
derived type for the symbol. This information is generated by the C Compilation
System only if the -g option is used. Each symbol has exactly one basic or
fundamental type but can have more than one derived type. The format of the
16-bit type entry is:

I d6 I d5 I d4 I d3 I d2 I d1 I fyp I

Bits 0 through 3, called typ, indicate one of the fundamental types given in Figure
11-30.

MU43815PG/D2 11-29 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

Mnemonic Value Type

T NULL 0 _!_y£_e not ass~ed

T_VOID 1 void

T CHAR 2 character

T SHORT 3 short integer

TINT 4 int~er

T_LONG 5 lof!g int~er

T_FLOAT 6 floati~oint

T DOUBLE 7 double word

T_STRUCT 8 structure

T UNION 9 union

T_ENUM 10 enumeration

T_MOE 11 member of enumeration

T UCHAR 12 unsigned character

T USHORT 13 unsigned short

T_UINT 14 uns!g_ned int~er

T_ULONG 15 unsigned long

Figure 11-30. Fundamental Types

Bits 4 through 15 are arranged as six 2-bit fields marked d1 through d6. These d
fields represent levels of the derived types given in Figure 11-31.

MU43815PG/D2 11-30 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Mnemonic Value Type

DT_NON 0 no derived~

DT.YI'R 1 ~nter

DT_FCN 2 function

DT_ARY 3 array

Figure 11-31. Derived Types

The following examples demonstrate the interpretation of the symbol table entry
representing type.

char •func () ;

Here tune is the name of a function that returns a pointer to a character. The
fundamental type of func is 2 (character), the d1 field is 2 (function), and the d2
field is 1 (pointer). Therefore, the type word in the symbol table for func contains
the hexadecimal number Ox62, which is interpreted to mean a function that
returns a pointer to a character.

short •tabptr[10] [26] [3];

Here tabptr is a three-dimensional array of pointers to short integers. The
fundamental type of tabptr is 3 (short integer); the d1, d2, and d3 fields each
contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type entry in
the symbol table contains the hexadecimal number Ox7f3 indicating a three
dimensional array of pointers to short integers.

MU43815PG/D2 11-31 12/01/87

II

COMMON OBJECT FILE FORMAT (COFF)

Type Entries and Storage Oasses

Figure 11-32 shows the type entries that are legal for each storage class.

d Entry
Storage typ Entry
Class Function? Array? Pointer? Basic Type

C_AUTO no _yes _yes An_y_ exc~t T_MOE
C_EXT _y_es _yes _yes An_y_ exc~ T_MOE
C STAT _yes _yes _yes An_y_ exc~ T_MOE
C_REG no no _yes An_y_ exc~ T_MOE
C LABEL no no no T_NULL

C_MOS no _yes _yes An_y_ exc~ T_MOE
C_ARG _yes no _yes An_y_ exc~ T_MOE
C_STRTAG no no no T_STRUCT
C_MOU no _y_es _y_es An_y exc~t T_MOE
C_UNTAG no no no T_UNION

C_TPDEF no _y_es _y_es An_y exc~t T_MOE
C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C_REGPARM no no _y_es An_y exce_E._t T_MOE
C_FIELD no no no T_ENUM,

T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

II
C_BLOCK no no no T_NULL
C_FCN no no no T NULL
C_EOS no no no T NULL
C_FILE no no no T_NULL
C_ALIAS no no no T_STRUCT,

T_UNION,
T_ENUM

Figure 11-32. Type Entries by Storage Oass

MU43815PG/D2 11-32 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Conditions for the d entries apply to d1 through d6, except that it is impossible to
have two consecutive derived types of function.

Although function arguments can be declared as arrays, they are changed to
pointers by default. Therefore, no function argument can have array as its first
derived type.

Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry is given in Figure
11-33. This declaration may be found in the header file syms.h.

MU43815PG/D2 11-33 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

union
<

char
•truct

..D-D-e [SYllNKLEM] ;

};

<

} ..D-Dl
char

} ..Ji;
un•igned long

•hort

un•igned •hort

char

char

#define n..,.1l-e
#define 11_11eroe•
#define n_off•et
#define n....1lptr

long _Jl_11eroe•; I•

long I•

I•

ll..V&lue;

n..,.1lumauz;

..,.1l . ..,.1l..,.1l-e

..,.1l • ..J1.-D • ..,.1l_,11eroe•

..Jl • ..Jl.-D • ..,.1l_Off•et

....1l . ..D-Dptr [1]

#define SYlllOILEN 8
#define SYllESZ 18

•7JllbOl n-e •I

location in •tring table

allow• overla7ing •/

I• value of •7111bol •/

I• •ection number •/

I• t7pe and derived •I

I• •torage cla•• •I

I• number of aux entrie•

Figure 11-33. Symbol Table Entry Declaration

Auxiliary Table Entries

•I

•I

An auxiliary table entry of a symbol contains the same number of bytes as the
symbol table entry. However, unlike symbol table entries, the format of an
auxiliary table entry of a symbol depends on its type and storage class. They are
summarized in Figure 11-34.

MU43815PG/D2 11-34 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Name Storage
Type Entry

Auxiliary
Class d1 typ Entry Format

.file C_FILE DT_NON T_NULL filename

.text,.data, C_STAT DT_NON T_NULL section

.bss
tagname C_STRTAG DT_NON T_NULL tag name

C_UNTAG
C_ENTAG

.eos C_EOS DT_NON T_NULL end of
structure

fcname C_EXT DT_FCN (Note 1) function
C_STAT

arrname J!iote ~ DT_ARY _{Note !l arrq_
.bb,.eb C_BLOCK DT_NON T_NULL beginning and

end of block
.bf,.ef C_FCN DT_NON T_NULL beginning and

end of function
name related to (Note 2) DT_PI'R, T_STRUCT, name related to
structure, DT_ARR, T_UNION, structure,
union, DT_NON T_ENUM union,
enumeration enumeration

Notes to Figure 11-34:
1. Any except T_MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

Figure 11·34. Auxiliary Symbol Table Entries

In Figure 11-34, tagname means any symbol name including the special symbol
.xfake, and fcname and arrname represent any symbol name for a function or an
array respectively. Any symbol that satisfies more than one condition in Figure
11-34 should have a union format in its auxiliary entry.

MU43815PG/D2 11-35 12/01/87

II

II

COMMON OBJECT FILE FORMAT {COFF)

Filenames

NOTE

It is a mistake to assume how many auxiliary
entries are associated with any given symbol table
entry. This information is available, and should be
obtained from the n_numaux field in the symbol
table.

Each of the auxiliary table entries for a filename contains a 14-character filename
in bytes 0 through 13. The remaining bytes are 0.

Sections

The auxiliary table entries for sections have the format as shown in Figure 11-35.

Bytes Declaration Name Description

0-3 lon__g_ int x scnlen section length

4-5 uns!g_ned short x_nreloc number of relocation entries

6-7 unsigned short x_nlinno number of line numbers

8-17 - - unused {filled with zeroes)

Figure 11-35. Format for Auxiliary Table Entries for Sections

MU43815PG/D2 11-36 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Tag Names

The auxiliary table entries for tag names have the format shown in Figure 11-36.

Bytes Declaration Name Description

0-5 - - unused J.filled with zeroe~

6-7 unsigned short x_size size of structure, union, and
enumeration

8-11 - - unused _{filled with zeroe~

12-15 long Int x_endndx index of next entry beyond this
structure, union, or
enumeration

16-17 - - unused (filled with zeroes)

Figure 11-36. Tag Names Table Entries

End of Structures

The auxiliary table entries for the end of structures have the format shown in
Figure 11-37.

Bytes Declaration Name Description

0-3 101!9. Int x_t~ndx ~index

4-5 - - unused {filled
withzeroe~

6-7 unsigned short x_size size of structure,
union, or
enumeration

8-17 - - unused {filled
with zeroes)

Figure 11-37. Table Entries for End of Structures

MU43815PG/D2 11-37 12101/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

Functions

The auxiliary table entries for functions have the format shown in Figure 11-38.

Bytes Declaration Name Description

0-3 long int x_ta_g_ndx ta_g_index
4-7 lon_9_ int x_fsize size of function J.in b_yte~
8-11 long int x_lnn~ptr file ROinter to line number
12-15 lonJI. int x_endndx index of next en!!Y_ b~ond this 2_oint
16-17 unsigned short x_tvndx index of the function's address

in the transfer vector table (not
used by the operating system)

Figure 11-38. Table Entries for Functions

Arrays

The auxiliary table entries for arrays have the format shown in Figure 11-39.
Defining arrays having more than four dimensions produces a warning message.

MU43815PG/D2 11-38 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

Bytes Declaration Name Description

0-3 lo'!.9_ int x_ta_g_ndx ta_g_ index

4-5 uns!g_ned short x_lnno line number of declaration

6-7 uns!g_ned short x_size size of arrl!Y_

8-9 uns!g_ned short x_dimen[O] first dimension

10-11 uns!g_ned short x_dimen[1j_ second dimension

12-13 uns!g_ned short x_dimen1~ third dimension

14-15 uns!g_ned short x_dimen[3] fourth dimension

16-17 - - unused (filled with zeroes)

Figure 11 ·39. Table Entries for Arrays

End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions have the format
shown in Figure 11-40.

Bytes Declaration Name Description

0-3 - - unused _{filled with zeroe~

4-5 uns.!.9.ned short x lnno C-source line number

6-17 - - unused (filled with zeroes)

Figure 11-40. End of Block and Function Entries

MU43815PG/D2 11-39 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions have the
format shown in Figure 11-41.

Bytes Declaration Name Description

0-3 - - unused {filled with zeroes)

4-5 unsigned short x_lnno C-source line number

6-11 - - unused (filled with zeroes)

12-15 long Int x_endndx index of next en~ast this block

16-17 - - unused (filled with zeroes)

Figure 11-41. Format for Beginning of Block and Function

Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and enumeration symbols have the
format shown in Figure 11-42.

Bytes Declaration Name Description

0-3 lon_g_ Int x_ta_g_ndx ta_g_index

4-5 - - unused (filled with zeroes)

6-7 unslg!1ed short x_slze size of the structure, union, or enumeration

8-17 - - unused (filled with zeroes)

Figure 11-42. Entries for Structures, Unions, and Enumerations

MU43815PG/D2 11-40 12101/87

COMMON OBJECT FILE FORMAT (COFF)

Aggregates defined by typedef may or may not have auxiliary table entries. For
example,

typedef atruct people STUDENT;

atruct people
{

};

char nam.e[20];
long id;

typedef atruct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol table but
symbol STUDENT will not because it is a forward reference to a structure.

MU43815PG/02 11-41 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is given
in Figure 11-43. This declaration may be found in the header file syms.h.

union auxent
{

struct
{

long x_tagndx;
union
{

struct
{

unsigned short x_lnno;
unsigned short x_size;

} x_lnaz;
long x_fsize;

} x_misc;
union
{

struct

{

long
long

} xJcn;
atruct
{

x_lnnoptr;
:x_endndx;

unsigned short x_dimen[DIMNUM];
} x_ar7;

} xJcnar7;
unsigned short x_tvndx;

} x_s:ym;

Figura 11-43. Auxiliary Symbol Table Entry (Sheet 1of2)

MU43815PG/D2 11-42 12/01/87

COMMON OBJECT FILE FORMAT (COFF)

)
#define
#define
#define
#define

•t.ruct.
{

char x_fname[FILNMLEN];
) x_fih;
•t.ruct.
{

long x_•cnlen;
un•igned •hort. x_nreloc;
un•igned •hort. x_nlinno;

) :it_•cn;
•t.ruct.
{

long x_t.vfill;
unaigned ahort. x_t.vlen;
un•igned •hort. x_t.vran[2];

) x_t.v;

FILNMLEN 14
DIKNUM 4
AUXENT union auxent.
AUXESZ 18

Figure 11-43. Auxiliary Symbol Table Entry (Sheet 2 of 2)

String Table
Symbol table names longer than eight characters are stored contiguously in the
string table with each symbol name delimited by a null byte. The first four bytes
of the string table are the size of the string table in bytes; offsets into the string
table, therefore, are greater than or equal to 4. For example, given a file
containing two symbols (with names longer then eight characters, long_name_ 1
and another_one) the string table has the format as shown in Figure 11-44.

MU43815PG/D2 11-43 12/01/87

II

II

COMMON OBJECT FILE FORMAT (COFF)

'l' 'o' 'n' 'g

I ,
'n' 'a' 'm' -

'e' I ,
- 'l' '\O'

'a' 'n' 'o' 't'

'h' 'e' 'r' I I

-

'o' 'n' 'e' '\O'

Figure 11-44. String Table

The index of long_name_ 1 in the string table is 4 and the index of another _one is
16.

Access Routines

Operating system releases contain a set of access routines that are used for
reading the various parts of a common object file. Although the calling program
must know the detailed structure of the parts of the object file it processes, the
routines effectively insulate the calling program from the knowledge of the overall
structure of the object file.

The access routines can be divided into four categories:

1. functions that open or close an object file

2. functions that read header or symbol table information

3. functions that position an object file at the start of a particular section of the
object file

4. a function that returns the symbol table index for a particular symbol

These routines can be found in the library libld.a and are listed in Section 3 of the
Programmer's Reference Manual. A summary of what is available can be found in
the Programmer's Reference Manual under ldfcn(4).

MU43815PG/D2 11-44 12/01/87

