
7. FILE AND RECORD LOCKING 

Introduction 
Mandatory and advisory file and record locking both are available on current 
releases of the operating system. The intent of this capability to is provide a 
synchronization mechanism for programs accessing the same stores of data 
simultaneously. Such processing is characteristic of many multi-user applications, 
and the need for a standard method of dealing with the problem has been 
recognized by standards advocates like /usrlgroup, an organization of operating 
system users from businesses and campuses across the country. 

Advisory file and record locking can be used to coordinate self-synchronizing 
processes. In mandatory locking, the standard 1/0 subroutines and 1/0 system 
calls enforce the locking protocol. In this way, at the cost of a little efficiency, 
mandatory locking double checks the programs against accessing the data out of 
sequence. 

The remainder of this chapter describes how file and record locking capabilities 
can be used. Examples are given for the correct use of record locking. 
Misconceptions about the amount of protection that record locking affords are 
dispelled. Record locking should be viewed as a synchronization mechanism, not 
a security mechanism. 

The manual pages for the fcntl(2) system call, the lockf(3) library function, and 
fcntl(S) data structures and commands are referred to throughout this section. 
You should read them before continuing. 

Terminology 
Before discussing how record locking should be used, let us first define a few 
terms. 

Record 
A contiguous set of bytes in a file. The operating system does not impose 
any record structure on files. This may be done by the programs that use 
the files. 

Cooperating Processes 
Processes that work together in some well defined fashion to accomplish 
the tasks at hand. Processes that share files must request permission to 
access the files before using them. File access permissions must be 
carefully set to restrict non-cooperating processes from accessing those 

MU43815PG/D2 7-1 12/01/87 

II 



II 

FILE AND RECORD LOCKING 

files. The term process will be used interchangeably with cooperating 
process to refer to a task obeying such protocols. 

Read (Share) Locks 
These are used to gain limited access to sections of files. When a read 
lock is in place on a record, other processes may also read lock that 
record, in whole or in part. No other process, however, may have or 
obtain a write lock on an overlapping section of the file. If a process 
holds a read lock, it may assume that no other process will be writing or 
updating that record at the same time. This access method also permits 
many processes to read the given record. This might be necessary when 
searching a file, without the contention involved if a write or exclusive 
lock were to be used. 

Write (Exclusive) Locks 
These are used to gain complete control over sections of files. When a 
write lock is in place on a record, no other process may read or write lock 
that record, in whole or in part. If a process holds a write lock it may 
assume that no other process will be reading or writing that record at the 
same time. 

Advisory Locking 
A form of record locking that does not interact with the 1/0 subsystem 
(i.e. creat(2), open(2), read(2), and write(2)). The control over records is 
accomplished by requiring an appropriate record lock request before 1/0 
operations. If appropriate requests are always made by all processes 
accessing the file, then the accessibility of the file will be controlled by the 
interaction of these requests. Advisory locking depends on the individual 
processes to enforce the record locking protocol; it does not require an 
accessibility check at the time of each 1/0 request. 

Mandatory Locking 
A form of record locking that does interact with the 1/0 subsystem. 
Access to locked records is enforced by the creat(2), open(2), read(2), and 
wrlte(2) system calls. If a record is locked, then access of that record by 
any other process is restrict;ed according to the type of lock on the record. 
The control over records should still be performed explicitly by requesting 
an appropriate record lock before 1/0 operations, but an additional check 
is made by the system before each 1/0 operation to ensure the record 
locking protocol is being honored. Mandatory locking offers an extra 
synchronization check, but at the cost of some additional system 
overhead. 

MU43815PG/D2 7-2 12/01/87 



FILE AND RECORD LOCKING 

File Protection 
There are access permissions for operating system files to control who may read, 
write, or execute such a file. These access permissions may only be set by the 
owner of the file or by the superuser. The permissions of the directory in which 
the file resides can also affect the final disposition of a file. Note that if the 
directory permissions allow anyone to write in it, then files within the directory 
may be removed, even if those files do not have read, write or execute permission 
for that user. Any information that is worth protecting, is worth protecting 
properly. If your application warrants the use of record locking, make sure that 
the permissions on your files and directories are set properly. A record lock, even 
a mandatory record lock, will only protect the portions of the files that are locked. 
Other parts of these files might be corrupted if proper precautions are not taken. 

Only a known set of programs and/or administrators should be able to read or 
write a data base. This can be done easily by setting the set-group-ID bit (see 
chmod(l)) of the data base accessing programs. The files can then be accessed by 
a known set of programs that obey the record locking protocol. An example of 
such file protection, although record locking is not used, is the mall{l) command. II 
In that command only the particular user and the mail command can read and 
write in the unread mail files. 

Opening a File for Record Locking 

The first requirement for locking a file or segment of a file is having a valid open 
file descriptor. If read locks are to be done, then the file must be opened with at 
least read accessibility and likewise for write locks and write accessibility. 

MU43815PG/02 7-3 12/01/87 



II 

FILE AND RECORD LOCKING 

For our example, we will open our file for both read and write access: 

#include <•tdio.h> 
#include <errno.h> 
#include <fcntl.h> 

int fd; 
char •fil•n-•; 

main(argc, argv) 
int argc; 
char • argv [] ; 
{ 

I• f il• de•criptor •/ 

extern void exit(), perror(); 

/• get data ba•• f il• name from command line and open the 
• file for read and write ace•••· 
•I 

if (argc < 2) { 
(void) fprintf(•tderr, •u•age: ~· filename\n•, argv[O]); 
exit(2); 

} 
fil•n-• = argv[1]; 
fd = open(fil•n-•, O_RDWR); 
if (fd < 0) { 

} 

perror(fil•n-e); 
exit(2); 

The file is now open for us to perform both locking and 1/0 functions. We then 
proceed with the task of setting a lock. 

Setting a File Lock 
There are several ways for us to set a lock on a file. In part, these methods 
depend on how the lock interacts with the rest of the program. There are also 
questions of performance as well as portability. Two methods will be given here, 
one using the fcntl(2) system call, the other using the lusrlgroup standards 
compatible lockf(3) library function call. 

Locking an entire file is just a special case of record locking. For both these 
methods the concept and the effect of the lock are the same. The file is locked 
starting at a byte offset of zero (0) until the end of the maximum file size. This 

MU43815PG/D2 7-4 12101/87 



FILE AND RECORD LOCKING 

point extends beyond any real end of the file so that no lock can be placed on this 
file beyond this point. To do this the value of the size of the lock is set to zero. 
The code using the fcntl(2) system call is as follows: 

#include <fcntl.h> 
#define KAX_TRY 10 
int try; 
•truct flock lck; 

/• ••t up th• record locking •tructure, th• addr••• of which 
* i• pa•••d to the fcntl •y•t•m call. 
•I 
lck.l_typ• = F_WRLCK; /• ••tting a writ• lock •/ 
lck.l_whence = O; I• off••t l_•tart from beginning of file •/ 
lck.l_•tart = OL; 
lck.l_len • OL; /• until the end of the file addr••• •pace •/ 

I• Attempt locking KAX_TRY time• before giving up. 
•I 
while (fcntl(fd, FJIETLK, &lck) < 0) { 

if (errno == EACAIN II errno == EACCES) { 
I• there might be other error• ca••• in which 
* you might try again. 
•I 

if (++try < KAX_TRY) { 
(void) •le•p (2) ; 
continue; 

} 

(void) fprintf(•tderr,•Fil• bu•y try again later!\n•); 
return; 

} 

} 

perror(•fcntl•); 
exit(2); 

This portion of code tries to lock a file. This is attempted several times until one 
of the following things happens: 

• the file is locked 

• an error occurs 

• it gives up trying because MAX_TRY has been exceeded 

MU43815PG/D2 7-5 12/01/87 

II 



II 

FILE AND RECORD LOCKING 

To perform the same task using the lockf(3) function, the code is as follows: 

#include <uniatd.h> 
#define MAX_TRY 10 
int try; 
try = O; 

/• make aura the file pointer 
• ia at the beginning of the file. 
•I 

laeek(fd, OL, O); 

/• Attempt locking MAX_TRY timea before giving up. 
•I 

while (lockf(fd, F_TLOCK, OL) < 0) { 
if (errno == EAGAIN I I errno == EACCES) { 

/• there might be other errors caaea in which 
• you might try again. 
•I 

if (++try < MAX_TRY) { 
aleep(2); 
continue; 

} 
(void) fprintf(atderr,•File buay try again later!\n•); 

} 

return; 
} 

perror(•lockf•); 
exit(2); 

Note that the lockf(3) example appears to be simpler, but the fcntl(2) example 
exhibits additional flexibility. Using the fcntl(2) method, it is possible to set the 
type and start of the lock request simply by setting a few structure variables. 
lockf(3) merely sets write (exclusive) locks; an additional system call (lseek(2)) is 
required to specify the start of the lock. 

Setting and Removing Record Locks 
Locking a record is done the same way as locking a file except for the differing 
starting point and length of the lock. We will now try to solve an interesting and 
real problem. There are two records (these records may be in the same or 
different file) that must be updated simultaneously so that other processes get a 
consistent view of this information. (This type of problem comes up, for example, 
when updating the interrecord pointers in a doubly linked list.) 

MU43815PG/D2 7-6 12/01/87 



FILE AND RECORD LOCKING 

To do this you must decide the following questions: 

• What do you want to lock? 

• For multiple locks, what order do you want to lock and unlock the records? 

• What do you do if you get all the required locks? 

• What do you do if you fail to get all the locks? 

In managing record locks, you must plan a failure strategy if one cannot obtain all 
the required locks. It is because of contention for these records that we have 
decided to use record locking in the first place. Different programs might: 

• wait a certain amount of time, and try again 

• abort the procedure and warn the user 

• let the process sleep until signaled that the lock has been freed 

• do some combination of the above 

Let us now look at our example of inserting an entry into a doubly linked list. For 
the example, we will assume that the record after which the new record is to be 
inserted has a read lock on it already. The lock on this record must be changed or 
promoted to a write lock so that the record may be edited. 

Promoting a lock (generally from read lock to write lock) is permitted if no other 
process is holding a read lock in the same section of the file. If there are 
processes with pending write locks that are sleeping on the same section of the 
file, the lock promotion succeeds and the other (sleeping) locks wait. Promoting 
(or demoting) a write lock to a read lock carries no restrictions. In either case, the 
lock is merely reset with the new lock type. Because the !usrlgroup lockf function 
does not have read locks, lock promotion is not applicable to that call. An 
example of record locking with lock promotion follows: 

•truct record { 

}; 

long prev; 
long next; 

I• data portion of record •/ 

I• index to previous record in th• list •/ 
I• index to next record in the list •/ 

I• Lock promotion u•ing fcntl(2) 
• When thi• routine i• entered it ia aa•um•d that there are read 
• locks on •here• and •next•. 
• If write lock• on •here• and •next• are obtained: 
• Set & write lock on •thi••. 

MU43815PG/D2 7-7 12/01/87 



II 

FILE AND RECORD LOCKING 

* Return index to "thi•" record. 
• If an7 write lock i• not obtained: 
* Re•tore read lock• on "here• and •next•. 
* Remove all other lock•. 
* Return a -1. 
•I 

long 
••t3lock (thi•, here, next) 
long thi•, here, next; 
{ 

•truct flock lck; 

lck.l_t7p• = F_WRLCK; /• ••tting a write lock •/ 
lck.l_whenc• = O; I• off••t l_•tart from beginning of file •/ 
lck.l_•tart = here; 
lck.l_len = •izeof(•truct record); 

/• promote lock on "here• to writ• lock •/ 
if (fcntl(fd, F_BETLKW, &lck) < 0) { 

return (-1); 
} 

I• lock "thi•" with write lock •/ 
lck.l_•tart = thi•; 
if (fcntl(fd, F_BETLKW, &lck) < 0) { 

I• Lock on "thi•" failed; 

} 

* demote lock on "h•r•" to read lock. 
•I 

lck.l_t7pe = F~DLCK; 
lck.l_Btart = h•r•; 
(void) fcntl(fd, F_SETLKW, &lck); 
return (-1); 

/• promote lock on •next• to write lock •/ 
lck.l_•tart =next; 
if (fcntl(fd, F_BETLKW, &lck) < 0) { 

I• Lock on •next• failed; 
* demote lock on "here• to read lock, 
•I 

lck.l_t7pe = F~DLCK; 
lck. l_•tart = here·; 
(void) fcntl(fd, F_BETLK, &lck); 
I• and r~move lock on "thi•"· 
•I 

lck.l_t7pe = F_UNLCK; 
lck.l_atart = thi•; 
(void) fcntl(fd, F_SETLK, &lck); 
return (-1); /• cannot set lock, tr7 again or quit•/ 

} 

return (thi•); 
} 

MU43815PG/02 7-8 12/01/87 



FILE AND RECORD LOCKING 

The locks on these three records were all set to wait (sleep) if another process was 
blocking them from being set. This was done with the F _SETLKW command. If 
the F _SETLK command was used instead, the fcntl system calls would fail if 
blocked. The program would then have to be changed to handle the blocked 
condition in each of the error return sections. 

Let us now look at a similar example using the lockf function. Since there are no 
read locks, all (write) locks will be referenced generically as locks. 

I• Lock promotion uaing lockf(3) 
• When thi• routine i• entered it i• aaaumed that there are 
•no lock• on "here• and •next•. 
• If lock• are obtained: 
• Set a lock on "thi•"· 
• Return index to •thi•" record. 
• If any lock i• not obtained: 
• Remove all other lock•. 
• Return a -1. 
•I 

#include <uniatd.h> 

long 
aet3lock (thi•, here, next) 
long thia, here, next; 

{ 

/• lock "here• •/ 
(void) laeek(fd, here, O); 
if (lockf(fd, F.J,.OCK, aizeof(atruct record)) < 0) { 

return (-1); 
> 
I• lock "thi•" •/ 
(void) laeek(fd, thi•, O); 
if (lockf(fd, F.J,.OCK, aizeof(atruct record)) < 0) { 

I• Lock on "thi•" failed. 

> 

•Clear lock on "here•. 
•I 

(void) laeek(fd, here, O); 
(void) lockf(fd, F_ULOCK, aizeof(atruct record)); 
return (-1); 

I• lock •next• •/ 
(void) laeek(fd, next, O); 
if (lockf(fd, F.J,.OCK, aizeof(atruct record)) < 0) { 

MU43815PG/D2 7-9 12/01/87 

II 



II 

FILE AND RECORD LOCKING 

/• Lock on •next• failed. 
• Clear lock on •here•, 
•I 

(void) lseek(fd, here, O); 
(void) lockf(fd, F_ULOCK, sizeof(struct record)); 

I• and remove lock on "this•. 
•I 

(void) lseek(fd, this, O); 
(void) lockf(fd, F_ULOCK, sizeof(struct record)); 
return (-1); /•cannot set lock, try again or quit•/ 

} 

return (this); 
} 

Locks are removed the way they are set, only the lock type is different (F_UNLCK 
or F_ULOCK). An unlock cannot be blocked by another process and will only 
affect locks that were placed by this process. The unlock only affects the section 
of the file defined in the previous example by lck. It is possible to unlock or 
change the type of lock on a subsection of a previously set lock. This may cause 
an additional lock (two locks for one system call) to be used by the operating 
system. This occurs if the subsection is from the middle of the previously set 
lock. 

Getting Lock Information 
One can determine which processes, if any, are blocking a lock from being set. 
This can be used as a simple test or as a means to find locks on a file. A lock is 
set up as in the previous examples and the F _GETLK command is used in the 
fcntl call. If the lock passed to fcntl would be blocked, the first blocking lock is 
returned to the process through the structure passed to fcntl. That is, the lock 
data passed to fcntl is overwritten by blocking lock information. This information 
includes two pieces of data that have not been discussed yet, l_pid and l_sysid, 
that are only used by F _GETLK. (For systems that do not support a distributed 
architecture the value in l_sysid should be ignored.) These fields uniquely 
identify the process holding the lock. 

If a lock passed to fcntl using the F_GETLK command would not be blocked by 
another process' lock, then the l_type field is changed to F _UNLCK and the 
remaining fields in the structure are unaffected. Let us use this capability to print 
all the segments locked by other processes. Note that if there are several read 
locks over the same segment only one of these will be found. 

MU43815PG/D2 7-10 12101187 



FILE AND RECORD LOCKING 

•truct flock lck; 

I• Find and print •writ• lock• blocked 
(void) printf(••7•id pid t7P• 
lck.l_whenc• = O; 
1ck.l_•tart = OL; 
1ck.l_len = OL; 
do { 

lck.l_t7pe = F_WRLCK; 

••gment• of thi• file. •/ 
•tart length\n•); 

(void) fcntl(fd, F_GETLK, alck); 
if (lck.l_t7pe I= F_UNLCK) { 

(void) printf(•l&d l&d le IBd IBd\n•, 
lck.l_•7•id, 
lck.l_pid, 
(lck.l_t7p• == F_WRLCK) ? ••• ·a·. 
lck.l_•tart, 
lck.l_len); 

/• if thi• lock go•• to th• end of th• addr••• 

} 

• •pace, no need to look further, •o break out. 
•I 

if (lck.l_len == 0) 
break; 

/• otherwi••· look for new lock after th• one 
• ju•t found. 
•I 

lck.l_•tart += lck.l_len; 

} while (lck.l_t7pe != F_UNLCK); 

fcntl with the F _GE1LK command will always return correctly (that is, it will not 
sleep or fail) if the values passed to it as arguments are valid. 

The lockf function with the F _TEST command can also be used to test if there is a 
process blocking a lock. This function does not, however, return the information 
about where the lock actually is and which process owns the lock. A routine 
using lockf to test for a lock on a file follows. 

MU43815PG/D2 7-11 12101/87 

II 



II 

FILE AND RECORD LOCKING 

/• find a blocked record. •/ 

/• •••k to beginning of file •/ 
(void) l•••k(fd, 0, OL); 
/• ••t th• •iz• of the t••t region to zero (0) 
* to te•t until th• end of the file addr••• •pace. 
•I 

if (lockf(fd, F_TEST, OL) < 0) { 
•witch (errno) { 
ca•• EACCES: 
ca•• EAGAIN: 

(To.id) printf (•fil• i• locked b;y another proc•••\n•); 

} 

break; 
ca•• EBADF: 

/• bad argument pa•••d to lockf •/ 
perror(•lockf•); 
break; 

default: 
(void) printf(•lockf: unknown error <ld>\n•, errno); 
break; 

} 

When a process forks, the child receives a copy of the file descriptors that the 
parent has opened. The parent and child also share a common file pointer for 
each file. If the parent were to seek to a point in the file, the child's file pointer 
would also be at that location. 

This feature has important implications when using record locking. The current 
value of the file pointer is used as the reference for the offset of the beginning of 
the lock, as described by l_start, when using a l_whence value of 1. If both the 
parent and child process set locks on the same file, there is a possibility that a 
lock will be set using a file pointer that was reset by the other process. This 
problem appears in the lockf(3) function call as well and is a result of the 
/usrlgroup requirements for record locking. If forking is used in a record locking 
program, the child process should close and reopen the file if either locking 
method is used. This will result in the creation of a new and separate file pointer 
that can be manipulated without this problem occurring. 

Another solution is to use the fcntl system call with a l_whence value of 0 or 2. 
This makes the locking function atomic, so that even processes sharing file 
pointers can be locked without difficulty. 

MU43815PG/D2 7-12 12/01/87 



FILE AND RECORD LOCKING 

Deadlock Handling 
There is a certain level of deadlock detection/avoidance built into the record 
locking facility. This deadlock handling provides the same level of protection 
granted by the /usrlgroup standard lockf call. This deadlock detection is only valid 
for processes that are locking files or records on a single system. Deadlocks can 
only potentially occur when the system is about to put a record locking system 
call to sleep. A search is made for constraint loops of processes that would cause 
the system call to sleep indefinitely. If such a situation is found, the locking 
system call will fail and set errno to the deadlock error number. If a process 
wishes to avoid the use of the systems deadlock detection it should set its locks 
using F_GETLK instead of F_GETLKW. 

Selecting Advisory or Mandatory Locking 
The use of mandatory locking is not recommended for reasons that will be made 
clear in a subsequent section. Whether locks are enforced by the 110 system calls 
is determined at the time the calls are made and the state of the permissions on 
the file (see chmod(2)). For locks to be under mandatory enforcement, the file II 
must be a regular file with the set-group-ID bit on and the group execute 
permission off. If either condition fails, all record locks are advisory. 

MU43815PG/D2 7-13 12/01/87 



II 

FILE AND RECORD LOCKING 

Mandatory enforcement can be assured by the following code: 

#include <•7•/t7pe•.h> 
#include <•7•/•t&t.h> 

int mode; 
•truct •t&t buf; 

if (•t&t(filename, &buf) < 0) { 
perror(•program•); 
exit (2); 

} 

I• get currentl7 ••t mode •/ 
mode= bUf.•t..JDode; 
I• remove group execute permi••ion from mode •/ 
mode&• -cs_IEXEC>>3); 
I• ••t "••t group id bit" in mode •/ 
mode I= S_ISOID; 
if (chmod(filename, mode) < O) { 

perror(•program•); 
exit(2); 

} 

Files that are to be record locked should never have any type of execute 
permission set on them. This is because the operating system does not obey the 
record locking protocol when executing a file. 

The chmod(l) command can also be easily used to set a file to have mandatory 
locking. This can be done with the command: 

chmod +I filename 

The ls(l) command was also changed to show this setting when you ask for the 
long listing format: 

Is ·I filename 

causes the following to be printed. 

MU43815PG/D2 7-14 12/01/87 



FILE AND RECORD LOCKING 

-rw---1--- 1 &be other 1048678 Dec 3 11:44 filename 

Caveat Emptor-Mandatory Locking 
• Mandatory locking only protects those portions of a file that are locked. Other 

portions of the file that are not locked may be accessed according to normal 
operating system file permissions. 

• If multiple reads or writes are necessary for an atomic transaction, the process 
should explicitly lock all such pieces before any 110 begins. Thus advisory 
enforcement is sufficient for all programs that act in this way. 

• As stated earlier, arbitrary programs should not have unrestricted access 
permission to files that are important enough to record lock. 

• Advisory locking is more efficient because a record lock check does not have to II 
be performed for every J/O request. 

Record Locking and Future Releases of the Operating System 
Provisions have been made for file and record locking in a operating system 
environment. In such an environment the system on which the locking process 
resides may be remote from the system on which the file and record locks reside. 
In this way multiple processes on different systems may put locks on a single file 
that resides on one of these or yet another system. The record locks for a file 
reside on the system that maintains the file. It is also important to note that 
deadlock detection/avoidance is only determined by the record locks being held by 
and for a single system. Therefore, it is necessary that a process only hold record 
locks on a single system at any given time for the deadlock mechanism to be 
effective. If a process needs to maintain locks over several systems, it should 
avoid the sleep-when-blocked features of fcntl or lockf and that maintain its own 
deadlock detection. If the process uses the sleep-when-blocked feature, then a 
timeout mechanism should be provided by the process so that it does not hang 
waiting for a lock to be cleared. 

MU43815PG/D2 7-15 12/01/87 



II 


