
INTRO(S)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRO(S)

This section describes miscellaneous facilities such as macro packages,
character set tables, etc.

MU43814PR/D2 - 1 - 12/01/87 II

II

ASCil(S) ASOl(S)

NAME
ascii - map of ASCII character set

DESCRIPTION
ascii is a map of the ASOI character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

ICXX> rul 1001 sch 1002 stx l<XB etx um e:>t 1cm 811 1m; ad<. 1007 bel
1010 bs 1011 ht 1012 nl 1013 vt 1014 rp 1015 a 1016 so 1017 si
IC120 dle 102.1 dc1 1022 dc2 ICJ23 dc3 102.4 dc4 102.5 nak 1026 syn 10'0 etb
1000 can ICBl en ICB2 Slb um esc ICB4 fs ICBS gs 1036 rs ICB7 us
IOID sp 100 ! 100" 100# 1014 $ 1015% IOU> & 1()47 I

I ffiO (l(fil) I 052 • ICfil + 1004 I 1<55- 1006 • lfBl I
1000 1~11 1~2 1~3 1~4 ICXi5 5 l<Xl6 6 1057 7

ICJJO 8 1071 9 1072: 1073; 1074< 1075= 1076> 1077?
1100@ 1101A 1102. B llCBC 11040 11ffi E 11~F 1107G
1110H 1111 I 1112 J 1113K 1114 L 1115M 1116N 11170
112DP 1121Q 1122. R 1123 s 1124T 1125U 1126V 1127W
lll>X 1131 y 1132Z 1133(1134 \ 1135] 1136 A 1137 -
114() I 1141 a 1142 b 1143 c 1144d 1145 e 114.6 f 1147 g
lmlh 1151 i 1152 j 1153 k 11.54 l ll55m 11.56 n 1157 0

1100 p 1161 q 1162 r 1163 s 1164 t 116.5 u 11()6 v 1167w
1170 x 1171 y 1172 z 1173 { 1174 I 1175} 1176 - 1177 rel

00 rul I 01 sch 02. stx CB etx 04 e:>t a; 811 ~ad<. 07 bel
mbs I 00 ht CM nl <bvt Oc rp Ckia Oe so Of si
10 dle I 11 dcl 12 dc2 13 dc3 14 dc4 15nak 16 syn 17 etb
18 can I 19 en la Slb lb esc le fs ldgs le rs 1f us
::!) sp I 21 I 22 .. 23# 24 $ 25% 26& 'ZJ I

:l8 (I 29) 2a .. 2b+ 2c I al- 2e. 2f I
3) 0 I 31 1 32 2 33 3 344 35 5 36 6 '317
38 8 I 3'J 9 3a: :l> ; 3c< a:I= 3e> 3£ ?
40@ 141A 42 B 43C 440 45E 4.6 F 47G
48H I 49 I 4a J 4bK 4cL 4dM 4eN 4£0
SOP 151Q 52R 53 s 54T 55U 56V 57W
58X l~Y SaZ !b [5c \ 5:1] 5e A Sf_
(i) I 61 a 62 b 63 c 64d 6.5 e (i6 f 67g
(J8h I 69 i 6a j 6bk 6c l (xim 6en 6£ 0

.,/ ?Op 171q 7l r 73 8 74 t 75u 76v 77w
78 x 179y 7a z 7b { 7c I 7d} 7e • 7£ rel

MU43814PR/D2 -1- 12/01/87 II

II

ENVIRON(S) ENVIRON(S)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2)
when a process begins. By convention, these strings have the form
"name=value". The following names are used by various commands:

PATH The sequence of directory prefixes that sh{l), time(l), nice(l),
nohup(l), etc., apply in searching for a file known by an incom­
plete path name. The prefixes are separated by colons (:).
Login(l) sets PATH=:/bin:/usr/bin.

HOME Name of the user's login directory, set by login(l) from the pass­
word file passwd(4).

TERM The kind of terminal for which output is to be prepared. This
information is used by commands, such as mm{l) or tplot(lG),
which may exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is stan­
dard local time zone abbreviation, n is the difference in hours
from GMT, and zzz is the abbreviation for the daylight-saving local
time zone, if any; for example, ESTSEDT.

Further names may be placed in the environment by the export command
and "name=value" arguments in sh{l), or by exec(2). It is unwise to con­
flict with certain shell variables that are frequently exported by .profile
files: MAIL, PSt, PS2, IFS.

SEE ALSO
exec(2).
env(l), login(l), sh{l), nice(l), nohup(l), time(l), tplot(lG) in the User's
Reference Manual.

MU43814PR/D2 - 1 - 12/01/87 II

II

\

FCNTL(S) FCNTL(S)

NAME
fcntl - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The fcntl(2) function provides for control over open files. This include file
describes requests and arguments to fcntl and open(2).

I• Flag values accessible to open(2) and fcntl(2) •/
I• (The first three can only be set by open) •/
#define O_RDONLY 0
#define O_WRONLY 1

I• Non-blocking I/O •I
#define O_RDWR 2
#define O_NDELAY 04
#define O_APPEND 010
#define O_SYNC 020

I• append (writes guaranteed at the end) •/
I• synchronous write option •/

I• Flag values accessible only to open(2) •/
#define O_CREAT 00400 I• open with file create (uses third open arg)•/
#define O_TRUNC 01000 /• open with truncation •/
#define O_EXCL 02000 /•exclusive open•/

I• fcntl(2) requests •/
#define F _DUPFD 0
#define F_GETFD 1
#define F _SETFD 2
#define F_GETFL 3
#define F _SETFL 4
#define F_GETLK 5
#define F _SETI.K 6

I• Duplicate fildes •/
I• Get fildes flags •/
I• Set fildes flags •/
I• Get file flags •/
I• Set file flags •/
I• Get file lock •/
I• Set file lock •/
I• Set file lock and wait •/ #define F _SETI.KW 7

#define F_CHKFL 8 I• Check legality of file flag changes •/

MU43814PR/D2 -1- 12/01/87 II

II

FCNTL(S)

I* file segment locking control structure *I
struct flock {

}

short l_type;
short l_whence;
long l_start;
long l_len;
short l_sysid;
short l_pid;

I* if 0 then until EOF *I
I* returned with F _GETLK*/
I* returned with F _GETLK*/

I* file segment locking types *I
#define F _RDLCK 01 I* Read lock */
#define F_WRLCK 02 I* Write lock *I
#define F _UNLCK 03 I* Remove locks *I

SEE ALSO
fcntl(2), open(2).

MU43814PR/D2 - 2 -

FCNTL(S)

12/01/87

MATH(S) MATH(S)

NAME
math - math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various functions in the C Library
(Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M) error­
handling mechanisms, including the following constant used as an error­
return value:

HUGE The maximum value of a single-precision floating­
point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E

M_LOGlOE

M_LN2

M_LNlO

M_PI

M_PI_2

M_PI_4

M_l_PI

M_2_PI

M_2_SQRTPI

M_SQRT2

M_SQRT1_2

The base-2 logarithm of e.

The base-10 logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

'lT, the ratio of the circumference of a circle to its
diameter.

'lT/2.

'lT/4.

lfo.

21'11'.

21\/'TT.

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent "constants," see the
description of the <values.h> header file.

SEE ALSO
intro(3), matherr(3M), values(5).

MU43814PR/D2 - 1 - 12/01/87 II

II

PROF(5) PROF(5)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the same as a
function entry point. Execution of the mark will add to a counter for that
mark, and program-counter time spent will be accounted to the immedi­
ately preceding mark or to the function if there are no preceding marks
within the active function.

Name may be any combination of numbers or underscores. Each name in
a single compilation must be unique, but may be the same as any ordinary
program symbol.

For marks to be effective, the symbol MARK must be defined before the
header file <prof.h> is included. This may be defined by a preprocessor
directive as in the synopsis, or by a command line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MARK(name) statements may be left in the
source files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent
in each loop. Unless this example is compiled with MARK defined on the
command line, the marks are ignored.

#include <prof.h>
foo()
{

int i, j;

MARK(loopl);
for (i = O; i < 2000; i+ +) {

MU43814PR/D2 - 1 - 12101/87 II

II

PROF(S)

}

SEE ALSO

}
MARK(loop2);
for (j = O; j < 2000; j + +) {

}

prof(l), profil(2); monitor(3C).

MU43814PR/D2 -2-

PROF(S)

12/01/87

REGEXP(5) REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char •compile (instring, expbuf, endbuf, eof)
char •instring, •expbuf, •endbuf;
int eof;

int step (string, expbuf)
char •string, •expbuf;

extern char •locl, •loc2, •locs;

extern int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines
in the form of ed(l), defined in <regexp.h> . Programs such as ed(l),
sed(l), grep(l), bs(l), expr(l), etc., which perform regular expression
matching use this source file. In this way, only this file need be changed
to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include
this file must have the following five macros declared before the
"#include <regexp.h>" statement. These macros are used by the compile
routine.

GETC()

PEEKC()

MU43814PR/D2

Return the value of the next character in the regular
expression pattern. Successive calls to GETC()
should return successive characters of the regular
expression.

Return the next character in the regular expression.
Successive calls to PEEKC() should return the same
character [which should also be the next character
returned by GETC()].

- 1- 12/01/87 II

II

REGEXP(S)

UNGETC{c)

RETURN(pointer)

REGEXP(S)

Cause the argument c to be returned by the next call
to GETC() [and PEEKC()]. No more that one charac­
ter of pushback is ever needed and this character is
guaranteed to be the last character read by GETC().
The value of the macro UNGETC{c) is always
ignored.

This macro is used on normal exit of the compile rou­
tine. The value of the argument pointer is a pointer
to the character after the last character of the com­
piled regular expression. This is useful to programs
which have memory allocation to manage.

ERROR(val) This is the abnormal return from the compile routine.
The argument val is an error number (see table
below for meanings). This call should never return.

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\)imbalance.
43 Too many \(.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in\{ \}.
49 []imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine
but is useful for programs that pass down different pointers to input char­
acters. It is sometimes used in the INIT declaration (see below). Pro­
grams which call functions to input characters or have characters in an
external array can pass down a value of ((char*) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place
where the compiled regular expression will be placed.

MU43814PR/D2 -2- 12/01/87

REGEXP(S) REGEXP(S)

The parameter endbuf is one more than the highest address where the
compiled regular expression may be placed. If the compiled expression
cannot fit in (endbuf-expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular
expression. For example, in ed(l), this character is usually a/.

Each program that includes this file must have a #define statement for
INIT. This definition will be placed right after the declaration for the func­
tion compile and the opening curly brace ({). It is used for dependent
declarations and initializations. Most often it is used to set a register vari­
able to point the beginning of the regular expression so that this register
variable can be used in the declarations for GETC(), PEEKC() and
UNGETC(). Otherwise it can be used to declare external variables that
might be used by GETC(), PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expres­
sion matching, one of which is the function step. The call to step is as fol­
lows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which
was obtained by a call of the function compile.

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match,
two external character pointers are set as a side effect to the call to step.
The variable set in step is locl . This is a pointer to the first character that
matched the regular expression. The variable loc2, which is set by the
function advance, points to the character after the last character that
matches the regular expression. Thus if the regular expression matches
the entire line, loc1 will point to the first character of string and loc2 will
point to the null at the end of string.

Step uses the external variable circf which is set by compile if the regular
expression begins with A. If this is set then step will try to match the regu­
lar expression to the beginning of the string only. If more than one regu­
lar expression is to be compiled before the first is executed the value of
circf should be saved for each compiled expression and circf should be set
to that saved value before each call to step.

MU43814PR/D2 -3- 12/01/87 II

II

REGEXP(S) REGEXP(5)

The function advance is called from step with the same arguments as step.
The purpose of step is to step through the string argument and call advance
until advance returns non-zero indicating a match or until the end of string
is reached. If one wants to constrain string to the beginning of the line in
all cases, step need not be called; simply call advance.

When advance encounters a • or \{ \} sequence in the regular expression,
it will advance its pointer to the string to be matched as far as possible
and will recursively call itself trying to match the rest of the string to the
rest of the regular expression. As long as there is no match, advance will
back up along the string until it finds a match or reaches the point in the
string that initially matched the * or \{ \}. It is sometimes desirable to
stop this backing up before the initial point in the string is reached. If the
external character pointer locs is equal to the point in the string at some­
time during the backing up process, advance will break out of the loop that
backs up and will return zero. This is used by ed(l) and sed(l) for substi­
tutions done globally (not just the first occurrence, but the whole line) so,
for example, expressions like s/y•//g do not loop forever.

The additional external variables sed and nbra are used for special pur­
poses.

EXAMPLES
The following is an example of how the regular expression macros and
calls look from grep(l):

#define INIT
#define GETC{)
#define PEEKC{)
#define UNGETC{c)
#define RETURN(c)
#define ERROR{c)

#include <regexp.h>

register char *Sp = instring;
(*sp++)
(*sp)
(-sp)
return;
regerr()

(void) compile(*argv, expbuf, &expbuf[ESIZE], '\O');

SEE ALSO

if (step(linebuf, expbuf))
succeed();

ed(l), expr{l), grep(l), sed{l) in the User's Reference Manual.

MU43814PR/D2 -4- 12/01/87

STAT(S)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

STAT(S)

The system calls stat and fstat return data whose structure is defined by
this include file. The encoding of the field st_mode is defined in this file
also.

Structure of the result of stat

struct stat
{

};

dev_t
us ho rt
us ho rt
short
us ho rt
us ho rt
dev_t
off_t
time_t
time_t
time_t

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st__gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

#define S_IFMT 0170000 f * type of file *I
#define S_IFDIR 0040000 I* directory *I
#define S_IFCHR 0020000 I* character special */
#define S_IFBLK 0060000 I* block special */
#define S_IFREG 0100000 I* regular */
#define S_IFIFO 0010000 I* fifo */
#define S_ISUID 04000 I* set user id on execution *I
#define S_ISGID 02000 I* set group id on execution *I
#define S_ISVTX 01000 I* save swapped text even after use */
#define S_IREAD 00400 /* read permission, owner *I
#define S_IWRITE 00200 I* write permission, owner *I
#define S_IEXEC 00100 I* execute/search permission, owner *I
#define S_ENFMT S_ISGID /* record locking enforcement flag */

MU43814PR/D2 - 1 - 12/01187 II

II

STAT{S)

#define S_IRWXU 00700
#define S_IRUSR 00400
#define S_IWUSR 00200
#define S_IXUSR 00100
#define S_IRWXG 00070
#define S_IRGRP 00040
#define S_IWGRP 00020
#define S_IXGRP 00010
#define S_IRWXO 00007
#define S_IROTH 00004
#define S_IWOTH 00002
#define S_IXOTH 00001

SEE ALSO
stat(2), types(S).

MU43814PR/D2

I• read,write, execute: owner•/
I• read permission: owner •/
I• write permission: owner •/
I• execute permission: owner•/
I• read, write, execute: group •/
I• read permission: group •/
I• write permission: group •/
I• execute permission: group •/
I• read, write, execute: other •/
I• read permission: other •/
I• write permission: other •/
I• execute permission: other •/

-2-

STAT{S)

12/01/87

TERM(S) TERM(S)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., man{l), tabs(l), tput(l),
vi(l) and curses(3X)) and are maintained as part of the shell environment
in the environment variable TERM (see sh(l), profile(4), and environ(5)).

Entries in terminfo(4) source files consist of a number of comma-separated
fields. (To obtain the source description for a terminal, use the -I option
of infocmp(lM).) White space after each comma is ignored. The first line
of each terminal description in the terminfo(4) database gives the names by
which terminfo(4) knows the terminal, separated by bar (I) characters.
The first name given is the most common abbreviation for the terminal
(this is the one to use to set the environment variable TERMINFO in
$HOMEl.profile; see profile(4)), the last name given should be a long name
fully identifying the terminal, and all others are understood as synonyms
for the terminal name. All names but the last should contain no blanks
and must be unique in the first 14 characters; the last name may contain
blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen
using the following conventions. The particular piece of hardware making
up the terminal should have a root name chosen, for example, for the
VTlOO terminal, vtlOO. This name should not contain hyphens, except
that synonyms may be chosen that do not conflict with other names. Up
to 8 characters, chosen from [a-z0-9), make up a basic terminal name.
Names should generally be based on original vendors, rather than local
distributors. A terminal acquired from one vendor should not have more
than one distinct basic name. Terminal su~models, operational modes
that the hardware can be in, or user preferences, should be indicated by
appending a hyphen and an indicator of the mode. Thus, a VTlOO termi­
nal in 132 column mode would be vtlOO-w. The following suffixes should
be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) att4425-w
-am With auto. margins (usually default) vtlOO-am
-nam Without automatic margins vtlOO-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) clOO-na
-np Number of pages of memory c100-4p
-rv Reverse video att4415-rv

MU43814PR/D2 - 1 - 12101/87 II

II

TERM(S) TERM(S)

To avoid conflicts with the naming conventions used in describing the dif­
ferent modes of a terminal (e.g., -w), it is recommended that a terminal's
root name not contain hyphens. Further, it is good practice to make all
terminal names used in the terminfo(4) database unique. Terminal entries
that are present only for inclusion in other entries via the use= facilities
should have a'+' in their name.

Some of the known terminal names may include the following (for a com­
plete list, type: ls -C /usr/lib/terminfo/?):

155 Motorola EXORterm 155
2621,hp2621 Hewlett-Packard 2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640,hp2640 Hewlett-Packard 2640 series
2645,hp2645 Hewlett-Packard 2645 series
3270 IBM Model 3270
33,tty33 AT&T Teletype Model 33 KSR
35,tty35 AT&T Teletype Model 35 KSR
37,tty37 AT&T Teletype Model 37 KSR
4000a Trendata 4000a
4014,tek4014 TEKTRONIX 4014
40,tty40 AT&T Teletype Dataspeed 40/2
43,tty43 AT&T Teletype Model 43 KSR
450 DASI 450 (same as Diablo 1620)
450-12 DASI 450 in 12-pitch mode
735,ti Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

line-feed and other special escape sequences
hp Hewlett-Packard (same as 2645)
Ip generic name for a line printer
sync generic name for synchronous Teletype Model

4540-compatible terminals
vtlOO DEC VT100

Commands whose behavior depends on the type of terminal should
accept arguments of the form -Tterm where term is one of the names
given above; if no such argument is present, such commands should
obtain the terminal type from the environment variable TERM, which, in
tum, should contain term.

MU43814PR/D2 - 2 - 12/01/87

TERM(S) TERM(S)

FILES
/usr/lib/terminfo/?/• compiled terminal description database

SEE ALSO
curses(3X), profile(4), terminfo(4), environ(S).
man(l), sh(l), stty(l), tabs(l), tput(l), tplot(lG), vi(l) in the User's Refer­
ence Manual.

NOTES

infocmp(lM) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

Not all programs follow the above naming conventions.

MU43814PR/D2 - 3 - 12/01/87 II

II

TYPES(S) TYPES(S)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in the operating system
code; some data of these types are accessible to user code:

typedef struct {int r[l];} *physadr;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_t[lO];
typedef short dev _t;
typedef long off_t;
typedef long paddr_t;
typedef int key _t;
typedef unsigned char use_t;
typedef short sysid_t;
typedef short index_t;
typedef short lock_t;
typedef unsigned int size_t;

The form daddr _t is used for disk addresses except in an i-node on disk,
see fs(4). Times are encoded in seconds since 00:00:00 GMT, January 1,
1970. The major and minor parts of a device code specify kind and unit
number of a device and are installation-dependent. Offsets are measured
in bytes from the beginning of a file. The label_t variables are used to
save the processor state while another process is running.

SEE ALSO
fs(4).

MU43814PR/D2 - 1 - 12/01/87

VALUES(S) VALUES(S)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined for
particular processor architectures.

The model assumed for integers is binary representation (one's or two's
complement), where the sign is represented by the value of the high-order
bit.

BITS(type)

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

The number of bits in a specified type (e.g., int).

The value of a short integer with only the high­
order bit set (in most implementations, Ox8000).

The value of a long integer with only the high-order
bit set (in most implementations, Ox80000000).

The value of a regular integer with only the high­
order bit set (usually the same as HIBITS or HIBITL).

The maximum value of a signed short integer (in
most implementations, Ox7FFF - 32767).

The maximum value of a signed long integer (in
most implementations, Ox7FFFFFFF = 2147483647).

MAXINT The maximum value of a signed regular integer
(usually the same as MAXSHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision
floating-point number, and its natural
logarithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double­
precision floating-point number, and its
natural logarithm.

MINFLOAT,LN_MINFLOAT

MU43814PR/D2

The minimum positive value of a single­
precision floating-point number, and its
natural logarithm.

- 1- 12/01/87 II

II

VALUES(5) VALUES(5)

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a
double-precision floating-point number,
and its natural logarithm.

FSIGNIF

DSIGNIF

SEE ALSO
intro(3), math(5).

MU43814PR/D2

The number of significant bits in the mantissa of a
single-precision floating-point number.

The number of significant bits in the mantissa of a
double-precision floating-point number.

- 2 - 12/01/87

VARARGS(S) VARARGS(S)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

va_alist

va_dcl

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable argu­
ment lists to be written. Routines that have variable argument lists [such
as printf(3S)] but do not use varargs are inherently nonportable, as dif­
ferent machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for vaJZlist. No semicolon should follow va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. Type is
the type the argument is expected to be. Different types can be mixed,
but it is up to the routine to know what type of argument is expected, as
it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start . . . va_end, are possible.

EXAMPLE
This example is a possible implementation of execl(2).

#include <varargs.h>
#define MAXARGS 100

I• execl is called by
execl(file, argl, arg2, ... , (char •)O);

MU43814PR/D2 - 1 - 12/01/87 II

II

VARARGS(S) VARARGS(5)

*I
execl(va_alist)
va_dcl
{

}

va_list ap;
char *file;
char *args[MAXARGS];
int argno = O;

va_start(ap);
file = va_arg(ap, char*);
while ((args[argno+ +] = va_arg(ap, char*)) != (char *)O)

va_end(ap);
return execv(file, args);

SEE ALSO

NOTES

exec(2), printf(3S), vprintf(3S).

It is up to the calling routine to specify how many arguments there are,
since it is not always possible to determine this from the stack frame. For
example, execl is passed a zero pointer to signal the end of the list. Print/
can tell how many arguments are there by the format.
It is non-portable to specify a second argument of char, short, or float to
va_arg, since arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float argu­
ments to double before passing them to a function.

MU43814PR/D2 - 2 - 12/01/87

