—

Sh RN
AAN g e e iy, ey e 17 e
@\@ ST EIRCIL 4 M68KVSGM/D1

VME/10
Microcomputer System
Command and Graphics Primitives
Reference Manual

@%@%4
e

i
s

F

o e
e

s

IR

QUALITY e PEOPLE ¢ PERFORMANCE

M68KVSGM/D1

NOVEMBER 1983

WE/10
MICROCOMPUTER SYSTEM
COMMAND AND GRAPHICS PRIMITIVES

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

VERSAdos and VME/10 are trademarks of Motorola Inc.

First Kition

Copyright 1983 by Motorola Inc.

PREFACE

This reference manual (M68KVS@/D1l) and source code on the VME/10 Winchester
drive is supplied for the sole purpose of familiarizing you with the graphics
capabilities of the VME/10 System. The source code was developed by Motorola
Inc. for internal use, such as product testing and writing of demonstration
programs for trade shows and other customer presentations. This package is
being given to you, the VME/10 Microcomputer System user, for your use and is
not to be considered a product from Motorola Inc. and, as such, will not be
supported.

The proposed graphics software standards are currently being evaluated by
Motorola Inc. The user is cautioned not to expect compatibility of the enclosed
source program with future graphics packages or operating systems offered as
products by Motorola Inc.

Suggestions and recommendations regarding the formation of graphics essentials
will be appreciated and should be addressed to:

Motorola Microsystems
2900 S. Diablo Way
Tempe, AZ 85282
Attn: Gary Hughes

Included on the Winchester drive under user 1, Catalog GRAPHICS, are
approximately 50 files. A description of these files follows:

SERVER.LO - This is a graphics server which operates in the background
mode under VERSAdos. It is invoked by typing @QSERVER on the
command line. Several programs demonstrating graphics on the
VME/10 may now be run. This server may be terminated by
logging off, by depressing the BREAK key, or by giving the
VERSAdos command TERM SERV. The graphics server must be
invoked in the background mode before executing DEMO,
EXAMPLE]l, EXAMPLE2, or EXAMPLE3.

DEMO.LO - This is a program, complete with a menu, which allows the user
to select various graphics demonstration programs. The
graphics server must be running as a background task before
invoking this program. The user must also be logged in under
user 1, with the default catalog GRAPHICS, for DEMO to work
properly.

EXAMPLE1l.SA)

EXAMPLEl1.LO - This is a very short and simple example of how to write a
program to run with the graphics server supplied. It draws
and fills a small circle in the center of the display.

EXAMPLE2.SA

EXAMPLE2.LO - This is another example of a program using the graphics

server. It uses scaling and rotation.

EXAMPLE3 .SA

EXAMPLE3.LO - This program draws a filled triangle, rotates it, and uses the
exclusive-OR attribute. An assembly language subroutine is
called from the graphics primitive level.

SERVEQU.SA

SERVER1.SA

SERVERZ2.SA

SERVER3.SA

SERVER4 .SA ‘

SERVER5.SA - These files comprise the whole source to the graphics server.
They are assembled and linked by the use of a chain file
SERVER.CF.

GOFF.SA

GOFF.LO - This is a utility used to turn off the high-resolution graphics
mode when using the server and an application program. It is
useful in restoring the display to normal character mode
without the necessity of rebooting the VME/10.

GRFEQU.SA - is an equate file useful in assembling application programs
using the graphics server.

S0 suffix files are programs called by the DEMO.LO program. Most are used
in function key F1 demo.

PO suffix files are programs called by the DEMO.LO program.

PX suffix files are bitmap data files used in the DEMO.LO program for the
two "pictures" and the 68000 logo (1 pixel per nibble).

1.1

1.2

1.3
1.3.1
1.3.2
1.3.3
l.4
l.4.1
1.4.1.1
l.4.1.2
1.4.2
1.4.2.1
1.4.2.2
1.4.2.3
1.4.3
1.4.3.1
1.4.3.2
1.4.3.2
1.4.3.2
1.4.3.2
1.4.3.2
1.4.3.2
1.4.3.2
1.4.3.2
1.4.3.2
1.4.4
1.4.4.1
1.4.4.2
1.4.4.3
1.5
1.5.1
1.5.2
1.5.3
1.6
1.6.1
1l.6.2
1.7

CHAPTER 2

OV U i W N

NNDNDNMDMDNDNDNDNDDNDDND
* o L] e o e e o

e o L N L]

N wN -

INTRODUCTION

TABLE OF CONTENTS

GRAPHICS DRIVER DESCRIPTION

PHILOSOPHY . ceececccceccccccccscccsoscocccccccsscsnsccnsccs
OVERVIEW (eccoeececacscscossssscssssnssocsssssssscssrssnssssscs
PrimitivVeS ceeveeeceoessocssecsssessssssssccsssossonssne
Display Data FOIMAtS cecessesoccccssscsccccsasscccsssssss

Scaling

STRUCTURE v eecescocccscccccsscscscssccssscsssscsscscssscsssssccsosnse
Master CONtrOl Ar€a ..ceeeccceccssccsassaccsssscsacccsnns
EXror AQATYESS ceeeeessescssesncossssssssssssssasasssns
Display StatuUS cececescccscccssccssscsssscsssaasssanss
Command Channel

L]
OO W

Command Word

® 6000000000000 00c000000000000000OCOCCSIOGTTDLIOE

Command StatuS eeeeeecesceecccccccsscsccassssccccsssane
Command Program Area

Display Segments

ooooooooooooo

MD/DSPLY and Status Words cescccsssssssessassssncanas
Display AttribUteS seieeeeeccsscsssccscascosscocccsnses

Scale Factor eeeecsces cecceccscesscsessssssessans

Xand Y Center .cceececeececcsacccsccssscssscscsscsscs

Color © 000 0000 00000000 0OLGCONOOEOOCEOCOEOROOCEOEOREOTEOIORNROEOROROECEOEOIEEOEOES

Color Fill

© 9 © 0000000000000 0000000000000000000000000

character Size © 000000000000 e 0000000000000 000000

Mask

© 000 00000000000 00000000000000000000000006000000e0

CESP POINLEY ceeveecoccccecscssasscssoccsssscnns cees

Count Word
Option Ar@a .seeecececescscsssssssscscnnnnes .

eoeeveevsocoece

SYHIbOl Table @000 e 0s00000000000000000000000000000000e
Bit-Map Area 9 00 00000000000 PPPELPLEILOIOSICSEOIPRPOIOIOPIOIOIOIOICOTOEDPDPOOTS

Common Subroutine Area

OPERATION ® ©® 0 8 500 0O 00 OO OO0 S OSSO 0O SN0 E OO0 0 OO0 S eSS EE e
GraphiCS SEIVEY seecesscscosassssccssncsssasscanscasacsas

Commands

GraphiCS e 000 eecer00000000000000000R00RPCOOROIOROGOEOCEOIEOEEOEOPOCSN

COMMAND CHANNEL PROTOCOL «evsceecsscescccosaccossasacacanae
Access by the Application Program ..ecccsssscsccscsscsnse
Access by the Graphics DIAIVEr seeeecceccssscscscsssssoans
MEDIA CONTENTS cceeececcccecsccessccccososcscscsaccssascscncssons

USER SOFTWARE IMPLEMENTATION

INTROD(ICTION © 0 0000000000000 0000000000000000000000000000 00

DECLARE AND EQUATE STATmENTS ® © 60 0 05 00" 00O OO OO OL eSS PSS NOS OO
CREATE DISPLAY SEGMENT CONTROL PACKETS .ccccceccccccccccss
CLOSED PRIMITIVE SEmENTS ® 0 0 000005000 PO O PO O SO SO S N OSSN

%g[nent Creation @00 00ceecss 0000000000000 0000R 00RO

Single Segl'llent E}(ecution @0 0000000000000 000000060000v0s0e

All Segment EXeCULIiON .eceeerscsssscccsscssssccsassssasne
CREATE BLINK SEGMENTS tcceccccescccscosccosnsccssacsscscssnna
CONTINUOUS EXECUTION SEGMENTS ..ccccccscscasccaccccsscnsana
Open Continuous Execution Segmentscececcecsccsccces
Execute Continuous Execution SegmentsS ..ceeeccscccccccces

Page

1-11
1-12
1-13
1-13
1-13
1-14

OOV W

TABLE OF CONTENTS (cont'd)
Page

APPENDIXA CWANDPRIMITIVES ® ® 0 0 0000 OO OO PO S PO OO PSS OO LSOO SN eN e A_l
APPENDIX B GRAPHIC PRIMITIVES .cccccececcccccccscccsccccsccscsessssss B-1

LIST OF ILLUSTRATIONS

FIGURE 1-1. Communications Interface Shared RAM MemOry Map eeeeceeeseee 1-4
1-2. Display Segment MEMOrY MApP seceececesscssscssscccsssccssesss 1-6

ii

CHAPTER 1

GRAPHICS DRIVER DESCRIPTION

1.1 INTRODUCTION

The graphics driver interprets commands and displays data placed in the shared
RAM area by the application program to produce full color/monochrome
presentations on the screen of a color/monochrome CRT monitor. This chapter
provides a thorough description of the driver. Throughout this discussion, all
references to addresses are in hexadecimal (S$) and are relative to the base
address of the shared RAM communications interface.

1.2 PHILOSOPHY

Most graphic CRT displays are stand-alone systems using a serial communication
link to the application program. Because of this, most features of the display
are designed-in and cannot be readily altered by the user. The display update
rate is limited by the speed of the serial communications channel. This
approach offers a certain ease-of-use in some applications, many require a
significant software effort to implement, while others cannot be realized at
all.

In order to provide the greatest application flexibility with the least amount
of required hardware and/or software effort, a user-oriented display system
should combine all of the alphanumeric and graphic control hardware found in
most graphic displays with a highly flexible software package capable of direct
intervention by the user via the application program. A display system with
this degree of flexibility would impose strict disciplines on user-prepared
software. To reduce this burden while still providing powerful software
features, the control software must have a regular structure with a well defined
user interface that is easy to use, extend, and debug.

Many common graphic figures (such as lines, circles, arcs, and rectangles)
should be readily available for the user program to position and display at any
location on the screen. Figures should be capable of being outlined or shaded
in any color or size by simply identifying an attribute for each.

1.3 OVERVIEW

The graphics driver incorporates a straightforward means of providing the
application program with overriding control of graphics operation. The driver
will accept commands ard graphic controls from the application program via the
communications interface.

1.3.1 Primitives
Primitives are machine code routines used to perform specific control and
display tasks. Residing within the graphics driver are predefined primitives

that permit the application program to specify by primitive number each task to
be performed.

1-1

Two classifications of primitives are used -- command and graphic. Generally,
command primitives are used to control the operation of the display system
(i.e., system configuration, operational status, define display segments, etc.),
while graphic primitives describe the character or graphic figure for display
(i.e., alphanumerics, rectangles, figure placement, etc.).

Command primitives are specified to the driver by the application program via
the command channel portion of the communications interface.

Graphic primitives are specified to the driver by a number stored in the display
segment. This primitive number is interpreted by a graphic interpreter to
produce the character or figure on the display screen. A control packet is also
used in conjunction with each display segment to determine the attributes of the
display produced by that segment (i.e., scale, color, size, etc.).

1.3.2 Display Data Formats

Either of two data formats can be used to store display data in memory --
bit-map and coordinate. The bit-map format permits the user to specify the
on/off state of each individual pixel on the screen, and is particularly useful
in producing special, fine-grain displays. The coordinate format permits the
user to express any location on the screen in terms of its X (horizontal) and Y
(vertical) coordinate. Coordinate values may be either positive or negative
integer numbers expressed in absolute or relative terms. Absolute coordinates
specify an actual pixel location using X and Y values, whereas relative
coordinates specify the X and Y displacement between the current coordinate and
the next location. Positive X values indicate all locations to the right of the
current position, while positive Y values indicate all locations above.
Negative X and Y values indicate all locations left and below the current
position, respectively.

When the driver is initialized, the point at which the X and Y axis intersect
(0,0) is located in the lower left-hand side of the display screen. If this
point of intersection is not changed, then any X and Y position can be expressed
in absolute terms using only positive integer numbers. However, if the point of
intersection (0,0) is changed (i.e., moved to the center of the screen), then
both positive and negative integer numbers will be needed to specify every
screen location. Positive and negative values are also used when specifying
coordinates in relative terms.

Due to the large number of pixels on the display screen (800 x 600 maximum), two
16-bit binary numbers are required to define a primitive requiring X and Y
coordinates. These coordinates are each represented by a single word (l6-bit)
two's complement number. Since the maximum range capable of being defined by
16-bits (0 to 65,535) exceeds the maximum range of the display, the
responsibility for limiting the range lies with the user (no hardware exists to
limit this parameter). If the value is exceeded, two faults can occur:

a. An excessive X value will wrap-around, causing a change in the Y value.
b. An excessive Y value or an excessive X + Y value can cause an address to

be generated that will be outside of the display memory range, resulting
in generation of a bus-trap error.

1.3.3 Scaling

Scaling is the process used to control the size of the displayed figure. When
the driver is initialized, the 0,0 coordinate is placed at the lower left-hand
corner of the screen, and no enlargement or reduction in size will be performed.
This size is referred to as Scale 0 and permits the X and Y coordinates of any
location on the screen to be expressed with two 16-bit 2's complement words,
using only the ten least significant bits and the sign. Although Scale 0 offers
the shortest processing time, both the X and Y coordinate values may be exceeded
by the programmer. When specifying coordinates in absolute values, the user can
easily prevent the limits from being exceeded. When relative values are used,
preventing the display limits from being exceeded becomes more difficult, since
the point being related to moves about the screen.

Scale 1 is software selectable by the user and provides X and Y coordinates
having 15 significant bits instead of the ten bits of Scale 0. This permits the
application program to operate with an external peripheral device (such as a
plotter) capable of using full 15-bit X and Y coordinate resolution, while still
maintaining the 10-bit resolution requirements of the CRT display. Instead of
using the ten least significant bits of the word (as done in Scale 0), Scale 1
uses the ten most significant bits of the word (excluding sign bit, which
occupies the most significant bit position) for CRT display operations. This
permits the lower six bits to be used for increased X and Y resolution. Before
the driver processes coordinates with Scale 1 for CRT display, the lower six
bits are removed amd the upper ten bits are shifted right six places for
standard coordinate processing (as performed for Scale 0). The original
user-specified coordinates are not changed, thus permitting those coordinates to
be accessed by a user-prepared peripheral driver routine (such as a plotter).
Because of these shift operations, Scale 1 specified coordinates require a
longer time to process than coordinates using Scale 0. Note that the screen
limits may still be exceeded using Scale 1.

The driver can also provide Full Scaling of the display (enlarge and reduce) by
using the multiply instruction of the resident MC68000 processor to perform a
full 2's complement multiply of the coordinate values by a user-specified scale
factor (scale factor must be a positive number). This results in a 32-bit sum
in which the lower ten bits of the upper word represent the scaled coordinates.
The lower word is discarded. This scaled coordinate is then used in place of
the coordinate originally specified in the display segment, thus permitting
scaling up or down in size. Once again, it is possible to exceed the screen
limits if the Large scale factor is used. The following formula provides the
means of calculating Full Scale coordinate positions.

Coordinate Number X Scale Factor

65,536 = Scaled Coordinate

NOTE

Scaling only applies to relative values.
Absolute values will not be scaled.

1.4 STRUCTURE

The communications interface is divided into four main areas, each providing a

specific system function (refer to Figure 1-1).

|<~~16-BIT WORD------- >|
MASTER ERROR ADDRESS $00000 - $00001
CONTROL - —]
AREA DISPLAY STATUS $00002 - $00003
COMMAND WORD $00004 - $00005
—— -
COMMAND STATUS $00006 - $00007
COMMAND — —-1
AREA $00008
COMMAND PROGRAM '
AREA l
DISPLAY DISPLAY SEGMENT
SEQMENTS
0-63 DISPLAY SEGVENT
OPTION AREA
FIGURE 1-1. Communications Interface Shared RAM Memory Map

1l.4.1 Master Control Area

The master control area provides the means of overriding driver operation. It
contains two words, which are described in the following paragraphs.

1.4.1.1 Error Address. This word will contain the address (relative to the
start of the shared segment) of any error detected during command or graphics
primitives execution.

1.4.1.2 Display Status. If an error occurs during execution of any display
segment, a non-zero value will be stored in the display status word (00002).
After the error in the display segment has been found and corrected, the display
status word MUST be reset to a logic 0 value to permit further execution of
display segments.

1l.4.2 Command Area

All commards issued by the application program to the driver are received
through the command area and processed by the command processor. The command
area consists of a command word, a cammand status, and a command program area.
The following paragraphs describe each of these sections.

1l.4.2.1 Command Word. During polling, the command processor checks the commard
word (00004 and 00005) for a non-zero value. When a non-zero is fourd,
execution control is passed to the command interpreter to initiate
interpretation and execution of the commands in the command program area.

1.4.2.2 Command Status. The command status word (00006 and 00007) indicates
whether or not command primitives in the command program area are being
executed. If the command status word contains a logic 1 value, then cammand
primitives are NOT being executed and the command program area can be accessed
by the application program. If the command status word is cleared to a logic 0
value, then previous command primitives are still being executed and the command
program area is not yet available. After execution of all command primitives, a
logic 1 value is set into the command status word. If an error occurred during
primitive execution, the most significant bit of the command status word will be
set to a logic 1 (negative value).

1.4.2.3 Command Program Area. The application program enters commard
primitives in the command program area (00008 and Up) for interpretation and
execution by the commard interpreter. These command primitives control the
sequence of execution, the configuration of the shared RAM communications
interface, and the creation and execution of display segments. Unlike other
command words, the size of the command program area is determined by the number
of command primitives used by the application program. A thorough description
of each predefined command primitive within the graphics driver can be found in
Appendix A.

1.4.3 Display Segments

Display segments are the control structure used by the application program to
display graphic figures and alphanumeric characters on the CRT screen. Up to 64
display segments can be specified by the application program, with each having
its own control packet and program area containing graphic primitives (refer to
Figure 1-2).

1-5

I {==16-BIT WORD——===—= >

[CMD/DSPLY

- — —

STATUS WORD

DISPLAY ATTRIBUTES

DISPLAY SEGMENT
CONTROL PACKET <

Y

DISPLAY SEGMENT GRAPHIC
PROGRAM AREA < PRIMITIVES

.

FIGURE 1-2. Display Segment Memory Map

Display segment control packets consist of 32 words (16 bits each) containing
segment control flags, segment type, and segment attributes. A display segment
is identified to the driver by the application program's use of command
primitives issued through the command area. Four different types of display
segments can be specified:

a. Visible

b. Non-visible

c. Blink

d. Continuous execution (as new primitives are added)

The following paragraphs describe each of the control words and their offset
from the starting address of the display segment used by the application
program. Additional allocations have been reserved within the control packet
for parameters supplied by the driver. These allocations are not identified in
this manual.

1-6

1.4.3.1 OMD/DSPLY and Status Words. The MD/DSPLY word (display segment
address + 0) and the status word (display segment address + 2) perform two
different functions, depending on the type of display segment defined.

When a continuous execution segment has been specified (indicating all graphic
primitives within this display segment are to be continuously executed), the
graphic processor interprets the (MD/DSPLY word and the status word as handshake
controls similar to those provided by the command word and command status word
in the commanmd channel. In this case, a zero value in the status word indicates
to the application program that graphic primitives within the display segment
program area are being executed and that additional primitives cannot be
accepted. Execution begins with the graphic primitive whose starting address is
stored in the CESP pointer (part of the display attributes). After all current
graphic primitives have been executed, the graphic processor stores a non-zero
value in the status word to indicate to the application program that additional
graphic primitives will be accepted. The application program may then store
these additional primitives into the display segment program area. After
completing this task, the application program must then set the CMD/DSPLY Word
to any non-zero value to indicate to the graphic processor that new graphic
primitives may be executed.

When continuous execution is not specified, the OMD/DSPLY word is interpreted as
being a visible/non-visible flag (non-zero = visible/0 = non-visible). If
non-visible, the graphic interpreter does not execute the graphic primitives in
the display segment program area. If visible, the interpreter will change the
status word to a zero value (indicating the display segment program area is in
use) ; will execute the graphic primitives within this display segment; and will
then set the status word back to a non-zero value to indicate completion. The
graphic processor DOES NOT change the MD/DSPLY word in the non-continuous
execution mode.

1.4.3.2 Display Attributes. Words within the display attributes area are used
to provide additional parameters for display primitives. Each of the attributes
that can be specified by the application program are described in the following
paragraphs in the order in which they must be specified.

1l.4.3.2.1 Scale Factor - The scale factor word (display segment address + 4)
provides the means by which the application program signifies to the driver
whether the original display segment coordinate values will be used or whether
the original values will be increased or reduced in size. When the scale factor
word contains a zero value, Scale 0 is selected and no scaling is performed.
When the scale factor contains a 1, Scale 1 is selected. When the scale factor
is any positive number greater than 1, full scaling operations are performed.
The scale factor may also be specified using the SCALEF graphic primitive. Once
the scale factor has been specified, it will not change until another SCALEF
primitive is encountered, or the scale factor word within the display segment
control packet is changed.

NOTE
Scaling only applies to relative values.

1.4.3.2.2 X and Y Center - The X and Y Center words (display segment address +
6 and +8, respectively) permit the application program to change the location of
the 0,0 coordinate to the coordinate specified by the values contained in the
words.

1-7

1.4.3.2.3 Color - The color word (display segment address + 10) permits the
application program to specify one of eight display colors used to draw
graphics figures. Color may also be specified using the COLOR graphic
primitive. Once the color has been specified, it will not change until another
COLOR primitive is encountered, or the color word within the display segment
control packet is changed.

1.4.3.2.4 Color Fill - The color fill word (display segment address + 12)
permits the application program to specify the color to be used to fill closed
figures. Color fill may also be specified using the FILL graphic primitive.
Once the color of the fill has been specified, it will not change until another
FILL primitive is encountered, or the color fill word within the display segment
control packet is changed.

1.4.3.2.5 Character Size - The character size word (display segment address +
14) allows alphanumeric display characters to be enlarged. Eight enlargement
ratios are available, from 1:1 through 1:8. The application program specifies
the size desired by storing a value (0 through 7, respectively) into the
character size word. Character size may also be specified using the CHSIZE
graphic primitive. Once the character size has been specified, it will not
change until another CHSIZE primitive is encountered, or the character size word
within the display segment control packet is changed.

1.4.3.2.6 Mask - The mask word (display segment address + 16) specifies the
bit-plane(s) to be written. The bit-plane(s) may also be specified using the
MASK graphic primitive. Once the bit-plane(s) has been specified, it will not
change until another MASK primitive is encountered, or the mask word within the
display segment ccontrol packet is changed.

000 = no bit-plane

001 = red bit-plane

010 = blue bit-plane

011 = red and blue bit-planes
100 = green bit-plane

101 = green and red bit-planes
110 = green and blue bit-planes
111 = all bit planes

1.4.3.2.7 CESP Pointer - The CESP pointer (display segment address + 18) is
used whenever the display segment is to be executed in the continuous execution
mode. When the OMD/DSPLY word is set to any non-zero value, the CESP pointer
must contain the starting address of the first graphic primitive to be executed
within a group of graphic primitives in the display segment program area. This
pointer (a 32-bit long word) can be changed by the application program to
identify any graphic primitive as the first to be executed.

1.4.3.2.8 Count Word - The count word (display segment address + 22) is used to
specify the blink rate for a blink display segment. To determine the proper
value, divide the desired blink rate by one-half second. For example, a count
word with value 1 yields a blink rate of one-half second, while a count word of
value 10 yields a blink rate of five seconds.

1.4.4 Option Area
The following areas within the communications interface are optionally used, as

determined by the graphic display software package in the application program.

l1.4.4.1 Symbol Table. The Symbol Table area is available to the user for
building special display symbol sets for use with the SYM graphic primitive.

l.4.4.2 Bit-Map Area. The bit-map Area permits the user to directly control
the color of any or all pixels within the display screen area. This is
particularly useful when specifying a special, high-resolution symbol (i.e,
logo, special title, etc.) for display.

1.4.4.3 Common Subroutine Area. The common subroutine area pemmits space for
user-prepared programs using common subroutines of primitives normally used to
define common display subpictures (pictures using less than the full display
area) . If these subpictures are prepared using relative X and Y coordinate
values, this subroutine of primitives can be used to display the subpicture in
multiple areas of the screen. The GJSR graphic primitive is used to call
subroutines in this area, while the GRTS graphic primitive is used to terminate
all subroutines in this area.

1.5 OPERATION

The following paragraphs provide an operational description of the graphics
driver.

1.5.1 Graphics Server

The VME/10 graphics server is structured as a VERSAdos server task. The server
is run as a background task and is invoked under VERSAdos by placing the
commercial "at" sign (@) before the server's name.

Example:

=@server

Note that the VERSAdos prompt returns with nothing apparent happening. Also
note that it is assumed (and vitally important) that no other user tasks are
active when the server is loaded. Communication between the application program
and the server is via TRAP #8 server calls and a shared segment. The type of
server call is placed into register DO.

The server may be terminated (that is, the task may be terminated) by =TERM SERV
or by the "break" key. It is terminated also by logging off.

Since the server task is loaded, there may not be enough memory remaining in the
system for other large programs to be loaded at the same time. Otherwise the
server may be left running in the background during a session.

The following are the calls which may be made to the graphics server:

Open server DO =0
AQ = size of shared segment
return DO = 0 normal
DO = 1 already open
DO = 2 video RAM not available
Close server DO = 1
return DO = 0 normal
DO = 3 invalid request
Execute graphics DO = 2
return DO = 0 normal
DO = 4 error in command execution
Request 100% DO = 3
duty cycle return no parameters
Request 50% DO = 4
duty cycle return no parameters

Note that the open server call will cause the VME/10 display to go into
high-resolution mode, and will enable the display of graphics. A subsequent
close server call will disable the display of graphics, and will return the
VME/10 display to normal. Therefore, it is highly recommended that after
displaying graphics, but before terminating the server, that a close server call
be made. Otherwise, the user may be left with the VME/10 display in
high-resolution mode and with graphics enabled.

The following is an example of the 68000 code required to open, execute, and
close the graphics server.

CLR.L DO Open graphics directive
MOVE.L #$1000,A0 Size of shared segment required for this
application
TRAP #8
BNE.S - ERROR
*
LEA PARBK,A0 Attach the segment for graphics command
MOVE.L #4,D0
TRAP #1
BNE.S ERROR
* .
LEA CMDS,A1 Move the commands to the segment
LEA (MDSEND,A2
LP1 MOVE.W (Al)+, (AO)+
MP.L Al ,A2
BNE.S LP1
*
MOVE.L $#2,D0 Execute the commands & primitives
TRAP #8
*
MOVE.L #1,D0 Close the graphics server
TRAP #8

1-10

EXIT MOVE.L #15,D0 Stop

TRAP #1

*

ERROR MOVE.L #14,D0 Error, abort this program
TRAP #1

*

* Graphics command & primitives

%*

CMDS DC.W 0,0,0,0 MASTER ETC.
DC.W OPENS,1 Open segment one
DC.L DSPS1-CMDS segment address
DC.W CLOSES,1 Close segment one
DC.W EXHECS,1 Execute segment
DC.W CEND End

*

* DISPLAY SEGMENT ONE

*

DSPS1 DC.W 1 COMMAND/DISPLAY
DC.W 0 STATUS
DC.W 0 SCALE FACTOR
DC.W 0,0 X,Y CENTER
DC.W 1 COLOR
DC.W 2 FILL
DC.W 0 CHARACTER SIZE
DC.W 7 MASK
DC.L 0 CESP
DC.W 0 COUNT WORD
DC.W 0,0,0,0 RESERVED
m.L 0,0,0,0,0,0,0,0

*

* ——-—- DISPLAY SEGMENT --——-

*
Graphics Primitives
DC.W PEND

*

CMDSEND EQU *

PARBK pc.L. 0,0,$20002000,'sVDM',0,0

1.5.2 Commands

When enabled by a TRAP #8 call with DO = 2 (execute), the command processor
polls the command channel Command Word to determine whether or not new commands
have been issued by the application program. If new commands are found (Command
Word = non-zero value), the command processor transfers execution control to the
command interpreter to interpret and execute the new command primitives. If the
command channel is not active, the command processor will then check for any
additional active display segments to be executed. If no active display
segments are found and none are currently being executed, the command processor
will repeat the polling process.

1-11

The driver maintains a bit representation of all segments currently ready to be
executed called an active list. The command processor checks this list and if a
segment is ready to be executed, execution control is transferred to the graphic
processor. If continuous execution is not specified, the corresponding bit in
the active list is cleared to logic 0. After all display segments have been
checked, the command processor will repeat the polling process.

Display segments have their own primitive interpreter with its own table of
primitives, called graphic primitives. These types of primitives are used to
describe a graphic figure to be drawn on the display screen. Each primitive
word consists of two parts: a code (lower byte) indicating the primitive type
and an attribute (upper byte).

ATTRIBUTE CODE

15 8 7 0

The code indicates the type of graphic operation -- DOT, MOVETO, DRAWTO, CIRCLE,
etc. The attribute describes additional modifiers to the primitive -- shading,
XOR figure to screen, 90 degree character rotation, absolute or relative of X,Y
coordinates, line pattern, etc. These modifiers are bit represented in the
upper byte as follows:

Bit 0-2 - Line Pattern (0-7, 0 = solid line)
Bit3 - 0
Bit 4 - Absolute = 0, Relative =1
Bit 5 - Character Rotation
(0 deg. = 0, 90 deg. = 1)
Bit 6 - XOR =1
Bit 7. - FILL =1

How these bits are mterpreted depends on the type of primitive. Thus, the FILL
bit is not valid in a MOVETO primitive because there is no figure to fill. Only
the absolute/relative bit is valid. for the MOVETO primitive. Appendix B
provides a complete description of all predeflned graphlc primitives ava11able
within the graphlcs driver.

When a display segment is executed by the graphic processor, all graphic
primitives within the program area are interpreted, with the corresponding
graphic routines used to produce the display data stored in the display memory
bit-planes. Since the bit-plane data is continuosly being sent to the CRT
monitor for display, the data in the bit-planes produces figures on the screen.

1.5.3 Graphics
Graphic operations are controlled by the graphic processor checking each display
segment for graphic primitives to execute. If the command word in the display

segment contains a non-zero value, the graphic interpreter executes the graphic
primitives within the display segment. .

1-12

1.6 COMMAND CHANNEL PROTOCOL

The following protocols are used by the driver and application program to avoid
contention during accesses of the cammand area (required for use with continuous
execution anmd blink segments).

1. 6.1

Access by the Application Program

The following steps indicate the sequence used by the application program to
access the command segment.

A.

1.6.2

Checks if the command program area in the command channel is currently
being used. If the command status word contains a logic 1 value, then
the commamd program area is NOT being used. If a zero value, it is in
use and is not yet available to the application program. If the command
status word is negative (most significant bit set to logic 1), an error
has occurred during processing of the previous command primitive.

Updates or changes command primitives in the command program area.

Clears the command status word in the command channel to a zero value to
indicate the channel is being used.

Sets the command word to any non-zero value. This causes the graphics
driver to begin interpreting the commands in the command program area.

Access by the Graphics Driver

The following steps indicate the sequence used by the driver to access the
command channel.

Q.

Checks the state of the command word before executing commands in the
Command Program Area. If the command word value is non-zero, execution
proceeds to step b. If zero, execution control is returned to the
command processor.

Clears the command word to a zero value and proceeds to interpret and
execute comnand primitives in the command program area.

Upon campleting a single execution of all command primitives in the
command program area, the command status word is set to a logic 1 value
if no errors were encountered. If an error occurred, an error code will
be stored ONLY in the commard status word with the most significant bit
set (negative sign).

Execution control is returned to the command processor to execute any
active display segments.

1-13

1.7 MEDIA CONTENTS

The software for the VME/lO graph1cs server is supphed in source form to perm1t
tailoring to specific appllcatlons.~- ‘It may be supplied as part of system
release on the Winchester dlsk in catalog “GRAPHICS“, or on a separate floppy
diskette. : , . .

The catalog contams the source code for the VME/lO graphlcs server, plus an
appllcation program usmg ‘the server. -

a.

SERVER - this program prov1des a graphlcs segment and pr1m1t1ves handler.
'I‘he modules that make up the server are:

1. SERVEQU SA - an equate flle used in the assembly of the other
- modules.

2. SERVERI. SA - the main program. It allocates memory and accepts
messages from application programs, dlrectlng their requests to
the actual graphics han:iler.

3. SERVER2.SA, SERVER3.SA, SERVER4.SA SERVER5.SA - these modules
contain the code to process the segment and graphics primitives.

4. SERVER.CF - a chain file that assembles and links the server.:
The server may be assembled and linked with the following:
=SERVER.CF
DEMO.LO - This is a program, complete with a menu, which allows the user
to select various graphics demonstration programs. The graphics server
must be running as .a background task before invoking this program. The

user must also be logged in under user 1, with the default catalog
GRAPHICS, for DEMO to work properly.

EXAMPLELl.SE - this program is a very simple application that uses several
different graphics primitives. It opens a single segment and executes
it. This program is assembled and linked with the following:

=ASM EXAMPLEl
=LINK EXAMPLE1

EXAMPLEL is then executed with the following:

- =@SERVER

=EXAMPLEL
Note that executing EXAMPLEl will leave the VME/10 display in
high-resolution mode and with graphics display erased. Use GOFF to
return the display to normal.

EXAMPLE2.SA, EXAMPLE3.SA - these are two other example programs which use
the graphics server. They are assembled and linked the same as EXAMPLEl.

1-14

e. GOFF.SA - This program is an application that simply closes the server,
thus disabling graphics display and returning the VME/10 display to
normal. This program is assembled and linked with the following:

=AM GOFF
=LINK GOFF

GOFF is then executed with the following:
=GOFF

Note that the execution of GOFF does not terminate the server. It only
closes the server, thus returning the display to normal.

f. GRFEQU.SA - A file of equates that may be included into graphics

applications programs. The equates are those for the graphics and
command primitives and their attributes.

1-15/1-16

CHAPTER 2

USER SOFTWARE IMPLEMENTATION

2.1 INTRODUCTION

This chapter provides examples of typical software modules that must be prepared
by the user to create and execute various types of command and display segments
as part of his graphic application package. Throughout these paragraphs, the
processor registers indicated herein are provided as examples of the type of
information needed to be specified prior to beginning execution:

A5 = Display Segment Starting Address
A6 = Starting Address of the Shared Segment
DO = Display Segment Number

2.2 DECLARE AND EQUATE STATEMENTS

Software programs contain a group of common names and descriptions usually
identified at the beginning of each program or module and referred to as
declaration and equate statements. - These statements permit the programmer to
allocate memory for program variables and to identify label names commonly used
throughout the program. The following examples provide three types of tables
used to allocate memory for display segment tables, command area offsets, and
display segment offsets. These tables are referenced throughout the examples
presented in this chapter and may also be incorporated in the user's program.

* DISPLAY SEGMENT TABLE

SEGTABLE EQU *
DC.W 0 COMMAND WORD
DC.W 1 STATUS WORD
DC.W 0 SCALE FACTOR
DC.W 0 X CENTER
DC.W 0 Y CENTER
DC.W 7 COLOR=WHITE
DC.W 7 FILL COLOR
DC.W 0 1:1 CHARACTER SIZE
DC.W 7 MASK-ALL COLORS ENABLED
DC.L - SEGTABLE+$40 CONTINUOUS EXECUTION POINTER
DC.W 2 BLINK RATE (1 SEC)

* COMMAND AREA OFFSET EQUATE TABLE

MASTER EQU" 0 MASTER WORD

DSPSTAT EQU +2 DISPLAY STATUS
OMDWD. EQU +4 COMMAND WORD
CMDSTAT EQU +6 COMMAND STATUS
CMDPROG EQU +8 COMMAND PROGRAM AREA

* DISPLAY SEQMENT OFFSET EQUATE TABLE

PCMD - EQU 0 COMMAND WORD

PSTAT EQU 2 STATUS WORD

SCALEF EQU 4 SCALE FACTOR

XCENTER EQU 6 X CENTER

YCENTER EQU 8 Y CENTER

COLOR EQU 10 COLOR

COLORFIL EQU 12 COLOR FILL(RATIO/SEC/PRI)

CHSIZE EQU 14 CHARACTER SIZE

MASK EQU 16 BIT-PLANE MASK

CESP EQU 18 CONTINUOUS EXECUT PTR
22 BLINK RATE COUNT

COUNT EQU

2.3 CREATE DISPLAY SEGMENT CONTROL PACKETS

Prior to opening a display segment through the commard area, the application
program must store a segment control packet beginning at the display segment's
starting address as specified in processor address register A5. Upon opening
the display segment, additional information is stored in the packet by the
graphics driver. If the first word in the packet is a zero value (non-visible
OR not active-continuous execution), the display segment will not be executed if
closed, blinked, or established as a continuous execution segment. The
following example illustrates the manner in which a display segment control
packet should be created. Upon completing execution of the program in this
example, the following processor registers will contain the data indicated:

A4 = Starting Address of Display Segment Program Area

A5 = Starting Address of Display Segment

A6 = Starting Address of the shared segment

DO = Display Segment Number

D1 = Offset to Display Segment Address

SEGCPKT EQU *
MOVE.L A5,-(A7) SAVE SEGMENT START ADDR
LEA.L SEGTABLE (PC) ,A4 SEGMENT TABLE ADDRESS
MOVE.W #11,D7 NUMBER OF WORDS - 1

SEGCPKT1 MOVE.W (A4)+, (A5)+ MOVE TO COMM INTERFACE
DBF D7,SEGCPKT1 LOOP COUNT
MOVE.L (A7)+,A5 RESTORE STARTING ADDRESS
LEA.L 64 (A5) ,A4 GET PROG AREA START ADDR
MOVE.L A4,D1
SUB. L A6,DL CALC. SHARED RAM OFFSET
MOVE.L D1,CESP(AS5) IF CONT. EXEC. SEG.
SUB.L #64,D1 OFFSET STARTING ADDRESS
RTS

2.4 CLOSED PRIMITIVE SEGMENTS

The following paragraphs describe the method of creating primitives within a
closed display segment that can then be executed singly by the EXECS command

primitive or sequentially by the EXECAS command primitive.

2.4.1 Segment Creation

The example in this paragraph illustrates a method of programming a closed

command primitive.

* COMMAND PRIMITIVES EQUATES

OPENS
CLOSES
CEND

L1

EQU 2

EQU 3

EQU 1

BSR SEGCPKT
TST.W CMDSTAT (A6)
BMI CMDERR

BNE Ll

LEA.L CMDPROG (A6) ,A3

MOVE.W #OPENS, (A3)+
MOVE.W DO, (A3)+
MOVE.L D1, (A3)+
MOVE.W #CEND, (A3)
CLR.W OMDSTAT(A6)
MOVE.W #1,CMDWD(A6)

PUT CNTRL PCKT IN SHRD RAM

CK CMD STATUS
IF NEG.-CMD ERROR
NOT YET AVAIL.

GET PROG AREA STRT ADDR

OPEN CMD PRIMITIVE
GET SEGMENT #

GET SEG. OFFSET

END OF CMD PRIMITIVES
CLOSE CMD CHANNEL
ACTIVATE CMD CHANNEL

Store graphic primitive(s) in display segment program area

L2

MOVE.W #1, (A5)
TST.W CMDSTAT(A6)
BMI CMDERR

BNE L2

LEA.L CMDPROG (A6) ,A3

MOVE.W #CLOSES, (A3)+
MOVE.W DO, (A3)+
MOVE.W #CEND, (A3)
CLR.W CMDSTAT(A6)
MOVE.W #1,CMDWD(A6)

MAKE SEGMENT VISIBLE
CK CMD STATUS

NOT YET AVAILABLE
GET PROG. AREA ADDR
CLOSE THE SEGMENT
SEGMENT #

END OF CMD PRIMITIVES
CLOSE CMD CHANNEL
ACTIVATE CMD CHANNEL

2.4.2 Single Segment Execution

The example in this paragraph illustrates the method of executing a single
closed display segment.

* COMMAND PRIMITIVE EQUATES

EXECS EQU 5

CEND EQU 1

Ll TST.W CMDSTAT(A6) TEST CMD STATUS
BMI CMDERR
BNE Ll NOT YET AVAIL.
LEA.L. CMDPROG(2A6) ,A3 GET START OF CMD PRIMS
MOVE.W #EXECS, (A3)+ GET PRIMITIVE
MOVE.W #SEGNMBR, (A3)+ GET SEGMENT #

* EXECS CAN BE USED MULTIPLE TIMES TO EXECUTE OTHER SEGMENTS
MOVE.W #CEND, (A3) END OF CMD PRIMITIVES
CLR.W CMDSTAT(A6) CLOSE OMD CHANNEL
MOVE.W #1,CMDWD(A6) ACTIVATE CMD CHANNEL

2.4.3 All Segment Execution

The example in this paragraph illustrates the method of executing all closed
display segments.

* COMMAND PRIMITIVE EQUATES

EXECAS EQU 5

CEND EQU 1

Ll TST.W CMDSTAT(26) TEST CMD STATUS
BMI CMDERR
BNE Ll NOT YET AVAIL.
LEA.L CMDPROG(A6),A3 GET START OF CMD PRIMS
MOVE.W #EXECAS, (A3)+ EXECUTE ALL SEGMENTS
MOVE.W #CEND, (A3) END OF CMD PRIMITIVES
CLR.W CMDSTAT (A6) CLOSE CMD CHANNEL
MOVE.W #1,CMDWD(A6) ACTIVATE CMD CHANNEL

2.5 CREATE BLINK SEGMENTS

The example provided in this paragraph demonstrates the method used to create a

blink segment.

* COMMAND PRIMITIVE EQUATES

OPENS EQU 2
BLKS EQU 7
CEND EQU 1
BSR SEQCPKT
MOVE.W #2,BLKRATE (A5)

Place graphic primitives in display segment.

attribute should be used.

L1 TST.W

CMDSTAT (A6)
BMI CMDERR
BNE Ll
LEA.L CMDPROG(A6) ,A3
MOVE.W $OPENS, (A3)+
MOVE.W DO, (A3)+
MOVE.L. D1, (A3)+
MOVE.W #BLKS, (A3)+
MOVE.W DO, (A3)+
MOVE.W #CEND, (A3)
CLR.W CMDSTAT(A6)
MOVE.W #1,CMDWD (A6)

PUT CNTRL PCKT IN SHRD RAM
1 SHC BLINK RATE

For blinking, the XOR display

TEST CMD STATUS

NOT YET AVAIL.

GET PROG AREA. START

OPEN SEGMENT

GET SEGMENT #

GET SEGMENT START OFFSET
BLINK SEGMENT

GET SEGMENT #

END OF CMD PRIMITIVES
CLOSE CMD CHANNEL
ACTIVATE CMD CHANNEL

Place a 1 in the CMD/DSPLY word of the display segment to make it visible when
needed and a 0 to turn the blink segment off.

P:IOVE.W #1, (A5)

TURN ON VISIBLE SEGMENT

2.6 CONTINUOUS EXECUTION SEGMENTS

The following paragraphs describe opening and executing continuous execution
segments.

2.6.1 Open Continuous Execution Segments

The continuous execution segment is continuously checked and activated by the
CMD/DSPLY and status words. When the segment is activated, the graphics driver
uses the Continuous Execution Segment Pointer (CESP) to obtain the starting
execution address. The example in this paragraph describes the method used to
open a continuous execution segment.

* COMMAND PRIMITIVE EQUATES

OPENCES EQU SFF02 FF ATTRIBUTE TO OPENS
CEND EQU 1
BSR SBGCPKT STORE CONTROL PACKET
Ll TST.W CMDSTAT(A6) CK COMD STATUS
BMI CMDERR
BNE Ll NOT YET AVAIL.
LEA.L CMDPROG(A6) ,A3 GET START OF CMD PRG AREA
MOVE.W #OPENCES, (A3) + OPEN CONT. EXEC. SEG.
MOVE.W DO, (A3)+ GET SEGMENT #
MOVE.L D1, (A3)+ GET SEG. OFFSET
MOVE.W #CEND, (A3) END OF CMD PRIMITIVES
CLR.W CMDSTAT(A6) CLOSE CMD CHANNEL
MOVE.W #1,CMDWD(26) ACTIVATE CMD CHANNEL

2.6.2 Execute Continuous Execution Segments

This paragraph provides an example of the method used to execute a continuous

execution segment.

* GRAPHIC PRIMITIVE EQUATES

MOVETO EQU 3

DRAWTO EQU 4

RECT EQU $1007

COLOR EQU 12

CIR EQU 8

GEND EQU 1

Ll TST.W PSTAT(A5)
BEQ Ll
MOVE.B #1, (A4)+
MOVE.B #COLOR, (A4)+
MOVE.W #MOVETO, (A4) +
MOVE.W #30, (24)+
MOVE.W #60, (Ad)+
MOVE.W #RECT, (A4)+
MOVE.W #40, (A4)+
MOVE.W #40, (A4)+
MOVE.W #CEND, (A3)
CLR.W QMDSTAT(A6)
MOVE.W #1,CMDWD(A6)

NOT YET AVAIL.
ATTRIBUTE - RED = 1
PRIMITIVE

PRIMITIVIE

ABSOLUTE X ADDRESS
ABSOLUTE Y ADDRESS
RECT. PRIMITIVE
LENGTH IN X

HEIGHT IN Y

END OF OMD PRIMITIVES
CLOSE (MD CHANNEL
ACTIVATE CMD CHANNEL

* THE CGP MODULE USES THE CURRENT CESP POINTER TO START

* EXECUTION OF PRIMITIVES

L2 TST.W PSTAT(A5)
BMI SEGERR
BEQ L2
MOVE.L. A4,D0
SUB.L A6,DO
MOVE.L DO,CESP(A5)
MOVE.W #CIR, (Ad)+
MOVE.W #40, (A4)+
MOVE.W #GEND, (A4)
CLR.W PSTAT(A5)
MOVE.W #1,PCMD(A5)
MOVE.L #2,D0
TRAP #8

L3 TST.W DSPSTAT(A6)
BNE ERROR
TST.W PSTAT(A5)
BEQ L3

NOT YET AVAIL.

LAST PRIMITIVE ADDR

GET OFFSET

NXT EXECUTION ADDR
CIRCLE PRIMITIVE

RADIUS OF CIRCLE

END OF GRAPHIC PRIMITIVES
CLOSE DISPLAY SEGMENT
ACTIVATE DISPLAY SEGMENT

EXECUTE GRAPHICS
CHECK FOR ERROR

WAIT UNTIL DONE

APPENDIX A

COMMAND PRIMITIVES

This appendix provides a description of each predefined command primitive within
the graphics driver. Refer to Chapter 1 for a description of how these
primitives are used.

The command primitives are organized in this appendix as follows:

COMMAND PRIMITIVE CODE PAGE NUMBER
BITMPTR 13 ($0D) A-2
BLKS 7 ($07) A-3
CCUR 26 ($1a) A-4
CEND 1 ($01) A-5
CLOSES 3 ($03 A-6
CSETD 18 ($12) A-7
CUROFF 25 ($19) A-8
CURON 24 ($18) A-9
DELAY 20 (S14) A-10
DELS 4 (S04) A-11
EXECAS 6 (306) A-12
EXECS 5 ($05) A-13
NCOP 0 ($00) A-14
OPENS 2 ($02) A-15
RBLKS 8 ($08) A-16
SCFN 21 ($15) A-17
SYMPTR 12 ($0C) A-18

BITMPTR - BITMAP POINTER

CODE: 13 ($0D)

ATTRIBUTES: None

OPERANDS: Long Address (relative to beginning of shared memory segment)
DESCRIPTION: Establishes the starting address of a bit-mapped display to the

graphics driver. Since each pixel is defined in 4 bits, one word
will define 4 pixels.

BLKS - BLINK SEGMENT

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

7 (807)
None
Display Segment Number

Adds the previously opened display segment to the blink list.
The internal timer service routine will decrement the counter in
the display segment control packet and, if zero, will add the
segment to the active list and move the count to the counter. If
the display segment is visible, it will be executed in the
display page. If not visible, the display segment will NOT be
executed.

DISPLAY SEGMENT CONTROL PACKET:

- Command word used for visibility
(0 = non-visible, non-zero = visible).

- Count must be set to desired blink rate
(1 count = 1/2 sec., total on/off time).

CCUR - MOVE COMMAND CURSOR TO X,Y

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

26 ($1A)
ABSOLUTE/RELATIVE - Absolute or relative
X~; Y~Coordinates

Move the command (vertical and horizontal) cursors to
X-,Y-coordinates. The coordinates may be specified absolutely or
as relative to the current screen pointer. Cursor must be ON to
be visible (activate/deactivate cursor using command primitives
CURON/CUROFF) .

CEND - END OF COMMAND PRIMITIVE LIST

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

1 ($01)
None
None

This command must be the last command primitive within a group of
command primitives within the command program area. It causes
the command interpreter to halt execution and to return control
to the command processor. A positive value is placed in the
command status word to indicate a normal (no error) completion.
A negative value indicates that an error has occurred. Error
data can then be obtained from the error data table. Errors
normally occur only during display system debug.

CLOSES -~ CLOSE A DISPLAY SEGMENT

CODE:

ATTRIBUTES:

OPERANDS :

DESCRIPTION:

3 (803)

None

Display Segment Number

Adds a display segment to the valid segment list and allows it to
be made active through the EXECS or EXECAS primitives. Before
the segment can be closed, it must be opened to obtain its

address. The display segment command word is used to indicate
the segments visability (0 = non-visible, non-zero = visible).

A-6

CSETD - SET COMMAND DISPLAY PAGE

CODE: 18 (512)
ATTRIBUTES: COLOR - Specified in Upper Byte
OPERANDS : None

DESCRIPTION: Set the entire display page to the specified color. Note that a
CSETD with color = 0 (command word = $0012) will clear the entire
display.

COLORS:

Black
Red
Blue
Magenta
Green
Yellow

Cyan
White

NOU_WNHO

CUROFF - TURN OFF CURSORS

CODE: 25 ($19)
ATTRIBUTES: None
OPERANDS : None

DESCRIPTION: Disable the horizontal and vertical cursors.

CURON -~ TURN CURSOR ON

CODE: 24 ($18)
ATTRIBUTES: None.
OPERANDS: None

DESCRIPTION: Enable the horizontal and vertical cursors.

DELAY - DELAY PROCESSING

CODE: 20 ($14)
ATTRIBUTES: None
OPERANDS: Delay Time - Word

DESCRIPTION: Delay a specified period of time before proceeding to process the
next command primitive.

DELAY TIME VALUE:

1
10

1/10 Sec.
1 Sec.

EXAMPLE: DC.W DELAY
DC.W 10 DELAY 1 SEC.

A-10

DELS - DELETE A SEGMENT

CODE:

ATTRIBUTES:

OPERANDS :

DESCRIPTION:

4 (504)
None
Display Segment Number

Completely remove a display segment.
longer recognize this segment.

A-11

The graphics server will no

EXECAS - EXECUTE ALL DISPLAY SEGMENTS

CODE: 6 ($06)

ATTRIBUTES: None

OPERANDS : None

DESCRIPTION: Places all display segments within the valid segment list into
the active list. Once each display segment is executed, it is

removed from the active list. The command word is wvalid for
visibility (0 = non-visible, non-zero = visible).

A-12

EXECS - EXECUTE ONE DISPLAY SEGMENT

CODE: 5 ($05)

ATTRIBUTES: None

OPERANDS : Display Segment Number

DESCRIPTION: Place the display segment into the active list. Once executed,
the segment is removed from the 1list. The command primitive

interpreter will check the command word for visibility
(0 = non-visible, non-zero = visible).

A-13

NCOP - NO COMMAND OPERATION

CODE : 0 (S00)
ATTRIBUTES: None
OPERANDS : None

DESCRIPTION: No operation occurs. The command primitive interpreter moves to
the next command primitive word.

A-14

OPENS - OPEN A DISPLAY SEGMENT

CODE:

ATTRIBUTES:

OPERANDS :

DESCRIPTION:

2 ($02)
OPEN ONLY - $00 Upper Byte
CONTINUOUS EXECUTION - $80 Upper Byte

Display Segment Number and Address (long word address of display
segment, relative to beginning of shared memory segment).

This command places the display segment address in the internal
segment table for later reference to that address by its segment
number. Before execution of this primitive, the application
program must place the display segment control packet into the
shared RAM area. If the segment is of the continuous execution
type, the segment is made active to the graphics driver and will
be constantly polled. The segment command word and status are
used by the application program to control actual execution of
the graphic primitives. When the command word is non-zero, the
graphics driver will use the Continuous Execution Segment Pointer
to start graphic primitive interpretation.

DISPLAY SEGMENT CONTROL PACKET:

The application program must set the following attributes/
flags:

- Commard Word
- Status
- Scale Factor
- X Center
- Y Center
- Color
- Fill Color
- Character Size
- Mask
- Continuous Execution Segment Pointer (if continuous)

- Blink rate (if blink segment)

A-15

RBLKS - REMOVE/DELETE BLINK SEGMENT

CODE: 8 ($08)
ATTRIBUTES: None
OPERANDS : Display Segment Number

DESCRIPTION: Completely removes a previously defined blink display segment.

A-16

SCFN - SET DISPLAY SEGMENT SCALE FACTOR NUMBER

CODE: 21 ($15)

ATTRIBUTES: NONE

OPERANDS: Segment Number; Scale Factor Number

DESCRITPION: Set the scale factor of a segment after opening or while in use.

See section 1.3.3 for a discussion of scale factors.

A-17

SYMPTR - SYMBOL TABLE POINTER

CODE:

ATTRIBUTES:

OPERANDS :

DESCRIPTION:

12 ($0C)
None
X-Size; Y-Size; and Address

Identifies a symbol table stored in shared RAM for use by the
symbol (SYM) primitive.

WHERE:
X-Size = Word defining number of horizontal pixels/4.
(A symbol is modulo 4).
Y-Size = Word defining number of vertical pixels.
Address = Long word pointing to symbol table start (relative

to the start of the shared memory segment) .

EXAMPLE: DC.W SYMPTR

DC.W 52 52 x 4 = 208 horizontal pixels per
symbol

DC.W 192 192 vertical pixels per symbol

DC.L $18000 Address of the symbol table

A-18

APPENDIX B

GRAPHIC PRIMITIVES

This appendix provides a description of each predefined graphic primitive within
the graphics driver. Refer to Chapter 1 for a description of how these
primitives are used.

The graphic primitives are organized in this appendix as follows:

GRAPHIC PRIMITIVE CODE PAGE NUMBER
ACTSN 30 (S1E) B-2
ARC 9 ($09) B-3
BITMAP 11 ($0B) B-4
CALLASM 32 ($20) B-5
CHARS 18 ($12) B-6
CHMARK 17 ($11) B-7
CHMARKS 29 ($1D) B-8
CHSIZE 14 (SOE) B-9
CIRCLE 8 ($08) B-10
COLOR 12 (S0C) B-11
CURSPTR 15 (SOF) B-12
DOT 2 ($02) B-13
DRAWTO 4 ($04) B-14
FILL 13 ($0D) B-15
GCUR 19 ($13) B-16
GENAB 20 (S14) B-17
GEND 1 (S01) B-18
GIMP 21 ($15) B-19
GISR 22 ($16) B-20
GRTS 23 ($17) B-21
GSETD 28 ($1C) B-22
LINES 5 ($05) B-23
MASK 27 ($1B) B-24
MOVETO 3 ($03) B-25
NGOP 0 (S00) B-26
PIE 26 (S11) B-27
POLYG 6 (S06) B-28
RECT 7 (807) B-29
ROTATE 31 (S1F) B-30
SCALEF 16 ($10) B-31
SM 10 (S0A) B-32
SYMARK 24 (518) B-33
SYMARKS 25 ($19) B-34

B-1

ACTSN - ACTIVATE DISPLAY SEGMENT NUMBER

CODE: 30 (S1E)
ATTRIBUTES: None
OPERANDS : Display Segment Number

DESCRIPTION: Activate a closed segment.

B-2

ARC - DRAW AN ARC

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

9 ($09)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet

XOR - Exlusive-OR figure to display screen (with color, if
filleq)

ABSOLUTE/RELATIVE - Absolute or relative
X1s Y1s X24 ¥

Draw an arc from Xj3/Y; to X/Yy having a center point at
the current screen pointer position. Both X;/Y] and
X3/Y¥2 must be equidistant from the current screen pointer
position (refer to Example 1). The XOR attribute causes the arc
to be Exclusive-ORed with the current screen display and the FILL
attribute will shade the enclosed arc (Example 2). Arcs are
always drawn in a counterclockwise direction from X;/Y] to
X5/Y¥5. The screen pointer is left unchanged.

EXAMPLE 1:

(Xg,Ye)

..Y) @
ocnsh Y red)
EXAMPLE 2:
(>Qﬁ*i)
c‘oJYb) °
SCREEN POINTER G Y)

BITMAP - BIT MAP PICTURE TRANSFERRED

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

11 ($oB)
XOR - Exclusive-OR bit mapped picture to display screen
X-Dimension; Y-Dimension

Transfer a bit-mapped picture to the display screen at the
current screen pointer position.

WHERE:

X~Dimension
Y-Dimension

X pixels/4 (modulo 4)
Y pixels

The starting address of the bit-mapped picture in shared RAM is
established by the BITMPTR command primitive via the command
channel. Since each pixel is represented by four bits, each word
contains four pixels. The smallest X-Dimension (horizontal)
represents four pixels (modulo 4). The screen pointer is left
pointing to the lower right-hand corner of the bit-mapped
picture.

EXAMPLE:
BIT-MAP
DISPLAY | Y-SIZE
/ X-SIZE \
screen pointer ! screen pointer
before BITMAP after BITMAP
operation operation

CALLASM - CALL ASSEMBLY LANGUAGE SUBROUTINE

CODE:

ATTRIBUTES:

OPERAND:

DESCRIPTION:

32 ($20)
None

Long Address of Subroutine (relative to the beginning of the
shared memory segment) .

A JSR is made to a user-defined assembly language subroutine. The
subroutine should return with an RTS instruction. Upon entry,
register A5 points to the graphics segment, and A6 points to the
next primitive. Unless the user is familiar with the graphics
server code, this directive should not be used.

CHARS -~ CHARACTERS

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

18 ($12)
XOR - Exclusive-OR characters to the display screen
90 DEG. - Rotate character string 90 degrees
COLOR ~ Defined in Display Segment Control Packet
CHSIZE - Defined in Display Segment Control Packet
Number of Characters followed by packeted ASCII characters.
Present multiple characters on the display screen at the current
screen pointer position. The screen pointer is changed to point
to the next character position.
EXAMPLE:
DC.W CHARS

DC.W 7
DC.B 'ABCDEFG ' MUST BE EVEN #

[a]8]c]o]E]F]q]

screen pointer screen pointer
before CHARS after CHARS
operation operation

B-6

CHMARK - CHARACTER MARKER

CODE: 17 (S11)
ATTRIBUTES: XOR - Exclusive-OR marker to display screen
90 DEG. - Rotate marker 90 degrees
Color - Defined in Display Segment Control Packet
CHSIZE - Defined in Display Segment Control Packet
OPERANDS: Marker character (in high byte of word)

DESCRIPTION: A single character is displayed on the screen, centered on the
current screen pointer. The screen pointer is left unchanged.

EXAMPLE :

DC.W CHMARK,'H'

current screen pointer position

B-7

CHMARKS - MULTIPLE CHARACTER MARKERS

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

29 (S$1D)

XOR - Exclusive-OR markers to display screen

90 DEG. - Rotate markers 90 degrees
ABSOLUTE/RELATIVE - Absolute or relative

Color - Defined Display Segment Control Packet
CHSIZE - Defined in Display Segment Control Packet

Marker Character (in high byte of word); Number of Markers;
Starting X,Y Coordinates

Display multiple character markers centered at the specified
coordinates. The specified character is displayed on the screen
at one or more locations. The locations (coordinates) specified
are those of the center of the charater. The coordinates may be
specified absolutely or relatively, depending on the attribute
bit. In the case of relative coordinates, the first set of
coordinates is taken relative to the current screen pointer
position, while each of the remaining sets of coordinates is
taken relative to the immediately preceding set of coordinates.
The screen pointer is left pointing to the center of the last
character marker displayed.

EXAMPLE :
DC.W CHMARKS+$1000 Use relative mode
DC.W '*',4 Character, number of markers

oc.w 0,0,0,100,100,0,0,-100 Coordinates

100 pixels

f—/;ﬂ

* *

100
pixels

* *

/N

initial screen screen pointer
pointer position after operation

CHSIZE - SET DEFAULT CHARACTER SIZE

CODE: 14 ($OE)

ATTRIBUTES: SIZE - One of eight charater sizes entered in the Display Segment
Control Packet

OPERANDS : None

DESCRIPTION: Establish the default character size for CHARS, CMARK, or (CMARKS
primitives. CHSIZE is entered in the Display Segment Control
Packet.

CHARACTER MATRIX
SIZE * (PIXELS) (PIXELS)
0 1 5x 7 8 x 8
1 2 10 x 14 16 x 16
2 3 15 x 21 24 x 24
3 4 20 x 28 32 x 32
4 5 25 x 35 40 x 40
5 6 30 x 42 48 x 48
6 7 35 x 49 56 x 56
7 8 40 x 56 64 x 64

B-9

CIRCLE - DRAW A CIRCLE

CODE:

ATTRIBUTES:

OPERANDS :

DESCRIPTION:

8 ($08)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet

XOR - Exlusive-OR figure to display screen (with color, if
filled)

ABSOLUTE/RELATIVE - Relative Only

Radius (in pixels)

Present a circle on the display screen centered on the position
of the current screen pointer and with the radius specified in
the operand. (NOTE: The Relative Attribute bit MUST be set to a

logic 1 to interpret the operand as the radius.) The screen
pointer is left unchanged.

B-10

COLOR - DEFINE COLOR ATTRIBUTE

CODE: 12 ($0C)
ATTRIBUTES: COLOR - One of 8 colors
OPERANDS : None

DESCRIPTION: Changes the Color attribute in the Display Segment Control
Packet.

COLORS:

Black
Red
Blue
Magenta
Green
Yellow
Cyan
White

LI T T | A T | A T 1}

NoOubkd WNHO

B-11

CURSPTR - MOVE SCREEN POINTER TO CURSOR POSITION

CODE: 15 (S0F)

ATTRIBUTES: None

OPERANDS : None

DESCRIPTION: Obtain the current X and Y (vertical and horizontal) cursor

coordinates and move the coordinates to the screen pointer (i.e.,
change the screen pointer to the current cursor coordinates).

B-12

DOT - PLACE A DOT ON THE SCREEN

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

2 (802)

XOR - Exclusive - OR dot to display screen

ABSOLUTE/RELATIVE - Absolute or relative

X-; Y-Coordinates

Display a dot on the display screen at the specified coordinates
(X,Y). The color of the dot is provided by the Color attribute
in the Display Screen Control Packet. The X,Y coordinate is
either absolute or relative, deperding on the attribute bit, with

scaling indicated by the Scale Factor Word also in the Display
Screen Control Packet.

B-13

DRAWTO - DRAW LINE TO X,Y

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

4 ($04)

XOR - Exclusive-OR line to display screen

ABSOLUTE/RELATIVE - Absolute or relative

LINE PATTERN - 0 (solid) - 7

X~; Y~-Coordinate

Draw a line from the current screen pointer to the specified
coordinates (X,Y). The coordinate to be drawn to is absolute or
relative, depending upon the setting of the attribute bit. Color
is determined by the Display Screen Control Packet. The line
pattern is determined by the three least significant bits of the

attribute. The line may be Exclusive-ORed against any figure
currently existing on the display screen.

B-14

FILL - SPECIFY FILL COLOR

CODE: 13 (S0D)
ATTRIBUTES: None
OPERANDS ¢ Color

DESCRIPTION: Designates the shade (color) to be used in filling a closed
figure by establishing the shade in the Display Screen Control
Packet.

COLORS ¢

Black
Red
Blue
Magenta
Green
Yellow
Cyan
white

L | T A 1 O { I 1}
Noauih WD EHEO

B-15

GCUR - MOVE GRAPHIC CURSOR TO X,Y

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

19 ($13)
ABSOLUTE/RELATIVE - Absolute or relative

X-; Y-Coordinates

Move the graphic cursor (vertical and horizontal cursors) to
X-,Y-coordinates. Cursor must be ON to be visisble
(activate/deactivate cursor using command primitives
CURON/CUROFF) . The coordinates may be specified absolutely, or
as relative to the current screen pointer position (as indicated
by the attribute bit). Either way, the screen pointer is left
unchanged.

B-16

GENAB - GRAPHICS ENABLE

CODE: 20 ($14)
ATTRIBUTES: Pixel Memory Display Enable
OPERANDS: None

DESCRIPTION: Bits 8-10 determine which of the three pixel memory planes are
enabled for display. Bit set (1) = enable. Note that this does
not preclude read/write operations -- just display.

ENABLE: None, no graphics displayed

Red Only

Blue Only

Red/Blue

Green Only

Red/Green

Green/Blue

Red/Green/Blue

0
1
2
3
4
5
6
7

B-17

GEND - END OF

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

GRAPHIC PRIMITIVE LIST

1 (s01)
None
None

Entered at the end of a list of graphic primitives in the display
program area to terminate execution of the segment.

B-18

GIJMP - JUMP TO GRAPHICS PRIMITIVE

CODE: 21 ($15)
ATTRIBUTES: None

OPERANDS : [ong Address (relative to the beginning of the shared memory
segment)

DESCRIPTION: Jump to specified shared RAM long address and continue
interpreting graphic primitives.

B-19

GJSR - JUMP TO GRAPHICS PRIMITIVE SUBROUTINE

CODE: 22 ($16)

ATTRIBUTES: None

OPERANDS : Long Address (relative to the beginning of the shared memory
segment)

DESCRIPTION: Jump to a specified graphic primitive subroutine and continue
interpreting graphic primitives. Use GRTS primitive to return.

B-20

GRTS - RETURN FROM GRAPHICS PRIMITIVE SUBROUTINE

CODE:

ATTRIBUTES:

OPERANDS :

DESCRIPTION:

23 ($17)
None
None

Provides return from a graphic primitive subroutine. MUST be
used if the subroutine was accessed via the GJSR primitive.

B-21

GSETD - SET GRAPHIC DISPLAY PAGE

CODE: 28 ($1C)
ATTRIBUTES: COLOR - Specified in Upper Byte
OPERANDS: None

DESCRIPTION: Set entire display page to the specified color. Note that a
color of 0 (command word = $001C) will clear the entire display
page.)

COLORS:

Black
Red
Blue
Magenta
Green
Yellow
Cyan
White

o W wn nou
~Noubdh WO

B-22

LINES - DRAW CONNECTING LINES

CODE: 5 ($05)

ATTRIBUTES: XOR ~ Exclusive-OR lines to display screen
ABSOLUTE/RELATIVE - Absolute or relative
LINE PATTERN - 0 (solid) - 7

OPERANDS : Number of lines; X- and Y-Coordinates of Each End Point

DESCRIPTION: Draw successive connecting lines starting from the current
position of the screen pointer. The first Operand must be the
number of lines to be drawn, followed by the X- and Y-coordinate
word pairs defining the end of each line (and the beginning of

the next). The screen pointer is left pointing at the end of the
last line drawn.

B-23

MASK - SET MASK ATTRIBUTE

CODE: 27 ($1B)
ATTRIBUTES: MASK PLANES - Specify bit-planes
OPERANDS: None

DESCRIPTION: The mask specifies which of the three bit-planes will be written.
One or more bit-planes, in any combination, can be enabled. This
primitive sets the Display Segment Control Packet attribute mask.

MASK: None - Cannot write to bit-planes

Red Only

Blue Only

Red/Blue

Green Only

Red/Green

Green/Blue

Red/Green/Blue

| 1 | O T (I 1}

NouidhwNHO

B-24

MOVETO - MOVE TO X,Y

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

3 (S03)

ABSOLUTE/RELATIVE - Absolute or relative

X—-; Y-Coordinates

Move the screen pointer, without drawing, to the specified
X-,Y-coordinates. These coordinates are absolute or relative

positions, depending upon the attribute bit and scaled to the
scale factor defined in the Display Segment Control Packet.

B-25

NGOP - NO GRAPHIC OPERATION

CODE: 0 ($00)
ATTRIBUTES: None
OPERANDS: None

DESCRIPTION: No operation occurs. The graphic primitive interpreter moves to
the next graphic primitive word.

B-26

PIE - DRAW PIE-SHAPED FIGURE

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

26 (s1n)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet

XOR - Exlusive-OR figure to display screen (with color, if
filled)

ABSOLUTE/RELATIVE -~ Absolute or relative
X1r Y10 X35 Y2

Draw a pie-shaped segment of a circle having its center point at
the current position of the screen pointer. If the figure is to
be color filled, only one minimum X and one maximum X may exist
for each horizontally intersecting line. The arc of the
pie-shaped segment 1is always drawn counterclockwise from
X1/Y1 to Xp/¥p. The screen pointer is left unchanged.

EXAMPLE :

(Xe,Ye)
MIN X MAX X
(Xi,Y1)
(X,Y)
MOVETO, X,Y

B-27

POLYG - DRAW

CODE:

ATTRIBUTES:

OPERANDS:

A POLYGON FIGURE

6 ($06)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet.

LINE PATTERN - 0 (solid) - 7 (defines the outline of the polygon)

XOR - Exclusive-OR figure to display screen (either FILL or
PATTERN)

ABSOLUTE/RELATIVE - Absolute or relative
Number of Lines; X- and Y-Coordinates of Each End Point

Draw a polygon (programmer must close on starting point). The
number of sides (lines) must be indicated in the Operand field
followed by the X- and Y-coordinates of each end point (and
starting point of the next if not last). The last coordinate
MUST be the same as the starting point to close the figure. The
screen pointer is left pointing to the last coordinate specified.

B-28

RECT - DRAW A RECTANGLE

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

7 ($07)

FILL - Shade inside of figure with color specified in the Display
Segment Control Packet.

XOR - Exclusive-OR figure to display screen (either FILL or
PATTERN)

ABSOLUTE/RELATIVE - Relative Only

X length; Y length

Draw a rectangle starting from the current position of the screen
pointer to the right (X-coordinate) and then up (Y-coordinate).

The Relative attribute bit MUST be set. The screen pointer is
left unchanged.

B-29

ROTATE - ESTABLISH A ROTATION ANGLE

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

31 (S1F)
ABSOLUTE - Absolute rotation angle
RELATIVE - Angle relative to the previous angle

Rotation angle in degrees. A positive value is a counter-
clockwise rotation. A negative value is a clockwise rotation.

Rotate all subsequent X,Y points relative to the starting point.
Only relative points will be rotated. The rotation affects only
the (X,Y) points amd not subsequent patterns such as the
individual pixels of a text character. Note that rectangles may
not be rotated, while polygons may.

B-30

SCALEF - SET

CODE:

ATTRIBUTES:

OPERANDS :

DESCRIPTION:

THE SCALE FACTOR

16 (S10)
None
Scale Factor Number

Set the scale factor in the Display Segment Control Packet.
section 1.3.3 for a discussion of scale factors.

B-31

See

SYM - DISPLAY SYMBOLS

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

10 ($0a)
XOR - Exclusive-OR symbol to display screen

Number of Symbols to Follow; Packeted Symbol Offsets Into the
Table (one offset per byte)

Display symbols from the symbol table, starting at the current
screen pointer position. Symbol numbers (offsets) start at 0
(i.e., 0 = first symbol in symbol table, 1 = second symbol, etc.).
The symbol offsets are specified one per byte, with enough bytes
to make an integral number of words. The screen pointer is left
pointing at the lower right-hand corner of the last symbol
displayed.

EXAMPLE: DC.W SYM

DC.W S05 Number of symbols
pC.B 1,3,4,0,2,0 Symbol offset (one per byte)

Li[3]4]0]2]
\

screen pointer screen pointer
before SYM operation after SYM operation

WHERE SYMBOL OFFSET:

Displayed First
Displayed Second
Displayed Third
Displayed Fourth
Displayed Fifth
Last Zero Is Ignored

ONO B WH

The size of the symbol and the location of the symbol table MUST
have been previously declared using the SYMPTR command primitive.

B-32

SYMARK - SYMBOL MARKER

CODE: 24 ($18)

ATTRIBUTES: None

OPERANDS : Symbol Number

DESCRIPTION: Draw a symbol centered on X- and Y-coordinates. The symbol
indicated by the Operand is drawn, centered at the current screen
pointer position. The screen pointer is left unchanged.

EXAMPLE:

DC.W SYMARK,4

*

screen pointer

B-33

SYMARKS - MULTIPLE SYMBOL MARKERS

CODE:

ATTRIBUTES:

OPERANDS:

DESCRIPTION:

25 ($19)

XOR - Exclusive-OR marker to display screen

ABSOLUTE/RELATIVE - Absolute or relative

Symbol Number; Number of Symbols; X- and Y-Coordinates of Each

Draw multiple symbols centered at each of the, specified X- and
Y-coordinate addresses. The specified symbol is displayed on the
screen at one or more locations. The locations (coordinates)
specified are those of the center of the symbol. The coordinates
may be specified absolutely or relatively, depending on the
attribute bit. In the case of relative coordinates, the first
set of coordinates is taken relative to the current screen
pointer position, while each of the remaining sets of coordinates
is taken relative to the immediately preceding set of
coordinates. The screen pointer is left pointing to the center
of the last symbol marker displayed.

EXAMPLE:
DC.W SYMARKS+$1000 Use relative mode
DC.W 2,4 Symbol #2, 4 symbols

nCc.w 0,0,0,100,100,0,0,-100 Coordinates

100 pixels

—

100 |
pixels
screen pointer screen pointer
before SYMARKS after SYMARKS
operation operation

B-34

SUGGESTION/PROBLEM \
REPORT —

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street MailDrop_____ Phone
City State Zip

For Additional Motorola Publications Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908
616 West 24th Street (602) 438-3100
Tempe, AZ 85282

(602) 994-6561

@ MOTOROLA

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 ® PHOENIX, ARIZONA 85036 ® A SUBSIDIARY OF MOTOROLA INC.

16863-1 PRINTED IN USA (3/84} MPS 3M

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	reply
	xBack

