
MVME2400 Series
VME Processor Module

Programmer’s Reference
Guide

V2400A/PG3

August 2001

© Copyright 1999, 2000, 2001 Motorola, Inc.

All rights reserved.

Printed in the United States of America.

Motorola® and the Motorola symbol are registered trademarks of Motorola, Inc.

PowerStackTM, VMEmoduleTM, and VMEsystemTM are trademarks of Motorola, Inc.

PowerPC® is a registered trademark and AIXTM, PowerPC 603TM, and PowerPC 604TM are
trademarks of International Business Machines Corporation and are used by Motorola, Inc.
under license from International Business Machines Corporation.

SNAPHAT®, TIMEKEEPER®, and ZEROPOWER® are registered trademarks of
STMicroelectronics.

All other products mentioned in this document are trademarks or registered trademarks of
their respective holders.

Safety Summary
The following general safety precautions must be observed during all phases of operation, service, and repair of this
equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result
in personal injury or damage to the equipment.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the
user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of
the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. If the
equipment is supplied with a three-conductor AC power cable, the power cable must be plugged into an approved
three-contact electrical outlet, with the grounding wire (green/yellow) reliably connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating plug of the power cable meet International
Electrotechnical Commission (IEC) safety standards and local electrical regulatory codes.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in any explosive atmosphere such as in the presence of flammable gases or fumes.
Operation of any electrical equipment in such an environment could result in an explosion and cause injury or damage.

Keep Away From Live Circuits Inside the Equipment.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other
qualified service personnel may remove equipment covers for internal subassembly or component replacement or any
internal adjustment. Service personnel should not replace components with power cable connected. Under certain
conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, such personnel
should always disconnect power and discharge circuits before touching components.

Use Caution When Exposing or Handling a CRT.
Breakage of a Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent
CRT implosion, do not handle the CRT and avoid rough handling or jarring of the equipment. Handling of a CRT
should be done only by qualified service personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local
Motorola representative for service and repair to ensure that all safety features are maintained.

Observe Warnings in Manual.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed. You should also employ all other safety precautions which you deem
necessary for the operation of the equipment in your operating environment.

Warning

To prevent serious injury or death from dangerous voltages, use extreme
caution when handling, testing, and adjusting this equipment and its
components.

er’s

.

ries

znur
ung
Flammability

All Motorola PWBs (printed wiring boards) are manufactured with a flammability rating
of 94V-0 by UL-recognized manufacturers.

EMI Caution

!
Caution

This equipment generates, uses and can radiate electromagnetic energy. It
may cause or be susceptible to electromagnetic interference (EMI) if not
installed and used with adequate EMI protection.

Lithium Battery Caution

This product contains a lithium battery to power the clock and calendar circuitry.

!
Caution

Danger of explosion if battery is replaced incorrectly. Replace battery only
with the same or equivalent type recommended by the equipment
manufacturer. Dispose of used batteries according to the manufactur
instructions.

Attention
!

Il y a danger d’explosion s’il y a remplacement incorrect de la batterie
Remplacer uniquement avec une batterie du même type ou d’un type
équivalent recommandé par le constructeur. Mettre au rebut les batte
usagées conformément aux instructions du fabricant.

Vorsicht
!

Explosionsgefahr bei unsachgemäßem Austausch der Batterie. Ersat
durch denselben oder einen vom Hersteller empfohlenen Typ. Entsorg
gebrauchter Batterien nach Angaben des Herstellers.

stics

nd

bove
he

as

rom

ation

, or
. The
ted,

rola
n your
a
try.
CE Notice (European Community)

Motorola Computer Group products with the CE marking comply with the EMC Directive
(89/336/EEC). Compliance with this directive implies conformity to the following
European Norms:

EN55022 “Limits and Methods of Measurement of Radio Interference Characteri
of Information Technology Equipment”; this product tested to Equipment Class B

EN55024 “Information technology equipment—Immunity characteristics—Limits a
methods of measurement”

Board products are tested in a representative system to show compliance with the a
mentioned requirements. A proper installation in a CE-marked system will maintain t
required EMC performance.

In accordance with European Community directives, a “Declaration of Conformity” h
been made and is available on request. Please contact your sales representative.

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document, or f
the use of the information obtained therein. Motorola reserves the right to revise this
document and to make changes from time to time in the content hereof without oblig
of Motorola to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use
referenced in another document as a URL to the Motorola Computer Group web site
text itself may not be published commercially in print or electronic form, edited, transla
or otherwise altered without the permission of Motorola, Inc.

It is possible that this publication may contain reference to or information about Moto
products (machines and programs), programming, or services that are not available i
country. Such references or information must not be construed to mean that Motorol
intends to announce such Motorola products, programming, or services in your coun

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in writing by
Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov.
1995) and of the Rights in Noncommercial Computer Software and Documentation clause
at DFARS 252.227-7014 (Jun. 1995).

Motorola, Inc.
Computer Group
2900 South Diablo Way
Tempe, Arizona 85282

Contents
About This Manual

Summary of Changes ..xxii
Overview of Contents ..xxiii
Comments and Suggestions ...xxiii
Conventions Used in This Manual...xxiv

CHAPTER 1 Board Description and Memory Maps

Introduction..1-1
Overview..1-1
Feature Summary ...1-2
System Block Diagram ..1-3
Functional Description...1-5

Overview...1-5
Programming Model ..1-6

Memory Maps...1-6
Processor Memory Maps ...1-6
PCI Memory Maps ..1-10
VMEbus Mapping ...1-16

System Configuration Information ...1-21
ISA Local Resource Bus ..1-22

W83C553 PIB Registers...1-22
UART..1-23
General-Purpose Software-Readable Header (SRH) Switch (S3)1-23
NVRAM/RTC & Watchdog Timer Registers ...1-24
VME Registers..1-25

LM/SIG Control Register ..1-26
LM/SIG Status Register...1-26
Location Monitor Upper Base Address Register.......................................1-28
Location Monitor Lower Base Address Register1-28
Semaphore Register 1 ..1-28
Semaphore Register 2 ..1-29
VME Geographical Address Register (VGAR) ..1-29

Emulated Z8536 CIO Registers and Port Pins..1-30
Z8536 CIO Port Pins ...1-30

ISA DMA Channels..1-31
vii

-52
52
-53
53
-53
-53
CHAPTER 2 Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

Introduction ... 2-1
Overview .. 2-1
Features .. 2-1

Block Diagram... 2-3
Functional Description .. 2-4

Architectural Overview .. 2-4
PPC Bus Interface .. 2-5

PPC Address Mapping .. 2-5
PPC Slave.. 2-7
PPC FIFO .. 2-9
PPC Master.. 2-10
PPC Arbiter ... 2-15
PPC Parity ... 2-17
PPC Bus Timer.. 2-17

PCI Bus Interface ... 2-19
PCI Address Mapping ... 2-19
PCI Slave... 2-22
PCI FIFO... 2-26
PCI Master .. 2-26
Generating PCI Cycles .. 2-30
PCI Arbiter .. 2-34

Endian Conversion ... 2-38
When PPC Devices are Big-Endian.. 2-38
When PPC Devices are Little-Endian ... 2-39
PHB Registers ... 2-40

Error Handling.. 2-41
Watchdog Timers.. 2-42
PCI/PPC Contention Handling... 2-44
Transaction Ordering.. 2-47
PHB Hardware Configuration .. 2-49

Multi-Processor Interrupt Controller (MPIC) Functional Description.................... 2-50
MPIC Features:... 2-50
Architecture .. 2-51
External Interrupt Interface .. 2-51
CSR’s Readability .. 2
Interrupt Source Priority... 2-
Processor’s Current Task Priority... 2
Nesting of Interrupt Events .. 2-
Spurious Vector Generation.. 2
Interprocessor Interrupts (IPI) .. 2
viii

8259 Compatibility ...2-54
PHB Detected Errors ..2-54
Timers ...2-55
Interrupt Delivery Modes..2-55
Block Diagram Description ..2-56

Program Visible Registers ...2-58
Interrupt Pending Register (IPR)...2-58
Interrupt Selector (IS) ..2-58
Interrupt Request Register (IRR)...2-59
In-Service Register (ISR) ..2-59
Interrupt Router ...2-59

Programming Notes ..2-61
External Interrupt Service..2-61
Reset State ...2-62

Operation ..2-63
Interprocessor Interrupts..2-63
Dynamically Changing I/O Interrupt Configuration2-63
EOI Register ..2-63
Interrupt Acknowledge Register..2-64
8259 Mode...2-64
Current Task Priority Level ...2-64

Architectural Notes ...2-64
Effects of Interrupt Serialization...2-65

Registers...2-65
PPC Registers ...2-66

Vendor ID/Device ID Registers ..2-67
Revision ID Register ...2-68
General Control-Status/Feature Registers ...2-69
PPC Arbiter/PCI Arbiter Control Registers...2-71
Hardware Control-Status/Prescaler Adjust Register2-74
PPC Error Test/Error Enable Register...2-77
PPC Error Status Register..2-79
PPC Error Address Register ..2-81
PPC Error Attribute Register ...2-82
PCI Interrupt Acknowledge Register ..2-83
PPC Slave Address (0,1 and 2) Registers..2-84
PPC Slave Offset/Attribute (0, 1 and 2) Registers2-85
PPC Slave Address (3) Register ..2-86
PPC Slave Offset/Attribute (3) Registers ..2-87
WDTxCNTL Registers..2-88
WDTxSTAT Registers ..2-90
General Purpose Registers...2-90
ix

PCI Registers .. 2-91
Vendor ID/ Device ID Registers ... 2-92
PCI Command/Status Registers .. 2-93
Revision ID/Class Code Registers .. 2-95
Header Type Register.. 2-95
MPIC I/O Base Address Register ... 2-96
MPIC Memory Base Register ... 2-97
PCI Slave Address (0,1,2 and 3) Registers ... 2-98
PCI Slave Attribute/Offset (0,1,2 and 3) Registers................................... 2-99
CONFIG_ADDRESS Register ... 2-100
CONFIG_DATA Register .. 2-103

MPIC Registers .. 2-104
MPIC Registers ... 2-104
Feature Reporting Register ... 2-108
Global Configuration Register .. 2-108
Vendor Identification Register .. 2-110
Processor Init Register .. 2-110
IPI Vector/Priority Registers... 2-111
Spurious Vector Register .. 2-112
Timer Frequency Register... 2-112
Timer Current Count Registers ... 2-113
Timer Basecount Registers ... 2-114
Timer Vector/Priority Registers .. 2-115
Timer Destination Registers.. 2-116
External Source Vector/Priority Registers .. 2-116
External Source Destination Registers.. 2-118
PHB-Detected Errors Vector/Priority Register 2-118
PHB-Detected Errors Destination Register... 2-119
Interprocessor Interrupt Dispatch Registers.. 2-120
Interrupt Task Priority Registers ... 2-120
Interrupt Acknowledge Registers.. 2-121
End-of-Interrupt Registers .. 2-122

CHAPTER 3 System Memory Controller (SMC)

Introduction ... 3-1
Overview .. 3-1
Bit Ordering Convention .. 3-1
Features .. 3-1

Block Diagrams ... 3-2
Functional Description .. 3-6
x

Performance ..3-6
Four-beat Reads/Writes ...3-6
Single-beat Reads/Writes ..3-7
Address Pipelining...3-7
Page Holding ...3-7
SDRAM Speeds...3-7
SDRAM Organization ...3-9
ROM/Flash Speeds ..3-10

PPC60x Bus Interface...3-12
Responding to Address Transfers..3-12
Completing Data Transfers..3-13
PPC60x Data Parity ...3-13
PPC60x Address Parity ...3-13
Cache Coherency...3-14
Cache Coherency Restrictions...3-14
L2 Cache Support ..3-14

ECC (Error Correction Code) ...3-15
Cycle Types ...3-15
Error Reporting..3-15
Error Logging ..3-17

ROM/Flash Interface ..3-17
I2C Interface..3-21

I2C Byte Write ...3-22
I2C Random Read..3-25
I2C Current Address Read ...3-27
I2C Page Write...3-29
I2C Sequential Read ..3-31

Refresh/Scrub..3-34
CSR Accesses ...3-34
External Register Set ..3-34
Chip Configuration ...3-34

Programming Model ..3-35
CSR Architecture..3-35
Register Summary...3-35
Detailed Register Bit Descriptions ...3-38

Vendor/Device Register ..3-39
Revision ID/ General Control Register ...3-40
SDRAM Enable and Size Register (Blocks A, B, C, D)3-41
SDRAM Base Address Register (Blocks A/B/C/D)..................................3-43
CLK Frequency Register ...3-44
ECC Control Register ..3-45
Error Logger Register ..3-49
xi

4-1
4-2
Error_Address Register ... 3-50
Scrub/Refresh Register.. 3-51
Scrub Address Register ... 3-52
ROM A Base/Size Register... 3-53
ROM B Base/Size Register ... 3-56
ROM Speed Attributes Registers .. 3-58
Data Parity Error Log Register ... 3-59
Data Parity Error Address Register... 3-60
Data Parity Error Upper Data Register ... 3-60
Data Parity Error Lower Data Register ... 3-61
I2C Clock Prescaler Register .. 3-61
I2C Control Register ... 3-62
I2C Status Register.. 3-63
I2C Transmitter Data Register .. 3-64
I2C Receiver Data Register... 3-65
SDRAM Enable and Size Register (Blocks E,F,G,H) 3-65
SDRAM Base Address Register (Blocks E/F/G/H).................................. 3-66
SDRAM Speed Attributes Register .. 3-68
Address Parity Error Log Register .. 3-70
Address Parity Error Address Register ... 3-71
32-Bit Counter... 3-71
External Register Set... 3-72
tben Register.. 3-73

Software Considerations.. 3-74
Programming ROM/Flash Devices .. 3-74
Writing to the Control Registers... 3-74
Initializing SDRAM Related Control Registers ... 3-75

SDRAM Speed Attributes... 3-75
SDRAM Size... 3-76
I2C EEPROMs .. 3-76
SDRAM Base Address and Enable... 3-76
SDRAM Control Registers Initialization Example................................... 3-77
Optional Method for Sizing SDRAM ... 3-82

ECC Codes .. 3-86

CHAPTER 4 Universe II (VMEbus to PCI) Chip

General Information .. 4-1
Introduction .. 4-1
Product Overview – Features ...

Functional Description ..
xii

4-8
-9

5-1
5-1
5-2
-3

5-4
5-7
.5-7
.5-7
.5-8
5-9
-9
5-10
-13
13
-13
13
13
14
14
14
15

-1
-1
4
6
7
-9
Architectural Overview...4-2
VMEbus Interface..4-4
PCI Bus Interface...4-5
Interrupter and Interrupt Handler ..4-6
DMA Controller ..4-7

Registers – Universe II Control and Status Registers (UCSR)..................................
Universe II Register Map..4

CHAPTER 5 Programming Details

Introduction..
PCI Arbitration...
Interrupt Handling..

Hawk MPIC ..5
8259 Interrupts..

ISA DMA Channels ...
Exceptions...

Sources of Reset...
Soft Reset...
Universe II Chip Problems after a PCI Reset ...
Error Notification and Handling ...5

Endian Issues ...
Processor/Memory Domain ..5
MPIC’s Involvement...5-
PCI Domain ..5

PCI-SCSI ...5-
PCI-Ethernet ..5-
PCI-Graphics ...5-

Universe II’s Involvement ..5-
VMEbus Domain ..5-

ROM/Flash Initialization ...5-

APPENDIX A MVME2400 VPD Reference Information

Vital Product Data (VPD) Introduction ..A
VPD Data Definitions..A
VPD Data Definitions – Product Configuration Options Data..........................A-
VPD Data Definitions – Flash Memory Configuration DataA-
VPD Data Definitions – L2 Cache Configuration DataA-
Example VPD SROM..A
xiii

B-2
B-3
APPENDIX B Related Documentation

Motorola Computer Group Documents .. B-1
Manufacturers’ Documents ..
Related Specifications ..
xiv

List of Figures

3
2-6
2-7
-20
-21
-31
39
-52
57
-3
-4

-5
-6

-46
-3
.4-8
-2
-5
-11
12
Figure 1-1. MVME2400 Series System Block Diagram ...1-4
Figure 1-2. VMEbus Master Mapping...1-17
Figure 1-3. VMEbus Slave Mapping ...1-19
Figure 1-4. General-Purpose Software-Readable Header..1-24
Figure 2-1. Hawk’s PCI Host Bridge Block Diagram ...2-
Figure 2-2. PPC to PCI Address Decoding..
Figure 2-3. PPC to PCI Address Translation ...
Figure 2-4. PCI to PPC Address Decoding..2
Figure 2-5. PCI to PPC Address Translation ...2
Figure 2-6. PCI Spread I/O Address Translation ...2
Figure 2-7. Big- to Little-Endian Data Swap...2-
Figure 2-8. Serial Mode Interrupt Scan ...2
Figure 2-9. MPIC Block Diagram ...2-
Figure 3-1. Hawk Used with Synchronous DRAM in a System3
Figure 3-2. Hawk’s System Memory Controller Internal Data Paths3
Figure 3-3. Overall SDRAM Connections (4 Blocks using Register Buffers)3
Figure 3-4. Hawk’s System Memory Controller Block Diagram3
Figure 3-5. Programming Sequence for I2C Byte Write..3-24
Figure 3-6. Programming Sequence for I2C Random Read3-26
Figure 3-7. Programming Sequence for I2C Current Address Read........................3-28
Figure 3-8. Programming Sequence for I2C Page Write..3-30
Figure 3-9. Programming Sequence for I2C Sequential Read3-33
Figure 3-10. Read/Write Check-bit Data Paths..3
Figure 4-1. Architectural Diagram for the Universe II ..4
Figure 4-2. UCSR Access Mechanisms..
Figure 5-1. MVME2400 Series Interrupt Architecture..5
Figure 5-2. PIB Interrupt Handler Block Diagram ..5
Figure 5-3. Big-Endian Mode ..5
Figure 5-4. Little-Endian Mode ...5-
xv

List of Tables
Table 1-1. MVME240x Features..1-2
Table 1-2. Default Processor Memory Map...1-6
Table 1-3. CHRP Memory Map Example..1-7
Table 1-4. PHB Register Values for CHRP Memory Map ..1-8
Table 1-5. PREP Memory Map Example...1-9
Table 1-6. PHB Register Values for PREP Memory Map1-10
Table 1-7. PCI CHRP Memory Map..1-11
Table 1-8. PHB PCI Register Values for CHRP Memory Map1-12
Table 1-9. Universe II PCI Register Values for CHRP Memory Map.....................1-13
Table 1-10. PCI PREP Memory Map...1-14
Table 1-11. PHB PCI Register Values for PREP Memory Map1-15
Table 1-12. Universe II PCI Register Values for PREP Memory Map....................1-15
Table 1-13. Universe II PCI Register Values for VMEbus Slave Map Example.....1-20
Table 1-14. VMEbus Slave Map Example...1-21
Table 1-15. 16550 Access Registers ..1-23
Table 1-16. MK48T59/559 Access Registers ..1-24
Table 1-17. VME Registers..1-25
Table 1-18. Emulated Z8536 Access Registers..1-30
Table 1-19. Z8536 CIO Port Pins Assignment...1-30
Table 2-1. PPC Slave Response Command Types ...2-8
Table 2-2. PPC Master Transaction Profiles and Starting Offsets2-11
Table 2-3. PPC Master Write Posting Options...2-12
Table 2-4. PPC Master Read Ahead Options...2-13
Table 2-5. PPC Master Transfer Types ..2-14
Table 2-6. PPC Arbiter Pin Assignments...2-15
Table 2-7. PCI Slave Response Command Types..2-23
Table 2-8. PCI Master Command Codes ...2-27
Table 2-9. PCI Arbiter Pin Description..2-34
Table 2-10. Fixed Mode Priority Level Setting ...2-35
Table 2-11. Mixed Mode Priority Level Setting ..2-36
Table 2-12. Arbitration Setting ..2-37
Table 2-13. Address Modification for Little-Endian Transfers2-40
Table 2-14. WDTxCNTL Programming..2-44
Table 2-15. PHB Hardware Configuration ..2-49
xvii

Table 2-16. PPC Register Map for PHB.. 2-66
Table 2-17. PCI Configuration Register Map.. 2-91
Table 2-18. PCI I/O Register Map... 2-92
Table 2-19. MPIC Register Map.. 2-105
Table 2-20. Cascade Mode Encoding .. 2-109
Table 2-21. Tie Mode Encoding .. 2-109
Table 3-1. 60x Bus to SDRAM Estimated Access Timing at 100 MHz
with PC100 SDRAMs (CAS_latency of 2) ... 3-8
Table 3-2. PPC60x Bus to ROM/Flash Access Timing (120ns @ 100 MHz)......... 3-10
Table 3-3. PPC60x Bus to ROM/Flash Access Timing
(80ns @ 100 MHz) .. 3-11
Table 3-4. PPC60x Bus to ROM/Flash Access Timing (50ns @ 100 MHz)........... 3-11
Table 3-5. PPC60x Bus to ROM/Flash Access Timing (30ns @ 100 MHz)........... 3-12
Table 3-6. Error Reporting... 3-16
Table 3-7. PPC60x to ROM/Flash (16 Bit Width) Address Mapping 3-19
Table 3-8. PPC60x to ROM/Flash (64 Bit Width) Address Mapping 3-20
Table 3-9. Register Summary .. 3-36
Table 3-10. Block_A/B/C/D/E/F/G/H Configurations .. 3-42
Table 3-11. ROM Block A Size Encoding .. 3-54
Table 3-12. rom_a_rv and rom_b_rv encoding ... 3-54
Table 3-13. Read/Write to ROM/Flash.. 3-55
Table 3-14. ROM Block B Size Encoding ... 3-57
Table 3-15. ROM Speed Bit Encodings .. 3-58
Table 3-16. Trc Encoding .. 3-69
Table 3-17. tras Encoding .. 3-69
Table 3-18. Deriving tras, trp, trcd and trc Control Bit Values from
SPD Information.. 3-78
Table 3-19. Programming SDRAM SIZ Bits .. 3-81
Table 3-20. Address Lists for Different Block Size Checks.................................... 3-85
Table 3-21. Syndrome Codes Ordered by Bit in Error .. 3-86
Table 3-22. Single Bit Errors Ordered by Syndrome Code 3-87
Table 4-1. Universe II Register Map ... 4-9
Table 5-1. Hawk Arbitration Assignments .. 5-1
Table 5-2. MPIC Interrupt Assignments.. 5-3
Table 5-3. PIB PCI/ISA Interrupt Assignments .. 5-6
Table 5-4. Reset Sources and Devices Affected.. 5-8
Table 5-5. Error Notification and Handling... 5-9
Table 5-6. ROM/Flash Bank Default.. 5-15
Table A-1. VPD Packet Types .. A-1
xviii

-2
B-3
Table A-2. MVME2400 Product Configuration Options DataA-4
Table A-3. Flash Memory Configuration Data ..A-6
Table A-4. L2 Cache Configuration Data ..A-7
Table A-5. VPD SROM Configuration Specification for 01-W3394F01*A-9
Table B-1. Motorola Computer Group Documents ...B-1
Table B-2. Manufacturers’ Documents ..B
Table B-3. Related Specifications ..
xix

nce
About This Manual
The MVME2400 Series VME Processor Module Programmer’s Refere
Guide provides brief board level information, complete memory maps, and
detailed ASIC chip information including register bit descriptions for the
MVME2400 series VME Processor Modules (also called MVME240x in
this manual). The information contained in this manual applies to the
single board computers built from some of the plug-together components
listed in the following table.

Model Number Description

MVME2401-1 233 MHz MPC750, 32MB ECC SDRAM

MVME2401-3 233 MHz MPC750, 64MB ECC SDRAM

MVME2403-1 233 MHz MPC750, 32MB ECC SDRAM

MVME2403-3 233 MHz MPC750, 32MB ECC SDRAM

MVME2431-1 350 MHz MPC750, 32MB ECC SDRAM

MVME2431-3 350 MHz MPC750, 32MB ECC SDRAM

MVME2432-1 350 MHz MPC750, 64MB ECC SDRAM

MVME2432-3 350 MHz MPC750, 64MB ECC SDRAM

MVME2433-1 350 MHz MPC750, 128MB ECC SDRAM

MVME2433-3 350 MHz MPC750, 128MB ECC SDRAM

MVME2434-1 350 MHz MPC750, 256MB ECC SDRAM

MVME2434-3 350 MHz MPC750, 256MB ECC SDRAM

MVME2400-0321 450 MHz MPC750, 32MB ECC SDRAM

MVME2400-0323 450 MHz MPC750, 32MB ECC SDRAM

MVME2400-0331 450 MHz MPC750, 64MB ECC SDRAM

MVME2400-0333 450 MHz MPC750, 64MB ECC SDRAM

MVME2400-0341 450 MHz MPC750, 128MB ECC SDRAM

MVME2400-0343 450 MHz MPC750, 128MB ECC SDRAM
xxi

Summary of Changes
This is the third edition of the Programmer’s Reference Guide. It
supersedes the August 2000 edition and incorporates the following
updates.

MVME2400-0351 450 MHz MPC750, 256MB ECC SDRAM

MVME2400-0353 450 MHz MPC750, 256MB ECC SDRAM

MVME2400-0361 450 MHz MPC750, 512MB ECC SDRAM

MVME2400-0363 450 MHz MPC750, 512MB ECC SDRAM

Date Changes

August 2001 All data referring to the VME CSR Bit Set Register
(VCSR_SET) and VME CSR Bit Clear Register
(VCSR_CLR) has been deleted. These registers of the
Universe II are unavailable for implementation as
intended by the MVME materials and the Universe II
User Manual.

Under Timers in Chapter 2, Hawk PCI Host Bridge &
Multi-Processor Interrupt Controller, a correction was
made to the pre-scalar clock source for the Hawk
timers.

Watchdog Timer 2 is not a functional source of reset if
component R25 is not installed, see Sources of Reset
on page 5-7.

August 2000 If Cascade Mode (M) is cleared, the MPIC is disabled.
xxii

Overview of Contents
Chapter 1, Board Description and Memory Maps, briefly describes the
board level hardware features of the MVME2400 series VME Processor
Modules.

Chapter 2, Hawk PCI Host Bridge & Multi-Processor Interrupt
Controller, describes the architecture and usage of the PowerPC to PCI
Local Bus Bridge (PHB) and the Multi-Processor Interrupt Controller
(MPIC) portion of the Hawk ASIC.

Chapter 3, System Memory Controller (SMC), provides a functional
description and programming model for the SMC portion of the Hawk.
Most of the information for using the device in a system, programming it
in a system, and testing it is contained here.

Chapter 4, Universe II (VMEbus to PCI) Chip, includes general
information, a functional description, and status and control register
information.

Chapter 5, Programming Details, contains details of several programming
functions that are not tied to any specific ASIC chip.

Appendix A, MVME2400 VPD Reference Information, includes general
reference information. The VPD identifies board information that may be
useful during board initialization, configuration and verification.

Appendix B, Related Documentation, includes all documentation related
to the MVME240x.

Comments and Suggestions
Motorola welcomes and appreciates your comments on its documentation.
We want to know what you think about our manuals and how we can make
them better. Mail comments to:

Motorola Computer Group
Reader Comments DW164
2900 S. Diablo Way
Tempe, Arizona 85282
xxiii

You can also submit comments to the following e-mail address:
reader-comments@mcg.mot.com

In all your correspondence, please list your name, position, and company.
Be sure to include the title and part number of the manual and tell how you
used it. Then tell us your feelings about its strengths and weaknesses and
any recommendations for improvements.

Conventions Used in This Manual
The following typographical conventions are used in this document:

Unless otherwise specified, all address references are in hexadecimal. An
asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal is low.
An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur on high to
low transition.

bold

is used for user input that you type just as it appears; it is also used for
commands, options and arguments to commands, and names of
programs, directories and files.

italic

is used for names of variables to which you assign values. Italic is also
used for comments in screen displays and examples, and to introduce
new terms.

courier

is used for system output (for example, screen displays, reports),
examples, and system prompts.

$ dollar specifies a hexadecimal number

& ampersand specifies a decimal number

% percent specifies a binary number
xxiv

mailto:reader-comments@mcg.mot.com

<Enter>, <Return> or <CR>

<CR> represents the carriage return or Enter key.

CTRL

represents the Control key. Execute control characters by pressing the
Ctrl key and the letter simultaneously, for example, Ctrl-d.

In this manual, assertion and negation are used to specify forcing a signal
to a particular state. In particular, assertion and assert refer to a signal that
is active or true; negation and negate indicate a signal that is inactive or
false. These terms are used independently of the voltage level (high or low)
that they represent.

Data and address sizes are defined as follows:

❏ A byte is eight bits, numbered 0 through 7, with bit 0 being the least
significant.

❏ A word is 16 bits, numbered 0 through 15, with bit 0 being the least
significant.

❏ A longword is 32 bits, numbered 0 through 31, with bit 0 being the
least significant.

The terms control bit, status bit, true, and false are used extensively in this
document. The term control bit is used to describe a bit in a register that
can be set and cleared under software control. The term true is used to
indicate that a bit is in the state that enables the function it controls. The
term false is used to indicate that the bit is in the state that disables the
function it controls. In all tables, the terms 0 and 1 are used to describe the
actual value that should be written to the bit, or the value that it yields when
read. The term status bit is used to describe a bit in a register that reflects
a specific condition. The status bit can be read by software to determine
operational or exception conditions.
xxv

1
1Board Description and Memory
Maps
Introduction
This manual provides programming information for the MVME240x
VME Processor Modules. Extensive programming information is
provided for the primary Application-Specific Integrated Circuit (ASIC)
devices used on the boards: the Hawk and Universe II chips. Reference
information is included in Appendix B, Related Documentation for the
Large Scale Integration (LSI) devices used on the boards and sources for
additional information are listed.

This chapter briefly describes the board level hardware features of the
MVME2400 series VME Processor Modules. The chapter begins with a
board level overview and features list. Memory maps are next and are the
major feature of this chapter.

Programmable registers in the MVME2400 series that reside in ASICs are
covered in the chapters on those ASICs. Chapter 2, Hawk PCI Host Bridge
& Multi-Processor Interrupt Controller, and Chapter 3, System Memory
Controller (SMC), cover the Hawk ASIC. Chapter 4, Universe II (VMEbus
to PCI) Chip, covers the Universe II chip and Chapter 5, Programming
Details covers certain programming features, such as interrupts and
exceptions. Appendix B, Related Documentation, lists all related
documentation.

Overview
The MVME2400 series VME Processor Module family, hereafter
sometimes referred to simply as the MVME240x or the V2400 series,
provides many standard features required by a computer system: Ethernet
interface, async serial port, boot Flash, and up to 256MB of ECC DRAM.
1-1

Board Description and Memory Maps
1

)

5

l

Feature Summary
There are many models based on the MVME2400 series architecture. The
following table summarizes the major features of the MVME2400 series:

Table 1-1. MVME240x Features

Feature Description

Microprocessor 233 MHZ MPC750 PowerPC processor
(MVME2401 and 2403 models)

350 MHZ MPC750 PowerPC processor
(MVME2431 - 2434 models)

450 MHZ MPC750 PowerPC processor
(MVME2400-03xx models)

Form factor 6U VMEbus

SDRAM Double-Bit-Error detect, Single-Bit-Error correct across 72 bits 32MB,
64MB, 128MB, or 256MB SDRAM

L2 Cache 1MB back side L2 cache using late write or burst-mode SRAMS

Flash memory Sockets for 1MB

8MB soldered on-board

Memory Controller Hawk’s SMC (System Memory Controller)

PCI Host Bridge Hawk’s PHB (PCI Host Bridge)

Interrupt Controller Hawk’s MPIC (Multi-Processor Interrupt Controller)

PCI Interface 32/64-bit data, 33 MHz operation

Real-time clock 8KB NVRAM with RTC and battery backup (SGS-Thomson M48T59

Peripheral Support One 16C550-compatible async serial port routed to front panel RJ-4

10BaseT/100BaseTx Ethernet interface routed to front panel RJ-45

Switches Reset (RST) and Abort (ABT)

Status LEDs Four: Board fail (BFL), CPU, PMC (one for PMC slot 2, one for slot 1)

Timers One 16-bit timer in W83C553 ISA bridge; four 32-bit timers in MPIC
device

Watchdog timer provided in SGS-Thomson M48T59

VME I/O VMEbus P2 connector

Serial I/O One asynchronous debug port via RJ-45 connector on front panel

Ethernet I/O 10BaseT/100BaseTx connections via RJ-45 connector on front pane
1-2 Computer Group Literature Center Web Site

System Block Diagram
1

System Block Diagram
The MVME2400 is a VMEbus-based single-slot single board computer
based on the PowerPCTM MPC750 processor. The MVME2400 features
two PCI mezzanine card slots, an Ethernet interface, serial port, up to 9MB
of boot Flash, and up to 256MB of ECC protected system RAM. The
Hawk ASIC controls all of the functions previously controlled by the
Raven/Falcon chipsets, in addition to new functionality. The Hawk
provides the interface to the PowerPC 60x Bus, the interface to all on-
board SDRAMs, error notification for SDRAMs, the interface to
ROM/Flash, the I2C master, the external status/control register support,
synchronous PPC60x/PCI clock ratio support, the interface to the PCI, and
an interrupt controller. PCI devices include: VME, Ethernet, and two PMC
slots. Standard I/O functions are provided by the UART device which
resides on the ISA bus. The NVRAM/RTC also resides on the ISA bus.
The general system block diagram for MVME2400 series is shown below:

PCI interface Two IEEE P1386.1 PCI Mezzanine Card (PMC) slots for one double-
width or two single-width PMCs

Front panel and/or VMEbus P2 I/O on both PMC slots

One 114-pin Mictor connector for optional PMCspan expansion module

VMEbus interface VMEbus system controller functions

64-bit PCI (Universe II)

VMEbus-to-local-bus interface (A32/A24/A16, D64 (MBLT)
D32/D16/D08 Master and Slave)

Table 1-1. MVME240x Features (Continued)

Feature Description
http://www.motorola.com/computer/literature 1-3

Board Description and Memory Maps
1

Figure 1-1. MVME2400 Series System Block Diagram

2067 9708

33MHz 32/64-bit PCI Local Bus

2067 9708

10
0

M
H

z
M

P
C

60
4

P
ro

ce
ss

or
 B

us

Debug Connector

VME P1

P
C

I
E

xp
an

si
on

System
Registers

Flash
1MB to 9MB

Clock
Generator

VME Bridge
Universe II

Ethernet PIB
W83c553

Buffers

10
/1

00
T

X
 s

er
ia

l p
or

t

ISA
Registers

RTC/NVRAM/WD
M48T59

TL16C550
UART

F
ro

nt
 P

an
el

SDRAM
32/64/128/256MB

IS
A

 B
us

VME P2

R
J4

5
R

J4
5

P
M

C
 F

ro
nt

 I
O

P
M

C
 F

ro
nt

 I
O

Sl

ot
1

 S
lo

t2

2,
64

-b
it

P
M

C
 S

lo
t

L2 Cache

Processor
MPC750

1M

Hawk ASIC
System Memory Controller (SMC)

 and PCI Host Bridge (PHB)
1-4 Computer Group Literature Center Web Site

Functional Description
1

2V

-45
45
es

d
nt
d to
f

r.
rier
an
Functional Description

Overview

The MVME2400 series is a family of single-slot VME processor modules.
It consists of the MPC750 processor and L2 cache that directly connects to
the MPC750, the Hawk ASIC, which is made up of the PCI Bridge (PHB),
the Multi-Processor Interrupt Controller (MPIC), and the System Memory
Controller (SMC). The MVME2400 series also includes 9MB of Flash
memory, 32MB to 256MB of ECC-protected SDRAM, and a rich set of
features of I/O peripherals.

The I/O peripheral devices on the PCI bus include: the Universe II
VMEbus interface ASIC and two PMC slots. Functions provided from the
ISA bus are: one asynchronous serial port, a real-time clock,
counters/timers, and a software-readable header.

The MVME2400 series board interfaces to the VMEbus via the P1 and P2
connectors, which use the 5-row 160-pin connectors as specified in the
proposed VME64 Extension Standard. It also draws +5V, +12V, and –1
power from the VMEbus backplane through these two connectors.
Additional power of 2.0V and 3.3V is regulated onboard from the +5V
power.

Front panel connectors on the MVME2400 series board include: an RJ
connector for the Ethernet 10BaseT/100BaseTx interface and an RJ-
connector for the async serial debug port. The front panel also includ
RESET and ABORT switches and status LEDs.

The MVME2400 series contains two IEEE1386.1 PCI Mezzanine Car
(PMC) slots. These PMC slots are 64-bit capable and support both fro
and rear I/O. Pins 1 through 64 of PMC slot 1 connector J14 are route
row C and row A of the 5-row DIN P2 connector. Pins 1 through 46 o
PMC slot 2 connector J24 are routed to row D and row Z of P2.

Additional PCI expansion is supported with a 114-pin Mictor connecto
This connection allows stacking of one or two PMCspan dual-PMC car
boards to increase the I/O capability. Each PMCspan board requires
additional VME slot.
http://www.motorola.com/computer/literature 1-5

Board Description and Memory Maps
1

Programming Model

Memory Maps

The following sections describe the memory maps for the MVME2400
series.

Processor Memory Maps

The Processor memory map is controlled by the Hawk ASIC. The Hawk
ASIC has flexible programming Map Decoder registers to customize the
system to fit many different applications.

Default Processor Memory Map

After a reset, the Hawk ASIC provides the default processor memory map
as shown in the following table.

Notes

1. This default map for PCI/ISA I/O space allows software to
determine if the system is MPC105-based or Hawk-based by
examining either the PHB Device ID or the CPU Type Register.

Table 1-2. Default Processor Memory Map

Processor Address Size Definition Notes

Start End

0000 0000 7FFF FFFF 2G Not mapped

8000 0000 8001 FFFF 128K PCI/ISA I/O Space 1

8002 0000 FEF7 FFFF 2G - 16M -
640K

Not mapped

FEF8 0000 FEF8 FFFF 64K SMC Registers

FEF9 0000 FEFE FFFF 384K Not mapped

FEFF 0000 FEFF FFFF 64K PHB Registers

FF00 0000 FFEF FFFF 15M Not mapped

FFF0 0000 FFFF FFFF 1M ROM/Flash Bank A or Bank B 2
1-6 Computer Group Literature Center Web Site

Programming Model
1

2. The first 1MB of ROM/Flash Bank A appears at this range after a
reset if the rom_b_rv control bit is cleared. If the rom_b_rv control
bit is set, then this address range maps to ROM/Flash Bank B.

Processor CHRP Memory Map

The following table shows a recommended CHRP memory map from the
point of view of the processor.

Notes

1. Programmable via the Hawk ASIC. For the MVME2400 series,
RAM size is limited to 256MB and ROM/Flash to 9MB.

Table 1-3. CHRP Memory Map Example

Processor Address Size Definition Notes

Start End

0000 0000 top_dram dram_size System Memory (onboard SDRAM) 1, 2

4000 0000 FCFF FFFF 3G - 48M PCI Memory Space:

4000 0000 to FCFF FFFF

3,4,8

FD00 0000 FDFF FFFF 16M Zero-Based PCI/ISA Memory Space

(mapped to 00000000 to 00FFFFFF)

3,8

FE00 0000 FE7F FFFF 8M Zero-Based PCI/ISA I/O Space

(mapped to 00000000 to 007FFFFF)

3,5,8

FE80 0000 FEF7 FFFF 7.5M Reserved

FEF8 0000 FEF8 FFFF 64K SMC Registers

FEF9 0000 FEFE FFFF 384K Reserved

FEFF 0000 FEFF FFFF 64K PHB Registers 9

FF00 0000 FF7F FFFF 8M ROM/Flash Bank A 1,6

FF80 0000 FF8F FFFF 1M ROM/Flash Bank B 1,6

FF90 0000 FFEF FFFF 6M Reserved

FFF0 0000 FFFF FFFF 1M ROM/Flash Bank A or Bank B 7
http://www.motorola.com/computer/literature 1-7

Board Description and Memory Maps
1

re
B to

o be

e.

 a

ed
our

e

HB
2. To enable the “Processor-hole” area, program the SMC to igno
0x000A0000 - 0x000BFFFF address range and program the PH
map this address range to PCI memory space.

3. Programmable via PHB.

4. CHRP requires the starting address for the PCI memory space t
256MB-aligned.

5. Programmable via PHB for either contiguous or spread-I/O mod

6. The actual size of each ROM/Flash bank may vary.

7. The first 1MB of ROM/Flash Bank A appears at this range after
reset if the rom_b_rv control bit is cleared. If the rom_b_rv control
bit is set, then this address range maps to ROM/Flash Bank B.

8. This range can be mapped to the VMEbus by programming the
Universe II ASIC accordingly. The map shown is the recommend
setting which uses the Special PCI Slave Image and two of the f
programmable PCI Slave Images.

9. The only method to generate a PCI Interrupt Acknowledge cycl
(8259 IACK) is to perform a read access to the PHB’s PIACK
register at 0xFEFF0030.

The following table shows the programmed values for the associated P
registers for the processor CHRP memory map.

Table 1-4. PHB Register Values for CHRP Memory Map

Address Register Name Register Value

FEFF 0040 MSADD0 4000 FCFF

FEFF 0044 MSOFF0 & MSATT0 0000 00C2

FEFF 0048 MSADD1 FD00 FDFF

FEFF 004C MSOFF1 & MSATT1 0300 00C2

FEFF 0050 MSADD2 0000 0000

FEFF 0054 MSOFF2 & MSATT2 0000 0002

FEFF 0058 MSADD3 FE00 FE7F

FEFF 005C MSOFF3 & MSATT3 0200 00C0
1-8 Computer Group Literature Center Web Site

Programming Model
1

 a
Processor PREP Memory Map

The Hawk ASIC can be programmed for PREP-compatible memory map.
The following table shows the PREP memory map of the MVME2400
series from the point of view of the processor.

Notes

1. Programmable via the SMC. For the MVME2400 series, RAM size
is limited to 256MB and ROM/Flash to 9MB.

2. Programmable via the Hawk’s PHB.

3. The actual size of each ROM/Flash bank may vary.

4. The first 1MB of ROM/Flash Bank A appears at this range after
reset if the rom_b_rv control bit is cleared. If the rom_b_rv control
bit is set, then this address range maps to ROM/Flash Bank B.

Table 1-5. PREP Memory Map Example

Processor Address Size Definition Notes

Start End

0000 0000 top_dram dram_size System Memory (onboard DRAM) 1

8000 0000 BFFF FFFF 1G Zero-Based PCI I/O Space:

0000 0000 - 3FFFF FFFF

2

C000 0000 FCFF FFFF 1G - 48M Zero-Based PCI/ISA Memory Space:
0000 0000 - 3CFFFFFF

2, 5

FD00 0000 FEF7 FFFF 40.5M Reserved

FEF8 0000 FEF8 FFFF 64K SMC Registers

FEF9 0000 FEFE FFFF 384K Reserved

FEFF 0000 FEFF FFFF 64K PHB Registers 6

FF00 0000 FF7F FFFF 8M ROM/Flash Bank A 1, 3

FF80 0000 FF8F FFFF 1M ROM/Flash Bank B 1, 3

FF90 0000 FFEF FFFF 6M Reserved

FFF0 0000 FFFF FFFF 1M ROM/Flash Bank A or Bank B 4
http://www.motorola.com/computer/literature 1-9

Board Description and Memory Maps
1

HB

and
HB

F8

IC

 to
5. This range can be mapped to the VMEbus by programming the
Universe II ASIC accordingly.

6. The only method to generate a PCI Interrupt Acknowledge cycle
(8259 IACK) is to perform a read access to the PHB’s PIACK
register at 0xFEFF0030.

The following table shows the programmed values for the associated P
registers for the processor PREP memory map.

PCI Configuration Access

PCI Configuration accesses are accomplished via the CONFIG_ADD
CONFIG_DAT registers. These two registers are implemented by the P
portion of the Hawk ASIC. In the CHRP memory map example, the
CONFIG_ADD and CONFIG_DAT registers are located at 0xFE000C
and 0xFE000CFC, respectively. With the PREP memory map, the
CONFIG_ADD register and the CONFIG_DAT register are located at
0x80000CF8 and 0x80000CFC, respectively.

PCI Memory Maps

The PCI memory map is controlled by the PHB portion of the Hawk AS
and the Universe II ASIC. The PHB and the Universe II ASIC have
flexible programming Map Decoder registers to customize the system
fit many different applications.

Table 1-6. PHB Register Values for PREP Memory Map

Address Register Name Register Value

FEFF 0040 MSADD0 C000 FCFF

FEFF 0044 MSOFF0 & MSATT0 4000 00C2

FEFF 0048 MSADD1 0000 0000

FEFF 004C MSOFF1 & MSATT1 0000 0002

FEFF 0050 MSADD2 0000 0000

FEFF 0054 MSOFF2 & MSATT2 0000 0002

FEFF 0058 MSADD3 8000 BFFF

FEFF 005C MSOFF3 & MSATT3 8000 00C0
1-10 Computer Group Literature Center Web Site

Programming Model
1

Default PCI Memory Map

After a reset, the PHB and the Universe II ASIC turn all the PCI slave map
decoders off. Software must program the appropriate map decoders for a
specific environment.

PCI CHRP Memory Map

The following table shows a PCI memory map of the MVME2400 series
that is CHRP-compatible from the point of view of the PCI local bus.

Table 1-7. PCI CHRP Memory Map

PCI Address Size Definition Notes

Start End

0000 0000 top_dram dram_size Onboard ECC DRAM 1

4000 0000 EFFF FFFF 3G - 256M VMEbus A32/D32 (Super/Program) 3

F000 0000 F7FF FFFF 128M VMEbus A32/D16 (Super/Program) 3

F800 0000 F8FE FFFF 16M - 64K VMEbus A24/D16 (Super/Program) 4

F8FF 0000 F8FF FFFF 64K VMEbus A16/D16 (Super/Program) 4

F900 0000 F9FE FFFF 16M - 64K VMEbus A24/D32 (Super/Data) 4

F9FF 0000 F9FF FFFF 64K VMEbus A16/D32 (Super/Data) 4

FA00 0000 FAFE FFFF 16M - 64K VMEbus A24/D16 (User/Program) 4

FAFF 0000 FAFF FFFF 64K VMEbus A16/D16 (User/Program) 4

FB00 0000 FBFE FFFF 16M - 64K VMEbus A24/D32 (User/Data) 4

FBFF 0000 FBFF FFFF 64K VMEbus A16/D32 (User/Data) 4

FC00 0000 FC03 FFFF 256K MPIC 1

FC04 0000 FCFF FFFF 16M - 256K PCI Memory Space

FD00 0000 FDFF FFFF 16M PCI Memory Space or

System Memory Alias Space
(mapped to 00000000 to 00FFFFFF)

1

FE00 0000 FFFF FFFF 48M Reserved
http://www.motorola.com/computer/literature 1-11

Board Description and Memory Maps
1

he

the

HB
Notes

1. Programmable via the PHB’s PCI Configuration registers. For t
MVME2400 series, RAM size is limited to 256MB.

2. To enable the CHRP “io-hole”, program the PHB to ignore the
0x000A0000 - 0x000FFFFF address range.

3. Programmable mapping via the four PCI Slave Images in the
Universe II ASIC.

4. Programmable mapping via the Special Slave Image (SLSI) in
Universe II ASIC.

The following table shows the programmed values for the associated P
PCI registers for the PCI CHRP memory map.

Table 1-8. PHB PCI Register Values for CHRP Memory Map

Configuration
Address Offset

Configuration Register
Name

Register Value
(Aliasing OFF)

Register Value
(Aliasing ON)

$14 MPIC MBASE FC00 0000 FC00 0000

$80 PSADD0 0000 3FFF 0100 3FFF

$84 PSOFF0 & PSATT0 0000 00FX 0000 00FX

$88 PSADD1 0000 0000 FD00 FDFF

$8C PSOFF1 & PSATT1 0000 0000 0000 00FX

$90 PSADD2 0000 0000 0000 0000

$94 PSOFF2 & PSATT2 0000 0000 0000 0000

$98 PSADD3 0000 0000 0000 0000

$9C PSOFF3 & PSATT3 0000 0000 0000 0000
1-12 Computer Group Literature Center Web Site

Programming Model
1

The next table shows the programmed values for the associated
Universe II PCI registers for the PCI CHRP memory map.

Table 1-9. Universe II PCI Register Values for CHRP Memory Map

Configuration
Address Offset

Configuration Register
Name

Register Value

$100 LSI0_CTL C082 5100

$104 LSI0_BS 4000 0000

$108 LSI0_BD F000 0000

$10C LSI0_TO XXXX 0000

$114 LSI1_CTL C042 5100

$118 LSI1_BS F000 0000

$11C LSI1_BD F800 0000

$120 LSI1_TO XXXX 0000

$128 LSI2_CTL 0000 0000

$12C LSI2_BS XXXX XXXX

$130 LSI2_BD XXXX XXXX

$134 LSI2_TO XXXX XXXX

$13C LSI3_CTL 0000 0000

$140 LSI3_BS XXXX XXXX

$144 LSI3_BD XXXX XXXX

$148 LSI3_TO XXXX XXXX

$188 SLSI C0A053F8
http://www.motorola.com/computer/literature 1-13

Board Description and Memory Maps
1

he

PCI PREP Memory Map

The following table shows a PCI memory map of the MVME2400 series
that is PREP-compatible from the point of view of the PCI local bus.

Notes

1. Programmable via the PHB’s PCI Configuration registers. For t
MVME2400 series, RAM size is limited to 256MB.

2. To enabled the CHRP “io-hole”, program the PHB to ignore the
0x000A0000 - 0x000FFFFF address range.

3. Programmable mapping via the four PCI Slave Images in the
Universe II ASIC.

Table 1-10. PCI PREP Memory Map

PCI Address Size Definition Notes

Start End

0000 0000 00FF FFFF 16M PCI/ISA Memory Space

0100 0000 2FFF FFFF 752M VMEbus A32/D32 (Super/Program) 3

3000 0000 37FF FFFF 128M VMEbus A32/D16 (Super/Program) 3

3800 0000 38FE FFFF 16M - 64K VMEbus A24/D16 (Super/Program) 4

38FF 0000 38FF FFFF 64K VMEbus A16/D16 (Super/Program) 4

3900 0000 39FE FFFF 16M - 64K VMEbus A24/D32 (Super/Data) 4

39FF 0000 39FF FFFF 64K VMEbus A16/D32 (Super/Data) 4

3A00 0000 3AFE FFFF 16M - 64K VMEbus A24/D16 (User/Program) 4

3AFF 0000 3AFF FFFF 64K VMEbus A16/D26 (User/Program) 4

3B00 0000 3BFE FFFF 16M - 64K VMEbus A24/D32 (User/Data) 4

3BFF 0000 3BFF FFFF 64K VMEbus A16/D32 (User/Data) 4

3C00 0000 7FFF FFFF 1G + 64M PCI Memory Space

8000 0000 FBFF FFFF 2G - 64M Onboard ECC DRAM 1

FC00 0000 FC03 FFFF 256K MPIC 1

FC04 0000 FFFF FFFF 64M - 256K PCI Memory Space
1-14 Computer Group Literature Center Web Site

Programming Model
1

4. Programmable mapping via the Special Slave Image (SLSI) in the
Universe II ASIC.

The following table shows the programmed values for the associated PHB
PCI registers for the PREP-compatible memory map.

The next table shows the programmed values for the associated
Universe II PCI registers for the PCI PREP memory map.

Table 1-11. PHB PCI Register Values for PREP Memory Map

Configuration
Address Offset

Configuration Register
Name

Register Value

$14 MPIC MBASE FC00 0000

$80 PSADD0 8000 FBFF

$84 PSOFF0 & PSATT0 8000 00FX

$88 PSADD1 0000 0000

$8C PSOFF1 & PSATT1 0000 0000

$90 PSADD2 0000 0000

$94 PSOFF2 & PSATT2 0000 0000

$98 PSADD3 0000 0000

$9C PSOFF3 & PSATT3 0000 0000

Table 1-12. Universe II PCI Register Values for PREP Memory Map

Configuration
Address Offset

Configuration Register
Name

Register Value

$100 LSI0_CTL C082 5100

$104 LSI0_BS 0100 0000

$108 LSI0_BD 3000 0000

$10C LSI0_TO XXXX 0000

$114 LSI1_CTL C042 5100

$118 LSI1_BS 3000 0000

$11C LSI1_BD 3800 0000

$120 LSI1_TO XXXX 0000

$128 LSI2_CTL 0000 0000
http://www.motorola.com/computer/literature 1-15

Board Description and Memory Maps
1

VMEbus Mapping

Note For the MVME2400 series, RAM size is limited to 256MB.

VMEbus Master Map

The processor can access any address range in the VMEbus with the help
from the address translation capabilities of the Universe II ASIC. The
recommended mapping is shown in the Processor Memory Maps section.
The following figure illustrates how the VMEbus master mapping is
accomplished.

$12C LSI2_BS XXXX XXXX

$130 LSI2_BD XXXX XXXX

$134 LSI2_TO XXXX XXXX

$13C LSI3_CTL 0000 0000

$140 LSI3_BS XXXX XXXX

$144 LSI3_BD XXXX XXXX

$148 LSI3_TO XXXX XXXX

$188 SLSI C0A05338

Table 1-12. Universe II PCI Register Values for PREP Memory Map

Configuration
Address Offset

Configuration Register
Name

Register Value
1-16 Computer Group Literature Center Web Site

Programming Model
1

Figure 1-2. VMEbus Master Mapping

VMEBUS

11553.00 9609

VME A24

VME A16

VME A24

VME A16

VME A24

VME A16

VME A24

VME A16

PROGRAMMABLE
SPACE

PCI MEMORYPROCESSOR

PCI MEMORY
SPACE

PCI/ISA
MEMORY SPACE

PCI
I/O SPACE

MPC
RESOURCES

NOTE 1

NOTE 1

NOTE 2

NOTE 3

ONBOARD
MEMORY
http://www.motorola.com/computer/literature 1-17

Board Description and Memory Maps
1

Notes

1. Programmable mapping done by the Hawk ASIC.

2. Programmable mapping via the four PCI Slave Images in the
Universe II ASIC.

3. Programmable mapping via the Special Slave Image (SLSI) in the
Universe II ASIC.

VMEbus Slave Map

The eight programmable VME Slave Images in the Universe II ASIC
allow other VMEbus masters to get to any devices on the MVME2400
series. The combination of the four Universe II VME Slave Images and the
four PHB PCI Slave Decoders offers a lot of flexibility for mapping the
system resources as seen from the VMEbus. In most applications, the
VMEbus only needs to see the system memory and, perhaps, the software
interrupt registers (SIR1 and SIR2 registers). An example of the VMEbus
slave map is shown below:
1-18 Computer Group Literature Center Web Site

Programming Model
1

Figure 1-3. VMEbus Slave Mapping

Notes

1. Programmable mapping via the four VME Slave Images in the
Universe II ASIC.

2. Programmable mapping via PCI Slave Images in the Hawk ASIC.

3. Fixed mapping via the PIB device.

1896 9609

PCI Memory

NOTE 2

NOTE 1

Software INT
Registers

Processor

ISA Space

Onboard
Memory

VMEbus

NOTE 1

PCI I/O Space
NOTE3
http://www.motorola.com/computer/literature 1-19

Board Description and Memory Maps
1

The following table shows the programmed values for the associated
Universe II registers for the VMEbus slave function.

The above register values yield the following VMEbus slave map:

Table 1-13. Universe II PCI Register Values for VMEbus Slave Map
Example

Configuration
Address Offset

Configuration Register
Name

Register Value
(CHRP)

Register Value
(PREP)

$F00 VSI0_CTL C0F2 0001 C0F2 0001

$F04 VSI0_BS 4000 0000 4000 0000

$F08 VSI0_BD 4000 1000 4000 1000

$F0C VSI0_TO C000 1000 C000 1000

$F14 VSI1_CTL E0F2 00C0 E0F2 00C0

$F18 VSI1_BS 1000 0000 1000 0000

$F1C VSI1_BD 2000 0000 2000 0000

$F20 VSI1_TO F000 0000 7000 0000

$F28 VSI2_CTL 0000 0000 0000 0000

$F2C VSI2_BS XXXX XXXX XXXX XXXX

$F30 VSI2_BD XXXX XXXX XXXX XXXX

$F34 VSI2_TO XXXX XXXX XXXX XXXX

$F3C VSI3_CTL 0000 0000 0000 0000

$F40 VSI3_BS XXXX XXXX XXXX XXXX

$F44 VSI3_BD XXXX XXXX XXXX XXXX

$F48 VSI3_TO XXXX XXXX XXXX XXXX
1-20 Computer Group Literature Center Web Site

Programming Model
1

ct’s
cal

lly
d
on

ted
lds,
nt
System Configuration Information

The MVME2400 uses a 512 byte serial EEPROM to store Vital Product
Data (VPD). The VPD is a variable format data structure that contains
static board configuration feature information based on your particular
board build options. This is a new approach to housing specific baseboard,
mezzanine and I/O transition module local hardware configuration
information, and will be used as a standard information storage mechanism
for future MCG products.

The serial EEPROM can be viewed as two separate and distinct 256 byte
SROMs. The first 256 byte portion of such a device contains the produ
Vital Product Data (VPD). The second 256 byte portion contains the lo
memory configuration Serial Presence Detect (SPD) data. The
MVME2400 VPD SROM is located at I2C address 0xA0 and the
MVME2400 SPD SROM is located at I2C address 0xA8.

Vital product data contains static board build information that is typica
used for board initialization, configuration, and verification. Each boar
has its own unique VPD SROM containing local hardware configurati
information.

The VPD consists of a header section, followed by contiguous format
data packets. The header section consists of eye-catcher and size fie
and the data packets consist of identifier, data length, and data conte
fields.

Table 1-14. VMEbus Slave Map Example

VMEbus Address Size CHRP Map PREP Map

Range Mode

4000 0000 -

4000 0FFF

A32 U/S/P/D

D08/16/32

4K PCI/ISA I/O Space:

0000 1000 - 0000 1FFF

PCI/ISA I/O Space:

0000 1000 - 0000 1FFF

1000 0000 -

1FFF FFFF

A32 U/S/P/D

D08/16/32/64

RMW

256M PCI/ISA Memory Space

(On-board DRAM)

0000 0000 - 0FFF FFFF

PCI/ISA Memory Space

(On-board DRAM)

8000 0000 - 8FFF FFFF
http://www.motorola.com/computer/literature 1-21

Board Description and Memory Maps
1

D

nt

 data
PD

ier.

e
ternal

 user
he

s.

n

e
553
The header section begins with an eye-catcher field that can be used to
verify the existence of an initialized VPD SROM (an optional EEPROM
CRC packet may also be used to verify the integrity of the VPD content).
The “size” field contains the total number of bytes assigned to the VP
portion of the SROM.

Each packet begins with a unique identifier field that defines the conte
and data structure of the packet’s data section. The data length field
contains the size of the data section in bytes. This is also added to the
section base address to locate the starting address of the following V
packet. Different data section lengths are sometimes used to denote
different revision levels or array sizes for packets of a particular identif
Packets must be contiguous but may be placed in any order. The
termination packet identifier marks the end of the VPD and must
immediately follow the last valid packet. Common VPD packets includ
assigned ethernet address, board serial number, processor internal/ex
clock frequency, processor identifier, connector population, and other
packets.

Customers may add additional data packets which are assigned to the
range of packet identifiers and adhere to this specification. Although t
addition of user packets is discouraged, one potential user packet
application is the specification of customer installed hardware module

Additional information on VPD Data Definitions, Product Configuratio
Options, Flash Memory Configuration Data, L2 Cache Configuration
Data, and an Example of VPD SROM data can be found in Appendix A,
MVME2400 VPD Reference Information.

ISA Local Resource Bus

W83C553 PIB Registers

The PIB contains ISA Bridge I/O registers for various functions. Thes
registers are actually accessible from the PCI bus. Refer to the W83C
Data Sheet for details.
1-22 Computer Group Literature Center Web Site

ISA Local Resource Bus
1

dress

and
RH

ll
ther
UART

A 16550-compatible UART provides the MVME2400 series with an
asynchronous serial port. Refer to the TL16C550 Data Sheet for additional
details and programming information.

The following table shows the mapping of the 16550 registers within the
MVME2400 series’s ISA I/O space beginning at address 0x2f8:

General-Purpose Software-Readable Header (SRH) Switch
(S3)

Switch S3 is an eight pole single-throw switch with software readable
switch settings. These settings can be read as a register at ISA I/O ad
$801 (hexadecimal). Each switch pole can be set to either logic 0 or
logic 1. A logic 0 means the switch is in the ON position for that particular
bit. A logic 1 means the switch is in the OFF position for that particular
bit. SRH Register Bit 0 is associated with Pin 1 and Pin 16 of the SRH
SRH Register Bit 7 is associated with Pin 8 and Pin 9 of the SRH. The S
is a read-only register.

If Motorola’s PowerPC firmware, PPCBug, is being used, it reserves a
bits, SRH0 to SRH7. If it is not being used, the switch can be used for o
applications.

Table 1-15. 16550 Access Registers

ISA I/O Address Function

0000 02f8 Receiver Buffer (Read);
Transmitter Holding (Write)

0000 -03f9 Interrupt Enable

0000 03fa Interrupt Identification (Read);
FIFO Control (Write)

0000 03fb Line Control

0000 03fc MODEM Control

0000 03fd Line Status

0000 03fe MODEM Status

0000 03ff Scratch
http://www.motorola.com/computer/literature 1-23

Board Description and Memory Maps
1

Figure 1-4. General-Purpose Software-Readable Header

NVRAM/RTC & Watchdog Timer Registers

The M48T59/559 provides the MVME2400 series with 8K of non-volatile
SRAM, a time-of-day clock, and a watchdog timer. Accesses to the
M48T59/559 are accomplished via three registers: The NVRAM/RTC
Address Strobe 0 Register, the NVRAM/RTC Address Strobe 1 Register,
and the NVRAM/RTC Data Port Register. The NVRAM/RTC Address
Strobe 0 Register latches the lower eight bits of the address and the
NVRAM/RTC Address Strobe 1 Register latches the upper five bits of the
address.

The NVRAM and RTC is accessed through the above three registers.
When accessing a NVRAM/RTC location, follow the following
procedure:

Table 1-16. MK48T59/559 Access Registers

PCI I/O Address Function

0000 0074 NVRAM/RTC Address Strobe 0 (A7 - A0)

0000 0075 NVRAM/RTC Address Strobe 1 (A15 - A8)

0000 0077 NVRAM/RTC Data Register

SRH0 = 0

SRH1 = 0

SRH2 = 0

SRH3 = 0

SRH4 = 0

SRH5 = 0

SRH6 = 0

SRH7 = 0

SRH0 = 1

SRH1 = 1

SRH2 = 1

SRH3 = 1

SRH4 = 1

SRH5 = 1

SRH6 = 1

SRH7 = 1

ON ON
1 116 16

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1-24 Computer Group Literature Center Web Site

ISA Local Resource Bus
1

1. Write the low address (A7-A0) of the NVRAM to the
NVRAM/RTC STB0 register,

2. Write the high address (A15-A8) of the NVRAM to the
NVRAM/RTC STB1 register, and

3. Then read or write the NVRAM/RTC Data Port.

Refer to the M48T59 Data Sheet for additional details and programming
information.

VME Registers

The following registers provide the following functions for the VMEbus
interface: a software interrupt capability, a location monitor function, and
a geographical address status. For these registers to be accessible from the
VMEbus, the Universe II ASIC must be programmed to map the VMEbus
Slave Image 0 into the appropriate PCI I/O address range. Refer to the
VMEbus Slave Map section for additional details. The following table
shows the registers provided for various VME functions:

These registers are described in the following sub-sections.

Table 1-17. VME Registers

PCI I/O Address Function

0000 1000 LM/SIG Control Register

0000 1001 LM/SIG Status Register

0000 1002 VMEbus Location Monitor Upper Base Address

0000 1003 VMEbus Location Monitor Lower Base Address

0000 1004 VMEbus Semaphore Register 1

0000 1005 VMEbus Semaphore Register 2

0000 1006 VMEbus Geographical Address Status
http://www.motorola.com/computer/literature 1-25

Board Description and Memory Maps
1

LM/SIG Control Register

The LM/SIG Control Register is an 8-bit register located at ISA I/O
address x1000. This register provides a method to generate software
interrupts. The Universe II ASIC is programmed so that this register can
be accessed from the VMEbus to generate software interrupts to the
processor(s).

SET_SIG1 Writing a 1 to this bit will set the SIG1 status bit.

SET_SIG0 Writing a 1 to this bit will set the SIG0 status bit.

SET_LM1 Writing a 1 to this bit will set the LM1 status bit.

SET_LM0 Writing a 1 to this bit will set the LM0 status bit.

CLR_SIG1 Writing a 1 to this bit will clear the SIG1 status bit.

CLR_SIG0 Writing a 1 to this bit will clear the SIG0 status bit.

CLR_LM1 Writing a 1 to this bit will clear the LM1 status bit.

CLR_LM0 Writing a 1 to this bit will clear the LM0 status bit.

LM/SIG Status Register

The LM/SIG Status Register is an 8-bit register located at ISA I/O address
x1001. This register, in conjunction with the LM/SIG Control Register,
provides a method to generate interrupts. The Universe II ASIC is

REG LM/SIG Control Register - Offset $1000

BIT SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

FIELD SET

SIG1

SET

SIG0

SET

LM1

SET

LM0

CLR

SIG1

CLR

SIG0

CLR

LM1

CLR

LM0

OPER WRITE-ONLY

RESET 0 0 0 0 0 0 0 0
1-26 Computer Group Literature Center Web Site

ISA Local Resource Bus
1

programmed so that this register can be accessed from the VMEbus to
provide a capability to generate software interrupts to the onboard
processor(s) from the VMEbus.

EN_SIG1 When the EN_SIG1 bit is set, a LM/SIG Interrupt 1 is
generated if the SIG1 bit is asserted.

EN_SIG0 When the EN_SIG0 bit is set, a LM/SIG Interrupt 0 is
generated if the SIG0 bit is asserted.

EN_LM1 When the EN_LM1 bit is set, a LM/SIG Interrupt 1 is
generated and the LM1 bit is asserted.

EN_LM0 When the EN_LM0 bit is set, a LM/SIG Interrupt 0 is
generated and the LM0 bit is asserted.

SIG1 SIG1 status bit. This bit can only be set by the SET_LM1
control bit. It can only be cleared by a reset or by writing a 1 to the
CLR_LM1 control bit.

SIG0 SIG0 status bit. This bit can only be set by the SET_LM0
control bit. It can only be cleared by a reset or by writing a 1 to the
CLR_LM0 control bit.

LM1 LM1 status bit. This bit can be set by either the location monitor
function or the SET_LM1 control bit. LM1 correspond to offset 3 from
the location monitor base address. This bit can only be cleared by a
reset or by writing a 1 to the CLR_LM1 control bit.

LM0 LM0 status bit. This bit can be set by either the location monitor
function or the SET_LM0 control bit. LM0 correspond to offset 1 from
the location monitor base address. This bit can only be cleared by a
reset or by writing a 1 to the CLR_LM0 control bit.

REG LM/SIG Status Register - Offset $1001

BIT SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

FIELD EN

SIG1

EN

SIG0

EN

LM1

EN

LM0

SIG1 SIG0 LM1 LM0

OPER R/W READ-ONLY

RESET 0 0 0 0 0 0 0 0
http://www.motorola.com/computer/literature 1-27

Board Description and Memory Maps
1

Location Monitor Upper Base Address Register

The Location Monitor Upper Base Address Register is an 8-bit register
located at ISA I/O address x1002. The Universe II ASIC is programmed
so that this register can be accessed from the VMEbus to provide VMEbus
location monitor function.

VA[15:8]Upper Base Address for the location monitor function.

Location Monitor Lower Base Address Register

The Location Monitor Lower Base Address Register is an 8-bit register
located at ISA I/O address x1003. The Universe II ASIC is programmed
so that this register can be accessed from the VMEbus to provide VMEbus
location monitor function.

VA[7:4] Lower Base Address for the location monitor function.

LMEN This bit must be set to enable the location monitor function.

Semaphore Register 1

The Semaphore Register 1 is an 8-bit register located at ISA I/O address
x1004. The Universe II ASIC is programmed so that this register can be
accessible from the VMEbus. This register can only be updated if bit 7 is

REG Location Monitor Upper Base Address Register - Offset $1002

BIT SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

FIELD VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8

OPER R/W

RESET 0 0 0 0 0 0 0 0

REG Location Monitor Lower Base Address Register - Offset $1003

BIT SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

FIELD VA7 VA6 VA5 VA4 LMEN

OPER R/W R R R

RESET 0 0 0 0 0 0 0 0
1-28 Computer Group Literature Center Web Site

ISA Local Resource Bus
1

low or if the new value has the most significant bit cleared. When bit 7 is
high, this register will not latch in the new value if the new value has the
most significant bit set.

Semaphore Register 2

The Semaphore Register 2 is an 8-bit register located at ISA I/O address
x1005. The Universe II ASIC is programmed so that this register can be
accessible from the VMEbus. This register can only be updated if bit 7 is
low or if the new value has the most significant bit cleared. When bit 7 is
high, this register will not latch in the new value if the new value has the
most significant bit set.

VME Geographical Address Register (VGAR)

The VME Geographical Address Register is an 8-bit read-only register
located at ISA I/O address x1006. This register reflects the states of the
geographical address pins at the 5-row, 160-pin P1 connector.

REG Semaphore Register 1 - Offset $1004

BIT SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

FIELD SEM1

OPER R/W

RESET 0 0 0 0 0 0 0 0

REG Semaphore Register 2 - Offset $1005

BIT SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

FIELD SEM2

OPER R/W

RESET 0 0 0 0 0 0 0 0

REG VME Geographical Address Register - Offset $1006

BIT SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0

FIELD GAP# GA4# GA3# GA2# GA1# GA0#

OPER READ ONLY

RESET X X X X X X X X
http://www.motorola.com/computer/literature 1-29

Board Description and Memory Maps
1

Emulated Z8536 CIO Registers and Port Pins

Although the MVME2400 series does not use a Z8536, there are several
functions within this part that are emulated within an ISA Register PLD.
These functions are accessed by reading/writing the Port A, B, C Data
Registers and Control Register. Note that the Pseudo IACK function is not
implemented in the MVME2400 series.

The MVME2400 implements the Z8536 CIO functions according to the
following table.

Z8536 CIO Port Pins

The following table shows the signal function and port mapping for the
Z8536 CIO emulation. The direction of these ports are fixed in hardware.

Table 1-18. Emulated Z8536 Access Registers

PCI I/O Address Function

0000 0844 Port C’s Data Register

0000 0845 Port B’s Data Register

0000 0846 Port A’s Data Register

0000 0847 Control Register

Table 1-19. Z8536 CIO Port Pins Assignment

Port
Pin

Signal Name Direction Descriptions

PA0 I/O Not used

PA1 I/O Not used

PA2 I/O Not used

PA3 I/O Not used

PA4 I/O Not used

PA5 I/O Not used

PA6 BRDFAIL Output Board Fail: When set will cause BFL LED to be lit.

PA7 I/O Not used

PB0 I/O Not used
1-30 Computer Group Literature Center Web Site

ISA Local Resource Bus
1

ISA DMA Channels

The MVME2400 series does not implement any ISA DMA channels.

PB1 I/O Not used

PB2 I/O Not used

PB3 I/O Not used

PB4 I/O Not used

PB5 I/O Not used

PB6 I/O Not used

PB7 ABORT_ Input Status of ABORT# signal

PC0 I/O Not used

PC1 I/O Not used

PC2 BASETYP0 Input Genesis Base Module Type:

00b = Genesis II (see Base Module Status Register)

01b = MVME1600-011

10b = Reserved

11b = MVME1600-001

PC3 BASETYP1 Input

Table 1-19. Z8536 CIO Port Pins Assignment (Continued)

Port
Pin

Signal Name Direction Descriptions
http://www.motorola.com/computer/literature 1-31

2
2Hawk PCI Host Bridge & Multi-
Processor Interrupt Controller
ers.

.

Introduction

Overview

This chapter describes the architecture and usage of the PowerPC to PCI
Local Bus Bridge (PHB) and the Multi-Processor Interrupt Controller
(MPIC) portion of the Hawk ASIC. The Hawk is intended to provide
PowerPC 60x (PPC60x) compliant devices access to devices residing on
the PCI Local Bus. In the remainder of this chapter, the PPC60x bus will
be referred to as the PPC bus and the PCI Local Bus as PCI. PCI is a high
performance 32-bit or 64-bit, burst mode, synchronous bus capable of
transfer rates of 132MB/sec in 32-bit mode or 264MB/sec in 64-bit mode
using a 33 MHz clock.

Features

❏ PPC Bus Interface

– Direct interface to MPC750 processor.

– 64-bit data bus, 32-bit address bus.

– Four independent software programmable slave map decod

– Multi-level write post FIFO for writes to PCI.

– Support for PPC bus clock speeds up to 100 MHz.

– Selectable big or little endian operation.

– 3.3 V signal levels

❏ PCI Interface

– Fully PCI Rev. 2.1 compliant.

– 32-bit addressing, 32 or 64-bit data bus.

– Support for accesses to all three PCI address spaces.

– Multiple-level write posting buffers for writes to the PPC bus
2-1

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
ers.

.

rity

to

r
– Read-ahead buffer for reads from the PPC bus.

– Four independent software programmable slave map decod

❏ Interrupt Controller

– MPIC compliant.

– MPIC programming model.

– Support for 16 external interrupt sources and two processors

– Supports 15 programmable Interrupt and Processor Task prio
levels.

– Supports the connection of an external 8259 for ISA/AT
compatibility.

– Distributed interrupt delivery for external I/O interrupts.

– Multiprocessor interrupt control allowing any interrupt source
be directed to either processor.

– Multilevel cross processor interrupt control for multiprocesso
synchronization.

– Four Interprocessor Interrupt sources

– Four 32-bit tick timers.

– Processor initialization control

❏ Two 64-bit general purpose registers for cross-processor
messaging.
2-2 Computer Group Literature Center Web Site

Block Diagram

2
Block Diagram

Figure 2-1. Hawk’s PCI Host Bridge Block Diagram

E
nd

ia
n

M
ux

D
at

a

C
om

m
an

d

F
IF

O

F
IF

O

E
nd

ia
n

M
u

x
D

at
a

C
o

m
m

an
d

F
IF

O

F
IF

O

P
C

I F
IF

O

P
P

C
 F

IF
O

R
eg

P
C

I I
np

ut

R
eg

P
P

C
 In

pu
t

P
P

C
 R

eg
is

te
rs

P
C

I R
eg

is
te

rs

M
ux

R
eg

P
C

I O
ut

pu
t

M
ux

R
eg

P
P

C
 O

ut
pu

t

M
P

IC
 In

te
rf

ac
e

P
P

C
 D

ec
od

e

P
C

I D
ec

od
e

P
C

I S
la

ve

P
P

C
 S

la
ve

P
P

C
 M

as
te

r

P
C

I M
as

te
r

P
C

I
P

C
I

P
P

C
P

P
C

P
P

C

A
rb

ite
r

P
ar

ity

A
rb

ite
r

Lo
ck

T
im

er

P
P

C
/P

C
I

P
C

I H
os

t B
rid

ge
 (

P
H

B
)

P
C

I B
us

P
P

C
60

x
B

us

C
lo

ck

C
lo

ck
s

R
es

et

C
lo

ck
 P

ha
si

ng
http://www.motorola.com/computer/literature 2-3

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

gic is
t,
d in

ow

pport
ound
The

 the

PCI

nd
tion.

CI
CI

O.

 it to

PC

tion
Functional Description

Architectural Overview

A functional block diagram of the Hawk’s PHB is shown in Figure 2-1.
The PHB control logic is subdivided into the following functions: PCI
slave, PCI master, PPC slave, and PPC master. The PHB data path lo
subdivided into the following functions: PCI FIFO, PPC FIFO, PCI Inpu
PPC Input, PCI Output, and PPC Output. Address decoding is handle
the PCI Decode and PPC Decode blocks. The control register logic is
contained in the PCI Registers and PPC Registers blocks. The clock
phasing and reset control logic is contained within the PPC/PCI Clock
block.

The FIFO structure implemented within PHB has been selected to all
independent data transfer operations to occur between PCI bound
transactions and PPC bound transactions. The PCI FIFO is used to su
PPC bound transactions, while the PPC FIFO is used to support PCI b
transactions. Each FIFO supports a command path and a data path.
data path portion of each FIFO incorporates a multiplexer to allow
selection between write data and read data, as well as logic to handle
PPC/PCI endian function.

All PPC originated PCI bound transactions utilize the PPC Slave and
Master functions for maintaining bus tracking and control. During both
write and read transactions, the PPC Slave will place command
information into the PPC FIFO. The PCI Master will draw this comma
information from the PPC FIFO when it is ready to process the transac
During write transactions, write data is captured from the PPC60x bus
within the PPC Input block. This data is fed into the PPC FIFO.The P
Output block removes the data from the FIFO and presents it to the P
bus. During read transactions, read data is captured from the PCI bus
within the PCI Input block. From there, the data is fed into the PPC FIF
The PPC Output block removes the data from the FIFO and presents
the PPC60x bus.

All PCI originated PPC bound transactions utilize the PCI Slave and P
Master functions for maintaining bus tracking and control. During both
write and read transactions, the PCI Slave will place command informa
2-4 Computer Group Literature Center Web Site

Functional Description

2
into the PCI FIFO. The PPC Master will draw this command information
from the PCI FIFO when it is ready to process the transaction. During write
transactions, write data is captured from the PCI bus within the PCI Input
block. This data is fed into the PCI FIFO. The PPC Output block removes
the data from the FIFO and presents it to the PPC60x bus. During read
transactions, read data is captured from the PPC60x bus within the PPC
Input block. From there, the data is fed into the PCI FIFO. The PCI Output
block removes the data from the FIFO and presents it to the PCI bus.

The MPIC is hosted by the PHB. A custom MPIC Interface is provided to
allow write data and control to be passed to the MPIC and to allow read
data to be passed back to the PHB. The MPIC Interface is controlled
exclusively by the PCI Slave.

The data path function imposes some restrictions on access to the MPIC,
the PCI Registers, and the PPC Registers. The MPIC and the PCI Registers
are only accessible to PCI originated transactions. The PPC Registers are
only accessible to PPC originated transactions.

PHB has several small blocks that support various PPC functions.
Arbitration is provide by the PPC Arbiter block. Cache line locking (via
PCI Lock) is handled by the PPC Lock block. Finally, a timer function is
implemented in the PPC Timer block.

PHB also provides miscellaneous support for various PCI functions.
Arbitration on the PCI bus is handled by the PCI Arbiter block. Parity
checking and generation is handled within the PCI Parity block.

PPC Bus Interface

The PPC Bus Interface is designed to be coupled directly to up to two
PPC601, PPC603, or PPC604 microprocessors and one peripheral PPC60x
master device. It uses a subset of the capabilities of the PPC bus protocol.

PPC Address Mapping

The PHB will map either PCI memory space or PCI I/O space into PPC
address space using four programmable map decoders. These decoders
provide windows into the PCI bus from the PPC bus. The most significant
http://www.motorola.com/computer/literature 2-5

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 16 bits of the PPC address are compared with the address range of each
map decoder, and if the address falls within the specified range, the access
is passed on to the PCI. An example of this is shown in Figure 2-2.

Figure 2-2. PPC to PCI Address Decoding

There are no limits imposed by the PHB on how large of an address space
a map decoder can represent. There is a lower limit of a minimum of 64KB
due to the resolution of the address compare logic.

For each map, there is an associated set of attributes. These attributes are
used to enable read accesses, enable write accesses, enable write posting,
and define the PCI transfer characteristics.

PPC Bus Address 8 0 8 0 1 2 3 4
3116150

XSADDx Register 7 0 8 0 9 0 0 0
3116150

>= <=andDecode is
2-6 Computer Group Literature Center Web Site

Functional Description

2
Each map decoder also includes a programmable 16-bit address offset. The
offset is added to the 16 most significant bits of the PPC address, and the
result is used as the PCI address. This offset allows PCI devices to reside
at any PCI address, independent of the PPC address map. An example of
this is shown in the following figure.

Figure 2-3. PPC to PCI Address Translation

Care should be taken to assure that all programmable decoders decode
unique address ranges since overlapping address ranges will lead to
undefined operation.

PPC Slave

The PPC slave provides the interface between the PPC bus and the PPC
FIFO. The PPC slave is responsible for tracking and maintaining
coherency to the PPC60x processor bus protocol. The actions taken by the
PPC Slave to service a transaction are dependent upon whether the
transaction is posted or compelled. During compelled transactions, such as
a read or a non-posted single beat write, the PPC Slave will hold off
asserting AACK_ and TA_ until after the transaction has completed on the
PCI bus. This has the effect of removing all levels of pipelining during
compelled PHB accesses. The interdependency between the assertion of

PPC Bus Address 8 0 8 0 1 2 3 4
3116150

XSOFFx Register 9 0 0 0
150

+

PCI Bus Address 1 0 8 0 1 2 3 4
0151631

=

http://www.motorola.com/computer/literature 2-7

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 AACK_ and TA_ allows the PPC Slave to assert a retry to the processor in
the event that the transaction is unable to complete on the PCI side. It
should be noted that any transaction that crosses a PCI word boundary
could be disrupted after only having a portion of the data transferred.

The PPC Slave cannot perform compelled burst write transactions. The
PPC bus protocol mandates that the qualified retry window must occur no
later than the assertion of the first TA_ of a burst transaction. If the PHB
were to attempt a compelled linkage for all beats within a burst write, there
is a possibility that the transaction could be interrupted. The interruption
would occur at a time past the latest qualified retry window and the PPC
Slave would be unable to retry the transaction. Therefore, all burst write
transactions will be posted regardless of the write posting attribute within
the associated map decoder register.

If the PPC Slave is servicing a posted write transaction and the PPC FIFO
can accept the transaction, the assertion of AACK_ and TA_ will occur as
soon as the PPC Slave decode logic settles out and the PPC bus protocol
allows for the assertion. If the PPC FIFO is full, the PPC Slave will hold
the processor with wait states (AACK_ will not be asserted) until there is
room within the PPC FIFO to store the pending transaction.

The PPC slave divides PPC command types into three categories: address
only, write, and read. If a command type is an address only and the address
presented at the time of the command is a valid PHB address, the PPC
slave will respond immediately by asserting AACK_. The PHB will not
respond to address only cycles where the address presented is not a PHB
address. The response of the PPC slave to command types is listed in the
following table.

Table 2-1. PPC Slave Response Command Types

PPC Transfer Type Transfer
Encoding

Transaction

Clean Block 00000 Addr Only

Flush Block 00100 Addr Only

SYNC 01000 Addr Only

Kill Block 01100 Addr Only

EIEIO 10000 Addr Only
2-8 Computer Group Literature Center Web Site

Functional Description

2

PPC FIFO

A 64-bit by 8 entry FIFO (two cache lines total) is used to hold data
between the PPC Slave and the PCI Master to ensure that optimum data
throughput is maintained. The same FIFO is used for both read and write
transactions. A 46-bit by 4 entry FIFO is used to hold command
information being passed between the PPC Slave and the PCI Master. If
write posting has been enabled, then maximum number of transactions that

ECOWX 10100 No Response

TLB Invalidate 11000 Addr Only

ECIWX 11100 No Response

LWARX 00001 Addr Only

STWCX 00101 Addr Only

TLBSYNC 01001 Addr Only

ICBI 01101 Addr Only

Reserved 1XX01 No Response

Write-with-flush 00010 Write

Write-with-kill 00110 Write

Read 01010 Read

Read-with-intent-to-modify 01110 Read

Write-with-flush-atomic 10010 Write

Reserved 10110 No Response

Read-atomic 11010 Read

Read-with-intent-to-modify-atomic 11110 Read

Reserved 00011 No Response

Reserved 00111 No Response

Read-with-no-intent-to-cache 01011 Read

Reserved 01111 No Response

Reserved 1xx11 No Response

Table 2-1. PPC Slave Response Command Types (Continued)

PPC Transfer Type Transfer
Encoding

Transaction
http://www.motorola.com/computer/literature 2-9

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 may be posted is limited by the abilities of either the data FIFO or the
command FIFO. For example, two burst transactions would make the data
FIFO the limiting factor for write posting. Four single beat transactions
would make the command FIFO be the limiting factor. If either limit is
exceeded, then any pending PPC transactions will be delayed (AACK_
and TA_ will not be asserted) until the PCI Master has completed a portion
of the previously posted transactions and created some room within the
command and/or data FIFOs.

The PHB does not support byte merging or byte collapsing. Each and
every single beat transaction presented to the PPC Slave will be presented
to the PCI bus as a unique single beat transfer.

PPC Master

The PPC Master can transfer data either in 1-to-8 byte single beat
transactions or 32 byte four beat burst transactions. This limitation is
strictly imposed by the PPC60x bus protocol. The PPC Master will attempt
to move data using burst transfers whenever possible. If a transaction starts
on a non-cache line address, the PPC Master will perform as many single
beat transactions as needed until the next highest cache line boundary is
reached. If a write transaction ends on a non-cache line boundary, then the
PPC Master will finish the transaction with as many single beat
transactions as needed to complete the transaction. Table 2-2 shows the
relationship between starting addresses and PPC60x bus transaction types
when write posting and read ahead are enabled.
2-10 Computer Group Literature Center Web Site

Functional Description

2

While the PCI Slave is filling the PCI FIFO with write data, the PPC
Master can be moving previously posted write data onto the PPC60x bus.
In general, the PPC60x bus is running at a higher clock rate than the PCI
bus, which means the PCI bus can transfer data at a continuous
uninterrupted burst while the PPC60x bus transfers data in distributed
multiple bursts. The PHB write posting mechanism has been tuned to
create the most efficient possible data transfer between the two busses
during typical operation. It is conceivable that some non-typical conditions
could exist that would upset the default write post tuning of the PHB. For
example, if a PPC60x master is excessively using PPC60x bus bandwidth,
then the additional latency associated with obtaining ownership of the
PPC60x bus might cause the PCI Slave to stall if the PCI FIFO gets full. If
the PCI Slave is continuously stalling during write posted transactions,
then further tuning might be needed. This can be accomplished by
changing the WXFT (Write Any FIFO Threshold) field within the
PSATTx registers to recharacterize PHB write posting mechanism. The

Table 2-2. PPC Master Transaction Profiles and Starting Offsets

Start Offset (that is, from
0x00,0x20,0x40, etc.)

Write Profile Read Profile Notes

0x...00 -> 0x....07 Burst @ 0x00

Burst @ 0x20

....

Burst @ 0x00

Burst @ 0x20

....

Most efficient

0x....08 -> 0x....0f Single @ 0x08

Single @ 0x10

Single @ 0x18

Burst @ 0x20

....

Burst @ 0x00

Burst @ 0x20

....

Discard read beat 0x00

0x....10 -> 0x....17 Single @ 0x10

Single @ 0x18

Burst @ 0x20

....

Burst @ 0x00

Burst @ 0x20

....

Discard read beat 0x00

and 0x08

0x....18 -> 0x....1f Single @ 0x18

Burst @ 0x20

....

Single @ 0x18

Burst @ 0x20

....
http://www.motorola.com/computer/literature 2-11

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 FIFO threshold should be lowered to anticipate any additional latencies
incurred by the PPC Master on the PPC60x bus. The following table
summarizes the PHB available write posting options.

The PPC Master has an optional read ahead mode controlled by the RAEN
bit in the PSATTx registers that allows the PPC Master to prefetch data in
bursts and store it in the PCI FIFO. The contents of the PCI FIFO will then
be used to satisfy the data requirements for the remainder of the PCI read
transaction. The PHB read ahead mechanism has been tuned for maximum
efficiency during typical operation conditions. If excessive latencies are
encountered on the PPC60x bus, it may be necessary to tune the read ahead
mechanism to compensate for this. Additional tuning of the read-ahead
function is controlled by the RXFT/RMFT (Read Any FIFO
Threshold/Read Multiple FIFO Threshold) fields in the PSATTx registers.
These fields can be used to characterize when the PPC Master will
continue reading ahead with respect to the PCI FIFO threshold. The FIFO
threshold should be raised to anticipate any additional latencies incurred
by the PPC Master on the PPC60x bus. Table 2-4 summarizes the PHB
available read ahead options.

Table 2-3. PPC Master Write Posting Options

WXFT WPEN PPC60x Start PPC60x Continuation

xx 0 FIFO = 1 dword FIFO = 1 dword

00 1 FIFO >= 4 cache lines FIFO >= 1 cache line

01 1 FIFO >= 3 cache lines FIFO >= 1 cache line

10 1 FIFO >= 2 cache lines FIFO >= 1 cache line

11 1 FIFO >= 1 cache lines FIFO >= 1 cache line
2-12 Computer Group Literature Center Web Site

Functional Description

2

Upon completion of a prefetched read transaction, any residual read data
left within the PCI FIFO will be invalidated (discarded).

!
Caution

The PHB does not have a mechanism for snooping the PPC60x bus for
transactions associated with the prefetched read data within the PCI FIFO,
therefore caution should be exercised when using the prefetch option
within coherent memory space.

The PPC Master will never perform prefetch reads beyond the address
range mapped within the PCI Slave map decoders. As an example, assume
PHB has been programmed to respond to PCI address range $10000000

Table 2-4. PPC Master Read Ahead Options

RXFT RMFT RAEN PCI
Command

Initial
Read Size

Continuation Subsequent
Read Size

xx xx 0 Read 1 cache line PCI received
data and

FRAME_
asserted

1 cache line

Read Line

00 xx 1 Read 4 cache lines FIFO <= 0
cache lines

FIFO >= 4
cache linesRead Line

xx 00 x Read Multiple

01 xx 1 Read 4 cache lines FIFO <= 1
cache line

FIFO >= 4
cache linesRead Line

xx 01 x Read Multiple

10 xx 1 Read 4 cache lines FIFO <= 2
cache lines

FIFO >= 4
cache linesRead Line

xx 10 x Read Multiple

11 xx 1 Read 4 cache lines FIFO <= 3
cache lines

FIFO >= 4
cache linesRead Line

xx 11 x Read Multiple
http://www.motorola.com/computer/literature 2-13

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 through $1001FFFF with an offset of $2000. The PPC Master will perform
its last read on the PPC60x bus at cache line address $3001FFFC or word
address $3001FFF8.

The PPC60x bus transfer types generated by the PPC Master depend on the
PCI command code and the INV/GBL bits in the PSATTx registers. The
GBL bit determines whether or not the GBL_ signal is asserted for all
portions of a transaction and is fully independent of the PCI command
code and INV bit. A following table shows the relationship between the
PCI command codes and the INV bit.

The PPC master incorporates an optional operating mode called Bus Hog.
When Bus Hog is enabled, the PPC master will continually request the
PPC bus for the entire duration of each PCI transfer. When Bus Hog is not
enabled, the PPC master will structure its bus request actions according to
the requirements of the FIFO. The Bug Hog mode was primarily designed
to assist with system level debugging and is not intended for normal modes
of operation. It is a brute force method of guaranteeing that all PCI to
PPC60x transactions will be performed without any intervention by host
CPU transactions.

Table 2-5. PPC Master Transfer Types

PCI Command Code INV PPC Transfer Type PPC Transfer Size TT0-TT4

Memory Read

Memory Read Multiple

Memory Read Line

0 Read Burst/Single Beat 01010

Memory Read

Memory Read Multiple

Memory Read Line

1 Read With Intent to
Modify

Burst/Single Beat 01110

Memory Write

Memory Write and
Invalidate

x Write with Kill Burst 00110

Memory Write

Memory Write and
Invalidate

x Write with Flush Single Beat 00010
2-14 Computer Group Literature Center Web Site

Functional Description

2

l.

de
 titled

al
ip,

e

he
!
Caution

Caution should be exercised when using this mode since the over-
generosity of bus ownership to the PPC master can be detrimental to the
host CPU’s performance. The Bus Hog mode can be controlled by the
XMBH bit within the GCSR. The default state for XMBH is disabled.

PPC Arbiter

PHB has an internal PPC60x bus arbiter. The use of this arbiter is optiona
If the internal arbiter is disabled, then the PHB must be allowed to
participate in an externally implemented PPC60x arbitration mechanism.
The selection of either internal or external PPC arbitration mode is ma
by sampling an RD line at the release of reset. Please see the section
PHB Hardware Configuration on page 2-49 for more information.

PHB has been designed to accommodate up to four PPC60x bus masters,
including itself (HAWK), two processors (CPU0/CPU1) and an extern
PPC60x master (EXTL). EXTL can be an L2 cache, a second bridge ch
etc. When the PPC Arbiter is disabled, PHB will generate an external
request and listen for an external grant for itself. It will also listen to th
other external grants to determine the PPC60x master identification field
(XID) within the GCSR. When the PPC Arbiter is enabled, PHB will
receive requests and issue grants for itself and for the other three bus
masters. The XID field will be determined by the PPC Arbiter.

The PPC60x arbitration signals and their functions are summarized in t
following table.

Table 2-6. PPC Arbiter Pin Assignments

Pin Name Pin Type Reset Internal Arbiter External Arbiter

Direction Function Direction Function

XARB0 BiDir Tristate Output CPU0 Grant_ Input CPU0 Grant_

XARB1 BiDir Tristate Output CPU1 Grant_ Input CPU1 Grant_

XARB2 BiDir Tristate Output EXTL Grant_ Input EXTL Grant_

XARB3 BiDir Tristate Input CPU0 Request_ Output HAWK Request_

XARB4 Input - - Input CPU1 Request_ Input HAWK Grant_

XARB5 Input - - Input EXTL Request_ Input - -
http://www.motorola.com/computer/literature 2-15

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

ion
ing
 all

y of
.

d
he
on

gle
 the
ther
on
While RST_ is asserted, XARB0 through XARB4 will be held in tri-state.
If the internal arbiter mode is selected, then XARB0 through XARB3 will
be driven to an active state no more than ten clock periods after PHB has
detected a rising edge on RST_. If the external arbiter mode has been
selected, then XARB4 will be driven to an active state no more than ten
clock periods after PHB has detected a rising edge on RST_.

The PPC Arbiter implements the following prioritization scheme:

❏ HAWK (Highest Priority)

❏ EXTL

❏ CPUx

❏ CPUy (Lowest Priority)

The PPC Arbiter is controlled by the XARB register within the PHB
PPC60x register group.

The PPC Arbiter supports two prioritization schemes. Both schemes affect
the priority of the CPU’s with respect to each other. The CPU fixed opt
always places the priority of CPU0 over that of CPU1. The CPU rotat
option gives priority on a rotational basis between CPU0 and CPU1. In
cases, the priority of the CPUs remains fixed with respect to the priorit
HAWK and EXTL, with HAWK always having the highest priority of all

The PPC Arbiter supports four parking modes. Parking is implemente
only on the CPUs and is not implemented on either HAWK or EXTL. T
parking options include parking on CPU0, parking on CPU1, parking
the last CPU, or parking disabled.

There are various system level debug functions provided by the PPC
Arbiter. The PPC Arbiter has the optional ability to flatten the PPC60x bus
pipeline. Flattening can be imposed uniquely on single beat reads, sin
beat writes, burst reads, and burst writes. It is possible to further qualify
ability to flatten based on whether there is a switch in masters or whe
to flatten unconditionally for each transfer type. This is a debug functi
only and is not intended for normal operation.
2-16 Computer Group Literature Center Web Site

Functional Description

2
PPC Parity

PHB will generate data parity whenever it is sourcing PPC data. This
happens during PPC Master write cycles and PPC Slave read cycles. Valid
data parity will be presented when DBB_ is asserted for PPC Master write
cycles. Valid data parity will be presented when TA_ is asserted for PPC
Slave read cycles.

PHB will check data parity whenever it is sinking PPC data. This happens
during PPC Master read cycles and PPC Slave write cycles. Data parity
will be considered valid anytime TA_ has been asserted. If a data parity
error is detected, then the PHB will latch address and attribute information
within the ESTAT, EADDR, and EATTR registers and an interrupt or
machine check will be generated depending on the programming of the
ESTAT register.

PHB has a mechanism to purposely induce data parity errors for testability.
The DPE field within the ETEST register can be used to purposely inject
data parity errors on specific data parity lines. Data parity errors can only
be injected during cycles where PHB is sourcing PPC data.

PHB will generate address parity whenever it is sourcing a PPC
address.This will happen for all PPC Master transactions. Valid address
parity will be presented when ABB_ is being asserted.

PHB has a mechanism to purposely inject address parity errors for
testability. The APE field within the ETEST register can be used to
purposely inject address parity errors on specific address parity lines.
Address parity errors can only be injected during cycles where PHB is
sourcing a PPC address.

PHB does not have the ability to check for address parity errors.

PPC Bus Timer

The PPC Timer allows the current bus master to recover from a potential
lock-up condition caused when there is no response to a transfer request.
The time-out length of the bus timer is determined by the XBT field within
the GCSR.
http://www.motorola.com/computer/literature 2-17

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

g

. If
tion

esses
d

n
 to
ther

ed

g
d
The PPC Timer is designed to handle the case where an address tenure is
not closed out by the assertion of AACK_. The PPC Timer will not handle
the case where a data tenure is not closed out by the appropriate number of
TA_ assertions. The PPC Timer will start timing at the exact moment when
the PPC60x bus pipeline has gone flat. In other words, the current address
tenure is pending closure, all previous data tenures have completed, and
the current pending data tenure awaiting closer is logically associated with
the current address tenure.

The time-out function will be aborted if AACK_ is asserted anytime before
the time-out period has passed. If the time-out period reaches expiration,
then the PPC Timer will assert AACK_ to close the faulty address tenure.
If the transaction was an address only cycle, then no further action will be
taken. If the faulty transaction was a data transfer cycle, then the PPC
Timer will assert the appropriate number of TA_’s to close the pendin
data tenure. Error information related to the faulty transaction will be
latched within the ESTAT, EADDR, and EATTR registers and an
interrupt or machine check will be generated depending on the
programming of the ESTAT register.

There are two exceptions that will dynamically disable the PPC Timer
the transaction is PCI bound, then the burden of closing out a transac
is left to the PCI bus. Note that a transaction to the PPC60x registers is
considered to be PCI bound since the completion of these types of acc
depends on the ability of the PCI bus to empty PCI bound write poste
data.

A second exception is the assertion of the XBTCLM_ signal. This is a
open collector (wired OR) bi-directional signal that is used by a bridge
indicate the burden of timing a transaction has been passed on to ano
bus domain. The PHB will assert this signal whenever it has determin
that a transaction is being timed by its own PCI bus. Any other bridge
devices listening to this signal will understand that the current pendin
cycle should not be subject to a time-out period. During non-PCI boun
cycles, PPC Timer will abort the timing of the transaction any time it
detects XBTCLM_ has been assertedPCI Interface.
2-18 Computer Group Literature Center Web Site

Functional Description

2

HB
al

ntrol
o
to
y

ntrol
PCI-

four

 if the
 PPC
PCI Bus Interface

The PCI Interface of the PHB is designed to connect directly to a PCI
Local Bus and supports Master and Target transactions within Memory
Space, I/O Space, and Configuration Space.

PCI Address Mapping

The PHB provides three resources to the PCI:

❏ Configuration registers mapped into PCI Configuration space

❏ PPC bus address space mapped into PCI Memory space

❏ MPIC control registers mapped into either PCI I/O space or PCI
Memory space

Configuration Registers

The PHB Configuration registers are mapped within PCI Configuration
space according to how the system connects Hawk’s DEVSEL_ pin. P
provides a configuration space that is fully compliant with the PCI Loc
Bus Specification 2.1 definition for configuration space. There are two
base registers within the standard 64 byte header that are used to co
the mapping of MPIC. One register is dedicated to mapping MPIC int
PCI I/O space and the other register is dedicated to mapping MPIC in
PCI Memory space. The mapping of PPC address space is handled b
device specific registers located above the 64 byte header. These co
registers support a mapping scheme that is functionally similar to the
to-PPC mapping scheme described in the section titled PPC Address
Mapping.

PPC Bus Address Space

The PHB will map PPC address space into PCI Memory space using
programmable map decoders. The most significant 16 bits of the PCI
address is compared with the address range of each map decoder and
address falls within the specified range, the access is passed on to the
bus. An example of this is shown in the following figure.
http://www.motorola.com/computer/literature 2-19

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Figure 2-4. PCI to PPC Address Decoding

There are no limits imposed by the PHB on how large of an address space
a map decoder can represent. There is a lower limit of a minimum of 64KB
due to the resolution of the address compare logic.

For each map, there is an independent set of attributes. These attributes are
used to enable read accesses, enable write accesses, enable write posting,
and define the PPC bus transfer characteristics.

PCI Bus Address 8 0 8 0 1 2 3 4
0151631

PSADDx Register 7 0 8 0 9 0 0 0
0151631

>= <=andDecode is
2-20 Computer Group Literature Center Web Site

Functional Description

2
Each map decoder also includes a programmable 16-bit address offset. The
offset is added to the 16 most significant bits of the PCI address and the
result is used as the PPC address. This offset allows devices to reside at any
PPC address, independent of the PCI address map. An example of this is
shown in the following figure.

Figure 2-5. PCI to PPC Address Translation

All PHB address decoders are prioritized so that programming multiple
decoders to respond to the same address is not a problem. When the PCI
address falls into the range of more than one decoder, only the highest
priority one will respond. The decoders are prioritized as shown below.

Decoder Priority

PCI Slave 0 highest

PCI Slave 1

PCI Slave 2

PCI Slave 3 lowest

PCI Bus Address 8 0 8 0 1 2 3 4
0151631

PSOFFx Register 9 0 0 0
1631

+

PPC Bus Address 1 0 8 0 1 2 3 4
3116150

=

http://www.motorola.com/computer/literature 2-21

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 MPIC Control Registers

The MPIC control registers are located within either PCI Memory or PCI
I/O space using traditional PCI defined base registers within the predefined
64-byte header. Please see the section on Multi-Processor Interrupt
Controller (MPIC) Functional Description for more information.

PCI Slave

The PCI Slave provides the control logic needed to interface the PCI bus
to the PCI FIFO. The PCI Slave can accept either 32-bit or 64-bit
transactions, however it can only accept 32-bit addressing. There is no
limit to the length of the transfer that the PCI Slave can handle. During
posted write cycles, the PCI Slave will continue to accept write data until
the PCI FIFO is full. If the PCI FIFO is full, the PCI Slave will hold off the
master with wait states until there is more room in the FIFO. The PCI Slave
will not initiate a disconnect. If the write transaction is compelled, the PCI
Slave will hold off the master with wait states while each beat of data is
being transferred. The PCI Slave will issue TRDY_ only after the data
transfer has successfully completed on the PPC bus. If a read transaction is
being performed within an address space marked for prefetching, the PCI
Slave (in conjunction with the PPC Master) will attempt to read ahead far
enough on the PPC bus to allow for an uninterrupted burst transaction on
the PCI bus. Read transactions within address spaces marked for no
prefetching will receive a TRDY_ indication on the PCI bus only after one
burst read has successfully completed on the PPC bus. Each read on the
PPC bus will only be started after the previous read has been
acknowledged on the PCI bus and there is an indication that the PCI Master
wishes for more data to be transferred.

The following paragraphs identify some associations between the
operation of the PCI slave and the PCI 2.1 Local Bus Specification
requirements.
2-22 Computer Group Literature Center Web Site

Functional Description

2

e
ad
 byte
ing
ERR*
Command Types

The following table shows which types of PCI cycles the slave has been
designed to accept.

Addressing

The PCI Slave will accept any combination of byte enables during read or
write cycles. During write cycles, a discontinuity (that is, a ‘hole’) in th
byte enables forces the PCI Slave to issue a disconnect. During all re
cycles, the PCI Slave returns an entire word of data regardless of the
enables. During I/O read cycles, the PCI Slave performs integrity check
of the byte enables against the address being presented and assert S
in the event there is an error.

Table 2-7. PCI Slave Response Command Types

Command Type Slave Response?

Interrupt Acknowledge No

Special Cycle No

I/O Read Yes

I/O Write Yes

Reserved No

Reserved No

Memory Read Yes

Memory Write Yes

Reserved No

Reserved No

Configuration Read Yes

Configuration Write Yes

Memory Read Multiple Yes

Dual Address Cycle No

Memory Read Line Yes

Memory Write and Invalidate Yes
http://www.motorola.com/computer/literature 2-23

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 The PCI Slave only honors the Linear Incrementing addressing mode. The
PCI Slave performs a disconnect with data if any other mode of addressing
is attempted.

Device Selection

The PCI slave will always respond valid decoded cycles as a medium
responder.

Target Initiated Termination

The PCI Slave normally strives to complete transactions without issuing
disconnects or retries. There are four exceptions where the PCI Slace
performs a disconnect:

❏ All burst configuration cycles are terminated with a disconnect after
one data beat has been transferred.

❏ All transactions that have a byte enable hole are disconnected.

❏ All transactions attempting to perform non-linear addressing mode
are terminated with a disconnect after one data beat is transferred.

❏ A transaction that crosses from a valid PHB deode space to an
invalid PHB decode space is disconnected. Note that this does not
include crossing contiguous multiple map decoder space, in which
case PHB does not issue a disconnect.

There are two exceptions where the PCI Slave performs a retry (disconnect
with no data transfer):

❏ While within a lock sequence, the PCI Slave retries all non-locking
masters.

❏ At the completion of a lock sequence between the times the two
locks are released on the PCI bus and the PPC bus. All accesses to
the PCI Slave regardless of who is the master will be retried.

Delayed Transactions

The PCI Slave does not participate in the delayed transaction protocol.
2-24 Computer Group Literature Center Web Site

Functional Description

2

try
ocked
ked

dress

urce
Fast Back-to-Back Transactions

The PCI Slave supports both of the fundamental target requirements for
fast back-to-back transactions. The PCI slave meets the first criteria of
being able to successfully track the state of the PCI bus without the
existence of an IDLE state between transactions. The second criteria
associate with signal turn-around timing is met by default since the PCI
Slave functions as a medium responder.

Latency

The PCI slave does not have any hardware mechanisms in place to
guarantee that the initial and subsequent target latency requirements are
met. Typically this is not a problem since the bandwidth of the PPC bus far
exceeds the bandwidth of the PCI bus.

Exclusive Access

The PCI Slave fully supports the PCI lock function. From the perspective
of the PPC bus, the PHB enables a lock to a single 32 byte cache line.
When a cache line has been locked, the PHB snoops all transactions on the
PPC bus. If a snoop hit happens, the PHB retries the transaction. Note that
the retry is ‘benign’ since there is no follow-on transaction after the re
is asserted. The PHB continues to snoop and retry all accesses to the l
cache line until a valid ‘unlock’ is presented to the PHB and the last loc
cache line transaction is successfully executed.

Note that the PHB locks the cache line that encompasses the actual ad
of the locked transaction. For example, a locked access to offset 0x28
creates a lock on the cache line starting at offset 0x20.

From the perspective of the PCI bus, the PCI Slave locks the entire
resource. Any attempt by a non-locking master to access any PCI reso
represented by the PHB results in the PCI Slave issuing a retry.

Parity

The PCI Slave supports address parity error detection, data parity
generation, and data parity error detection.
http://www.motorola.com/computer/literature 2-25

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Cache Support

The PCI Slave does not participate in the PCI caching protocol.

PCI FIFO

A 64-bit by 16 entry FIFO (4 cache lines total) is used to hold data between
the PCI Slave and the PPC Master to ensure that optimum data throughput
is maintained. The same FIFO is used for both read and write transactions.
A 52-bit by 4 entry FIFO is used to hold command information being
passed between the PCI Slave and the PPC Master. If write posting is
enabled, then the maximum number of transactions that may be posted is
limited by the abilities of either the data FIFO or the command FIFO. For
example, one burst transaction, 16 words long, would make the data FIFO
the limiting factor for write posting. Four single beat transactions would
make the command FIFO be the limiting factor. If either limit is exceeded
then any pending PCI transactions are delayed (TRDY_ is not asserted)
until the PPC Master has completed a portion of the previously posted
transactions and created some room within the command and/or data
FIFOs.

PCI Master

The PCI Master, in conjunction with the capabilities of the PPC Slave,
attempt to move data in either single beat or four-beat (burst) transactions.
The PCI Master supports 32-bit and 64-bit transactions in the following
manner:

❏ All PPC60x single beat transactions, regardless of the byte count,
are subdivided into one or two 32-bit transfers, depending on the
alignment and the size of the transaction. This includes single beat
8-byte transactions.

❏ All PPC60x burst transactions are transferred in 64-bit mode if the
PCI bus has 64-bit mode enabled. If at any time during the
transaction the PCI target indicates it can not support 64-bit mode,
the PCI Master continues to transfer the remaining data within that
transaction in 32-bit mode.
2-26 Computer Group Literature Center Web Site

Functional Description

2
The PCI Master can support Critical Word First (CWF) burst transfers.
The PCI Master divides this transaction into two parts. The first part starts
on the address presented with the CWF transfer request and continues up
to the end of the current cache line. The second transfer starts at the
beginning of the associated cache line and works its way up to (but not
including) the word addressed by the CWF request.

It should be noted that even though the PCI Master can support burst
transactions, a majority of the transaction types handled are single-beat
transfers. Typically PCI space is not configured as cache-able, therefore
burst transactions to PCI space would not naturally occur. It must be
supported since it is conceivable that bursting could happen. For example,
nothing prevents the processor from loading up a cache line with PCI write
data and manually flushing the cache line.

The following paragraphs identify some associations between the
operation of the PCI Master and the PCI 2.1 Local Bus Specification
requirements.

Command Types

The PCI Command Codes generated by the PCI Master depend on the type
of transaction being performed on the PPC bus. Please refer to the section
on the PPC Slave earlier in this chapter for a further description of PPC bus
read and PPC bus write. The following table summarizes the command
types supported and how they are generated.

Table 2-8. PCI Master Command Codes

Entity Addressed PPC
Transfer Type

TBST* MEM C/BE PCI Command

PIACK Read x x 0000 Interrupt Acknowledge

CONADD/CONDAT Write x x 0001 Special Cycle

PPC Mapped PCI
Space

Read x 0 0010 I/O Read

Write x 0 0011 I/O Write

-- Unsupported -- 0100 Reserved

-- Unsupported -- 0101 Reserved

PPC Mapped PCI
Space

Read 1 1 0110 Memory Read

Write x 1 0111 Memory Write
http://www.motorola.com/computer/literature 2-27

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Addressing

The PCI Master generates all memory transactions using the Linear
Incrementing addressing mode.

Combining, Merging, and Collapsing

The PCI Master does not participate in any of these protocols.

Master Initiated Termination

The PCI Master can handle any defined method of target retry, target
disconnect, or target abort. If the target responds with a retry, the PCI
Master waits for the required two clock periods and attempts the
transaction again. This process continues indefinitely until the transaction
is completed, the transaction is aborted by the target, or if the transaction
is aborted due to a PHB detected bridge lock. The same happens if the
target responds with a disconnect and there is still data to be transferred.

If the PCI Master detects a target abort during a read, any untransferred
read data is filled with ones. If the PCI Master detects a target abort during
a write, any untransferred portions of data will be dropped. The same rule
applies if the PCI Master generates a Master Abort cycle.

-- Unsupported -- 1000 Reserved

-- Unsupported -- 1001 Reserved

CONADD/CONDAT Read x x 1010 Configuration Read

CONADD/CONDAT Write x x 1011 Configuration Write

-- Unsupported -- 1100 Memory Read Multiple

-- Unsupported -- 1101 Dual Address Cycle

PPC Mapped PCI
Space

Read 0 1 1110 Memory Read Line

-- Unsupported -- 1111 Memory Write and
Invalidate

Table 2-8. PCI Master Command Codes (Continued)

Entity Addressed PPC
Transfer Type

TBST* MEM C/BE PCI Command
2-28 Computer Group Literature Center Web Site

Functional Description

2
Arbitration

The PCI Master can support parking on the PCI bus. There are two cases
where the PCI Master continuously asserts its request.

❏ If the PCI Master starts a transaction that is going to take more than
one assertion of FRAME_, the PCI Master continuously asserts its
request until the transaction has completed. For example, the PCI
Master continuously asserts requests during the first part of a two
part critical word first transaction.

❏ If at least one command is pending within the PPC FIFO.

The PCI Master always removes its request when it receives a disconnect
or a retry.

There is a case where the PCI Master could assert a request but not actually
perform a bus cycle. This may happen if the PCI Master is placed in the
speculative request mode. Refer to the section entitled PCI/PPC
Contention Handling for more information. In no case will the PCI Master
assert its request for more than 16 clocks without starting a transaction.

Fast Back-to-Back Transactions

The PCI Master does not generate fast back-to-back transactions.

Arbitration Latency

Because a bulk of the transactions are limited to single-beat transfers on
PCI, the PCI Master does not implement a Master Latency Timer.

Exclusive Access

The PCI Master is not able to initiate exclusive access transactions.

Address/Data Stepping

The PCI Master does not participate in the Address/Data Stepping
protocol.
http://www.motorola.com/computer/literature 2-29

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Parity

The PCI Master supports address parity generation, data parity generation,
and data parity error detection.

Cache Support

The PCI Master does not participate in the PCI caching protocol.

Generating PCI Cycles

There are four basic types of bus cycles that can be generated on the PCI
bus:

❏ Memory and I/O

❏ Configuration

❏ Special Cycle

❏ Interrupt Acknowledge

Generating PCI Memory and I/O Cycles

Each programmable slave may be configured to generate PCI I/O or
memory accesses through the MEM and IOM fields in its XSATTx
register as shown below.

If the MEM bit is set, the PHB performs Memory addressing on the PCI
bus. The PHB takes the PPC bus address, applies the offset specified in the
XSOFFx register, and maps the result directly to the PCI bus.

The IBM CHRP specification describes two approaches for handling PCI
I/O addressing: contiguous or spread address modes. When the MEM bit
is cleared, the IOM bit is used to select between these two modes whenever
a PCI I/O cycle is to be performed.

MEM IOM PCI Cycle Type

1 x Memory

0 0 Contiguous I/O

0 1 Spread I/O
2-30 Computer Group Literature Center Web Site

Functional Description

2

e on
m

ny
s in
ting
 four
since
14.
The PHB performs contiguous I/O addressing when the MEM bit is clear
and the IOM bit is clear. The PHB takes the PPC address, apply the offset
specified in the XSOFFx register, and map the result directly to PCI.

The PHB performs spread I/O addressing when the MEM bit is clear and
the IOM bit is set. The PHB takes the PPC address, applies the offset
specified in the MSOFFx register, and maps the result to PCI as shown in
the following figure.

Figure 2-6. PCI Spread I/O Address Translation

Spread I/O addressing allows each PCI device’s I/O registers to resid
a different PPC memory page, so device drivers can be protected fro
each other using memory page protection.

All I/O accesses must be performed within natural word boundaries. A
I/O access that is not contained within a natural word boundary result
unpredictable operation. For example, an I/O transfer of four bytes star
at address $80000010 is considered a valid transfer. An I/O transfer of
bytes starting at address $80000011 is considered an invalid transfer
it crosses the natural word boundary at address $80000013/$800000

1915 9702

PPC Address + Offset
31 12 11 5 4 0

31 0

PCI Address

25 24

0 0 0 0 0 0 00 0 0 0 0 0 0

5 4
http://www.motorola.com/computer/literature 2-31

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Generating PCI Configuration Cycles

The PHB uses configuration Mechanism #1 as defined in the PCI Local
Bus Specification 2.1 to generate configuration cycles. Please refer to this
specification for a complete description of this function.

Configuration Mechanism #1 uses an address register/data register format.
Performing a configuration access is a two step process. The first step is to
place the address of the configuration cycle within the
CONFIG_ADDRESS register. Note that this action does not generate any
cycles on the PCI bus. The second step is to either read or write
configuration data into the CONFIG_DATA register. If the
CONFIG_ADDRESS register is set up correctly, the PHB will pass this
access on to the PCI bus as a configuration cycle.

The addresses of the CONFIG_ADDRESS and CONFIG_DATA registers
are actually embedded within PCI I/O space. If the CONFIG_ADDRESS
register has been set incorrectly or the access to either the
CONFIG_ADDRESS or CONFIG_DATA register is not 1, 2, or 4 bytes
wide, the PHB will pass the access on to PCI as a normal I/O Space
transfer.

The CONFIG_ADDRESS register is located at offset $CF8 from the
bottom of PCI I/O space. The CONFIG_DATA register is located at offset
$CFC from the bottom of PCI I/O space. The PHB address decode logic
has been designed such that XSADD3 and XSOFF3 must be used for
mapping to PCI Configuration (consequently I/O) space. The
XSADD3/XSOFF3 register group is initialized at reset to allow PCI I/O
access starting at address $80000000. The powerup location (that is,
little-endian disabled) of the CONFIG_ADDRESS register is $80000CF8
and the CONFIG_DATA register is located at $80000CFC.

The CONFIG_ADDRESS register must be prefilled with four fields: the
Register Number, the Function Number, the Device Number, and the Bus
Number.

The Register Number and the Function Number get passed along to the
PCI bus as portion of the lower address bits.
2-32 Computer Group Literature Center Web Site

Functional Description

2
When performing a configuration cycle, the PHB uses the upper 20
address bits as IDSEL lines. During the address phase of a configuration
cycle, only one of the upper address bits will be set. The device that has its
IDSEL connected to the address bit being asserted is selected for a
configuration cycle. The PHB decodes the Device Number to determine
which of the upper address lines to assert. The decoding of the five-bit
Device Number is show as follows:

The Bus Number determines which bus is the target for the configuration
read cycle. The PHB will always host PCI bus #0. Accesses that are to be
performed on the PCI bus connected to the PHB must have zero
programmed into the Bus Number. If the configuration access is targeted
for another PCI bus, then that bus number should be programmed into the
Bus Number field. The PHB will detect a non-zero field and convert the
transaction to a Type 1 Configuration cycle.

Generating PCI Special Cycles

The PHB supports the method stated in PCI Local Bus Specification 2.1
using Configuration Mechanism #1 to generate special cycles. To prime
the PHB for a special cycle, the host processor must write a 32-bit value to
the CONFIG_ADDRESS register. The contents of the write are defined
later in this chapter under the CONFIG_ADDRESS Register definition.
After the write to CONFIG_ADDRESS has been accomplished, the next
write to the CONFIG_DATA register causes the PHB to generate a special
cycle on the PCI bus. The write data is driven onto AD[31:0] during the
special cycle’s data phase.

Device Number Address Bit

00000 AD31

00001 - 01010 All Zeros

01011 AD11

01100 AD12

(etc.) (etc.)

11101 AD29

11110 AD30

11111 All Zeros
http://www.motorola.com/computer/literature 2-33

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

] bit
es
Generating PCI Interrupt Acknowledge Cycles

Performing a read from the PIACK register will initiate a single PCI
Interrupt Acknowledge cycle. Any single byte or combination of bytes
may be read from and the actual byte enable pattern used during the read
will be passed on to the PCI bus. Upon completion of the PCI interrupt
acknowledge cycle, the PHB will present the resulting vector information
obtained from the PCI bus as read data.

PCI Arbiter

The Hawk’s internal PCI arbiter supports up to 8 PCI masters. This
includes Hawk and 7 other external PCI masters. The arbiter can be
configured to be enabled or disabled at reset time by strapping the rd[9
either high for enabled or low for disabled. The following table describ
the pins and its function for both modes.

Table 2-9. PCI Arbiter Pin Description

Pin Name Pin
Type

Reset Internal Arbiter External Arbiter

Direction Function Direction Function

PARBI0 Input - - Input ext req0_ input HAWK gnt_

PARBI1 Input - - Input ext req1_ Input NA

PARBI2 Input - - Input ext req2_ Input NA

PARBI3 Input - - Input ext_req3_ Input NA

PARBI4 Input - - Input ext_req4_ Input NA

PARBI5 Input - - Input ext req5_ Input NA

PARBI6 Input - - Input ext req6_ Input NA

PARBO0 Output Tristate Output ext gnt0_ Output HAWK req_

PARBO1 Output Tristate Output ext gnt1_ Output NA

PARBO2 Output Tristate Output ext gnt2_ Output NA

PARBO3 Output Tristate Output ext gnt3_ Output NA

PARBO4 Output Tristate Output ext gnt4_ Output NA

PARBO5 Output Tristate Output ext gnt5_ Output NA

PARBO6 Output Tristate Output ext gnt6_ Output NA
2-34 Computer Group Literature Center Web Site

Functional Description

2It
in

rant

ed.

he
ed

y

.

eir
The Hawk’s PCI arbiter has various programming options. It supports
three different priority schemes: fixed, round robin, and mixed mode.
also allows various levels of reprioritization programming options with
fixed and mixed modes. Parking can be programmed to any of the
requestors, the last requestor or none. A special bit is added to hold g
asserted for an agent that initiates a lock cycle. Once a lock cycle is
detected, the grant is held asserted until the PCI LOCK_ pin is releas
This feature works only when the “POL” bit is enabled.

The priority scheme can be programmed by writing the “PRI” field in t
PCI Arbiter control register. The default setting for priority scheme is fix
mode. The Fixed mode holds each requestor at a fixed level in its
hierarchy. The levels of priority for each requestor is programmable b
writing the “HEIR” field in the PCI Arbiter control register. The following
table describes all available settings for the “HEIR” field in fixed mode

Notes

1. “000” is the default setting in fixed mode.

2. The HEIR setting only covers a small subset of all possible
combinations. It is the responsibility of the system designer to
connect the request/grant pair in a manner most beneficial to th
design goals.

Table 2-10. Fixed Mode Priority Level Setting

HEIR
Setting

Priority Levels

Highest Lowest

000 PARB6 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0 HAWK

001 HAWK PARB6 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0

010 PARB0 HAWK PARB6 PARB5 PARB4 PARB3 PARB2 PARB1

011 PARB1 PARB0 HAWK PARB6 PARB5 PARB4 PARB3 PARB2

100 PARB2 PARB1 PARB0 HAWK PARB6 PARB5 PARB4 PARB3

101 PARB3 PARB2 PARB1 PARB0 HAWK PARB6 PARB5 PARB4

110 PARB4 PARB3 PARB2 PARB1 PARB0 HAWK PARB6 PARB5

111 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0 HAWK PARB6
http://www.motorola.com/computer/literature 2-35

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

 are
tors.

0
de

R”

 of
When the arbiter is programmed for round robin priority mode, the arbiter
maintains fairness and provides equal opportunity to the requestors by
rotating its grants. The contents in “HEIR” field are “don’t cares” when
operated in this mode.

When the arbiter is programmed for mixed mode, the eight requestors
divided up into four groups and each groups is occupied by two reques
PARB6 and PARB5 are defined in group1; PARB4 and PARB3 are
defined in group 2; PARB2 and PARB1 are defined in group 3; PARB
and HAWK are defined in group 4. Arbitration is set for round robin mo
between the two requestors within each group and set for fixed mode
between the four groups. The levels of priority for each group is
programmable by writing the “HEIR” field in the PCI Arbiter control
register. The following table describes all available setting for the “HEI
field in mixed mode.

Notes

1. “000” is the default setting in mixed mode.

2. The HEIR setting only covers a small subset of all possible
combinations and the requestors within each group is fixed and
cannot be interchanged with other groups. It is the responsibility

Table 2-11. Mixed Mode Priority Level Setting

HEIR
Setting

PRIORITY Levels

Highest Lowest

000 group 1 group 2 group 3 group 4

PARB6 & 5 PARB4 & 3 PARB2 & 1 PARB0 & HAWK

001 group 4 group 1 group 2 group 3

PARB0 & HAWK PARB6 & 5 PARB4 & 3 PARB2 & 1

010 group 3 group 4 group 1 group 2

PAR 2 & 1 PARB0 & HAWK PARB6 & 5 PARB4 & 3

011 group 2 group 3 group 4 group 1

PARB4 & 3 PARB2 & 1 PARB0 & HAWK PARB6 & 5
2-36 Computer Group Literature Center Web Site

Functional Description

2

e

ince

le
the system designer to connect the request/grant pair in a manner
most beneficial to their design goals.

3. All other combinations in the HEIR setting not specified in the table
are invalid and should not be used.

Arbitration parking is programmable by writing to the “PRK” field of the
PCI arbiter control register. Parking can be programmed for any of th
requestors, last requestor or none. The following table describes all
available settings for the “PRK” field.

Notes

1. “1000” is the default setting.

2. Parking disabled is a test mode only and should not be used, s
no one will drive the PCI bus when in idle state.

3. All other combinations in the PRK setting not specified in the tab
are invalid and should not be used.

Table 2-12. Arbitration Setting

PRK setting Function

0000 Park on last requestor

0001 Park on PARB6

0010 Park on PARB5

0011 Park on PARB4

0100 Park on PARB3

0101 Park on PARB2

0110 Park on PARB1

0111 Park on PARB0

1000 Park on HAWK

1111 Parking disabled
http://www.motorola.com/computer/literature 2-37

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
ycle
the

PCI
es

d to

om
 from
ther
n in
A special function is added to the PCI arbiter to hold the grant asserted
through a lock cycle. When the “POL” bit in the PCI arbiter control
register is set, the grant associated with the agent initiating the lock c
will be held asserted until the lock cycle is complete. If this bit is clear,
arbiter does not distinguish between lock and non-lock cycle.

Endian Conversion

The PHB supports both big- and little-endian data formats. Since the
bus is inherently little-endian, conversion is necessary if all PPC devic
are configured for big-endian operation. The PHB may be programme
perform the endian conversion described below.

When PPC Devices are Big-Endian

When all PPC devices are operating in big-endian mode, all data to/fr
the PCI bus must be swapped such that the PCI bus looks big endian
the PPC bus’s perspective. This association is true regardless of whe
the transaction originates on the PCI bus or the PPC bus. This is show
Figure 2-7.
2-38 Computer Group Literature Center Web Site

Functional Description

2

Figure 2-7. Big- to Little-Endian Data Swap

When PPC Devices are Little-Endian

When all PPC devices are operating in little-endian mode, the originating
address is modified to remove the exclusive-ORing applied by PPC60x
processors. Note that no data swapping is performed. Address
modification happens to the originating address regardless of whether the

1916 9610

D
H

07
-0

0

D
H

15
-0

8

D
H

23
-1

6

D
H

31
-2

4

D
L0

7-
00

D
L1

5-
08

D
L2

3-
16

D
L3

1-
24

D0 D1 D2 D3 D4 D5 D6 D7

D7 D6 D5 D4 D3 D2 D1 D0

D0 D1 D2 D3 D4 D5 D6 D7

A
D

63
-5

6

A
D

55
-4

8

A
D

47
-4

0

A
D

39
-3

2

A
D

31
-2

4

A
D

23
-1

6

A
D

15
-0

8

A
D

07
-0

0

D
H

07
-0

0

D
H

15
-0

8

D
H

23
-1

6

D
H

31
-2

4

D
L0

7-
00

D
L1

5-
08

D
L2

3-
16

D
L3

1-
24

D7 D6 D5 D4

D3 D2 D1 D0

A
D

31
-2

4

A
D

23
-1

6

A
D

15
-0

8

A
D

07
-0

0

PPC Bus

64-bit PCI

PPC Bus

32-bit PCI
http://www.motorola.com/computer/literature 2-39

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

PPC
r is

ian
SS

e
transaction originates from the PCI bus or the PPC bus. The three low
order address bits are exclusive-ORed with a three-bit value that depends
on the length of the operand, as shown in the following table.

Note The only legal data lengths supported in little-endian mode are 1,
2, 4, or 8-byte aligned transfers.

Since this method has some difficulties dealing with unaligned PCI-
originated transfers, the PPC master of the PHB will break up all unaligned
PCI transfers into multiple aligned transfers into multiple aligned transfers
on the PPC bus.

PHB Registers

The PHB registers are not sensitive to changes in big-endian and
little-endian mode. With respect to the PPC bus (but not always the address
internal to the processor), the PPC registers are always represented in
big-endian mode. This means that the processor’s internal view of the
registers will appear different depending on which mode the processo
operating in.

With respect with the PCI bus, the configuration registers are always
represented in little-endian mode.

The CONFIG_ADDRESS and CONFIG_DATA registers are actually
represented in PCI space to the processor and are subject to the end
functions. For example, the powerup location of the CONFIG_ADDRE
register with respect to the PPC bus is $80000cf8 when the PHB is in
big-endian mode. When the PHB is switched to little-endian mode, th

Table 2-13. Address Modification for Little-Endian Transfers

Data Length (bytes) Address Modification

1 XOR with 111

2 XOR with 110

4 XOR with 100

8 no change
2-40 Computer Group Literature Center Web Site

Functional Description

2
CONFIG_ADDRESS register with respect to the PPC bus is $80000cfc.
Note that in both cases the address generated internal to the processor will
be $80000cf8.

The contents of the CONFIG_ADDRESS register are not subject to the
endian function.

The data associated with PIACK accesses is subject to the endian
swapping function. The address of a PIACK cycle is undefined, therefore
address modification during little-endian mode is not an issue.

Error Handling

The PHB is capable of detecting and reporting the following errors to one
or more PPC masters:

❏ XBTO - PPC address bus time-out

❏ XDPE - PPC data parity error

❏ PSMA - PCI master signalled master abort

❏ PRTA - PCI master received target abort

❏ PPER - PCI parity error

❏ PSER - PCI system error

Each of these error conditions will cause an error status bit to be set in the
PPC Error Status Register (ESTAT). If a second error is detected while any
of the error bits is set, the OVFL bit is asserted, but none of the error bits
are changed. Each bit in the ESTAT may be cleared by writing a 1 to it;
writing a 0 to it has no effect. New error bits may be set only when all
previous error bits have been cleared.

When any bit in the ESTAT is set, the PHB will attempt to latch as much
information as possible about the error in the PPC Error Address
(EADDR) and Attribute Registers (EATTR). Information is saved as
follows:
http://www.motorola.com/computer/literature 2-41

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Each ESTAT error bit may be programmed to generate a machine check
and/or a standard interrupt. The error response is programmed through the
PPC Error Enable Register (EENAB) on a source by source basis. When a
machine check is enabled, either the XID field in the EATTR Register or
the DFLT bit in the EENAB Register determine the master to which the
machine check is directed. For errors in which the master who originated
the transaction can be determined, the XID field is used. For errors not
associated with a particular PPC master, or associated with masters other
than processor 0,1 or 2, the DFLT bit is used. One example of an error
condition which cannot be associated with a particular PPC master would
be a PCI system error.

Watchdog Timers

PHB features two watchdog timers called Watchdog Timer 1 (WDT1) and
Watchdog Timer 2 (WDT2). Although both timers are functionally
equivalent, each timer operates completely independent of each other.
WDT1 and WDT2 are initialized at reset to a count value of eight seconds
and 16 seconds respectively. The timers are designed to be reloaded by
software at any time. When not being loaded, the timer will continuously
decrement itself until either reloaded by software or a count of zero is
reached. If a timer reaches a count of zero, an output signal will be asserted
and the count will remain at zero until reloaded by software or PHB reset
is asserted. External logic can use the output signals of the timers to
generate interrupts, machine checks, etc.

Error Status Error Address and Attributes

XBTO From PPC bus

XDPE From PPC bus

PRTA From PCI bus

PSMA From PCI bus

PPER Invalid

PSER Invalid
2-42 Computer Group Literature Center Web Site

Functional Description

2

 is
f

t.

ble.
Each timer is composed of a prescaler and a counter. The prescaler
determines the resolution of the timer and is programmable to any binary
value between 1 us and 32,768 us. The counter counts in the units provided
by the prescaler. For example, the watchdog timer would reach a count of
zero within 24 us if the prescaler was programmed to 2 us and the counter
was programmed to 12.

The watchdog timers are controlled by registers mapped within the PPC
control register space. Each timer has a WDTxCNTL register and a
WDTxSTAT register. The WDTxCNTL register can be used to start or
stop the timer, write a new reload value into the timer, or cause the timer
to initialize itself to a previously written reload value. The WDTxSTAT
register is used to read the instantaneous count value of the watchdog
timer.

Programming of the Watchdog Timers is performed through the
WDTxCNTL register and is a two step process.

❏ Step 1 is to ‘arm’ the WDTxCNTL register by writing
PATTERN_1 into the KEY field. Only the KEY byte lane may be
selected during this process. The WDTxCNTL register will not arm
itself if any of the other byte lanes are selected or the KEY field
written with any other value than PATTERN_1. The operation o
the timer itself remains unaffected by this write.

❏ Step 2 is to write the new programming information to the
WDTxCNTL register. The KEY field byte lane must be selected
and must be written with PATTERN_2 for the write to take affec
The effects on the WDTxCNTL register depend on the byte lanes
that are written to during step 2 and are shown in the following ta
http://www.motorola.com/computer/literature 2-43

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

The WDTxCNTL register will always become unarmed after the second
write regardless of byte lane selection. Reads may be performed at any
time from the WDTxCNTL register and will not affect the write arming
sequence.

PCI/PPC Contention Handling

The PHB has a mechanism that detects when there is a possible resource
contention problem (that is, deadlock) as a result of overlapping PPC and
PCI initiated transactions. The PPC Slave, PCI Slave and PCI Master
functions contain the logic needed to implement this feature.

Table 2-14. WDTxCNTL Programming

Byte Lane Selection Results

KEY ENAB
/RES

RELOAD WDT WDTxCNTL Register

0:7 8:15 16:23 24:31 Prescaler/
Enable

Counter RES/ENAB RELOAD

No x x x No Change No Change No Change No Change

Yes No No x Update from
RES/ENAB

Update from
RELOAD

No Change No Change

Yes No x No Update from
RES/ENAB

Update from
RELOAD

No Change No Change

Yes No Yes Yes Update from
RES/ENAB

Update from
data bus

No Change Update from

data bus

Yes Yes No x Update from
data bus

Update from
RELOAD

Update from
data bus

No Change

Yes Yes x No Update from
data bus

Update from
RELOAD

Update from
data bus

No Change

Yes Yes Yes Yes Update from
data bus

Update from
data bus

Update from
data bus

Update from

data bus
2-44 Computer Group Literature Center Web Site

Functional Description

2
The PCI Slave and the PPC Slave contribute to this mechanism in the
following manner. Each slave function will issue a stall signal to the PCI
Master anytime it is currently processing a transaction that must have
control of the opposing bus before the transaction can be completed. The
events that activate this signal are:

❏ Read cycle with no read data in the FIFO

❏ Non-posted write cycle

❏ Posted write cycle and FIFO full

A simultaneous indication of a stall from both slaves means that a bridge
lock has happened. To resolve this, one of the slaves must back out of its
currently pending transaction. This will allow the other stalled slave to
proceed with its transaction. When the PCI Master detects bridge lock, it
will always signal the PPC Slave to take actions to resolve the bridge lock.

If the PPC bus is currently supporting a read cycle of any type, the PPC
Slave will terminate the pending cycle with a retry. Note that if the read
cycle is across a mod-4 address boundary (that is, from address 0x...02, 3
bytes), it is possible that a portion of the read could have been completed
before the stall condition was detected. The previously read data will be
discarded and the current transaction will be retried.

If the PPC bus is currently supporting a posted write transaction, the
transaction will be allowed to complete since this type of transaction is
guaranteed completion. If the PPC bus is currently supporting a non-posted
write transaction, the transaction will be terminated with a retry.

Note A mod-4 non-posted write transaction could be interrupted
between write cycles, and thereby result in a partially completed
write cycle. It is recommended that write cycles to write-sensitive
non-posted locations be performed on mod-4 address boundaries.

The PCI Master must make the determination to perform the resolution
function since it must make some decisions on possibly removing a
currently pending command from the PPC FIFO.
http://www.motorola.com/computer/literature 2-45

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 There are some performance issues related to bridge lock resolution. PHB
offers two mechanism that allow fine tuning of the bridge lock resolution
function.

Programmable Lock Resolution

Consider the scenario where the PPC Slave is hosting a read cycle and the
PCI Slave is hosting a posted write transaction. If both transactions happen
at roughly the same time, then the PPC Slave will hold off its transaction
until the PCI Slave can fill the PCI FIFO with write posted data. Once this
happens, both slaves will be stalled and a bridge lock resolution cycle will
happen. The effect of this was to make the PPC Slave waste PPC bus
bandwidth. In addition, a full PCI FIFO will cause the PCI Slave to start
issuing wait states to the PCI bus.

From the perspective of the PCI bus, a better solution would be to select a
PCI FIFO threshold that will allow the bridge lock resolution cycle to
happen early enough to keep the PCI FIFO from getting filled. A similar
case exists with regards to PCI read cycles. Having the bridge lock
resolution associated with a particular PCI FIFO threshold would allow the
PPC Master to get an early enough start at prefetching read data to keep the
PCI Slave from starving for read data.

From the perspective of the PPC bus, a selective FIFO threshold will make
the PPC Slave release the PPC bus at an earlier time thereby reducing
wasted PPC bus bandwidth. PHB offers an option to have the PPC Slave
remove a stalled transaction immediately upon detecting any PCI Slave
activity. This option would help in the case where distributing PPC60x bus
bandwidth between multiple masters is of utmost importance.

The PHB is tuned to provide the most efficient solution for bridge lock
resolution under normal operating conditions. If further fine tuning is
desired, the WLRT/RLRT (Write Lock Resolution Threshold/Read Lock
Resolution Threshold) fields within the HCSR can be adjusted
accordingly. Note that the FIFO full option exists mainly to remain
architecturally backwards compatible with previous bridge designs.
2-46 Computer Group Literature Center Web Site

Functional Description

2
Speculative PCI Request

There is a case where the processor could get starved for PCI read data
while the PCI Slave is hosting multiple PPC60x bound write cycles. While
attempting to perform a read from PCI space, the processor would
continually get retried as a result of bridge lock resolution. Between PCI
writes, the PPC Master will be taking PPC60x bus bandwidth trying to
empty write posted data, which will further hamper the ability of the
processor to complete its read transaction.

PHB offers an optional speculative PCI request mode that helps the
processor complete read cycles from PCI space. If a bridge lock resolution
cycle happens when the PPC Slave is hosting a compelled cycle, the PCI
Master will speculatively assert a request on the PCI bus. Sometime later
when the processor comes back a retries the compelled cycle, the results of
the PCI Master holding the request will increase the chance of the
processor successfully completing its cycle.

PCI speculative requesting will only be effective if the PCI arbiter will at
least some times consider the PHB to be a higher priority master than the
master performing the PPC60x bound write cycles. The PCI Master obeys
the PCI specification for benign requests and will unconditionally remove
a speculative request after 16 clocks.

The PHB considers the speculative PCI request mode to be the default
mode of operation. If this is not desired, then the speculative PCI request
mode can be disable by changing the SPRQ bit in the HCSR.

Transaction Ordering

All transactions will be completed on the destination bus in the same order
that they are completed on the originating bus. A read or a compelled write
transaction will force all previously issued write posted transactions to be
flushed from the FIFO. All write posted transfers will be completed before
a read or compelled write is begun to assure that all transfers are completed
in the order issued.
http://www.motorola.com/computer/literature 2-47

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

ll

ng

ed
CI
All PCI Configuration cycles intended for internal PHB registers will also
be delayed if PHB is busy so that control bits which may affect write
posting do not change until all write posted transactions have completed.
For the same reason all PPC60x write posted transfers will also be
completed before any access to the PHB PPC registers is begun.

The PCI Local Bus Specification 2.1 states that posted write buffers in both
directions must be flushed before completing a read in either direction.
PHB supports this by providing two optional FIFO flushing options. The
XFBR (PPC60x Flush Before Read) bit within the GCSR register controls
the flushing of PCI write posted data when performing PPC-originated
read transactions. The PFBR (PCI Flush Before Read) bit within the
GCSR register controls the flushing of PPC write posted data when
performing PCI-originated read transactions. The PFBR and XFBR
functions are completely independent of each other, however both
functions must be enabled to guarantee full compliance with PCI Local
Bus Specification 2.1.

When the XFBR bit is set, the PHB will handle read transactions
originating from the PPC bus in the following manner:

❏ Write posted transactions originating from the processor bus are
flushed by the nature of the FIFO architecture. The PHB will hold
the processor with wait states until the PCI bound FIFO is empty.

❏ Write posted transactions originated from the PCI bus are flushed
whenever the PCI slave has accepted a write-posted transaction and
the transaction has not completed on the PPC bus.

The PPC Slave address decode logic settles out several clocks after the
assertion of TS_, at which time the PPC Slave can determine the
transaction type. If it is a read and XFBR is enabled, the PPC Slave will
look at the ‘ps_fbrabt’ signal. If this signal is active, the PPC Slave wi
retry the processor.

When the PFBR bit is set, PHB will handle read transactions originati
from the PCI bus in the following manner:

❏ Write posted transactions originating from the PCI bus are flush
by the nature of the FIFO architecture. The PHB will hold the P
Master with wait states until the PPC bound FIFO is empty.
2-48 Computer Group Literature Center Web Site

Functional Description

2
ed

on of
pe.

I

sing
re
old
ns
❏ Write posted transactions originated from the PPC60x bus are
flushed in the following manner. The PPC Slave will set a signal
called ‘xs_fbrabt’ anytime it has committed to performing a post
write transaction. This signal will remain asserted until the PCI
bound FIFO count has reached zero.

The PCI Slave decode logic settles out several clocks after the asserti
FRAME_, at which time the PCI Slave can determine the transaction ty
If it is a read and PFBR is enabled, the PCI Slave will look at the
‘xs_fbrabt’ signal. If this signal is active, the PCI Slave will retry the PC
Master.

PHB Hardware Configuration

Hawk has the ability to perform custom hardware configuration to
accommodate different system requirements. The PHB has several
functions that may be optionally enabled or disabled using passive
hardware external to Hawk. The selection process occurs at the first ri
edge of CLK after RST_ has been released. All of the sampled pins a
cascaded with several layers of registers to eliminate problems with h
time. The following table summarizes the hardware configuration optio
that relate to the PHB.

Table 2-15. PHB Hardware Configuration

Function Sample Pin(s) Sampled
State

Meaning

PCI 64-bit Enable REQ64_ 0 64-bit PCI Bus

1 32-bit PCI Bus

PPC Register Base RD[5] 0 Register Base = $FEFF0000

1 Register Base = $FEFE0000

MPIC Interrupt Type RD[7] 0 Parallel Interrupts

1 Serial Interrupts

PPC Arbiter Mode RD[8] 0 Disabled

1 Enabled

PCI Arbiter Mode RD[9] 0 Disabled

1 Enabled
http://www.motorola.com/computer/literature 2-49

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Multi-Processor Interrupt Controller (MPIC)
Functional Description

The MPIC is a multi-processor structured intelligent interrupt controller.

MPIC Features:

❏ MPIC programming model

❏ Supports two processors

❏ Supports 16 external interrupts

❏ Supports 15 programmable Interrupt & Processor Task priority
levels

❏ Supports the connection of an external 8259 for ISA/AT
compatibility

❏ Distributed interrupt delivery for external I/O interrupts

❏ Direct/Multicast interrupt delivery for Interprocessor and timer
interrupts

❏ Four Interprocessor Interrupt sources

PPC:PCI Clock Ratio RD[10:12] 000 Reserved

100 1:1

010 2:1

110 3:1

001 3:2

101 Reserved

011 5:2

111 Reserved

Table 2-15. PHB Hardware Configuration (Continued)

Function Sample Pin(s) Sampled
State

Meaning
2-50 Computer Group Literature Center Web Site

Multi-Processor Interrupt Controller (MPIC) Functional Description

2
❏ Four timers

❏ Processor initialization control

Architecture

The PCI Slave of the PHB implements two address decoders for placing
the MPIC registers in PCI IO or PCI Memory space. Access to these
registers require PPC and PCI bus mastership. These accesses include
interrupt and timer initialization and interrupt vector reads.

The MPIC receives interrupt inputs from 16 external sources, four
interprocessor sources, four timer sources, and one PHB internal error
detection source. The externally sourced interrupts 1 through 15 have two
modes of activation; low level or active high positive edge. External
interrupt 0 can be either level or edge activated with either polarity. The
PHB interrupt request is an active low level sensitive interrupt. The
Interprocessor and timers interrupts are event activated.

If the OPIC is enabled, the PHB detected errors will be passed on to MPIC.
If the OPIC is disabled PHB detected errors are passed directly to the
processor 0 interrupt pin.

External Interrupt Interface

The external interrupt interface functions as either a parallel or a serial
interface depending on the EINTT bit in the MPIC Global Configuration
Register. If this bit is set MPIC is in the serial mode. Otherwise MPIC
operates in the parallel mode.

In the serial mode, all 16 external interrupts are serially scanned into MPIC
using the SI_STA and SI_DAT pins as shown in Figure 2-8.

In the parallel mode, 16 external signal pins are used as interrupt inputs
(interrupts 0 through 15).
http://www.motorola.com/computer/literature 2-51

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

ich
ister
tly

side-

 15,
ce,

t.
Figure 2-8. Serial Mode Interrupt Scan

Using PCLK as a reference, external logic will pulse SI_STA one clock
period indicating the beginning of an interrupt scan period. On the same
clock period that SI_STA is asserted, external logic will feed the state of
EXT0 on the SI_DAT pin. External logic will continue to sequentially
place EXT1 through EXT15 on SI_DAT during the next 15 clock periods.
This process may be repeated at any rate, with the fastest possible next
assertion of SI_STA on the clock following the sampling of EXT15. Each
scan process must always scan exactly 16 external interrupts.

CSR’s Readability

Unless explicitly specified, all registers are readable and return the last
value written. The exceptions are the IPI dispatch registers and the EOI
registers which return zero’s on reads, the interrupt source ACT bit wh
returns current interrupt source status, the interrupt acknowledge reg
which returns the vector of the highest priority interrupt which is curren
pending, and reserved bits which returns zero’s. The interrupt
acknowledge register is also the only register which exhibits any read
effects.

Interrupt Source Priority

Each interrupt source is assigned a priority value in the range from 0 to
where 15 is the highest. In order for delivery of an interrupt to take pla
the priority of the source must be greater than that of the destination
processor. Therefore, setting a source priority to zero inhibits interrup

PCLK

SI_STA

SI_DAT EXT0 EXT1 EXT2 EXT13EXT14 EXT15

Earliest possible assertion of SI_STA
2-52 Computer Group Literature Center Web Site

Multi-Processor Interrupt Controller (MPIC) Functional Description

2
Processor’s Current Task Priority

Each processor has a task priority register which is set by system software
to indicate the relative importance of the task running on that processor.
The processor will not receive interrupts with a priority level equal to or
lower than its current task priority. Therefore, setting the current task
priority to 15 prohibits the delivery of all interrupts to the associated
processor.

Nesting of Interrupt Events

A processor is guaranteed never to have an in service interrupt preempted
by an equal or lower priority source. An interrupt is considered to be in
service from the time its vector is returned during an interrupt
acknowledge cycle until an EOI (End of Interrupt) is received for that
interrupt. The EOI cycle indicates the end of processing for the highest
priority in service interrupt.

Spurious Vector Generation

Under certain circumstances the MPIC will not have a valid vector to
return to the processor during an interrupt acknowledge cycle. In these
cases the spurious vector from the spurious vector register will be returned.
The following cases would cause a spurious vector fetch.

❏ INT is asserted in response to an externally sourced interrupt which
is activated with level sensitive logic and the asserted level is
negated before the interrupt is acknowledged.

❏ INT is asserted for an interrupt source which is masked using the
mask bit in the Vector-Priority register before the interrupt is
acknowledged.

Interprocessor Interrupts (IPI)

Processor 0 and 1 can generate interrupts which are targeted for the other
processor or both processors. There are four Interprocessor Interrupts (IPI)
channels. The interrupts are initiated by writing a bit in the IPI dispatch
http://www.motorola.com/computer/literature 2-53

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 ed,
he

ets
the
is
rom
re
d the
nd

ic as
t is

e
 is
d to
t

pt
registers. If subsequent IPI’s are initiated before the first is acknowledg
only one IPI will be generated. The IPI channels deliver interrupts in t
Direct Mode and can be directed to more than one processor.

8259 Compatibility

The MPIC provides a mechanism to support PC-AT compatible chip s
using the 8259 interrupt controller architecture. After power on reset,
MPIC defaults to 8259 pass-through mode. In this mode, if the OPIC
enabled interrupts from external source number 0 (the interrupt signal f
the 8259 is connected to this external interrupt source on the MPIC) a
passed directly to processor 0. If the pass-through mode is disabled an
OPIC is enabled, the 8259 interrupts are delivered using the priority a
distribution mechanisms of the MPIC.

MPIC does not interact with the vector fetch from the 8259 interrupt
controller.

PHB Detected Errors

PHB detected errors are grouped together and sent to the interrupt log
a singular interrupt source. The interrupt delivery mode for this interrup
distributed. When the OPIC is disabled, the PHB interrupt will be directly
passed on to processor 0 INT pin.

For system implementations where the MPIC controller is not used, th
PHB Detected Error condition will be made available by a signal which
external to the Hawk ASIC. Presumably this signal would be connecte
an externally sourced interrupt input of a MPIC controller in a differen
device. Since the MPIC specification defines external I/O interrupts to
operate in the distributed mode, the delivery mode of this error interru
should be consistent.
2-54 Computer Group Literature Center Web Site

Multi-Processor Interrupt Controller (MPIC) Functional Description

2

e

 be
r

in
pt is

ned
t
st

e
r

 the
hat
Timers

There is a divide by eight pre-scaler which is synchronized to the PCI
clock. The output of the prescaler enables the decrement of the four timers.
The timers may be used for system timing or to generate periodic
interrupts. Each timer has four registers which are used for configuration
and control. They are:

❏ Current Count Register

❏ Base Count Register

❏ Vector-Priority Register

❏ Destination Register

Interrupt Delivery Modes

The direct and distributed interrupt delivery modes are supported. Note
that the direct delivery mode has sub modes of multicast or non-multicast.
The IPI’s and Timer interrupts operate in the direct delivery mode. Th
externally sourced or I/O interrupts operate in the distributed mode.

In the direct delivery mode, the interrupt is directed to one or both
processors. If it is directed to two processors (that is, multicast), it will
delivered to two processors. The interrupt is delivered to the processo
when the priority of the interrupt is greater than the priority contained
the task register for that processor, and when the priority of the interru
greater than any interrupt which is in-service for that processor. An
interrupt is considered to be in service from the time its vector is retur
during an interrupt acknowledge cycle until an EOI is received for tha
interrupt. The EOI cycle indicates the end of processing for the highe
priority in service interrupt.

In the distributed delivery mode, the interrupt is pointed to one or mor
processors but it will be delivered to only one processor. Therefore, fo
externally sourced or I/O interrupts, multicast delivery is not
supported.The interrupt is delivered to a processor when the priority of
interrupt is greater than the priority contained in the task register for t
processor, and when the priority of the interrupt is greater than any
http://www.motorola.com/computer/literature 2-55

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 interrupt which is in-service for that processor, and when the priority of
that interrupt is the highest of all interrupts pending for that processor, and
when that interrupt is not in-service for the other processor. If both
destination bits are set for each processor, the interrupt will be delivered to
the processor that has a lower task register priority. Note, due to a deadlock
condition that can occur when the task register priorities for each processor
are the same and both processors are targeted for interrupt delivery, the
interrupt will be delivered to processor 0 or processor 1 as determined by
the TIE mode. Additionally, If priorities are set the same for competing
interrupts, external int. 0 is given the highest priority in hardware followed
by external int.1 through 15 and then followed by timer 0 through timer 3
and followed by IPI 0 and 1. For example, if both ext0 and ext1 interrupts
are pending with the same assigned priority; during the following interrupt
acknowledge cycles, the first vector returned shall be that of ext0 and then
ext1. This is an arbitrary choice.

Block Diagram Description

The description of the block diagram shown in Figure 2-9 focuses on the
theory of operation for the interrupt delivery logic. If the preceding section
is a satisfactory description of the interrupt delivery modes and the reader
is not interested in the logic implementation, this section can be skipped.
2-56 Computer Group Literature Center Web Site

Multi-Processor Interrupt Controller (MPIC) Functional Description

2

Figure 2-9. MPIC Block Diagram

Program Visible
Registers

IPR

Int. signals

IRR_0

ISR_0

Interrupt
Selector_0

IRR_1

ISR_1

Interrupt
Selector_1

Interrupt Router

INT 0INT 1
http://www.motorola.com/computer/literature 2-57

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Program Visible Registers

These are the registers that software can access. They are described in
detail in the MPIC Registers section.

Interrupt Pending Register (IPR)

The interrupt signals to MPIC are qualified and synchronized to the clock
by the IPR. If the interrupt source is internal to the Hawk ASIC or external
with their Sense bit = 0 (edge sensitive), a bit is set in the IPR. That bit is
cleared when the interrupt associated with that bit is acknowledged. If the
interrupt source is external and level activated, the output from the IPR is
not negated until the level into the IPR is negated.

Externally sourced interrupts are qualified based upon their Sense and/or
Pol bits in the Vector-Priority register. IPI and Timer Interrupts are
generated internally to the Hawk ASIC and are qualified by their
Destination bit. Since the internally generated interrupts use direct delivery
mode with multicast capability, there are two bits in the IPR, one for each
processor, associated with each IPI and Timer interrupt source.

The MASK bits from the Vector-Priority registers is used to qualify the
output of the IPR. Therefore, if an interrupt condition is detected when the
MASK bit is set, that interrupt will be requested when the MASK bit is
lowered.

Interrupt Selector (IS)

There is an Interrupt Selector (IS) for each processor. The IS receives
interrupt requests from the IPR. If the interrupt request are from an
external source, they are qualified by the destination bit for that interrupt
and processor. If they are from an internal source, they have been qualified.
The output of the IS will be the highest priority interrupt that has been
qualified. This output is the priority of the selected interrupt and its source
identification. The IS will resolve an interrupt request in two PHB clock
ticks.

The IS also receives a second set of inputs from the ISR. During the End
Of Interrupt cycle, these inputs are used to select which bits are to be
cleared in the ISR.
2-58 Computer Group Literature Center Web Site

Multi-Processor Interrupt Controller (MPIC) Functional Description

2

k
hen

hat
 is a
ith
t is
he

 to
rupt
 the
 two
or.
Interrupt Request Register (IRR)

There is an Interrupt Request Register (IRR) for each processor. The IRR
always passes the output of the IS except during Interrupt Acknowledge
cycles. This guarantees that the vector which is read from the Interrupt
Acknowledge Register is not changing due to the arrival of a higher
priority interrupt. The IRR also serves as a pipeline register for the two tick
propagation time through the IS.

In-Service Register (ISR)

There is a In-Service Register (ISR) for each processor. The contents of the
ISR is the priority and source of all interrupts which are in-service. The
ISR receives a bit-set command during Interrupt Acknowledge cycles and
a bit-clear command during End Of Interrupt cycles.

The ISR is implemented as a 40-bit register with individual bit set and clear
functions. Fifteen bits are used to store the priority level of each interrupt
which is in-service. Twenty-five bits are used to store the source
identification of each interrupt which is in service. Therefore, there is one
bit for each possible interrupt priority and one bit for each possible
interrupt source.

Interrupt Router

The Interrupt Router monitors the outputs from the ISR’s, Current Tas
Priority Registers, Destination Registers, and the IRR’s to determine w
to assert a processor’s INT pin.

When considering the following rule sets, it is important to remember t
there are two types of inputs to the Interrupt Selectors. If the interrupt
distributed class interrupt, there is a single bit in the IPR associated w
this interrupt and it is delivered to both Interrupt Selectors. This IPR bi
qualified by the destination register contents for that interrupt before t
Interrupt Selector compares its priority to the priority of all other
requesting interrupts for that processor. If the interrupt is programmed
be edge sensitive, the IPR bit is cleared when the vector for that inter
is returned when the Interrupt Acknowledge register is examined. On
other hand, if the interrupt is a direct/multicast class interrupt, there are
bits in the IPR associated with this interrupt. One bit for each process
http://www.motorola.com/computer/literature 2-59

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

ask

Then one of these bits is delivered to each Interrupt Selector. Since this
interrupt source can be multicast, each of these IPR bits must be cleared
separately when the vector is returned for that interrupt to a particular
processor.

If one of the following sets of conditions are true, the interrupt pin for
processor 0 is driven active.

❏ Set1

– The source ID in IRR_0 is from an external source

– The destinaition bit for processor 1 is 0 for this interrupt

– The priority from IRR_0 is greater than the highest priority in
ISR_0

– The priority from IRR_0 is greater than the contents of task
register_0

❏ Set2

– The source ID in IRR_0 is from an external source

– The destination bit for processor 1 is a 1 for this interrupt

– The source ID in IRR_0 is not present is ISR_1

– The priority from IRR_0 is greater than the highest priority in
ISR_0

– The priority from IRR_0 is greater than the Task Register_0
contents

– The contents of Task Register_0 is less than the contents of T
Register_1

❏ Set3

– The source ID in IRR_0 is from an internal source

– The priority from IRR_0 is greater than the highest priority in
ISR_0

– The priority from IRR_0 is greater than the Task Register_0
contents
2-60 Computer Group Literature Center Web Site

Multi-Processor Interrupt Controller (MPIC) Functional Description

2
There is a possibility for a priority tie between the two processors when
resolving external interrupts. In that case, the interrupt will be delivered to
processor 0 or processor 1 as determined by the TIE mode bit. This case is
not defined in the above rule set.

Programming Notes

External Interrupt Service

The following summarizes how an external interrupt is serviced:

❏ An external interrupt occurs.

❏ The processor state is saved in the machine status save/restore
registers. A new value is loaded into the Machine State Register
(MSR). The External Interrupt Enable bit in the new MSR (MSRee)
is set to zero. Control is transferred to the O/S external interrupt
handler.

❏ The external interrupt handler calculates the address of the Interrupt
Acknowledge register for this processor (MPIC Base Address +
0x200A00) + (processor ID shifted left 12 bits).

❏ The external interrupt handler issues an Interrupt Acknowledge
request to read the interrupt vector from the Hawk MPIC. If the
interrupt vector indicates the interrupt source is the 8259, the
interrupt handler issues a second Interrupt Acknowledge request to
read the interrupt vector from the 8259. The Hawk MPIC does not
interact with the vector fetch from the 8259.

❏ The interrupt handler saves the processor state and other interrupt-
specific information in system memory and re-enables for external
interrupts (the MSRee bit is set to 1). MPIC blocks interrupts from
sources with equal or lower priority until an End-of-Interrupt is
received for that interrupt source. Interrupts from higher priority
interrupt sources continue to be enabled. If the interrupt source was
the 8259, the interrupt handler issues an EOI request to the MPIC.
This resets the In-Service bit for the 8259 within the MPIC and
allows it to recognize higher priority interrupt requests, if any, from
http://www.motorola.com/computer/literature 2-61

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

is

r
he
t
 an

upt
e
pts

 the
 are
the 8259. If none of the nested interrupt modes of the 8259 are
enabled, the interrupt handler issues an EOI request to the 8259.

– The device driver interrupt service routine associated with th
interrupt vector is invoked.

– If the interrupt source was not the 8259, the interrupt handle
issues an EOI request for this interrupt vector to the MPIC. If t
interrupt source was the 8259 and any of the nested interrup
modes of the 8259 are enabled, the interrupt handler issues
EOI request to the 8259.

Normally, interrupts from ISA devices are connected to the 8259 interr
controller. ISA devices typically rely on the 8259 Interrupt Acknowledg
to flush buffers between the ISA device and system memory. If interru
from ISA devices are directly connected to the MPIC (bypassing the
8259), the device driver interrupt service routine must read status from
ISA device to ensure buffers between the device and system memory
flushed.

Reset State

After power on reset, the MPIC state is:

❏ Current task priority for all CPUs set to 15.

❏ All interrupt source priorities set to zero.

❏ All interrupt source mask bits set to a one.

❏ All interrupt source activity bits cleared.

❏ Processor Init Register is cleared.

❏ All counters stopped and interrupts disabled.

❏ Controller mode set to 8259 pass-through.
2-62 Computer Group Literature Center Web Site

Multi-Processor Interrupt Controller (MPIC) Functional Description

2
Operation

Interprocessor Interrupts

Four Inter-Processor Interrupt (IPI) channels are provided for use by all
processors. During system initialization the IPI vector/priority registers for
each channel should be programmed to set the priority and vector returned
for each IPI event. During system operation, a processor may generate an
IPI by writing a destination mask to one of the IPI dispatch registers. Note
that each IPI dispatch register is shared by both processors. Each IPI
dispatch register has two addresses but they are shared by both processors.
That is, there is a total of four IPI dispatch registers in the MPIC.

The IPI mechanism may be used for self interrupts by programming the
dispatch register with the bit mask for the originating processor.

Dynamically Changing I/O Interrupt Configuration

The interrupt controller provides a mechanism for safely changing the
vector, priority, or destination of I/O interrupt sources. This is provided to
support systems which allow dynamic configuration of I/O devices. In
order to change the vector, priority, or destination of an active interrupt
source, the following sequence should be performed:

❏ Mask the source using the MASK bit in the vector/priority register.

❏ Wait for the activity bit (ACT) for that source to be cleared.

❏ Make the desired changes.

❏ Unmask the source.

This sequence ensures that the vector, priority, destination, and mask
information remain valid until all processing of pending interrupts is
complete.

EOI Register

Each processor has a private EOI register which is used to signal the end
of processing for a particular interrupt event. If multiple nested interrupts
are in service, the EOI command terminates the interrupt service of the
http://www.motorola.com/computer/literature 2-63

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 highest priority source. Once an interrupt is acknowledged, only sources
of higher priority will be allowed to interrupt the processor until the EOI
command is received. This register should always be written with a value
of zero which is the nonspecific EOI command.

Interrupt Acknowledge Register

Upon receipt of an interrupt signal, the processor may read this register to
retrieve the vector of the interrupt source which caused the interrupt.

8259 Mode

The 8259 mode bits control the use of an external 8259 pair for PC--AT
compatibility. Following reset this mode is set for pass through which
essentially disables the advanced controller and passes an 8259 input on
external interrupt source 0 directly through to processor zero. During
interrupt controller initialization this channel should be programmed for
mixed mode in order to take advantage of the interrupt delivery modes.

Current Task Priority Level

Each processor has a separate Current Task Priority Level register. The
system software uses this register to indicate the relative priority of the task
running on the corresponding processor. The interrupt controller will not
deliver an interrupt to a processor unless it has a priority level which is
greater than the current task priority level of that processor. This value is
also used in determining the destination for interrupts which are delivered
using the distributed deliver mode.

Architectural Notes

The hardware and software overhead required to update the task priority
register synchronously with instruction execution may far outweigh the
anticipated benefits of the task priority register. To minimize this
overhead, the interrupt controller architecture should allow the task
priority register to be updated asynchronously with respect to instruction
execution. Lower priority interrupts may continue to occur for an
indeterminate number of cycles after the processor has updated the task
priority register. If this is not acceptable, the interrupt controller
2-64 Computer Group Literature Center Web Site

Registers

2

hen

f an
PIC

 the
rs are
size.
ese

PCI
on
architecture should recommend that, if the task priority register is not
implemented with the processor, the task priority register should only be
updated when the processor enters or exits an idle state.

Only when the task priority register is integrated within the processor, such
that it can be accessed as quickly as the MSRee bit, for example, should
the architecture require the task priority register be updated synchronously
with instruction execution.

Effects of Interrupt Serialization

All external interrupt sources that are level sensitive must be negated at
least N PCI clocks prior to doing an EOI cycle for that interrupt source,
where N is equal to the number of PCI clocks necessary to scan in the
external interrupts. In the example shown, 16 external interrupts are
scanned in, N = 16. Serializing the external interrupts cause’s a delay
between the time that the external interrupt source changes level and w
MPIC logic actually see’s the change. Spurious interrupts can result i
EOI cycle occurs before the interrupt source is seen to be negated by M
logic.

Registers
This section provides a detailed description of all PHB registers. The
section is divided into two parts: the first covers the PPC Registers and
second part covers the PCI Configuration Registers. The PPC Registe
accessible only from the PPC bus using any single beat valid transfer
The PCI Configuration Registers reside in PCI configuration space. Th
are primarily accessible from the PPC bus by using the
CONFIG_ADDRESS and CONFIG_DATA registers. The PPC Registers
are described first; the PCI Registers are described next. A complete
discussion of the MPIC Registers can be found later in this chapter.

It is possible to place the base address of the PPC registers at either
$FEFF0000 or $FEFE0000. Having two choices for where the base
registers reside allows the system designer to use two of the Hawk’s
Host Bridges connected to one PPC60x bus. Please refer to the secti
http://www.motorola.com/computer/literature 2-65

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 entitled PHB Hardware Configuration for more information. All
references to the PPC registers of PHB within this document are made with
respect to the base address $FEFF0000.

The following conventions are used in the Hawk register charts:

❏ R Read Only field.

❏ R/W Read/Write field.

❏ S Writing a ONE to this field sets this field.

❏ C Writing a ONE to this field clears this field.

PPC Registers

The PPC register map of the PHB is shown in the table below.

Table 2-16. PPC Register Map for PHB

Bit --->
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

$FEFF0000 VENID DEVID

$FEFF0004 REVID

$FEFF0008 GCSR

$FEFF000C XARB PARB

$FEFF0010 XPAD

$FEFF0014

$FEFF0018

$FEFF001C

$FEFF0020 ETEST EENAB

$FEFF0024 ESTAT

$FEFF0028 EADDR

$FEFF002C EATTR

$FEFF0030 PIACK

$FEFF0034

$FEFF0038
2-66 Computer Group Literature Center Web Site

Registers

2

Vendor ID/Device ID Registers

$FEFF003C

$FEFF0040 XSADD0

$FEFF0044 XSOFF0 XSATT0

$FEFF0048 XSADD1

$FEFF004C XSOFF1 XSATT1

$FEFF0050 XSADD2

$FEFF0054 XSOFF2 XSATT2

$FEFF0058 XSADD3

$FEFF005C XSOFF3 XSATT3

$FEFF0060 WDT1CNTL

$FEFF0064 WDT1STAT

$FFEF0068 WDT2CNTL

$FEFF006C WDT2STAT

$FEFF0070 GPREG0(Upper)

$FEFF0074 GPREG0(Lower)

$FEFF078 GPREG1(Upper)

$FEFF07C GPREG1(Lower)

Address $FEFF0000

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name VENID DEVID

Operation R R

Reset $1057 $4803

Table 2-16. PPC Register Map for PHB (Continued)

Bit --->
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

http://www.motorola.com/computer/literature 2-67

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 VENID (Vendor ID) This register identifies the manufacturer of the
device. This identifier is allocated by the PCI SIG to ensure
uniqueness. $1057 has been assigned to Motorola and is hardwired as
a read-only value. This register is duplicated in the PCI Configuration
Registers.

DEVID (Device ID) This register identifies this particular device. The
Hawk will always return $4803. This register is duplicated in the PCI
Configuration Registers.

Revision ID Register

REVID (Revision ID) This register identifies the PHB revision level.
This register is duplicated in the PCI Configuration Registers.

Address $FEFF0004

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name REVID

Operation R R R R

Reset $00 $01 $00 $00
2-68 Computer Group Literature Center Web Site

Registers

2
General Control-Status/Feature Registers

The General Control-Status/Feature Registers (GCSR) provides
miscellaneous control and status information for the PHB. The bits within
the GCSR are defined as follows:

LEND (Endian Select) If set, the PPC bus is operating in little endian
mode. The PPC address will be modified as described in the section
titled When PPC Devices are Little-Endian. When LEND is clear, the
PPC bus is operating in big-endian mode, and all data to/from PCI is
swapped as described in the section titled When PPC Devices are Big-
Endian

PFBR (PCI Flush Before Read) If set, the PHB will guarantee that all
PPC initiated posted write transactions will be completed before any
PCI initiated read transactions will be allowed to complete. When
PFBR is clear, there will be no correlation between these transaction
types and their order of completion. Please refer to the section on
Transaction Ordering for more information.

XMBH (PPC Master Bus Hog) If set, the PPC master of the PHB will
operate in the Bus Hog mode. Bus Hog mode means the PPC master
will continually request the PPC bus for the entire duration of each
transfer. If Bus Hog is not enabled, the PPC master will request the bus
in a normal manner. Please refer to the section on PPC Master for
more information.

Address $FEFF0008

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name GCSR

L
E

N
D

PF
B

R
H

M
B

H
X

F
B

R
X

B
T

1
X

B
T

0
P64

O
P

IC

X
ID

1
X

ID
0

Operation R
/W R R R

R
/W

R
/W

R
/W

R
/W R

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
http://www.motorola.com/computer/literature 2-69

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 XFBR (PPC Flush Before Read) If set, the PHB will guarantee that
all PCI initiated posted write transactions will be completed before any
PPC-initiated read transactions will be allowed to complete. When
XFBR is clear, there will be no correlation between these transaction
types and their order of completion. Please refer to the section titled
Transaction Ordering for more information.

XBTx (PPC Bus Time-out) This field specifies the enabling and PPC
bus time-out length to be used by the PPC timer. The time-out length
is encoded as follows:

P64M (64-bit PCI Mode) If set, the PHB is connected to a 64-bit PCI
bus. Refer to the section titled PHB Hardware Configuration for more
information on how this bit gets set.

OPIC (OpenPIC Interrupt Controller Enable) If set, the PHB detected
errors will be passed on to the MPIC. If cleared, PHB detected errors
will be passed on to the processor 0 INT pin.

XIDx (PPC ID) This field is encoded as shown below to indicate who
is currently the PPC bus master. This information is obtained by
sampling the XARB0 thru XARB3 pins when in external PPC
arbitration mode. When in internal PPC arbitration mode, this
information is generated by the PPC Arbiter. In a multi-processor
environment, these bits allow software to determine which processor
it is currently running.

MBT Time Out Length

00 256 µsec

01 64 µsec

10 8 µsec

11 disabled

MID Current PPC Data Bus Master

00 device on ABG0*

01 device on ABG1*

10 device on ABG2

11 Hawk
2-70 Computer Group Literature Center Web Site

Registers

2
PPC Arbiter/PCI Arbiter Control Registers

The PPC Arbiter Register (XARB) provides control and status for the PPC
Arbiter. Please refer to the section titled PPC Arbiter for more
information. The bits within the XARB register are defined as follows:

FBRx (Flatten Burst Read) This field is used by the PPC Arbiter to
control how bus pipelining will be affected after all burst read cycles.
The encoding of this field is shown in the table below.

FSRx (Flatten Single Read) This field is used by the PPC Arbiter to
control how bus pipelining will be affected after all single beat read
cycles. The encoding of this field is shown in the table below.

FBWx (Flastten Burst Write) This field is used by the PPC Arbiter to
control how bus pipelining will be affected after all burst write cycles.
The encoding of this field is shown in the table below.

FSWx (Flatten Single Write) This field is used by the PPC Arbiter to
control how bus pipelining will be affected after all single beat write
cycles. The encoding of this field is shown in the table below.

Address $FEFF000C

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name XARB PARB

FB
R

1
FB

R
0

FS
R

1
FS

R
0

FB
W

1
FS

W
0

FS
W

1
FS

W
0

PR
I

PR
K

1
PR

K
0

E
N

A
PR

I1
PR

I0
PR

K
3

PR
K

2
PR

K
1

PR
K

0
H

IE
R

2
H

IE
R

1
H

IE
R

0
PO

L

E
N

A

Operation RW R R
W

R
W

R
W

R R R R R R R R R R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R R R
/W

R
/W

Reset 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

FBR/FSR/FBW/FSW Effects on Bus Pipelining

00 None

01 None

10 Flatten always

11 Flatten if switching masters
http://www.motorola.com/computer/literature 2-71

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 PRI (Priority) If set, the PPC Arbiter will impose a rotating between
CPU0 grants. If cleared, a fixed priority will be established between
CPU0 and CPU1 grants, with CPU0 having a higher priority than
CPU1.

PRKx (Parking) This field determines how the PPC Arbiter will
implement CPU parking. The encoding of this field is shown in the
table below.

ENA (Enable) This read only bit indicates the enabled state of the
PPC Arbiter. If set, the PPC Arbiter is enabled and is acting as the
system arbiter. If cleared, the PPC Arbiter is disabled and external
logic is implementing the system arbiter. Refer to the section titled
PHB Hardware Configuration for more information on how this bit
gets set.

The PCI Arbiter Register (PARB) provides control and status for the PCI
Arbiter. Refer to the section titled PCI Arbiter for more information. The
bits within the PARB register are defined as follows:

PRIx (Priority) This field is used by the PCI Arbiter to establish a
particular bus priority scheme. The encoding of this field is shown in
the following table.

PRK CPU Parking

00 None

01 Park on last CPU

10 Park always on CPU0

11 Park always on CPU1

PRI Priority Scheme

00 Fixed

01 Round Robin

10 Mixed

11 Reserved
2-72 Computer Group Literature Center Web Site

Registers

2
PRKx Parking. This field is used by the PCI Arbiter to establish a
particular bus parking scheme. The encoding of this field is shown in
the following table.

HIERx (Hierarchy) This field is used by the PCI Arbiter to establish
a particular priority ordering when using a fixed or mixed mode
priority scheme. When using the fixed priority scheme, the encoding
of this field is shown in the table below.

When using the mixed priority scheme, the encoding of this field is shown
in the following table.

PRK Parking Scheme

0000 Park on last master

0001 Park always on PARB6

0010 Park always on PARB5

0011 Park always on PARB4

0100 Park always on PARB3

0101 Park always on PARB2

0110 Park always on PARB1

0111 Park always on PARB0

1000 Park always on HAWK

1111 None

HIER Priority ordering, highest to lowest

000 PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HAWK

001 HAWK -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0

010 PARB0 -> HAWK -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1

011 PARB1 -> PARB0 -> HAWK -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2

100 PARB2 -> PARB1 -> PARB0 -> HAWK -> PARB6 -> PARB5 -> PARB4 -> PARB3

101 PARB3 -> PARB2 -> PARB1 -> PARB0 -> HAWK -> PARB6 -> PARB5 -> PARB4

110 PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HAWK -> PARB6 -> PARB5

111 PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HAWK -> PARB6
http://www.motorola.com/computer/literature 2-73

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

POL (Park on lock) If set, the PCI Arbiter will park the bus on the
master that successfully obtains a PCI bus lock. The PCI Arbiter keeps
the locking master parked and does not allow any non-locked masters
to obtain access of the PCI bus until the locking master releases the
lock. If this bit is cleared, the PCI Arbiter does not distinguish between
locked and non-locked cycles.

ENA (Enable) This read only bit indicates the enabled state of the PCI
Arbiter. If set, the PCI Arbiter is enabled and is acting as the system
arbiter. If cleared, the PCI Arbiter is disabled and external logic is
implementing the system arbiter. Please refer to the section titled PHB
Hardware Configuration for more information on how this bit gets set.

Hardware Control-Status/Prescaler Adjust Register

The Hardware Control-Status Register (HCSR) provides hardware
specific control and status information for the PHB. The bits within the
HCSR are defined as follows:

HIER Priority ordering, highest to lowest

000 Group 1 -> Group 2 -> Group 3 -> Group 4

001 Group 4 -> Group 1 -> Group 2 -> Group 3

010 Group 3 -> Group 4 -> Group 1 -> Group 2

011 Group 2 -> Group 3 -> Group 4 -> Group 1

100 Reserved

101 Reserved

110 Reserved

111 Reserved
2-74 Computer Group Literature Center Web Site

Registers

2

XPRx (PPC/PCI Clock Ratio) This is a read only field that is used to
indicate the clock ratio that has been established by the PHB at the
release of reset. The encoding of this field is shown in the following
table.

SPRQ (Speculative PCI Request) If set, the PHB PCI Master will
perform speculative PCI requesting when a PCI bound transaction has
been retried due to bridge lock resolution. If cleared, the PCI Master
will only request the PCI bus when a transaction is pending within the
PHB FIFOs.

Address $FEFF0010

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name HCSR XPAD

X
PR

2
X

PR
1

X
PR

0

S
PR

Q
W

L
R

T
1

W
L

R
T

0
R

L
R

T
1

R
L

R
T

0

Operation

R R R R R R R R R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R/W

Reset 0 0 0 0 0 X X X 0 0 0 1 0 0 0 0 $00 $9C

XPR PPC60x/PCI clock ratio

000 Undefined

001 1:1

010 2:1

011 3:1

100 3:2

101 Undefined

110 5:2

111 Undefined
http://www.motorola.com/computer/literature 2-75

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 WLRTx (Write Lock Resolution Threshold) This field is used by the
PHB to determine a PPC bound write FIFO threshold at which a bridge
lock resolution will create a retry on a pending PCI bound transaction.
The encoding of this field is shown in the following table.

RLRTx (Read Lock Resolution Threshold) This field is used by the
PHB to determine a PPC bound read FIFO threshold at which a bridge
lock resolution will create a retry on a pending PCI bound transaction.
The encoding of this field is shown in the following table.

The PPC Prescaler Adjust Register (XPAD) is used to specify a scale
factor for the prescaler to ensure that the time base for the bus timer is
1MHz. The scale factor is calculated as follows:

XPAD = 256 - Clk,

where Clk is the frequency of the CLK input in MHz. The following table
shows the scale factors for some common CLK frequencies.

WLRT Write lock resolution threshold

00 Match write threshold mode (that is, PSATTx WXFT)

01 Immediate

10 FIFO full

11 FIFO full

RLRT Read lock resolution threshold

00 Match read threshold mode (that is, PSATTx RXFT or RMFT)

01 Immediate

10 FIFO less than 1 cache line

11 FIFO less than 1 cache line

Frequency XPAD

100 $9C

83 $AD

66 $BE

50 $CE
2-76 Computer Group Literature Center Web Site

Registers

2
PPC Error Test/Error Enable Register

The Error Test Register (ETEST) provides a way to inject certain types of
errors to test the PHB error capture and status circuitry. The bits within the
ETEST are defined as follows:

DPEx (Data Parity Error Enable) These bits are used for test reasons
to purposely inject data parity errors whenever the PHB is sourcing
PPC data. A data parity error will be created on the correcponding PPC
data parity bus if a bit is set. For example, setting DPE0 will cause DP0
to be generated incorrectly. If the bit is cleared, the PHB will generate
correct data parity.

APEx (Address Parity Error Enable) These bits are used for test
reasons to purposely inject address parity errors whenever the PHB is
acting as a PPC bus master. An address parity error will be created on
the corresponding PPC address parity bus if a bit is set. For example,
setting APE0 will cause AP0 to be generated incorrectly. If the bit is
cleared, the PHB will generate correct address parity.

The Error Enable Register (EENAB) controls how the PHB is to respond
to the detection of various errors. In particular, each error type can
uniquely be programmed to generate a machine check, generate an
interrupt, generate both, or generate neither. The bits within the ETEST are
defined as follows:

Address $FEFF0020

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name ETEST EENAB

D
PE

0
D

PE
1

D
PE

2
D

PE
3

D
PE

4
D

PE
5

D
PE

6
D

PE
7

A
PE

0
A

PE
1

A
PE

2
A

PE
3

D
FL

T
X

B
T

O
M

X
D

P
E

M
PP

E
R

M
PS

E
R

M
PS

M
A

M
PR

TA
M

X
B

T
O

II
X

D
P

E
I

PP
E

R
I

PS
E

R
I

PS
M

A
I

PR
TA

I

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R R R R R
/W

R
/W

R
/W

R
/W

R R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R R R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

Reset 0
http://www.motorola.com/computer/literature 2-77

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

CI
d.
_

en
ert
t is

e
ear,

s

t

 is

t

n
ert
.

le)
 to
DFLT (Default PPC Master ID) This bit determines which MCHK_
pin will be asserted for error conditions in which the PPC master ID
cannot be determined or the PHB was the PPC master. For example, in
the event of a PCI parity error for a transaction in which the PHB’s P
master was not involved, the PPC master ID cannot be determine
When DFLT is set, MCHK1_ is used. When DFLT is clear, MCHK0
will be used.

XBTOM (PPC Address Bus Time-out Machine Check Enable) Wh
this bit is set, the XBTO bit in the ESTAT register will be used to ass
the MCHK output to the current address bus master. When this bi
clear, MCHK will not be asserted.

XDPEM (PC Data Parity Error Machine Check Enable) When this bit
is set, the XDPE bit in the ESTAT register will be used to assert th
MCHK output to the current address bus master. When this bit is cl
MCHK will not be asserted.

PPERM (PCI Parity Error Machine Check Enable) When this bit i
set, the PPER bit in the ESTAT register will be used to assert the
MCHK output to bus master 0. When this bit is clear, MCHK will no
be asserted.

PSERM (PCI System Error Machine Check Enable) When this bit
set, the PSER bit in the ESTAT register will be used to assert the
MCHK output to bus master 0. When this bit is clear, MCHK will no
be asserted.

PSMAM (PCI Signalled Master Abort Machine Check Enable) Whe
this bit is set, the PSMA bit in the ESTAT register will be used to ass
the MCHK output to the bus master which initiated the transaction
When this bit is clear, MCHK will not be asserted.

PRTAM (PCI Master Received Target Abort Machine Check Enab
When this bit is set, the PRTA bit in the ESTAT register will be used
assert the MCHK output to the bus master which initiated the
transaction. When this bit is clear, MCHK will not be asserted.
2-78 Computer Group Literature Center Web Site

Registers

2
XBTOI PPC (Address Bus Time-out Interrupt Enable) When this bit
is set, the XBTO bit in the MERST register will be used to assert an
interrupt through the MPIC interrupt controller. When this bit is clear,
no interrupt will be asserted.

XDPEI (PPC Data Parity Error Interrupt Enable) When this bit is set,
the XDPE bit in the ESTAT register will be used to assert an interrupt
through the MPIC. When this bit is clear, no interrupt will be asserted.

PPERI (PCI Parity Error Interrupt Enable) When this bit is set, the
PPER bit in the ESTAT register will be used to assert an interrupt
through the MPIC interrupt controller. When this bit is clear, no
interrupt will be asserted.

PSERI (PCI System Error Interrupt Enable) When this bit is set, the
PSER bit in the ESTAT register will be used to assert an interrupt
through the MPIC interrupt controller. When this bit is clear, no
interrupt will be asserted.

PSMAI (PCI Master Signalled Master Abort Interrupt Enable) When
this bit is set, the PSMA bit in the ESTAT register will be used to assert
an interrupt through the MPIC interrupt controller. When this bit is
clear, no interrupt will be asserted.

PRTAI (PCI Master Received Target Abort Interrupt Enable) When
this bit is set, the PRTA bit in the ESTAT register will be used to assert
an interrupt through the MPIC interrupt controller. When this bit is
clear, no interrupt will be asserted.

PPC Error Status Register

The Error Status Register (ESTAT) provides an array of status bits
pertaining to the various errors that the PHB can detect. The bits within the
ESTAT are defined in the following paragraphs.
http://www.motorola.com/computer/literature 2-79

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

OVF (Error Status Overflow) This bit is set when any error is detected
and any of the error status bits are already set. It may be cleared by
writing a 1 to it; writing a 0 to it has no effect.

XBTO (PPC Address Bus Time-out) This bit is set when the PPC
timer times out. It may be cleared by writing a 1 to it; writing a 0 to it
has no effect. When the XBTOM bit in the EENAB register is set, the
assertion of this bit will assert MCHK to the master designated by the
XID field in the EATTR register. When the XBTOI bit in the EENAB
register is set, the assertion of this bit will assert an interrupt through
the MPIC.

XDPE (PPC Data Parity Error) This bit is set when the PHB detects
a data bus parity error. It may be cleared by writing a 1 to it; writing a
0 to it has no effect. When the XDPEM bit in the EENAB register is
set, the assertion of this bit will assert MCHK to the master designated
by the XID field in the EATTR register. When the XDPEI bit in the
EENAB register is set, the assertion of this bit will assert an interrupt
through the MPIC.

PPER (PCI Parity Error) This bit is set when the PCI PERR_ pin is
asserted. It may be cleared by writing it to a 1; writing it to a 0 has no
effect. When the PPERM bit in the EENAB register is set, the assertion
of this bit will assert MCHK to the master designated by the DFLT bit
in the EATTR register. When the PPERI bit in the EENAB register is
set, the assertion of this bit will assert an interrupt through the MPIC.

Address $FEFF0024

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name ESTAT
O

V
F

X
B

T
O

X
D

P
E

PP
E

R
PS

E
R

PS
M

A
PR

TA

Operation R R R R
/C

R R
/C

R R
/C

R
/C

R
/C

R
/C

Reset $00 $00 $00 0 0 0 0 0 0 0 0
2-80 Computer Group Literature Center Web Site

Registers

2

PE,
PSER (PCI System Error) This bit is set when the PCI SERR_ pin is
asserted. It may be cleared by writing it to a 1; writing it to a 0 has no
effect. When the PSERM bit in the EENAB register is set, the assertion
of this bit will assert MCHK to the master designated by the DFLT bit
in the EATTR register. When the PSERI bit in the EENAB register is
set, the assertion of this bit will assert an interrupt through the MPIC.

PSMA (PCI Master Signalled Master Abort) This bit is set when the
PCI master signals master abort to terminate a PCI transaction. It may
be cleared by writing it to a 1; writing it to a 0 has no effect. When the
PSMAM bit in the EENAB register is set, the assertion of this bit will
assert MCHK to the master designated by the XID field in the EATTR
register. When the PSMAI bit in the EENAB register is set, the
assertion of this bit will assert an interrupt through the MPIC.

PRTA (PCI Master Received Target Abort) This bit is set when the
PCI master receives target abort to terminate a PCI transaction. It may
be cleared by writing it to a 1; writing it to a 0 has no effect. When the
PRTAM bit in the EENAB register is set, the assertion of this bit will
assert MCHK to the master designated by the XID field in the EATTR
register. When the PRTAI bit in the EENAB register is set, the
assertion of this bit will assert an interrupt through the MPIC.

PPC Error Address Register

The Error Address Register (EADDR) captures addressing information on
the various errors that the PHB can detect. The register captures the PPC
address when the XBTO bit is set in the ESTAT register. The register
captures the PCI address when the PSMA or PRTA bits are set in the
ESTAT register. The register’s contents are not defined when the XD
PPER or PSER bits are set in the ESTAT register.

Address $FEFF0028

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name EAADR

Operation R

Reset $00000000
http://www.motorola.com/computer/literature 2-81

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 PPC Error Attribute Register

The Error Attribute Register (EATTR) captures attribute information on
the various errors that the PHB can detect. If the XDPE, PPER, or PSER
bits are set in the ESTAT register, the contents of the EATTR register are
zero. If the XBTO bit is set the register is defined by the following figure:

XIDx (PPC Master ID) This field contains the ID of the PPC master
which originated the transfer in which the error occurred. The
encoding scheme is identical to that used in the GCSR register.

TBST (Transfer Burst) This bit is set when the transfer in which the
error occurred was a burst transfer.

TSIZx (Transfer Size) This field contains the transfer size of the PPC
transfer in which the error occurred.

TTx (Transfer Type) This field contains the transfer type of the PPC
transfer in which the error occurred.

If the PSMA or PRTA bits are set, the register is defined in the following
table:

Address $FEFF002C

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name EATTR
X

ID
1

X
ID

0

T
B

S
T

T
S

IZ
0

T
S

IZ
1

T
S

IZ
2

T
T

0
T

T
1

T
T

2
T

T
3

T
T

4

Operation R R R R R R R R R R R R R R R R R R

Reset $00 $00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2-82 Computer Group Literature Center Web Site

Registers

2

WP (Write Post Completion) This bit is set when the PCI master
detects an error while completing a write post transfer.

XIDx (PPC Master ID) This field contains the ID of the PPC master
which originated the transfer in which the error occurred. The
encoding scheme is identical to that used in the GCSR register

COMMx (PCI Command) This field contains the PCI command of
the PCI transfer in which the error occurred.

BYTEx (PCI Byte Enable) This field contains the PCI byte enables of
the PCI transfer in which the error occurred. A set bit designates a
selected byte.

PCI Interrupt Acknowledge Register

The PCI Interrupt Acknowledge Register (PIACK) is a read only register
that is used to initiate a single PCI Interrupt Acknowledge cycle. Any
single byte or combination of bytes may be read from, and the actual byte
enable pattern used during the read will be passed on to the PCI bus. Upon
completion of the PCI interrupt acknowledge cycle, the PHB will present
the resulting vector information obtained from the PCI bus as read data.

Address $FEFF002C

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name EATTR

W
P

M
ID

1
M

ID
0

C
O

M
M

3
C

O
M

M
2

C
O

M
M

1
C

O
M

M
0

B
Y

T
E

7
B

Y
T

E
6

B
Y

T
E

5
B

Y
T

E
4

B
Y

T
E

3
B

Y
T

E
2

B
Y

T
E

1
B

Y
T

E
0

Operation R R R R R R R R R R R R R R R R R R

Reset $00 $00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
http://www.motorola.com/computer/literature 2-83

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

PPC Slave Address (0,1 and 2) Registers

The PPC Slave Address Registers (XSADD0, XSADD1, and XSADD2)
contains address information associated with the mapping of PPC memory
space to PCI memory/io space. The fields within the XSADDx registers
are defined as follows:

START (Start Address) This field determines the start address of a
particular memory area on the PPC bus which will be used to access
PCI bus resources. The value of this field will be compared with the
upper 16 bits of the incoming PPC address.

END (End Address) This field determines the end address of a
particular memory area on the PPC bus which will be used to access
PCI bus resources. The value of this field will be compared with the
upper 16 bits of the incoming PPC address.

Address $FEFF0030

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name PIACK

Operation R

Reset $00000000

Address XSADD0 - $FEFF0040

XSADD1 - $FEFF0048

XSADD2 - $FEFF0050

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name XSADDx

START END

Operation R/W R/W

Reset $0000 $0000
2-84 Computer Group Literature Center Web Site

Registers

2
PPC Slave Offset/Attribute (0, 1 and 2) Registers

The PPC Slave Offset Registers (XSOFF0, XSOFF1, and XSOFF2)
contains offset information associated with the mapping of PPC memory
space to PCI memory/io space. The field within the XSOFFx registers is
defined as follows:

XSOFFx (PPC Slave Offset) This register contains a 16-bit offset that
is added to the upper 16 bits of the PPC address to determine the PCI
address used for transfers from the PPC bus to PCI. This offset allows
PCI resources to reside at addresses that would not normally be visible
from the PPC bus.

The PPC Slave Attributes Registers (XSATT0, XSATT1, and XSATT2)
contain attribute information associated with the mapping of PPC memory
space to PCI memory/io space. The bits within the XSATTx registers are
defined as follows:

REN (Read Enable) If set, the corresponding PPC Slave is enabled for
read transactions.

WEN (Write Enable) If set, the corresponding PPC Slave is enabled
for write transactions.

WPEN (Write Post Enable) If set, write posting is enable for the
corresponding PPC Slave.

Address XSOFF0/XSATT0 - $FEFF0044

XSOFF1/XSATT1 - $FEFF004C

XSOFF2/XSATT2 - $FEFF0054

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name XSOFFx XSATTx

R
E

N
W

E
N

W
PE

N

M
E

M
IO

M

Operation R/W R

R
/W

R
/W

R R
/W

R R R
/W

R
/W

Reset $0000 $00 0 0 0 0 0 0 0 0
http://www.motorola.com/computer/literature 2-85

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 MEM (PCI Memory Cycle) If set, the corresponding PPC Slave will
generate transfers to or from PCI memory space. When clear, the
corresponding PPC Slave will generate transfers to or from PCI I/O
space using the addressing mode defined by the IOM field.

IOM (PCI I/O Mode) If set, the corresponding PPC Slave will
generate PCI I/O cycles using spread addressing as defined in the
section titled Generating PCI Cycles. When clear, the corresponding
PPC Slave will generate PCI I/O cycles using contiguous addressing.
This field only has meaning when the MEM bit is clear.

PPC Slave Address (3) Register

The PPC Slave Address Register3 (XSADD3) contains address
information associated with the mapping of PPC memory space to PCI
memory/io space. XSADD3 (in conjunctiion with XSOFF3/XSATT3) is
the only register group that can be used to initiate access to the PCI
CONFIG_ADDRESS ($80000CF8) and CONFIG_DATA ($80000CFC)
registers. The power up value of XSADD3 (and XSOFF3/XSATT3) are
set to allow access to these special register spaces without PPC register
initialization. The fields within XSADD3 are defined as follows:

START (Start Address) This field determines the start address of a
particular memory area on the PPC bus which will be used to access
PCI bus resources. The value of this field will be compared with the
upper 16 bits of the incoming PPC address.

Address MSADD3 - $FEFF0058

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name XSADD3

START END

Operation R/W R/W

Reset Regbase 0xfeff0000 => $8000

Regbase 0xfefe0000 => $9000

Regbase 0xfeff0000 => $8080

Regbase 0xfefe0000 => $9080
2-86 Computer Group Literature Center Web Site

Registers

2
END (End Address) This field determines the end address of a
particular memory area on the PPC bus which will be used to access
PCI bus resources. The value of this field will be compared with the
upper 16 bits of the incoming PPC address.

PPC Slave Offset/Attribute (3) Registers

The PPC Slave Offset Register3 (XSOFF3) contains offset information
associated with the mapping of PPC memory space to PCI memory/IO
space. The field within the XSOFF3 register is defined as follows:

XSOFFx (PPC Slave Offset) This register contains a 16-bit offset that
is added to the upper 16 bits of the PPC address to determine the PCI
address used for transfers from the PPC bus to PCI. This offset allows
PCI resources to reside at addresses that would not normally be visible
from the PPC bus. It is initialized to $8000 to facilitate a zero based
access to PCI space.

The PPC Slave Attributes Register3 (XSATT3) contains attribute
information associated with the mapping of PPC memory space to PCI
memory/IO space. The bits within the XSATT3 register are defined as
follows:

REN (Read Enable) If set, the corresponding PPC slave is enabled for
read transactions.

WEN (Write Enable) If set, the corresponding PPC slave is enabled
for write transactions.

Address XSOFF3/XSATT3 - $FEFF005C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name XSOFF3 XSATT3

R
E

N
W

E
N

W
PE

N

IO
M

Operation R/W R

R
/W

R
/W

R R
/W

R R R R
/W

Reset Regbase 0xfeff0000 => $8000

Regbase 0xfefe0000 => $7000

$00

1 1 0 0 0 0 0 0
http://www.motorola.com/computer/literature 2-87

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 WPEN (Write Post Enable) If set, write posting is enabled for the
corresponding PPC slave.

IOM (PCI I/O Mode) If set, the corresponding PPC slave will
generate PCI I/O cycles using spread addressing as defined in the
section on Generating PCI Cycles. When clear, the corresponding
PPC slave will generate PCI I/O cycles using contiguous addressing.

WDTxCNTL Registers

The Watchdog Timer Control Registers (WDT1CNTL and
WDT2CNTL) are used to provide control information to the watchdog
timer functions within the PHB. The fields within WDTxCNTL registers
are defined as follows:

KEY (Key) This field is used during the two step arming process of
the Control register. This field is sensitive to the following data
patterns:

PATTERN_1 = $55

PATTERN_2 = $AA

The Control register will be in the armed state if PATTERN_1 is
written to the KEY field. The Control register will be changed if in the
armed state and PATTERN_2 is written to the KEY field. An incorrect
sequence of patterns will cause the Control register to be in the
unarmed state.

Address WDT1CNTL - $FEFF0060

WDT2CNTL - $FEFF0068

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name
WDTxCNTL

KEY

E
N

A
B

A
R

M

RES RELOAD

Operation W

R
/W

R

R R/W R/W

Reset $00 1 0 00 $7 or $8 $FF
2-88 Computer Group Literature Center Web Site

Registers

2
A value of all zeros will always be returned within the KEY field
during read cycles.

ENAB (ENAB) This field determines whether or not the WDT is
enabled. If a one is written to this bit, the timer will be enabled. A zero
written to this bit will disable the timer. The ENAB bit may only be
modified on the second step of a successful two step arming process.

ARM (ARMED) This read-only bit indicates the armed state of the
register. If this bit is a zero, the register is unarmed. If this bit is a one,
the register is armed for a write.

RES (RESOLUTION) This field determines the resolution of the
timer. The RES field may only be modified on the second step of a
successful two step arming process. The following table shows the
different options associated with this bit.

RES Timer Resolution Approximate Max Time

0000 1 us 64 msec

0001 2 us 128 msec

0010 4 us 256 msec

0011 8 us 512 msec

0100 16 us 1 sec

0101 32 us 2 sec

0110 64 us 4 sec

0111 128 us 8 sec

1000 256 us 16 sec

1001 512 us 32 sec

1010 1024 us 1 min

1011 2048 us 2 min

1100 4096 us 4 min

1101 8192 us 8 min

1110 16,384 us 16 min

1111 32,768 us 32 min
http://www.motorola.com/computer/literature 2-89

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 RELOAD (Reload) This field is written with a value that will be used
to reload the timer. The RELOAD field may only be modified on the
second step of a successful two step arming process.

WDTxSTAT Registers

The Watchdog Timer Status Registers (WDT1STAT and WDT2STAT)
are used to provide status information from the watchdog timer functions
within the PHB. The field within WDTxSTAT registers is defined as
follows:

COUNT (Count) This read-only field reflects the instantaneous
counter value of the WDT.

General Purpose Registers

Address WDT1STAT - $FEFF0064

WDT2STAT - $FEFF006C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WDTxSTAT

Name COUNT

Operation R R R

Reset $00 $00 $FF

Address GPREG0 (Upper) - $FEFF0070

GPREG0 (Lower) - $FEFF0074

GPREG1 (Upper) - $FEFF0078

GPREG1 (Lower) - $FEFF007C

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name GPREGx

Operation R/W

Reset $00000000
2-90 Computer Group Literature Center Web Site

Registers

2
The General Purpose Registers (GPREG0, GPREG1, GPREG2, and
GPREG3) are provided for inter-process message passing or general
purpose storage. They do not control any hardware.

PCI Registers

The PCI Configuration Registers are compliant with the configuration
register set described in the PCI Local Bus Specification, Revision 2.1.
The CONFIG_ADDRESS Register and the CONFIG_DATA Register
described in this section are accessed from the PPC bus within PCI I/O
space.

All write operations to reserved registers will be treated as no-ops. That is,
the access will be completed normally on the bus and the data will be
discarded. Read accesses to reserved or unimplemented registers will be
completed normally and a data value of 0 returned.

The PCI Configuration Register map of the PHB is shown in Table 2-17.
The PCI I/O Register map of the PHB is shown in Table 2-18.

Table 2-17. PCI Configuration Register Map

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

<--- Bit

DEVID VENID $00

STATUS COMMAND $04

CLASS REVID $08

HEADER $0C

MIBAR $10

MMBAR $14

$18 - $7C

PSADD0 $80

PSOFF0 PSATT0 $84

PSADD1 $88

PSOFF1 PSATT1 $8C
http://www.motorola.com/computer/literature 2-91

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Vendor ID/ Device ID Registers

VENID (Vendor ID) This register identifies the manufacturer of the
device. This identifier is allocated by the PCI SIG to ensure
uniqueness. $1057 has been assigned to Motorola. This register is
duplicated in the PPC Registers.

DEVID (Device ID) This register identifies the particular device. The
Hawk will always return $4803. This register is duplicated in the PPC
Registers.

PSADD2 $90

PSOFF2 PSATT2 $94

PSADD3 $98

PSOFF3 PSATT3 $9C

Table 2-18. PCI I/O Register Map

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

<--- Bit

CONFIG_ADDRESS $CF8

CONFIG_DATA $CFC

Offset $00

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name DEVID VENID

Operation R R

Reset $4803 $1057

Table 2-17. PCI Configuration Register Map (Continued)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

<--- Bit
2-92 Computer Group Literature Center Web Site

Registers

2
PCI Command/Status Registers

The Command Register (COMMAND) provides course control over the
PHB ability to generate and respond to PCI cycles. The bits within the
COMMAND register are defined as follows:

IOSP (IO Space Enable) If set, the PHB will respond to PCI I/O
accesses when appropriate. If cleared, the PHB will not respond to PCI
I/O space accesses.

MEMSP (Memory Space Enable) If set, the PHB will respond to PCI
memory space accesses when appropriate. If cleared, the PHB will not
respond to PCI memory space accesses.

MSTR (Bus Master Enable) If set, the PHB may act as a master on
PCI. If cleared, the PHB may not act as a PCI master.

PERR (Parity Error Response) If set, the PHB will check parity on all
PCI transfers. If cleared, the PHB will ignore any parity errors that it
detects and continue normal operation.

SERR (System Error Enable) This bit enables the SERR_ output pin.
If clear, the PHB will never drive SERR_. If set, the PHB will drive
SERR_ active when a system error is detected.

The Status Register (STATUS) is used to record information for PCI bus
related events. The bits within the STATUS register are defined as follows:

Offset $04

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name STATUS COMMAND

R
C

V
PE

S
IG

SE
R

C
V

M
A

R
C

V
TA

S
IG

TA
S

E
LT

IM
1

S
E

LT
IM

0
D

PA
R

FA
ST

P
66

M

S
E

R
R

P
E

R
R

M
S

T
R

M
E

M
S

P
IO

S
P

Operation

R
/C

R
/C

R
/C

R
/C

R
/C

R R R
/C

R R R R R R R R R R R R R R R R
/W

R R
/W

R R R R
/W

R
/W

R
/W

Reset 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
http://www.motorola.com/computer/literature 2-93

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

d by

d by

r
by a
ct.

ect.

 bit
P66M (PCI66 MHz) This bit indicates the PHB is capable of
supporting a 66.67 MHz PCI bus.

FAST (Fast Back-to-Back Capable) This bit indicates that the PHB is
capable of accepting fast back-to-back transactions with different
targets.

DPAR (Data Parity Detected) This bit is set when three conditions are
met: 1) the PHB asserted PERR_ itself or observed PERR_ asserted;
2) the PHB was the PCI master for the transfer in which the error
occurred; 3) the PERR bit in the PCI Command Register is set. This
bit is cleared by writing it to 1; writing a 0 has no effect.

SELTIM (DEVSEL Timing) This field indicates that the PHB will
always assert DEVSEL_ as a ‘medium’ responder.

SIGTA (Signaled Target Abort) This bit is set by the PCI slave
whenever it terminates a transaction with a target-abort. It is cleare
writing it to 1; writing a 0 has no effect.

RCVTA (Received Target Abort) This bit is set by the PCI master
whenever its transaction is terminated by a target-abort. It is cleare
writing it to 1; writing a 0 has no effect.

RCVMA (Received Master Abort) This bit is set by the PCI maste
whenever its transaction (except for Special Cycles) is terminated
master-abort. It is cleared by writing it to 1; writing a 0 has no effe

SIGSE (Signaled System Error) This bit is set whenever the PHB
asserts SERR_. It is cleared by writing it to 1; writing a 0 has no eff

RCVPE (Detected Parity Error) This bit is set whenever the PHB
detects a parity error, even if parity error checking is disabled (see
PERR in the PCI Command/Status Registers). It is cleared by writing
it to 1; writing a 0 has no effect.
2-94 Computer Group Literature Center Web Site

Registers

2
Revision ID/Class Code Registers

REVID (Revision ID) This register identifies the PHB revision level.
This register is duplicated in the PPC Registers.

CLASS (Class Code) This register identifies PHB as the following:

Base Class Code $06 PCI Bridge Device

Subclass Code $00 PCI Host Bridge

Program Class Code $00 Not Used

Header Type Register

The Header Type Register (Header) identifies the PHB as the following:

Header Type $00 Single Function Configuration Header

Offset $08

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name CLASS REVID

Operation R R

Reset $060000 $01

Offset $0C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name HEADER

Operation R R R R

Reset $00 $00 $00 $00
http://www.motorola.com/computer/literature 2-95

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 MPIC I/O Base Address Register

The MPIC I/O Base Address Register (MIBAR) controls the mapping of
the MPIC control registers in PCI I/O space.

IO/MEM (IO Space Indicator) This bit is hard-wired to a logic one to
indicate PCI I/O space.

RES (Reserved) This bit is hard-wired to zero.

BASE (Base Address) These bits define the I/O space base address of
the MPIC control registers. The MIBAR decoder is disabled when the
BASE value is zero.

Offset $10

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name MIBAR

BASE R
E

S
IO

/M
E

M

Operation R/W R R R

Reset $0000 $0000 0 1
2-96 Computer Group Literature Center Web Site

Registers

2
MPIC Memory Base Register

The MPIC Memory Base Address Register (MMBAR) controls the
mapping of the MPIC control registers in PCI memory space.

IO/MEM (IO Space Indicator) This bit is hard-wired to a logic zero
to indicate PCI memory space.

MTYPx (Memory Type) These bits are hard-wired to zero to indicate
that the MPIC registers can be located anywhere in the 32-bit address
space

PRE (Prefetch) This bit is hard-wired to zero to indicate that the
MPIC registers are not prefetchable.

BASE (Base Address) These bits define the memory space base
address of the MPIC control registers. The MBASE decoder is
disabled when the BASE value is zero.

Offset $14

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name MMBAR

BASE P
R

E
M

T
Y

P
1

M
T

Y
P

0
IO

/M
E

M

Operation R/W R R R R R

Reset $0000 $0000 0 0 0 0
http://www.motorola.com/computer/literature 2-97

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 PCI Slave Address (0,1,2 and 3) Registers

The PCI Slave Address Registers (PSADDx) contain address information
associated with the mapping of PCI memory space to PPC memory space.
The fields within the PSADDx registers are defined as follows:

START (Start Address) This field determines the start address of a
particular memory area on the PCI bus which will be used to access
PPC bus resources. The value of this field will be compared with the
upper 16 bits of the incoming PCI address.

END (End Address) This field determines the end address of a
particular memory area on the PCI bus which will be used to access
PPC bus resources. The value of this field will be compared with the
upper 16 bits of the incoming PCI address.

Offset PSADD0 - $80

PSADD1 - $88

PSADD2 - $90

PSADD3 - $98

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name PSADDx

START END

Operation R/W R/W

Reset $0000 $0000
2-98 Computer Group Literature Center Web Site

Registers

2
PCI Slave Attribute/Offset (0,1,2 and 3) Registers

The PCI Slave Attribute Registers (PSATTx) contain attribute
information associated with the mapping of PCI memory space to PPC
memory space. The fields within the PSATTx registers are defined as
follows:

INV (Invalidate Enable) If set, the PPC master will issue a transfer
type code which specifies the current transaction should cause an
invalidate for each PPC transaction originated by the corresponding
PCI slave. The transfer type codes generated are shown in Table 2-5.

GBL (Global Enable) If set, the PPC master will assert the GBL_ pin
for each PPC transaction originated by the corresponding PCI slave.

RAEN (Read Ahead Enable) If set, read ahead is enabled for the
corresponding PCI slave.

WPEN (Write Post Enable) If set, write posting is enabled for the
corresponding PCI slave.

WEN (Write Enable) If set, the corresponding PCI slave is enabled
for write transactions.

REN (Read Enable) If set, the corresponding PCI slave is enabled for
read transactions.

Offset PSOFF0/PSATT0 - $84

PSOFF1/PSATT1 - $8C

PSOFF2/PSATT2 - $94

PSOFF3/PSATT3 - $9C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name PSOFFx PSATTx

W
X

FT
1

W
X

FT
0

R
X

FT
1

R
X

FT
0

R
M

FT
1

R
M

FT
0

R
E

N
W

E
N

W
P

E
N

R
A

E
N

G
B

L
IN

V

Operation R/W

R
/W

R
/W

R R R
/W

R
/W

R
/W

R
/W

R
/w

R
/W

R
/W

R
/W

R R R
/W

R
/W

Reset $0000 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
http://www.motorola.com/computer/literature 2-99

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 RMFTx (Read Multiple FIFO Threshold) This field is used by the
PHB to determine a FIFO threshold at which to continue prefetching
data from local memory during PCI read multiple transactions. This
threshold applies to subsequent prefetch reads since all initial prefetch
reads will be four cache lines. This field is only applicable if read-
ahead has been enabled. The encoding of this field is shown in the
table below.

The PSOFFx (PCI Slave Offset Registers) contain offset information
associated with the mapping of PCI memory space to PPC memory space.
The field within the PSOFFx registers is defined as follows:

PSOFFx (PCI Slave Offset) This register contains a 16-bit offset that
is added to the upper 16 bits of the PCI address to determine the PPC
address used for transfers from PCI to the PPC bus. This offset allows
PPC resources to reside at addresses that would not normally be visible
from PCI.

CONFIG_ADDRESS Register

The description of the CONFIG_ADDRESS register is presented in three
perspectives: from the PCI bus, from the PPC Bus in big-endian mode, and
from the PPC bus in little-endian mode.

Note The view from the PCI bus is purely conceptual, since there is no
way to access the CONFIG_ADDRESS register from the PCI
bus.

RMFT/RXFT Subsequent Prefetch FIFO Threshold

00 0 Cache lines

01 1 Cache line

10 2 Cache lines

11 3 Cache lines
2-100 Computer Group Literature Center Web Site

Registers

2
Conceptual perspective from the PCI bus:

Perspective from the PPC bus in Big-Endian mode:

Perspective from the PPC bus in Little-Endian mode:

Offset $CFB $CFA $CF9 $CF8

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name CONFIG_ADDRESS

E
N BUS DEV FUN REG

Operation R
/W R R/W R/W R/W R/W R R

Reset 1 $00 $00 $00 $0 $00 0 0

Offset $CF8 $CF9 $CFA $CFB

Bit (DH)
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name CONFIG_ADDRESS

REG DEV FUN BUS E
N

Operation R/W R R R/W R/W R/W R
/W R

Reset $00 0 0 $00 $0 $00 1 $00

Offset $CFC $CFD $CFE $CFF

Bit (DL)
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name CONFIG_ADDRESS

E
N BUS DEV FUN REG

Operation R
/W R R/W R/W R/W R/W R R

Reset 1 $00 $00 $00 $0 $00 0 0
http://www.motorola.com/computer/literature 2-101

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

d
cle.

n
the

s
e
e 1

l

s

h as

o
s to
The register fields are defined as follows:

REG (Register Number) Configuration Cycles: Identifies a target
double word within a target’s configuration space. This field is copie
to the PCI AD bus during the address phase of a Configuration cy

Special Cycles: This field must be written with all zeros.

FUN (Function Number) Configuration Cycles: Identifies a functio
number within a target’s configuration space. This field is copied to
PCI AD bus during the address phase of a Configuration cycle.

Special Cycles: This field must be written with all ones.

DEV (Device Number) Configuration Cycles: Identifies a target’s
physical PCI device number. Refer to the section on Generating PCI
Cycles for a description of how this field is encoded.

Special Cycles: This field must be written with all ones.

BUS (Bus Number) Configuration Cycles: Identifies a targeted bu
number. If written with all zeros, a Type 0 Configuration Cycle will b
generated. If written with any value other than all zeros, then a Typ
Configuration Cycle will be generated.

Special Cycles: Identifies a targeted bus number. If written with al
zeros, a Special Cycle will be generated. If written with any value
other than all zeros, then a Special Cycle translated into a Type 1
Configuration Cycle will be generated.

EN (Enable) Configuration Cycles: Writing a one to this bit enable
CONFIG_DATA to Configuration Cycle translation. If this bit is a
zero, subsequent accesses to CONFIG_DATA will be passed thoug
I/O Cycles.

Special Cycles: Writing a one to this bit enables CONFIG_DATA t
Special Cycle translation. If this bit is a zero, subsequent accesse
CONFIG_DATA will be passed though as I/O Cycles.
2-102 Computer Group Literature Center Web Site

Registers

2
CONFIG_DATA Register

The description of the CONFIG_DATA register is also presented in three
perspectives; from the PCI bus, from the PPC Bus in big-endian mode, and
from the PPC bus in little-endian mode. Note that the view from the PCI
bus is purely conceptual, since there is no way to access the
CONFIG_DATA register from the PCI bus.

Conceptual perspective from the PCI bus:

Perspective from the PPC bus in Big-Endian mode:

Offset $CFF $CFE $CFD $CFC

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name CONFIG_DATA

Data ‘D’ Data ‘C’ Data ‘B’ Data ‘A’

Operation R/W R/W R/W R/W

Reset n/a n/a n/a n/a

Offset $CFC $CFD $CFE $CFF

Bit (DL)
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name CONFIG_DATA

Data ‘A’ Data ‘B’ Data ‘C’ Data ‘D’

Operation R/W R/W R/W R/W

Reset n/a n/a n/a n/a
http://www.motorola.com/computer/literature 2-103

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Perspective from the PPC bus in Little-Endian mode:

MPIC Registers

The following conventions are used in the Hawk register charts:

❏ R Read Only field.

❏ R/W Read/Write field.

❏ S Writing a ONE to this field sets this field.

❏ C Writing a ONE to this field clears this field.

MPIC Registers

The MPIC register map is shown in the following table. The Off field is
the address offset from the base address of the MPIC registers in the
PPC-IO or PPC-MEMORY space. Note that this map does not depict
linear addressing. The PCI-SLAVE of the PHB has two decoders for
generating the MPIC select. These decoders will generate a select and
acknowledge all accesses which are in a reserved 256KB range. If the
index into that 256KB block does not decode a valid MPIC register
address, the logic will return $00000000.

The registers are 8-, 16-, or 32-bits accessible.

Offset $CF8 $CF9 $CFA $CFB

Bit (DH)
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name CONFIG_DATA

Data ‘D’ Data ‘C’ Data ‘B’ Data ‘A’

Operation R/W R/W R/W R/W

Reset n/a n/a n/a n/a
2-104 Computer Group Literature Center Web Site

Registers

2
Table 2-19. MPIC Register Map

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Off

FEATURE REPORTING REGISTER 0 $01000

GLOBAL CONFIGURATION REGISTER 0 $01020

MPIC VENDOR IDENTIFICATION REGISTER $01080

PROCESSOR INIT REGISTER $01090

IPI0 VECTOR-PRIORITY REGISTER $010a0

IPI1 VECTOR-PRIORITY REGISTER $010b0

IPI2 VECTOR-PRIORITY REGISTER $010c0

IPI3 VECTOR-PRIORITY REGISTER $010d0

SP REGISTER $010e0

TIMER FREQUENCY REPORTING REGISTER $010f0

TIMER 0 CURRENT COUNT REGISTER $01100

TIMER 0 BASE COUNT REGISTER $01110

TIMER 0 VECTOR-PRIORITY REGISTER $01120

TIMER 0 DESTINATION REGISTER $01130

TIMER 1 CURRENT COUNT REGISTER $01140

TIMER 1 BASE COUNT REGISTER $01150

TIMER 1VECTOR-PRIORITY REGISTER $01160

TIMER 1DESTINATION REGISTER $01170

TIMER 2 CURRENT COUNT REGISTER $01180

TIMER 2 BASE COUNT REGISTER $01190

TIMER 2 VECTOR-PRIORITY REGISTER $011a0

TIMER 2 DESTINATION REGISTER $011b0

TIMER 3 CURRENT COUNT REGISTER $011c0

TIMER 3 BASE COUNT REGISTER $011d0

TIMER 3 VECTOR-PRIORITY REGISTER $011e0
http://www.motorola.com/computer/literature 2-105

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

TIMER 3 DESTINATION REGISTER $011f0

INT. SRC. 0 VECTOR-PRIORITY REGISTER $10000

INT. SRC. 0 DESTINATION REGISTER $10010

INT. SRC. 1 VECTOR-PRIORITY REGISTER $10020

INT. SRC. 1 DESTINATION REGISTER $10030

INT. SRC. 2 VECTOR-PRIORITY REGISTER $10040

INT. SRC. 2 DESTINATION REGISTER $10050

INT. SRC. 3 VECTOR-PRIORITY REGISTER $10060

INT. SRC. 3 DESTINATION REGISTER $10070

INT. SRC. 4 VECTOR-PRIORITY REGISTER $10080

INT. SRC. 4 DESTINATION REGISTER $10090

INT. SRC. 5 VECTOR-PRIORITY REGISTER $100a0

INT. SRC. 5 DESTINATION REGISTER $100b0

INT. SRC. 6 VECTOR-PRIORITY REGISTER $100c0

INT. SRC. 6 DESTINATION REGISTER $100d0

INT. SRC. 7 VECTOR-PRIORITY REGISTER $100e0

INT. SRC. 7 DESTINATION REGISTER $100f0

INT. SRC. 8 VECTOR-PRIORITY REGISTER $10100

INT. SRC. 8 DESTINATION REGISTER $10110

INT. SRC. 9 VECTOR-PRIORITY REGISTER $10120

INT. SRC. 9 DESTINATION REGISTER $10130

INT. SRC. 10 VECTOR-PRIORITY REGISTER $10140

INT. SRC. 10 DESTINATION REGISTER $10150

INT. SRC. 11 VECTOR-PRIORITY REGISTER $10160

INT. SRC. 11 DESTINATION REGISTER $10170

INT. SRC. 12 VECTOR-PRIORITY REGISTER $10180

INT. SRC. 12 DESTINATION REGISTER $10190

INT. SRC. 13 VECTOR-PRIORITY REGISTER $101a0

Table 2-19. MPIC Register Map (Continued)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Off
2-106 Computer Group Literature Center Web Site

Registers

2

INT. SRC. 13 DESTINATION REGISTER $101b0

INT. SRC. 14 VECTOR-PRIORITY REGISTER $101c0

INT. SRC. 14 DESTINATION REGISTER $101d0

INT. SRC. 15 VECTOR-PRIORITY REGISTER $101e0

INT. SRC. 15 DESTINATION REGISTER $101f0

PHB DETECTED ERRORS VECTOR-PRIORITY REGISTER $10200

PHB DETECTED ERRORS DESTINATION REGISTER $10210

IPI 0 DISPATCH REGISTER PROC. 0 $20040

IPI 1 DISPATCH REGISTER PROC. 0 $20050

IPI 2 DISPATCH REGISTER PROC. 0 $20060

IPI 3 DISPATCH REGISTER PROC. 0 $20070

CURRENT TASK PRIORITY REGISTER PROC. 0 $20080

IACK REGISTER
P0

$200a0

EOI REGISTER
P0

$200b0

IPI 0 DISPATCH REGISTER PROC. 1 $21040

IPI 1 DISPATCH REGISTER PROC. 1 $21050

IPI 2 DISPATCH REGISTER PROC. 1 $21060

IPI 3 DISPATCH REGISTER PROC. 1 $21070

CURRENT TASK PRIORITY REGISTER PROC. 1 $21080

IACK REGISTER
P1

$210a0

EOI REGISTER
P1

$210b0

Table 2-19. MPIC Register Map (Continued)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Off
http://www.motorola.com/computer/literature 2-107

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Feature Reporting Register

NIRQ (Number of IRQs) The number of the highest external IRQ
source supported. The IPI, Timer, and PHB Detected Error interrupts
are excluded from this count.

NCPU (Number of CPUs) The number of the highest physical CPU
supported. There are two CPUs supported by this design. CPU #0 and
CPU #1.

VID (Version ID) Version ID for this interrupt controller. This value
reports what level of the specification is supported by this
implementation. Version level of 02 is used for the initial release of the
MPIC specification.

Global Configuration Register

Offset $01000

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name FEATURE REPORTING

NIRQ NCPU VID

Operation R R R R R

Reset $0 $00F $0 $01 $02

Offset $01020

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name GLOBAL CONFIGURATION

R
E

SE
T

E
IN

T
T

M T
IE

Operation C R R
/W

R
/W R R R R

Reset 0 0 0 0 $00 $00 $00 $00
2-108 Computer Group Literature Center Web Site

Registers

2
R (Reset Controller) Writing a one to this bit forces the controller
logic to be reset. This bit is cleared automatically when the reset
sequence is complete. While this bit is set, the values of all other
register are undefined.

EINTT (External Interrupt Type) This read only bit indicates the
external interrupt type: serial or parallel mode. When this bit is set,
MPIC is in serial mode for external interrupts 0 through 15. When this
bit is cleared, MPIC is in parallel mode for external interrupts.

M (Cascade Mode) If the Cascade mode (M) bit is cleared, the MPIC
is completely disabled. To activate the MPIC, set the M bit (mixed
mode), independent of the 8259’s presence. The Cascade mode allows
cascading of an external 8259 pair connected to the first interrupt
source input pin (0). In the Pass Through mode, interrupt source 0 is
passed directly through to the processor 0 INT pin. MPIC is bypassed
in this scenario. In the mixed mode, the 8259 interrupts are delivered
using the priority and distribution mechanism of the MPIC. The
Vector/Priority and Destination registers for interrupt source 0 are used
to control the delivery mode for all 8259 generated interrupt sources.

TIE (Tie Mode) Writing a one to this register bit will cause a tie in
external interrupt processing to swap back and forth between
processor 0 and 1. The first tie in external interrupt processing always
goes to Processor 0 after a reset. When this register bit is set to 0, a tie
in external interrupt processing will always go to Processor 0 (Mode
used on Version $02 of MPIC).

Table 2-20. Cascade Mode Encoding

M Mode

0 Pass Through

1 Mixed

Table 2-21. Tie Mode Encoding

T Mode

0 Processor 0 always selected

1 Swap between Processor’s
http://www.motorola.com/computer/literature 2-109

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Vendor Identification Register

There are two fields in the Vendor Identification Register which are not
defined for the MPIC implementation but are defined in the MPIC
specification. They are the vendor identification and device ID fields.

STP (Stepping) The stepping or silicon revision number is initially 0.

Processor Init Register

P1 (PROCESSOR 1) Writing a 1 to P1 will assert the Soft Reset input
of processor 1. Writing a 0 to it will negate the SRESET signal.

P0 (PROCESSOR 0) Writing a 1 to P0 will assert the Soft Reset input
of processor 0. Writing a 0 to it will negate the SRESET signal.

The Soft Reset input to the 604 is negative edge-sensitive.

Offset $01080

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name VENDOR IDENTIFICATION

STP

Operation R R R R

Reset $00 $02 $00 $00

Offset $01090

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name PROCESSOR INIT

P1 P0

Operation R R R R R
/W

R
/W

Reset $00 $00 $00 $00 0 0
2-110 Computer Group Literature Center Web Site

Registers

2
IPI Vector/Priority Registers

MASK (Mask) Setting this bit disables any further interrupts from
this source. If the mask bit is cleared while the bit associated with this
interrupt is set in the IPR, the interrupt request will be generated.

ACT (ACTIVITY) The activity bit indicates that an interrupt has been
requested or that it is in-service. The ACT bit is set to a one when its
associated bit in the Interrupt Pending Register or In-Service Register
is set.

PRIOR Interrupt priority 0 is the lowest and 15 is the highest. Note
that a priority level of 0 will not enable interrupts.

VECTOR This vector is returned when the Interrupt Acknowledge
register is examined during a request for the interrupt associated with
this vector.

Offset IPI 0 - $010A0

IPI 1 - $010B0

IPI 2 - $010C0

IPI 3 - $010D0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name IPI VECTOR/PRIORITY

M
A

S
K

A
C

T

PRIOR VECTOR

Operation R
/W

R R R/W R R/W

Reset 1 0 $000 $0 $00 $00
http://www.motorola.com/computer/literature 2-111

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Spurious Vector Register

VECTOR This vector is returned when the Interrupt Acknowledge
register is read during a spurious vector fetch.

Timer Frequency Register

This register is used to report the frequency (in Hz) of the clock source for
the global timers. Following reset, this register contains zero. The system
initialization code must initialize this register to one-eighth the MPIC
clock frequency. For the PHB implementation of the MPIC, a typical value
would be $7de290 (which is 66/8 MHz or 8.25 MHz).

Note Clock frequencies on the Hawk are derived from the PCI clock.

Offset $010E0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name VECTOR

Operation R R R R/W

Reset $00 $00 $00 $FF

Offset $010F0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER FREQUENCY

Operation R/W

Reset $00000000
2-112 Computer Group Literature Center Web Site

Registers

2

Timer Current Count Registers

T (Toggle) This bit toggles whenever the current count decrements to
zero. The bit is cleared when a value is written into the corresponding
base register and the CI bit of the corresponding base register
transitions from a 1 to a 0.

CC (Current Count) The current count field decrements while the
Count Inhibit bit is the Base Count Register is zero. When the timer
counts down to zero, the Current Count register is reloaded from the
Base Count register and the timer’s interrupt becomes pending in
MPIC processing.

Offset Timer 0 - $01100

Timer 1 - $01140

Timer 2 - $01180

Timer 3 - $011C0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER CURRENT COUNT

T CC

Operation R R

Reset 0 $00000000
http://www.motorola.com/computer/literature 2-113

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

g in
Timer Basecount Registers

CI (Count Inhibit) Setting this bit to one inhibits counting for this
timer. Setting this bit to zero allows counting to proceed.

BC (Base Count) This field contains the 31 bit count for this timer.
When a value is written into this register and the CI bit transitions from
a 1 to a 0, it is copied into the corresponding Current Count register
and the toggle bit in the Current Count register is cleared. When the
timer counts down to zero, the Current Count register is reloaded from
the Base Count register and the timer’s interrupt becomes pendin
MPIC processing.

Offset Timer 0 - $01110

Timer 1 - $01150

Timer 2 - $01190

Timer 3 - $011D0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER BASECOUNT

C
I BC

Operation R
/W R/W

Reset 1 $00000000
2-114 Computer Group Literature Center Web Site

Registers

2
Timer Vector/Priority Registers

MASK (Mask) Setting this bit disables any further interrupts from
this source. If the mask bit is cleared while the bit associated with this
interrupt is set in the IPR, the interrupt request will be generated.

ACT (Activity) The activity bit indicates that an interrupt has been
requested or that it is in-service. The ACT bit is set to a one when its
associated bit in the Interrupt Pending Register or In-Service Register
is set.

PRIOR Interrupt priority 0 is the lowest and 15 is the highest. Note
that a priority level of 0 will not enable interrupts.

VECTOR This vector is returned when the Interrupt Acknowledge
register is examined upon acknowledgment of the interrupt associated
with this vector.

Offset Timer 0 - $01120

Timer 1 - $01160

Timer 2 - $011A0

Timer 3 - $011E0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER VECTOR/PRIORITY

M
A

S
K

A
C

T

PRIOR VECTOR

Operation R
/W

R R R/W R R/W

Reset 1 0 $000 $0 $00 $00
http://www.motorola.com/computer/literature 2-115

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

r
r
Timer Destination Registers

This register indicates the destinations for this timer’s interrupts. Time
interrupts operate in the Directed delivery interrupt mode. This registe
may specify multiple destinations (multicast delivery).

P1 (Processor 1) The interrupt is directed to processor 1.

P0 (Processor 0) The interrupt is directed to processor 0.

External Source Vector/Priority Registers

Offset Timer 0 - $01130

Timer 1 - $01170

Timer 2 - $011B0

Timer 3 - $011F0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER DESTINATION

P
1

P
0

Operation R R R R R
/W

R
/W

Reset $00 $00 $00 $00 0 0

Offset Int Src 0 - $10000

Int Src 2 -> Int Src15 - $10020 -> $101E0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name EXTERNAL SOURCE VECTOR/PRIORITY

M
A

SK
A

C
T

PO
L

SE
N

SE

PRIOR VECTOR

Operation R
/W

R R R
/W

R
/W

R R R/W R R/W

Reset 1 0 $000 0 0 0 0 $0 $00 $00
2-116 Computer Group Literature Center Web Site

Registers

2
MASK (Mask) Setting this bit disables any further interrupts from
this source. If the mask bit is cleared while the bit associated with this
interrupt is set in the IPR, the interrupt request will be generated.

ACT (Activity) The activity bit indicates that an interrupt has been
requested or that it is in-service. The ACT bit is set to a one when its
associated bit in the Interrupt Pending Register or In-Service Register
is set.

POL (Polarity) This bit sets the polarity for external interrupts.
Setting this bit to a zero enables active low or negative edge. Setting
this bit to a one enables active high or positive edge. Only External
Interrupt Source 0 uses this bit in this register.

SENSE (Sense) This bit sets the sense for external interrupts. Setting
this bit to a zero enables edge sensitive interrupts. Setting this bit to a
one enables level sensitive interrupts. For external interrupt sources 1
through 15, setting this bit to a zero enables positive edge triggered
interrupts. Setting this bit to a one enables active low level triggered
interrupts.

PRIOR (Priority) Interrupt priority 0 is the lowest and 15 is the
highest. Note that a priority level of 0 will not enable interrupts.

VECTOR (Vector) This vector is returned when the Interrupt
Acknowledge register is examined upon acknowledgment of the
interrupt associated with this vector.
http://www.motorola.com/computer/literature 2-117

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 External Source Destination Registers

This register indicates the possible destinations for the external interrupt
sources. These interrupts operate in the Distributed interrupt delivery
mode.

P1 (Processor 1) The interrupt is pointed to processor 1.

P0 (Processor 0) The interrupt is pointed to processor 0.

PHB-Detected Errors Vector/Priority Register

Offset Int Src 0 - $10010

Int Src 2 -> Int Src 15 - $10030 -> $101F0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name EXTERNAL SOURCE DESTINATION

P1 P0

Operation R R R R R
/W

R
/W

Reset $00 $00 $00 $00 0 0

Offset $10200

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name PHB DETECTED ERRORS VECTOR/PRIORITY

M
A

SK
A

C
T

SE
N

SE

PRIOR VECTOR

Operation R
/W

R R R R
/W

R R R/W R R/W

Reset 1 0 $000 0 1 0 0 $0 $00 $00
2-118 Computer Group Literature Center Web Site

Registers

2
MASK (Mask) Setting this bit disables any further interrupts from
this source. If the mask bit is cleared while the bit associated with this
interrupt is set in the IPR, the interrupt request will be generated.

ACT (Activity) The activity bit indicates that an interrupt has been
requested or that it is in-service. The ACT bit is set to a one when its
associated bit in the Interrupt Pending Register or In-Service Register
is set.

SENSE (Sense) This bit sets the sense for the internal PHB detected
error interrupts. It is hardwired to 1 to enable active low level sensitive
interrupts.

PRIOR (Priority) Interrupt priority 0 is the lowest and 15 is the
highest. Note that a priority level of 0 will not enable interrupts.

VECTOR (Vectory) This vector is returned when the Interrupt
Acknowledge register is examined upon acknowledgment of the
interrupt associated with this vector.

PHB-Detected Errors Destination Register

This register indicates the possible destinations for the PHB detected error
interrupt source. These interrupts operate in the Distributed interrupt
delivery mode.

P1 (Processor 1) The interrupt is pointed to processor 1.

P0 (Processor 0) The interrupt is pointed to processor 0.

Offset $10210

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name PHB DETECTED ERROR DESTINATION

P1 P0

Operation R R R R R
/W

R
/W

Reset $00 $00 $00 $00 0 0
http://www.motorola.com/computer/literature 2-119

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 Interprocessor Interrupt Dispatch Registers

There are four Interprocessor Interrupt Dispatch Registers. Writing to an
IPI Dispatch Register with the P0 and/or P1 bit set causes an interprocessor
interrupt request to be sent to one or more processors. Note that each IPI
Dispatch Register has two addresses. These registers are considered to be
per processor registers and there is one address per processor. Reading
these registers returns zeros.

P1 (Processor 1) The interrupt is directed to processor 1.

P0 (Processor 0) The interrupt is directed to processor 0.

Interrupt Task Priority Registers

Offset Processor 0 $20040, $20050, $20060, $20070

Processor 1 $21040, $21050, $21060, $21070

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name IPI DISPATCH

P1 P0

Operation R R R R R
/W

R
/W

Reset $00 $00 $00 $00 0 0

Offset Processor 0 $20080

Processor 1 $21080

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name INTERRUPT TASK PRIORITY

TP

Operation R R R R R/W

Reset $00 $00 $00 $0 $F
2-120 Computer Group Literature Center Web Site

Registers

2
There is one Task Priority Register per processor. Priority levels from 0
(lowest) to 15 (highest) are supported. Setting the Task Priority Register to
15 masks all interrupts to this processor. Hardware will set the task register
to $F when it is reset or when the Init bit associated with this processor is
written to a one.

Interrupt Acknowledge Registers

On PowerPC based systems, Interrupt Acknowledge is implemented as a
read request to a memory-mapped Interrupt Acknowledge register.
Reading the Interrupt Acknowledge register returns the interrupt vector
corresponding to the highest priority pending interrupt. Reading this
register also has the following side effects. Reading this register without a
pending interrupt will return a value of $FF hex.

❏ The associated bit in the Interrupt Pending Register is cleared.

❏ Reading this register will update the In-Service register.

VECTOR (Vector) This vector is returned when the Interrupt
Acknowledge register is read.

Offset Processor 0 $200A0

Processor 1 $210A0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name VECTOR

Operation R R R R

Reset $00 $00 $00 $FF
http://www.motorola.com/computer/literature 2-121

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2
 End-of-Interrupt Registers

EOI (End of Interrupt) There is one EOI register per processor. EOI
Code values other than 0 are currently undefined. Data values written
to this register are ignored; zero is assumed. Writing to this register
signals the end of processing for the highest priority interrupt currently
in service by the associated processor. The write operation will update
the In-Service register by retiring the highest priority interrupt.
Reading this register returns zeros.

Offset Processor 0 $200B0

Processor 1 $210B0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name EOI

Operation R R R R W

Reset $00 $00 $00 $0 $0
2-122 Computer Group Literature Center Web Site

3
3System Memory Controller
(SMC)
s.
Introduction
The SMC in the Hawk ASIC is equivalent to the former Falcon Pair
portion of a Falcon/Raven chipset. As were its predecessors, it is designed
for the MVME family of boards. The SMC has interfaces between the
PowerPC60x bus (also called PPC60x bus or PPC bus) and SDRAM,
ROM/Flash, and its Control and Status Register sets (CSR). Note that the
term SDRAM refers to Synchronous Dynamic Random Access Memory
and is used throughout this document.

Overview

This chapter provides a functional description and programming model for
the SMC portion of the Hawk. Most of the information for using the device
in a system, programming it in a system, and testing it is contained here.

Bit Ordering Convention

All SMC bused signals are named using big-endian bit ordering (bit 0 is
the most significant bit), except for the RA signals, which use little-endian
bit ordering (bit 0 is the least significant bit).

Features

❏ SDRAM Interface

– Double-bit error detect/Single-bit error correct on 72-bit basi

– Two blocks with up to 256MB each at 100 MHz.

– Eight blocks with up to 256MB each at 66.67 MHz

– Uses -8, -10, or PC100 SDRAMs

– Programmable base address for each block.

– Built-in Refresh/Scrub.
3-1

System Memory Controller (SMC)

3

.

g.

❏ Error Notification for SDRAM

– Software programmable Interrupt on Single/Double-Bit Error

– Error address and Syndrome Log Registers for Error Loggin

– Does not provide TEA_ on Double-Bit Error. (Chip has no
TEA_ pin.)

❏ ROM/Flash Interface

– Two blocks with each block being 16 or 64 bits wide.

– Programmable access time on a per-block basis.

❏ I2C master interface.

❏ External status/control register support

Block Diagrams
Figure 3-1 depicts a Hawk as it would be connected with SDRAMs in a
system. Figure 3-2 shows the SMC’s internal data paths. Figure 3-3 shows
the overall SDRAM connections. Figure 3-4 shows a block diagram of the
SMC portion of the Hawk ASIC.
3-2 Computer Group Literature Center Web Site

Block Diagrams

3

Figure 3-1. Hawk Used with Synchronous DRAM in a System

P
o

w
er

P
C

T
M
 6

0x
 B

u
s

DRAM
Synch

HAWK

Check

Data

PowerPC
Data (64 Bits)

PowerPC

SDRAM
Data (64 Bits)

SDRAM
Address & Control

SDRAM
Check Bits (8 Bits)

Address &Control

PowerPC
Data Parity (8 Bits)

PowerPC

Address Parity (4 bits)
http://www.motorola.com/computer/literature 3-3

System Memory Controller (SMC)

3

Figure 3-2. Hawk’s System Memory Controller Internal Data Paths

C
K

D
[0

:7
]

R
D

[0
:6

3]

D
[0

:6
3]

LA
TC

H
ES

H
A

M
G

EN

SY
N

D
EC

M
U

X

H
A

M
G

EN

C
or

re
ct

ed
 D

at
a

Uncorrected Data
(64 Bits)

SDRAMPowerPC
Side Side

+

+

D
FF

’s Latched D

(6
4

B
its

)

(64 Bits)

(8 Bits)

(8 Bits)

(8 Bits)

(6
4

Bi
ts

)

(64 Bits)

(8 Bits)

LA
TC

H
ES

D
P[

0:
7]

PA
R

C
H

K

PA
R

G
EN
3-4 Computer Group Literature Center Web Site

Block Diagrams

3

Figure 3-3. Overall SDRAM Connections (4 Blocks using Register Buffers)

H
A

W
K

SDRAM
BLOCK A

SDRAM
BLOCK B

SDRAM
BLOCK C

SDRAM
BLOCK D

RD0-63

CKD0-7

D0/D1_CS_

C0/C1_CS_

BA,RA,RAS_,

A0/A1_CS_

B0/B1_CS_

CAS_,WE_,DQM
http://www.motorola.com/computer/literature 3-5

System Memory Controller (SMC)

3

Figure 3-4. Hawk’s System Memory Controller Block Diagram

Functional Description
The following sections describe the logical function of the SMC. The SMC
has interfaces between the PowerPC bus and SDRAM, ROM/Flash, and its
Control and Status Register sets (CSR).

Performance

Four-beat Reads/Writes

The SMC performs best when doing bursting (4-beat accesses). This is
made possible by the burst nature of synchronous DRAMs. When the
PPC60x master begins a burst read to SDRAM, the SMC starts the access

SDRAM

SDRAM

DATA

JTAG

PPC60x Data MEM Data

MEM Addr

PPC60x Addr

PPC60x Attr

PPC60x Ctrl MEM Ctrl
&

ROM/Flash
CONTROL

SDRAM
ADDRESS

MULTIPLEXOR

PPC60x

STATUS
/CONTROL

REGISTERS

MULTIPLEXOR

ADDRESS
DECODER

PPC60x
SLAVE

INTERFACE

ERROR
LOGGER

I2C
INTERFACE

I2C Bus

ARBITER

REFRESHER
/SCRUBBER
3-6 Computer Group Literature Center Web Site

Functional Description

3

and when the access time is reached, the SDRAM provides all four beats
of data, one on each clock. Hence, the SMC can provide the four beats of
data with zero idle clocks between each beat.

Single-beat Reads/Writes

Because of start-up, addressing, and completion overhead, single-beat
accesses to and from the PPC60x bus do not achieve data rates as high as
do four-beat accesses. Single-beat writes are the slowest because they
require that the SMC perform a read cycle then a write cycle to the
SDRAM in order to complete. Fortunately, in most PPC60x systems,
single-beat accesses can be held to a minimum, especially with data cache
and copyback modes in place.

Address Pipelining

The SMC takes advantage of the fact that PPC60x processors can do
address pipelining. Many times while a data cycle is finishing, the PPC60x
processor begins a new address cycle. The SMC can begin the next
SDRAM access earlier when this happens, thus increasing throughput.

Page Holding

Further savings comes when the new address is close enough to a previous
one that it falls within an open page in the SDRAM array. When this
happens, the SMC can transfer the data for the next cycle without having
to wait to activate a new page in SDRAM. In the SMC this feature is
referred to as page holding.

SDRAM Speeds

The SDRAM that the Hawk ASIC controls uses the 60x clock. The SMC
can be configured to operate at several different 60x clock frequencies
using SDRAMs that have various speed characteristics. The bits that
control this configuration are located in the SDRAM Speed Attributes
Register, which is described in the Register portion of this section. Refer
to the table below for some specific timing numbers.
http://www.motorola.com/computer/literature 3-7

System Memory Controller (SMC)

3

Table 3-1. 60x Bus to SDRAM Estimated Access Timing at 100 MHz with
PC100 SDRAMs (CAS_latency of 2)

Access Type Access Time
(tB1-tB2-tB3-tB4)

Comments

4-Beat Read after idle,

SDRAM Bank Inactive

10-1-1-1

4-Beat Read after idle,

SDRAM Bank Active - Page Miss

12-1-1-1

4-Beat Read after idle,

SDRAM Bank Active - Page Hit

7-1-1-1

4-Beat Read after 4-Beat Read,

SDRAM Bank Active - Page Miss

5-1-1-1

4-Beat Read after 4-Beat Read,

SDRAM Bank Active - Page Hit

2.5-1-1-1 2.5-1-1-1 is an average of 2-
1-1-1 half of the time and 3-
1-1-1 the other half.

4-Beat Write after idle,

SDRAM Bank Active or Inactive

4-1-1-1

4-Beat Write after 4-Beat Write,

SDRAM Bank Active - Page Miss

6-1-1-1

4-Beat Write after 4-Beat Write,

SDRAM Bank Active - Page Hit

3-1-1-1 3-1-1-1 for the second burst
write after idle.

2-1-1-1 for subsequent burst
writes.

1-Beat Read after idle,

SDRAM Bank Inactive
10

1-Beat Read after idle,

SDRAM Bank Active - Page Miss
12

1-Beat Read after idle,

SDRAM Bank Active - Page Hit
7

1-Beat Read after 1-Beat Read,

SDRAM Bank Active - Page Miss
8

3-8 Computer Group Literature Center Web Site

Functional Description

3

M

e
The

nts.
et
ed
Notes

1. SDRAM speed attributes are programmed for the following:
CAS_latency = 2, tRCD = 2 CLK Periods, tRP = 2CLK Periods,
tRAS = 5 CLK Periods, tRC = 7 CLK Periods, tDP = 2 CLK
Periods, and the swr dpl bit is set in the SDRAM Speed Attributes
Register.

2. The Hawk is configured for “no external registers” on the SDRA
control signals.

SDRAM Organization

The SDRAM is organized as 1, 2, 3, 4, 5, 6, 7, or 8 blocks, 72 bits wid
with 64 of the bits being normal data and the other 8 being checkbits.
72 bits of SDRAM for each block can be made up of x4, x8, or x16
components or of 72-bit DIMMs that are made up of x4 or x8 compone
The 72-bit, unbuffered DIMMs can be used as long as AC timing is m
and they use the components listed. All components must be organiz
with four internal banks.

1-Beat Read after 1-Beat Read,

SDRAM Bank Active - Page Hit
5

1-Beat Write after idle,

SDRAM Bank Active or Inactive
5

1-Beat Write after 1-Beat Write,

SDRAM Bank Active - Page Miss
13

1-Beat Write after 1-Beat Write,

SDRAM Bank Active - Page Hit
8

Table 3-1. 60x Bus to SDRAM Estimated Access Timing at 100 MHz with
PC100 SDRAMs (CAS_latency of 2) (Continued)

Access Type Access Time
(tB1-tB2-tB3-tB4)

Comments
http://www.motorola.com/computer/literature 3-9

System Memory Controller (SMC)

3

ROM/Flash Speeds

The SMC provides the interface for two blocks of ROM/Flash. Access
times to ROM/Flash are programmable for each block. Access times are
also affected by block width. Refer to the following tables for some
specific timing numbers.

Note The information in Table 3-2 applies to access timing when
configured for devices with an access time equal to 12 clock
periods.

Table 3-2. PPC60x Bus to ROM/Flash Access Timing (120ns @ 100 MHz)

ACCESS TYPE

CLOCK PERIODS REQUIRED FOR: Total
Clocks1st Beat 2nd Beat 3rd Beat 4th Beat

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

4-Beat Read 70 22 64 16 64 16 64 16 262 70

4-Beat Write N/A N/A

1-Beat Read (1 byte) 22 22 - - - - - - 22 22

1-Beat Read (2 to 8
bytes)

70 22 - - - - - - 70 22

1-Beat Write 21 21 - - - - - - 21 21
3-10 Computer Group Literature Center Web Site

Functional Description

3

Note The information in Table 3-3 applies to access timing when
configured for devices with an access time equal to eight clock
periods.

Table 3-3. PPC60x Bus to ROM/Flash Access Timing
(80ns @ 100 MHz)

ACCESS TYPE

CLOCK PERIODS REQUIRED FOR: Total
Clocks1st Beat 2nd Beat 3rd Beat 4th Beat

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

4-Beat Read 54 18 48 12 48 12 48 12 198 54

4-Beat Write N/A N/A

1-Beat Read (1 byte) 18 18 - - - - - - 18 18

1-Beat Read (2 to 8
bytes)

54 18 - - - - - - 54 18

1-Beat Write 21 21 - - - - - - 21 21

Table 3-4. PPC60x Bus to ROM/Flash Access Timing (50ns @ 100 MHz)

ACCESS TYPE

CLOCK PERIODS REQUIRED FOR: Total
Clocks1st Beat 2nd Beat 3rd Beat 4th Beat

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

4-Beat Read 42 15 36 9 36 9 36 9 150 42

4-Beat Write N/A N/A

1-Beat Read (1 byte) 15 15 - - - - - - 15 15

1-Beat Read (2 to 8
bytes)

42 15 - - - - - - 42 15

1-Beat Write 21 21 - - - - - - 21 21
http://www.motorola.com/computer/literature 3-11

System Memory Controller (SMC)

3

t if
_
Note The information in Table 3-4 applies to access timing when
configured for devices with an access time equal to five clock
periods.

Note The information in Table 3-5 applies to access timing when
configured for devices with an access time equal to three clock
periods.

PPC60x Bus Interface

The SMC has a PowerPC slave interface only. It has no PowerPC master
interface. The slave interface is the mechanism for all accesses to
SDRAM, ROM/Flash, and the internal and external register sets.

Responding to Address Transfers

When the SMC detects an address transfer that it is to respond to, it asserts
AACK_ immediately if there is no uncompleted PPC60x bus data transfer
in process. If there is one in process, then the SMC waits and asserts
AACK_ coincident with the uncompleted data transfer’s last data bea
the SMC is the slave for the previous data. If it is not, it holds off AACK
until the CLK after the previous data transfer’s last data beat.

Table 3-5. PPC60x Bus to ROM/Flash Access Timing (30ns @ 100 MHz)

ACCESS TYPE

CLOCK PERIODS REQUIRED FOR: Total
Clocks1st Beat 2nd Beat 3rd Beat 4th Beat

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

4-Beat Read 34 13 28 7 28 7 28 7 118 34

4-Beat Write N/A N/A

1-Beat Read (1 byte) 13 13 - - - - - - 13 13

1-Beat Read (2 to 8
bytes)

34 13 - - - - - - 34 13

1-Beat Write 21 21 - - - - - - 21 21
3-12 Computer Group Literature Center Web Site

Functional Description

3

Completing Data Transfers

If an address transfer to the SMC will have an associated data transfer, the
SMC begins a read or write cycle to the accessed entity
(SDRAM/ROM/Flash/Internal or External Register) as soon as the entity
is free. If the data transfer will be a read, the SMC begins providing data
to the PPC60x bus as soon as the entity has data ready and the PPC60x data
bus is granted. If the data transfer will be a write, the SMC begins latching
data from the PowerPC data bus as soon as any previously latched data is
no longer needed and the PPC60x data bus is available.

PPC60x Data Parity

The Hawk has eight DP pins for generating and checking PPC 60x data bus
parity.

During read cycles that access the SMC, the Hawk generates the correct
value on DP0-DP7 so that each data byte lane along with its corresponding
DP signal has odd parity. This can be changed on a lane basis to even parity
by software bits that can force the generation of wrong (even) parity.

During write cycles to the SMC, the SMC checks each of the eight PPC60x
data byte lanes and its corresponding DP signal for odd parity. If any of the
eight lanes has even parity, the SMC logs the error in the CSR and can
generate a machine check if so enabled.

While normal (default) operation is for the SMC to check data parity only
on writes to it, it can be programmed to check data parity on all reads or
writes to any device on the PPC bus.

Refer to the Data Parity Error Log Register section further on in this
document for additional control register details.

PPC60x Address Parity

The Hawk has four AP pins for generating and checking PPC60x address
bus parity.
http://www.motorola.com/computer/literature 3-13

System Memory Controller (SMC)

3

During any address transfer cycle on the PPC60x, the SMC checks each of
the four 8-bit PPC60x address lanes and its corresponding AP signal for
odd parity. If any of the four lanes has even parity, the SMC logs the error
in the CSR and can generate a machine check if so enabled.

Note The SMC does not generate address parity because it is not a
PPC60x address master.

Refer to the Address Parity Error Log Register section further on in this
document for additional control register details.

Cache Coherency

The SMC supports cache coherency to SDRAM only. It does this by
monitoring the ARTRY_ control signal on the PPC60x bus and behaving
appropriately when it is asserted. When ARTRY_ is asserted, if the access
is a SDRAM read, the SMC does not source the data for that access. If the
access is a SDRAM write, the SMC does not write the data for that access.
Depending upon when the retry occurs, the SMC may cycle the SDRAM
even though the data transfer does not happen.

Cache Coherency Restrictions

The PPC60x GBL_ signal must not be asserted in the CSR areas.

L2 Cache Support

The SMC provides support for a look-aside L2 cache (only at 66.67 MHz)
by implementing a hold-off input, L2CLM_. On cycles that select the
SMC, the SMC samples L2CLM_ on the second rising edge of the CLK
input after the assertion of TS_. If L2CLM_ is high, the SMC responds
normally to the cycle. If it is low, the SMC ignores the cycle.
3-14 Computer Group Literature Center Web Site

Functional Description

3

ECC (Error Correction Code)

The SMC performs single-bit error correction and double-bit error
detection for SDRAM across 64 bits of data using eight check bits. No
checking is provided for ROM/Flash.

Cycle Types

To support ECC, the SMC always deals with SDRAM using full width
(72-bit) accesses. When the PPC60x bus master requests any size read of
SDRAM, the SMC reads the full width at least once. When the PPC60x
bus master requests a four-beat write to SDRAM, the SMC writes all 72
bits four times. When the PPC60x bus master requests a single-beat write
to SDRAM, the SMC performs a full width read cycle to SDRAM, merges
in the appropriate PPC60x bus write data, and writes full width back to
SDRAM.

Error Reporting

The SMC checks data from the SDRAM during single- and four-beat
reads, during single-beat writes, and during scrubs. Table 3-6 shows the
actions it takes for different errors during these accesses.
http://www.motorola.com/computer/literature 3-15

System Memory Controller (SMC)

3

Note that the SMC does not assert TEA_ on double-bit errors. In fact, the
SMC does not have a TEA_ signal pin and it assumes that the system does
not implement TEA_. The SMC can, however, assert machine check
(MCHK0_) on double-bit error.

Table 3-6. Error Reporting

Error
Type

Single-Beat/Four-
Beat Read

Single-Beat Write Four-Beat Write Scrub

Single-Bit
Error

Terminate the
PPC60x bus cycle
normally.

Provide corrected
data to the PPC60x
bus master.

Assert SMC_INT
if so enabled. 2

Terminate the
PPC60x bus cycle
normally.

Correct the data
read from
SDRAM, merge
with the write
data, and write the
corrected, merged
data to SDRAM.

Assert SMC_INT
if so enabled. 2

N/A 1

This cycle is not
seen on the
PPC60x bus.

Write corrected
data back to
SDRAM if so
enabled.

Assert SMC_INT
if so enabled. 2

Double-Bit
Error

Terminate the
PPC60x bus cycle
normally.

Provide miss-
corrected,
SDRAM data to
the PPC 60x bus
master.

Assert SMC_INT
if so enabled. 2

Assert MCHK0_ if
so enabled.

Terminate the
PPC60x bus cycle
normally.

Do not perform the
write portion of
the read-modify-
write cycle to
SDRAM.

Assert SMC_INT
if so enabled. 2

Assert MCHK0_ if
so enabled.

N/A 1

This cycle is not
seen on the
PPC60x bus.

Do not perform
the write portion
of the read-
modify-write
cycle to SDRAM.

Assert SMC_INT
if so enabled. 2

Triple- (or
greater)
Bit Error

Some of these errors are detected correctly and are treated the same as double-bit
errors. The rest could show up as “no error” or “single-bit error”, both of which
are incorrect.
3-16 Computer Group Literature Center Web Site

Functional Description

3

Notes

1. No opportunity for error since no read of SDRAM occurs during a
four-beat write.

2. The SMC asserts its interrupt output (SMC_INT) upon detecting an
interrupt-qualified error condition. The potential sources of
SMC_INT assertion are single-bit error, multiple-bit error, and
single-bit error counter overflow. The SMC_INT signal is internally
connected to the MPIC.

Error Logging

ECC error logging is facilitated by the SMC because of its internal latches.
When an error (single- or double-bit) occurs, the SMC records the address
and syndrome bits associated with the data in error. Once the error logger
has logged an error, it does not log any more until the elog control /status
bit has been cleared by software, unless the currently logged error is
single-bit and a new, double-bit error is encountered. The logging of errors
that occur during scrub can be enabled/disabled in software. Refer to the
Error Logger Register section in this chapter.

ROM/Flash Interface

The SMC provides the interface for two blocks of ROM/Flash. Each block
provides addressing and control for up to 64MB. Note that no ECC error
checking is provided for the ROM/Flash.

The ROM/Flash interface allows each block to be individually configured
by jumpers and/or by software as follows:

1. Access for each block is controlled by three software programmable
control register bits: an overall enable, a write enable, and a reset
vector enable. The overall enable controls normal read accesses.
The write enable is used to program Flash devices. The reset vector
enable controls whether the block is also enabled at $FFF00000 -
$FFFFFFFF. The overall enable and write enable bits are always
cleared at reset. The reset vector enable bit is cleared or set at reset
depending on external jumper configuration. This allows the board
http://www.motorola.com/computer/literature 3-17

System Memory Controller (SMC)

3 ss is

se
00-

is

t be

ces

d),

e
te).

ces
designer to use external jumpers to enable/disable Block A/B
ROM/Flash as the source of reset vectors.

2. The base address for each block is software programmable. At reset,
Block A’s base address is $FF000000 and Block B’s base addre
$FF400000.

As noted above, in addition to appearing at the programmed ba
address, the first 1Mbyte of Block A/B also appears at $FFF000
$FFFFFFFF if the reset vector enable bit is set.

3. The assumed size for each block is software programmable. It
initialized to its smallest setting at reset.

4. The access time for each block is software programmable.

5. The assumed width for Block A/B is determined by an external
jumper at reset time. It also is available as a status bit and canno
changed by software.

When the width status bit is cleared, the block’s ROM /Flash is
considered to be 16 bits wide, where each half of the SMC interfa
to eight bits. In this mode, the following rules are enforced:

a. only single-byte writes are allowed (all other sizes are ignore
and

b. all reads are allowed (multiple accesses are performed to th
ROM/Flash devices when the read is for greater than one by

When the width status bit is set, the block’s ROM/Flash is
considered to be 64 bits wide, where each half of the SMC interfa
with 32 bits. In this mode, the following rules are enforced:

c. only aligned, four-byte writes should be attempted (all other
sizes are ignored), and

d. all reads are allowed (multiple accesses to the ROM/Flash
device are performed for burst reads).

More information about ROM/Flash is found in the section entitled
External Register Set in this chapter.
3-18 Computer Group Literature Center Web Site

Functional Description

3

In order to place code correctly in the ROM/Flash devices, address
mapping information is required. Table 3-7 shows how PPC60x addresses
map to the ROM/Flash addresses when ROM/Flash is 16 bits wide. Table
3-8 shows how they map when Flash is 64 bits wide.

Table 3-7. PPC60x to ROM/Flash (16 Bit Width) Address Mapping

PPC60x A0-A31 ROM/Flash A22-A0 ROM/Flash Device Selected

$XX000000 $000000 Upper

$XX000001 $000001 Upper

$XX000002 $000002 Upper

$XX000003 $000003 Upper

$XX000004 $000000 Lower

$XX000005 $000001 Lower

$XX000006 $000002 Lower

$XX000007 $000003 Lower

$XX000008 $000004 Upper

$XX000009 $000005 Upper

$XX00000A $000006 Upper

$XX00000B $000007 Upper

$XX00000C $000004 Lower

$XX00000D $000005 Lower

$XX00000E $000006 Lower

$XX00000F $000007 Lower

.

.

.

.

.

.

.

.

.

$XXFFFFF8 $7FFFFC Upper

$XXFFFFF9 $7FFFFD Upper

$XXFFFFFA $7FFFFE Upper

$XXFFFFFB $7FFFFF Upper
http://www.motorola.com/computer/literature 3-19

System Memory Controller (SMC)

3
 $XXFFFFFC $7FFFFC Lower

$XXFFFFFD $7FFFFD Lower

$XXFFFFFE $7FFFFE Lower

$XXFFFFFF $7FFFFF Lower

Table 3-8. PPC60x to ROM/Flash (64 Bit Width) Address Mapping

PPC60x A0-A31 ROM/Flash A22-A0 ROM/Flash Device Selected

$X0000000 $000000 Upper

$X0000001 $000000 Upper

$X0000002 $000000 Upper

$X0000003 $000000 Upper

$X0000004 $000000 Lower

$X0000005 $000000 Lower

$X0000006 $000000 Lower

$X0000007 $000000 Lower

$X0000008 $000001 Upper

$X0000009 $000001 Upper

$X000000A $000001 Upper

$X000000B $000001 Upper

$X000000C $000001 Lower

$X000000D $000001 Lower

$X000000E $000001 Lower

$X000000F $000001 Lower

.

.

.

.

.

.

.

.

.

$X3FFFFF0 $7FFFFE Upper

$X3FFFFF1 $7FFFFE Upper

$X3FFFFF2 $7FFFFE Upper

Table 3-7. PPC60x to ROM/Flash (16 Bit Width) Address Mapping

PPC60x A0-A31 ROM/Flash A22-A0 ROM/Flash Device Selected
3-20 Computer Group Literature Center Web Site

Functional Description

3

I2C Interface

The ASIC has an I2C (Inter-Integrated Circuit) two-wire serial interface
bus: Serial Clock Line (SCL) and Serial Data Line (SDA). This interface
has master-only capability and may be used to communicate the
configuration information to a slave I2C device such as serial EEPROM.
The I2C interface is compatible with these devices, and the inclusion of a
serial EEPROM in the memory subsystem may be desirable. The
EEPROM could maintain the configuration information related to the
memory subsystem even when the power is removed from the system.
Each slave device connected to the I2C bus is software addressable by a
unique address. The number of interfaces connected to the I2C bus is solely
dependent on the bus capacitance limit of 400pF.

For I2C bus programming, the ASIC is the only master on the bus and the
serial EEPROM devices are all slaves. The I2C bus supports 7-bit
addressing mode and transmits data one byte at a time in a serial fashion
with the most significant bit (MSB) being sent out first. Five registers are

$X3FFFFF3 $7FFFFE Upper

$X3FFFFF4 $7FFFFE Lower

$X3FFFFF5 $7FFFFE Lower

$X3FFFFF6 $7FFFFE Lower

$X3FFFFF7 $7FFFFE Lower

$X3FFFFF8 $7FFFFF Upper

$X3FFFFF9 $7FFFFF Upper

$X3FFFFFA $7FFFFF Upper

$X3FFFFFB $7FFFFF Upper

$X3FFFFFC $7FFFFF Lower

$X3FFFFFD $7FFFFF Lower

$X3FFFFFE $7FFFFF Lower

$X3FFFFFF $7FFFFF Lower

Table 3-8. PPC60x to ROM/Flash (64 Bit Width) Address Mapping

PPC60x A0-A31 ROM/Flash A22-A0 ROM/Flash Device Selected
http://www.motorola.com/computer/literature 3-21

System Memory Controller (SMC)

3

required to perform the I2C bus data transfer operations. These are the I2C
Clock Prescaler Register, I2C Control Register, I2C Status Register, I2C
Transmitter Data Register, and I2C Receiver Data Register.

The I2C serial data (SDA) is an open-drain bidirectional line on which data
can be transferred at a rate up to 100Kbits/s in the standard mode, or up to
400 kbits/s in the fast mode. The I2C serial clock (SCL) is programmable
via I2_PRESCALE_VAL bits in the I2C Clock Prescaler Register. The I2C
clock frequency is determined by the following formula:

I2C CLOCK = SYSTEM CLOCK / (I2_PRESCALE_VAL+1) / 2

The I2C bus has the ability to perform byte write, page write, current
address read, random read, and sequential read operations.

I2C Byte Write

The I2C Status Register contains the i2_cmplt bit which is used to indicate
if the I2C master controller is ready to perform an operation. Therefore, the
first step in the programming sequence should be to test the i2_cmplt bit
for the operation-complete status. The next step is to initiate a start
sequence by first setting the i2_start and i2_enbl bits in the I2C Control
Register and then writing the device address (bits 7-1) and write bit (bit
0=0) to the I2C Transmitter Data Register. The i2_cmplt bit will be
automatically clear with the write cycle to the I2C Transmitter Data
Register.

The I2C Status Register must now be polled to test the i2_cmplt and
i2_ackin bits. The i2_cmplt bit becomes set when the device address and
write bit have been transmitted, and the i2_ackin bit provides status as to
whether or not a slave device acknowledged the device address. With the
successful transmission of the device address, the word address will be
loaded into the I2C Transmitter Data Register to be transmitted to the slave
device. Again, i2_cmplt and i2_ackin bits must be tested for proper
response.

After the word address is successfully transmitted, the next data loaded
into the I2C Transmitter Data Register will be transferred to the address
location selected previously within the slave device. After i2_cmplt and
i2_ackin bits have been tested for proper response, a stop sequence must
3-22 Computer Group Literature Center Web Site

Functional Description

3

n’t

ing
be transmitted to the slave device by first setting the i2_stop and i2_enbl
bits in the I2C Control Register and then writing a dummy data (data=do
care) to the I2C Transmitter Data Register.

The I2C Status Register must now be polled to test i2_cmplt bit for the
operation-complete status. The stop sequence will initiate a programm
cycle for the serial EEPROM and also relinquish the ASIC master’s
possession of the I2C bus.
http://www.motorola.com/computer/literature 3-23

System Memory Controller (SMC)

3

Figure 3-5. Programming Sequence for I2C Byte Write

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “WORD ADDR” TO
I2C TRANSMITTER DATA REG

LOAD “DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

START STOPSDA S
B

M
DEVICE ADDR

W
R

A
C
K

WORD ADDR
A
C
K

DATA
A
C
K

ACK from Slave Device

END

BEGIN

*

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired
3-24 Computer Group Literature Center Web Site

Functional Description

3

 for

n be

the
d
ce
I2C Random Read

The I2C random read begins in the same manner as the I2C byte write. The
first step in the programming sequence should be to test the i2_cmplt bit
for the operation-complete status. The next step is to initiate a start
sequence by first setting the i2_start and i2_enbl bits in the I2C Control
Register and then writing the device address (bits 7-1) and write bit (bit
0=0) to the I2C Transmitter Data Register. The i2_cmplt bit will be
automatically clear with the write cycle to the I2C Transmitter Data
Register.

The I2C Status Register must now be polled to test the i2_cmplt and
i2_ackin bits. The i2_cmplt bit becomes set when the device address and
write bit have been transmitted, and the i2_ackin bit provides status as to
whether or not a slave device acknowledged the device address. With the
successful transmission of the device address, the word address will be
loaded into the I2C Transmitter Data Register to be transmitted to the slave
device. Again, i2_cmplt and i2_ackin bits must be tested for proper
response. At this point, the slave device is still in a write mode. Therefore,
another start sequence must be sent to the slave to change the mode to read
by first setting the i2_start and i2_enbl bits in the I2C Control Register and
then writing the device address (bits 7-1) and read bit (bit 0=1) to the I2C
Transmitter Data Register.

After i2_cmplt and i2_ackin bits have been tested for proper response, the
I2C master controller writes a dummy value (data=don’t care) to the I2C
Transmitter Data Register.This causes the I2C master controller to initiate
a read transmission from the slave device. Again, i2_cmplt bit must be
tested for proper response. After the I2C master controller has received a
byte of data (indicated by i2_datin=1 in the I2C Status Register), the
system software may then read the data by polling the I2C Receiver Data
Register. The I2C master controller does not acknowledge the read data
a single byte transmission on the I2C bus, but must complete the
transmission by sending a stop sequence to the slave device. This ca
accomplished by first setting the i2_stop and i2_enbl bits in the I2C
Control Register and then writing a dummy data (data=don’t care) to
I2C Transmitter Data Register. The I2C Status Register must now be polle
to test i2_cmplt bit for the operation-complete status. The stop sequen
will relinquish the ASIC master’s possession of the I2C bus.
http://www.motorola.com/computer/literature 3-25

System Memory Controller (SMC)

3

Figure 3-6. Programming Sequence for I2C Random Read

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “WORD ADDR x” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

END

LOAD “$09” (REPEATED START
CONDITION) TO I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=DATIN=1? N

Y

BEGIN

READ I2C RECEIVER DATA REG

START
M
S
B

SDA

DEVICE ADDR

W
R

A
C
K

WORD ADDR x
A
C
K

START
M
S
B

DEVICE ADDR

R
D

A
C
K

DATA x
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired
3-26 Computer Group Literature Center Web Site

Functional Description

3

y
ad

ed by

he
I2C Current Address Read

The I2C slave device should maintain the last address accessed during the
last I2C read or write operation, incremented by one. The first step in the
programming sequence should be to test the i2_cmplt bit for the operation-
complete status. The next step is to initiate a start sequence by first setting
the i2_start and i2_enbl bits in the I2C Control Register and then writing
the device address (bits 7-1) and read bit (bit 0=1) to the I2C Transmitter
Data Register. The i2_cmplt bit will be automatically clear with the write
cycle to the I2C Transmitter Data Register.

The I2C Status Register must now be polled to test the i2_cmplt and
i2_ackin bits. The i2_cmplt bit becomes set when the device address and
read bit have been transmitted and the i2_ackin bit provides status as to
whether or not a slave device acknowledged the device address. With the
successful transmission of the device address, the I2C master controller
writes a dummy value (data=don’t care) to the I2C Transmitter Data
Register. This causes the I2C master controller to initiate a read
transmission from the slave device. Again, i2_cmplt bit must be tested for
proper response.

After the I2C master controller has received a byte of data (indicated b
i2_datin=1 in the I2C Status Register), the system software may then re
the data by polling the I2C Receiver Data Register. The I2C master
controller does not acknowledge the read data for a single byte
transmission on the I2C bus, but must complete the transmission by
sending a stop sequence to the slave device. This can be accomplish
first setting the i2_stop and i2_enbl bits in the I2C Control Register and
then writing a dummy data (data=don’t care) to the I2C Transmitter Data
Register. The I2C Status Register must now be polled to test i2_cmplt bit
for the operation-complete status. The stop sequence will relinquish t
ASIC master’s possession of the I2C bus.
http://www.motorola.com/computer/literature 3-27

System Memory Controller (SMC)

3

Figure 3-7. Programming Sequence for I2C Current Address Read

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=DATIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

END

BEGIN

START
M
S
B

SDA

DEVICE ADDR

R
D

A
C
K

DATA of (last ADDR+1)
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired

READ I2C RECEIVER DATA REG
3-28 Computer Group Literature Center Web Site

Functional Description

3

ing
I2C Page Write

The I2C page write is initiated the same as the I2C byte write, but instead
of sending a stop sequence after the first data word, the I2C master
controller will transmit more data words before a stop sequence is
generated. The first step in the programming sequence should be to test the
i2_cmplt bit for the operation-complete status. The next step is to initiate
a start sequence by first setting the i2_start and i2_enbl bits in the I2C
Control Register and then writing the device address (bits 7-1) and write
bit (bit 0=0) to the I2C Transmitter Data Register. The i2_cmplt bit will be
automatically clear with the write cycle to the I2C Transmitter Data
Register.

The I2C Status Register must now be polled to test the i2_cmplt and
i2_ackin bits. The i2_cmplt bit becomes set when the device address and
write bit have been transmitted, and the i2_ackin bit provides status as to
whether or not a slave device acknowledged the device address. With the
successful transmission of the device address, the initial word address will
be loaded into the I2C Transmitter Data Register to be transmitted to the
slave device. Again, i2_cmplt and i2_ackin bits must be tested for proper
response.

After the initial word address is successfully transmitted, the first data
word loaded into the I2C Transmitter Data Register will be transferred to
the initial address location of the slave device. After i2_cmplt and
i2_ackin bits have been tested for proper response, the next data word
loaded into the I2C Transmitter Data Register will be transferred to the
next address location of the slave device, and so on, until the block transfer
is complete. A stop sequence then must be transmitted to the slave device
by first setting the i2_stop and i2_enbl bits in the I2C Control Register and
then writing a dummy data (data=don’t care) to the I2C Transmitter Data
Register.

The I2C Status Register must now be polled to test i2_cmplt bit for the
operation-complete status. The stop sequence will initiate a programm
cycle for the serial EEPROM and also relinquish the ASIC master’s
possession of the I2C bus.
http://www.motorola.com/computer/literature 3-29

System Memory Controller (SMC)

3

Figure 3-8. Programming Sequence for I2C Page Write

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “WORD ADDR 1” TO
I2C TRANSMITTER DATA REG

LOAD “DATA1 ... DATA n” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

START STOPSDA S
B

M
DEVICE ADDR

W
R

A
C
K

WORD ADDR 1
A
C
K

DATA 1
A
C
K

ACK from Slave Device

END

BEGIN

*

*
*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired

DATA n

A
C
K

LAST BYTE ? N

Y

3-30 Computer Group Literature Center Web Site

Functional Description

3

y

ling

to
rds.
I2C Sequential Read

The I2C sequential read can be initiated by either an I2C random read
(described here) or an I2C current address read.

The first step in the programming sequence of an I2C random read
initiation is to test the i2_cmplt bit for the operation-complete status. The
next step is to initiate a start sequence by first setting the i2_start and
i2_enbl bits in the I2C Control Register and then writing the device address
(bits 7-1) and write bit (bit 0=0) to the I2C Transmitter Data Register. The
i2_cmplt bit is automatically cleared with the write cycle to the I2C
Transmitter Data Register.

The I2C Status Register must now be polled to test the i2_cmplt and
i2_ackin bits. The i2_cmplt bit becomes set when the device address and
write bit are transmitted and the i2_ackin bit provides status as to whether
or not a slave device acknowledged the device address. With the successful
transmission of the device address, the initial word address is loaded into
the I2C Transmitter Data Register to be transmitted to the slave device.
Again, i2_cmplt and i2_ackin bits must be tested for proper response.

At this point, the slave device is still in a write mode. Therefore, another
start sequence must be sent to the slave to change the mode to read by first
setting the i2_start, i2_ackout, and i2_enbl bits in the I2C Control
Register and then writing the device address (bits 7-1) and read bit (bit
0=1) to the I2C Transmitter Data Register. After i2_cmplt and i2_ackin
bits are tested for proper response, the I2C master controller writes a
dummy value (data=don’t care) to the I2C Transmitter Data Register.This
causes the I2C master controller to initiate a read transmission from the
slave device.

After the I2C master controller has received a byte of data (indicated b
i2_datin=1 in the I2C Status Register) and the i2_cmplt bit has also been
tested for proper status, the I2C master controller responds with an
acknowledge and the system software may then read the data by pol
the I2C Receiver Data Register.

As long as the slave device receives an acknowledge, it will continue
increment the word address and serially clock out sequential data wo
The I2C sequential read operation is terminated when the I2C master
controller does not respond with an acknowledge. This can be
http://www.motorola.com/computer/literature 3-31

System Memory Controller (SMC)

3 t

accomplished by setting only the i2_enbl bit in the I2C Control Register
before receiving the last data word. A stop sequence then must be
transmitted to the slave device by first setting the i2_stop and i2_enbl bits
in the I2C Control Register and then writing a dummy data (data=don’
care) to the I2C Transmitter Data Register. The I2C Status Register must
now be polled to test i2_cmplt bit for the operation-complete status. The
stop sequence will relinquish the ASIC master’s possession of the I2C bus.
3-32 Computer Group Literature Center Web Site

Functional Description

3

Figure 3-9. Programming Sequence for I2C Sequential Read

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “WORD ADDR 1” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

END

LOAD “$0B” (REPEATED START
CONDITION) TO I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=DATIN=1? N

Y

BEGIN

READ I2C RECEIVER DATA REG

START
M
S
B

SDA

DEVICE ADDR

W
R

A
C
K

WORD ADDR 1
A
C
K

START
M
S
B

DEVICE ADDR

R
D

DATA n
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired

A
C
K

DATA 1
A
C
K

LAST BYTE ? N

Y

LAST BYTE - 1 ? Y

N

LOAD “$01” TO I2C CONTROL REG
http://www.motorola.com/computer/literature 3-33

System Memory Controller (SMC)

3

Refresh/Scrub

The SMC performs refresh by doing a burst of four CAS-Before-RAS
(CBR) refresh cycles to each block of SDRAM once every 60us. It
performs scrubs by replacing every 128th refresh burst with a read cycle to
eight bytes in each block of SDRAM. If during the read cycle, the SMC
detects a single-bit error, it performs a write cycle back to SDRAM using
corrected data providing the SWEN control bit is set. It does not perform
the write if the SWEN bit is cleared. If the SMC detects a double-bit error,
it does not perform a write.

If so enabled, single- and double-bit scrub errors are logged and the
PPC60x bus master is notified via interrupt.

CSR Accesses

The SMC has a set of control and status registers (CSR) that allow software
to control certain functions and to monitor some status.

External Register Set

The SMC has an external register chip select pin which enables it to talk to
an external set of registers. This interface is like the ROM/Flash interface
but with less flexibility. It is intended for the system designer to be able to
implement general-purpose status/control signals with this external set.
Refer to the Register Summary, further on in this chapter, for a description
of this register set.

The SMC has a mode in which two of its pins become control register
outputs. When the SMC is to operate in this mode, the External Register
Set cannot be implemented. The two control bits appear in the range where
the External Register Set would have been had it been implemented.

Chip Configuration

Some configuration options in the Hawk must be configured at power-up
reset time before software performs any accesses to it. The Hawk obtains
this information by latching the value on some of the upper RD signals just
3-34 Computer Group Literature Center Web Site

Programming Model

3

rd

ed

nal
s hard
 at

n be

ment.
hey
after the rising edge of the PURST_ signal pin. A recommended way to
control the RD signals during reset is to place pull-up or pull-down
resistors on the RD bus. If there is a set of buffers between the RD bus and
the ROM/Flash devices, it is best to put the pull-up/pull-down resistors on
the far side of the buffers so that loading will be kept to a minimum. The
Hawk’s SDRAM buffer control signals cause the buffers to drive towa
the Hawk during power-up reset.

Other configuration information is needed by software to properly
configure the Hawk’s control registers. This information can be obtain
from devices connected to the I2C bus.

Programming Model

CSR Architecture

The CSR (Control and Status Register set) consists of the chip’s inter
register set and its external register set. The base address of the CSR i
coded to the address $FEF80000 (or $FEF90000 if the RD[5] pin is low
reset).

Accesses to the CSR are performed on the upper 32 bits of the PPC60x data
bus. Unlike the internal register set, data for the external register set ca
written and read on both the upper and lower halves of the PPC60x data
bus.

CSR read accesses can have a size of 1, 2, 4, or 8 bytes with any align
CSR write accesses are restricted to a size of one or four bytes and t
must be aligned.

Register Summary

Table 3-9 shows a summary of the internal and external register set.
http://www.motorola.com/computer/literature 3-35

System Memory Controller (SMC)

3

Table 3-9. Register Summary

BIT # ----> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FEF80000 VENDID DEVID

FEF80008

tb
en

_e
n

REVID

ao
nl

y_
en

is
a_

ho
le

PU
STAT

FEF80010

ra
m

 a
 e

n

RAM A
SIZ

ra
m

 b
 e

n
RAM B
SIZ

ra
m

 c
 e

n

RAM C
SIZ

ra
m

 d
 e

n

RAM D
SIZ

FEF80018
RAM A BASE RAM B BASE RAM C BASE RAM D BASE

FEF80020
CLK FREQUENCY po

r

FEF80028

re
fd

is
rw

cb
de

rc

ap
ie

n
sc

ie
n

dp
ie

n
si

en
m

ie
n

in
t

m
be

_m
e

FEF80030

el
og

es
cb

es
en

em
bt

es
bt ERR_SYNDROME

es
bl

k0
es

bl
k1

es
bl

k2

sc
of SBE COUNT

FEF80038
ERROR_ADDRESS

FEF80040

sc
b0

sc
b1

sw
en SCRUB

FREQUENCY

FEF80048
SCRUB ADDRESS

FEF80050 ROM A BASE

ro
m

_a
_6

4

ROM
A SIZ

ro
m

_a
_r

v
ro

m
 a

 e
n

ro
m

 a
 w

e

FEF80058 ROM B BASE

ro
m

_b
_6

4

ROM
B SIZ

ro
m

_b
_r

v
ro

m
 b

 e
n

ro
m

 b
 w

e

3-36 Computer Group Literature Center Web Site

Programming Model

3

FEF80060

ro
m

_a
_s

pd
0

ro
m

_a
_s

pd
1

ro
m

_b
_s

pd
0

ro
m

_b
_s

pd
1

FEF80068

dp
el

og DPE_TT DPE_DP

dp
e_

ck
al

l
dp

e_
m

e GWDP

FEF80070
DPE_A

FEF80078
DPE_DH

FEF80080
DPE_DL

FEF80090
I2_PRESCALE_VAL

FEF80098

i2
_s

ta
rt

i2
_s

to
p

i2
_a

ck
ou

t
i2

_e
nb

l

FEF800A0

i2
_d

at
in

i2
_e

rr
i2

_a
ck

in
i2

_c
m

pl
t

FEF800A8
I2_DATAWR

FEF800B0
I2_DATARD

FEF800C0

ra
m

 e
 e

n

RAM E
SIZ

ra
m

 f
 e

n

RAM F
SIZ

ra
m

 g
 e

n

RAM G
SIZ

ra
m

 h
 e

n

RAM H
SIZ

FEF800C8
RAM E BASE RAM F BASE RAM G BASE RAM H BASE

FEF800D0

cl
3

tr
c0

tr
c1

tr
c2

tr
as

0
tr

as
1

sw
r_

dp
l

td
p

tr
p

tr
cd

Table 3-9. Register Summary (Continued)
http://www.motorola.com/computer/literature 3-37

System Memory Controller (SMC)

3

Notes

1. All empty bit fields are reserved and read as zeros.

2. All status bits are shown in italics.

3. All control bits are shown with underline.

4. All control-and-status bits are shown with italics and underline.

Detailed Register Bit Descriptions

The following sections describe the registers and their bits in detail. The
possible operations for each bit in the register set are as follows:

R The bit is a read only status bit.

R/W The bit is readable and writable.

R/C The bit is cleared by writing a one to itself.

The possible states of the bits after local and power-up reset are as defined
below.

FEF800E0

ap
el

og APE_TT APE_AP

ap
e_

m
e

FEF800E8
APE_A

FEF80100
CTR32

FEF88300

p1
_t

be
n

p0
_t

be
n

FEF88000
-
FEF8FFF8 EXTERNAL REGISTER SET

BIT # ----> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 3-9. Register Summary (Continued)
3-38 Computer Group Literature Center Web Site

Programming Model

3

P The bit is affected by power-up reset (PURST_).

L The bit is affected by local reset (RST_).

X The bit is not affected by reset.

V The effect of reset on the bit is variable.

Vendor/Device Register

VENDID This read-only register contains the value $1057. It is the
vendor number assigned to Motorola Inc.

DEVID This read-only register contains the value $4803. It is the
device number for the Hawk.

Address $FEF80000

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

VENDID DEVID

Operation READ ONLY READ ONLY

Reset $1057 $4803
http://www.motorola.com/computer/literature 3-39

System Memory Controller (SMC)

3

Revision ID/ General Control Register

tben en (tben_en) controls the enable for the p1_tben and p0_tben
output signals. When tben_en is set, the I2Clm_ input pin becomes the
p1_tben output pin and the ercs_output pin becomes the p0_tben
output pin. Also, the SMC does not respond to accesses that fall within
the external register set address range except for the address
$FEF88300. When tben_en is cleared, the I2Clm_ and ercs_ pins
retain their normal function and the SMC does respond to external
register set accesses.

Software should only set the tben_en bit when there is no external L2
cache connected to the I2Clm_ pin and when there is no external
register set.

REVID The REVID bits are hard-wired to indicate the revision level
of the SMC. The value for the first revision is $01.

aonly_en Normally, the SMC responds to address-only cycles only if
they fall within the address range of one of its enabled map decoders.
When the aonly_en bit is set, the SMC also responds to address-only
cycles that fall outside of the range of its enabled map decoders
provided they are not acknowledged by some other slave within eight
clock periods. aonly_en is read-only and reflects the level that was on
the RD4 pin at power-up reset time.

Address $FEF80008

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name
0 0 0 0 0 0 0 tb

en
_e

n

REVID

0 0 0 0 0 0 ao
nl

y_
en

is
a_

ho
le

0 0 0 0 pu
_s

ta
t0

pu
_s

ta
t1

pu
_s

ta
t2

pu
_s

ta
t3

Operation

R R R R R R R R
/W

READ ONLY

R R R R R R R R
/W

R R R R R R R R

Reset

X X X X X X X 0
P

$01

X X X X X X V
 P

0
PL

X X X X V
 P

V
 P

V
 P

V
 P
3-40 Computer Group Literature Center Web Site

Programming Model

3

ge
ne

t
isa_hole When it is set, isa_hole disables any of the SDRAM or
ROM/Flash blocks from responding to PowerPC accesses in the range
from $000A0000 to $000BFFFF. This has the effect of creating a hole
in the SDRAM memory map for accesses to ISA. When isa_hole is
cleared, there is no hole created in the memory map.

pu_stat0-pu_stat3 pu_stat0, pu_stat1, pu_stat2, and pu_stat3 are
read-only status bits that indicate the levels that were on the RD13,
RD14, RD15, and RD16 signal pins respectively at power-up reset.
They provide a means to pass information to software using pull-
up/pull-down resistors on the RD bus or on a buffered RD bus.

SDRAM Enable and Size Register (Blocks A, B, C, D)

Writes to this register must be enveloped by a period of time in which no
accesses to SDRAM occur. The requirements of the envelope are that all
SDRAM accesses must have completed before the write starts and none
should begin until after the write is done. A simple way to do this is to
perform at least two read accesses to this or another register before and
after the write.

Additionally, sometime during the envelope, before or after the write, all
of the SDRAMs’ open pages must be closed and the Hawk’s open pa
tracker reset. The way to do this is to allow enough time for at least o
SDRAM refresh to occur by waiting for the 32-bit counter (see Detailed
Register Bit Descriptions further on in this chapter) to increment at leas
100 times. The wait period needs to happen during the envelope.

Address $FEF80010

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

ra
m

 a
 e

n
0 0 0 ra

m
 a

 s
iz

0
ra

m
 a

 s
iz

1
ra

m
 a

 s
iz

2
ra

m
 a

 s
iz

3
ra

m
 b

 e
n

0 0 0 ra
m

 b
 s

iz
0

ra
m

 b
 s

iz
1

ra
m

 b
 s

iz
2

ra
m

 b
 s

iz
3

ra
m

 c
 e

n
0 0 0 ra

m
 c

 s
iz

0
ra

m
 c

 s
iz

1
ra

m
 c

 s
iz

2
ra

m
 c

 s
iz

3
ra

m
 d

 e
n

0 0 0 ra
m

 d
 s

iz
0

ra
m

 d
 s

iz
1

ra
m

 d
 s

iz
2

ra
m

 d
 s

iz
3

Operation

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

Reset

0
P

L
X X X 0

P
0

P
0

P
0

P
0

P
L

X X X 0
P

0
P

0
P

0
P

0
P

L
X X X 0

P
0

P
0

P
0

P
0

P
L

X X X 0
P

0
P

0
P

0
P

http://www.motorola.com/computer/literature 3-41

System Memory Controller (SMC)

3

ram a/b/c/d en ram a/b/c/d en enables 60x accesses to the
corresponding block of SDRAM when set, and disables them when
cleared.

Note that ram e/f/g/h en are located at $FEF800C0 (refer to the
section on SDRAM Enable and Size Register (Blocks E,F,G,H) further
on in this chapter for more information.) They operate the same for
blocks E-H as these bits do for blocks A-D.

ram a/b/c/d siz0-3 These control bits define the size of their
corresponding block of SDRAM. Table 3-10 shows the block
configuration assumed by the SMC for each value of ram siz0-ram
siz3. Note that ram e/f/g/h size0-3 are located at $FEF800C0. They
operate identically for blocks E-H as these bits do for blocks A-D.

Table 3-10. Block_A/B/C/D/E/F/G/H Configurations

ram a-h
siz0-3

Component
Configuration

Number of
SDRAM

Components
In the Block

Block
SIZE

SDRAM
Technology

%0000 - - 0MBytes -

%0001 4Mx16 5 32MBytes 64Mbit

%0010 8Mx8 9 64MBytes 64Mbit

%0011 8Mx16 5 64MBytes 128Mbit

%0100 16Mx4 18 128MBytes 64Mbit

%0101 16Mx8 9 128MBytes 128Mbit

%0110 16Mx16 5 128MBytes 256Mbit

%0111 32Mx4 18 256MBytes 128Mbit

%1000 32Mx8 9 256MBytes 256Mbit

%1001 64Mx4 18 512MBytes 256Mbit

%1010

-

%1111

Reserved - - -
3-42 Computer Group Literature Center Web Site

Programming Model

3

pen
at

s.

or

,
Notes

1. All SDRAM components should be organized with four internal
banks.

2. When DIMMs are used, the Component Configuration refers to the
configuration of the devices used on the DIMMs.

3. It is important that all of the ram a/b/c/d/e/f/g/h siz0-3 bits be set to
accurately match the actual size of their corresponding blocks. This
includes clearing them to binary 00000 if their corresponding blocks
are not present. Failure to do so will cause problems with addressing
and with scrub logging.

SDRAM Base Address Register (Blocks A/B/C/D)

Writes to this register must be enveloped by a period of time in which
no accesses to SDRAM occur. The requirements of the envelope are
that all SDRAM accesses must have completed before the write starts
and none should begin until after the write is done. A simple way to do
this is to perform at least two read accesses to this or another register
before and after the write.

Additionally, sometime during the envelope, before or after the write,
all of the SDRAMs’ open pages must be closed and the Hawk’s o
page tracker reset. The way to do this is to allow enough time for
least one SDRAM refresh to occur by waiting for the 32-Bit Counter,
described further on in this chapter, to increment at least 100 time
The wait period needs to happen during the envelope.

RAM A/B/C/D BASE These control bits define the base address f
their block’s SDRAM. RAM A/B/C/D BASE bits 0-7/8-15/16-23/24-
31 correspond to PPC60x address bits 0-7. For larger SDRAM sizes

Address $FEF80018

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name RAM A BASE RAM B BASE RAM C BASE RAM D BASE
Operation READ/WRITE READ/WRITE READ/WRITE READ/WRITE
Reset 0 PL 0 PL 0 PL 0 PL
http://www.motorola.com/computer/literature 3-43

System Memory Controller (SMC)

3

le of

cks

rnal

at
e
he

ber

the lower significant bits of A/B/C/D BASE are ignored. This means
that the block’s base address will always appear at an even multip
its size. Remember that bit 0 is MSB.

Note RAM_E/F/G/H_BASE are located at $FEF800C8 (refer to the
section on SDRAM Base Address Register (Blocks E/F/G/H).
They operate the same for blocks E-H as these bits do for blo
A-D.

Also note that the combination of RAM_X_BASE and
ram_x_siz should never be programmed such that SDRAM
responds at the same address as the CSR, ROM/Flash, Exte
Register Set, or any other slave on the PowerPC bus.

CLK Frequency Register

CLK FREQUENCY These bits should be programmed with the
hexadecimal value of the operating CLOCK frequency in MHz (th
is, $42 for 66 MHz). When these bits are programmed this way, th
chip’s prescale counter produces a 1 MHz (approximate) output. T
output of the chip prescale counter is used by the refresher/scrub
and the 32-bit counter. After power-up, this register is initialized to
$64 (for 100 MHz). The formula is:

Counter_Output_Frequency =
(Clock Frequency)/CLK_FREQUENCY

Address $FEF80020

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name CLK
FREQUENCY

0 0 0 0 0 0 0 por

Operation READ/WRITE READ ZERO READ ZERO

R R R R R R R R
/C

Reset 64 P X X

X X X X X X X 1 P
3-44 Computer Group Literature Center Web Site

Programming Model

3
s
M
e

y

d
ay
en
ke
For example, if the Clock Frequency is 100 MHz and
CLK_FREQUENCY is $64, then the counter output frequency is
100 MHz/100 = 1 MHz.

When the CLK pin is operating slower than 100 MHz, software should
program CLK_FREQUENCY to be at least as slow as the CLK pin’
frequency as soon as possible after power-up reset so that SDRA
refresh does not get behind. It is okay for the software then to tak
some time to up CLK_FREQUENCY to the correct value. Refresh
will get behind only when the actual CLK pin’s frequency is lower
than the value programmed into CLK_FREQUENCY.

por por is set by the occurrence of power up reset. It is cleared b
writing a one to it. Writing a 0 to it has no effect.

ECC Control Register

refdis When set, refdis causes the refresher and all of its associate
counters and state machines to be cleared and maintained that w
until refdis is removed (cleared). If a refresh cycle is in process wh
refdis is updated by a write to this register, the update does not ta
effect until the refresh cycle has completed. This prevents the
generation of illegal cycles to the SDRAM when refdis is updated.

Address $FEF80028

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name 0 0 0 0 0 refdis
rw

cb
derc
0 0 0 opien
scien
dpien
sien
m

ien
int

0 0 0 0 0 0 0 m
be_m

e

Operation R R R R R R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R
/C READ ZERO R R R R R R R R
/W

Reset X X X X X 0 PL
0 PL
1 PL
X X X 0PL
0 PL
0 PL
0 PL
0P

L
0PL

X X X X X X X 0 PL
http://www.motorola.com/computer/literature 3-45

System Memory Controller (SMC)

3

rwcb When set, rwcb causes reads and writes to SDRAM from the
PPC60x bus to access check-bit data rather than normal data. The data
path used for reading and writing check bits is D0-D7. Each 8-bit
check-bit location services 64 bits of normal data. The figure below
shows the relationship between normal data and check-bit data.

Figure 3-10. Read/Write Check-bit Data Paths

Note that if test software wishes to force a single-bit error to a location
using the rwcb function, the scrubber may correct the location before the
test software gets a chance to check for the single-bit error. This can be
avoided by disabling scrub writes. Also note that writing bad check-bits
can set the elog bit in the Error Logger Register. The writing of check-bits
causes the SMC to perform a read-modify-write to SDRAM. If the location
to which check-bits are being written has a single- or double-bit error, data
in the location may be altered by the write check-bits operation. To avoid
this, it is recommended that the derc bit also be set while the rwcb bit is
set. A possible sequence for performing read-write check-bits is as
follows:

1. Disable scrub writes by clearing the swen bit if it is set.

64 bits

0

Normal
View of
Data

Check-bit
View
(rwcb=1)

0 1 2 3 4 5 6 7

(rwcb=0)
3-46 Computer Group Literature Center Web Site

Programming Model

3

2. Make sure software is not using DRAM at this point, because while
rwcb is set, DRAM will not function as normal memory.

3. Set the derc and rwcb bits in the Data Control register.

4. Perform the desired read and/or write check-bit operations.

5. Clear the derc and rwcb bits in the Data Control register.

6. Perform the desired testing related to the location/locations that
have had their check-bits altered.

7. Enable scrub writes by setting the swen bit if it was set before.

derc Setting derc to one alters SMC operation as follows:

1. During reads, data is presented to the PPC60x data bus uncorrected
from the SDRAM array.

2. During single-beat writes, data is written without correcting single-
bit errors that may occur on the read portion of the read-modify-
write. Check-bits are generated for the data being written.

3. During single-beat writes, the write portion of the read-modify-
write happens regardless of whether there is a multiple-bit error
during the read portion. No correction of data is attempted. Check-
bits are generated for the data being written.

4. During scrub cycles, if swen is set, a read-writes to SDRAM
happens with no attempt to correct data bits. Check-bits are
generated for the data being written.

derc is useful for initializing SDRAM after power-up and for testing
SDRAM, but it should be cleared during normal system operation.

apien When apien is set, the logging of a PPC60x address parity error
causes the int bit to be set if it is not already. When the int bit is set,
the Hawk’s internal SMC_INT signal to the MPIC is asserted.

scien When scien is set, the rolling over of the SBE COUNT register
causes the int bit to be set if it is not already. When the int bit is set,
the Hawk’s internal SMC_INT signal to the MPIC is asserted.
http://www.motorola.com/computer/literature 3-47

System Memory Controller (SMC)

3

es

 is
nal

lse

-
s
 not
ment
dpien When dpien is set, the logging of a PPC60x data parity error
causes the int bit to be set if it is not already. When the int bit is set,
the Hawk’s internal SMC_INT signal to the MPIC is asserted.

sien When sien is set, the logging of a single-bit error causes the int
bit to be set if it is not already. When the int bit is set, the Hawk’s
internal SMC_INT signal to the MPIC is asserted.

mien When mien is set, the logging of a non-correctable error caus
the int bit to be set if it is not already. When the int bit is set, the
Hawk’s internal SMC_INT signal to the MPIC is asserted.

int int is set when one of the SMC’s interrupt conditions occurs. It
cleared by reset or by software writing a one to it. The Hawk’s inter
SMC_INT signal tracks int. When int is set, SMC_INT is asserted.
When int is cleared, SMC_INT is negated.

mbe_me When mbe_me is set, the detection of a multiple-bit error
during a PowerPC read or write to SDRAM causes the SMC to pu
its machine check interrupt request pin (MCHK0_) true. When
mbe_me is cleared, the SMC does not assert its MCHK0_ pin on
multiple-bit errors.

Note The SMC never asserts its MCHK0_ pin in response to a
multiple-bit error detected during a scrub cycle.

!
Caution

The SMC_INT (internal signal) and the MCHK0_ pin are the only non
polled notification that a multiple-bit error has occurred. The SMC doe
not assert TEA as a result of a multiple bit error. In fact, the SMC does
have a TEA_ signal pin and it assumes that the system does not imple
TEA.
3-48 Computer Group Literature Center Web Site

Programming Model

3

Error Logger Register

elog When set, elog indicates that a single- or a multiple-bit error has
been logged by the SMC. If elog is set by a multiple-bit error, then no
more errors will be logged until software clears it. If elog is set by a
single-bit error, then no more single-bit errors will be logged until
software clears it, however if elog is set by a single-bit error and a
multiple-bit error occurs, the multiple-bit error will be logged and the
single-bit error information overwritten. elog can only be set by the
logging of an error and cleared by the writing of a one to itself or by
power-up reset.

escb escb indicates the entity that was accessing SDRAM at the last
logging of a single- or multiple-bit error by the SMC. If escb is 1, it
indicates that the scrubber was accessing SDRAM. If escb is 0, it
indicates that the PPC60x bus master was accessing SDRAM.

esen When set, esen allows errors that occur during scrubs to be
logged. When cleared, esen does not allow errors that occur during
scrubs to be logged.

embt embt is set by the logging of a multiple-bit error. It is cleared by
the logging of a single-bit error. It is undefined after power-up reset.
The syndrome code is meaningless if its embt bit is set.

esbt esbt is set by the logging of a single-bit error. It is cleared by the
logging of a multiple-bit error. When the SMC logs a single-bit error,
the syndrome code indicates which bit was in error. (Refer to the
section on ECC Codes.)

Address $FEF80030

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name elog
0 0 0 escb
esen
em

bt
esbt ERR_SYNDRO

ME

0 esblk0
esblk1
esblk2
0 0 0 scof SBE_COUNT

Operation R
/C

R R R R R
/W

R R

READ ONLY

R R R R R R R R
/C READ/WRITE

Reset 0 P
X X X 0 P
0 PL
0 P
0 P 0P

X 0P 0P 0P X X X 0 P 0P
http://www.motorola.com/computer/literature 3-49

System Memory Controller (SMC)

3

ERR_SYNDROME ERR_SYNDROME reflects the syndrome
value at the last logging of an error. This eight-bit code indicates the
position of the data error. When all the bits are zero, there was no error.
Note that if the logged error was multiple-bit then these bits are
meaningless. Refer to the section on ECC Codes for a decoding of the
syndromes.

esblk0,esblk1, esbik2 Together these three bits indicate which block
of SDRAM was being accessed when the SMC logged a scrub error.
esblk0,esblk1, esbik2 are 0,0,0 for Block A; 0,0,1 for Block B; 0,1,0
for Block C; and 0,1,1 for Block D, etc.

scof scof is set by the SBE COUNT register rolling over from $FF to
$00. It is cleared by software writing a 1 to it.

SBE COUNT SBE_COUNT keeps track of the number of single-bit
errors that have occurred since it was last cleared. It counts up by one
each time it detects a single-bit error (independent of the state of the
elog bit). The SBE_COUNT is cleared by power-up reset and by
software writing all zeros to itself. When SBE COUNT rolls over
from $FF to $00, the SMC sets the scof bit. The rolling over of
SBE_COUNT pulses the internal interrupt signal, SMC_INT, low if
the scien bit is set.

Error_Address Register

ERROR_ADDRESS These bits reflect the value that corresponds to
bits 0-28 of the PPC60x address bus when the SMC last logged an
error during a PowerPC access to SDRAM. They reflect the value of
the SCRUB ADDRESS counter if the error was logged during a scrub
cycle.

Address $FEF80038

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name ERROR_ADDRESS 0 0 0
Operation READ ONLY R R R
Reset 0 P X X X
3-50 Computer Group Literature Center Web Site

Programming Model

3

oes

g
Scrub/Refresh Register

scb0,scb1 These bits increment every time the scrubber completes a
scrub of the entire SDRAM. When they reach binary 11, they roll over
to binary 00 and continue. These bits are cleared by power-up reset.

swen When set, swen allows the scrubber to perform write cycles.
When cleared, swen prevents scrubber writes.

SCRUB_FREQUENCY Determines the rate of scrubbing by setting
the roll-over count for the scrub prescale counter. Each time the SMC
performs a refresh burst, the scrub prescale counter increments by one.
When the scrub prescale counter reaches the value stored in this
register, it clears and resumes counting starting at 0.

Note that when this register is all 0’s, the scrub prescale counter d
not increment, disabling any scrubs from occurring. Since
SCRUB_FREQUENCY is cleared to 0’s at power-up reset, scrubbin
is disabled until software programs a non-zero value into it.

Address $FEF80040

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name
sc

b0
sc

b1
0 0 0 0 0 sw

en SCRUB
FREQUENCY

Operation

R R R R R R R R
/W READ ZERO READ ZERO READ/WRITE

Reset

0
P

0
P

X X X X X 0
P X X $00 P
http://www.motorola.com/computer/literature 3-51

System Memory Controller (SMC)

3

Scrub Address Register

SCRUB ADDRESS These bits form the address counter used by the
scrubber for all blocks of SDRAM. The scrub address counter
increments by one each time a scrub to one location completes to all
of the blocks of SDRAM. When it reaches all 1s, it rolls back over to
all 0’s and continues counting. The SCRUB_ADDRESS counter is
readable and writable for test purposes.

Note Note that for each block, the most significant bits of SCRUB
ADDRESS COUNTER are meaningful only when their
SDRAM devices are large enough to require them.

Address $FEF80048

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name 0 0 0 SCRUB ADDRESS 0 0 0

Operation R R R READ/WRITE R R R

Reset X X X 0 P X X X
3-52 Computer Group Literature Center Web Site

Programming Model

3

C’s

wer

ize.
.

h
,
s.

d
ROM A Base/Size Register

Writes to this register must be enveloped by a period of time in which no
accesses to ROM/Flash Block A, occur. A simple way to provide the
envelope is to perform at least two accesses to this or another of the SM
registers before and after the write.

ROM A BASE These control bits define the base address for
ROM/Flash Block A. ROM A BASE bits 0-11 correspond to PPC60x
address bits 0-11 respectively. For larger ROM/Flash sizes, the lo
significant bits of ROM A BASE are ignored. This means that the
block’s base address will always appear at an even multiple of its s
ROM A BASE is initialized to $FF0 at power-up or local bus reset

Note Note that in addition to the programmed address, the first 1
Mbyte of Block A also appears at $FFF00000 - $FFFFFFFF if
the rom_a_rv bit is set and the rom_b_rv bit is cleared.

Also note that the combination of ROM_A_BASE and
rom_a_siz should never be programmed such that ROM/Flas
Block A responds at the same address as the CSR, SDRAM
External Register Set, or any other slave on the PowerPC bu

rom_a_64 rom_a_64 indicates the width of ROM/Flash being use
for Block A. When rom_a_64 is cleared, Block A is 16 bits wide,
where each half of SMC interfaces to eight bits. When rom_a_64 is

Address $FEF80050

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name ROM A BASE

rom
_a_64

rom
 a siz0

rom
 a siz1

rom
 a siz2

0 0 0 0 0 rom
_a_rv

rom
 a en

rom
 a w

e

Operation READ/WRITE

R R
/W

R
/W

R
/W READ ZERO

R R R R R R
/W

R
/W

R
/W

Reset $FF0 PL

V
 P

0 PL
0 PL
0 PL X

X X X X X V
 P

0 PL
0 PL
http://www.motorola.com/computer/literature 3-53

System Memory Controller (SMC)

3

set, Block A is 64 bits wide, where each half of the SMC interfaces to
32 bits. rom_a_64 matches the value that was on the RD2 pin at
power-up reset. It cannot be changed by software.

rom a siz The rom a siz control bits are the size of ROM/Flash for
Block A. They are encoded as shown in the following table.

rom_a_rv and rom_b_rv determine which if either of Blocks A and
B is the source of reset vectors or any other access in the range
$FFF00000 - $FFFFFFFF as shown in the table below.

rom_a_rv is initialized at power-up reset to match the value on the
RD0 pin.

Table 3-11. ROM Block A Size Encoding

rom a siz BLOCK
SIZE

%000 1MB

%001 2MB

%010 4MB

%011 8MB

%100 16MB

%101 32MB

%110 64MB

%111 Reserved

Table 3-12. rom_a_rv and rom_b_rv encoding

rom_a_rv rom_b_rv Result

0 0 Neither Block is the source of
reset vectors.

0 1 Block B is the source of reset
vectors.

1 0 Block A is the source of reset
vectors.

1 1 Block B is the source of reset
vectors.
3-54 Computer Group Literature Center Web Site

Programming Model

3

rom a en When rom a en is set, accesses to Block A ROM/Flash in
the address range selected by ROM A BASE are enabled. When rom
a en is cleared, they are disabled.

rom a we When rom a we is set, writes to Block A ROM/Flash are
enabled. When rom a we is cleared, they are disabled. Note that if
rom_a_64 is cleared, only 1-byte writes are allowed. If rom_a_64 is
set, only 4-byte writes are allowed. The SMC ignores other writes. If
a valid write is attempted and rom a we is cleared, the write does not
happen but the cycle is terminated normally. See the following table
for details of ROM/Flash accesses.

Table 3-13. Read/Write to ROM/Flash

Cycle Transfer
Size

Alignment rom_x_64 rom_x_we Hawk Response

write 1-byte X 0 0 Normal termination, but
no write to ROM/Flash

write 1-byte X 0 1 Normal termination, write
occurs to ROM/Flash

write 1-byte X 1 X No Response

write 4-byte Misaligned X X No Response

write 4-byte Aligned 0 X No Response

write 4-byte Aligned 1 0 Normal termination, but
no write to ROM/Flash

write 4-byte Aligned 1 1 Normal termination, write
occurs to ROM/Flash

write 2,3,5,6,7,
8,32-byte

X X X No Response

read X X X X Normal Termination
http://www.motorola.com/computer/literature 3-55

System Memory Controller (SMC)

3

C’s

wer

ize.
.

h
,
s.

ht
ROM B Base/Size Register

Writes to this register must be enveloped by a period of time in which no
accesses to ROM/Flash Block B, occur. A simple way to provide the
envelope is to perform at least two accesses to this or another of the SM
registers before and after the write.

ROM B BASE These control bits define the base address for
ROM/Flash Block B. ROM B BASE bits 0-11 correspond to PPC60x
address bits 0 - 11 respectively. For larger ROM/Flash sizes, the lo
significant bits of ROM B BASE are ignored. This means that the
block’s base address will always appear at an even multiple of its s
ROM B BASE is initialized to $FF4 at power-up or local bus reset

Note Note that in addition to the programmed address, the first 1
Mbyte of Block B also appears at $FFF00000 - $FFFFFFFF if
the rom_b_rv bit is set.

Also note that the combination of ROM_B_BASE and
rom_b_siz should never be programmed such that ROM/Flas
Block B responds at the same address as the CSR, SDRAM
External Register Set, or any other slave on the PowerPC bu

rom_b_64 rom_b_64 indicates the width of ROM/Flash
device/devices being used for Block B. When rom_b_64 is cleared,
Block B is 16 bits wide, where each half of the SMC interfaces to eig

Address $FEF80058

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name ROM B BASE

rom
_b_64

rom
 b siz0

rom
 b siz1

rom
 b siz2

0 0 0 0 0 rom
_b_rv

rom
 b en

rom
 b w

e

Operation READ/WRITE

R R
/W

R
/W

R
/W READ ZERO

R R R R R R
/W

R
/W

R
/W

Reset $FF4 PL

V
 P

0 P
L

0 P
L

0 P
L X

X X X X X V
 P

0 P
L

0 P
L

3-56 Computer Group Literature Center Web Site

Programming Model

3

bits. When rom_b_64 is set, Block B is 64 bits wide, where each half
of the SMC interfaces to 32 bits. rom_b_64 matches the value that was
on the RD3 pin at power-up reset. It cannot be changed by software.

rom b siz The rom b siz control bits are the size of ROM/Flash for
Block B. They are encoded as shown in the following table.

rom_b_rv and rom_a_rv determine which if either of Blocks A and
B is the source of reset vectors or any other access in the range
$FFF00000 - $FFFFFFFF as shown in Table 3-12.

rom_b_rv is initialized at power-up reset to match the value on the
RD1 pin.

rom b en When rom b en is set, accesses to Block B ROM/Flash in
the address range selected by ROM B BASE are enabled. When
rom b en is cleared they are disabled.

rom b we When rom b we is set, writes to Block B ROM/Flash are
enabled. When rom b we is cleared they are disabled. Refer back to
Table 3-13 for more details.

Table 3-14. ROM Block B Size Encoding

rom b siz BLOCK
SIZE

%000 1Mbytes

%001 2Mbytes

%010 4Mbytes

%011 8Mbytes

%100 16Mbytes

%101 32Mbytes

%110 64Mbytes

%111 Reserved
http://www.motorola.com/computer/literature 3-57

System Memory Controller (SMC)

3

r
ROM Speed Attributes Registers

rom_a_spd0,1 rom_a_spd0,1 determine the access timing used for
ROM/Flash Block A. The encoding of these bits are shown in Table
3-15.

The device access times shown in the table are conservative and allow
time for buffers on address, control, and data signals. For more
accurate information see the sections entitled ROM/Flash Speeds and
External Register Set.

Writes that change these bits must be enveloped by a period of time in
which no accesses to ROM/Flash Block A, occur. A simple way to
provide the envelope is to perform at least two accesses to this or
another of the SMC’s registers before and after the write.

rom_b_spd0,1 rom_b_spd0,1 determines the access timing used fo
ROM/Flash Block B. Refer to the table above.

Address $FEF80060

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 ro
m

 a
 s

pd
0

ro
m

 a
 s

pd
1

0 0 ro
m

 b
 s

pd
0

ro
m

 b
 s

pd
1

Operation READ ZERO READ ZERO READ ZERO

R R R
/W

R
/W

R R R
/W

R
/W

Reset X X X

X X 0
PL

0
PL

X X 0
PL

0
PL

Table 3-15. ROM Speed Bit Encodings

rom_a/b_spd0,1 Approximate ROM Block A/B Device Access Time

%00 12 Clock Periods (120 ns @ 100 MHz, 180ns @ 66.67 MHz)

%01 8 Clock Periods (80 ns @ 100 MHz, 120ns @ 66.67 MHz)

%10 5 Clock Periods (50 ns @ 100 MHz, 75ns @ 66.67 MHz)

%11 3 Clock Periods (30 ns @100 MHz, 45ns @ 66.67 MHz)
3-58 Computer Group Literature Center Web Site

Programming Model

3

o

n

ll

ites

ch
Writes that change these bits must be enveloped by a period of time in
which no accesses to ROM/Flash, Bank B, occur. A simple way to
provide the envelope is to perform at least two accesses to this or
another of the SMC’s registers before and after the write.

Data Parity Error Log Register

dpelog dpelog is set when a parity error occurs on the PPC60x data
bus during a PPC60x data cycle whose parity the SMC is qualified t
check. It is cleared by writing a one to it or by power-up reset.

dpe_tt0-4 dpe_tt is the value that was on the TT0-TT4 signals whe
the dpelog bit was set.

DPE_DP DPE_DP is the value that was on the DP0-DP7 signals
when the dpelog bit was set.

dpe_ckall When dpe_ckall is set, the Hawk checks data parity on a
cycles in which TA_ is asserted. When dpe_ckall is cleared, the Hawk
checks data parity on cycles when TA_ is asserted only during wr
to the Hawk.

Note Note that the Hawk does not check parity during cycles in whi
there is a qualified ARTRY_ at the same time as the TA_

Address $FEF80068

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

dp
el

og
0 0 dp

e_
tt

0
dp

e_
tt

1
dp

e_
tt

2
dp

e_
tt

3
dp

e_
tt

4

DPE_DP

0 0 0 0 0 0 dp
e_

ck
al

l
dp

e_
m

e

GWDP

Operation

R
/C

R R R R R R R

READ ONLY

R R R R R R R
/W

R
/W READ/WRITE

Reset

0
P

X 0
P

0
P

0
P

0
P

0
P 0 P

X X X X X X 0
PL

0
PL 0 PL
http://www.motorola.com/computer/literature 3-59

System Memory Controller (SMC)

3

dpe_me When dpe_me is set, the transition of the dpelog bit from
false to true causes the Hawk to pulse its machine check interrupt
request pin (MCHK0_) true. When dpe_me is cleared, the Hawk does
not assert its MCHK0_ pin based on the dpelog bit.

GWDP The GWDP0-GWDP7 bits are used to invert the value that is
driven onto DP0-DP7 respectively during reads to the Hawk. This
allows test software to generate wrong (even) parity on selected byte
lanes. For example, to create a parity error on DH24-DH31 and DP3
during Hawk reads, software should set GWDP3.

Data Parity Error Address Register

DPE_A DPE_A is the address of the last PPC60x data bus parity error
that was logged by the Hawk. It is updated only when dpelog goes
from 0 to 1.

Data Parity Error Upper Data Register

DPE_DH DPE_DH is the value on the upper half of the PPC60x data
bus at the time of the last logging of a PPC60x data bus parity error by
the Hawk. It is updated only when dpelog goes from 0 to 1.

Address $FEF80070

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name DPE_A
Operation READ ONLY
Reset 0 PL

Address $FEF80078

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Name DPE_DH
Operation READ ONLY
Reset 0 PL
3-60 Computer Group Literature Center Web Site

Programming Model

3

Data Parity Error Lower Data Register

DPE_DL DPE_DL is the value on the lower half of the PPC60x data
bus at the time of the last logging of a PPC60x data bus parity error by
the Hawk. It is updated only when dpelog goes from 0 to 1.

I2C Clock Prescaler Register

I2_PRESCALE_VAL I2_PRESCALE_VAL is a 16-bit register
value that will be used in the following formula for calculating
frequency of the I2C gated clock signal:

I2C CLOCK = SYSTEM CLOCK/ (I2_PRESCALE_VAL +1)/2

After power-up, I2_PRESCALE_VAL is initialized to $1F3 which
produces a 100 KHz I2C gated clock signal based on a 100.0 MHz
system clock. Writes to this register will be restricted to 4-bytes only.

Address $FEF80080

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name DPE_DL
Operation READ ONLY
Reset 0 PL

Address $FEF80090

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name I2_PRESCALE_VAL

Operation READ ZERO READ ZERO READ/WRITE
Reset X X $01F3 P
http://www.motorola.com/computer/literature 3-61

System Memory Controller (SMC)

3

t
e in
I2C Control Register

i2_start When set, the I2C master controller generates a start
sequence on the I2C bus on the next write to the I2C Transmitter Data
Register and clears the i2_cmplt bit in the I2C Status Register. After
the start sequence and the I2C Transmitter Data Register contents have
been transmitted, the I2C master controller will automatically clear the
i2_start bit and then set the i2_cmplt bit in the I2C Status Register.

i2_stop When set, the I2C master controller generates a stop sequence
on the I2C bus on the next dummy write (data=don’t care) to the I2C
Transmitter Data Register and clears the i2_cmplt bit in the I2C Status
Register. After the stop sequence has been transmitted, the I2C master
controller will automatically clear the i2_stop bit and then set the
i2_cmplt bit in the I2C Status Register.

i2_ackout When set, the I2C master controller generates an
acknowledge on the I2C bus during read cycles. This bit should be
used only in the I2C sequential read operation and must remain cleared
for all other I2C operations. For I2C sequential read operation, this bi
should be set for every single byte received except on the last byt
which case it should be cleared.

i2_enbl When set, the I2C master interface will be enabled for I2C
operations. If clear, reads and writes to all I2C registers are still
allowed but no I2C bus operations will be performed.

Address $FEF80098

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 0 0 i2
_s

ta
rt

i2
_s

to
p

i2
_a

ck
ou

t
i2

_e
nb

l

Operation READ ZERO READ ZERO READ ZERO

R R R R R
/W

R
/W

R
/W

R
/W

Reset X X X

X X X X 0
PL

0
PL

0
PL

0
PL
3-62 Computer Group Literature Center Web Site

Programming Model

3

I2C Status Register

i2_datin This bit is set whenever the I2C master controller has
successfully received a byte of read data from an I2C bus slave device.
This bit is cleared after the I2C Receiver Data Register is read.

i2_err This bit is set when both i2_start and i2_stop bits in the I2C
Control Register are set at the same time. The I2C master controller
will then clear the contents of the I2C Control Register, and further
writes to the I2C Control Register will not be allowed until after the
I2C Status Register is read. A read from the I2C Status Register will
clear this bit.

i2_ackin This bit is set if the addressed slave device is acknowledged
to either a start sequence or data writes from the I2C master controller
and cleared otherwise. The I2C master controller will automatically
clear this bit at the beginning of the next valid I2C operation.

i2_cmplt This bit is set after the I2C master controller has successfully
completed the requested I2C operation and cleared at the beginning of
every valid I2C operation. This bit is also set after power-up.

Address $FEF800A0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 0 0 i2
_d

at
in

i2
_e

rr
i2

_a
ck

in
i2

_c
m

pl
t

Operation READ ZERO READ ZERO READ ZERO R R R R R R R R

Reset X X X

X X X X 0
PL

0
PL

0
PL

1
PL
http://www.motorola.com/computer/literature 3-63

System Memory Controller (SMC)

3

 to
o
I2C Transmitter Data Register

I2_DATAWR The I2_DATAWR contains the transmit byte for I2C
data transfers. If a value is written to I2_DATAWR when the i2_start
and i2_enbl bits in the I2C Control Register are set, a start sequence is
generated immediately followed by the transmission of the contents of
the I2_DATAWR to the responding slave device. The
I2_DATAWR[24:30] is the device address, and the I2_DATAWR[31]
is the WR/RD bit (0=WRite, 1=ReaD). After a start sequence with
I2_DATAWR[31]=0, subsequent writes to the I2C Transmitter Data
Register will cause the contents of I2_DATAWR to be transmitted to
the responding slave device. After a start sequence with
I2_DATAWR[31]=1, subsequent writes to the I2C Transmitter Data
Register (data=don’t care) will cause the responding slave device
transmit data to the I2C Receiver Data Register. If a value is written t
I2_DATAWR (data=don’t care) when the i2_stop and i2_enbl bits in
the I2C Control Register are set, a stop sequence is generated.

Address $FEF800A8

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name I2_DATAWR
Operation READ ZERO READ ZERO READ ZERO READ/WRITE
Reset X X X 0 PL
3-64 Computer Group Literature Center Web Site

Programming Model

3

I2C Receiver Data Register

I2_DATARD The I2_DATARD contains the receive byte for I2C
data transfers. During I2C sequential read operation, the current
receive byte must be read before any new one can be brought in. A
read of this register will automatically clear the i2_datin bit in the I2C
Status Register.

SDRAM Enable and Size Register (Blocks E,F,G,H)

Writes to this register must be enveloped by a period of time in which no
accesses to SDRAM occur. The requirements of the envelope are that all
SDRAM accesses must have completed before the write starts and none
should begin until after the write is done. A simple way to do this is to
perform at least two read accesses to this or another register before and
after the write.

Address $FEF800B0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name I2_DATARD

Operation READ ZERO READ ZERO READ ZERO READ
Reset X X X 0 PL

Address $FEF800C0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

ra
m

 e
 e

n
0 0 0 ra

m
 e

 s
iz

0
ra

m
 e

 s
iz

1
ra

m
 e

 s
iz

2
ra

m
 e

 s
iz

3
ra

m
 f

 e
n

0 0 0 ra
m

 f
 s

iz
0

ra
m

 f
 s

iz
1

ra
m

 f
 s

iz
2

ra
m

 f
 s

iz
3

ra
m

 g
 e

n
0 0 0 ra

m
 g

 s
iz

0
ra

m
 g

 s
iz

1
ra

m
 g

 s
iz

2
ra

m
 g

 s
iz

3
ra

m
 h

 e
n

0 0 0 ra
m

 h
 s

iz
0

ra
m

 h
 s

iz
1

ra
m

 h
 s

iz
2

ra
m

 h
 s

iz
3

Operation

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

Reset

0
P

L
X X X 0

P
0

P
0

P
0

P
0

P
L

X X X 0
P

0
P

0
P

0
P

0
P

L
X X X 0

P
0

P
0

P
0

P
0

P
L

X X X 0
P

0
P

0
P

0
P

http://www.motorola.com/computer/literature 3-65

System Memory Controller (SMC)

3

ge
ne

pe.

ng

on

its

 no
t all

one
Additionally, sometime during the envelope, before or after the write, all
of the SDRAMs open pages must be closed and the Hawk’s open pa
tracker reset. The way to do this is to allow enough time for at least o
SDRAM refresh to occur by waiting for the 32-Bit Counter to increment
at least 100 times. The wait period needs to happen during the envelo

ram e/f/g/h en ram e/f/g/h en enables accesses to the correspondi
block of SDRAM when set, and disables them when cleared.

Note ram a/b/c/d en are located at $FEF80010 (refer to the section
SDRAM Enable and Size Register (Blocks A, B, C, D) for more
information). They operate the same for blocks A-D as these b
do for blocks E-H.

ram e/f/g/h siz0-3 These control bits define the size of their
corresponding block of SDRAM.

Note ram a/b/c/d siz0-3 are located at $FEF80010. They operate
identically for blocks A-D as these bits do for blocks E-H. The
table associated with the previous section on blocks A,B,C,D
shows how these bits relate to the block configuration.

SDRAM Base Address Register (Blocks E/F/G/H)

Writes to this register must be enveloped by a period of time in which
accesses to SDRAM occur. The requirements of the envelope are tha
SDRAM accesses must have completed before the write starts and n

Address $FEF800C8

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Name RAM E BASE RAM F BASE RAM G BASE RAM H BASE
Operation READ/WRITE READ/WRITE READ/WRITE READ/WRITE
Reset 0 PL 0 PL 0 PL 0 PL
3-66 Computer Group Literature Center Web Site

Programming Model

3
ge
ne
 at
.

or

,

n

as

ame
ther
should begin until after the write is done. A simple way to do this is to
perform at least two read accesses to this or another register before and
after the write.

Additionally, sometime during the envelope, before or after the write, all
of the SDRAMs’ open pages must be closed and the Hawk’s open pa
tracker reset. The way to do this is to allow enough time for at least o
SDRAM refresh to occur by waiting for the 32-bit Counter to increment
least 100 times. The wait period needs to happen during the envelope

RAM E/F/G/H BASE These control bits define the base address f
their block’s SDRAM. RAM E/F/G/H BASE bits 0-7/8-15/16-23/24-
31 correspond to PPC60x address bits 0 - 7. For larger SDRAM sizes
the lower significant bits of RAM E/F/G/H BASE are ignored. This
means that the block’s base address will always appear at an eve
multiple of its size. Remember that bit 0 is MSB.

Note RAM A/B/C/D BASE are located at $FEF80018 (refer to the
section titled SDRAM Base Address Register (Blocks A/B/C/D)
for more information). They operate the same for blocks A-D
these bits do for blocks E-H.

Also note that the combination of RAM_X_BASE and ram_x_siz
should never be programmed such that SDRAM responds at the s
address as the CSR, ROM/Flash, External Register Set, or any o
slave on the PowerPC bus.
http://www.motorola.com/computer/literature 3-67

System Memory Controller (SMC)

3

y to

d by
they
-set
o
ses

s if

ith

SDRAM Speed Attributes Register

The SDRAM Speed Attributes Register should be programmed based on
the SDRAM device characteristics and the Hawk’s operating frequenc
ensure reliable operation.

In order for writes to this register to work properly they should be
separated from any SDRAM accesses by a refresh before the write an
another refresh after the write. The refreshes serve two purposes: 1)
make sure that all of the SDRAMs are idle ensuring that mode-register
operations for cl3 updates work properly, and 2) they make sure that n
SDRAM accesses happen during the write. A simple way to meet the
requirements is to use the following sequence:

1. Make sure all accesses to SDRAM are done.

2. Wait for the 32-Bit Counter to increment at least 100 times.

3. Perform the write/writes to this register (and other SMC register
desired)

4. Wait again for the 32-Bit Counter to increment at least 100 times
before resuming accesses to SDRAM.

cl3 When cl3 is cleared, the SMC assumes that the SDRAM runs w
a CAS_ latency of 2. When cl3 is set, the SMC assumes that it runs
with a CAS_latency of 3.

Address $FEF800D0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name
0 0 0 cl

3
0 tr
c0

tr
c1

tr
c2 0 0 tr
as

0
tr

as
1

0 0 sw
r_

dp
ll

td
p

0 0 0 tr
p 0 0 0 tr
cd 0 0 0 0 0 0 0 0

Operation

R R R R
/W

R R
/W

R
/W

R
/W

R R R
/W

R
/W

R R R
/W

R
/W

R R R R
/W

R R R R
/W

R R R R R R R R

Reset

X X X 1
P

X 0
P

1
P

1
P

X X 1
P

1
P

X X 1
P

1
P

X X X 1
P

X X X 1
P

X X X X X X X X
3-68 Computer Group Literature Center Web Site

Programming Model

3
s

rc

AS
Note Writing so as to change cl3 from 1 to 0 or vice-versa causes the
SMC to perform a mode-register-set operation to the SDRAM
array. The mode-register-set operation updates the SDRAM’
CAS_latency to match cl3.

trc0,1,2 Together trc0,1,2 determine the minimum number of clock
cycles that the SMC assumes the SDRAM requires to satisfy its T
parameter. These bits are encoded as follows:

tras0,1 Together tras0,1 determine the minimum number of clock
cycles that the SMC assumes the SDRAM requires to satisfy its tR
parameter. These bits are encoded as follows:

Table 3-16. Trc Encoding

trc0,1,2 Minimum Clocks for Trc

%000 8

%001 9

%010 10

%011 11

%100 reserved

%101 reserved

%110 6

%111 7

Table 3-17. tras Encoding

tras0,1 Minimum Clocks for tras

%00 4

%01 5

%10 6

%11 7
http://www.motorola.com/computer/literature 3-69

System Memory Controller (SMC)

3

swr_dpl swr_dpl causes the SMC to always wait until four clocks
after the write command portion of a single write before allowing a
precharge to occur. This function may not be required. If such is the
case, swr_dpl can be cleared by software.

tdp tdp determines the minimum number of clock cycles that the
SMC assumes the SDRAM requires to satisfy its tdp parameter. When
tdp is 0, the minimum time provided for Tdp is 1 clock. When tdp is
1, the minimum is 2 clocks.

trp trp determines the minimum number of clock cycles that the SMC
assumes the SDRAM requires to satisfy its Trp parameter. When trp is
0, the minimum time provided for Trp is 2 clocks. When trp is 1, the
minimum is 3 clocks.

trcd trcd determines the minimum number of clock cycles that the
SMC assumes the SDRAM requires to satisfy its trcd parameter.
When trcd is 0, the minimum time provided for trcd is 2 clocks. When
trcd is 1, the minimum is 3 clocks.

Address Parity Error Log Register

apelog apelog is set when a parity error occurs on the PPC60x address
bus during any PPC60x address cycle (TS_ asserted to AACK_
asserted). It is cleared by writing a one to it or by power-up reset.

ape_tt0-4 ape_tt is the value that was on the TT0-TT4 signals when
the apelog bit was set.

Address $FEF800E0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

ap
el

og
0 0 ap

e_
tt

0
ap

e_
tt

1
ap

e_
tt

2
ap

e_
tt

3
ap

e_
tt

4
0 0 0 0 ap

e_
ap

0
ap

e_
ap

1
ap

e_
ap

2
ap

e_
ap

3
0 0 0 0 0 0 0 ap

e_
m

e

Operation

R
/C

R R
/W READ ZERO

Reset

0
P

X X 0
P

0
P

0
P

0
P

0
P

X X X X 0
P

0
P

0
P

0
P

X X X X X X X 0
PL X
3-70 Computer Group Literature Center Web Site

Programming Model

3

ape_ap0-3 APE_AP is the value that was on the AP0-AP7 signals
when the apelog bit was set.

ape_me When ape_me is set, the transition of the apelog bit from
false to true causes the Hawk to pulse its machine check interrupt
request pin (MCHK0_) true. When ape_me is cleared, apelog does
not affect the MCHK0_ pin.

Address Parity Error Address Register

APE_A APE_A is the address of the last PPC60x address bus parity
error that was logged by the Hawk. It is updated only when apelog
goes from 0 to 1.

32-Bit Counter

CTR32 CTR32 is a 32-bit, free-running counter that increments once
per microsecond if the CLK_FREQUENCY register has been
programmed properly. Notice that CTR32 is cleared by power-up and
local reset.

Address $FEF800E8

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name APE_A
Operation READ ONLY
Reset 0 PL

Address $FEF80100

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name CTR32
Operation READ/WRITE
Reset 0 PL
http://www.motorola.com/computer/literature 3-71

System Memory Controller (SMC)

3

en
r

0-
Note When the system clock is a fractional frequency, such as
66.67 MHz, CTR32 will count at a fractional amount faster or
slower than 1MHz, depending on the programming of the
CLK_FREQUENCY Register.

External Register Set

EXTERNAL REGISTER SET The EXTERNAL REGISTER
SET is user provided and is external to the Hawk. It is enabled only
when the tben_en bit is cleared. When the tben_en bit is set, the
EXTERNAL REGISTER SET is disabled and the Hawk does not
respond in its range except for the tben register at $FEF88300.

The tben register (which is internal to Hawk) responds only when
tben_en is set.

The Hawk’s EXTERNAL REGISTER SET interface is similar to
that for ROM/Flash Block A and B. In fact, another name for the
External Register Set is ROM/Flash Block C. The differences betwe
Blocks A/B and C are that the following parameters are fixed rathe
than programmable for Block C.

1. The device speed for Block C is fixed at 11 Clocks.

2. The width for Block C is fixed at 64 bits.

3. The address range for Block C is fixed at $FEF8800
$FEF8FFF8 ($FEF98000-$FEF9FFF8 when Hawk is
configured for the alternate CSR base address).

Address $FEF88000 - $FEF8FFF8

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

EXTERNAL REGISTER SET

Operation READ/WRITE
Reset X PL
3-72 Computer Group Literature Center Web Site

Programming Model

3

4. Block C is never used for reset vectors.

5. Block C is always enabled unless the tben_en bit is set.

6. Writes to Block C cannot be disabled.

Note The fact that the assumed width is 64 bits does not require that all
64 bits have to be used. The system designer can connect the
needed width device to the bits desired for the application.
Devices less than 64 bits will cause holes for addresses
corresponding to non-connected bits.

tben Register

The tben Register is only enabled when the tben_en bit in the Revision
ID/General Control Register is set. When tben_en is cleared, the External
Register Set interface is enabled and appears in its designated range. When
tben_en is set, the External Register Set interface is disabled and the SMC
does not respond to accesses in its designated range except that it responds
to the address of this, tben register.

p1_tben When the tben_en bit is set, the L2CLM_ input pin becomes
the P1_TBEN output pin and it tracks the value on p1_tben. When
p1_tben is 0, the P1_TBEN pin is low and when p1_tben is 1, the
P1_TBEN pin is high.

When the tben_en bit is cleared, p1_tben has no effect on any pin.

Address $FEF88300

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 p1
_t

be
n

p0
_t

be
n

0 0 0 0

Operation

R R R
/W

R
/W

R R R R

READ ZERO READ ZERO READ ZERO

Reset

X X 1
PL

1
PL

X X X X

X X X
http://www.motorola.com/computer/literature 3-73

System Memory Controller (SMC)

3

p0_tben When the tben_en bit is set, the ERCS_ output pin becomes
the P1_TBEN output pin and it tracks the value on p0_tben. When
p0_tben is 0, the P0_TBEN pin is low and when p1_tben is 1, the
P0_TBEN pin is high.

When the tben_en bit is cleared, p0_tben has no effect on any pin.

Note When tben_en is high, L2CLM_ cannot be driven by an external
L2 cache controller and no External Register Set devices can be
controlled.

Software Considerations
This section contains information that will be useful in programming a
system that uses the Hawk.

Programming ROM/Flash Devices

Those who program devices to be controlled by the Hawk should make
note of the address mapping that is shown in Table 3-7 and in Table 3-8.
For example, when using 8-bit devices, the code will be split so that every
other 4-byte segment goes in each device.

Writing to the Control Registers

Software should not change control register bits that affect SDRAM
operation while SDRAM is being accessed. Because of pipelining,
software should always make sure that the two accesses before and after
the updating of critical bits are not SDRAM accesses. A possible scenario
for trouble would be to execute code out of SDRAM while updating the
critical SDRAM control register bits. The preferred method is to be
executing code out of ROM/Flash and avoiding SDRAM accesses while
updating these bits.
3-74 Computer Group Literature Center Web Site

Software Considerations

3

ze,
 for all
s and
-bit

 to
sses

e
d
 at
ed
Some registers have additional requirements for writing. For more
information refer to the register sections in this chapter titled SDRAM
Enable and Size Register (Blocks A, B, C, D), SDRAM Base Address
Register (Blocks A/B/C/D), SDRAM Enable and Size Register (Blocks
E,F,G,H), SDRAM Base Address Register (Blocks E/F/G/H), and SDRAM
Speed Attributes Register.

Since software has no way of controlling refresh/scrub accesses to
SDRAM, the hardware is designed so that updating control bits
coincidentally with refreshes is not a problem.

As with SDRAM control bits, software should not change control bits that
affect ROM/Flash while the affected Block is being accessed. This
generally means that the ROM/Flash size, base address, enable, write
enable, etc. are changed only while executing initially in the reset vector
area ($FFF00000 - $FFFFFFFF).

Initializing SDRAM Related Control Registers

In order to establish proper SDRAM operation, software must configure
control register bits in Hawk that affect each SDRAM block’s speed, si
base address, and enable. The SDRAM speed attributes are the same
blocks and are controlled by one 32-bit register. The size, base addres
enable can be different for each block and are controlled in individual 8
registers.

SDRAM Speed Attributes

The SDRAM speed attributes come up from power-up reset initialized
the slowest settings that Hawk is capable of. This allows SDRAM acce
to be performed before the SDRAM speed attributes are known. An
example of a need for this is when software requires some working
memory that it can use while gathering and evaluating SDRAM devic
data from serial EEPROM’s. Once software knows the SDRAM spee
parameters for all blocks, it should discontinue accessing SDRAM for
least one refresh period before and after it programs the SDRAM spe
attribute bits.
http://www.motorola.com/computer/literature 3-75

System Memory Controller (SMC)

3 the
ow

pen

tes
k’s
d

 that

f 8

le,

e is
 by

is an
se

SDRAM Size

The SDRAM size control bits come up from power-up reset cleared to
zero. Once software has determined the correct size for an SDRAM block,
it should set the block’s size bits to match. The value programmed into
size bits tells the Hawk how big the block is (for map decoding) and h
to translate that block’s 60x addresses to SDRAM addresses.
Programming a block’s size to non-zero also allows it to participate in
scrubbing if scrubbing is enabled.

After software programs the size bits, it should wait for a refresh to hap
before beginning to access SDRAM.

I2C EEPROMs

Most of the information needed to program the SDRAM speed attribu
and size is provided by EEPROM devices that are connected to Haw
I2C bus. The EEPROM devices contain data in a specific format calle
Serial Presence Detect (SPD).

Board designers can implement one EEPROM for each of Hawk’s
SDRAM blocks or they can implement one EEPROM for several such
blocks. When using DIMMs, the board designer can use the EEPROM
is provided on the DIMM.

I2C EEPROMs that are used for SPD can be wired to appear at one o
different device locations. Board designers should establish an I2C
EEPROM addressing scheme that will allow software to know which I2C
address to use to find information for each SDRAM block. For examp
hardware could always place the I2C EEPROM for SDRAM block A at the
first address, block B at the second, etc. Whatever addressing schem
used should also deal with cases where multiple blocks are described
one I2C EEPROM.

SDRAM Base Address and Enable

Each block needs to be programmed for a unique base address that
even multiple of its size. Once a block’s speed attributes, size, and ba
address have been programmed and time for at least one refresh has
passed, it can be enabled.
3-76 Computer Group Literature Center Web Site

Software Considerations

3

.

ion

 it
test

r,
nt.
te 5

nt

ise,

_2
SDRAM Control Registers Initialization Example

The following is a possible sequence for initializing SDRAM control
registers:

1. Get a small piece of SDRAM for software to use for this routine
(optional). This routine assumes that SDRAM related control bits
are still at the power-up-reset default settings. We will use a small
enough piece of SDRAM that the address signals that are affected
by SDRAM size will not matter. For each SDRAM block:

a. Set the block’s base address to some even multiple of 32MB
Refer to the section entitled SDRAM Base Address Register
(Blocks A/B/C/D) for more information.

b. Set the block’s size to 4Mx16 and enable it. Refer to the sect
entitled SDRAM Enable and Size Register (Blocks A, B, C, D) for
more information.

c. Test the first 1MB of the block.

d. If the test fails, disable the block, clear its size to 0MB, disable
and then repeat steps 1 through 5 with the next block. If the
passes, go ahead and use the first 1MB of the block.

2. Using the I2C bus, determine which memory blocks are present.
Using the addressing scheme established by the board designe
probe for SPD’s to determine which blocks of SDRAM are prese
SPD byte 0 could be used to determine SPD presence. SPD by
indicates the number of SDRAM blocks that belong to an SPD.

3. Obtain the CAS latency information for all blocks that are prese
to determine whether to set or to clear the cl3 bit. For each SDRAM
block that is present:

a. Check SPD byte 18 to determine which CAS latencies are
supported.

b. If a CAS latency of 2 is supported, then go to step 3. Otherw
a CAS latency of 3 is all that is supported for this block.

c. If a CAS latency of 2 is supported, check SPD byte 23 to
determine the CAS_latency _2 cycle time. If the CAS_latency
http://www.motorola.com/computer/literature 3-77

System Memory Controller (SMC)

3

cycle time is less than or equal to the period of the system clock
then this block can operate with a CAS latency of 2. Otherwise
a CAS latency of 3 is all that is supported for this block. If any
block does not support a CAS latency of 2, then cl3 is to be set.
If all of the blocks support a CAS latency of 2, then the cl3 bit is
to be cleared. Do not update the cl3 bit at this point. You will use
the information from this step later.

4. Determine the values to use for tras, trp, trcd, and trc. The values
to use for tras, trp, trcd and trc can be obtained from the SPD. The
tras bits determine the minimum tRAS time produced by the Hawk.
The trp bit determines the minimum tRP time produced by the
Hawk, etc. Each set of bits should accommodate the slowest block
of SDRAM. The SPD parameters are specified in nanoseconds and
have to be converted to 60x clock periods for the Hawk. Use the
following table to convert SPD bytes 27, 29 and 30 to the correct
values for tras, trp, trcd and trc. Do not actually update these bits
in the Hawk at this time. You will use the information from this step
later.

Table 3-18. Deriving tras, trp, trcd and trc Control Bit Values from SPD
Information

Control
Bits

Parameter Parameter Expressed
in CLK Periods

Possible Control Bit Values

$FEF800D
1

bits 2,3

(tras)

tRAS

(SPD Byte
30)

tRAS_CLK = tRAS/T

(T = CLK Period

in nanoseconds)

See Notes 1, 2 and 9

0.0 < tRAS_CLK <= 4.0 tras =%00

4.0 < tRAS_CLK <=5.0 tras =%01

5.0 < tRAS_CLK <= 6.0 tras =%10

6.0 < tRAS_CLK <= 7.0 tras =%11

7.0 < tRAS_CLK Illegal

$FEF800D
2

bit 3

(trp)

tRP

(SPD Byte
27)

tRP_CLK = tRP/T

(T = CLK Period

in nanoseconds)

See Notes 3, 4 and 9

0.0 < tRP_CLK <= 2 trp =%0

2.0 < tRP_CLK <= 3 trp =%1

3 < tRP_CLK Illegal
3-78 Computer Group Literature Center Web Site

Software Considerations

3

Notes

1. Use tRAS from the SDRAM block that has the slowest tRAS.

2. tRAS_CLK is tRAS expressed in CLK periods.

3. Use tRP from the SDRAM block that has the slowest tRP.

4. tRP_CLK is tRP expressed in CLK periods.

5. Use tRCD from the SDRAM block that has the slowest tRCD.

6. tRCD_CLK is tRCD expressed in CLK periods.

7. Use tRC from the SDRAM block that has the slowest tRC.

8. tRC_CLK is tRC expressed in CLK periods.

a. Remember that CLK is the Hawk’s 60x clock input pin.

$FEF800D
2

bit 7

(trcd)

tRCD

(SPD Byte
29)

tRCD_CLK = tRCD/T

(T = CLK Period

in nanoseconds)

See Notes 5, 6 and 9

0.0 < tRCD_CLK <= 2 trcd =%0

2.0 < tRCD_CLK <= 3 trcd =%1

3 < tRCD_CLK Illegal

$FEF800D
0

bits 5,6,7

(trc)

tRC

(SPD Bytes
30 and 27)

tRC_CLK = (tRAS +
tRP)/T

(T = CLK Period

in nanoseconds)

See Notes 7, 8 and 9

0.0 < tRC_CLK <= 6.0 trc =%110

6.0 < tRC_CLK <= 7.0 trc =%111

7.0 < tRC_CLK <= 8.0 trc =%000

8.0 < tRC_CLK <= 9.0 trc =%001

9.0 < tRC_CLK <= 10.0 trc =%010

10.0 < tRC_CLK <=
11.0

trc =%011

11.0 < tRC_CLK illegal

Table 3-18. Deriving tras, trp, trcd and trc Control Bit Values from SPD
Information (Continued)

Control
Bits

Parameter Parameter Expressed
in CLK Periods

Possible Control Bit Values
http://www.motorola.com/computer/literature 3-79

System Memory Controller (SMC)

3

on
ing

e 3.

yte

 the

ns
9. Determine the size for each block that is present. (Do not actually
program the Hawk’s size bits at this point. You use this informati
to program them later.) Each block’s size can be determined us
the following algorithm:

a. Calculate the number of rows in each device using SPD byt
If the number of rows is ROWS and the value in SPD byte 3 is R,
then ROWS=2R.

b. Calculate the number of columns in each device using SPD b
4. If the number of columns is COLUMNS and the value in SPD
byte 4 is C, then COLUMNS=2C.

c. Calculate the total number of addresses within each device. If
total number of addresses in a device is A, then A=ROWS X
COLUMNS

d. Calculate the total number of locations in the block using the
results of step 3 and SPD byte 17. If the total number of locatio
in the block is L, and the value in byte 17 is 4, then:
L = A x 4
or
L = 2R X 2C X 4
(Note that the Hawk only works if byte 17 is 4).

e. Obtain the primary device width from SPD byte 13.

f. Determine the size bits based on the results of steps d and e using
the following table:
3-80 Computer Group Literature Center Web Site

Software Considerations

3

Notes

1. Total Number of block Locations (L) is 2R x 2C x 4 where R is the
value in SPD byte 3 and C is the value in SPD byte 4.

2. Primary Device Width is from SPD byte 13.

3. Block Size is the total number of block locations (L) x 8 bytes.

4. ram_x_siz refers to ram_a_siz, ram_b_siz, ram_c_siz, etc. Refer
to the sections titled SDRAM Enable and Size Register (Blocks A, B,
C, D) and SDRAM Enable and Size Register (Blocks E,F,G,H) for
more information.

5. Make sure the software is no longer using SDRAM and disable the
block that was being used.

6. Wait for at least one SDRAM refresh to complete. A simple way to
do this is to wait for the 32-bit counter to increment at least 100
times. Refer to the section titled 32-Bit Counter for more

Table 3-19. Programming SDRAM SIZ Bits

Total Number
of Locations
within the
Block (L) 1

Primary
Device Width 2

Block Size 3 Value to be
programmed

into the
Block’s

ram_x_siz bits
4

4M 16 32Mbytes %0001

8M 8 64Mbytes %0010

8M 16 64Mbytes %0011

16M 4 128Mbytes %0100

16M 8 128Mbytes %0101

16M 16 128Mbytes %0110

32M 4 256Mbytes %0111

32M 8 256Mbytes %1000

64M 4 512Mbytes %1001
http://www.motorola.com/computer/literature 3-81

System Memory Controller (SMC)

3

D)
ch
ven
p

o

ist

 to

information. Note that the refdis control bit must not be set in the
ECC Control Register.

7. Now that at least one refresh has occurred since SDRAM was last
accessed, it is okay to write to the SDRAM control registers.

a. Program the SDRAM Speed Attributes Register using the
information obtained in steps 3 and 4 and the fact that the
swr_dp and tdp bits should be set to 1’s.

b. Program the SDRAM Base Address Register (Blocks A/B/C/
and the SDRAM Base Address Register (Blocks E/F/G/H). Ea
block’s base address should be programmed so that it is an e
multiple of its size. (The size information was obtained in Ste
5.) If the isa_hole bit is to be set this may be a good time to d
that also. Refer to the Revision ID/ General Control Register
section for more information.

c. Program the SDRAM Enable and Size Register (Blocks
A,B,C,D) and the SDRAM Enable and Size Register (Blocks
E,F,G,H). Use the information from step 5. for this. Only those
blocks that exist should be enabled. Also, only those that ex
should be programmed with a non-zero size.

8. Wait for at least one SDRAM refresh to complete. A simple way
do this is to wait for the 32-bit counter to increment at least 100
times (refer to the section on the 32-Bit Counter for more
information). Note that the refdis control bit must not be set in the
ECC Control Register.

9. SDRAM is now ready to use.

Optional Method for Sizing SDRAM

Generally SDRAM block sizes can be determined by using SPD
information (refer to the previous section on SDRAM Control Registers
Initialization Example). Another method for accomplishing this is as
follows:

1. Initialize the SMC’s control register bits to a known state.
3-82 Computer Group Literature Center Web Site

Software Considerations

3

a. Clear the isa_hole bit (refer to the section titled Vendor/Device
Register for more information).

b. Make sure the CLK Frequency Register matches the operating
frequency.

c. Wait for at least one SDRAM refresh to complete. A simple way
to do this is to wait for the 32-bit counter to increment at least
100 times (refer to the section on 32-Bit Counter for more
information). Note that the refdis control bit must not be set in
the ECC Control Register.

d. Make sure that the SDRAM Speed Attributes Register contains
its power-up reset values. If not, make sure that the values match
the actual characteristics of the SDRAM being used.

e. Make sure the following bits are initialized as follows:
refdis = 0
rwcb = 0
derc = 1
scien = 0
dpien = 0
sien = 0
mien = 0
mbe_me = 0
SCRUB_FREQUENCY = $00
(Refer to the ECC Control Register section and the
Scrub/Refresh Register section for more information).

f. Make sure that ROM/Flash banks A and B are not enabled to
respond in the range $00000000 - $20000000. (Refer to the
section on ROM A Base/Size Register and ROM B Base/Size
Register for more information.)

g. Make sure that no other devices are set up to respond in the range
$00000000 - $20000000.

2. For each of the Blocks A through H:
http://www.motorola.com/computer/literature 3-83

System Memory Controller (SMC)

3

tions

 are
ious

le
e

 list
ding
 are

 the
k’s

hat
r
ck
g

nd f.

d
a. Set the block’s base address to $00000000. Refer to the sec
titled SDRAM Base Address Register (Blocks A/B/C/D) and
SDRAM Enable and Size Register (Blocks E,F,G,H).

b. Enable the block and make sure that the other seven blocks
disabled. Refer to the same sections as referenced in the prev
step.

c. Set the block’s size control bits. Start with the largest possib
(512Mbytes). Refer to the same sections as referenced in th
previous step.

d. Wait for at least one SDRAM refresh to complete.

e. Write a unique 64-bit data pattern to each one of a specified
of addresses. The list of addresses to be written varies depen
on the size that is currently being checked. The address lists
shown in the table below.

f. Read back all of the addresses that have been written. If all of
addresses still contain exactly what was written, then the bloc
size has been found. It is the size for which it is currently
programmed. If any of the addresses do not contain exactly w
was written, then the block’s memory size is less than that fo
which it is programmed. Sizing needs to continue for this blo
by programming its control bits to the next smaller size, waitin
for at least one refresh to complete, and repeating steps e a

g. If no match is found for any size then the block is unpopulate
and has a size of 0MB. Its size should be programmed to 0.
3-84 Computer Group Literature Center Web Site

Software Considerations

3

Notes

1. 16Mx8 and 16Mx4 are the same. If the real size is either one of
these, this algorithm will program for 16Mx8 regardless of whether
the SDRAM size is 16Mx8 or 16Mx4. This is not a problem because
the Hawk behaves identically when programmed for either size.

2. 8Mx16 and 8Mx8 are the same. The same idea that applies to
16Mx8 and 16Mx4 applies to them.

3. This needed only to check for non-zero size.

4. Wait enough time to allow at least 1 SDRAM refresh to occur before
beginning any SDRAM accesses.

Table 3-20. Address Lists for Different Block Size Checks

512MB
(64Mx4)

256MB
(32Mx8)

256MB
(32Mx4)

128MB
(16Mx16)

128MB
(16Mx8)1

128MB
(16Mx4)1

$00000000

$00008000

$10000000

$00000000

$00004000

$08000000

$00000000

$00008000

$00000000

$04000000

$00000000

$00004000

$00000000

$00004000

64MB

(8Mx16)2
64MB

(8Mx8)2
32MB

(4Mx16)3

$00000000

$00002000

$00000000

$00002000

$00000000

$00001000
http://www.motorola.com/computer/literature 3-85

System Memory Controller (SMC)

3

ECC Codes
When the Hawk reports a single-bit error, software can use the syndrome
that was logged by the Hawk to determine which bit was in error. Table
3-21 shows the syndrome for each possible single bit error. Table 3-22
shows the same information ordered by syndrome.

Table 3-21. Syndrome Codes Ordered by Bit in Error
B

it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

rd0 $4A rd16 $92 rd32 $A4 rd48 $29 ckd0 $01

rd1 $4C rd17 $13 rd33 $C4 rd49 $31 ckd1 $02

rd2 $2C rd18 $0B rd34 $C2 rd50 $B0 ckd2 $04

rd3 $2A rd19 $8A rd35 $A2 rd51 $A8 ckd3 $08

rd4 $E9 rd20 $7A rd36 $9E rd52 $A7 ckd4 $10

rd5 $1C rd21 $07 rd37 $C1 rd53 $70 ckd5 $20

rd6 $1A rd22 $86 rd38 $A1 rd54 $68 ckd6 $40

rd7 $19 rd23 $46 rd39 $91 rd55 $64 ckd7 $80

rd8 $25 rd24 $49 rd40 $52 rd56 $94

rd9 $26 rd25 $89 rd41 $62 rd57 $98

rd10 $16 rd26 $85 rd42 $61 rd58 $58

rd11 $15 rd27 $45 rd43 $51 rd59 $54

rd12 $F4 rd28 $3D rd44 $4F rd60 $D3

rd13 $0E rd29 $83 rd45 $E0 rd61 $38

rd14 $0D rd30 $43 rd46 $D0 rd62 $34

rd15 $8C rd31 $23 rd47 $C8 rd63 $32
3-86 Computer Group Literature Center Web Site

ECC Codes

3

Table 3-22. Single Bit Errors Ordered by Syndrome Code

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

$00 - $20 ckd5 $40 ckd6 $60 - $80 ckd7 $A0 - $C0 - $E0 rd
45

$01 ckd0 $21 - $41 - $61 rd42 $81 - $A1 rd38 $C1 rd3
7

$E1 -

$02 ckd1 $22 - $42 - $62 rd41 $82 - $A2 rd35 $C2 rd3
4

$E2 -

$03 - $23 rd31 $43 rd30 $63 - $83 rd29 $A3 - $C3 - $E3 -

$04 ckd2 $24 - $44 - $64 rd55 $84 - $A4 rd32 $C4 rd3
3

$E4 -

$05 - $25 rd8 $45 rd27 $65 - $85 rd26 $A5 - $C5 - $E5 -

$06 - $26 rd9 $46 rd23 $66 - $86 rd22 $A6 - $C6 - $E6 -

$07 rd21 $27 - $47 - $67 - $87 - $A7 rd52 $C7 - $E7 -

$08 ckd3 $28 - $48 - $68 rd54 $88 - $A8 rd51 $C8 rd4
7

$E8 -

$09 - $29 rd48 $49 rd24 $69 - $89 rd25 $A9 - $C9 - $E9 rd
4

$0A - $2A rd3 $4A rd0 $6A - $8A rd19 $AA - $CA - $EA -

$0B rd18 $2B - $4B - $6B - $8B - $AB - $CB - $EB -

$0C - $2C rd2 $4C rd1 $6C - $8C rd15 $AC - $CC - $EC -

$0D rd14 $2D - $4D - $6D - $8D - $AD - $CD - $ED -

$0E rd13 $2E - $4E - $6E - $8E - $AE - $CE - $EE -

$0F - $2F - $4F rd44 $6F - $8F - $AF - $CF - $EF -

$10 ckd4 $30 - $50 - $70 rd53 $90 - $B0 rd50 $D0 rd4
6

$F0 -

$11 - $31 rd49 $51 rd43 $71 - $91 rd39 $B1 - $D1 - $F1 -

$12 - $32 rd63 $52 rd40 $72 - $92 rd16 $B2 - $D2 - $F2 -

$13 rd17 $33 - $53 - $73 - $93 - $B3 - $D3 rd6
0

$F3 -

$14 - $34 rd62 $54 rd59 $74 - $94 rd56 $B4 - $D4 - $F4 rd
12

$15 rd11 $35 - $55 - $75 - $95 - $B5 - $D5 - $F5 -

$16 rd10 $36 - $56 - $76 - $96 - $B6 - $D6 - $F6 -

$17 - $37 - $57 - $77 - $97 - $B7 - $D7 - $F7 -

$18 - $38 rd61 $58 rd58 $78 - $98 rd57 $B8 - $D8 - $F8 -

$19 rd7 $39 - $59 - $79 - $99 - $B9 - $D9 - $F9 -

$1A rd6 $3A - $5A - $7A rd20 $9A - $BA - $DA - $FA -
http://www.motorola.com/computer/literature 3-87

System Memory Controller (SMC)

3

$1B - $3B - $5B - $7B - $9B - $BB - $DB - $FB -

$1C rd5 $3C - $5C - $7C - $9C - $BC - $DC - $FC -

$1D - $3D rd28 $5D - $7D - $9D - $BD - $DD - $FD -

$1E - $3E - $5E - $7E - $9E rd36 $BE - $DE - $FE -

$1F - $3F - $5F - $7F - $9F - $BF - $DF - $FF -

Table 3-22. Single Bit Errors Ordered by Syndrome Code (Continued)
Sy

nd
ro

m
e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it

Sy
nd

ro
m

e

B
it
3-88 Computer Group Literature Center Web Site

4
4Universe II (VMEbus to PCI)
Chip
Note All of the information in this chapter is taken from the Universe
II User Manual, which is listed in Appendix B, Related
Documentation. Refer to that manual for complete information.

General Information

Introduction

The Universe II VMEbus interface chip (CA91C142) provides a reliable
high performance 64-bit VMEbus to PCI interface in one device.

Designed by Tundra Semiconductor Corporation in consultation with
Motorola, the Universe II is compliant with the VME64 specification and
is tuned to the new generation of high speed processors.

The Universe II is ideally suited for CPU boards acting as both master and
slave in the VMEbus system and is particularly fitted for PCI local
systems. The Universe II is manufactured in a CMOS process.

Product Overview – Features

❏ Fully compliant, 64-bit, 33 MHz PCI local bus interface

❏ Fully compliant, high performance 64-bit VMEbus interface

❏ Integral FIFOs for write posting to maximize bandwidth utilization

❏ Programmable DMA controller with linked list support

❏ VMEbus transfer rates of 60-70 MBytes/sec

❏ Complete suite of VMEbus address and data transfer modes

– A32/A24/A16 master and slave

– D64 (MBLT)/D32/D16/D08 master and slave
4-1

Universe II (VMEbus to PCI) Chip

4

is
 in
nd
,
 the
els
– BLT, ADOH, RMW, LOCK

❏ Automatic initialization for slave-only applications

❏ Flexible register set, programmable from both the PCI bus and
VMEbus ports

❏ Full VMEbus system controller functionality

❏ IEEE 1149.1 JTAG testability support, and

❏ Available in 313-pin Plastic BGA and 324-pin contact Ceramic
BGA

Functional Description

Architectural Overview

This section introduces the general architecture of the Universe II. Th
description makes reference to the functional block diagram provided
Figure 4-1 that follows. Notice that for each of the interfaces, VMEbus a
PCI bus, there are three functionally distinct modules: master module
slave module, and interrupt module. These modules are connected to
different functional channels operating in the Universe II. These chann
are:

❏ VME Slave Channel

❏ PCI Bus Slave Channel

❏ DMA Channel

❏ Interrupt Channel

❏ Register Channel

The Architectural Overview is organized into the following sections:

❏ VMEbus Interface

❏ PCI Bus Interface
4-2 Computer Group Literature Center Web Site

Functional Description

4

❏ Interrupter and Interrupt Handler

❏ DMA Controller

These sections describe the operation of the Universe II in terms of the
different modules and channels illustrated in the following figure.

Figure 4-1. Architectural Diagram for the Universe II

VME
Slave

VME
Master

VME
Interrupts

posted writes FIFO
coupled read logic

DMA bidirectional FIFO

Interrupt Handler
Interrupter

Register Channel

VMEbus Slave Channel

posted writes FIFO
prefetch read FIFO

coupled read

PCI Bus Slave Channel

Interrupt Channel

PCI
Master

PCI
Slave

PCI
Interrupts

VMEbusPCI
BUS

PCI Bus
Interface

VMEbus
Interface

DMA Channel

1894 9609
http://www.motorola.com/computer/literature 4-3

Universe II (VMEbus to PCI) Chip

4

VMEbus Interface

Universe II as VMEbus Slave

The Universe II VME Slave Channel accepts all of the addressing and data
transfer modes documented in the VME64 specification (except A64 and
those intended to support 3U applications, that is, A40 and MD32).
Incoming write transactions from the VMEbus may be treated as either
coupled or posted, depending upon the programming of the VMEbus slave
image. (Refer to VME Slave Images in the Universe II User Manual, listed
in Appendix B, Related Documentation.) With posted write transactions,
data is written to a Posted Write Receive FIFO (RXFIFO) and the VMEbus
master receives data acknowledgment from the Universe II. Write data is
transferred to the PCI resource from the RXFIFO without the involvement
of the initiating VMEbus master (Refer to the section entitled Posted
Writes in the Universe II User Manual for a full explanation of this
operation.). With a coupled cycle, the VMEbus master only receives data
acknowledgment when the transaction is complete on the PCI bus. This
means that the VMEbus is unavailable to other masters while the PCI bus
transaction is executed.

Read transactions may be prefetched or coupled. If enabled by the user, a
prefetched read is initiated when a VMEbus master requests a block read
transaction (BLT or MBLT) and this mode is enabled. When the Universe
II receives the block read request, it begins to fill its Read Data FIFO
(RDFIFO) using burst transactions from the PCI resource. The initiating
VMEbus master then acquires its block read data from the RDFIFO rather
than from the PCI resources directly.

Universe II as VMEbus Master

The Universe II becomes VMEbus master when the VME Master Interface
is internally requested by the PCI Bus Slave Channel, the DMA Channel,
or the Interrupt Channel. The Interrupt Channel always has priority over
the other two channels. Several mechanisms are available to configure the
relative priority that the PCI Bus Slave Channel and DMA Channel have
over ownership of the VMEbus Master Interface.
4-4 Computer Group Literature Center Web Site

Functional Description

4

g
ept

on

 Write
tting

 a
es

 the
the

II
n be
CI

s
The Universe II’s VME Master Interface generates all of the addressin
and data transfer modes documented in the VME64 specification (exc
A64 and those intended to support 3U applications, that is, A40 and
MD32). The Universe II is also compatible with all VMEbus modules
conforming to pre-VME64 specifications. As VMEbus master, the
Universe II supports Read-Modify-Write (RMW), and Address-Only-
with-Handshake (ADOH) but does not accept RETRY* as a terminati
from the VMEbus slave. The ADOH cycle is used to implement the
VMEbus Lock command allowing a PCI master to lock VMEbus
resources.

PCI Bus Interface

Universe II as PCI Slave

Read transactions from the PCI bus are always processed as coupled.
transactions may be either coupled or posted, depending upon the se
of the PCI bus slave image. (Refer to the section entitled PCI Bus Slave
Images in the Universe II User Manual, listed in Appendix B, Related
Documentation.) With a posted write transaction, write data is written to
Posted Write Transmit FIFO (TXFIFO) and the PCI bus master receiv
data acknowledgment from the Universe II with zero wait states.
Meanwhile, the Universe II obtains the VMEbus and writes the data to
VMEbus resource independent of the initiating PCI master. (Refer to
section entitled Posted Writes in the Universe II User Manual for a full
description of this operation.)

To allow PCI masters to perform RMW and ADOH cycles, the Universe
provides a Special Cycle Generator. The Special Cycle Generator ca
used in combination with a VMEbus ownership function to guarantee P
masters exclusive access to VMEbus resources over several VMEbu
transactions, and. (Refer to the sections entitled Exclusive Accesses and
RMW and ADOH Cycles in the Universe II User Manual, Appendix B,
Related Documentation, for a full description of this functionality.)
http://www.motorola.com/computer/literature 4-5

Universe II (VMEbus to PCI) Chip

4

Universe II as PCI Master

The Universe II becomes PCI master when the PCI Master Interface is
internally requested by the VME Slave Channel or the DMA Channel.
There are mechanisms provided which allow the user to configure the
relative priority of the VME Slave Channel and the DMA Channel.

Interrupter and Interrupt Handler

Interrupter

The Universe II interrupt channel provides a flexible scheme to map
interrupts to either the PCI bus or VMEbus interface. Interrupts are
generated from either hardware or software sources (Refer to the section
entitled Interrupter in the Universe II User Manual, listed in Appendix B,
Related Documentation, for a full description of hardware and software
sources.). Interrupt sources can be mapped to any of the PCI bus or
VMEbus interrupt output pins. Interrupt sources mapped to VMEbus
interrupts are generated on the VMEbus interrupt output pins VIRQ#[7:1].
When a software and hardware source are assigned the same VIRQn# pin,
the software source always has higher priority.

Interrupt sources mapped to PCI bus interrupts are generated on one of the
INT#[7:0] pins. To be fully PCI compliant, all interrupt sources must be
routed to a single INT# pin.

For VMEbus interrupt outputs, the Universe II interrupter supplies an 8-bit
STATUS/ID to a VMEbus interrupt handler during the IACK cycle and
optionally generates an internal interrupt to signal that the interrupt vector
has been provided. (Refer to the section entitled VMEbus Interrupt
Generation in the Universe II User Manual, listed in Appendix B, Related
Documentation.)

Interrupts mapped to PCI bus outputs are serviced by the PCI interrupt
controller. The CPU determines which interrupt sources are active by
reading an interrupt status register in the Universe II. The source negates
its interrupt when it has been serviced by the CPU. (Refer to the section
entitled PCI Interrupt Generation in the Universe II User Manual.)
4-6 Computer Group Literature Center Web Site

Functional Description

4

VMEbus Interrupt Handling

A VMEbus interrupt triggers the Universe II io generate a normal VMEbus
IACK cycle and generate the specified interrupt output. When the IACK
cycle is complete, the Universe II releases the VMEbus and the interrupt
vector is read by the PCI resource servicing the interrupt output. Software
interrupts are ROAK, while hardware and internal interrupts are RORA.

DMA Controller

The Universe II provides an internal DMA controller for high performance
data transfer between the PCI and VMEbus. DMA operations between the
source and destination bus are decoupled through the use of a single
bidirectional FIFO (DMAFIFO). Parameters for the DMA transfer are
software configurable in the Universe II registers. (Refer to the section
entitled DMA Controller in the Universe II User Manual, listed in
Appendix B, Related Documentation.)

The principal mechanism for DMA transfers is the same for operations in
either direction (PCI to VME or VME to PCI), only the relative identity of
the source and destination bus changes. In a DMA transfer, the Universe II
gains control of the source bus and reads data into its DMAFIFO.
Following specific rules of DMAFIFO operation (refer to the section
entitled FIFO Operation and Bus Ownership in the Universe II User
Manual, listed in Appendix B, Related Documentation), it then acquires
the destination bus and writes data from its DMAFIFO.

The DMA controller can be programmed to perform multiple blocks of
transfers using entries in a linked list. The DMA will work through the
transfers in the linked-list following pointers at the end of each linked-list
entry. Linked-list operation is initiated through a pointer in an internal
Universe II register, but the linked list itself resides in PCI bus memory.
http://www.motorola.com/computer/literature 4-7

Universe II (VMEbus to PCI) Chip

4

Registers – Universe II Control and Status
Registers (UCSR)

The Universe II Control and Status Registers (UCSR) facilitate host
system configuration and allow the user to control Universe II operational
characteristics. The UCSRs are divided into three groups:

❏ PCI Configuration Space (PCICS)

❏ VMEbus Control and Status Registers (VCSR), and

❏ Universe II Device Specific Status Registers (UDSR)

The Universe II registers are little-endian.

The figure below summarizes the supported register access mechanisms.

Figure 4-2. UCSR Access Mechanisms

VMEbus Configuration
and Status Registers

(VCSR)

Universe II DEVICE
SPECIFIC REGISTERS

(UDSR)

PCI CONFIGURATION
SPACE
(PCICS)

4 Kbytes

1895 9609
4-8 Computer Group Literature Center Web Site

Registers – Universe II Control and Status Registers (UCSR)

4

Universe II Register Map

Table 4-1 below lists the Universe II registers by address offset. Tables in
the Universe II User Manual, listed in Appendix B, Related
Documentation, provide detailed descriptions of each register.

Address offsets in the table below apply to accesses from the PCI bus and
to accesses from the VMEbus side using the VMEbus Register Access
Image (refer to the section entitled Registers in the Universe II User
Manual, listed in Appendix B, Related Documentation). For register
accesses in CR/CSR space, be sure to add 508 KBytes (0x7F00) to the
address offsets provided in the table.

Table 4-1. Universe II Register Map

Offset Register Name

000 PCI Configuration Space ID Register PCI_ID

004 PCI Configuration Space Control and Status Register PCI_CSR

008 PCI Configuration Class Register PCI_CLASS

00C PCI Configuration Miscellaneous 0 Register PCI_MISC0

010 PCI Configuration Base Address Register PCI_BS

014 PCI Unimplemented

018 PCI Unimplemented

01C PCI Unimplemented

020 PCI Unimplemented

024 PCI Unimplemented

028 PCI Reserved

02C PCI Reserved

030 PCI Unimplemented

034 PCI Reserved

038 PCI Reserved

03C PCI Configuration Miscellaneous 1 Register PCI_MISC1

040 - 0FF PCI Unimplemented

100 PCI Slave Image 0 Control LSI0_CTL

104 PCI Slave Image 0 Base Address Register LSI0_BS
http://www.motorola.com/computer/literature 4-9

Universe II (VMEbus to PCI) Chip

4

108 PCI Slave Image 0 Bound Address Register LSI0_BD

10C PCI Slave Image 0 Translation Offset LSI0_TO

110 Universe II Reserved

114 PCI Slave Image 1 Control LSI1_CTL

118 PCI Slave Image 1 Base Address Register LSI1_BS

11C PCI Slave Image 1 Bound Address Register LSI1_BD

120 PCI Slave Image 1 Translation Offset LSI1_TO

124 Universe II Reserved

128 PCI Slave Image 2 Control LSI2_CTL

12C PCI Slave Image 2 Base Address Register LSI2_BS

130 PCI Slave Image 2 Bound Address Register LSI2_BD

134 PCI Slave Image 2 Translation Offset LSI2_TO

138 Universe II Reserved

13C PCI Slave Image 3 Control LSI3_CTL

140 PCI Slave Image 3 Base Address Register LSI3_BS

144 PCI Slave Image 3 Bound Address Register LSI3_BD

148 PCI Slave Image 3 Translation Offset LSI3_TO

14C - 16C Universe II Reserved

170 Special Cycle Control Register SCYC_CTL

174 Special Cycle PCI bus Address Register SCYC_ADDR

178 Special Cycle Swap/Compare Enable Register SCYC_EN

17C Special Cycle Compare Data Register SCYC_CMP

180 Special Cycle Swap Data Register SCYC_SWP

184 PCI Miscellaneous Register LMISC

188 Special PCI Slave Image SLSI

18C PCI Command Error Log Register L_CMDERR

190 PCI Address Error Log LAERR

194 - 1FC Universe II Reserved

200 DMA Transfer Control Register DCTL

Table 4-1. Universe II Register Map (Continued)

Offset Register Name
4-10 Computer Group Literature Center Web Site

Registers – Universe II Control and Status Registers (UCSR)

4

204 DMA Transfer Byte Count Register DTBC

208 DMA PCI bus Address Register DLA

20C Universe II Reserved

210 DMA VMEbus Address Register DVA

214 Universe II Reserved

218 DMA Command Packet Pointer DCPP

21C Universe II Reserved

220 DMA General Control and Status Register DGCS

224 DMA Linked List Update Enable Register D_LLUE

228 - 2FC Universe II Reserved

300 PCI Interrupt Enable LINT_EN

304 PCI Interrupt Status LINT_STAT

308 PCI Interrupt Map 0 LINT_MAP0

30C PCI Interrupt Map 1 LINT_MAP1

310 VMEbus Interrupt Enable VINT_EN

314 VMEbus Interrupt Status VINT_STAT

318 VMEbus Interrupt Map 0 VINT_MAP0

31C VMEbus Interrupt Map 1 VINT_MAP1

320 Interrupt Status/ID Out STATID

324 VIRQ1 STATUS/ID V1_STATID

328 VIRQ2 STATUS/ID V2_STATID

32C VIRQ3 STATUS/ID V3_STATID

330 VIRQ4 STATUS/ID V4_STATID

334 VIRQ5 STATUS/ID V5_STATID

338 VIRQ6 STATUS/ID V6_STATID

33C VIRQ7 STATUS/ID V7_STATID

340 - 3FC Universe II Reserved

400 Master Control MAST_CTL

404 Miscellaneous Control MISC_CTL

Table 4-1. Universe II Register Map (Continued)

Offset Register Name
http://www.motorola.com/computer/literature 4-11

Universe II (VMEbus to PCI) Chip

4

408 Miscellaneous Status MISC_STAT

40C User AM Codes Register USER_AM

410 - EFC Universe II Reserved

F00 VMEbus Slave Image 0 Control VSI0_CTL

F04 VMEbus Slave Image 0 Base Address Register VSI0_BS

F08 VMEbus Slave Image 0 Bound Address Register VSI0_BD

F0C VMEbus Slave Image 0 Translation Offset VSI0_TO

F10 Universe II Reserved

F14 VMEbus Slave Image 1 Control VSI1_CTL

F18 VMEbus Slave Image 1 Base Address Register VSI1_BS

F1C VMEbus Slave Image 1 Bound Address Register VSI1_BD

F20 VMEbus Slave Image 1 Translation Offset VSI1_TO

F24 Universe II Reserved

F28 VMEbus Slave Image 2 Control VSI2_CTL

F2C VMEbus Slave Image 2 Base Address Register VSI2_BS

F30 VMEbus Slave Image 2 Bound Address Register VSI2_BD

F34 VMEbus Slave Image 2 Translation Offset VSI2_TO

F38 Universe II Reserved

F3C VMEbus Slave Image 3 Control VSI3_CTL

F40 VMEbus Slave Image 3 Base Address Register VSI3_BS

F44 VMEbus Slave Image 3 Bound Address Register VSI3_BD

F48 VMEbus Slave Image 3 Translation Offset VSI3_TO

F4C - F6C Universe II Reserved

F70 VMEbus Register Access Image Control Register VRAI_CTL

F74 VMEbus Register Access Image Base Address VRAI_BS

F78 Universe II Reserved

F7C Universe II Reserved

F80 VMEbus CSR Control Register VCSR_CTL

F84 VMEbus CSR Translation Offset VCSR_TO

Table 4-1. Universe II Register Map (Continued)

Offset Register Name
4-12 Computer Group Literature Center Web Site

Registers – Universe II Control and Status Registers (UCSR)

4

e

it
 to
!
Caution

Register space marked as “Reserved” should not be overwritten.
Unimplemented registers return a value of 0 on reads; writes complet
normally.

Note The VMEbus CSR Bit Clear Register and the VMEbus CSR B
Set Register are not supported on the MVME2400. Writing a 1
the VMEbus CSR Bit Set Register RESET bit will cause the
board to go into a permanent reset condition.

F88 VMEbus AM Code Error Log V_AMERR

F8C VMEbus Address Error Log VAERR

F90 - FEC Universe II Reserved

FF0 VME CR/CSR Reserved

FF4 VMEbus CSR Bit Clear Register VCSR_CLR

FF8 VMEbus CSR Bit Set Register VCSR_SET

FFC VMEbus CSR Base Address Register VCSR_BS

Table 4-1. Universe II Register Map (Continued)

Offset Register Name
http://www.motorola.com/computer/literature 4-13

5
5Programming Details
Introduction
This chapter contains details of several programming functions that are not
tied to any specific ASIC chip.

PCI Arbitration
PCI arbitration can be performed by either the Hawk ASIC (default), or the
PIB. The Hawk ASIC supports eight external PCI masters. This includes
Hawk and seven external PCI masters. The arbitration assignments on the
MVME2400 series when the Hawk is the PCI arbiter are as follows:

Table 5-1. Hawk Arbitration Assignments

PCI Bus Request PCI Master(s)

Request 0 Hawk ASIC

Request 1 PIB

Request 2 Universe II ASIC (VMEbus)

Request 3 PMC Slot 1

Request 4 PMC Slot 2

Request 5 PCIX Slot

Request 6 Ethernet
5-1

Programming Details

5

Interrupt Handling
The interrupt architecture of the MVME2400 series SBC is shown in the
following figure:

Figure 5-1. MVME2400 Series Interrupt Architecture

11559.00 9609

PIB
(8529 Pair)

Processor

INT_

MCP_

Processor

INT_

MCP_

Hawk MPIC

INT

SERR_& PERR_

PCI Interrupts

ISA Interrupts
5-2 Computer Group Literature Center Web Site

Interrupt Handling

5

Hawk MPIC

The Hawk ASIC has a built-in interrupt controller that meets the Multi-
Processor Interrupt Controller (MPIC) Specification. This MPIC supports
up to two processors and 16 external interrupt sources. There are also six
other interrupt sources inside the MPIC: two cross-processor interrupts
and four timer interrupts. All ISA interrupts go through the 8259 pair in the
PIB. The output of the PIB then goes through the MPIC in the Hawk. Refer
to Chapter 2, Hawk PCI Host Bridge & Multi-Processor Interrupt
Controller for details on the MPIC. The following table shows the
interrupt assignments for the MPIC on the MVME2400 series:

Table 5-2. MPIC Interrupt Assignments

MPIC
IRQ

Edge/
Level

Polarity Interrupt Source Notes

IRQ0 Level High PIB (8259) 1

IRQ1 N/A N/A Not used

IRQ2 Level Low PCI-Ethernet 3

IRQ3 Level Low Hawk WDT1O_L (resistor population option)

IRQ4 Level Low Hawk WDT20_L (resistor population option)

IRQ5 Level Low PCI-VME INT 0 (Universe II LINT0#) 2,3

IRQ6 Level Low PCI-VME INT 1 (Universe II LINT1#) 2

IRQ7 Level Low PCI-VME INT 2 (Universe II LINT2#) 2

IRQ8 Level Low PCI-VME INT 3 (Universe II LINT3#) 2

IRQ9 Level Low PCI-PMC1 INTA#, PMC2 INTB#, PCIX INTA# 3

IRQ10 Level Low PCI-PMC1 INTB#, PMC2 INTC#, PCIX INTB#

IRQ11 Level Low PCI-PMC1 INTC#, PMC2 INTD#, PCIX INTC#

IRQ12 Level Low PCI-PMC1 INTD#, PMC2 INTA#, PCIX INTD#

IRQ13 Level Low LM/SIG Interrupt 0 3

IRQ14 Level Low LM/SIG Interrupt 1 3

IRQ15 N/A N/A Not used
http://www.motorola.com/computer/literature 5-3

Programming Details

5

Notes

1. Interrupt from the PCI/ISA Bridge.

2. The mapping of interrupt sources from the VMEbus and Universe
II internal interrupt sources is programmable via the Local Interrupt
Map 0 Register and the Local Interrupt Map 1 Register in the
Universe II ASIC.

3. These interrupts also appear at the PIB for backward compatibility
with older MVME1600 and PM603/4 modules.

8259 Interrupts

There are 15 interrupt requests supported by the PIB. These 15 interrupts
are ISA-type interrupts that are functionally equivalent to two 82C59
interrupt controllers. Except for IRQ0, IRQ1, IRQ2, IRQ8_, and IRQ13,
each of the interrupt lines can be configured for either edge-sensitive mode
or level-sensitive mode by programming the appropriate ELCR registers
in the PIB.

There is also support for four PCI interrupts, PIRQ3_-PIRQ0_. The PIB
has four PIRQ Route Control Registers to allow each of the PCI interrupt
lines to be routed to any of eleven ISA interrupt lines (IRQ0, IRQ1, IRQ2,
IRQ8_, and IRQ13 are reserved for ISA system interrupts). Since PCI
interrupts are defined as level-sensitive, software must program the
selected IRQ(s) for level-sensitive mode. Note that more than one PCI
interrupt can be routed to the same ISA IRQ line. The PIB can be
programmed to handle the PCI interrupts if the MPIC is either not present
or not used.
5-4 Computer Group Literature Center Web Site

Interrupt Handling

5

The following figure shows the interrupt structure of the PIB.

Figure 5-2. PIB Interrupt Handler Block Diagram

1897 9609

IRQx

PIRQ Route
Control Register

PIRQ Route
Control Register

PIRQ Route
Control Register

PIRQ Route
Control Register

PIRQ3_

IRQxPIRQ2_

IRQxPIRQ1_

IRQxPIRQ0_

Controller 2
(INT2)

IRQ8

IRQ9

IRQ11

IRQ10

IRQ12

IRQ13

IRQ14

IRQ15

0

1

2

3

4

5

6

7

Controller 1
(INT1)

Timer1/Counter0

IRQ1

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

0

1

2

3

4

5

6

7

INTR
http://www.motorola.com/computer/literature 5-5

Programming Details

5

The assignments of the PCI and ISA interrupts supported by the PIB are as
follows:

Notes

1. Internally generated by the PIB.

2. After a reset, all ISA IRQ interrupt lines default to edge-sensitive
mode.

3. These PCI interrupts are routed to the ISA interrupts by
programming the PRIQ Route Control Registers in the PIB. The
PCI to ISA interrupt assignments in this table are suggested. Each

Table 5-3. PIB PCI/ISA Interrupt Assignments

PRI ISA
IRQ

PCI
IRQ

C
ontroller

Edge/
Level

P
olarity

Interrupt Source Notes

1 IRQ0 INT1 Edge High Timer 1 / Counter 0 1

2 IRQ1 N/A N/A Not used

3-10 IRQ2 Edge High Cascade Interrupt from INT2

3 IRQ8_ INT2 Edge Low ABORT Switch Interrupt

4 IRQ9 N/A N/A Not used

5 IRQ10 PIRQ0_ Level Low PCI-Ethernet Interrupt 2,3,4

6 IRQ11 PIRQ1_ Level Low Universe II Interrupt (LINT0#) 2,3,4

7 IRQ12 N/A N/A Not used

8 IRQ13 N/A N/A Not used

9 IRQ14 PIRQ2_ N/A N/A Not used

10 IRQ15 PIRQ3_ Level Low PMC/PCIX Interrupt 2,3,4

11 IRQ3 INT1 N/A N/A Not used

12 IRQ4 Edge High COM1 (16550)

13 IRQ5 Level High LM/SIG Interrupt 0/1 4

14 IRQ6 N/A N/A Not used

15 IRQ7 N/A N/A Not used
5-6 Computer Group Literature Center Web Site

ISA DMA Channels

5

ISA IRQ to which a PCI interrupt is routed to MUST be
programmed for level-sensitive mode. Use this routing for PCI
interrupts only when the MPIC is either not present or not used.

4. The MPIC, when present, should be used for these interrupts.

ISA DMA Channels
The MVME2400 series does not implement any ISA DMA channels.

Exceptions

Sources of Reset

There are eight potential sources of reset on the MVME2400 series. They
are:

1. Power-On Reset

2. RESET Switch

3. Watchdog Timer Reset via the MK48T59 TIMEKEEPER device

4. Port 92 Register via the PIB

5. I/O Reset via the Clock Divisor Register in the PIB

6. VMEbus SYSRESET# signal

7. Local software reset via the Universe II ASIC (MISC_CTL
Register)

8. VME System Reset Via the Universe II ASIC (MISC_CTL
Register)
http://www.motorola.com/computer/literature 5-7

Programming Details

5

Note On the MVME2400, Watchdog Timer 2 is a source of reset only
if component R25 is installed on the board. Consult your local
Motorola Computer Group (MCG) sales representative if this
feature needs to be enabled.

The following table shows which devices are affected by various reset
sources:

Soft Reset

Software can assert the SRESET# pin of any processor by programming
the Processor Init Register of the MPIC appropriately.

Table 5-4. Reset Sources and Devices Affected

Device Affected P
rocessor (s)

H
aw

k A
SIC

P
C

I D
evices

ISA
 D

evices

V
M

E
bus (System

 C
ontroller)

Power-On x x x x x

Reset Switch x x x x x

Watchdog (MK48T59) x x x x x

VME System Reset (SYSRESET# Signal) x x x x x

VME System Software Reset (MISC_CTL
Register)

x x x x x

VME Local Software Reset (MISC_CTL
Register)

x x x x

Hot Reset (Port 92 Register) x x x x

PCI/ISA Reset (Clock Divisor Register) x x
5-8 Computer Group Literature Center Web Site

Exceptions

5

Universe II Chip Problems after a PCI Reset

Under certain conditions, there can be problems with the Universe II chip
after a PCI reset. Refer to Chapter 4, Universe II (VMEbus to PCI) Chip,
for details.

Error Notification and Handling

The Hawk ASIC can detect certain hardware errors and can be
programmed to report these errors via the MPIC interrupts or Machine
Check Interrupt. Note that the TEA* signal is not used at all by the
MVME2400 series. The following table summarizes how the hardware
errors are handled by the MVME2400 series:

Table 5-5. Error Notification and Handling

Cause Action

Single-bit ECC Store: Write corrected data to memory
Load: Present corrected data to the MPC master
Generate interrupt via MPIC if so enabled

Double-bit ECC Store: Terminate the bus cycle normally without writing to SDRAM
Load: Present un-corrected data to the MPC master
Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enabled

MPC Bus Time Out Store: Discard write data and terminate bus cycle normally
Load: Present undefined data to the MPC master
Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enabled
http://www.motorola.com/computer/literature 5-9

Programming Details

5

d

d

d

d

Endian Issues
The MVME2400 series supports both little-endian software and
big-endian software. Because the PowerPC processor is inherently
big-endian, PCI is inherently little-endian, and the VMEbus is big-endian,
things do get rather confusing. The following figures shows how the
MVME2400 series handles the endian issue in big-endian and little-endian
modes:

PCI Target Abort Store: Discard write data and terminate bus cycle normally
Load: Return all 1’s and terminate bus cycle normally
Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enable

PCI Master Abort Store: Discard write data and terminate bus cycle normally
Load: Return all 1’s and terminate bus cycle normally
Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enable

PERR# Detected Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enable

SERR# Detected Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enable

Table 5-5. Error Notification and Handling (Continued)

Cause Action
5-10 Computer Group Literature Center Web Site

Endian Issues

5

Figure 5-3. Big-Endian Mode

Big-Endian PROGRAM

1898 9609

Hawk

Universe II

Hawk

DRAM

Big-Endian

Little-Endian

Big-Endian

Little-Endian

PCI Local Bus

VMEbus

N-way Byte Swap

N-way Byte Swap

60X System Bus
http://www.motorola.com/computer/literature 5-11

Programming Details

5

Figure 5-4. Little-Endian Mode

EA Modification (XOR)

1899 9609

Hawk

Universe II

Hawk

DRAM

Big-Endian

Little-Endian

Big-Endian

Little-Endian

PCI Local Bus

VMEbus

N-way Byte Swap

EA Modification

60X System Bus

Big-Endian

Little-Endian
Little-Endian PROGRAM
5-12 Computer Group Literature Center Web Site

Endian Issues

5

ss in
ode.
ian
Processor/Memory Domain

The MPC604 processor can operate in both big-endian and little-endian
mode. However, it always treats the external processor/memory bus as
big-endian by performing address rearrangement and reordering when
running in little-endian mode.

The MPIC registers inside the Hawk, the registers inside the SMC, the
SDRAM, the ROM/Flash and the system registers always appear as
big-endian.

MPIC’s Involvement

Since PCI is little-endian, the MPIC performs byte swapping in both
directions (from PCI to memory and from the processor to PCI) to
maintain address invariance when it is programmed to operate in
big-endian mode with the processor and the memory sub-system.

In little-endian mode, it reverse-rearranges the address for PCI-bound
accesses and rearranges the address for memory-bound accesses (from
PCI). In this case, no byte swapping is done.

PCI Domain

The PCI bus is inherently little-endian and all devices connected directly
to PCI will operate in little-endian mode, regardless of the mode of
operation in the processor’s domain.

PCI-SCSI

The MVME2400 series does not implement SCSI.

PCI-Ethernet

Ethernet is byte stream oriented with the byte having the lowest addre
memory being the first one to be transferred regardless of the endian m
Since address invariance is maintained by the Hawk in both little-end
http://www.motorola.com/computer/literature 5-13

Programming Details

5

y to
e

d
rent

ging
and big-endian mode, there should be no endian issues for the Ethernet
data. Big-endian software must still however be aware of the byte-
swapping effect when accessing the registers of the PCI-Ethernet device.

PCI-Graphics

The effects of byte swapping on big-endian software must be considered
by big-endian software.

Note There are no graphics on the MVME2400 series boards.

Universe II’s Involvement

Since PCI is little-endian and the VMEbus is big-endian, the Universe II
performs byte swapping in both directions (from PCI to VMEbus and from
VMEbus to PCI) to maintain address invariance, regardless of the mode of
operation in the processor’s domain.

VMEbus Domain

The VMEbus is inherently big-endian and all devices connected directl
VMEbus are expected to operate in big-endian mode, regardless of th
mode of operation in the processor’s domain.

In big-endian mode, byte-swapping is performed by the Universe II an
then by the MPIC. The result has the desirable effect by being transpa
to the big-endian software.

In little-endian mode, however, software must be aware of the byte-
swapping effect from the Universe II and the address reverse-rearran
effect of the MPIC.
5-14 Computer Group Literature Center Web Site

ROM/Flash Initialization

5

ROM/Flash Initialization
There are two methods used to inject code into the Flash in Bank A: (1) In-
circuit programming and (2) Loading it from the ROM/Flash Bank B. For
the second method, the hardware must direct the SMC to map the
FFF00000-FFFFFFFF address range to Bank B following a hard reset.
Bank A then can be programmed by code from Bank B.

Software can determine the mapping of the FFF00000-FFFFFFFF address
range by examining the rom_b_rv bit in the SMC’s Rom B Base/Size
Register.

Table 5-6. ROM/Flash Bank Default

rom_b_rv Default Mapping for FFF00000-FFFFFFFF

0 ROM/Flash Bank A

1 ROM/Flash Bank B
http://www.motorola.com/computer/literature 5-15

A
AMVME2400 VPD Reference
Information
Vital Product Data (VPD) Introduction
The data listed in the following tables are for general reference
information. The VPD identifies board information that may be useful
during board initialization, configuration, and verification.

VPD Data Definitions

The following table describes and lists the currently assigned packet
identifiers.

Note Additional packet identifiers may be added to this list as future
versions of the VPD are released.

Table A-1. VPD Packet Types

ID# Size Description Data Type Notes

00 N/A Guaranteed Illegal N/A

01 Variable Product Identifier (for example, “MBX”, “MTX”,
“MVME2600”, “MCP750”, “MVME2400”, etc.)

ASCII 1

02 Variable Factory Assembly Number (for example,
“01-W3394F01C”, etc.)

ASCII 1

03 Variable Serial Number (for example, “3383185”, etc.) ASCII 1

04 10 Product Configuration Options Data

The data in this packet further describes the board
configuration (for example, header population,
I/O routing, etc.). Its exact contents is dependent
upon the product configuration/type.

A following table describes this packet.

Binary

05 04 MPU Internal Clock Frequency in Hertz (for
example, 350,000,000 decimal, etc.)

Integer (4-byte) 2
A-1

MVME2400 VPD Reference Information
A

06 04 MPU External Clock Frequency in Hertz (for
example, 100,000,000 decimal, etc.).

This is also called the local processor bus
frequency.

Integer (4-byte) 2

07 04 Reference Clock Frequency in Hertz (for
example, 32,768 decimal, etc.). This value is the
frequency of the crystal driving the OSCM.

Integer (4-byte) 2

08 06 Ethernet Address (for example, 08003E26A475,
etc.)

Binary 3, 4

09 Variable MPU Type (for example, 601, 602, 603, 604, 750,
801, 821, 823, 860, 860DC, 860DE, 860DH,
860EN, 860MH, etc.)

ASCII 1

0A 4 EEPROM CRC

This packet is optional. This packet would be
utilized in environments where CRC protection is
required. When computing the CRC this field
(that is, 4 bytes) is set to zero.

This CRC only covers the range as specified the
size field.

Integer (4-byte) 2

0B 9 Flash Memory Configuration

A table found later in this document further
describes this packet.

Binary

0C TBD VLSI Device Revisions/Versions Binary

0D 04 Host PCI-Bus Clock Frequency in Hertz (for
example, 33,333,333 decimal, etc.)

Integer (4-byte) 2

Table A-1. VPD Packet Types (Continued)

ID# Size Description Data Type Notes
A-2 Computer Group Literature Center Web Site

Vital Product Data (VPD) Introduction
A

Notes

1. The data size is variable. Its actual size is dependent upon the
product configuration/type.

2. Integer values are formatted/stored in big-endian byte ordering.

3. This packet may be omitted if the ethernet interface is non-existent,
or the ethernet interface has an associative SROM (for example,
DEC21x4x).

4. This packet may contain an additional byte following the address
data. This additional byte indicates the ethernet interface number.
This additional byte would be specified in applications where the
host product supports multiple ethernet interfaces. For each ethernet
interface present, the instance number would be incremented by one
starting with zero.

0E Variable L2 Cache Configuration

A table found later in this document further
describes this packet.

Binary

0F-
BF

Reserved

C0-
FE

User Defined

An example of a user defined packet could be the
type of LCD panel connected in an MPC821
based application.

FF N/A Termination Packet (follows the last initialized
data packet)

N/A

Table A-1. VPD Packet Types (Continued)

ID# Size Description Data Type Notes
http://www.motorola.com/computer/literature A-3

MVME2400 VPD Reference Information
A

VPD Data Definitions – Product Configuration Options Data

The product configuration options data packet consists of a binary bit field.
The first bit of the first byte is bit 0 (that is, PowerPC bit numbering). An
option is present when the assigned bit is a 1. the following table further
describes the product configuration options VPD data packet:

Table A-2. MVME2400 Product Configuration Options Data

Bit Number Bit Mnemonic Bit Description

0 PCO_PCI0_CONN1 PCI/PMC bus 0 connector 1 present

1 PCO_PCI0_CONN2 PCI/PMC bus 0 connector 2 present

2 PCO_PCI0_CONN3 PCI/PMC bus 0 connector 3 present

3 PCO_PCI0_CONN4 PCI/PMC bus 0 connector 4 present

4 PCO_PCI1_CONN1 PCI/PMC bus 1 connector 1 present

5 PCO_PCI1_CONN2 PCI/PMC bus 1 connector 2 present

6 PCO_PCI1_CONN3 PCI/PMC bus 1 connector 3 present

7 PCO_PCI1_CONN4 PCI/PMC bus 1 connector 4 present

8 PCO_ISA_CONN1 ISA bus connector 1 present

9 PCO_ISA_CONN2 ISA bus connector 2 present

10 PCO_ISA_CONN3 ISA bus connector 3 present

11 PCO_ISA_CONN4 ISA bus connector 4 present

12 PCO_EIDE1_CONN1 IDE/EIDE device 1 connector 1 present

13 PCO_EIDE1_CONN2 IDE/EIDE device 1 connector 2 present

14 PCO_EIDE2_CONN1 IDE/EIDE device 2 connector 1 present

15 PCO_EIDE2_CONN2 IDE/EIDE device 2 connector 2 present

16 PCO_ENET1_CONN Ethernet device 1 connector present

17 PCO_ENET2_CONN Ethernet device 2 connector present

18 PCO_ENET3_CONN Ethernet device 3 connector present

19 PCO_ENET4_CONN Ethernet device 4 connector present

20 PCO_SCSI1_CONN SCSI device 1 connector present

21 PCO_SCSI2_CONN SCSI device 2 connector present

22 PCO_SCSI3_CONN SCSI device 3 connector present

23 PCO_SCSI4_CONN SCSI device 4 connector present
A-4 Computer Group Literature Center Web Site

Vital Product Data (VPD) Introduction
A

24 PCO_SERIAL1_CONN Serial device 1 connector present

25 PCO_SERIAL2_CONN Serial device 2 connector present

26 PCO_SERIAL3_CONN Serial device 3 connector present

27 PCO_SERIAL4_CONN Serial device 4 connector present

28 PCO_FLOPPY_CONN1 Floppy device connector 1 present

29 PCO_FLOPPY_CONN2 Floppy device connector 2 present

30 PCO_PARALLEL1_CONN Parallel device 1 connector present

31 PCO_PARALLEL2_CONN Parallel device 2 connector present

32 PCO_PMC1_IO_CONN PMC slot 1 I/O connector present

33 PCO_PMC2_IO_CONN PMC slot 2 I/O connector present

34 PCO_USB0_CONN USB channel 0 connector present

35 PCO_USB1_CONN USB channel 1 connector present

36 PCO_KEYBOARD_CONN Keyboard connector present

37 PCO_MOUSE_CONN Mouse connector present

38 PCO_VGA1_CONN VGA device 1 connector present

39 PCO_SPEAKER_CONN Speaker connector present

40 PCO_VME_CONN VME backplane connector present

41 PCO_CPCI_CONN Compact PCI backplane connector present

42 PCO_ABORT_SWITCH Abort switch present

43 PCO_BDFAIL_LIGHT Board fail light present

44 PCO_SWREAD_HEADER Software readable header present

45 Reserved for future configuration options

46 Reserved for future configuration options

47 Reserved for future configuration options

48-127 Reserved for future configuration options

Table A-2. MVME2400 Product Configuration Options Data (Continued)

Bit Number Bit Mnemonic Bit Description
http://www.motorola.com/computer/literature A-5

MVME2400 VPD Reference Information
A

-

VPD Data Definitions – Flash Memory Configuration Data

The Flash memory configuration data packet consists of byte fields which
indicate the size/organization/type of the Flash memory array. The
following table(s) further describe the Flash memory configuration VPD
data packet.

Table A-3. Flash Memory Configuration Data

Byte
Offset

Field
Size

(Bytes)

Field
Mnemonic

Field Description

00 2 FMC_MID Manufacturer’s Identifier (FFFF = Undefined/Not-
Applicable)

02 2 FMC_DID Manufacturer’s Device Identifier (FFFF = Undefined/Not
Applicable)

04 1 FMC_DDW Device Data Width (for example, 8-bits, 16-bits)

05 1 FMC_NOD Number of Devices/Sockets Present

06 1 FMC_NOC Number of Columns (Interleaves)

07 1 FMC_CW Column Width in Bits

This will always be a multiple of the device’s data width.

08 1 FMC_WEDW Write/Erase Data Width

The Flash memory devices must be programmed in
parallel when the write/erase data width exceeds the
device’s data width.

09 1 FMC_BANK Bank Number of Flash Memory Array: 0 = A, 1 = B
A-6 Computer Group Literature Center Web Site

Vital Product Data (VPD) Introduction
A

VPD Data Definitions – L2 Cache Configuration Data

The L2 cache configuration data packet consists of byte fields that show
the size, organization, and type of the L2 cache memory array. The
following table(s) further describe the L2 cache memory configuration
VPD data packet.

Table A-4. L2 Cache Configuration Data

Byte
Offset

Field
Size

(Bytes)

Field Mnemonic Field Description

00 2 L2C_MID Manufacturer’s Identifier (FFFF =
Undefined/Not-Applicable)

02 2 L2C_DID Manufacturer’s Device Identifier (FFFF =
Undefined/Not-Applicable)

04 1 L2C_DDW Device Data Width (for example, 8-bits,
16-bits, 32-bits, 64-bits, 128-bits)

05 1 L2C_NOD Number of Devices Present

06 1 L2C_NOC Number of Columns (Interleaves)

07 1 L2C_CW Column Width in Bits

This will always be a multiple of the device’s
data width.

08 1 L2C_TYPE L2 Cache Type:

00 - Arthur Backside

01 - External

02 - In-Line

09 1 L2C_ASSOCIATE Associative Microprocessor Number (If
Applicable)

0A 1 L2C_OPERATIONMODE Operation Mode:

00 - Either Write-Through or Write-Back (S/W
Configurable)

01 - Either Write-Through or Write-Back
(H/W Configurable)

02 - Write-Through Only

03 - Write-Back Only
http://www.motorola.com/computer/literature A-7

MVME2400 VPD Reference Information
A

Note It is possible for a product to contain multiple L2 cache
configuration packets.

0B 1 L2C_ERROR_DETECT Error Detection Type:

00 - None

01 - Parity

02 - ECC

0C 1 L2C_SIZE L2 Cache Size (Should agree with the physical
organization above):

00 - 256K

01 - 512K

02 - 1M

03 - 2M

04 - 4M

0D 1 L2C_TYPE_BACKSIDE L2 Cache Type (Backside Configurations):

00 - Late Write Sync, 1nS Hold, Differential
Clock, Parity

01 - Pipelined Sync Burst, 0.5nS Hold, No
Differentia Clock, Parity

02 - Late Write Sync, 1nS Hold, Differential
Clock, No Parity

03 - Pipelined Sync Burst, 0.5nS Hold, No
Differential Clock, No Parity

0E 1 L2C_RATIO_BACKSIDE L2 Cache Core to Cache Ration (Backside
Configurations):

00 - Disabled

01 - 1:1 (1)

02 - 3:2 (1.5)

03 - 2:1 (2)

04 - 5:2 (2.5)

05 - 3:1 (3)

Table A-4. L2 Cache Configuration Data (Continued)

Byte
Offset

Field
Size

(Bytes)

Field Mnemonic Field Description
A-8 Computer Group Literature Center Web Site

Vital Product Data (VPD) Introduction
A

Example VPD SROM

One MVME2400 board build configuration example is provided below.

Table A-5. VPD SROM Configuration Specification for 01-W3394F01*

Offset Value Field Type Description

00 (0x00) 4D ASCII Eye-Catcher (“MOTOROLA”)
Note: Lowest CRC byte for the calculation of
CRC.

01 (0x01) 4F

02 (0x02) 54

03 (0x03) 4F

04 (0x04) 52

05 (0x05) 4F

06 (0x06) 4C

07 (0x07) 41

08 (0x08) 01 BINARY Size of VPD in bytes

09 (0x09) 00

10 (0x0a) 01 PACKET
ASCII

Product Identifier [MVME2431-1]

11 (0x0b) 0A

12 (0x0c) 4D

13 (0x0d) 56

14 (0x0e) 4D

15 (0x0f) 45

16 (0x10) 32

17 (0x11) 34

18 (0x12) 33

19 (0x13) 31

20 (0x14) 2D

21 (0x15) 31

22 (0x16) 02 PACKET
ASCII

Factory Assembly Number [01-W3394F01C]
http://www.motorola.com/computer/literature A-9

MVME2400 VPD Reference Information
A

23 (0x17) 0C

24 (0x18) 30

25 (0x19) 31

26 (0x1a) 2D

27 (0x1b) 57

28 (0x1c) 33

29 (0x1d) 33

30 (0x1e) 39

31 (0x1f) 34

32 (0x20) 46

33 (0x21) 30

34 (0x22) 31

35 (0x23) 43

36 (0x24) 03 PACKET
ASCII

Serial Number

37 (0x25) 07

38 (0x26) xx **Serial number to be filled in at ATE

39 (0x27) xx

40 (0x28) xx

41 (0x29) xx

42 (0x2a) xx

43 (0x2b) xx

44 (0x2c) xx

45 (0x2d) 04 PACKET
BINARY

Product Configuration Options Data

46 (0x2e) 10

47 (0x2f) CO

48 (0x30) 00

49 (0x31) 80

Table A-5. VPD SROM Configuration Specification for 01-W3394F01*

Offset Value Field Type Description
A-10 Computer Group Literature Center Web Site

Vital Product Data (VPD) Introduction
A

50 (0x32) 80

51 (0x33) 00

52 (0x34) B8

53 (0x35) 00

54 (0x36) 00

55 (0x37) 00

56 (0x38) 00

57 (0x39) 00

58 (0x3A) 00

59 (0x3B) 00

60 (0x3C) 00

61 (0x3D) 00

62 (0x3E) 00

63 (0x3F) 05 PACKET
INTEGER

MPU Internal Clock Frequency in Hertz [350 MHz]

64 (0x40) 04

65 (0x41) 14

66 (0x42) DC

67 (0x43) 93

68 (0x44) 80

69 (0x45) 06 PACKET
ASCII

MPU External Clock Frequency in Hertz [100
MHz]

70 (0x46) 04

71 (0x47) 05

72 (0x48) F5

73 (0x49) E1

74 (0x4A) 00

75 (0x4B) 09 MPU Type [750]

76 (0x4C) 03

Table A-5. VPD SROM Configuration Specification for 01-W3394F01*

Offset Value Field Type Description
http://www.motorola.com/computer/literature A-11

MVME2400 VPD Reference Information
A

77 (0x4D) 37

78 (0x4E) 35

79 (0x4F) 30

80 (0x50) 0A PACKET
INTEGER

EPROM CRC
When computing the CRC this field (that is, 4 bytes)
is set to zero.This CRC only covers the range as
Integer (4-byte). Note: Lower CRC byte for the
calculation of CRC = 00, and Upper CRC byte
for the calculation of CRC = 255

81 (0x51) 04

82 (0x52) xx ** CRC to be filled in at ATE

83 (0x53) xx

84 (0x54) xx

85 (0x55) xx

86 (0x56) OB PACKET
BINARY

Flash Memory Configuration #1

87 (0x57) 0A

88 (0x58) 00

89 (0x59) 01

90 (0x5A) 22

91 (0x5B) C4

92 (0x5C) 10

93 (0x5D) 04

94 (0x5E) 02

95 (0x5F) 20

96 (0x60) 20

97 (0x61) 00

98 (0x62) OB PACKET
BINARY

Flash Memory Configuration #2

99 (0x63) 0A

100 (0x64) FF

Table A-5. VPD SROM Configuration Specification for 01-W3394F01*

Offset Value Field Type Description
A-12 Computer Group Literature Center Web Site

Vital Product Data (VPD) Introduction
A

101 (0x65) FF

102 (0x66) FF

103 (0x67) FF

104 (0x68) 08

105 (0x69) 02

106
(0x6A)

02

107
(0x6B)

08

108
(0x6C)

08

109
(0x6D)

01

110
(0x6E)

OE PACKET
BINARY

L2 Cache Configuration

111 (0x6F) OF

112 (0x70) FF

113 (0x71) FF

114 (0x72) FF

115 (0x73) FF

116 (0x74) 20

117 (0x75) 02

118 (0x76) 02

119 (0x77) 20

120 (0x78) 00

121 (0x79) 00

122
(0x7A)

00

123
(0x7B)

01

Table A-5. VPD SROM Configuration Specification for 01-W3394F01*

Offset Value Field Type Description
http://www.motorola.com/computer/literature A-13

MVME2400 VPD Reference Information
A

Note *This data will change to reflect the specific configuration of the
corresponding board assembly number to which it applies.

124
(0x7C)

02

125
(0x7D)

01

126
(0x7E)

04

127
(0x7F)

OD PACKET
INTEGER

Host PCI-Bus Clock Frequency in Hertz [33 MHz]

128 (0x80) 04

129 (0x81) 01

130 (0x82) FC

131 (0x83) AO

132 (0x84) 55

133 (0x85) FF BINARY Reserved for future expansion

: :

255
(0xFF)

FF BINARY Reserved for future expansion

Note: Upper CRC byte for the calculation of CRC

Table A-5. VPD SROM Configuration Specification for 01-W3394F01*

Offset Value Field Type Description
A-14 Computer Group Literature Center Web Site

B
BRelated Documentation

Motorola Computer Group Documents
The Motorola publications listed below are referenced in this manual. You
can obtain paper or electronic copies of Motorola Computer Group
publications by:

❏ Contacting your local Motorola sales office

❏ Visiting Motorola Computer Group’s World Wide Web literature
site, http://www.motorola.com/computer/literature.

To obtain the most up-to-date product information in PDF or HTML
format, visit http://www.motorola.com/computer/literature.

Table B-1. Motorola Computer Group Documents

Document Title Motorola Publication
Number

MVME2400 Series VME Processor Module Installation and Use V2400A/IH

MVME2400 Series VME Processor Module Programmer’s
Reference Guide

V2400A/PG

PPCBug Firmware Package User’s Manual (Parts 1 and 2) PPCBUGA1/UM

PPCBUGA2/UM

PPCBug Diagnostics Manual PPCDIAA/UM

PMCspan PMC Adapter Carrier Module Installation and Use PMCSPANA/IH
B-1

http://www.mcg.mot.com/literature
http://www.mcg.mot.com/literature

Related Documentation

B
s’
listed
en
Manufacturers’ Documents
For additional information, refer to the following table for manufacturer
data sheets or user’s manuals. As an additional help, a source for the
document is provided. Please note that, while these sources have be
verified, the information is subject to change without notice.

Table B-2. Manufacturers’ Documents

Document Title and Source Publication
Number

PowerPC 750 RISC Microprocessor Technical Summary

Literature Distribution Center for Motorola
Telephone: 1-800- 441-2447
FAX: (602) 994-6430 or (303) 675-2150

Web Site: http://e-www.motorola.com/webapp/DesignCenter/
E-mail: ldcformotorola@hibbertco.com

MPC750/D

PowerPC 750 RISC Microprocessor User’s Manual

Literature Distribution Center for Motorola
Telephone: 1-800- 441-2447
FAX: (602) 994-6430 or (303) 675-2150

Web Site: http://e-www.motorola.com/webapp/DesignCenter/
E-mail: ldcformotorola@hibbertco.com

OR

IBM Microelectronics
PowerPC603/EM603e User Manual
PowerPC604e User Manual
 Web Site: http://www.chips.ibm.com/techlib/products/powerpc/manuals

MPC750UM/AD

MPR750UMU-01

PC16550 UART

National Semiconductor Corporation
Web Site: http://www.national.com/

PC16550DV

21143 PCI/CardBus 10/100Mb/s Ethernet LAN Controller Hardware
Reference Manual

Web Site: http://developer.intel.com/design/network/manuals/278074.htm

27807401.pdf

W83C553 Enhanced System I/O Controller with PCI Arbiter (PIB)

Winbond Electronics Corporation;
Web Site: http://www.winbond.com.tw/product/

W83C553F
B-2 Computer Group Literature Center Web Site

http://e-www.motorola.com/webapp/DesignCenter/
mailto:ldcformotorola@hibbertco.com
http://e-www.motorola.com/webapp/DesignCenter/
mailto:ldcformotorola@hibbertco.com
http://www.chips.ibm.com/techlib/products/powerpc/manuals
http://www.national.com/
http://developer.intel.com/design/network/manuals/278074.htm
http://winbond.com.tw/product

Related Specifications

B

Related Specifications
For additional information, refer to the following table for related
specifications. As an additional help, a source for the listed document is
provided. Please note that, while these sources have been verified, the
information is subject to change without notice.

M48T59 CMOS 8K x 8 TIMEKEEPERTM SRAM Data Sheet

STMicroelectronics;
Web Site: http://eu.st.com/stonline/index.shtml

M48T59

Universe II User Manual

Tundra Semiconductor Corporation

Web Site: http://www.tundra.com/page.cfm?tree_id=100008#Universe II
(CA91C142)

8091142_MD300_
01.pdf

Table B-3. Related Specifications

Document Title and Source Publication
Number

VME64 Specification

VITA (VMEbus International Trade Association)

Web Site: http://www.vita.com/

ANSI/VITA 1-1994

Versatile Backplane Bus: VMEbus

Institute of Electrical and Electronics Engineers, Inc.
OR

Microprocessor system bus for 1 to 4 byte data

Bureau Central de la Commission Electrotechnique Internationale
3, rue de Varembé
Geneva, Switzerland

Web Site: http://standards.ieee.org/catalog/

ANSI/IEEE
 Standard 1014-1987

IEC 821 BUS

Table B-2. Manufacturers’ Documents (Continued)

Document Title and Source Publication
Number
http://www.motorola.com/computer/literature B-3

http://eu.st.com/stonline/index.shtml
http://www.tundra.com/page.cfm?tree_id=100008#Universe II (CA91C142)
http://www.vita.com/
http://www.standards.ieee.org/catalog/

Related Documentation

B

IEEE - Common Mezzanine Card Specification (CMC)

Institute of Electrical and Electronics Engineers, Inc.

Web Site: http://standards.ieee.org/catalog

P1386 Draft 2.0

IEEE - PCI Mezzanine Card Specification (PMC)

Institute of Electrical and Electronics Engineers, Inc.

Web Site: http://standards.ieee.org/catalog

P1386.1 Draft 2.0

Peripheral Component Interconnect (PCI) Local Bus Specification,
Revision 2.0, 2.1, 2.2

PCI Special Interest Group;

Web Site: http://www.pcisig.com/

PCI Local Bus
Specification

PowerPC Reference Platform (PRP) Specification,Third Edition, Version
1.0, Volumes I and II;

International Business Machines Corporation

Web Site: http://www.ibm.com

MPR-PPC-RPU-02

PowerPC Microprocessor Common Hardware Reference Platform: A
System Architecture (CHRP), Version 1.0

Literature Distribution Center for Motorola
Telephone: 1-800- 441-2447
FAX: (602) 994-6430 or (303) 675-2150

Web Site: http://e-www.motorola.com/webapp/DesignCenter/
E-mail: ldcformotorola@hibbertco.com

OR

Morgan Kaufmann Publishers, Inc.

Telephone: (415) 392-2665
Telephone: 1-800-745-7323
Web Site: http://www.mkp.com/books_catalog/

Interface Between Data Terminal Equipment and Data Circuit-
Terminating Equipment Employing Serial Binary Data Interchange;

Electronic Industries Alliance;
Web Site: http://global.ihs.com/index.cfm (for publications)

Web Site: http://www.eia.org/

TIA/EIA-232
Standard

Table B-3. Related Specifications (Continued)

Document Title and Source Publication
Number
B-4 Computer Group Literature Center Web Site

http://www.standards.ieee.org/catalog/
http://www.standards.ieee.org/catalog/
http://www.pcisig.com/
http://www.ibm.com
http://e-www.motorola.com/webapp/DesignCenter/
mailto:ldcformotorola@hibbertco.com
http://www.mkp.com/
http://global.ihs.com/index.cfm
http://www.eia.org/

Index
Numerics
16550 access registers 1-23
16550 UART 1-23
32-Bit Counter 3-71

SMC 3-71
8259 interrupts

PIB 5-4

A
AACK

as used with PPC Slave 2-7
access timing (ROM) 3-10, 3-11
address

decoders PPC to PCI 2-7
limits on PHB map decoding 2-6

address decoders
PCI to PPC 2-5

address mapping
PPC 2-5

address modification for little endian trans-
fers 2-40

address offsets
as part of map decoders 2-21

address parity
PPC60x 3-13

Address Parity Error Address Register
SMC 3-71

Address Parity Error Log Register
SMC 3-70

address pipelining 3-7
address transfers 3-12
address/data stepping 2-29
addressing

to PCI Slave 2-23
addressing mode

for PCI Master 2-28
PCI Slave limits 2-24

Application-Specific Integrated Circuit
(ASIC) 1-1

arbiter
as controlled by the XARB register 2-16
Hawk’s internal 2-34
PPC 2-15, 2-16

arbitration
from PCI Master 2-29

arbitration latency 2-29
arbitration parking 2-37
architectural diagram for the Universe 4-3
architectural overview 2-4

Universe II 4-2
ARTRY_ 3-14

B
big to little endian data swap 2-39
big-endian mode 5-11
bit descriptions 3-38
bit ordering convention

SMC 3-1
block diagram 2-3

SMC portion of Hawk 3-2
block diagrams

Hawk with SDRAMs 3-2
board configuration information 1-21
bridge

PHB xxiii , 2-1
IN-1

Index

I
N
D
E
X

PowerPC to PCI Local Bus Bridge xxiii,
2-1

bus cycle types
on the PCI bus 2-30

Bus Hog
PPC master device 2-14

bus interface (60x)
to SMC 3-12

C
cache coherency

SMC 3-14
cache coherency restrictions 3-14
cache support 2-26, 2-30
CHRP memory map

PHB PCI Register Values 1-12
register values 1-8
Universe II PCI Register Values 1-13

CHRP memory map example 1-7
CLK FREQUENCY 3-44
CLK Frequency Register

SMC 3-44
clock frequency 3-44
combining, merging, and collapsing 2-28
command types 2-23

from PCI Master 2-27
PPC slave 2-8

CONFIG_ADDRESS Register 2-100
CONFIG_DATA Register 2-103
configuration options

Hawk 3-34
configuration registers 2-19
configuration requirements

Hawk 3-34
configuration type

as used by PHB 2-32
contention

between PCI and PPC 2-44
contention handling

explained (PHB) 2-45
control bit descriptions 3-38
Critical Word First (CWF)

as supported by PCI Master 2-27
CSR accesses

SMC 3-34
CSR architecture

SMC 3-35
CSR base address 3-35
CSR reads and writes 3-35
CWF burst transfers

explained 2-27
cycle types

SMC 3-15

D
data

discarded from prefetched reads 2-13
data parity

PPC 2-17
Data Parity Error Address Register

SMC 3-60
Data Parity Error Log Register

SMC 3-59
Data Parity Error Lower Data Register

SMC 3-61
Data Parity Error Upper Data Register

SMC 3-60
data throughput

PPC Slave to PCI Master 2-9
data transfer

PPC Master rates 2-10
relationship between PCI Slave and

PPC60x bus 2-11
data transfers

SMC 3-13
decoder

priorities 2-21
decoders

address PCI to PPC 2-5
for PCI to PPC addressing 2-19
PPC to PCI 2-7

default PCI memory map 1-11
default processor memory map 1-6
delayed transactions
IN-2 Computer Group Literature Center Web Site

I
N
D
E
X

PCI Slave 2-24
derc 3-47
device selection 2-24
Disable Error Correction control bit 3-47
DMA controller 4-7
documentation, related A-1, B-1
DRAM enable bits 3-42
DRAM size control bits 3-42

E
ECC

SMC 3-15
ECC Codes

Hawk 3-86
ECC codes 3-86
ECC Control Register

SMC 3-45
EEPROM access 3-76
elog 3-49
embt 3-49
emulated Z8536 access registers 1-30
emulated Z8536 CIO registers and port pins

1-30
Endian Conversion 2-38
endian conversion 2-38
endian issues

MVME2400 5-10
End-of-Interrupt Registers 2-122
Error Address Register

SMC 3-50
error correction 3-15
Error Correction Codes 3-86
error detection 3-15
error handling 2-41
Error Logger Register 3-49

SMC 3-49
error logging 3-17

SMC 3-17
error notification and handling 5-9

Hawk 5-9
error reporting 3-16
ERROR_ADDRESS 3-50

ERROR_SYNDROME 3-50
esbt 3-49
escb 3-49
esen 3-49
exceptions

MVME2400 5-7
exclusive access 2-29

PCI Slave 2-25
External Register Set

SMC 3-34, 3-72
external register set reads and writes 3-35
External Source Destination Registers 2-118
External Source Vector/Priority Registers

2-116

F
Falcon ECC Memory Controller chip set 3-1
fast back-to-back transactions 2-29

PCI Slave 2-25
Feature Reporting Register 2-108
features 2-1

SMC 3-1
FIFO

from PPC Slave to PCI Master 2-9
with PCI Slave 2-26

FIFO structure
explained 2-4

Flash (see ROM/Flash) 3-17
four-beat reads/writes 3-6
functional description 1-5

Hawk PHB 2-4
SMC 3-6
Universe II 4-2

G
General Control Register

SMC 3-40
General Control-Status/Feature Registers

2-69
general information

Universe II 4-1
General Purpose Registers 2-90
http://www.motorola.com/computer/literature IN-3

http://www.mcg.mot.com/literature

Index

I
N
D
E
X

rs
general-purpose software-readable header
1-24

general-purpose software-readable header
(J17) 1-23

generating PCI configuration cycles 2-32
generating PCI cycles 2-30
generating PCI interrupt acknowledge cycles

2-34
generating PCI memory and I/O cycles 2-30
generating PCI special cycles 2-33
Global Configuration Register 2-108

H
Hawk

address parity 3-13
configuration options 3-34
data parity 3-13
ECC Codes 3-86
error notification and handling 5-9
I2C Byte Write 3-22
I2C Current Address Read 3-27
I2C Interface 3-21
I2C Page Write 3-29
I2C Random Read 3-25
I2C Sequential Read 3-31
programming details 5-1
programming ROM/Flash devices 3-74
writing to the control registers 3-74

Hawk block diagram 2-3
Hawk MPIC

interrupts 5-3
Hawk MPIC control registers

 2-22
Hawk’s DEVSEL_ pin

as criteria for PHB config. mapping 2-19
Hawk’s I2C bus 3-76
Hawk’s PCI arbiter

priority schemes 2-35
Hawk’s SMC

overview 3-1
Header/Type Register 2-95

I
I/O Base Register

MPIC 2-96
I2C Byte Write

Hawk 3-22
I2C Clock Prescaler Register

SMC 3-61
I2C Control Register

SMC 3-62
I2C Current Address Read

Hawk 3-27
I2C EEPROMs 3-76
I2C Interface

Hawk 3-21
I2C Page Write

Hawk 3-29
I2C Random Read

Hawk 3-25
I2C Receiver Data Register

SMC 3-65
I2C Sequential Read

Hawk 3-31
I2C Status Register

SMC 3-63
I2C Transmitter Data Register

SMC 3-64
initializing

SDRAM-related control registers 3-75
Interprocessor Interrupt Dispatch Registe

2-120
Interrupt Acknowledge Registers 2-121
Interrupt Controller

features 2-2
interrupt handling

on MVME2400 5-2
Interrupt Task Priority Registers 2-120
interrupter 4-6
interrupter and interrupt handler 4-6
interrupts

Hawk MPIC 5-3
introduction

Hawk PHB/MPIC 2-1
IN-4 Computer Group Literature Center Web Site

I
N
D
E
X

rs
PHB/MPIC 2-1
programming details for Hawk 5-1
SMC 3-1
Universe II 4-1

IPI Vector/Priority Registers 2-111
ISA Bus

resources available 1-22
ISA DMA channels 1-31, 5-7
ISA local resource bus 1-22

L
L2 cache support

SMC 3-14
L2CLM_ 3-14
Large Scale Integration (LSI) 1-1
latency

PCI Slave 2-25
Little Endian

mode of PPC devices 2-39
little-endian mode 5-12
LM/SIG Control Register 1-26
LM/SIG Status Register 1-26
Location Monitor Lower Base Address Reg-

ister 1-28
Location Monitor Upper Base Address Reg-

ister 1-28
Lock Resolution

programmable 2-46

M
manufacturers’ documents B-2
map decoders

PPC to PCI 2-7
mapping

PPC address 2-5
master initiated termination 2-28
mcken 3-48
Memory Base Register 2-97
memory map

processor CHRP 1-7
memory maps 1-6
mien 3-48

MK48T59/559 access registers 1-24
MPC address mapping 2-5
MPC arbiter 2-15
MPC bus address space

 2-19
MPC bus interface 2-5
MPC slave 2-7
MPC Slave Address (0,1 and 2) Registe

2-84
MPC slave response command types 2-8
MPC to PCI address decoding 2-6
MPC to PCI address translation 2-7
MPC write posting 2-9
MPC604

processor/memory domain 5-13
MPIC xxiii , 2-1

interface with PHB 2-5
MPIC Registers 2-104
MPIC registers 2-104
MPIC’s involvement 5-13
Multi-Processor Interrupt Controller xxiii ,

2-1
MVME2300 series system block diagram 1-4
MVME2400

endian issues 5-10
interrupt handling 5-2
sources of reset 5-7

MVME2400 description 1-3
MVME2400 series

programmable registers 1-1
MVME240x features 1-2
MVME2600 series interrupt architecture 5-2

N
NVRAM/RTC & Watchdog Timer Registers

1-24

O
overview 1-1, 2-1

SMC 3-1
http://www.motorola.com/computer/literature IN-5

http://www.mcg.mot.com/literature

Index

I
N
D
E
X

P
parity 2-30

PCI Slave 2-25
PCI

contention with PPC 2-44
PCI address mapping 2-19
PCI arbiter

Hawk internal version 2-34
PCI arbitration

Hawk 5-1
PCI arbitration assignments 5-1
PCI bus interface 4-5
PCI CHRP memory map 1-11
PCI Command/ Status Registers 2-93
PCI configuration access 1-10
PCI configuration register map 2-91
PCI domain 5-13
PCI expansion

described 1-5
PCI FIFO 2-26

used with PCI Slave 2-22
PCI Interface 2-1

purpose 2-19
PCI interface 2-18
PCI Interface features 2-1
PCI Interrupt Acknowledge Register 2-83
PCI Master

explained 2-4
PCI master 2-26
PCI master command codes 2-27
PCI memory maps 1-10
PCI PREP memory map 1-14
PCI registers 2-91
PCI request

speculative 2-47
PCI Slave

disconnect scenarios 2-24
with PCI Master 2-26

PCI slave 2-22
PCI Slave Address (0,1,2 and 3) Registers

2-98

PCI Slave Attribute/ Offset (0,1,2 and 3)
Registers 2-99

PCI slave response command types 2-23
PCI spread I/O address translation 2-31
PCI to MPC address decoding 2-20
PCI to MPC address translation 2-21
PCI write posting 2-26
PCI-Ethernet 5-13
PCI-graphics 5-14
PCI-SCSI 5-13
performance

SMC 3-6
PHB xxiii, 2-1

address mapping 2-5
configuration type 2-32
contention handling explained 2-45
endian conversion 2-38
retuning write thresholds 2-11
spread I/O addressing 2-31
watchdog timers 2-42

PHB Configuration registers
as mapped within PCI Configuration

space 2-19
PHB errors

types described 2-41
PHB PCI Register Values

CHRP memory map 1-12
PREP Memory Map 1-15

PHB Register Values
CHRP Memory Map 1-8

PHB Register values
PREP Memory Map 1-10

PHB registers 2-40
PHB-Detected Errors Destination Register

2-119
PHB-Detected Errors Vector/Priority Regis-

ter 2-118
PIB

8259 interrupts 5-4
PIB interrupt handler block diagram 5-5
PIB PCI/ISA interrupt assignments 5-6
pipelining
IN-6 Computer Group Literature Center Web Site

I
N
D
E
X

removing 2-7
PMC slots

described 1-5
PowerPC 60x address to ROM/Flash address

mapping with 2, 32-bit or 1, 64-bit
3-20

PowerPC 60x bus to ROM/Flash access tim-
ing using 32/64-bit devices 3-10

PowerPC 60x bus to ROM/Flash access tim-
ing using 8-bit devices 3-11

PowerPC 60x to ROM/Flash address map-
ping when ROM/Flash is 16 bits
wide (8 bits per Falcon) 3-19

PowerPC 60x to ROM/Flash address map-
ping with 2, 8-bit devices 3-19

Power-Up Reset status bit 3-45
PPC

address mapping 2-5
contention with PCI 2-44

PPC Arbiter
debug functions 2-16
parking modes 2-16
prioritization schemes 2-16

PPC Arbiter Control Register 2-71
PPC Bus

interface limits 2-5
PPC Bus Address Space 2-19
PPC bus arbiter 2-15
PPC Bus features 2-1
PPC Bus Interface 2-1
PPC bus timer 2-17
PPC devices

as little endian 2-39
when Big-Endian 2-38

PPC Error Address Register 2-81
PPC Error Attribute Register - EATTR 2-82
PPC Error Enable Register 2-77
PPC Error Status Register 2-79
PPC Master

Bug Hog 2-14
doing prefetched reads 2-13
read ahead mode 2-12

PPC master 2-10
PPC Parity 2-17
PPC registers 2-66
PPC slave

role 2-7
PPC Slave Address (3) Register 2-85
PPC Slave Address Register 2-86
PPC Slave Offset/Attribute (0,1 and 2) Reg-

isters 2-87
PPC60x Data Parity 3-13
PREP Memory Map

Universe II PCI Register Values 1-15
PREP memory map

PHB PCI Register Values 1-15
PHB Register values 1-10

PREP memory map example 1-9
Prescaler Adjust Register 2-74
priority schemes

described (PCI arbiter) 2-35
PRK

as used in arbitration parking 2-37
processor CHRP memory map 1-7
Processor Init Register 2-110
processor memory map 1-6
processor memory maps 1-6
processor PREP memory map 1-9
processor/memory domain

MPC604 5-13
product overview - features

Universe II 4-1
Programmable Lock Resolution 2-46
programming details 5-1
programming model 1-6
programming ROM/Flash devices 3-74

R
RAM A BASE 3-43, 3-66
RAM B BASE 3-43, 3-66
RAM C BASE 3-43, 3-66
RAM D BASE 3-43, 3-64, 3-65, 3-66
Raven MPC register map 2-66
http://www.motorola.com/computer/literature IN-7

http://www.mcg.mot.com/literature

Index

I
N
D
E
X

Raven PCI Host Bridge & Multi-Processor
Interrupt Controller chip 2-1

Raven PCI I/O register map 2-92
RavenMPIC interrupt assignments 5-3
RavenMPIC register map 2-105
read ahead mode

in PPC Master 2-12
Read/Write to ROM/Flash 3-55
readable switch settings 1-23
refresh/scrub 3-34

SMC 3-34
Refresh/Scrub Address Register

SMC 3-52
register bit descriptions

SMC 3-38
register map 2-66

PCI 2-91
register summary 3-35
Registers

programmable in ASICs 1-1
registers

CLK Frequency 3-44
CONFIG_ADDRESS 2-100
CONFIG_DATA 2-103
End-of-Interrupt 2-122
External Source Destination 2-118
External Source Vector/Priority 2-116
Feature Reporting 2-108
General Purpose 2-90
Global Configuration 2-108
Hardware Control-Status Register 2-74
Header Type 2-95
Interprocessor Interrupt Dispatch 2-120
Interrupt Acknowledge 2-121
Interrupt Task Priority 2-120
IPI Vector/Priority (MPIC) 2-111
MPIC 2-104
MPIC I/O Base Address 2-96
MPIC Memory Base 2-97
PCI 2-91
PCI Interrupt Acknowledge 2-83
PCI Slave Address 2-98

PCI Slave Attribute 2-99
PHB-Detected Errors Destination 2-119
PHB-Detected Errors Vector/Priority

2-118
PPC Error Address 2-81
PPC Error Attribute 2-82
PPC Error Enable 2-77
PPC Error Status 2-79
PPC Slave Address 2-86
PPC Slave Offset/Attribute 2-85, 2-87
Processor Init (MPIC) 2-110
SMC 32-Bit Counter 3-71
SMC Address Parity Error Address 3-71
SMC Address Parity Error Log 3-70
SMC Base Address 3-66
SMC Data Parity Error Address 3-60
SMC Data Parity Error Log 3-59
SMC Data Parity Error Lower Data 3-61
SMC Data Parity Error Upper Data 3-60
SMC ECC Control 3-45
SMC Error Address 3-50
SMC Error Logger 3-49
SMC External Register set 3-72
SMC General Control Register 3-40
SMC I2C Clock Prescaler 3-61
SMC I2C Control 3-62
SMC I2C Receiver Data 3-65
SMC I2C Status 3-63
SMC I2C Transmitter Data 3-64
SMC ROM A Base/Size 3-53
SMC ROM B Base/Size 3-56
SMC ROM Speed Attributes 3-58
SMC Scrub Address 3-52
SMC Scrub/Refresh 3-51
SMC SDRAM Base Address 3-43
SMC SDRAM Enable and Size 3-41,

3-65
SMC SDRAM Speed Attributes 3-68
SMC tben 3-73
SMC Vendor/Device Register 3-39
Spurious Vector (MPIC) 2-112
Timer Basecount (MPIC) 2-114
IN-8 Computer Group Literature Center Web Site

I
N
D
E
X

Timer Current Count (MPIC) 2-113
Timer Destination 2-116
Timer Frequency (MPIC) 2-112
Timer Vector/Priority 2-115
Vendor Identification (MPIC) 2-110
WDTxCNTL 2-88
WDTxSTAT 2-90
writing to the control registers 3-74

registers - Universe II Control and Status
Registers (UCSR) 4-8

related documentation, ordering A-1, B-1
related specifications B-3
reset sources and devices affected 5-8
Resources

via ISA Local Resource Bus 1-22
Revision ID 3-40
Revision ID Register 2-68
Revision ID/ Class Code Registers 2-95
Revision ID/General Control Register 3-39
ROM 5-15
ROM Block A Size Encodings 3-54
ROM Block B Size Encoding 3-57
ROM Speed Attributes Register

SMC 3-58
ROM/Flash 3-17
ROM/Flash A Base Address control bits 3-53
ROM/Flash A Base/Size Register

SMC 3-53
ROM/Flash A size encoding 3-54
ROM/Flash A Width control bit 3-53
ROM/Flash B Base Address control bits 3-56
ROM/Flash B Base/Size Register

SMC 3-56
ROM/Flash B Width control bit 3-56
ROM/FLASH bank default 5-15
ROM/Flash initialization

SMC 5-15
ROM/Flash Interface 3-17
ROM/Flash interface 3-17
ROM/Flash speeds

of SMC 3-10
rom_a_64 3-53

ROM_A_BASE 3-53
rom_a_en 3-55
rom_a_rv 3-54
rom_a_rv and rom_b_rv encoding 3-54
rom_a_siz 3-54
rom_a_we 3-55
rom_b_64 3-56
ROM_B_BASE 3-56
rom_b_en 3-57
rom_b_rv 3-57
rom_b_siz 3-57
rom_b_we 3-57
Row Address 3-52
rwcb 3-46

S
SBE_COUNT 3-50
scb0,scb1 3-51
scien 3-45, 3-47
scof 3-50
scrub counter 3-51
Scrub Write Enable control bit 3-51
Scrub/Refresh Register

SMC 3-51
SDRAM

Operational Method for Sizing 3-82
sizing 3-76
speed attributes 3-75

SDRAM Attributes Register
SMC 3-41

SDRAM Base Address Register
SMC 3-66

SDRAM Base Address/Enable 3-76
SDRAM Base Register

SMC 3-43
SDRAM block organization 3-9
SDRAM Control Registers

Initialization Example 3-77
SDRAM Enable and Size Register

SMC 3-65
SDRAM registers

initializing 3-75
http://www.motorola.com/computer/literature IN-9

http://www.mcg.mot.com/literature

Index

I
N
D
E
X

SDRAM Speed Attributes Register
SMC 3-68

SDRAM speeds 3-7
Semaphore Register 1 1-28
Semaphore Register 2 1-29
Serial Presence Detect (SPD) 3-76
Seven-Segment Display Register 1-25
sien 3-48
Single Bit Error Counter 3-50
single-beat reads/writes 3-7
single-bit error 3-16
single-bit errors ordered by syndrome code

3-87
sizing SDRAM 3-76
SMC

32-Bit Counter 3-71
address parity 3-13
Address Parity Error Address Register

3-71
Address Parity Error Log Register 3-70
block diagram 3-2
cache coherency 3-14
CLK Frequency Register 3-44
CSR Accesses 3-34
cycle types 3-15
data parity 3-13
Data Parity Error Upper Data Register

3-60
data transfers 3-13
ECC Control Register 3-45
Error Address Register 3-50
error correction 3-15
Error Logger Register 3-49
error logging 3-17
External Register Set 3-34
General Control Register 3-40
I2C Transmitter Data Register 3-64
L2 cache support 3-14
refresh/scrub 3-34
ROM A Base/Size Register 3-53
ROM B Base/Size Register 3-56
ROM Speed Attributes Register 3-58

ROM/Flash initialization 5-15
ROM/Flash Interface 3-17
Scrub/Refresh Register 3-51
SDRAM Base Address Register 3-43,

3-66
SDRAM Enable and Size Register 3-41,

3-65
SDRAM Speed Attributes Register 3-68
Vendor/Device Register 3-39

SMC Data Parity Error Address Register
3-60

SMC Data Parity Error Log Register 3-59
SMC Data Parity Error Lower Data Register

3-61
SMC External Register Set 3-72
SMC I2C Clock Prescaler Register 3-61
SMC I2C Control Register 3-62
SMC I2C Receiver Data Register 3-65
SMC I2C Status Register 3-63
SMC Scrub Address Register 3-52
SMC tben Register 3-73
soft reset

MPIC 5-8
software considerations 3-74
software readable switch settings 1-23
sources of reset

MVME2400 5-7
SPD 3-76
specifications

related B-3
specifications, related B-3
Speculative PCI Request 2-47
spread I/O addressing

as function of PHB 2-31
Spurious Vector Register 2-112
SRAM base address 3-35
status bit descriptions 3-38
swen 3-51
switch

S3 1-23
switches

software readable 1-23
IN-10 Computer Group Literature Center Web Site

I
N
D
E
X

r

syndrome codes ordered by bit in error 3-86
System Configuration Information 1-21

T
TA

as used with PPC Slave 2-7
Table 2-10
Table 2-2. 2-10
target initiated termination

 2-24
tben Register

SMC 3-73
Timer Basecount Registers 2-114
Timer Current Count Registers 2-113
Timer Destination Registers 2-116
Timer Frequency Register 2-112
Timer Vector/Priority Registers 2-115
timing (ROM/Flash access) 3-10
transaction

burst 2-8
instance of interrupt 2-8

transaction ordering 2-47
transactions

compelled 2-7
PCI originated/PPC bound described 2-4
posted 2-7
PPC originated/PCI bound described 2-4
PPC Slave limits 2-8
unable to retry 2-8

transfer types
generated by PPC Master 2-14
PCI command code dependent 2-14
PPC60x bus 2-14

triple- (or greater) bit error 3-16

U
UART 1-23
UCSR access mechanisms 4-8
Universe (VMEbus to PCI) chip 4-1
Universe as PCI master 4-6
Universe as PCI slave 4-5
Universe as VMEbus master 4-4

Universe as VMEbus slave 4-4
Universe chip problems after a PCI reset 5-9
Universe II

function described 4-1
Universe II ASIC

programming for VME Register info.
1-25

Universe II PCI Register Values
CHRP Memory Map 1-13
PREP Memory Map 1-15

Universe II register map 4-9
Universe’s involvement

with endian issues 5-14

V
Vendor ID/ Device ID Registers 2-92
Vendor ID/Device ID Registers 2-67
Vendor Identification Register 2-110
Vendor/Device Register

SMC 3-39
Vital Product Data (VPD) 1-21, A-1
VME Geographical Address Registe

(VGAR) 1-29
VME Registers 1-25
VME registers 1-25
VMEbus

master mapping diagram 1-17
slave mapping diagram 1-19

VMEbus domain
in endian issues 5-14

VMEbus interface
to Universe II 4-4

VMEbus interrupt handling 4-7
VMEbus mapping 1-16
VMEbus master map 1-16
VMEbus slave map 1-18
VMEbus slave map example 1-21

Universe II PCI Register Values 1-20
VPD A-1

example of SROM data A-9
use of 1-21
http://www.motorola.com/computer/literature IN-11

http://www.mcg.mot.com/literature

Index

I
N
D
E
X

VPD - FLASH Memory Configuration Data
A-6

VPD - L2 Cache Configuration Data A-7
VPD - Product Configuration Options A-4
VPD definitions A-1

W
W83C553 PIB registers 1-22
Watchdog Timer

registers 2-43
watchdog timers

as part of PHB 2-42
WDTxCNTL register 2-43
WDTxCNTL Registers 2-88
WDTxSTAT Registers 2-90
when MPC devices are big-endian 2-38
write posting

as part of PHB tuning 2-11
writing to the control registers 3-74

Z
Z8536 CIO port pins 1-30
Z8536 CIO port pins assignment 1-30
IN-12 Computer Group Literature Center Web Site

	Contents
	List of Figures
	List of Tables
	About This Manual
	Summary of Changes
	Overview of Contents
	Comments and Suggestions
	Conventions Used in This Manual

	Board Description and Memory Maps
	Introduction
	Overview
	Feature Summary
	System Block Diagram
	Functional Description
	Overview

	Programming Model
	Memory Maps
	Processor Memory Maps
	PCI Memory Maps
	VMEbus Mapping

	System Configuration Information

	ISA Local Resource Bus
	W83C553 PIB Registers
	UART
	General-Purpose Software-Readable Header (SRH) Switch (S3)
	NVRAM/RTC & Watchdog Timer Registers
	VME Registers
	LM/SIG Control Register
	LM/SIG Status Register
	Location Monitor Upper Base Address Register
	Location Monitor Lower Base Address Register
	Semaphore Register 1
	Semaphore Register 2
	VME Geographical Address Register (VGAR)

	Emulated Z8536 CIO Registers and Port Pins
	Z8536 CIO Port Pins

	ISA DMA Channels

	Hawk PCI Host Bridge & Multi- Processor Interrupt Controller
	Introduction
	Overview
	Features

	Block Diagram
	Functional Description
	Architectural Overview
	PPC Bus Interface
	PPC Address Mapping
	PPC Slave
	PPC FIFO
	PPC Master
	PPC Arbiter
	PPC Parity
	PPC Bus Timer

	PCI Bus Interface
	PCI Address Mapping
	PCI Slave
	PCI FIFO
	PCI Master
	Generating PCI Cycles
	PCI Arbiter

	Endian Conversion
	When PPC Devices are Big-Endian
	When PPC Devices are Little-Endian
	PHB Registers

	Error Handling
	Watchdog Timers
	PCI/PPC Contention Handling
	Transaction Ordering
	PHB Hardware Configuration

	Multi-Processor Interrupt Controller (MPIC) Functional Description
	MPIC Features:
	Architecture
	External Interrupt Interface
	CSR’s Readability
	Interrupt Source Priority
	Processor’s Current Task Priority
	Nesting of Interrupt Events
	Spurious Vector Generation
	Interprocessor Interrupts (IPI)
	8259 Compatibility
	PHB Detected Errors
	Timers
	Interrupt Delivery Modes
	Block Diagram Description
	Program Visible Registers
	Interrupt Pending Register (IPR)
	Interrupt Selector (IS)
	Interrupt Request Register (IRR)
	In-Service Register (ISR)
	Interrupt Router

	Programming Notes
	External Interrupt Service
	Reset State

	Operation
	Interprocessor Interrupts
	Dynamically Changing I/O Interrupt Configuration
	EOI Register
	Interrupt Acknowledge Register
	8259 Mode
	Current Task Priority Level

	Architectural Notes
	Effects of Interrupt Serialization

	Registers
	PPC Registers
	Vendor ID/Device ID Registers
	Revision ID Register
	General Control-Status/Feature Registers
	PPC Arbiter/PCI Arbiter Control Registers
	Hardware Control-Status/Prescaler Adjust Register
	PPC Error Test/Error Enable Register
	PPC Error Status Register
	PPC Error Address Register
	PPC Error Attribute Register
	PCI Interrupt Acknowledge Register
	PPC Slave Address (0,1 and 2) Registers
	PPC Slave Offset/Attribute (0, 1 and 2) Registers
	PPC Slave Address (3) Register
	PPC Slave Offset/Attribute (3) Registers
	WDTxCNTL Registers
	WDTxSTAT Registers
	General Purpose Registers

	PCI Registers
	Vendor ID/ Device ID Registers
	PCI Command/Status Registers
	Revision ID/Class Code Registers
	Header Type Register
	MPIC I/O Base Address Register
	MPIC Memory Base Register
	PCI Slave Address (0,1,2 and 3) Registers
	PCI Slave Attribute/Offset (0,1,2 and 3) Registers
	CONFIG_ADDRESS Register
	CONFIG_DATA Register

	MPIC Registers
	MPIC Registers
	Feature Reporting Register
	Global Configuration Register
	Vendor Identification Register
	Processor Init Register
	IPI Vector/Priority Registers
	Spurious Vector Register
	Timer Frequency Register
	Timer Current Count Registers
	Timer Basecount Registers
	Timer Vector/Priority Registers
	Timer Destination Registers
	External Source Vector/Priority Registers
	External Source Destination Registers
	PHB-Detected Errors Vector/Priority Register
	PHB-Detected Errors Destination Register
	Interprocessor Interrupt Dispatch Registers
	Interrupt Task Priority Registers
	Interrupt Acknowledge Registers
	End-of-Interrupt Registers

	System Memory Controller (SMC)
	Introduction
	Overview
	Bit Ordering Convention
	Features

	Block Diagrams
	Functional Description
	Performance
	Four-beat Reads/Writes
	Single-beat Reads/Writes
	Address Pipelining
	Page Holding
	SDRAM Speeds
	SDRAM Organization
	ROM/Flash Speeds

	PPC60x Bus Interface
	Responding to Address Transfers
	Completing Data Transfers
	PPC60x Data Parity
	PPC60x Address Parity
	Cache Coherency
	Cache Coherency Restrictions
	L2 Cache Support

	ECC (Error Correction Code)
	Cycle Types
	Error Reporting
	Error Logging

	ROM/Flash Interface
	I2C Interface
	I2C Byte Write
	I2C Random Read
	I2C Current Address Read
	I2C Page Write
	I2C Sequential Read

	Refresh/Scrub
	CSR Accesses
	External Register Set
	Chip Configuration

	Programming Model
	CSR Architecture
	Register Summary
	Detailed Register Bit Descriptions
	Vendor/Device Register
	Revision ID/ General Control Register
	SDRAM Enable and Size Register (Blocks A, B, C, D)
	SDRAM Base Address Register (Blocks A/B/C/D)
	CLK Frequency Register
	ECC Control Register
	Error Logger Register
	Error_Address Register
	Scrub/Refresh Register
	Scrub Address Register
	ROM A Base/Size Register
	ROM B Base/Size Register
	ROM Speed Attributes Registers
	Data Parity Error Log Register
	Data Parity Error Address Register
	Data Parity Error Upper Data Register
	Data Parity Error Lower Data Register
	I2C Clock Prescaler Register
	I2C Control Register
	I2C Status Register
	I2C Transmitter Data Register
	I2C Receiver Data Register
	SDRAM Enable and Size Register (Blocks E,F,G,H)
	SDRAM Base Address Register (Blocks E/F/G/H)
	SDRAM Speed Attributes Register
	Address Parity Error Log Register
	Address Parity Error Address Register
	32-Bit Counter
	External Register Set
	tben Register

	Software Considerations
	Programming ROM/Flash Devices
	Writing to the Control Registers
	Initializing SDRAM Related Control Registers
	SDRAM Speed Attributes
	SDRAM Size
	I2C EEPROMs
	SDRAM Base Address and Enable
	SDRAM Control Registers Initialization Example
	Optional Method for Sizing SDRAM

	ECC Codes

	Universe II (VMEbus to PCI) Chip
	General Information
	Introduction
	Product Overview – Features

	Functional Description
	Architectural Overview
	VMEbus Interface
	PCI Bus Interface
	Interrupter and Interrupt Handler
	DMA Controller

	Registers – Universe II Control and Status Registers (UCSR)
	Universe II Register Map

	Programming Details
	Introduction
	PCI Arbitration
	Interrupt Handling
	Hawk MPIC
	8259 Interrupts

	ISA DMA Channels
	Exceptions
	Sources of Reset
	Soft Reset
	Universe II Chip Problems after a PCI Reset
	Error Notification and Handling

	Endian Issues
	Processor/Memory Domain
	MPIC’s Involvement
	PCI Domain
	PCI-SCSI
	PCI-Ethernet
	PCI-Graphics

	Universe II’s Involvement
	VMEbus Domain

	ROM/Flash Initialization

	MVME2400 VPD Reference Information
	Vital Product Data (VPD) Introduction
	VPD Data Definitions
	VPD Data Definitions – Product Configuration Options Data
	VPD Data Definitions – Flash Memory Configuration Data
	VPD Data Definitions – L2 Cache Configuration Data
	Example VPD SROM

	Related Documentation
	Motorola Computer Group Documents
	Manufacturers’ Documents
	Related Specifications

	Index

