MVME2300 Series VME Processor Module Installation and Use

V2300A/IH4

June 2001 Edition

© Copyright 2000, 2001 Motorola, Inc.

All rights reserved.

Printed in the United States of America.

 $\mathsf{Motorola}^{\texttt{®}}$ and the Motorola symbol are registered trademarks of Motorola, Inc.

PowerPC[®] is a registered trademark of International Business Machines.

Windows NT[®] is a registered trademark of Microsoft Corporation in the United States and/or other countries.

All other products mentioned in this document are trademarks or registered trademarks of their respective holders.

Safety Summary

The following general safety precautions must be observed during all phases of operation, service, and repair of this equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result in personal injury or damage to the equipment.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of the equipment in your operating environment.

Ground the Instrument.

To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. If the equipment is supplied with a three-conductor AC power cable, the power cable must be plugged into an approved three-contact electrical outlet, with the grounding wire (green/yellow) reliably connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards and local electrical regulatory codes.

Do Not Operate in an Explosive Atmosphere.

Do not operate the equipment in any explosive atmosphere such as in the presence of flammable gases or fumes. Operation of any electrical equipment in such an environment could result in an explosion and cause injury or damage.

Keep Away From Live Circuits Inside the Equipment.

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other qualified service personnel may remove equipment covers for internal subassembly or component replacement or any internal adjustment. Service personnel should not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, such personnel should always disconnect power and discharge circuits before touching components.

Use Caution When Exposing or Handling a CRT.

Breakage of a Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, do not handle the CRT and avoid rough handling or jarring of the equipment. Handling of a CRT should be done only by qualified service personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.

Do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local Motorola representative for service and repair to ensure that all safety features are maintained.

Observe Warnings in Manual.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed. You should also employ all other safety precautions which you deem necessary for the operation of the equipment in your operating environment.

To prevent serious injury or death from dangerous voltages, use extreme caution when handling, testing, and adjusting this equipment and its components.

Flammability

All Motorola PWBs (printed wiring boards) are manufactured with a flammability rating of 94V-0 by UL-recognized manufacturers.

EMI Caution

This equipment generates, uses and can radiate electromagnetic energy. It may cause or be susceptible to electromagnetic interference (EMI) if not installed and used with adequate EMI protection.

Lithium Battery Caution

This product contains a lithium battery to power the clock and calendar circuitry.

Danger of explosion if battery is replaced incorrectly. Replace battery only with the same or equivalent type recommended by the equipment manufacturer. Dispose of used batteries according to the manufacturer's instructions.

Il y a danger d'explosion s'il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type équivalent recommandé par le constructeur. Mettre au rebut les batteries usagées conformément aux instructions du fabricant.

Explosionsgefahr bei unsachgemäßem Austausch der Batterie. Ersatz nur durch denselben oder einen vom Hersteller empfohlenen Typ. Entsorgung gebrauchter Batterien nach Angaben des Herstellers.

CE Notice (European Community)

This is a Class A product. In a domestic environment, this product may cause radio interference, in which case the user may be required to take adequate measures.

Motorola Computer Group products with the CE marking comply with the EMC Directive (89/336/EEC). Compliance with this directive implies conformity to the following European Norms:

EN55022 "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment"; this product tested to Equipment Class A

EN50082-1:1997 "Electromagnetic Compatibility—Generic Immunity Standard, Part 1. Residential, Commercial and Light Industry"

System products also fulfill EN60950 (product safety) which is essentially the requirement for the Low Voltage Directive (73/23/EEC).

Board products are tested in a representative system to show compliance with the above mentioned requirements. A proper installation in a CE-marked system will maintain the required EMC/safety performance.

In accordance with European Community directives, a "Declaration of Conformity" has been made and is on file within the European Union. The "Declaration of Conformity" is available on request. Please contact your sales representative.

Notice

While reasonable efforts have been made to assure the accuracy of this document, Motorola, Inc. assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to the Motorola Computer Group website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of Motorola, Inc.

It is possible that this publication may contain reference to or information about Motorola products (machines and programs), programming, or services that are not available in your country. Such references or information must not be construed to mean that Motorola intends to announce such Motorola products, programming, or services in your country.

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause at DFARS 252.227-7014 (Jun. 1995).

Motorola, Inc. Computer Group 2900 South Diablo Way Tempe, Arizona 85282

About This Manual

Summary of Changes	xvi
Overview of Contents	xvi
Comments and Suggestions	xvii
Conventions Used in This Manual	
Terminology	xviii

CHAPTER 1 Preparation and Installation

Introduction1-1
Description
MVME2300 Module
PMCspan Expansion Mezzanine1-3
PCI Mezzanine Cards (PMCs)1-4
VMEsystem Enclosure1-4
System Console Terminal1-4
Overview of Start-Up Procedures1-5
Unpacking the MVME2300 Hardware1-7
Preparing the MVME2300 Hardware1-7
MVME23001-7
Setting the Flash Memory Bank A/Bank B Reset Vector Header (J15)1-10
Setting the VMEbus System Controller Selection Header (J16)1-10
Setting the General-Purpose Software-Readable Header (J17)1-11
PMCs1-12
PMCspan1-12
System Console Terminal1-12
Installing the MVME2300 Hardware1-13
Preparing and Installing PMCs1-13
Installing the Primary PMCspan1-15
Installing a Secondary PMCspan1-17
Installing the MVME2300 Module1-19
Installation Considerations1-21

CHAPTER 2 Operating Instructions

Introduction2-1

Applying Power	
Description	
Switches	
ABT (S1)	
RST (S2)	
Status Indicators	
BFL (DS1)	
CPU (DS2)	
PMC (DS3)	
PMC (DS4)	
10BaseT/100BaseTX Port	
DEBUG Port	
PMC Slots	
PCI Mezzanine Card (PMC Slot 1)	
PCI Mezzanine Card (PMC Slot 2)	
PMCspan	

CHAPTER 3 Functional Description

Introduction	
Features	
General Description	
Block Diagram	
MPC603/MCP604R Processor	
PCI Bus Latency	
DRAM Memory	
DRAM Latency	
Flash Memory	
Flash Latency	
Ethernet Interface	
PCI Mezzanine Card (PMC) Interface	
PMC Slot 1 (Single-Width PMC)	
PMC Slot 2 (Single-Width PMC)	
PMC Slots 1 and 2 (Double-Width PMC)	
PCI Expansion	
VMEbus Interface	
Asynchronous Debug Port	
PCI-ISA Bridge (PIB) Controller	
Real-Time Clock/NVRAM/Timer Function	
PCI Host Bridge	
Interrupt Controller (MPIC)	

Programmable Timers	
Interval Timers	
16/32-Bit Timers.	

CHAPTER 4 Programming

Introduction	4-1
Memory Maps	4-1
Processor Bus Memory Map	4-2
Default Processor Memory Map	
PCI Local Bus Memory Map	
VMEbus Memory Map	4-3
Programming Considerations	4-4
PCI Arbitration	4-4
Interrupt Handling	4-6
DMA Channels	
Sources of Reset	4-8
Endian Issues	4-9
Processor/Memory Domain	4-10
PCI Domain	
VMEbus Domain	4-11

CHAPTER 5 PPCBug

PPCBug Overview	5-1
PPCBug Basics	5-1
Memory Requirements	5-3
PPCBug Implementation	5-3
MPU, Hardware, and Firmware Initialization	5-3
Using PPCBug	5-5
Debugger Commands	5-6
Diagnostic Tests	

CHAPTER 6 Modifying the Environment

Overview	6-1
CNFG – Configure Board Information Block	6-2
ENV – Set Environment	6-3
Configuring the PPCBug Parameters	6-3
Configuring the VMEbus Interface	

APPENDIX A Specifications

Specifications	
Cooling Requirements	A-3
EMC Regulatory Compliance	A-4

APPENDIX B Connector Pin Assignments

Introduction	B-1
Pin Assignments	B-1
VMEbus Connector - P1	B-2
VMEbus Connector - P2	B-3
Serial Port Connector - DEBUG (J2)	B-5
Ethernet Connector - 10BaseT/100BaseT (J3)	B-5
CPU Debug Connector - J1	B-6
PCI Expansion Connector - J18	B-11
PCI Mezzanine Card Connectors - J11 through J14	B-14
PCI Mezzanine Card Connectors - J21 through J24	B-16

APPENDIX C Troubleshooting

Solving Startup Problems	-1
--------------------------	----

APPENDIX D Related Documentation

Motorola Computer Group Documents	D-1
Manufacturers' Documents	D-2
Related Specifications	D-5
Abbreviations, Acronyms, and Terms to Know	GL-1

Figure 1-1. MVME2300 Switches, LEDs, Headers, Connectors	1-9
Figure 1-2. General-Purpose Software-Readable Header	1-11
Figure 1-3. Typical Single-width PMC Module Placement on MVME2300	1-14
Figure 1-4. PMCspan-002 Installation on an MVME2300	1-16
Figure 1-5. PMCspan-010 Installation onto a PMCspan-002/MVME2300	1-18
Figure 2-1. MVME2300 DEBUG Port Configuration	2-5
Figure 3-1. MVME2300 Block Diagram	3-4
Figure 3-2. Memory Block Diagram	
Figure 4-1. VMEbus Master Mapping	4-5
Figure 4-2. MVME2300 Interrupt Architecture	4-7

Table 1-1. MVME2300 Models
Table 1-2. PMCspan Models
Table 1-3. Start-Up Overview 1-5
Table 3-1. MVME2300 Features
Table 3-2. Power Requirements 3-5
Table 3-3. MPC 60x Bus to PCI Access Timing
Table 3-4. PCI to ECC Memory Access Timing
Table 3-5. MPC 60x Bus to DRAM Access Timing using 60ns Page Devices3-8
Table 3-6. MPC 60x Bus to DRAM Access Timing Using 50ns, EDO Devices3-9
Table 3-7. PowerPC 60x Bus to Flash Access Timing for Bank B (16-bit Port)3-11
Table 4-1. Processor Default View of the Memory Map 4-2
Table 4-2. PCI Arbitration Assignments4-6
Table 4-3. Classes of Reset and Effectiveness 4-9
Table 5-1. Debugger Commands 5-6
Table 5-2. Diagnostic Test Groups
Table A-1. Specifications
Table B-1. P1 VMEbus Connector Pin AssignmentsB-2
Table B-2. P2 Connector Pin Assignment B-3
Table B-3. DEBUG (J2) Connector Pin AssignmentsB-5
Table B-4. 10BaseT/100BaseT (J3) Connector Pin AssignmentsB-5
Table B-5. Debug Connector Pin Assignments B-6
Table B-6. J18 - PCI Expansion Connector Pin Assignments B-11
Table B-7. J11 - J12 PMC1 Connector Pin Assignments B-14
Table B-8. J13 - J14 PMC1 Connector Pin Assignments B-15
Table B-9. J21 and J22 PMC2 Connector Pin Assignments B-16
Table B-10. J23 and J24 PMC2 Connector Pin Assignments B-18
Table C-1. Troubleshooting ProblemsC-1

About This Manual

The *MVME2300 Series VME Processor Module Installation and Use* manual provides information to install and use your MVME2300 Series VME Processor Module (hereafter referred to as MVME2300 or module). The module is based on an MPC603 and/or MPC604R PowerPC microprocessor, and features dual PCI Mezzanine Card (PMC) slots with front panel and/or P2 I/O. The module is currently available in the configurations listed in Chapter 1, *Preparation and Installation*.

The MVME2300 is compatible with the optional double-width or singlewidth PCI Mezzanine Cards and with the PMCspan PCI expansion mezzanine module. By utilizing the two onboard PMC slots and stacking the PMCspan(s), the MVME2300 provides support for up to six PMCs.

This manual includes hardware preparation and installation instructions, along with information on using the front panel, programming the board, using the PPCBug debugging firmware, and other advanced debugger topics. Appendices provide the module's specifications and connector pin assignments.

The information in this manual applies principally to the MVME2300. The PMCspan and PMCs are described briefly in this manual and are fully documented in a separate publication. Refer to the individual product documentation for complete preparation and installation instructions. These manuals are listed in Appendix D, *Related Documentation*.

This manual is intended for anyone who wants to design OEM systems, supply additional capability to an existing compatible system, or work in a lab environment for experimental purposes. A basic knowledge of computers and digital logic is assumed.

Summary of Changes

This is the fourth revision of the *MVME2300 Series VME Processor Module Installation and Use* manual. It supersedes the December 2000 edition and incorporates the following updates.

New Issue Date	Changes	Replaces
December 2000	Addition of the 333 MHz product configurations. Correction to jumpering the J17 header. No jumpering required. Updated MVME2300 model numbers. Updated list of manufacturers' documents and specifications, added URLs.	V2300A/IH2 April 1999
June 2001	All data referring to the VME CSR Bit Set Register (VCSR_SET) and VME CSR Bit Clear Register (VCSR_CLR) has been deleted. These registers of the Universe II are unavailable for implementation as intended by the MVME materials and the Universe II User Manual.	V2300A/IH3 December 2000

Overview of Contents

The following chapters and appendices are contained in this book.

Chapter 1, *Preparation and Installation*, provides a description of the MVME2300 series VME processor module along with instructions for preparing and installing the module.

Chapter 2, *Operating Instructions*, provides information about powering up an MVME2300 system, and a functional description of the switches, status indicators, and I/O ports on the front panels of the module and PMCspan.

Chapter 3, *Functional Description*, describes the MVME2300 VME processor module on a block diagram level.

Chapter 4, *Programming*, provides basic information useful in programming the MVME2300.

Chapter 5, *PPCBug*, describes the basics of PPCBug and its architecture, describes the monitor (interactive command portion of the firmware) in detail, and gives information on actually using the PPCBug debugger and the special commands.

Chapter 6, *Modifying the Environment*, contains information about the **CNFG** and **ENV** commands. These two commands are used to change configuration information and command parameters interactively.

Appendix A, *Specifications*, lists the general specifications for the MVME2300 VME processor module.

Appendix B, *Connector Pin Assignments*, provides pin assignments for the interconnect signals on the MVME2300 VME processor module.

Appendix C, *Troubleshooting*, provides simple troubleshooting tips for your MVME2300 VME processor module.

Appendix D, *Related Documentation*, lists all documentation related to the MVME2300 VME processor module.

Comments and Suggestions

Motorola welcomes and appreciates your comments on its documentation. We want to know what you think about our manuals and how we can make them better. Mail comments to:

Motorola Computer Group Reader Comments DW164 2900 S. Diablo Way Tempe, Arizona 85282

You can also submit comments to the following e-mail address: reader-comments@mcg.mot.com

In all your correspondence, please list your name, position, and company. Be sure to include the title and part number of the manual and tell how you used it. Then tell us your feelings about its strengths and weaknesses and any recommendations for improvements.

Conventions Used in This Manual

The following typographical conventions are used in this document:

bold

is used for user input that you type just as it appears; it is also used for commands, options and arguments to commands, and names of programs, directories and files.

italic

is used for names of variables to which you assign values. Italic is also used for comments in screen displays and examples, and to introduce new terms.

courier

is used for system output (for example, screen displays, reports), examples, and system prompts.

<Enter>, <Return> or <CR>

<**CR**> represents the carriage return or Enter key.

CTRL

represents the Control key. Execute control characters by pressing the Ctrl key and the letter simultaneously, for example, **Ctrl-d**.

Terminology

A character precedes a data or address parameter to specify the numeric format, as follows (if not specified, the format is hexadecimal):

- \$ Specifies a hexadecimal character
- 0x Specifies a hexadecimal number
- % Specifies a binary number
- & Specifies a decimal number

An asterisk (*) following a signal name for signals that are *level significant* denotes that the signal is *true* or valid when the signal is low.

An asterisk (*) following a signal name for signals that are *edge significant* denotes that the actions initiated by that signal occur on high to low transition.

In this manual, *assertion* and *negation* are used to specify forcing a signal to a particular state. In particular, *assertion* and *assert* refer to a signal that is active or true; *negation* and *negate* indicate a signal that is inactive or false. These terms are used independently of the voltage level (high or low) that they represent.

Data and address sizes are defined as follows:

Byte	8 bits, numbered 0 through 7, with bit 0 being the least significant.
Half word	16 bits, numbered 0 through 15, with bit 0 being the least significant.
Word	32 bits, numbered 0 through 31, with bit 0 being the least significant.
Double word	64 bits, numbered 0 through 63, with bit 0 being the least significant.

Preparation and Installation

Introduction

This chapter provides a description of the MVME2300 Series VME Processor Module along with instructions for preparing and installing the module.

Note Unless otherwise specified, the designation MVME2300 or the term module or modules refers to all available models of the MVME2300 series VME processor Modules.

Description

The MVME2300 is a PCI Mezzanine Card (PMC) carrier board. It is based on an MPC603 or MPC604R PowerPC microprocessor.

Two front panel cutouts provide access to PMC I/O. One double-width or two single-width PMCs can be installed directly on the MVME2300. Optionally, one or two PMCspan PCI expansion mezzanine modules can be added to provide the capability of up to four additional PMC modules.

Two RJ45 connectors on the front panel provide the interface to 10/100Base-T Ethernet, and to a debug serial port. The following list is of equipment that is appropriate for use in an MVME2300 system:

- Dependence of the provided and the provi
- Peripheral Component Interconnect (PCI) Mezzanine Cards (PMC)s
- □ VMEsystem enclosure
- □ System console terminal
- Disk drives (and/or other I/O) and controllers
- □ Operating system (and/or application software)

MVME2300 Module

The MVME2300 module is a powerful, low-cost embedded VME controller and intelligent PMC carrier board. The module is currently available in the configurations shown in the following table.

The MVME2300 includes support circuitry such as ECC DRAM, PROM/flash memory, and bridges to the Industry Standard Architecture (ISA) bus and the VMEbus.

The module's PMC carrier architecture allows flexible configuration options and easy upgrades. It is designed to support one or two PMCs, plus one or two optional PCI expansion mezzanine modules that each support up to two PMCs. It occupies a single VMEmodule slot, except when optional PCI expansion mezzanine modules are also used:

MVME2300 Model	Processor	Туре
MVME2301 & MVME2301-900	MPC603	16MB ECC DRAM
MVME2302 & MVME2302-900	@ 200 MHz	32MB ECC DRAM
MVME2303 & MVME2303-900		64MB ECC DRAM
MVME2304 & MVME2304-900		128MB ECC DRAM
MVME2304-0111	MPC604R	16MB ECC DRAM, Handle: Scanbe
MVME2304-0121	@ 333 MHz	32MB ECC DRAM, Handle: Scanbe
MVME2304-0131		64MB ECC DRAM, Handle: Scanbe
MVME2304-0141		128MB ECC DRAM, Handle: Scanbe
MVME2304-0113		16MB ECC DRAM, Handle: IEEE 1101
MVME2304-0123		32MB ECC DRAM, Handle: IEEE 1101
MVME2304-0133		64MB ECC DRAM, Handle: IEEE 1101
MVME2304-0143		128MB ECC DRAM, Handle: IEEE 1101

Table 1-1. MVME2300 Models

1

The MVME2300 interfaces to the VMEbus via the P1 and P2 connectors. It also draws +5V, +12V, and -12V power from the VMEbus backplane through these two connectors. The +3.3V power, used for the PCI bridge chip and possibly for the PMC mezzanine, is derived onboard from the +5V power.

Support for two IEEE P1386.1 PCI mezzanine cards is provided via eight 64-pin SMT connectors. Front panel openings are provided on the module for the two PMC slots.

In addition, there are 64 pins of I/O from PMC slot 1 and 46 pins of I/O from PMC slot 2 that are routed to P2. The two PMC slots may contain two single-wide PMCs or one double-wide PMC.

PMCspan Expansion Mezzanine

An optional PCI expansion mezzanine module or PMC carrier board, PMCspan, provides the capability of adding two additional PMCs. Two PMCspans can be stacked on an MVME2300, providing four additional PMC slots, for a total of six slots including the two onboard the module. The next table lists the PMCspan models that are available for use with the MVME2300.

Expansion Module	Description
PMCSPAN-002	Primary PCI expansion mezzanine module. Allows two PMC modules for the MVME2300. Includes 32-bit PCI bridge.
PMCSPAN-010	Secondary PCI expansion mezzanine module. Allows two additional PMC modules for the MVME2300. Does not include 32-bit PCI bridge; requires a PMCSPAN-002.

Table 1-2. PMCspan Models

PCI Mezzanine Cards (PMCs)

The PMC slots on the MVME2300 board are IEEE P1386.1 compliant. P2 I/O-based PMCs that follow the PMC committee recommendation for PCI I/O when using the 5-row VME64 extension connector will be pin-out compatible with the MVME2300.

The MVME2300 board supports both front panel I/O and rear panel P2 I/O through either PMC slot 1 or PMC slot 2. 64 pins of I/O from slot 1 and 46 pins of I/O from slot 2 are routed directly to P2.

VMEsystem Enclosure

Your MVME2300 must be installed in a VMEsystem chassis with both P1 and P2 backplane connections. It requires a single slot, except when PMCspan carrier boards are used. Allow one extra slot for each PMCspan.

System Console Terminal

In normal operation, connection of a debug console terminal is required only if you intend to use the MVME2300's debug firmware, PPCBug, interactively. An RJ45 connector is provided on the front panel of the MVME2300 for this purpose.

1

Overview of Start-Up Procedures

The following table lists the things you will need to do before you can use this board, and tells where to find the information you need to perform each step. Be sure to read this entire chapter and read all Caution and Warning notes before beginning.

What you need to do	Refer to
Unpack the hardware.	Unpacking the MVME2300 Hardware on page 1-7
Set jumpers on the MVME2300 module.	Preparing the MVME2300 Hardware on page 1-7
Prepare the PMCs.	Preparing and Installing PMCs on page 1-13
Prepare the PMCspan module(s).	Installing the Primary PMCspan on page 1-15
Prepare any other optional devices or equipment you will be using.	For more information on optional devices and equipment, refer to the documentation provided with that equipment.
Install the PMCs on the MVME2300 module.	Preparing and Installing PMCs on page 1-13
	PMC Slots on page 2-6
	For additional information on PMCs, refer to the PMC manuals provided with these cards.
Install the primary PMCspan module (if used).	Installing the Primary PMCspan on page 1-15
Install the secondary PMCspan module (if used).	Installing a Secondary PMCspan on page 1-17
Install and connect the MVME2300 module.	Installing the MVME2300 Module on page 1-19
	Installation Considerations on page 1-21
Connect a console terminal.	System Console Terminal on page 1-12
	DEBUG Port on page 2-5
Connect any other optional devices or equipment you will be using.	Appendix B, Connector Pin Assignments

Table 1-3. Start-Up Overview

What you need to do	Refer to
Power up the system.	Installing the MVME2300 Hardware
	Status Indicators
	If any problems occur, refer to the section <i>Diagnostic</i> <i>Tests</i> in Chapter 5, <i>PPCBug</i> .
	You may also wish to obtain the <i>PPCBug Diagnostics</i> <i>Manual</i> , listed in <i>Appendix D</i> , <i>Related</i> <i>Documentation</i> .
Examine the environmental parameters and make any changes needed.	ENV – Set Environment on page 6-3
Program the MVME2300 module and PMCs as needed for your applications.Chapter 4, <i>Programming</i>	
For additional information on PMCs, refe	er to the PMC manuals provided with these cards.
For additional information on PMCspan, refer to the PMCspan PMC Adapter Carrier Module Installation and Use manual, listed in Appendix D, Related Documentation	

Unpacking the MVME2300 Hardware

Note If the shipping cartons are damaged upon receipt, request that the carrier's agent be present during the unpacking and inspection of the equipment.

Unpack the equipment from the shipping cartons. Refer to the packing lists and verify that all items are present. Save the packing material for storing and reshipping of equipment.

Avoid touching areas of integrated circuitry; static discharge can damage these circuits.

Preparing the MVME2300 Hardware

To produce the desired configuration and ensure proper operation of the module, you may need to carry out certain modifications before and after installation.

The following paragraphs discuss the preparation of the MVME2300 hardware components prior to installing them into a chassis and connecting them.

MVME2300

The MVME2300 provides software control over most options. By setting bits in control registers after installing the module, you can modify its configuration. The MVME2300 control registers are briefly described in Chapter 4, *Programming*, with additional information found in the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

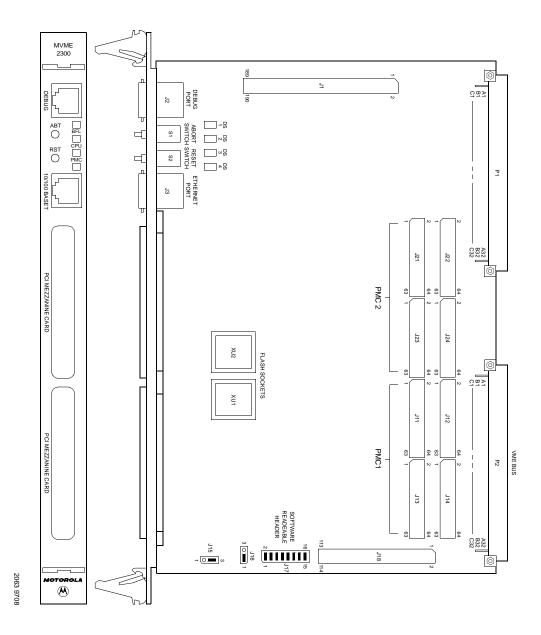
1

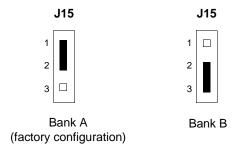
Some options, however, are not software-programmable. Such options are controlled through manual installation or removal of header jumpers or interface modules on the module itself or associated modules.

Figure 1-1 illustrates the placement of the switches, jumper headers, connectors, and LED indicators on the MVME2300. Manually configurable items on the MVME2300 include:

- □ Flash memory bank A/bank B reset vector (J15)
- □ VMEbus system controller selection header (J16)

The MVME2300 has been factory tested and is shipped with the configurations described in the following sections. Additionally, the module's factory-installed debug monitor, PPCBug, operates with those factory settings.



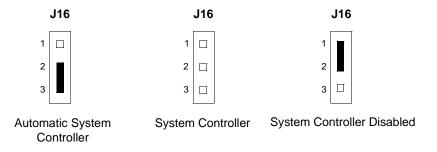

Figure 1-1. MVME2300 Switches, LEDs, Headers, Connectors

Setting the Flash Memory Bank A/Bank B Reset Vector Header (J15)

Bank B consists of 1MB of 8-bit flash memory in two 32-pin PLCC 8-bit sockets.

Bank A consists of four 16-bit Smart Voltage SMT devices that can be populated with 8Mbit flash devices (4MB) or 4Mbit flash devices (2MB). A jumper header, J15, associated with the first set of four flash devices provides a total of 64KB of hardware-protected boot block. Only 32-bit writes are supported for this bank of flash. The address of the reset vector is jumper-selectable.

A jumper must be installed either between J15 pins 1 and 2 for Bank A factory configuration, or between J15 pins 2 and 3 for Bank B. When the jumper is installed, the Falcon chipset maps 0xFFF00100 to the Bank B sockets.



Setting the VMEbus System Controller Selection Header (J16)

The MVME2300 is factory-configured in automatic system controller mode (a jumper is installed across pins 2 and 3 of header J16). This means that the module determines if it is system controller at system power-up or reset by its position on the bus. If it is in slot 1 on the VME system, it configures itself as the system controller.

Remove the jumper from J16 if you intend to operate the MVME2300 as system controller in all cases.

Install the jumper across pins 1 and 2 if the MVME2300 is not to operate as system controller under any circumstances.

Setting the General-Purpose Software-Readable Header (J17)

Header J17 provides eight readable jumpers. These jumpers can be read as a register at ISA I/O address \$801 (hexadecimal). Bit 0 is associated with header pins 1 and 2; bit 7 is associated with pins 15 and 16.

The bit values are read as a **0** when the jumper is installed, and as a **1** when the jumper is removed. The MVME2300 is shipped from the factory with J17 set to all **0**s (jumpers on all pins), as shown in Figure 1-2.

The PowerPC firmware, PPCBug, reserves all bits, SRH0 to SRH7.

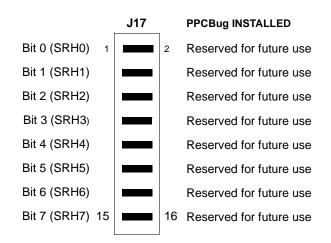


Figure 1-2. General-Purpose Software-Readable Header

PMCs

For a discussion of any configurable items on the PMCs, refer to the user's manual for the particular PMCs.

PMCspan

You need to use an additional slot in the VME chassis for each PMCspan expansion module you plan to use. Before installing a PMCspan on the MVME2300, you must install the selected PMCs on the PMCspan. Refer to the *PMCspan PMC Adapter Carrier Module Installation and Use* manual for instructions.

System Console Terminal

Make sure that jumpers are installed on all bits on header J17 of the MVME2300 board as shown in Figure 1-2. This is necessary when the PPCBug firmware is used. Connect the terminal via a cable to the RJ45 DEBUG connector J2.

See *Appendix B, Connector Pin Assignments* for pin signal assignments. Set up the terminal as follows:

- Eight bits per character
- One stop bit per character
- Parity disabled (no parity)
- Baud rate = 9600 baud (default baud rate of the port at powerup). After power-up, you can reconfigure the baud rate with PPCBug's **PF** command

Installing the MVME2300 Hardware

The following paragraphs discuss installing PMCs onto the MVME2300, installing PMCspan modules onto the MVME2300, installing the MVME2300 into a VME chassis, and connecting an optional system console terminal.

Motorola strongly recommends that you use an antistatic wrist strap and a conductive foam pad when installing or upgrading a system. Electronic components, such as disk drives, computer boards, and memory modules, can be extremely sensitive to Electro-Static Discharge (ESD). After removing the component from the system or its protective wrapper, place the component flat on a grounded, static-free surface (and in the case of a board, component side up). Do not slide the component over any surface.

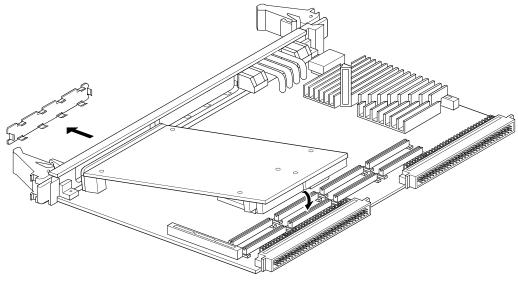
If an ESD station is not available, you can avoid damage resulting from ESD by wearing an antistatic wrist strap (available at electronics stores) that is attached to an unpainted metal part of the system chassis.

Preparing and Installing PMCs

PCI mezzanine card (PMC) modules mount on top of the MVME2300 module, and/or on a PMCspan. Refer to Figure 1-3 and perform the following steps to install a PMC on your module.

This procedure assumes that you have read the user's manual that came with your PMCs.

Inserting or removing modules with power applied may result in damage to module components.


Avoid touching areas of integrated circuitry; static discharge can damage these circuits.

Dangerous voltages, capable of causing death, are present in this equipment. Use extreme caution when handling, testing, and adjusting.

1

- 1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to the chassis as a ground. The ESD strap must be secured to your wrist and to ground throughout the procedure.
- Perform an operating system shutdown. Turn the AC or DC power off and remove the AC cord or DC power lines from the system. Remove chassis or system cover(s) as necessary for access to the VMEmodules.
- 3. If the MVME2300 has already been installed in the chassis, carefully remove it. Position the module, with connectors P1 and P2 facing you.
- 4. Remove the PCI filler plate from the selected PMC slot in the front panel of the module. If installing a double-width PMC, remove the filler plates from both PMC slots.

2064 9708

Figure 1-3. Typical Single-width PMC Module Placement on MVME2300

- 5. Slide the edge connector(s) of the PMC module into the front panel opening(s) from behind and place the PMC module on top of the module. The four connectors on the underside of the PMC module should then connect smoothly with the corresponding connectors for a single-width PMC (J11/J12/J13/J14 or J21/J22/J23/J24, all eight for a double-width PMC) on the module.
- 6. Insert the two short Phillips screws through the holes at the forward corners of the PMC module, into the standoffs on the module. Tighten the screws.
- 7. If installing two single-width PMCs, repeat the above procedure for the second PMC.

Installing the Primary PMCspan

To install a PMCspan-002 PCI expansion module on your module, refer to Figure 1-4 and perform the following steps. This procedure assumes that you have read the user's manual that was furnished with the PMCspan, and that you have installed the selected PMCs on the PMCspan according to the instructions given in the PMCspan and PMC manuals. Inserting or removing modules with power applied may result in damage to module components.

Avoid touching areas of integrated circuitry; static discharge can damage these circuits.

Dangerous voltages, capable of causing death, are present in this equipment. Use extreme caution when handling, testing, and adjusting.

1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to the chassis as a ground. The ESD strap must be secured to your wrist and to ground while you are performing the installation procedure.

- Perform an operating system shutdown. Turn the AC or DC power off and remove the AC cord or DC power lines from the system. Remove chassis or system cover(s) as necessary for access to the VMEmodule card cage.
- 3. If the MVME2300 has already been installed in the chassis, carefully remove it. Position the module, with connectors P1 and P2 facing you.

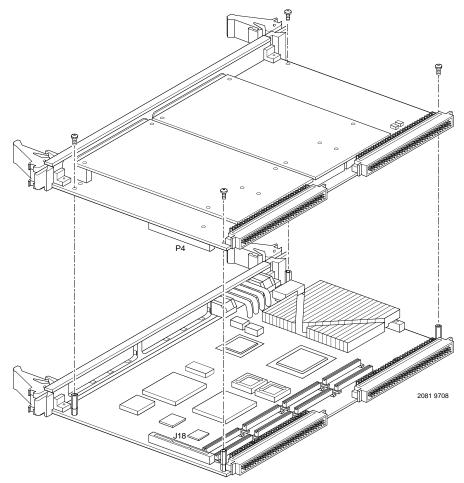


Figure 1-4. PMCspan-002 Installation on an MVME2300

- 4. Attach the four standoffs to the module. For each standoff:
 - Insert the threaded end into the standoff hole at each corner of the VME processor module.
 - Thread the locking nuts onto the standoff tips.
 - Tighten the nuts with a box-end wrench or a pair of needle nose pliers.
- 5. Place the PMCspan on top of the module. Align the mounting holes in each corner to the standoffs, and align PMCspan connector P4 with connector J18 on the module.
- 6. Gently press the PMCspan and the module together, ensuring that P4 is fully seated into J18.
- 7. Insert the four short Phillips screws through the holes at the corners of the PMCspan and into the standoffs on the module. Tighten the screws.
- **Note** The screws have two different head diameters. Use the screws with the smaller heads on the standoffs next to VMEbus connectors P1 and P2.

Installing a Secondary PMCspan

The PMCspan-010 PCI expansion module mounts on top of a PMCspan-002 PCI expansion module. To install a PMCspan-010 on your MVME2300, refer to Figure 1-5 and perform the following steps. This procedure assumes that you have read the user's manual that was furnished with the PMCspan, and that you have installed the selected PMCs on the PMCspan according to the instructions given in the PMCspan and PMC manuals.

Inserting or removing modules with power applied may result in damage to module components.

Avoid touching areas of integrated circuitry; static discharge can damage these circuits.

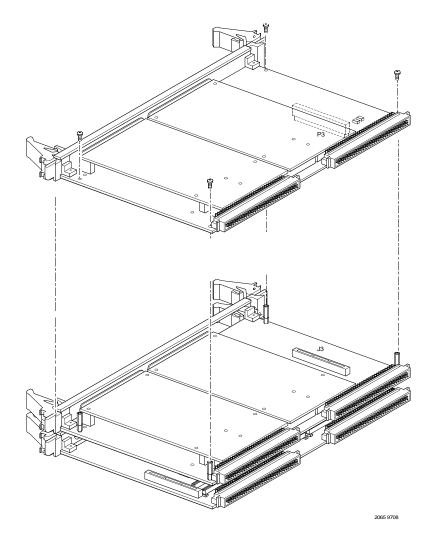


Figure 1-5. PMCspan-010 Installation onto a PMCspan-002/MVME2300

Dangerous voltages, capable of causing death, are present in this equipment. Use extreme caution when handling, testing, and adjusting.

1

- 1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to the chassis as a ground. The ESD strap must be secured to your wrist and to ground while you are performing the installation procedure.
- Perform an operating system shutdown. Turn the AC or DC power off and remove the AC cord or DC power lines from the system. Remove chassis or system cover(s) as necessary for access to the VMEmodule card cage.
- 3. If the primary PMC carrier module/MVME2300 assembly is already installed in the chassis, carefully remove the two-board assembly from the chassis. Position connectors P1 and P2 facing you.
- 4. Remove the four short Phillips screws from the standoffs in each corner of the primary PCI expansion module, PMCspan-002.
- 5. Attach the four standoffs to the PMCspan-002.
- 6. Place the PMCspan-010 on top of the PMCspan-002. Align the mounting holes in each corner to the standoffs, and align PMCspan-010 connector P3 with PMCspan-002 connector J3.
- 7. Gently press the two PMCspan modules together, making sure that connector P3 is fully seated in J3.
- 8. Insert the four short Phillips screws through the holes at the corners of PMCspan-010 and into the standoffs on the primary PMCspan-002. Tighten the screws.
- **Note** The screws have two different head diameters. Use the screws with the smaller heads on the standoffs next to VMEbus connectors P1 and P2.

Installing the MVME2300 Module

Before installing the module in your VME chassis, make sure that jumpers J15 and J16 are configured. This procedure assumes that you have already installed the PMCspan(s) if desired, and any PMCs that you have selected.

Inserting or removing modules with power applied may result in damage to module components.

Avoid touching areas of integrated circuitry; static discharge can damage these circuits.

Dangerous voltages, capable of causing death, are present in this equipment. Use extreme caution when handling, testing, and adjusting.Proceed as follows to install the MVME2300 in the VME chassis:

- 1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to the chassis as a ground. The ESD strap must be secured to your wrist and to ground throughout the procedure.
- 2. Perform an operating system shutdown:
 - Turn the AC or DC power off and remove the AC cord or DC power lines from the system.
 - Remove chassis or system cover(s) as necessary for access to the VMEmodules.
- 3. Remove the filler panel from the card slot where you are going to install the module. If you have installed one or more PMCspan PCI expansion modules onto your module, you will need to remove filler panels from one additional card slot for each PMCspan, above the card slot for the module.
 - If you intend to use the module as system controller, it must occupy the left-most card slot (slot 1). The system controller must be in slot 1 to correctly initiate the bus-grant daisy-chain and to ensure proper operation of the IACK daisy-chain driver.
 - If you do not intend to use the module as system controller, it can occupy any unused card slot.
- 4. Slide the module (and PMCspans if used) into the selected card slot(s). Be sure the module or modules is/are seated properly in the P1 and P2 connectors on the backplane. Do not damage or bend connector pins.

- 5. Secure the module (and PMCspans if used) in the chassis with the screws provided, making good contact with the transverse mounting rails to minimize RF emissions.
- **Note** Some VME backplanes (such as those used in Motorola modular chassis systems) have an auto-jumpering feature for automatic propagation of the IACK and BG signals. Step 6 does not apply to such backplane designs.
 - 6. On the chassis backplane, remove the INTERRUPT ACKNOWLEDGE (IACK) and BUS GRANT (BG) jumpers from the header for the card slot occupied by the MVME2300.
 - 7. If you intend to use PPCBug interactively, connect the terminal that is to be used as the PPCBug system console to the DEBUG port on the front panel of the module.
 - 8. In normal operation the host CPU controls module operation via the VMEbus Universe registers.
 - 9. Replace the chassis or system cover(s), cable peripherals to the panel connectors as appropriate, reconnect the system to the AC or DC power source, and turn the equipment power on.
 - The module's green CPU LED indicates activity as a set of confidence tests is run, and the debugger prompt PPC1-Bug> appears.

Installation Considerations

The module draws power from the VMEbus backplane connectors P1 and P2. P2 is also used for the upper 16 bits of data in 32-bit transfers, and for the upper 8 address lines in extended addressing mode. The MVME2300 may not function properly without its main board connected to VMEbus backplane connectors P1 and P2.

Whether the module operates as a VMEbus master or as a VMEbus slave, it is configured for 32 bits of address and 32 bits of data (A32/D32). However, it handles A16 or A24 devices in the address ranges indicated in

Chapter 4, *Programming*. D8 and/or D16 devices in the system must be handled by the PowerPC processor software. Refer to the memory maps in Chapter 4, *Programming*.

The module contains shared onboard DRAM whose base address is software-selectable. Both the onboard processor and off-board VMEbus devices see this local DRAM at base physical address \$00000000, as programmed by the PPCBug firmware. This may be changed via software to any other base address. Refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide* for more information.

If the module tries to access off-board resources in a nonexistent location and is not system controller, and if the system does not have a global bus timeout, the module waits forever for the VMEbus cycle to complete. This will cause the system to lock up. There is only one situation in which the system might lack this global bus timeout: when the module is not the system controller and there is no global bus timeout elsewhere in the system.

Multiple MVME2300 boards may be installed in a single VME chassis. Each must have a unique Universe address, selected by setting jumpers on its J17 header, as described in *Preparing the MVME2300 Hardware*. In general, hardware multiprocessor features are supported.

Other MPUs on the VMEbus can interrupt, disable, communicate with, and determine the operational status of the processor(s). One register of the Universe set includes four bits that function as location monitors to allow one MVME2300 processor to broadcast a signal to any other MVME2300 processors. All eight registers are accessible from any local processor as well as from the VMEbus.

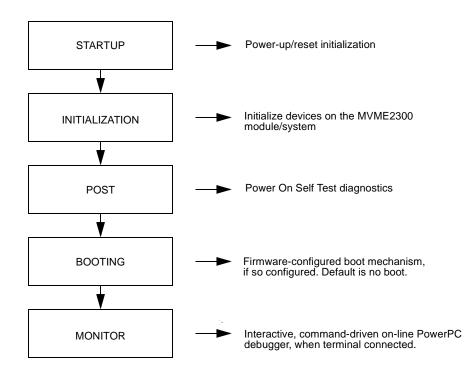
Operating Instructions

2

Introduction

This chapter provides information about powering up an MVME2300 system, and a functional description of the switches, status indicators, and I/O ports on the front panels of the module and PMCspan.

Applying Power


After you have verified that all necessary hardware preparation has been done, that all connections have been made correctly, and that the installation is complete, you can power up the system. The MPU, hardware, and firmware initialization process is performed by the PPCBug firmware power-up or system reset. The firmware initializes the devices on the MVME2300 module in preparation for booting the operating system.

The firmware is shipped from the factory with an appropriate set of defaults. In most cases there is no need to modify the firmware configuration before you boot the operating system. Refer to Chapter 6, *Modifying the Environment* for further information about modifying defaults.

The following flowchart shows the basic initialization process that takes place during system start-ups.

For further information on PPCBug, refer to:

- □ Chapter 5, PPCBug
- □ Appendix C, Troubleshooting
- D Appendix D, Related Documentation

Description

The front panel of the MVME2300 module is shown on a following page.

Switches

There are two switches (**ABT** and **RST**) and four LED (light-emitting diode) status indicators (**BFL**, **CPU**, **PMC** (two)) located on the module's front panel.

ABT (S1)

When activated by software, the Abort switch, **ABT**, can generate an interrupt signal from the base board to the processor at a user-programmable level. The interrupt is normally used to abort program execution and return control to the debugger firmware located in the module's flash memory. The interrupt signal reaches the processor module via ISA bus interrupt line IRQ8*. The signal is also available from the general purpose I/O port, which allows software to poll the Abort switch after an IRQ8* interrupt and verify that it has been pressed.

The interrupter connected to the **ABT** switch is an edge-sensitive circuit, filtered to remove switch bounce.

RST (S2)

The Reset switch, **RST**, resets all onboard devices and causes HRESET* to be asserted in the MPC603 or MPC604R. It also drives a SYSRESET* signal if the module's VME processor module is the system controller.

The Universe ASIC includes both a global and a local reset driver. When the Universe operates as the VMEbus system controller, the reset driver provides a global system reset by asserting the VMEbus signal SYSRESET*. A SYSRESET* signal may be generated by the RESET switch, a power-up reset, a watchdog timeout, or by a control bit in the Miscellaneous Control Register (MISC_CTL) in the Universe ASIC. SYSRESET* remains asserted for at least 200 ms, as required by the VMEbus specification.

Similarly, the Universe ASIC supplies an input signal and a control bit to initiate a local reset operation. By setting a control bit, software can maintain a board in a reset state, disabling a faulty board from participating in normal system operation. The local reset driver is enabled even when the Universe ASIC is not system controller. Local resets may be generated by the **RST** switch, a power-up reset, a watchdog timeout, a VMEbus SYSRESET*, or a control bit in the MISC_CTL register.

Status Indicators

There are four LED (light-emitting diode) status indicators located on the MVME2300 front panel: **BFL**, **CPU**, **PMC2**, and **PMC1**.

BFL (DS1)

The *yellow* **BFL** LED indicates board failure; it lights when the BRDFAIL* signal line is active.

CPU (DS2)

The green **CPU** LED indicates CPU activity; it lights when the DBB* (Data Bus Busy) signal line on the processor bus is active.

PMC (DS3)

The top *green* **PMC** LED indicates PCI activity; it lights when the PCI bus grant to PMC2 signal line on the PCI bus is active. This indicates that a PMC installed on slot 2 is active.

PMC (DS4)

The bottom *green* **PMC** LED indicates PCI activity; it lights when the PCI bus grant to PMC1 signal line on the PCI bus is active. This indicates that a PMC installed on slot 1 is active.

10BaseT/100BaseTX Port

The RJ45 port on the front panel of the MVME2300 labeled **10/100 BASET** supplies the Ethernet LAN 10BaseT/100BaseTX interface, implemented with a DEC 21140/21143 device.

DEBUG Port

The RJ45 port labeled **DEBUG** on the front panel of the MVME2300 supplies the module's serial communications interface, implemented via a UART PC16550 controller chip from National Semiconductor. It is asynchronous only. This serial port is configured for EIA-232-D DTE, as shown in Figure 2-1.

The **DEBUG** port may be used for connecting a terminal to the module to serve as the firmware console for the factory installed debugger, PPCBug. The port is configured as follows:

- □ 8 bits per character
- □ 1 stop bit per character
- □ Parity disabled (no parity)
- \square Baud rate = 9600 baud (default baud rate at power-up)

After power-up, the baud rate of the **DEBUG** port can be reconfigured by using the debugger's Port Format (**PF**) command. Refer to Chapter 5, *PPCBug* and Chapter 6, *Modifying the Environment* for information about PPCBug.

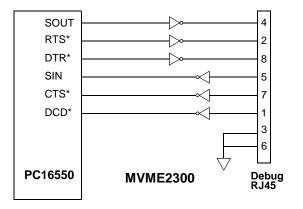


Figure 2-1. MVME2300 DEBUG Port Configuration

PMC Slots

Two openings located on the front panel provide I/O expansion by allowing access to one or two 4-port single-wide or one 8-port double-wide PCI Mezzanine Card (PMC), connected to the PMC connectors on the MVME2300. For pin assignments for the PMC connectors, refer to Appendix B, *Connector Pin Assignments*.

Do not attempt to install any PMC boards without performing an operating system shutdown and following the procedures given in the user's manual for the particular PMC.

PCI Mezzanine Card (PMC Slot 1)

The right-most (lower) opening labeled **PCI MEZZANINE CARD** on the module's front panel provides front panel I/O access to a PMC that is connected to the 64-pin connectors J11 through J14 on the module. Connector J14 allows rear panel P2 I/O.

This slot is MVME2300 Port 1.

PCI Mezzanine Card (PMC Slot 2)

The left-most (upper) opening labeled **PCI MEZZANINE CARD** on the MVME2300 front panel provides front panel I/O access to a PMC that is connected to the 64-pin connectors J21 through J24 on the MVME2300 module. Connector J24 allows rear panel P2 I/O.

This slot is MVME2300 Port 2.

PMCspan

A PMCspan front panel is pictured at the right. The front panel is the same for all PMCspan models.

There are two PMC slots, labeled PCI MEZZANINE CARD, which support either two single-wide PMCs or one double-wide PMC.

The PMCspan board has two sets of three 32-bit connectors for PMC interface to secondary PCI bus and user-specific I/O. It also has a P1 connector and a 5-row P2 connector for power and VMEbus I/O.

The PMCspan has two green LEDs on its front panel, one for each PMC slot, labeled PMC2 and PMC1. Both LEDs are illuminated during reset. An individual LED is illuminated whenever a PMC has been granted bus mastership of the secondary PCI bus.

The right-most (lower) opening labeled **PCI MEZZANINE CARD** on the front panel is Port 1.

The left-most (upper) opening labeled **PCI MEZZANINE CARD** on the front panel is Port 2.

Functional Description

Introduction

This chapter describes the MVME2300 VME processor module on a block diagram level. The *General Description* provides an overview of the module, followed by a detailed description of several blocks of circuitry. Figure 3-1 shows a block diagram of the overall board architecture.

Detailed descriptions of other MVME2300 blocks, including programmable registers in the ASICs and peripheral chips, can be found in the *MVME2300 Series VME Processor Module Programmer's Reference Guide*. You may refer to it for a functional description of the MVME2300 in greater depth.

Features

The following table summarizes the features of the MVME2300 VME processor module.

Feature	Description
Microprocessor	200 MHZ MPC603 or 333 MHz MPC604R PowerPC TM processor
Form factor	6U VMEbus
ECC DRAM	Two-way interleaved, ECC-protected 16MB, 32MB, 64MB, or 128MB
Flash memory	Bank B consists of two 32-pin PLCC sockets that can be populated with 1MB 8-bit flash devices
	Bank A consists of four 16-bit Smart Voltage SMT devices that can be populated with 8Mbit flash devices (4MB) or 4Mbit (2MB)
Real-time clock	8KB NVRAM with RTC and battery backup (SGS-Thomson M48T59/T559)
Switches	Reset (RST) and abort (ABT)

Table 3-1. MVME2300 Features

Feature	Description			
Status LEDs	Four: Board fail (BFL), CPU, PMC (one for PMC slot 2, one for slot 1)			
Timers	One 16-bit timer in W83C553 ISA bridge; four 32-bit timers in Raven (MPIC) device)			
	Watchdog timer provided in SGS-Thomson M48T59			
Interrupts	Software interrupt handling via Raven (PCI-MPU bridge) and Winbond (PCI-ISA bridge) controllers			
VME I/O	VMEbus P2 connector			
Serial I/O	One asynchronous debug port via RJ45 connector on front panel			
Ethernet I/O	10BaseT/100BaseTX connections via RJ45 connector on front panel			
PCI interface	Two IEEE P1386.1 PCI Mezzanine Card (PMC) slots for one double- width or two single-width PMCs			
	Front panel and/or VMEbus P2 I/O on both PMC slots			
	One 114-pin Mictor connector for optional PMCspan expansion module			
VMEbus interface	VMEbus system controller functions			
	VME64 extension			
	VMEbus-to-local-bus interface (A24/A32, D8/D16/D32/block transfer [D8/D16/D32/D64])			
	Local-bus-to-VMEbus interface (A16/A24/A32, D8/D16/D32)			
	VMEbus interrupter			
	VMEbus interrupt handler			
	Global Control/Status Register (GCSR) for interprocessor communications			
	DMA for fast local memory/VMEbus transfers (A16/A24/A32, D16/D32/D64)			

General Description

The MVME2300 is a VME processor module equipped with an MPC 603 or MPC604R microprocessor.

The product offers many standard features desirable in a computer system—including Ethernet and debug ports, Boot ROM, flash memory, DRAM, and interface for two PCI Mezzanine Cards (PMCs), contained in a one-slot VME package. Its flexible mezzanine architecture allows relatively easy upgrades of the I/O.

There are four standard buses on the MVME2300:

PowerPC Processor Bus	ISA Bus
PCI Local Bus	VMEbus

As shown in Figure 3-1, a Raven PCI Bridge ASIC provides the interface from the Processor Bus to PCI. A W83C553 PCI/ISA Bridge (PIB) Controller device performs the bridge function between PCI and ISA. The Universe ASIC device provides the interface between the PCI Local Bus and the VMEbus. A Falcon chipset is the ECC memory controller.

The Peripheral Component Interface (PCI) local bus is a key feature. In addition to the on-board local bus peripherals, the PCI bus supports an industry-standard mezzanine interface, IEEE P1386.1 PMC (PCI Mezzanine Card).

Block Diagram

Figure 3-1 is a block diagram of the MVME2300's overall architecture.

MPC603/MCP604R Processor

The MVME2300 is ordered with an MPC603 or MPC604R processor chip with 16MB to 128MB of ECC DRAM, and up to 5MB of flash memory.

3

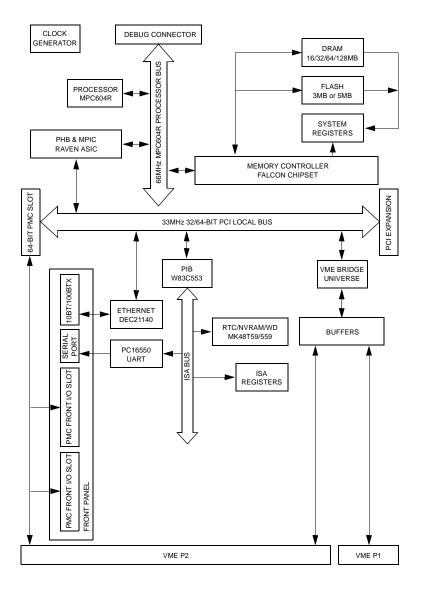


Figure 3-1. MVME2300 Block Diagram

The MPC 603 is a 64-bit processor with 16KB on-chip caches (16KB data cache and 16KB instruction cache). The MPC604R is a 64-bit processor with 32KB on-chip caches (32KB data cache and 32KB instruction cache).

The Raven bridge controller ASIC provides the bridge between the PowerPC microprocessor bus and the PCI local bus. Electrically, the Raven chip is a 64-bit PCI connection. Four programmable map decoders in each direction provide flexible addressing between the PowerPC microprocessor bus and the PCI local bus.

The power requirements for the MVME2300 are shown in Table 3-2.

Configuration	+5V Power	+12V and -12V Power
200 MHz 603	4.0A typical 4.75A maximum	PMC-dependent (Refer to Appendix A, Specifications)
333 MHz 604R	4.7A typical 5.8A maximum	

 Table 3-2.
 Power Requirements

PCI Bus Latency

Writes to PCI can be posted. The read access latency for PCI-bound cycles initiated by the MPC60x bus master consists of the following components:

T _{start}	Start-up time (TS# to PCI bus Request). T_{start} is 6 system clocks.
T _{arb}	PCI bus arbitration time
T _{ac}	PCI access time (FRAME# to TRDY#)
T _{delay}	Delay time from TRDY# on PCI to TA# on 60X bus. T_{delay} is 4 system clocks.

The following table shows the access timings for various types of transfers initiated by a 60X system bus master to PCI:

Access Type	System Clock Periods Required For:				Total
	1st Beat	2nd Beat	3rd Beat	4th Beat	Clocks
4-Beat Read (64-bit PCI Target)	27	1	1	1	30
4-Beat Read (32-bit PCI Target)	35	1	1	1	38
4-Beat Write (64-bit PCI Target)	4	1	1	1	7
4-Beat Write (32-bit PCI Target)	4	1	1	1	7
1-Beat Read (aligned, 4 bytes or less)	20	-	-	-	20
1-Beat Write	4	-	-	-	4

Table 3-3. MPC 60x Bus to PCI Access Timing

Notes 1. Write cycles are posted by the Raven ASIC.

2. Assumes no pipeline. Pipelined cycles would improve these numbers.

3. T_{arb} is assumed to be 4 system clocks (2 PCI clocks).

4. **T**_{ac} is assumed to be 6 system clocks (3 PCI clocks): Medium DEVSEL# target, zero wait PCI timing.

The following table shows the ECC memory access latency for PCIinitiated cycles.

Table 3-4. PCI to ECC Memory Access Timing

Access Type	PCI Clock	Maximum Bandwidth					
	1st Beat	st Beat 2nd Beat 3rd Beat nth Beat					
64-bit Burst Reads	10	1	1	1			
64-bit Burst Writes	3	1	1	1			
32-bit Burst Reads	10	1	1	1			

3

Access Type	PCI Clock	Maximum			
	1st Beat	Bandwidth			
32-bit Burst Writes	3	1	1	1	
1-Beat Read	10	-	-	-	
1-Beat Write	3	-	-	-	

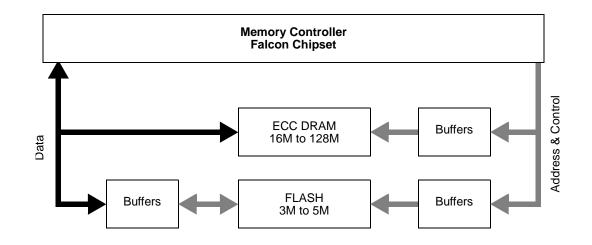
Table 3-4. PCI to ECC Memory Access Timing

Notes 1. The latency assumes two system clocks for 60X system bus arbitration.

2. The latency is based on 60ns, fast-page DRAM timing. It is also assumed that L2 is either disabled or missed.

3. Write timings assume write posting FIFO is initially empty.

DRAM Memory


The MVME2300 DRAM memory size can be 16MB, 32MB, 64MB, or 128MB.

The DRAM blocks are controlled by the Falcon chipset which performs two-way interleaving and provides single-bit error correction and doublebit error correction. ECC is calculated over 72-bits.

There are one or two blocks of DRAMs that provides 16M/32M or 64M/128M of ECC DRAM. The DRAM blocks consists of 9 devices each. Either 1Mx16 (Page) 50-pin TSOPII DRAM or 4Mx16 (EDO) 50-pin TSOPII DRAM are used to provide 16/32/64/128M. When populated, these blocks appears as Block A and Block B to the Falcon chipset.

Refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide* for additional information and programming details.

The block diagram for the memory interface is shown in the following figure:

Figure 3-2. Memory Block Diagram

DRAM Latency

The ECC memory access latency times for 60ns, fast page DRAMs are shown in the following table.

Access Type	Clock Periods Required for:			Total	
	1st Beat	2nd Beat	3rd Beat	4th Beat	Clocks
4-Beat Read after Idle (Quad-word aligned)	9	1	2	1	13
4-Beat Read after Idle (Quad-word misaligned)	9	3	1	1	14
4-Beat Read after 4-Beat Read (Quad-word aligned)	7/3 1	1	2	1	11/7
4-Beat Read after 4-Beat Read (misaligned)	6/2 1	3	1	1	11/7
4-Beat Write after Idle	4	1	1	1	7

Access Type	Clock Periods Required for:				Total
	1st Beat	2nd Beat	3rd Beat	4th Beat	Clocks
4-Beat Write after 4-Beat Write (Quad-word aligned)	7/3 1	1	1	1	10/6
1-Beat Read after Idle	9	-	-	-	9
1-Beat Read after 1-Beat Read	8/6 1	-	-	-	8/6
1-Beat Write after Idle	4	-	-	-	4
1-Beat Write after 1-Beat Write	12/10	-	-	-	12/10

Notes 1. These numbers assume that the MPC 60x bus master is doing address pipelining with TS* occurring at the minimum time after AACK* is asserted. Also the two numbers shown in the 1st beat column are for page miss/page hit.

2. In some cases, the numbers shown are averages and specific instances may be longer or shorter.

If all blocks of DRAMs are 50ns, EDO devices then the latency times for the ECC memory would be as follows:

Access Type	Clock Periods Required for:			Total	
	1st Beat	2nd Beat	3rd Beat	4th Beat	Clocks
4-Beat Read after Idle (Quad-word aligned)	8	1	1	1	11
4-Beat Read after Idle (Quad-word misaligned)	8	2	1	1	12
4-Beat Read after 4-Beat Read (Quad-word aligned)	5/2 1	1	1	1	8/5
4-Beat Read after 4-Beat Read (misaligned)	4/2 1	2	1	1	8/6

Access Type	Clock Periods Required for:			Total	
	1st Beat	2nd Beat	3rd Beat	4th Beat	Clocks
4-Beat Write after Idle	4	1	1	1	7
4-Beat Write after 4-Beat Write (Quad-word aligned)	4/3 1	1	1	1	7/6
1-Beat Read after Idle	8	-	-	-	8
1-Beat Read after 1-Beat Read	7/5 1	-	-	-	7/5
1-Beat Write after Idle	4	-	-	-	4
1-Beat Write after 1-Beat Write	9/7 ¹	-	-	-	9/7

Table 3-6.	MPC 60x Bus to	DRAM Access	Timing Using	g 50ns, EDO Devices
------------	----------------	--------------------	---------------------	---------------------

Notes 1. These numbers assume that the MPC 60x bus master is doing address pipelining with TS* occurring at the minimum time after AACK* is asserted. Also the two numbers shown in the 1st beat column are for page miss/page hit.

2. In some cases, the numbers shown are averages and specific instances may be longer or shorter.

Flash Memory

The MVME2300 base board has provision for up to 5MB of flash memory.

Bank B consists of 1MB of 8-bit flash memory in two 32-pin PLCC 8-bit sockets.

Bank A consists of four 16-bit Smart Voltage SMT devices that can be populated with 8Mbit flash devices (4MB) or 4Mbit flash devices (2MB). A jumper header, J15, associated with the first set of four flash devices provides a total of 64KB of hardware-protected boot block. Only 32-bit writes are supported for this bank of flash. The address of the reset vector is jumper-selectable. A jumper must be installed either between J15 pins 1 and 2 for Bank A factory configuration, or between J15 pins 2 and 3 for Bank B. When the jumper is installed, the Falcon chipset maps 0xFFF00100 to the Bank B sockets.

The onboard monitor/debugger, PPCBug, resides in the flash chips. PPCBug provides functionality for:

- **D** Booting the system
- □ Initializing after a reset
- Displaying and modifying configuration variables
- Running self-tests and diagnostics
- Updating firmware ROM

Under normal operation, the flash devices are in "read-only" mode, their contents are pre-defined, and they are protected against inadvertent writes due to loss of power conditions. However, for programming purposes, programming voltage is always supplied to the devices and the flash contents may be modified by executing the proper program command sequence. Refer to the **PFLASH** command in the *PPCBug Debugging Package User's Manual* for further device-specific information on modifying flash contents.

Flash Latency

There is one 16-bit port bank of flash on the MVME2300. The access times for this bank are shown in the following table.

Access type	Clock Periods Required for:				Total
	1st Beat	2nd Beat	3rd Beat	4th Beat	Clocks
4-Beat Read	68	64	64	64	260
4-Beat Write	N/A	N/A	N/A	N/A	N/A
1-Beat Read (2 bytes to 8 bytes)	68	-	-	-	68

Table 3-7. PowerPC 60x Bus to Flash Access Timing for Bank B (16-bit Port)

Access type	Clock Periods Required for:				Total
	1st Beat	2nd Beat	3rd Beat	4th Beat	Clocks
1-Beat Read (1 byte)	20	-	-	-	20
1-Beat Write	19	-	-	-	19

Table 3-7.PowerPC 60x Bus to Flash Access Timing for Bank B (16-bit Port)

Ethernet Interface

The MVME2300 module uses a DECchip 21140/21143 PCI Fast Ethernet LAN controller to implement an Ethernet interface that supports 10BaseT/100BaseTX connections, via an RJ45 connector on the front panel. The balanced differential transceiver lines are coupled via on-board transformers.

Every MVME2300 is assigned an Ethernet station address. The address is \$08003E2xxxxx, where xxxxx is the unique 5-nibble number assigned to the board (every board has a different value for xxxxx).

Each MVME2300 displays its Ethernet station address on a label attached to the base board in the PMC connector keepout area just behind the front panel. In addition, the six bytes including the Ethernet station address are stored in the NVRAM (BBRAM) configuration area specified by boot ROM. That is, the value 08003E2xxxxx is stored in NVRAM. The MVME2300 debugger, PPCBug, has the capability to retrieve the Ethernet station address via the **CNFG** command.

Note The unique Ethernet address is set at the factory and should not be changed. Any attempt to change this address may create node or bus contention and thereby render the board inoperable.

If the data in NVRAM is lost, use the number on the label in the PMC connector keepout area to restore it.

For the pin assignments of the 10BaseT/100BaseTX connector, refer to Appendix A, Specifications.

At the physical layer, the Ethernet interface bandwidth is 10Mbit/second for 10BaseT. For the 100BaseTX, it is 100Mbit/second. Refer to the BBRAM/TOD Clock memory map description in the *MVME2300 Series VME Processor Module Programmer's Reference Guide* for detailed programming information.

PCI Mezzanine Card (PMC) Interface

A key feature of the MVME2300 family is the PCI bus. In addition to the on-board local bus devices (Ethernet, etc.), the PCI bus supports an industry-standard mezzanine interface, IEEE P1386.1 PCI Mezzanine Card (PMC).

PMC modules offer a variety of possibilities for I/O expansion such as FDDI (Fiber Distributed Data Interface), ATM (Asynchronous Transfer Mode), graphics, Ethernet, or SCSI ports. For a complete listing of available PMCs, go to the Mezzanines International Web site at http://www.groupipc.com/. The MVME2300 supports PMC front panel and rear P2 I/O. There is also provision for stacking one or two PMC carrier boards, or PMCspan PCI expansion modules, on the MVME2300 for additional expansion.

The MVME2300 supports two PMC slots. Two sets of four 64-pin connectors on the base board (J11 - J14, and J21 - J24) interface with 32-bit/64-bit IEEE P1386.1 PMC-compatible mezzanines to add any desirable function.

Refer to Appendix B, Connector Pin Assignments for the pin assignments of the PMC connectors. For detailed programming information, refer to the PCI bus descriptions in the *MVME2300 Series VME Processor Module Programmer's Reference Guide* and to the user documentation for the PMC modules you intend to use.

PMC Slot 1 (Single-Width PMC)

Mezzanine TypePCI Mezzanine Card (PMC)Mezzanine SizeS1B: Single width, standard depth (75mm x 150mm)
with front panelPMC ConnectorsJ11 to J14 (32/64-Bit PCI with front and rear I/O)Signaling VoltageVio = 5.0Vdc

PMC slot 1 has the following characteristics:

For P2 I/O configurations, all I/O pins of PMC slot 1 are routed to the 5-row power adapter card. Pins 1 through 64 of J14 are routed to row C and row A of P2.

PMC Slot 2 (Single-Width PMC)

PMC slot 2 has the following characteristics:

Mezzanine Type	PCI Mezzanine Card (PMC)
Mezzanine Size	S1B: Single width, standard depth (75mm x 150mm) with front panel
PMC Connectors	J21 to J24 (32/64-Bit PCI with front and rear I/O)
Signaling Voltage	$V_{io} = 5.0 V dc$

For P2 I/O configurations, 46 I/O pins of PMC slot 2 are routed to the 5-row power adapter card. Pins 1 through 46 of J24 are routed to row D and row Z of P2.

PMC Slots 1 and 2 (Double-Width PMC)

PMC slots 1 and 2 with a double-width PMC have the following characteristics:

Mezzanine Type	PCI Mezzanine Card (PMC)
Mezzanine Size	Double width, standard depth (150mm x 150 mm) with front panel
PMC Connectors	J11 to J14 and J21 to J24 (32/64-Bit PCI) with front and rear I/O
Signaling Voltage	$V_{io} = 5.0 V dc$

PCI Expansion

The PMCspan expansion module connector, J4, is a 114-pin Mictor connector. It is located near P2 on the primary side of the MVME2300. Its interrupt lines are routed to the Raven MPIC.

VMEbus Interface

The VMEbus interface is implemented with the CA91C042 Universe ASIC. The Universe chip interfaces the 32/64-bit PCI local bus to the VMEbus.

The Universe ASIC provides:

- □ The PCI-bus-to-VMEbus interface
- □ The VMEbus-to-PCI-bus interface
- □ The DMA controller functions of the local VMEbus

The Universe chip includes Universe Control and Status Registers (UCSRs) for interprocessor communications. It can provide the VMEbus system controller functions as well. For detailed programming information, refer to the *Universe User's Manual* and to the discussions in the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

Maximum performance is achieved with D64 Multiplexed Block Transfers (MBLT). The on-chip DMA channel should be used to move large blocks of data to/from the VMEbus. The Universe should be able to reach 50MB/second in 64-bit MBLT mode.

The MVME2300 interfaces to the VMEbus via the P1 and P2 connectors, which use the new 5-row 160-pin connectors as specified in the VME64 extension standard. It also draws +5V, +12V, and -12V power from the VMEbus backplane through these two connectors. 3.3V and 2.5V supplies are regulated onboard from the +5 power.

Asynchronous Debug Port

A PC16550 Universal Asynchronous Receiver/Transmitter (UART) provides the asynchronous debug port. TTL-level signals for the port are routed through appropriate EIA-232-D drivers and receivers to an RJ45 connector on the front panel. The external signals are ESD protected.

This serial port can support 19.2 KBaud I/O. For detailed programming information, refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide* and to the vendor documentation for the UART device.

PCI-ISA Bridge (PIB) Controller

The MVME2300 uses a W83C553 PCI/ISA Bridge (PIB) Controller to supply the interface between the PCI local bus and the ISA system I/O bus as shown in Figure 3-1.

The PIB controller provides the following functions:

- □ PCI bus arbitration for:
 - ISA (Industry Standard Architecture) bus DMA (not functional on MVME2300)
 - The PHB (PCI Host Bridge) MPU/local bus interface function, implemented by the Raven ASIC
 - All on-board PCI devices
 - The PMC slot

- □ ISA bus arbitration for DMA devices
- □ ISA interrupt mapping for four PCI interrupts
- □ Interrupt controller functionality to support 14 ISA interrupts
- □ Edge/level control for ISA interrupts
- Seven independently programmable DMA channels
- □ One 16-bit timer
- □ Three interval counters/timers

Accesses to the configuration space for the PIB controller are performed by way of the CONADD and CONDAT (Configuration Address and Data) registers in the Raven bridge controller ASIC. The registers are located at offsets \$CF8 and \$CFC, respectively, from the PCI I/O base address.

Real-Time Clock/NVRAM/Timer Function

The MVME2300 employs a surface-mount M48T59/T559 RAM and clock chip to provide 8KB NVRAM, a real-time clock, and a watchdog timer function. This chip supplies a clock, oscillator, crystal, power failure detection, memory write protection, 8KB of NVRAM, and a battery in a package consisting of two parts:

- A 28-pin 330mil SO device containing the real-time clock, the oscillator, power failure detection circuitry, timer logic, 8KB of static RAM, and gold-plated sockets for a battery
- □ A SNAPHAT battery housing a crystal along with the battery

The SNAPHAT battery package is mounted on top of the M48T59/T559 device. The battery housing is keyed to prevent reverse insertion.

The clock furnishes seconds, minutes, hours, day, date, month, and year in BCD 24-hour format. Corrections for 28-, 29- (leap year), and 30-day months are made automatically. The clock generates no interrupts. Although the M48T59/T559 is an 8-bit device, 8-, 16-, and 32-bit accesses from the ISA bus to the M48T59/T559 are supported. Refer to the

3

MVME2300 Series VME Processor Module Programmer's Reference Guide and to the M48T59/T559 data sheet for detailed programming and battery life information.

PCI Host Bridge

The Raven ASIC provides the bridge function between the MPC60x bus and the PCI Local Bus. It provides 32 bit addressing and 64 bit data. 64 bit addressing (dual address cycle) is not supported. The Raven supports various PowerPC processor external bus frequencies up to 66 MHz and PCI frequencies up to 33 MHz.

There are four programmable map decoders for each direction to provide flexible address mappings between the MPC and the PCI Local Bus. Refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide* for additional information and programming details.

Interrupt Controller (MPIC)

The Raven ASIC provides an MPIC Interrupt Controller to handle various interrupt sources. The interrupt sources are:

- □ Four MPIC timer interrupts
- □ Processor 0 self interrupt
- □ Memory Error interrupt from the Falcon chipset
- □ Interrupts from all PCI devices
- Two software interrupts
- □ ISA interrupts (actually handles as a single 8259 interrupt at INT0)

Programmable Timers

Among the resources available to the local processor are a number of programmable timers. Timers are incorporated into the PCI/ISA Bridge (PIB) controller and the Raven device as shown in Figure 3-1. They can be programmed to generate periodic interrupts to the processor.

Interval Timers

The PIB controller has three built-in counters that are equivalent to those found in an 82C54 programmable interval timer. The counters are grouped into one timer unit, Timer 1, in the PIB controller. Each counter output has a specific function:

- Counter 0 is associated with interrupt request line IRQ0. It can be used for system timing functions, such as a timer interrupt for a time-of-day function.
- □ Counter 1 generates a refresh request signal for ISA memory. This timer is not used in the MVME2300.
- Counter 2 provides the tone for the speaker output function on the PIB controller (the SPEAKER_OUT signal which can be cabled to an external speaker via the remote reset connector). This function is not used on the MVME2300.

The interval timers use the OSC clock input as their clock source. The MVME2300 drives the OSC pin with a 14.31818 MHz clock source.

16/32-Bit Timers

There is one 16-bit timer and four 32-bit timers on the MVME2300. The 16-bit timer is provided by the PIB. Raven device provides the four 32-bit timers that may be used for system timing or to generate periodic interrupts. For information on programming these timers, refer to the data sheet for the W83C553 PIB controller and to the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

Programming

Introduction

This chapter provides basic information useful in programming the MVME2300. This includes a description of memory maps, control and status registers, PCI arbitration, interrupt handling, sources of reset, and big/little-endian issues.

For additional programming information about the MVME2300, refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide*, listed in Appendix D, *Related Documentation*.

For programming information about the PMCs, refer to the applicable user's manual furnished with the PMCs.

Memory Maps

There are multiple buses on the MVME2300 and each bus domain has its own view of the memory map. The following sections describe the MVME2300 memory organization from the following three points of view:

- □ The mapping of all resources as viewed by the MPU (processor bus memory map)
- The mapping of onboard resources as viewed by PCI local bus masters (PCI bus memory map)
- The mapping of onboard resources as viewed by VMEbus masters (VMEbus memory map)

Additional, more detailed memory maps can be found in the *MVME2300* Series VME Processor Module Programmer's Reference Guide.

Processor Bus Memory Map

The processor memory map configuration is under the control of the Raven bridge controller ASIC and the Falcon memory controller chip set. The Raven and Falcon devices adjust system mapping to suit a given application via programmable map decoder registers. At system power-up or reset, a default processor memory map takes over.

Default Processor Memory Map

The default processor memory map that is valid at power-up or reset remains in effect until reprogrammed for specific applications. Table 4-1 defines the entire default map (\$00000000 to \$FFFFFFFF).

Processor Address		Size	Definition	
Start	End			
00000000	7FFFFFFF	2GB	Not Mapped	
8000000	8001FFFF	128KB	PCI/ISA I/O Space	
80020000	FEF7FFFF	2GB-16MB-640KB	Not Mapped	
FEF80000	FEF8FFFF	64KB	Falcon Registers	
FEF90000	FEFEFFFF	384KB	Not Mapped	
FEFF0000	FEFFFFFF	64KB	Raven Registers	
FF000000	FFEFFFFF	15MB	Not Mapped	
FFF00000	FFFFFFF	1MB	Flash Bank A or Bank B (See Note)	

Table 4-1. Processor Default View of the Memory Map

Note The first 1MB of flash Bank A (soldered 2MB or 4MB flash) appears in this range after a reset if the **rom_b_rv** control bit in the Falcon's ROM B Base/Size register is cleared. If the **rom_b_rv** control bit is set, this address range maps to flash Bank B (socketed 1MB flash).

For detailed processor memory maps, including suggested CHRP- and PREP-compatible memory maps, refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

PCI Local Bus Memory Map

The PCI memory map is controlled by the Raven MPU/PCI bus bridge controller ASIC and by the Universe PCI/VME bus bridge ASIC. The Raven and Universe devices adjust system mapping to suit a given application via programmable map decoder registers.

No default PCI memory map exists. Resetting the system turns the PCI map decoders off, and they must be reprogrammed in software for the intended application.

For detailed PCI memory maps, including suggested CHRP- and PREPcompatible memory maps, refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

VMEbus Memory Map

The VMEbus is programmable. Like other parts of the MVME2300 memory map, the mapping of local resources as viewed by VMEbus masters varies among applications.

The Universe PCI/VME bus bridge ASIC includes a user-programmable map decoder for the VMEbus-to-local-bus interface. The address translation capabilities of the Universe enable the processor to access any range of addresses on the VMEbus.

Recommendations for VMEbus mapping, including suggested CHRP- and PREP-compatible memory maps, can be found in the *MVME2300 Series VME Processor Module Programmer's Reference Guide*. Figure 4-1 shows the overall mapping approach from the standpoint of a VMEbus master.

Programming Considerations

Good programming practice dictates that only one MPU at a time have control of the MVME2300 control registers. Of particular note are:

- □ Registers that modify the address map
- Registers that require two cycles to access
- VMEbus interrupt request registers

PCI Arbitration

There are seven potential PCI bus masters on the MVME2300:

- □ Raven ASIC (MPU/PCI bus bridge controller)
- □ Winbond W83C553 PIB (PCI/ISA bus bridge controller)
- □ DECchip 21140 Ethernet controller
- □ Universe ASIC (PCI/VME bus bridge controller)
- □ PMC Slot 1 (PCI mezzanine card)
- □ PMC Slot 2 (PCI mezzanine card)
- PCI Expansion Slot

The Winbond W83C553 PIB device supplies the PCI arbitration support for these seven types of devices. The PIB supports flexible arbitration modes of fixed priority, rotating priority, and mixed priority, as appropriate in a given application. Details on PCI arbitration can be found in the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

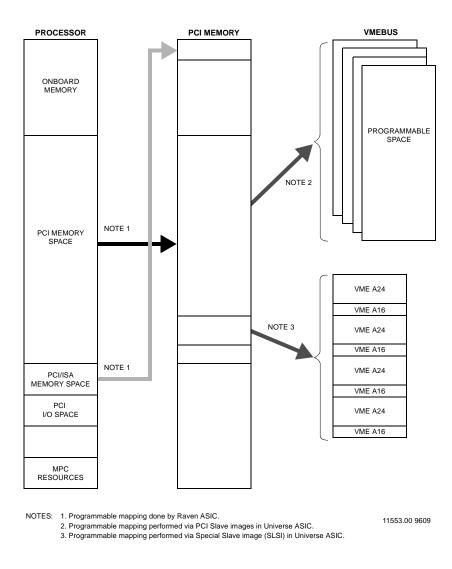
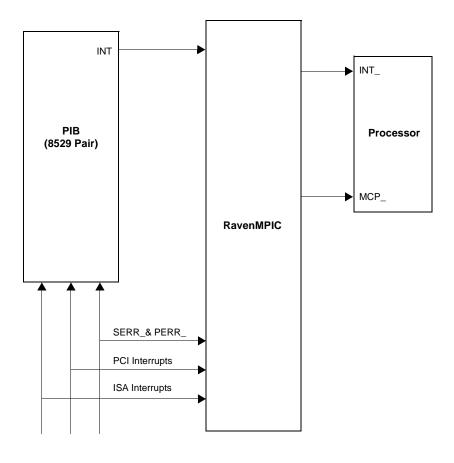


Figure 4-1. VMEbus Master Mapping

The arbitration assignments for the MVME2300 are shown in Table 4-2.

PCI Master(s) **PCI Bus Request** PIB PIB (Internal) CPU Raven ASIC Request 0 PMC Slot 2 PMC Slot 1 Request 1 PCI Expansion Slot Request 2 Request 3 Ethernet Request 4 Universe ASIC (VMEbus)

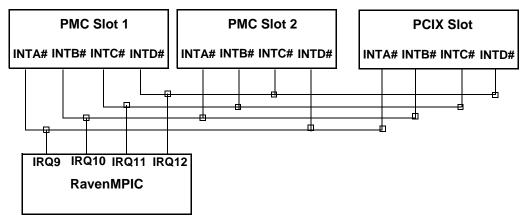

 Table 4-2. PCI Arbitration Assignments

Interrupt Handling

The Raven ASIC, which controls PHB (PCI Host Bridge) MPU/local bus interface functions on the MVME2300, performs interrupt handling as well. Sources of interrupts may be any of the following:

- **□** The Raven ASIC itself (timer interrupts or transfer error interrupts)
- □ The processor (processor self-interrupts)
- □ The Falcon chip set (memory error interrupts)
- □ The PCI bus (interrupts from PCI devices)
- □ The ISA bus (interrupts from ISA devices)

Figure 4-2 illustrates interrupt architecture on the MVME2300. For details on interrupt handling, refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.



4

11559.00 9609

Figure 4-2. MVME2300 Interrupt Architecture

The MVME2300 routes the interrupts from the PMCs and PCI expansion slots as follows:

DMA Channels

The PIB supports seven DMA channels. They are not functional on the MVME2300.

Sources of Reset

The MVME2300 has eight potential sources of reset:

- 1. Power-on reset.
- 2. **RST** switch (resets the VMEbus when the MVME2300 is a system controller).
- 3. Watchdog timer Reset function controlled by the MK48T59 timekeeper device (resets the VMEbus when the MVME2300 is system controller).
- 4. ALT_RST* function controlled by the port 92 register in the PIB (resets the VMEbus when the MVME2300 is system controller).
- 5. PCI/ISA I/O Reset function controlled by the Clock Divisor register in the PIB.

4

- 6. The VMEbus SYSRESET* signal.
- 7. VMEbus Reset sources from the Universe ASIC (PCI/VME bus bridge controller): the System Software Reset and Local Software Reset.

The following table shows which devices are affected by the various types of resets. For details on using resets, refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

Device Affected	Process	Raven	Falcon	PCI	ISA	VMEbus
Reset Source	or	ASIC	Chip Set	Devices	Devices	(as system controller)
Power-On reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Reset switch	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Watchdog reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
VME SYSRESET*signal	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VME System SW reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VME Local SW reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Hot reset (Port 92)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
PCI/ISA reset				\checkmark	\checkmark	

Table 4-3. Classes of Reset and Effectiveness

Endian Issues

The MVME2300 supports both little-endian (Windows NT) and big-endian (AIX) software. The PowerPC processor and the VMEbus are inherently big-endian, while the PCI bus is inherently little-endian. The following sections summarize how the MVME2300 handles software and hardware differences in big- and little-endian operations. For further details on endian considerations, refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

Processor/Memory Domain

The MCP 603 or MPC604R processor can operate in both big-endian and little-endian mode. However, it always treats the external processor/memory bus as big-endian by performing *address rearrangement and reordering* when running in little-endian mode. The MPC registers in the Raven MPU/PCI bus bridge controller ASIC and the Falcon memory controller chip set, as well as DRAM, flash, and system registers, always appear as big-endian.

Role of the Raven ASIC

Because the PCI bus is little-endian, the Raven performs byte swapping in both directions (from PCI to memory and from the processor to PCI) to maintain address invariance while programmed to operate in big-endian mode with the processor and the memory subsystem.

In little-endian mode, the Raven *reverse-rearranges* the address for PCIbound accesses and *rearranges* the address for memory-bound accesses (from PCI). In this case, no byte swapping is done.

PCI Domain

The PCI bus is inherently little-endian. All devices connected directly to the PCI bus operate in little-endian mode, regardless of the mode of operation in the processor's domain.

PCI and Ethernet

Ethernet is byte-stream-oriented; the byte having the lowest address in memory is the first one to be transferred regardless of the endian mode. Since the Raven maintains address invariance in both little-endian and big-endian mode, no endian issues should arise for Ethernet data. Big-endian software must still take the byte-swapping effect into account when accessing the registers of the PCI/Ethernet device, however.

Role of the Universe ASIC

Because the PCI bus is little-endian while the VMEbus is big-endian, the Universe PCI/VME bus bridge ASIC performs byte swapping in both directions (from PCI to VMEbus and from VMEbus to PCI) to maintain address invariance, regardless of the mode of operation in the processor's domain.

VMEbus Domain

The VMEbus is inherently big-endian. All devices connected directly to the VMEbus must operate in big-endian mode, regardless of the mode of operation in the processor's domain.

In big-endian mode, byte-swapping is performed first by the Universe ASIC and then by the Raven. The result is transparent to big-endian software (a desirable effect).

In little-endian mode, however, software must take the byte-swapping effect of the Universe ASIC and the address *reverse-rearranging* effect of the Raven into account.

For further details on endian considerations, refer to the *MVME2300* Series VME Processor Module Programmer's Reference Guide.

PPCBug 5

PPCBug Overview

The PPCBug firmware is the layer of software just above the hardware. The firmware provides the proper initialization for the devices on the MVME2300 module upon power-up or reset.

This chapter describes the basics of PPCBug and its architecture, describes the monitor (interactive command portion of the firmware) in detail, and gives information on actually using the PPCBug debugger and the special commands. A complete list of PPCBug commands appears at the end of the chapter.

Chapter 6, *Modifying the Environment* contains information about the CNFG and ENV commands, system calls, and other advanced user topics.

For full user information about PPCBug, refer to the *PPCBug Firmware Package User's Manual* and the *PPCBug Diagnostics Manual*, listed in *Appendix D, Related Documentation*.

PPCBug Basics

The PowerPC debug firmware, PPCBug, is a powerful evaluation and debugging tool for systems built around the Motorola PowerPC microcomputers. Facilities are available for loading and executing user programs under complete operator control for system evaluation.

PPCBug provides a high degree of functionality, user friendliness, portability, and ease of maintenance.

It achieves good portability and comprehensibility because it was written entirely in the C programming language, except where necessary to use assembler functions. PPCBug includes commands for:

- Display and modification of memory
- Breakpoint and tracing capabilities
- A powerful assembler and disassembler useful for patching programs
- □ A self-test at power-up feature which verifies the integrity of the system

PPCBug consists of three parts:

- □ A command-driven, user-interactive *software debugger*, described in the *PPCBug Firmware Package User's Manual*. It is hereafter referred to as "the debugger" or "PPCBug".
- □ A command-driven *diagnostics package* for the MVME2300 hardware, hereafter referred to as "the diagnostics." The diagnostics package is described in the *PPCBug Diagnostics Manual*.
- □ A *user interface* or *debug/diagnostics monitor* that accepts commands from the system console terminal.

When using PPCBug, you operate out of either the *debugger directory* or the *diagnostic directory*.

- If you are in the debugger directory, the debugger prompt
 PPC1-Bug> is displayed and you have all of the debugger commands at your disposal.
- If you are in the diagnostic directory, the diagnostic prompt PPC1-Diag> is displayed and you have all of the diagnostic commands at your disposal as well as all of the debugger commands.

Because PPCBug is command-driven, it performs its various operations in response to user commands entered at the keyboard. When you enter a command, PPCBug executes the command and the prompt reappears. However, if you enter a command that causes execution of user target code (e.g., **GO**), then control may or may not return to PPCBug, depending on the outcome of the user program.

Memory Requirements

PPCBug requires a maximum of 512KB of read/write memory (DRAM). The debugger allocates this space from the top of memory. For example, a system containing 64MB (\$0400000) of read/write memory will place the PPCBug memory page at locations \$03F80000 to \$03FFFFFF.

PPCBug Implementation

PPCBug is written largely in the C programming language, providing benefits of portability and maintainability. Where necessary, assembly language has been used in the form of separately compiled program modules containing only assembler code. No mixed-language modules are used.

Physically, PPCBug is contained in two socketed 32-pin PLCC flash devices that together provide 1MB of storage. The executable code is checksummed at every power-on or reset firmware entry, and the result (which includes a precalculated checksum contained in the flash devices), is verified against the expected checksum.

MPU, Hardware, and Firmware Initialization

The debugger performs the MPU, hardware, and firmware initialization process. This process occurs each time the MVME2300 is reset or powered up. The steps below are a high-level outline, not all of the detailed steps are listed.

- 1. Sets MPU.MSR to known value.
- 2. Invalidates the MPU's data/instruction caches.
- 3. Clears all segment registers of the MPU.
- 4. Clears all block address translation registers of the MPU.
- 5. Initializes the MPU-bus-to-PCI-bus bridge device.
- 6. Initializes the PCI-bus-to-ISA-bus bridge device.

5

- 7. Calculates the external bus clock speed of the MPU.
- 8. Delays for 750 milliseconds.
- 9. Determines the CPU base board type.
- 10. Sizes the local read/write memory (DRAM).
- 11. Initializes the read/write memory controller. Sets base address of memory to \$00000000.
- 12. Retrieves the speed of read/write memory from NVRAM.
- 13. Initializes the read/write memory controller with the speed of read/write memory.
- 14. Retrieves the speed of read only memory (flash) from NVRAM.
- 15. Initializes the read only memory controller with the speed of read only memory.
- 16. Enables the MPU's instruction cache.
- 17. Copies the MPU's exception vector table from \$FFF00000 to \$00000000.
- 18. Verifies MPU type.
- 19. Enables the super-scalar feature of the MPU (boards with MPC604 type chips only).
- 20. Verifies the external bus clock speed of the MPU.
- 21. Determines the debugger's console/host ports, and initializes the PC16550A.
- 22. Displays the debugger's copyright message.
- 23. Displays any hardware initialization errors that may have occurred.
- 24. Checksums the debugger object, and displays a warning message if the checksum failed to verify.
- 25. Displays the amount of local read/write memory found.

5

- 26. Verifies the configuration data that is resident in NVRAM, and displays a warning message if the verification failed.
- 27. Calculates and displays the MPU clock speed, verifies that the MPU clock speed matches the configuration data, and displays a warning message if the verification fails.
- 28. Displays the BUS clock speed, verifies that the BUS clock speed matches the configuration data, and displays a warning message if the verification fails.
- 29. Probes PCI bus for supported network devices.
- 30. Probes PCI bus for supported mass storage devices.
- Initializes the memory/IO addresses for the supported PCI bus devices.
- 32. Executes Self-Test, if so configured. (Default is no Self-Test.)
- 33. Extinguishes the board fail LED, if Self-Test passed, and outputs any warning messages.
- 34. Executes boot program, if so configured. (Default is no boot.)
- 35. Executes the debugger monitor (issues the PPC1-Bug> prompt).

Using PPCBug

PPCBug is command-driven and performs its various operations in response to commands that you enter at the keyboard. When the PPC1-Bug prompt appears on the screen, the debugger is ready to accept debugger commands. When the PPC1-Diag prompt appears on the screen, the debugger is ready to accept diagnostics commands. To switch from one mode to the other, enter **SD**.

The data keyed in is stored in an internal buffer. Execution begins only after you press the Return or Enter key. This allows you to correct entry errors, if necessary, with the control characters described in the *PPCBug Firmware Package User's Manual*.

After the debugger executes the command, the prompt reappears. However, if the command causes execution of user target code (for example **GO**) then control may or may not return to the debugger, depending on what the user program does. For example, if a breakpoint has been specified, then control returns to the debugger when the breakpoint is encountered during execution of the user program. Alternately, the user program could return to the debugger by means of the System Call Handler routine RETURN. For more about this, refer to the **GD**, **GO**, and **GT** command descriptions in the *PPCBug Firmware Package User's Manual*.

A debugger command is made up of the following parts:

- □ The command name, either uppercase or lowercase (for example, **MD** or **md**).
- □ Any required arguments, as specified by command.
- □ At least one space before the first argument. Precede all other arguments with either a space or comma.
- One or more options. Precede an option or a string of options with a semicolon (;). If no option is entered, the command's default option conditions are used.

Debugger Commands

The individual debugger commands are listed in the following table. The commands are described in detail in the *PPCBug Firmware Package User's Manual*.

Note You can list all the available debugger commands by entering the Help (**HE**) command alone. You can view the syntax for a particular command by entering **HE** and the command mnemonic, as listed below.

Command	Description	
AS	One Line Assembler	
BC	Block of Memory Compare	

Table 5-1. Debugger Commands

Command	Description
BF	Block of Memory Fill
BI	Block of Memory Initialize
BM	Block of Memory Move
BR	Breakpoint Insert
NOBR	Breakpoint Delete
BS	Block of Memory Search
BV	Block of Memory Verify
СМ	Concurrent Mode
NOCM	No Concurrent Mode
CNFG	Configure Board Information Block
CS	Checksum
CSAR	PCI Configuration Space READ Access
CSAW	PCI Configuration Space WRITE Access
DC	Data Conversion
DMA	Block of Memory Move
DS	One Line Disassembler
DU	Dump S-Records
ECHO	Echo String
ENV	Set Environment
FORK	Fork Idle MPU at Address
FORKWR	Fork Idle MPU with Registers
GD	Go Direct (Ignore Breakpoints)
GEVBOOT	Global Environment Variable Boot
GEVDEL	Global Environment Variable Delete
GEVDUMP	Global Environment Variable(s) Dump
GEVEDIT	Global Environment Variable Edit
GEVINIT	Global Environment Variable Initialization
GEVSHOW	Global Environment Variable(s) Display
GN	Go to Next Instruction
GO	Go Execute User Program
GT	Go to Temporary Breakpoint
HE	Help

Table 5-1. Debugger Commands (Continued)

5

Command	Description
IDLE	Idle Master MPU
IOC	I/O Control for Disk
IOI	I/O Inquiry
IOP	I/O Physical (Direct Disk Access)
IOT	I/O Teach for Configuring Disk Controller
IRD	Idle MPU Register Display
IRM	Idle MPU Register Modify
IRS	Idle MPU Register Set
LO	Load S-Records from Host
MA	Macro Define/Display
NOMA	Macro Delete
MAE	Macro Edit
MAL	Enable Macro Listing
NOMAL	Disable Macro Listing
MAR	Load Macros
MAW	Save Macros
MD, MDS	Memory Display
MENU	System Menu
MM	Memory Modify
MMD	Memory Map Diagnostic
MS	Memory Set
MW	Memory Write
NAB	Automatic Network Boot
NAP	Nap MPU
NBH	Network Boot Operating System, Halt
NBO	Network Boot Operating System
NIOC	Network I/O Control
NIOP	Network I/O Physical
NIOT	Network I/O Teach (Configuration)
NPING	Network Ping
OF	Offset Registers Display/Modify
PA	Printer Attach

Table 5-1. Debugger Commands (Continued)

Command	Description
NOPA	Printer Detach
PBOOT	Bootstrap Operating System
PF	Port Format
NOPF	Port Detach
PFLASH	Program Flash Memory
PS	Put RTC into Power Save Mode
RB	ROMboot Enable
NORB	ROMboot Disable
RD	Register Display
REMOTE	Remote
RESET	Cold/Warm Reset
RL	Read Loop
RM	Register Modify
RS	Register Set
RUN	MPU Execution/Status
SD	Switch Directories
SET	Set Time and Date
SROM	SROM Examine/Modify
SYM	Symbol Table Attach
NOSYM	Symbol Table Detach
SYMS	Symbol Table Display/Search
Т	Trace
ТА	Terminal Attach
TIME	Display Time and Date
ТМ	Transparent Mode
TT	Trace to Temporary Breakpoint
VE	Verify S-Records Against Memory
VER	Revision/Version Display
WL	Write Loop

Table 5-1. Debugger Commands (Continued)

Although a command to allow the erasing and reprogramming of flash memory is available to you, keep in mind that reprogramming any portion of flash memory will erase everything currently contained in flash, including the PPCBug debugger.

Note, however, that both banks A and B of flash contain the PPCBug debugger.

Diagnostic Tests

The PPCBug hardware diagnostics are intended for testing and troubleshooting the MVME2300 module.

In order to use the diagnostics, you must switch to the diagnostic directory. You may switch between directories by using the **SD** (Switch Directories) command. You may view a list of the commands in the directory that you are currently in by using the **HE** (Help) command.

If you are in the debugger directory, the debugger prompt PPC1-Bug> displays, and all of the debugger commands are available. Diagnostics commands cannot be entered at the PPC1-Bug> prompt.

If you are in the diagnostic directory, the diagnostic prompt PPC1-Diag> displays, and all of the debugger and diagnostic commands are available.

PPCBug's diagnostic test groups are listed in the Table 5-2 on page 5-10. Note that not all tests are performed on the MVME2300. Using the **HE** command, you can list the diagnostic routines available in each test group. Refer to the *PPCBug Diagnostics Manual* for complete descriptions of the diagnostic routines and instructions on how to invoke them.

Test Group	Description
CL1283	Parallel Interface (CL1283) Tests*
DEC	DEC21x40 Ethernet Controller Tests
ISABRDGE	PCI/ISA Bridge Tests
KBD8730x	PC8730x Keyboard/Mouse Tests*
L2CACHE	Level 2 Cache Tests*

 Table 5-2.
 Diagnostic Test Groups

Test Group	Description
NCR	NCR 53C8xx SCSI-2 I/O Processor Tests*
PAR8730x	Parallel Interface (PC8730x) Test
UART	Serial Input/Output Tests
PCIBUS	PCI/PMC Generic Tests
RAM	Local RAM Tests
RTC	MK48Txx Timekeeping Tests
SCC	Serial Communications Controller (Z85C230) Tests*
VGA543x	Video Diagnostics Tests*
VME2	VMEchip2 VME Interface ASIC Tests*
Z8536	Z8536 Counter/Timer Tests*

Table 5-2. Diagnostic Test Groups (Continued)

Notes You may enter command names in either uppercase or lowercase.

Some diagnostics depend on restart defaults that are set up only in a particular restart mode. Refer to the documentation on a particular diagnostic for the correct mode.

Test Sets marked with an asterisk (*) are not available on the MVME2300.

Modifying the Environment

Overview

You can use the factory-installed debug monitor, PPCBug, to modify certain parameters contained in the module's NVRAM, also known as Battery Backed-up RAM (BBRAM).

- □ The Board Information Block in NVRAM contains various elements concerning operating parameters of the hardware. Use the PPCBug command **CNFG** to change those parameters.
- □ Use the PPCBug command **ENV** to change configurable PPCBug parameters in NVRAM.

The **CNFG** and **ENV** commands are both described in the *PPCBug Firmware Package User's Manual*, listed in Appendix D, *Related Documentation*. Refer to that manual for general information about their use and capabilities.

The following paragraphs present additional information about **CNFG** and **ENV** that is specific to the PPCBug debugger, along with the parameters that can be configured with the **ENV** command.

CNFG – Configure Board Information Block

Use this command to display and configure the Board Information Block, which is resident within the NVRAM. The board information block contains various elements detailing specific operational parameters of the MVME2300. The board structure is as shown in the following example:

Board (PWA) Serial Number	=	"MOT00xxxxxx	"
Board Identifier	=	"MVME2300	"
Artwork (PWA) Identifier	=	"01-w3260F <i>xx</i> B	"
MPU Clock Speed	=	` 200	"
Bus Clock Speed	=	` 067	"
Ethernet Address	=	08003E20C983	
Local SCSI Identifier	=	<u>"07"</u>	
System Serial Number	=	"nnnnnn	"
System Identifier	=	"Motorola MVME230	0″
License Identifier	=	"nnnnnnn "	

The parameters that are quoted are left-justified character (ASCII) strings padded with space characters, and the quotes (") are displayed to indicate the size of the string. Parameters that are not quoted are considered data strings, and data strings are right-justified. The data strings are padded with zeroes if the length is not met.

The Board Information Block is factory-configured before shipment. There is no need to modify block parameters unless the NVRAM is corrupted.

Refer to the *MVME2300 Series VME Processor Module Programmer's Reference Guide*, listed in Appendix D, *Related Documentation*, for the actual location and other information about the Board Information Block.

Refer to the *PPCBug Firmware Package User's Manual* for a description of **CNFG** and examples.

ENV – Set Environment

Use the **ENV** command to view and/or configure interactively all PPCBug operational parameters that are kept in NVRAM.

Refer to the *PPCBug Firmware Package User's Manual* for a description of the use of **ENV**. Additional information on registers in the Universe ASIC that affect these parameters is contained in your *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

Listed and described below are the parameters that you can configure with the **ENV** command. The default values shown were those in effect when this publication went to print.

Configuring the PPCBug Parameters

The parameters that can be configured with ENV are:

Bug or System environment [B/S] = B?

- B Bug is the mode where no system type of support is displayed. However, system-related items are still available. (Default)
- **s** System is the standard mode of operation, and is the default mode if NVRAM should fail. System mode is defined in the *PPCBug Firmware Package User's Manual.*

Field Service Menu Enable [Y/N] = N?

- Y Display the field service menu.
- **N** Do not display the field service menu. (Default)

Remote Start Method Switch [G/M/B/N] = B?

The Remote Start Method Switch is used when the MVME2300 is cross-loaded from another VME-based CPU, to start execution of the cross-loaded program.

- **G** Use the Global Control and Status Register to pass and start execution of the cross-loaded program. *This selection is not applicable to the MVME2300 boards.*
- M Use the Multiprocessor Control Register (MPCR) in shared RAM to pass and start execution of the cross-loaded program.
- **B** Use both the GCSR and the MPCR methods to pass and start execution of the cross-loaded program. (Default)
- **N** Do not use any Remote Start Method.

Probe System for Supported I/O Controllers [Y/N] = Y?

- Accesses will be made to the appropriate system buses (e.g., VMEbus, local MPU bus) to determine the presence of supported controllers. (Default)
- **N** Accesses will not be made to the VMEbus to determine the presence of supported controllers.

Auto-Initialize of NVRAM Header Enable [Y/N] = Y?

- Y NVRAM (PReP partition) header space will be initialized automatically during board initialization, but only if the PReP partition fails a sanity check. (Default)
- **N** NVRAM header space will not be initialized automatically during board initialization.

Network PReP-Boot Mode Enable [Y/N] = N?

- **Y** Enable PReP-style network booting (same boot image from a network interface as from a mass storage device).
- **N** Do not enable PReP-style network booting. (Default)

Negate VMEbus SYSFAIL* Always [Y/N] = N?

- Y Negate the VMEbus SYSFAIL* signal during board initialization.
- N Negate the VMEbus SYSFAIL* signal after successful completion or entrance into the bug command monitor. (Default)

SCSI Bus Reset on Debugger Startup [Y/N] = N?

- Y Local SCSI bus is reset on debugger setup.
- N Local SCSI bus is not reset on debugger setup. (Default)

Primary SCSI Bus Negotiations Type [A/S/N] = A?

- A Asynchronous SCSI bus negotiation. (Default)
- s Synchronous SCSI bus negotiation.
- N None.

Primary SCSI Data Bus Width [W/N] = N?

	W	Wide SCSI (16-bit bus).
--	---	-------------------------

N Narrow SCSI (8-bit bus). (Default)

Secondary SCSI identifier = 07?

```
Select the identifier. (Default = 07.)
```

NVRAM Bootlist (GEV.fw-boot-path) Boot Enable [Y/N] = N?

- Y Give boot priority to devices defined in the *fw-boot-path* global environment variable (GEV).
- **N** Do not give boot priority to devices listed in the *fw-boot-path* GEV. (Default)
- **Note** When enabled, the GEV (Global Environment Variable) boot takes priority over all other boots, including Autoboot and Network Boot.

NVRAM Bootlist (GEV.fw-boot-path) Boot at power-up only [Y/N] = N?

- Y Give boot priority to devices defined in the *fw-boot-path* GEV at power-up reset only.
- **N** Give power-up boot priority to devices listed in the *fw-bootpath* GEV at any reset. (Default)

```
NVRAM Bootlist (GEV.fw-boot-path) Boot Abort Delay = 5?
```

The time in seconds that a boot from the NVRAM boot list will delay before starting the boot. The purpose for the delay is to allow you the option of stopping the boot by use of the **BREAK** key. The time value is from 0-255 seconds. (Default = 5 seconds)

Auto Boot Enable [Y/N] = N?

- Y The Autoboot function is enabled.
- **N** The Autoboot function is disabled. (Default)

Auto Boot at power-up only [Y/N] = N?

- Y Autoboot is attempted at power-up reset only.
- **N** Autoboot is attempted at any reset. (Default)

Auto Boot Scan Enable [Y/N] = Y?

- If Autoboot is enabled, the Autoboot process attempts to boot from devices specified in the scan list (e.g., FDISK/CDROM/TAPE/HDISK). (Default)
- **N** If Autoboot is enabled, the Autoboot process uses the Controller LUN and Device LUN to boot.

Auto Boot Scan Device Type List = FDISK/CDROM/TAPE/HDISK?

This is the listing of boot devices displayed if the Autoboot Scan option is enabled. If you modify the list, follow the format shown above (uppercase letters, use a forward slash as separator).

```
Auto Boot Controller LUN = 00?
```

Refer to the *PPCBug Firmware Package User's Manual* for a listing of disk/tape controller modules currently supported by PPCBug. (Default = \$00)

Auto Boot Device LUN = 00?

Refer to the *PPCBug Firmware Package User's Manual* for a listing of disk/tape devices currently supported by PPCBug. (Default = \$00)

```
Auto Boot Partition Number = 00?
```

Which disk "partition" is to be booted, as specified in the PowerPC Reference Platform (PRP) specification. If set to zero, the firmware will search the partitions in order (1, 2, 3, 4) until it finds the first "bootable" partition. That is then the partition that will be booted. Other acceptable values are 1, 2, 3, or 4. In these four cases, the partition specified will be booted without searching.

```
Auto Boot Abort Delay = 7?
```

The time in seconds that the Autoboot sequence will delay before starting the boot. The purpose for the delay is to allow you the option of stopping the boot by use of the **BREAK** key. The time value is from 0-255 seconds. (Default = 7 seconds)

```
Auto Boot Default String [NULL for an empty string] = ?
```

You may specify a string (filename) which is passed on to the code being booted. The maximum length of this string is 16 characters. (Default = null string)

```
ROM Boot Enable [Y/N] = N?
```

- Y The ROMboot function is enabled.
- **N** The ROMboot function is disabled. (Default)

ROM Boot at power-up only [Y/N] = Y?

- Y ROMboot is attempted at power-up only. (Default)
- **N** ROMboot is attempted at any reset.

ROM Boot Enable search of VMEbus [Y/N] = N?

- Y VMEbus address space, in addition to the usual areas of memory, will be searched for a ROMboot module.
- N VMEbus address space will not be accessed by ROMboot. (Default)

```
ROM Boot Abort Delay = 5?
```

The time in seconds that the ROMboot sequence will delay before starting the boot. The purpose for the delay is to allow you the option of stopping the boot by use of the **BREAK** key. The time value is from 0-255 seconds. (Default = 5 seconds)

```
ROM Boot Direct Starting Address = FFF00000?
```

The first location tested when PPCBug searches for a ROMboot module. (Default = \$FFF00000)

```
ROM Boot Direct Ending Address = FFFFFFC?
```

The last location tested when PPCBug searches for a ROMboot module. (Default = \$FFFFFFC)

Network Auto Boot Enable [Y/N] = N?

- Y The Network Auto Boot (NETboot) function is enabled.
- **N** The NETboot function is disabled. (Default)

Network Auto Boot at power-up only [Y/N] = N?

- Y NETboot is attempted at power-up reset only.
- **N** NETboot is attempted at any reset. (Default)

Network Auto Boot Controller LUN = 00?

Refer to the *PPCBug Firmware Package User's Manual* for a listing of network controller modules currently supported by PPCBug. (Default = \$00)

Network Auto Boot Device LUN = 00?

Refer to the *PPCBug Firmware Package User's Manual* for a listing of network controller modules currently supported by PPCBug. (Default = \$00)

```
Network Auto Boot Abort Delay = 5?
```

The time in seconds that the NETboot sequence will delay before starting the boot. The purpose for the delay is to allow you the option of stopping the boot by use of the **BREAK** key. The time value is from 0-255 seconds. (Default = 5 seconds)

```
Network Auto Boot Configuration Parameters Offset (NVRAM) = 00001000?
```

The address where the network interface configuration parameters are to be saved/retained in NVRAM; these parameters are the necessary parameters to perform an unattended network boot. A typical offset might be \$1000, but this value is application-specific. (Default = \$00001000)

If you use the **NIOT** debugger command, these parameters need to be saved somewhere in the offset range \$00001000 through \$000016F7. The **NIOT** parameters do not exceed 128 bytes in size. The setting of this ENV pointer determines their location. If you have used the same space for your own program information or commands, they will be overwritten and lost.

You can relocate the network interface configuration parameters in this space by using the **ENV** command to change the Network Auto Boot Configuration Parameters Offset from its default of \$00001000 to the value you need to be clear of your data within NVRAM.

Memory Size Enable [Y/N] = Y?

- Y Memory will be sized for Self Test diagnostics. (Default)
- N Memory will not be sized for Self Test diagnostics.

```
Memory Size Starting Address = 00000000?
```

The default Starting Address is \$0000000.

Memory Size Ending Address = 02000000?

The default Ending Address is the calculated size of local memory. If the memory start is changed from \$00000000, this value will also need to be adjusted.

```
DRAM Speed in NANO Seconds = 60?
```

The default setting for this parameter will vary depending on the speed of the DRAM memory parts installed on the board. The default is set to the slowest speed found on the available banks of DRAM memory.

ROM First Access Length (0 - 31) = 10?

This is the value programmed into the ROMFAL field (Memory Control Configuration Register 8: bits 23-27) to indicate the number of clock cycles used in accessing the ROM. The lowest allowable ROMFAL setting is \$00; the highest allowable is \$1F. The value to enter depends on processor speed, refer to Chapter 1, *Preparation and Installation* or Appendix A, *Specifications* for appropriate values. The default value varies according to the system's bus clock speed.

Note ROM First Access Length is not applicable to the MVME2300. The configured value is ignored by PPCBug.

```
ROM Next Access Length (0 - 15) = 0?
```

The value programmed into the ROMNAL field (Memory Control Configuration Register 8: bits 28-31) to represent wait states in access time for nibble (or burst) mode ROM accesses. The lowest allowable ROMNAL setting is \$0; the highest allowable is \$F. The value to enter depends on processor speed; refer to Chapter 1, *Preparation and Installation* or Appendix A, *Specifications* for appropriate values. The default value varies according to the system's bus clock speed.

Note ROM Next Access Length is not applicable to the MVME2300. The configured value is ignored by PPCBug.

DRAM Parity Enable [On-Detection/Always/Never - O/A/N] = 0?

- DRAM parity is enabled upon detection. (Default)
- **A** DRAM parity is always enabled.
- **N** DRAM parity is never enabled.
- **Note** This parameter (above) also applies to enabling ECC for DRAM.

```
L2 Cache Parity Enable [On-Detection/Always/Never - O/A/N] = 0?
```

- L2 Cache parity is enabled upon detection. (Default)
- **A** L2 Cache parity is always enabled.
- **N** L2 Cache parity is never enabled.

PCI Interrupts Route Control Registers (PIRQ0/1/2/3) = 0A0B0E0F?

Initializes the PIRQx (PCI Interrupts) route control registers in the IBC (PCI/ISA bus bridge controller). The **ENV** parameter is a 32-bit value that is divided by 4 to yield the values for route control registers PIRQ0/1/2/3. The default is determined by system type. For details on PCI/ISA interrupt assignments and for suggested values to enter for this parameter, refer to the 8259 Interrupts section in the MVME2300 Series VME Processor Module Programmer's Reference Guide.

Note LED/Serial Startup Diagnostic Codes: these codes can be displayed at key points in the initialization of the hardware devices. Should the debugger fail to come up to a prompt, the last code displayed will indicate how far the initialization sequence had progressed before stalling. The codes are enabled by an **ENV** parameter:

Serial Startup Code Master Enable [Y/N]=N?

A line feed can be inserted after each code is displayed to prevent it from being overwritten by the next code. This is also enabled by an **ENV** parameter:

Serial Startup Code LF Enable [Y/N]=N?

The list of LED/serial codes is included in the section on *MPU*, *Hardware, and Firmware Initialization* in Chapter 1 of the *PPCBug Firmware Package User's Manual*.

Configuring the VMEbus Interface

ENV asks the following series of questions to set up the VMEbus interface for the MVME2300 modules. To perform this configuration, you should have a working knowledge of the Universe ASIC as described in your *MVME2300 Series VME Processor Module Programmer's Reference Guide*.

VME3PCI Master Master Enable [Y/N] = Y?

- Y Set up and enable the VMEbus Interface. (Default)
- **N** Do not set up or enable the VMEbus Interface.

PCI Slave Image 0 Control = 00000000?

The configured value is written into the LSI0_CTL register of the Universe chip.

```
PCI Slave Image 0 Base Address Register = 00000000?
```

The configured value is written into the LSI0_BS register of the Universe chip.

PCI Slave Image 0 Bound Address Register = 00000000?

The configured value is written into the LSI0_BD register of the Universe chip.

PCI Slave Image 0 Translation Offset = 00000000?

The configured value is written into the LSI0_TO register of the Universe chip.

```
PCI Slave Image 1 Control = C0820000?
```

The configured value is written into the LSI1_CTL register of the Universe chip.

```
PCI Slave Image 1 Base Address Register = 01000000?
```

The configured value is written into the LSI1_BS register of the Universe chip.

PCI Slave Image 1 Bound Address Register = 20000000?

The configured value is written into the LSI1_BD register of the Universe chip.

```
PCI Slave Image 1 Translation Offset = 00000000?
```

The configured value is written into the LSI1_TO register of the Universe chip.

The configured value is written into the LSI2_CTL register of the Universe chip.

PCI Slave Image 2 Base Address Register = 20000000?

The configured value is written into the LSI2_BS register of the Universe chip.

PCI Slave Image 2 Bound Address Register = 22000000?

The configured value is written into the LSI2_BD register of the Universe chip.

PCI Slave Image 2 Control = C0410000?

PCI Slave Image 2 Translation Offset = D0000000?

The configured value is written into the LSI2_TO register of the Universe chip.

PCI Slave Image 3 Control = C0400000?

The configured value is written into the LSI3_CTL register of the Universe chip.

PCI Slave Image 3 Base Address Register = 2FFF0000?

The configured value is written into the LSI3_BS register of the Universe chip.

PCI Slave Image 3 Bound Address Register = 30000000?

The configured value is written into the LSI3_BD register of the Universe chip.

PCI Slave Image 3 Translation Offset = D0000000?

The configured value is written into the LSI3_TO register of the Universe chip.

VMEbus Slave Image 0 Control = E0F20000?

The configured value is written into the VSI0_CTL register of the Universe chip.

VMEbus Slave Image 0 Base Address Register = 00000000?

The configured value is written into the VSI0_BS register of the Universe chip.

VMEbus Slave Image 0 Bound Address Register = (Local DRAM Size)?

The configured value is written into the VSI0_BD register of the Universe chip. The value is the same as the Local Memory Found number already displayed.

VMEbus Slave Image 0 Translation Offset = 80000000?

The configured value is written into the VSI0_TO register of the Universe chip.

VMEbus Slave Image 1 Control = 00000000?

The configured value is written into the VSI1_CTL register of the Universe chip.

VMEbus Slave Image 1 Base Address Register = 00000000?

The configured value is written into the VSI1_BS register of the Universe chip.

VMEbus Slave Image 1 Bound Address Register = 00000000?

The configured value is written into the VSI1_BD register of the Universe chip.

VMEbus Slave Image 1 Translation Offset = 00000000?

The configured value is written into the VSI1_TO register of the Universe chip.

VMEbus Slave Image 2 Control = 00000000?

The configured value is written into the VSI2_CTL register of the Universe chip.

VMEbus Slave Image 2 Base Address Register = 00000000?

The configured value is written into the VSI2_BS register of the Universe chip.

VMEbus Slave Image 2 Bound Address Register = 00000000?

The configured value is written into the VSI2_BD register of the Universe chip.

VMEbus Slave Image 2 Translation Offset = 00000000?

The configured value is written into the VSI2_TO register of the Universe chip.

VMEbus Slave Image 3 Control = 00000000?

The configured value is written into the VSI3_CTL register of the Universe chip.

VMEbus Slave Image 3 Base Address Register = 00000000?

The configured value is written into the VSI3_BS register of the Universe chip.

VMEbus Slave Image 3 Bound Address Register = 00000000?

The configured value is written into the VSI3_BD register of the Universe chip.

VMEbus Slave Image 3 Translation Offset = 00000000?

The configured value is written into the VSI3_TO register of the Universe chip.

PCI Miscellaneous Register = 10000000?

The configured value is written into the LMISC register of the Universe chip.

Special PCI Slave Image Register = 00000000?

The configured value is written into the SLSI register of the Universe chip.

```
Master Control Register = 80C00000?
```

The configured value is written into the MAST_CTL register of the Universe chip.

Miscellaneous Control Register = 52060000?

The configured value is written into the MISC_CTL register of the Universe chip.

User AM Codes = 00000000?

The configured value is written into the USER_AM register of the Universe chip.

Specifications

Specifications

The following table lists the general specifications for the MVME2300 VME processor module. The subsequent sections detail cooling requirements and EMC regulatory compliance.

A complete functional description of the MVME2300 boards appears in Chapter 3, *Functional Description*. Specifications for the optional PMCs can be found in the documentation for those modules.

Characteristics		Specifications	
MPU	MPC603, 200 MHz MPC604R, 333 MHz	16KB/16KB I/D on-chip cache 32KB/32KB I/D on-chip cache	
Memory	DRAM	16MB, 32MB, 64MB, or 128MB ECC-protected	
	Flash	1MB via two 32-pin PLCC sockets	
		4MB via surface mount	
TOD clock device	M48T59	8KB NVRAM	
Timers	One watchdog timer; time-out generates reset		
	Four real-time 16-bit p	rogrammable timers	
Power requirements, with no PMCs installed	+12Vdc, 0mA -12Vdc, 0mA	+5Vdc (±5%), 4A typical, 4.75A maximum with MP603	
(See Note)	(typical)	+5Vdc (±5%), 4.5A typical, 5.5A maximum with MP604R	
Operating temperature	0°C to 55°C entry air v <i>Requirements</i>)	vith forced-air cooling (refer to <i>Cooling</i>	
Storage temperature	-40° C to $+85^{\circ}$ C		
Relative humidity	10% to 80%		
Vibration (operating)	2 Gs RMS, 20 Hz-2000) Hz random	
Altitude (operating)	5000 meters (16,405 fe	eet)	

Table A-1. Specifications

		Specifications		
Physical dimensions	Height	Double-high VME board, 9.2 in. (233 mm)		
(base board only)	Front panel width	0.8 in. (19.8 mm)		
	Front panel height	10.3 in. (261.7 mm)		
	Depth	6.3 in. (160 mm)		
PCI Mezzanine Card	Address/Data	A32/D32/D64, PMC PN1-4 connectors		
(PMC) slots	Bus Clock	33 MHz		
	Signaling	5V		
	Power	7.5 watts maximum per slot (see Note)		
	Module types	Basic, single-wide (74.0 mm x 149.0 mm)		
		Basic, double-wide, (149.0 mm x 149.0 mm)		
	PMC I/O	Front panel and/or VMEbus P2 I/O		
PCI expansion	Address/Data	A32/D32/D46, 114-pin connector		
connector	PCI bus clock	33 MHz		
	Signaling	5V		
Peripheral Computer	PCI bridge			
Interface (PCI)	PCIbus, 32-/64-bit, 33MHz			
VMEbus	DTB master	A16-A32; D08-D64, BLT		
ANSI/VITA 1-1994 VME64	DTB slave	A24-A32; D08-D64, BLT, UAT		
(previously IEEE STD	Arbiter	Round Robin or Priority		
(previously iEEE 51D 1014)	Interrupt handler	IRQ 1-7		
	Interrupt controller	Any one of seven		
	System controller	Via jumper or auto detect		
	Location monitor	Two LMA32		
Ethernet interface	DEC 21140 controller with PCI local bus DMA			
	Front panel I/O through RJ45 connector			
Asynchronous serial	PC16550			
debug port	Front panel I/O through RJ45 connector			
Front panel switches	Reset and Abort swite	ches		
and status indicators	Four LEDs: BFL, CPU, PMC (one for PMC slot 2, one for slot 1)			

Table A-1. Specifications (Continued)

Note The power requirement listed for the MVME2300 does not include the power requirements for the PMC slots. The PMC specification allows for 7.5 watts per PMC slot. The 15 watts total can be drawn from any combination of the four voltage sources provided by the MVME2300: +3.3V, +5V, +12V, and -12V.

Cooling Requirements

The MVME2300 VME processor module is specified, designed, and tested to operate reliably with an incoming air temperature range from 0° to 55° C (32° to 131° F) with forced air cooling of the entire assembly (base board and modules) at a velocity typically achievable by using a 100 CFM axial fan.

Temperature qualification is performed in a standard Motorola VMEsystem chassis. Twenty-five-watt load boards are inserted in two card slots, one on each side, adjacent to the board under test, to simulate a high power density system configuration. An assembly of three axial fans, rated at 100 CFM per fan, is placed directly under the VME card cage. The incoming air temperature is measured between the fan assembly and the card cage, where the incoming airstream first encounters the module under test. Test software is executed as the module is subjected to ambient temperature variations. Case temperatures of critical, high power density integrated circuits are monitored to ensure component vendors' specifications are not exceeded.

While the exact amount of airflow required for cooling depends on the ambient air temperature and the type, number, and location of boards and other heat sources, adequate cooling can usually be achieved with 10 CFM and 490 LFM flowing over the module. Less airflow is required to cool the module in environments having lower maximum ambients.

Under more favorable thermal conditions, it may be possible to operate the module reliably at higher than 55° C with increased airflow. It is important to note that there are several factors, in addition to the rated CFM of the air mover, which determine the actual volume and speed of air flowing over a module.

EMC Regulatory Compliance

The MVME2300 was tested in an EMC-compliant chassis and meets the requirements for Class B equipment. Compliance was achieved under the following conditions:

- □ Shielded cables on all external I/O ports
- Cable shields connected to chassis ground via metal shell connectors bonded to a conductive module front panel
- □ Conductive chassis rails connected to chassis ground. This provides the path for connecting shields to chassis ground
- □ Front panel screws properly tightened
- □ All peripherals were EMC-compliant

For minimum RF emissions, it is essential that the conditions above be implemented. Failure to do so could compromise the FCC compliance of the equipment containing the module.

The MVME2300 is a board level product and meant to be used in standard VME applications. As such, it is the responsibility of the OEM to meet the regulatory guidelines as determined by its application.

All external I/O connectors are shielded to aid in meeting EMC emissions standards. MVME2300 boards are tested in an MCG chassis for EMC compliance.

Connector Pin Assignments

B

Introduction

This appendix summarizes the pin assignments for the following groups of interconnect signals for the MVME2300 Series VME Processor Module:

Connector		Location	Table
VMEbus connector		P1	Table B-1
VMEbus connector, P2	I/O	P2	Table B-2
Debug serial port, RJ45	;	DEBUG (J2)	Table B-3
Ethernet port, RJ45		10BaseT/100BaseT (J3)	Table B-4
CPU debug connector		J1	Table B-5
PCI expansion connected	or	J18	Table B-6
PMC connectors,	32-bit PCI	J11, J12	Table B-7
Slot 1 64-bit PCI extension and P2 I/O		J13, J14	Table B-8
PMC connectors,	32-bit PCI	J21, J22	Table B-9
Slot 2	64-bit PCI extension and P2 I/O	J23, J24	Table B-10

Pin Assignments

The following tables furnish pin assignments only. For detailed descriptions of the various interconnect signals, consult the support information documentation for the MVME2300 (contact your local Motorola sales office).

VMEbus Connector - P1

Two 160-pin DIN type connectors, P1 and P2, supply the interface between the base board and the VMEbus. P1 provides power and VME signals for 24-bit addressing and 16-bit data. Its pin assignments are set by the IEEE P1014-1987 VMEbus Specification and the VME64 Extension Standard. They are listed in the following table.

	Row Z	Row A	Row B	Row C	Row D	1
1	Not Used	VD0	VBBSY*	VD8	Not Used	1
2	GND	VD1	VBCLR*	VD9	GND	2
3	Not Used	VD2	VACFAIL*	VD10	Not Used	3
4	GND	VD3	VBGIN0*	VD11	Not Used	4
5	Not Used	VD4	VBGOUT0*	VD12	Not Used	5
6	GND	VD5	VBGIN1*	VD13	Not Used	6
7	Not Used	VD6	VBGOUT1*	VD14	Not Used	7
8	GND	VD7	VBGIN2*	VD15	Not Used	8
9	Not Used	GND	VBGOUT2*	GND	VMEGAP*	9
10	GND	VSYSCLK	VBGIN3*	VSYSFAIL*	VMEGA0*	10
11	Not Used	GND	VBGOUT3*	VBERR*	VMEGA1*	11
12	GND	VDS1*	VBR0*	VSYSRESET*	Not Used	12
13	Not Used	VDS0*	VBR1*	VLWORD	VMEGA2*	13
14	GND	VWRITE*	VBR2*	VAM5	Not Used	14
15	Not Used	GND	VBR3*	VA23	VMEGA3*	15
16	GND	VDTACK*	VAM0	VA22	Not Used	16
17	Not Used	GND	VAM1	VA21	VMEGA4*	17
18	GND	VAS*	VAM2	VA20	Not Used	18
19	Not Used	GND	VAM3	VA19	Not Used	19
20	GND	VIACK*	GND	VA18	Not Used	20
21	Not Used	VIACKIN*	VSERCLK	VA17	Not Used	21
22	GND	VIACKOUT*	VSERDAT	VA16	Not Used	22
23	Not Used	VAM4	GND	VA15	Not Used	23
24	GND	VA7	VIRQ7*	VA14	Not Used	24

 Table B-1. P1 VMEbus Connector Pin Assignments

25	Not Used	VA6	VIRQ6*	VA13	Not Used	25
26	GND	VA5	VIRQ5*	VA12	Not Used	26
27	Not Used	VA4	VIRQ4*	VA11	Not Used	27
28	GND	VA3	VIRQ3*	VA10	Not Used	28
29	Not Used	VA2	VIRQ2*	VA9	Not Used	29
30	GND	VA1	VIRQ1*	VA8	Not Used	30
31	Not Used	-12V	+5VSTDBY	+12V	GND	31
32	GND	+5V	+5V	+5V	Not Used	32

Table B-1. P1 VMEbus Connector Pin Assignments (Continued)

VMEbus Connector - P2

Row B of the P2 connector provides power to the MVME2300, the upper eight VMEbus lines, and additional 16 VMEbus data lines as specified by the VMEbus specification Rows A, C, Z, and D of the P2 connector provide power and interface signals to a transition module, when one is used. The pin assignments are as follows:

	ROW Z	ROW A	ROW B	ROW C	ROW D	
1	PMC2_2 (J24-2)	PMC1_2 (J14-2)	+5V	PMC1_1 (J14-1)	PMC2_1 (J24-1)	1
2	GND	PMC1_4 (J14-4)	GND	PMC1_3 (J14-3)	PMC2_3 (J24-3)	2
3	PMC2_5 (J24-5)	PMC1_6 (J14-6)	RETRY#	PMC1_5 (J14-5)	PMC2_4 (J24-4)	3
4	GND	PMC1_8 (J14-8)	VA24	PMC1_7 (J14-7)	PMC2_6 (J24-6)	4
5	PMC2_8 (J24-8)	PMC1_10 (J14-10)	VA25	PMC1_9 (J14-9)	PMC2_7 (J24-6)	5
6	GND	PMC1_12 (J14-12)	VA26	PMC1_11 (J14-11)	PMC2_9 (J24-9)	6
7	PMC2_11 (J24-11)	PMC1_14 (J14-14)	VA27	PMC1_13 (J14-13)	PMC2_10 (J24-10)	7
8	GND	PMC1_16 (J14-16)	VA28	PMC1_15 (J14-15)	PMC2_12 (J24-12)	8
9	PMC2_14 (J24-14)	PMC1_18 (J14-18)	VA29	PMC1_17 (J14-17)	PMC2_13 (J24-13)	9
10	GND	PMC1_20 (J14-20)	VA30	PMC1_19 (J14-19)	PMC2_15 (J24-19)	10
11	PMC2_17 (J24-17)	PMC1_22 (J14-22)	VA31	PMC1_21 (J14-21)	PMC2_16 (J24-16)	11
12	GND	PMC1_24 (J14-24)	GND	PMC1_23 (J14-23)	PMC2_18 (J24-18)	12
13	PMC2_20 (J24-20)	PMC1_26 (J14-26)	+5V	PMC1_25 (J14-25)	PMC2_19 (J24-19)	13
14	GND	PMC1_28 (J14-28)	VD16	PMC1_27 (J14-27)	PMC2_21 (J24-21)	14

Table B-2. P2 Connector Pin Assignment

В

15	PMC2_23 (J24-23)	PMC1_30 (J14-30)	VD17	PMC1_29 (J14-29)	PMC2_22 (J24-22)	15
16	GND	PMC1_32 (J14-32)	VD18	PMC1_31 (J14-31)	PMC2_24 (J24-24)	16
17	PMC2_26 (J24-26)	PMC1_34 (J14-34)	VD19	PMC1_33 (J14-33)	PMC2_25 (J24-25)	17
18	GND	PMC1_36 (J14-36)	VD20	PMC1_35 (J14-35)	PMC2_27 (J24-27)	18
19	PMC2_29 (J24-29)	PMC1_38 (J14-38)	VD21	PMC1_37 (J14-37)	PMC2_28 (J24-28)	19
20	GND	PMC1_40 (J14-40)	VD22	PMC1_39 (J14-39)	PMC2_30 (J24-30)	20
21	PMC2_32 (J24-32)	PMC1_42 (J14-42)	VD23	PMC1_41 (J14-41)	PMC2_31 (J24-31)	21
22	GND	PMC1_44 (J14-44)	GND	PMC1_43 (J14-43)	PMC2_33 (J24-33)	22
23	PMC2_35 (J24-35)	PMC1_46 (J14-46)	VD24	PMC1_45 (J14-45)	PMC2_34 (J24-34)	23
24	GND	PMC1_48 (J14-48)	VD25	PMC1_47 (J14-47)	PMC2_36 (J24-36)	24
25	PMC2_38 (J24-38)	PMC1_50 (J14-50)	VD26	PMC1_49 (J14-49)	PMC2_37 (J24-37)	25
26	GND	PMC1_52 (J14-52)	VD27	PMC1_51 (J14-51)	PMC2_39 (J24-39)	26
27	PMC2_41 (J24-41)	PMC1_54 (J14-54)	VD28	PMC1_53 (J14-53)	PMC2_40 (J24-40)	27
28	GND	PMC1_56 (J14-56)	VD29	PMC1_55 (J14-55)	PMC2_42 (J24-42)	28
29	PMC2_44 (J24-44)	PMC1_58 (J14-58)	VD30	PMC1_57 (J14-57)	PMC2_43 (J24-43)	29
30	GND	PMC1_60 (J14-60)	VD31	PMC1_59 (J14-59)	PMC2_45 (J24-45)	30
31	PMC2_46 (J24-46)	PMC1_62 (J14-62)	GND	PMC1_61 (J14-61)	GND	31
32	GND	PMC1_64 (J14-64)	+5V	PMC1_63 (J14-63)	VPC	32

Table B-2. P2 Connector Pin Assignment (Continued)

Serial Port Connector - DEBUG (J2)

A standard RJ45 connector located on the front plate of the MVME2300 provides the interface to the asynchronous serial debug port. The pin assignments for this connector are as follows:

Table B-3.	DEBUG (.	J2)	Connector Pin Assignments
------------	----------	-----	---------------------------

1	DCD
2	RTS
3	GND
4	TXD
5	RXD
6	GND
7	CTS
8	DTR

Ethernet Connector - 10BaseT/100BaseT (J3)

The 10BaseT/100BaseTx connector is an RJ45 connector located on the front plate of the MVME2300. The pin assignments for this connector are as follows:

Table B-4. 10BaseT/100BaseT (J3) Connector Pin Assignments

1	TD+
2	TD-
3	RD+
4	No Connect
5	No Connect
6	RD-
7	No Connect
8	No Connect

CPU Debug Connector - J1

One 190-pin Mictor connector with center row of power and ground pins is used to provide access to the Processor Bus and some miscellaneous signals. The pin assignments for this connector are as follows:

1	PA0	GND	PA1	2
3	PA2		PA3	4
5	PA4		PA5	6
7	PA6		PA7	8
9	PA8		PA9	10
11	PA10		PA11	12
13	PA12		PA13	14
15	PA14		PA15	16
17	PA16		PA17	18
19	PA18		PA19	20
21	PA20		PA21	22
23	PA22		PA23	24
25	PA24		PA25	26
27	PA26		PA27	28
29	PA28		PA29	30
31	PA30		PA31	32
33	PAPAR0		PAPAR1	34
35	PAPAR2		PAPAR3	36
37	APE#		RSRV#	38

 Table B-5.
 Debug Connector Pin Assignments

В

39	PD0	+5V	PD1	40
41	PD2		PD3	42
43	PD4		PD5	44
45	PD6		PD7	46
47	PD8		PD9	48
49	PD10		PD11	50
51	PD12		PD13	52
53	PD14		PD15	54
55	PD16		PD17	56
57	PD18		PD19	58
59	PA20		PD21	60
61	PD22		PD23	62
63	PD24		PD25	64
65	PD26		PD27	66
67	PD28		PD29	68
69	PD30		PD31	70
71	PD32		PD33	72
73	PD34		PD35	74
75	PD36		PD37	76

Table B-5.	Debug Connector	· Pin Assignments	(Continued)
			(

77	PD38	GND	PD39	78
79	PD40		PD41	80
81	PD42		PD43	82
83	PD44		PD45	84
85	PD46		PD47	86
87	PD48		PD49	88
89	PA50		PD51	90
91	PD52		PD53	92
93	PD54		PD55	94
95	PD56		PD57	96
97	PD58		PD59	98
99	PD60		PD61	100
101	PD62		PD63	102
103	PDPAR0		PDPAR1	104
105	PDPAR2		PDPAR3	106
107	PDPAR4		PDPAR5	108
109	PDPAR6		PDPAR7	110
111				112
113	DPE#		DBDIS#	114

115	TT0	+3.3V	TSIZ0	116
117	TT1		TSIZ1	118
119	TT2		TSIZ2	120
121	TT3		TC0	122
123	TT4		TC1	124
125	CI#		TC2	126
127	WT#		CSE0	128
129	GLOBAL#		CSE1	130
131	SHARED#		DBWO#	132
133	AACK#		TS#	134
135	ARTY#		XATS#	136
137	DRTY#		TBST#	138
139	TA#			140
141	TEA#			142
143			DBG#	144
145			DBB#	146
147			ABB#	148
149	TCLK_OUT		CPUGNT0#	150
151			CPUREQ0#	152

Table B-5. Debug Connector Pin Assignments (Continued)

В

		-		
153	CPUREQ1#	GND	INT0#	154
155	CPUGNT1#		MCPI#	156
157	INT1#		SMI#	158
159	MCPI1#		CKSTPI#	160
161	L2BR#		CKSTPO#	162
163	L2BG#		HALTED	164
165	L2CLAIM#		TLBISYNC#	166
167			TBEN	168
169			SUSPEND#	170
171			DRVMOD0	172
173			DRVMOD1	174
175			NAPRUN	176
177	SRESET1#		QREQ#	178
179	SRESET0#		QACK#	180
181	HRESET#		TDO	182
183	GND		TDI	184
185	CPUCLK		ТСК	186
187	CPUCLK		TMS	188
189	CPUCLK		TRST#	190

Table B-5. Debug Connector Pin Assignments (Continued)

PCI Expansion Connector - J18

One 114-pin Mictor connector with center row of power and ground pins is used to provide PCI/PMC expansion capability. The pin assignments for this connector are as follows:

1	+3.3V	GND	+3.3V	2
3	PCICLK		PMCINTA#	4
5	GND		PMCINTB#	6
7	PURST#		PMCINTC#	8
9	HRESET#		PMCINTD#	10
11	TDO		TDI	12
13	TMS		ТСК	14
15	TRST#		PCIXP#	16
17	PCIXGNT#		PCIXREQ#	18
19	+12V		-12V	20
21	PERR#		SERR#	22
23	LOCK#		SDONE	24
25	DEVSEL#		SBO#	26
27	GND		GND	28
29	TRDY#		IRDY#	30
31	STOP#		FRAME#	32
33	GND		GND	34
35	ACK64#		Reserved	36
37	REQ64#		Reserved	38

Table B-6. J18 - PCI Expansion Connector Pin Assignments

В

39	PAR	+5V	PCIRST#	40
41	C/BE1#		C/BE0#	42
43	C/BE3#		C/BE2#	44
45	AD1		AD0	46
47	AD3		AD2	48
49	AD5		AD4	50
51	AD7		AD6	52
53	AD9		AD8	54
55	AD11		AD10	56
57	AD13		AD12	58
59	AD15		AD14	60
61	AD17		AD16	62
63	AD19		AD18	64
65	AD21		AD20	66
67	AD23		AD22	68
69	AD25		AD24	70
71	AD27		AD26	72
73	AD29		AD28	74
75	AD31		AD30	76

Table B-6. J18 - PCI Expansion Connector Pin Assignments (Continued)

В

77	PAR64	GND	Reserved	78
79	C/BE5#		C/BE4#	80
81	C/BE7#		C/BE6#	82
83	AD33		AD32	84
85	AD35		AD34	86
87	AD37		AD36	88
89	AD39		AD38	90
91	AD41		AD40	92
93	AD43		AD42	94
95	AD45		AD44	96
97	AD47		AD46	98
99	AD49		AD48	100
101	AD51		AD50	102
103	AD53		AD52	104
105	AD55		AD54	106
107	AD57		AD56	108
109	AD59		AD58	110
111	AD61		AD60	112
113	AD63		AD62	114

Table B-6. J18 - PCI Expansion Connector Pin Assignments (Continued)

PCI Mezzanine Card Connectors - J11 through J14

Four 64-pin SMT connectors, J11 through J14, supply 32/64-bit PCI interfaces and P2 I/O between the MVME2300 board and an optional addon PCI Mezzanine Card (PMC) in PMC Slot 1. The pin assignments for PMC Slot 1 are listed in the following two tables.

Table B-7.	J11 - J12 PMC1	Connector Pin A	ssignments
	•••••••••••••••••••••••••••••••••••••••	••••••••••	

	J11			
1	ТСК	-12V	2	
3	GND	INTA#	4	
5	INTB#	INTC#	6	
7	PMCPRSNT1#	+5V	8	
9	INTD#	Not Used	10	
11	GND	Not Used	12	
13	CLK	GND	14	
15	GND	PMCGNT1#	16	
17	PMCREQ1#	+5V	18	
19	+5V (Vio)	AD31	20	
21	AD28	AD27	22	
23	AD25	GND	24	
25	GND	C/BE3#	26	
27	AD22	AD21	28	
29	AD19	+5V	30	
31	+5V (Vio)	AD17	32	
33	FRAME#	GND	34	
35	GND	IRDY#	36	
37	DEVSEL#	+5V	38	
39	GND	LOCK#	40	
41	SDONE#	SBO#	42	
43	PAR	GND	44	
45	+5V (Vio)	AD15	46	
47	AD12	AD11	48	

	J12			
1	+12V	TRST#	2	
3	TMS	TDO	4	
5	TDI	GND	6	
7	GND	Not Used	8	
9	Not Used	Not Used	10	
11	Pull-up	+3.3V	12	
13	RST#	Pull-down	14	
15	+3.3V	Pull-down	16	
17	Not Used	GND	18	
19	AD30	AD29	20	
21	GND	AD26	22	
23	AD24	+3.3V	24	
25	IDSEL1	AD23	26	
27	+3.3V	AD20	28	
29	AD18	GND	30	
31	AD16	C/BE2#	32	
33	GND	Not Used	34	
35	TRDY#	+3.3V	36	
37	GND	STOP#	38	
39	PERR#	GND	40	
41	+3.3V	SERR#	42	
43	C/BE1#	GND	44	
45	AD14	AD13	46	
47	GND	AD10	48	

Table B-7. J11 - J12 PMC1 Connector Pin Assignments (Continued)

49	AD09	+5V	50
51	GND	C/BE0#	52
53	AD06	AD05	54
55	AD04	GND	56
57	+5V (Vio)	AD03	58
59	AD02	AD01	60
61	AD00	+5V	62
63	GND	REQ64#	64

49	AD08	+3.3V	50
51	AD07	Not Used	52
53	+3.3V	Not Used	54
55	Not Used	GND	56
57	Not Used	Not Used	58
59	GND	Not Used	60
61	ACK64#	+3.3V	62
63	GND	Not Used	64

Table B-8. J13 - J14 PMC1 Connector Pin Assignments

	J13		1		J14		
1	Reserved	GND	2	1	PMC1_1 (P2-C1)	PMC1_2 (P2-A1)	2
3	GND	C/BE7#	4	3	PMC1_3 (P2-C2)	PMC1_4 (P2-A2)	4
5	C/BE6#	C/BE5#	6	5	PMC1_5 (P2-C3)	PMC1_6 (P2-A3)	6
7	C/BE4#	GND	8	7	PMC1_7 (P2-C4)	PMC1_8 (P2-A4)	8
9	+5V (Vio)	PAR64	10	9	PMC1_9 (P2-C5)	PMC1_10 (P2-A5)	10
11	AD63	AD62	12	11	PMC1_11 (P2-C6)	PMC1_12 (P2-A6)	12
13	AD61	GND	14	13	PMC1_13 (P2-C7)	PMC1_14 (P2-A7)	14
15	GND	AD60	16	15	PMC1_15 (P2-C8)	PMC1_16 (P2-A8)	16
17	AD59	AD58	18	17	PMC1_17 (P2-C9)	PMC1_18 (P2-A9)	18
19	AD57	GND	20	19	PMC1_19 (P2-C10)	PMC1_20 (P2-A10)	20
21	+5V (Vio)	AD56	22	21	PMC1_21 (P2-C11)	PMC1_22 (P2-A11)	22
23	AD55	AD54	24	23	PMC1_23 (P2-C12)	PMC1_24 (P2-A12)	24
25	AD53	GND	26	25	PMC1_25 (P2-C13)	PMC1_26 (P2-A13)	26
27	GND	AD52	28	27	PMC1_27 (P2-C14)	PMC1_28 (P2-A14)	28
29	AD51	AD50	30	29	PMC1_29 (P2-C15)	PMC1_30 (P2-A15)	30
31	AD49	GND	32	31	PMC1_31 (P2-C16)	PMC1_32 (P2-A16)	32
33	GND	AD48	34	33	PMC1_33 (P2-C17)	PMC1_34 (P2-A17)	34
35	AD47	AD46	36	35	PMC1_35 (P2-C18)	PMC1_36 (P2-A18)	36
37	AD45	GND	38	37	PMC1_37 (P2-C19)	PMC1_38 (P2-A19)	38

Table B-8.	J13 - J14 PMC1	Connector Pir	n Assignments	(Continued)
------------	----------------	----------------------	---------------	-------------

39	+5V (Vio)	AD44	40	39	PMC1_39 (P2-C20)	PMC1_40 (P2-A20)	40
41	AD43	AD42	42	41	PMC1_41 (P2-C21)	PMC1_42 (P2-A21)	42
43	AD41	GND	44	43	PMC1_43 (P2-C22)	PMC1_44 (P2-A22)	44
45	GND	AD40	46	45	PMC1_45 (P2-C23)	PMC1_46 (P2-A23)	46
47	AD39	AD38	48	47	PMC1_47 (P2-C24)	PMC1_48 (P2-A24)	48
49	AD37	GND	50	49	PMC1_49 (P2-C25)	PMC1_50 (P2-A25)	50
51	GND	AD36	52	51	PMC1_51 (P2-C26)	PMC1_52 (P2-A26)	52
53	AD35	AD34	54	53	PMC1_53 (P2-C27)	PMC1_54 (P2-A27)	54
55	AD33	GND	56	55	PMC1_55 (P2-C28)	PMC1_56 (P2-A28)	56
57	+5V (Vio)	AD32	58	57	PMC1_57 (P2-C29)	PMC1_58 (P2-A29)	58
59	Reserved	Reserved	60	59	PMC1_59 (P2-C30)	PMC1_60 (P2-A30)	60
61	Reserved	GND	62	61	PMC1_61 (P2-C31)	PMC1_62 (P2-A31)	62
63	GND	Reserved	64	63	PMC1_63 (P2-C32)	PMC1_64 (P2-A32)	64

PCI Mezzanine Card Connectors - J21 through J24

Four 64-pin SMT connectors, J21 through J24, supply 32/64-bit PCI interfaces and P2 I/O between the MVME2300 board and an optional addon PCI Mezzanine Card (PMC) in PMC Slot 2. The pin assignments for PMC Slot 2 are listed in the following two tables.

	J21						
1	TCK	-12V	2				
3	GND	INTA#	4				
5	INTB#	INTC#	6				
7	PMCPRSNT2#	+5V	8				
9	INTD#	Not Used	10				
11	GND	Not Used	12				
13	CLK	GND	14				
15	GND	PMCGNT2#	16				

Table B-9. J	J21 and J22 F	PMC2 Connector	Pin Assignments
--------------	---------------	----------------	-----------------

	Jź		
1	+12V	TRST#	2
3	TMS	TDO	4
5	TDI	GND	6
7	GND	Not Used	8
9	Not Used	Not Used	10
11	Pull-up	+3.3V	12
13	RST#	Pull-down	14
15	+3.3V	Pull-down	16

Table B-9. J21 and J22 PMC2 Connector Pin Assignments (Continued)

17							
17	PMCREQ2#	+5V	18	17	Not Used	GND	18
19	+5V (Vio)	AD31	20	19	AD30	AD29	20
21	AD28	AD27	22	21	GND	AD26	22
23	AD25	GND	24	23	AD24	+3.3V	24
25	GND	C/BE3#	26	25	IDSEL2	AD23	26
27	AD22	AD21	28	27	+3.3V	AD20	28
29	AD19	+5V	30	29	AD18	GND	30
31	+5V (Vio)	AD17	32	31	AD16	C/BE2#	32
33	FRAME#	GND	34	33	GND	Not Used	34
35	GND	IRDY#	36	35	TRDY#	+3.3V	36
37	DEVSEL#	+5V	38	37	GND	STOP#	38
39	GND	LOCK#	40	39	PERR#	GND	40
41	SDONE#	SBO#	42	41	+3.3V	SERR#	42
43	PAR	GND	44	43	C/BE1#	GND	44
45	+5V	AD15	46	45	AD14	AD13	46
47	AD12	AD11	48	47	GND	AD10	48
49	AD09	+5V (Vio)	50	49	AD08	+3.3V	50
51	GND	C/BE0#	52	51	AD07	Not Used	52
53	AD06	AD05	54	53	+3.3V	Not Used	54
55	AD04	GND	56	55	Not Used	GND	56
57	+5V	AD03	58	57	Not Used	Not Used	58
59	AD02	AD01	60	59	GND	Not Used	60
61	AD00	+5V (Vio)	62	61	ACK64#	+3.3V	62
63	GND	REQ64#	64	63	GND	Not Used	64

	J23				J	24
1	Reserved	GND	2	1	PMC2_1 (P2-D1)	PMC2_2 (P2-Z1)
3	GND	C/BE7#	4	3	PMC2_3 (P2-D2)	PMC2_4 (P2-D3)
5	C/BE6#	C/BE5#	6	5	PMC2_5 (P2-Z3)	PMC2_6 (P2-D4)
7	C/BE4#	GND	8	7	PMC2_7 (P2-D5)	PMC2_8 (P2-Z5)
9	+5V (Vio)	PAR64	10	9	PMC2_9 (P2-D6)	PMC2_10 (P2-D7)
11	AD63	AD62	12	11	PMC2_11 (P2-Z7)	PMC2_12 (P2-D8)
13	AD61	GND	14	13	PMC2_13 (P2-D9)	PMC2_14 (P2-Z9)
15	GND	AD60	16	15	PMC2_15 (P2-D10	PMC2_16 (P2-D11)
17	AD59	AD58	18	17	PMC2_17 (P2-Z11)	PMC2_18 (P2-D12)
19	AD57	GND	20	19	PMC2_19 (P2-D13)	PMC2_20 (P2-Z13)
21	+5V (Vio)	AD56	22	21	PMC2_21 (P2-D14)	PMC2_22 (P2-D15)
23	AD55	AD54	24	23	PMC2_23 (P2-Z15)	PMC2_24 (P2-D16)
25	AD53	GND	26	25	PMC2_25 (P2-D17)	PMC2_26 (P2-Z17)
27	GND	AD52	28	27	PMC2_27 (P2-D18)	PMC2_28 (P2-D19)
29	AD51	AD50	30	29	PMC2_29 (P2-Z19)	PMC2_30 (P2-D20)
31	AD49	GND	32	31	PMC2_31 (P2-D21)	PMC2_32 (P2-Z21)
33	GND	AD48	34	33	PMC2_33 (P2-D22	PMC2_34 (P2-D23)
35	AD47	AD46	36	35	PMC2_35 (P2-Z23)	PMC2_36 (P2-D24)
37	AD45	GND	38	37	PMC2_37 (P2-D25)	PMC2_38 (P2-Z25
39	+5V (Vio)	AD44	40	39	PMC2_39 (P2-D26)	PMC2_40 (P2-D27)
41	AD43	AD42	42	41	PMC2_41 (P2-Z27)	PMC2_42 (P2-D28)
43	AD41	GND	44	43	PMC2_43 (P2-D29)	PMC2_44 (P2-Z29)
45	GND	AD40	46	45	PMC2_45 (P2-D30)	PMC2_46 (P2-Z31)
47	AD39	AD38	48	47	Not Used	Not Used
49	AD37	GND	50	49	Not Used	Not Used
51	GND	AD36	52	51	Not Used	Not Used
53	AD35	AD34	54	53	Not Used	Not Used
55	AD33	GND	56	55	Not Used	Not Used

Table B-10. J23 and J24 PMC2 Connector Pin Assignments (Continued)

57	+5V (Vio)	AD32	58
59	Reserved	Reserved	60
61	Reserved	GND	62
63	GND	Reserved	64

57	Not Used	Not Used	58
59	Not Used	Not Used	60
61	Not Used	Not Used	62
63	Not Used	Not Used	64

Troubleshooting

С

Solving Startup Problems

In the event of difficulty with your MVME2300 VME Processor Module, try the simple troubleshooting steps on the following pages before calling for help or sending the board back for repair. Some of the procedures will return the board to the factory debugger environment. Please note that the board was tested under these conditions before it left the factory. The selftests may not run in all user-customized environments.

Condition	Possible Problem	Possible Resolution:
I. Nothing works, no display on the terminal.	A. If the CPU LED is not lit, the board may not be getting correct power.	 Make sure the system is plugged in. Check that the board is securely installed in its backplane or chassis. Check that all necessary cables are connected to the based participation of the based participation.
		the board, per this manual.4. Check for compliance with Installation Considerations, per this manual.5. Review the Installation and Startup procedures, per this manual. They include a step-by-step powerup routine. Try it.
	B. If the LEDs are lit, the board may be in the wrong slot.	 The VME processor module should be in the first (leftmost) slot. Also check that the "system controller" function on the board is enabled, per this manual.
	C. The "system console" terminal may be configured incorrectly.	Configure the system console terminal per this manual.

Table C-1. Troubleshooting Problems

Condition	Possible Problem	Possible Resolution:
II. There is a display on the terminal, but input from the keyboard and/or mouse has no effect.	A. The keyboard or mouse may be connected incorrectly.	Recheck the keyboard and/or mouse connections and power.
	B. Board jumpers may be configured incorrectly.	Check the board jumpers per this manual.
	C. You may have invoked flow control by pressing a HOLD or PAUSE key, or by typing: < CTRL>-S	Press the HOLD or PAUSE key again. If this does not free up the keyboard, type in: CTRL >- Q
III. Debug prompt PPC1-Bug> does not appear at powerup, and the board does not autoboot.	A. Debugger Flash may be missingB. The board may need to be reset.	 Disconnect <i>all</i> power from your system. Check that the proper debugger devices are installed. Reconnect power. Restart the system by "double-button reset": press the RST and ABT switches at the same time; release RST first, wait seven seconds, then release ABT. If the debug prompt appears, go to step IV or step V, as indicated. If the debug prompt does not appear, go to step VI.

Condition	Possible Problem	Possible Resolution:
IV. Debug prompt PPC1-Bug> appears at powerup, but the board does not autoboot.	A. The initial debugger environment parameters may be set incorrectly.	1. Start the onboard calendar clock and timer. Type: set <i>mmddyyhhmm</i> <cr></cr> where the characters indicate the month, day, year, hour, and minute. The date and time will be displayed.
	B. There may be some fault in the board hardware.	 Caution Performing the next step (env;d) will change some parameters that may affect your system's operation. 2. At the command line prompt, type in: env;d <cr> This sets up the default parameters for the debugger environment.</cr> 3. When prompted to Update Non-Volatile RAM, type in: y <cr></cr> 4. When prompted to Reset Local System, type in: y <cr></cr> 5. After clock speed is displayed, immediately (within five seconds) press the Return key: <cr> or BREAK to exit to the System Menu. Then enter a 3 for "Go to System Debugger" and Return: 3 <cr> Now the prompt should be: PPC1-Diag></cr></cr>

Table C-1. Troubleshooting Problems (Continued)

С

Condition	Possible Problem	Possible Resolution:
		 6. You may need to use the cnfg command (see your board Debugger Manual) to change clock speed and/or Ethernet Address, and then later return to: env <cr> and step 3.</cr> 7. Run the selftests by typing in: st <cr> The tests take as much as 10 minutes, depending on RAM size. They are complete when the prompt returns. (The onboard selftest is a valuable tool in isolating defects.)</cr> 8. The system may indicate that it has passed all the selftests. Or, it may indicate a test that failed. If neither happens, enter: de <cr> Any errors should now be displayed. If there are any errors, go to step VI. If there are no errors, go to step V.</cr>
V. The debugger is in system mode and the board autoboots, or the board has passed selftests.	A. No apparent problems — troubleshooting is done.	No further troubleshooting steps are required.
VI. The board has failed one or more of the tests listed above, and cannot be corrected using the steps given.	A. There may be some fault in the board hardware or the on-board debugging and diagnostic firmware.	 Document the problem and return the board for service. Phone 1-800-222-5640.
	TROUBLESHOOTI	NG PROCEDURE COMPLETE.

Table C-1. Troubleshooting Problems (Continued)

Related Documentation

Motorola Computer Group Documents

The Motorola publications listed below are referenced in this manual. You can obtain paper or electronic copies of Motorola Computer Group publications by:

- Contacting your local Motorola sales office
- Visiting MCG's World Wide Web literature site, http://www.motorola.com/computer/literature

Document Title	Publication Number
MVME2300 Series VME Processor Module Installation and Use	V2300A/IH
MVME2300 Series VME Processor Module Programmer's Reference Guide	V2300A/PG
PPCBug Firmware Package User's Manual (Parts 1 and 2)	PPCBUGA1/UM
	PPCBUGA2/UM
PPCBug Diagnostics Manual	PPCDIAA/UM
PMCspan PMC Adapter Carrier Module Installation and Use	PMCSPANA/IH

To locate and view the most up-to-date product information in PDF or HTML format, visit http://www.motorola.com/computer/literature.

Manufacturers' Documents

For additional information, refer to the following table for manufacturers' data sheets and user's manuals. For your convenience, a source for the listed document is also provided.

It is important to note that in many cases, the information shown is preliminary and the revision levels of the documents are subject to change without notice.

Document Title and Source	Publication Number
PowerPC 603 TM RISC Microprocessor Technical Summary	MPC603E/D
PowerPC 604 TM RISC Microprocessor Technical Summary	MPC604E/D
Literature Distribution Center for Motorola	
Telephone: 1-800- 441-2447	
FAX: (602) 994-6430 or (303) 675-2150	
Web Site: http://e-www.motorola.com/webapp/DesignCenter/	
E-mail: ldcformotorola@hibbertco.com	
PowerPC 603 TM RISC Microprocessor User's Manual	MPC603EUM/D
PowerPC 604 TM RISC Microprocessor User's Manual	MPC604EUM/AD
Literature Distribution Center for Motorola	
Telephone: 1-800- 441-2447	
FAX: (602) 994-6430 or (303) 675-2150	
Web Site: http://e-www.motorola.com/webapp/DesignCenter/	
E-mail: ldcformotorola@hibbertco.com	
OR	
IBM Microelectronics PowerPC603/EM603e User Manual	G522-0297-00
PowerPC605/EM605e User Manual PowerPC604e User Manual	G522-0330-00
Web Site:	
http://www.chips.ibm.com/techlib/products/powerpc/manuals	
PowerPC TM Microprocessor Family: The Programming Environment for	MPCFPE/AD
32-Bit Microprocessors	
Literature Distribution Center for Motorola	
Telephone: 1-800- 441-2447	
FAX: (602) 994-6430 or (303) 675-2150	
Web Site: http://e-www.motorola.com/webapp/DesignCenter/	
E-mail: ldcformotorola@hibbertco.com	
OR	
IBM Microelectronics	
Programming Environment Manual	G522-0290-01
Web Site: http://www.chips.ibm.com/techlib/products/powerpc/manuals	
	DOLOSSODIU
PC16550 UART	PC16550DV
National Semiconductor Corporation	
Web Site: http://www.national.com/	

Document Title and Source	Publication Number
21140 Fast Etherworks PCI 10-Flash-100 Ethernet Adapter Owner's Manual Compaq Telephone: 1-800.at.compaq Web Site: http://www3.compaq.com/support	EK-DE500-OM
W83C553 Enhanced System I/O Controller with PCI Arbiter (PIB) Winbond Electronics Corporation Web Site: http://www.winbond.com.tw/product/	W83C553F
M48T59 CMOS 8K x 8 TIMEKEEPER TM SRAM Data Sheet STMicroelectronics Web Site: http://eu.st.com/stonline/index.shtml	M48T59
Universe User Manual Tundra Semiconductor Corporation Web Site: http://www.tundra.com/	Universe Part Number 9000000.MD303.01

Related Specifications

For additional information, refer to the following table for related specifications. For your convenience, a source for the listed document is also provided. It is important to note that in many cases, the information is preliminary and the revision levels of the documents are subject to change without notice.

Document Title and Source	Publication Number
VME64 Specification	ANSI/VITA 1-1994
VITA (VMEbus International Trade Association)	
7825 E. Gelding Drive, Suite 104	
Scottsdale, Arizona 85260-3415 Telephone: (602) 951-8866	
FAX: (602) 951-0720	
Web Site: http://www.vita.com/	
NOTE: An earlier version of this specification is available as:	ANSI/IEEE
Versatile Backplane Bus: VMEbus	Standard 1014-1987
Institute of Electrical and Electronics Engineers, Inc.	
Web Site: http://standards.ieee.org/catalog/	
OR	
Microprocessor system bus for 1 to 4 byte data	
Bureau Central de la Commission Electrotechnique Internationale	IEC 821 BUS
3, rue de Varembé	
Geneva, Switzerland	
IEEE - Common Mezzanine Card Specification (CMC)	P1386 Draft 2.0
Institute of Electrical and Electronics Engineers, Inc.	
Web Site: http://standards.ieee.org/catalog/	
IEEE - PCI Mezzanine Card Specification (PMC)	P1386.1 Draft 2.0
Institute of Electrical and Electronics Engineers, Inc.	
Web Site: http://standards.ieee.org/catalog/	
Bidirectional Parallel Port Interface Specification	IEEE Standard
Institute of Electrical and Electronics Engineers, Inc.	1284
Web Site: http://standards.ieee.org/catalog/	

D

Document Title and Source	Publication Number
Peripheral Component Interconnect (PCI) Local Bus Specification, Revision 2.0 PCI Special Interest Group Web Site: http://www.pcisig.com/	PCI Local Bus Specification
PowerPC Reference Platform (PRP) Specification, Third Edition, Version 1.0, Volumes I and II International Business Machines Corporation Web Site: http://www.ibm.com	MPR-PPC-RPU-02
PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture (CHRP), Version 1.0	
Literature Distribution Center for Motorola Telephone: 1-800- 441-2447 FAX: (602) 994-6430 or (303) 675-2150 Web Site: http://merchant.hibbertco.com/mtrlext/ E-mail: ldcformotorola@hibbertco.com	
OR	
Morgan Kaufmann Publishers, Inc. Telephone: (415) 392-2665 Telephone: 1-800-745-7323 Web Site: http://www.mkp.com/books_catalog/	
Interface Between Data Terminal Equipment and Data Circuit- Terminating Equipment Employing Serial Binary Data Interchange Electronic Industries Alliance Web Site: http://www.eia.org/ Web Site: http://global.ihs.com/index.cfm (for publications)	TIA/EIA-232 Standard

Abbreviations, Acronyms, and Terms to Know

This glossary defines some of the abbreviations, acronyms, and key terms used in this document.

10Base-5	An Ethernet implementation in which the physical medium is a doubly shielded, 50-ohm coaxial cable capable of carrying data at 10 Mbps for a length of 500 meters (also referred to as thicknet). Also known as thick Ethernet.
10Base-2	An Ethernet implementation in which the physical medium is a single-shielded, 50-ohm RG58A/U coaxial cable capable of carrying data at 10 Mbps for a length of 185 meters (also referred to as AUI or thinnet). Also known as thin Ethernet.
10Base-T	An Ethernet implementation in which the physical medium is an unshielded twisted pair (UTP) of wires capable of carrying data at 10 Mbps for a maximum distance of 185 meters. Also known as twisted-pair Ethernet.
100Base-TX	An Ethernet implementation in which the physical medium is an unshielded twisted pair (UTP) of wires capable of carrying data at 100 Mbps for a maximum distance of 100 meters. Also known as fast Ethernet.
ACIA	Asynchronous Communications Interface Adapter
AIX	Advanced Interactive eXecutive (IBM version of UNIX)
architecture	The main overall design in which each individual hardware component of the computer system is interrelated. The most common uses of this term are 8-bit, 16-bit, or 32-bit architectural design systems.
ASCII	American Standard Code for Information Interchange. This is a 7- bit code used to encode alphanumeric information. In the IBM- compatible world, this is expanded to 8-bits to encode a total of 256 alphanumeric and control characters.
ASIC	Application-Specific Integrated Circuit

AUI	Attachment Unit Interface
BBRAM	Battery Backed-up Random Access Memory
bi-endian	Having big-endian and little-endian byte ordering capability.
big-endian	A byte-ordering method in memory where the address n of a word corresponds to the most significant byte. In an addressed memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0 being the most significant byte.
BIOS	B asic Input/Output System. This is the built-in program that controls the basic functions of communications between the processor and the I/O (peripherals) devices. Also referred to as ROM BIOS.
BitBLT	Bit Boundary BL ock Transfer. A type of graphics drawing routine that moves a rectangle of data from one area of display memory to another. The data specifically need not have any particular alignment.
BLT	BLock Transfer
board	The term more commonly used to refer to a PCB (printed circuit board). Basically, a flat board made of nonconducting material, such as plastic or fiberglass, on which chips and other electronic components are mounted. Also referred to as a circuit board or card.
bpi	bits per inch
bps	bits per second
bus	The pathway used to communicate between the CPU, memory, and various input/output devices, including floppy and hard disk drives. Available in various widths (8-, 16-, and 32-bit), with accompanying increases in speed.
cache	A high-speed memory that resides logically between a central processing unit (CPU) and the main memory. This temporary memory holds the data and/or instructions that the CPU is most likely to use over and over again and avoids accessing the slower hard or floppy disk drive.
CAS	Column Address Strobe. The clock signal used in dynamic RAMs to control the input of column addresses.
CD	Compact D isc. A hard, round, flat portable storage unit that stores information digitally.

	Commont Dick Band Only Momony	
CD-ROM	Compact Disk Read-Only Memory	
CFM	Cubic Feet per Minute	
CHRP	See Common Hardware Reference Platform (CHRP).	
CHRP-compliant	See Common Hardware Reference Platform (CHRP).	
CHRP Spec	See Common Hardware Reference Platform (CHRP).	
CISC	Complex-Instruction-Set Computer. A computer whose processor is designed to sequentially run variable-length instructions, many of which require several clock cycles, that perform complex tasks and thereby simplify programming.	
CODEC	COder/DECoder	
Color Difference (CD)	The signals of (R-Y) and (B-Y) without the luminance (-Y) signal. The Green signals (G-Y) can be extracted by these two signals.	
Common Hardware Refe		
	A specification published by Apple, IBM, and Motorola which defines the devices, interfaces, and data formats that make up a CHRP-compliant system using a PowerPC processor.	
Composite Video Signal (CVS/CVBS)		
	Signal that carries video picture information for color, brightness and synchronizing signals for both horizontal and vertical scans. Sometimes referred to as "Baseband Video".	
срі	characters per inch	
срі	characters per line	
CPU	Central Processing Unit. The master computer unit in a system.	
DCE	Data Circuit-terminating Equipment.	
DLL	Dynamic Link Library. A set of functions that are linked to the referencing program at the time it is loaded into memory.	
DMA	D irect M emory A ccess. A method by which a device may read or write to memory directly without processor intervention. DMA is typically used by block I/O devices.	
DOS	Disk Operating System	
dpi	dots per inch	

DRAM	D ynamic R andom A ccess M emory. A memory technology that is characterized by extreme high density, low power, and low cost. It must be more or less continuously refreshed to avoid loss of data.
DTE	Data Terminal Equipment.
ECC	Error Correction Code
ECP	Extended Capability Port
EEPROM	Electrically Erasable Programmable Read-Only Memory. A memory storage device that can be written repeatedly with no special erasure fixture. EEPROMs do not lose their contents when they are powered down.
EIDE	Enhanced Integrated Drive Electronics. An improved version of IDE , with faster data rates, 32-bit transactions, and DMA. Also known as Fast ATA-2 .
EISA (bus)	Extended Industry Standard Architecture (bus) (IBM). An architectural system using a 32-bit bus that allows data to be transferred between peripherals in 32-bit chunks instead of 16-bit or 8-bit that most systems use. With the transfer of larger bits of information, the machine is able to perform much faster than the standard ISA bus system.
EPP	Enhanced Parallel Port
EPROM	Erasable Programmable Read-Only Memory. A memory storage device that can be written once (per erasure cycle) and read many times.
ESCC	Enhanced Serial Communication Controller
ESD	Electro-Static Discharge/Damage
Ethernet	A local area network standard that uses radio frequency signals carried by coaxial cables.
Falcon	The DRAM controller chip developed by Motorola for the MVME2600 and MVME3600 series of boards. It is intended to be used in sets of two to provide the necessary interface between the Power PC60 <i>x</i> bus and the 144-bit ECC DRAM (system memory array) and/or ROM/Flash.
fast Ethernet	See 100Base-TX.
FDC	Floppy Disk Controller

FDDI	Fiber Distributed Data Interface. A network based on the use of optical-fiber cable to transmit data in non-return-to-zero, invert-on-1s (NRZI) format at speeds up to 100 Mbps.
FIFO	First-In, First-Out. A memory that can temporarily hold data so that the sending device can send data faster than the receiving device can accept it. The sending and receiving devices typically operate asynchronously.
firmware	The program or specific software instructions that have been more or less permanently burned into an electronic component, such as a ROM (read-only memory) or an EPROM (erasable programmable read-only memory).
frame	One complete television picture frame consists of 525 horizontal lines with the NTSC system. One frame consists of two Fields.
graphics controller	On EGA and VGA, a section of circuitry that can provide hardware assist for graphics drawing algorithms by performing logical functions on data written to display memory.
HAL	Hardware Abstraction Layer. The lower level hardware interface module of the Windows NT operating system. It contains platform specific functionality.
hardware	A computing system is normally spoken of as having two major components: hardware and software. Hardware is the term used to describe any of the physical embodiments of a computer system, with emphasis on the electronic circuits (the computer) and electromechanical devices (peripherals) that make up the system.
UOT	
НСТ	Hardware Conformance Test. A test used to ensure that both hardware and software conform to the Windows NT interface.
HCT 1/0	
	hardware and software conform to the Windows NT interface.
I/O	hardware and software conform to the Windows NT interface. Input/Output
I/O IBC	hardware and software conform to the Windows NT interface. Input/Output PCI/ISA Bridge Controller

interlaced	A graphics system in which the even scanlines are refreshed in one vertical cycle (field), and the odd scanlines are refreshed in another vertical cycle. The advantage is that the video bandwidth is roughly half that required for a non-interlaced system of the same resolution. This results in less costly hardware. It also may make it possible to display a resolution that would otherwise be impossible on given hardware. The disadvantage of an interlaced system is flicker, especially when displaying objects that are only a few scanlines high.
IQ Signals	Similar to the color difference signals (R-Y), (B-Y) but using different vector axis for encoding or decoding. Used by some USA TV and IC manufacturers for color decoding.
ISA (bus)	Industry Standard Architecture (bus). The de facto standard system bus for IBM-compatible computers until the introduction of VESA and PCI. Used in the reference platform specification. (IBM)
ISASIO	ISA Super Input/Output device
ISDN	Integrated Services Digital Network. A standard for digitally transmitting video, audio, and electronic data over public phone networks.
LAN	Local Area Network
LED	Light-Emitting Diode
LFM	Linear Feet per Minute
little-endian	A byte-ordering method in memory where the address n of a word corresponds to the least significant byte. In an addressed memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3 being the most significant byte.
MBLT	Multiplexed BLock Transfer
MCA (bus)	Micro Channel Architecture
MCG	Motorola Computer Group
MFM	Modified Frequency Modulation
MIDI	Musical Instrument Digital Interface. The standard format for recording, storing, and playing digital music.
MPC	Multimedia Personal Computer

MDC405	The Descended to DCI has beides this developed by Materials for the
MPC105	The PowerPC-to-PCI bus bridge chip developed by Motorola for the Ultra 603/Ultra 604 system board. It provides the necessary interface between the MPC603/MPC604 processor and the Boot ROM (secondary cache), the DRAM (system memory array), and the PCI bus.
MPC601	Motorola's component designation for the PowerPC 601 microprocessor.
MPC603	Motorola's component designation for the PowerPC 603 microprocessor.
MPC604	Motorola's component designation for the PowerPC 604 microprocessor.
MPIC	Multi-Processor Interrupt Controller
MPU	MicroProcessing Unit
MTBF	Mean Time Between Failures. A statistical term relating to reliability as expressed in power on hours (poh). It was originally developed for the military and can be calculated several different ways, yielding substantially different results. The specification is based on a large number of samplings in one place, running continuously, and the rate at which failure occurs. MTBF is not representative of how long a device, or any individual device is likely to last, nor is it a warranty, but rather, a gauge of the relative reliability of a family of products.
multisession	The ability to record additional information, such as digitized photographs, on a CD-ROM after a prior recording session has ended.
non-interlaced	A video system in which every pixel is refreshed during every vertical scan. A non-interlaced system is normally more expensive than an interlaced system of the same resolution, and is usually said to have a more pleasing appearance.
nonvolatile memory	A memory in which the data content is maintained whether the power supply is connected or not.
NTSC	National Television Standards Committee (USA)
NVRAM	Non-Volatile Random Access Memory
OEM	Original Equipment Manufacturer
OMPAC	Over - Molded Pad Array Carrier

OS	O perating S ystem. The software that manages the computer resources, accesses files, and dispatches programs.
ОТР	One-Time Programmable
palette	The range of colors available on the screen, not necessarily simultaneously. For VGA, this is either 16 or 256 simultaneous colors out of 262,144.
parallel port	A connector that can exchange data with an I/O device eight bits at a time. This port is more commonly used for the connection of a printer to a system.
PCI (local bus)	Peripheral Component Interconnect (local bus) (Intel). A high- performance, 32-bit internal interconnect bus used for data transfer to peripheral controller components, such as those for audio, video, and graphics.
PCMCIA (bus)	P ersonal Computer Memory Card International Association (bus). A standard external interconnect bus which allows peripherals adhering to the standard to be plugged in and used without further system modification.
PCR	PCI Configuration Register
PDS	Processor Direct Slot
РНВ	PCI Host Bridge
physical address	A binary address that refers to the actual location of information stored in secondary storage.
PIB	PCI-to-ISA Bridge
pixel	An acronym for picture element, and is also called a pel. A pixel is the smallest addressable graphic on a display screen. In RGB systems, the color of a pixel is defined by some Red intensity, some Green intensity, and some Blue intensity.
PLL	Phase-Locked Loop
РМС	PCI Mezzanine Card
POWER	Performance Optimized With Enhanced RISC architecture (IBM)

PowerPC™	The trademark used to describe the P erformance O ptimized W ith Enhanced R ISC microprocessor architecture for P ersonal Computers developed by the IBM Corporation. PowerPC is superscalar, which means it can handle more than one instruction per clock cycle. Instructions can be sent simultaneously to three types of independent execution units (branch units, fixed-point units, and floating-point units), where they can execute concurrently, but finish out of order. PowerPC is used by Motorola, Inc. under license from IBM.
PowerPC 601™	The first implementation of the PowerPC family of microprocessors. This CPU incorporates a memory management unit with a 256-entry buffer and a 32KB unified (instruction and data) cache. It provides a 64-bit data bus and a separate 32-bit address bus. PowerPC 601 is used by Motorola, Inc. under license from IBM.
PowerPC 603™	The second implementation of the PowerPC family of microprocessors. This CPU incorporates a memory management unit with a 64-entry buffer and an 8KB (instruction and data) cache. It provides a selectable 32-bit or 64-bit data bus and a separate 32-bit address bus. PowerPC 603 is used by Motorola, Inc. under license from IBM.
PowerPC 604™	The third implementation of the PowerPC family of microprocessors currently under development. PowerPC 604 is used by Motorola, Inc. under license from IBM.
PowerPC Reference Plat	form (PRP)
	A specification published by the IBM Power Personal Systems Division which defines the devices, interfaces, and data formats that make up a PRP-compliant system using a PowerPC processor.
PowerStack™ RISC PC (System Board)
	A PowerPC-based computer board platform developed by the Motorola Computer Group. It supports Microsoft's Windows NT and IBM's AIX operating systems.
PRP	See PowerPC Reference Platform (PRP).
PRP-compliant	See PowerPC Reference Platform (PRP).
PRP Spec	See PowerPC Reference Platform (PRP).
PROM	Programmable Read-Only Memory
PS/2	Personal System/2 (IBM)

QFP	Quad Flat Package
RAM	R andom-Access Memory. The temporary memory that a computer uses to hold the instructions and data currently being worked with. All data in RAM is lost when the computer is turned off.
RAS	R ow A ddress S trobe. A clock signal used in dynamic RAMs to control the input of the row addresses.
Raven	The PowerPC-to-PCI local bus bridge chip developed by Motorola for the MVME2600 and MVME3600 series of boards. It provides the necessary interface between the PowerPC 60x bus and the PCI bus, and acts as interrupt controller.
Reduced-Instruction-Set	Computer (RISC) A computer in which the processor's instruction set is limited to constant-length instructions that can usually be executed in a single clock cycle.
RFI	Radio Frequency Interference
RGB	The three separate color signals: R ed, G reen, and B lue. Used with color displays, an interface that uses these three color signals as opposed to an interface used with a monochrome display that requires only a single signal. Both digital and analog RGB interfaces exist.
RISC	See Reduced Instruction Set Computer (RISC).
ROM	Read-Only Memory
RTC	Real-Time Clock
SBC	Single Board Computer
SCSI	Small Computer Systems Interface. An industry-standard high- speed interface primarily used for secondary storage. While the oldest standard, SCSI-1 provides up to 5 Mbps data transfer, the most current (as of the printing date of this manual) ULTRA-160 provides transfer rates of 160 Mbps (a two-fold increase over ULTRA-2 LVD which stands at 80 Mbps).
serial port	A connector that can exchange data with an I/O device one bit at a time. It may operate synchronously or asynchronously, and may include start bits, stop bits, and/or parity.
SIM	Serial Interface Module

SIMM	Single Inline Memory Module. A small circuit board with RAM chips (normally surface mounted) on it designed to fit into a standard slot.
SIO	Super I/O controller
SMP	Symmetric MultiProcessing. A computer architecture in which tasks are distributed among two or more local processors.
SMT	Surface Mount Technology. A method of mounting devices (such as integrated circuits, resistors, capacitors, and others) on a printed circuit board, characterized by not requiring mounting holes. Rather, the devices are soldered to pads on the printed circuit board. Surface-mount devices are typically smaller than the equivalent through-hole devices.
software	A computing system is normally spoken of as having two major components: hardware and software. Software is the term used to describe any single program or group of programs, languages, operating procedures, and documentation of a computer system. Software is the real interface between the user and the computer.
SRAM	Static Random Access Memory
SSBLT	Source Synchronous BLock Transfer
standard(s)	A set of detailed technical guidelines used as a means of establishing uniformity in an area of hardware or software development.
SVGA	Super Video Graphics Array (IBM). An improved VGA monitor standard that provides at least 256 simultaneous colors and a screen resolution of 800 x 600 pixels.
Teletext	One way broadcast of digital information. The digital information is injected in the broadcast TV signal, VBI, or full field, The transmission medium could be satellite, microwave, cable, etc. The display medium is a regular TV receiver.
thick Ethernet	See 10base-5.
thin Ethernet	See 10base-2.
twisted-pair Ethernet	See 10Base-T.
UART	Universal Asynchronous Receiver/Transmitter
Universe	ASIC developed by Tundra in consultation with Motorola, that provides the complete interface between the PCI bus and the 64-bit VMEbus.

UV	UltraViolet
UVGA	Ultra Video Graphics Array. An improved VGA monitor standard that provides at least 256 simultaneous colors and a screen resolution of 1024 x 768 pixels.
Vertical Blanking Interva	I (VBI) The time it takes the beam to fly back to the top of the screen in order to retrace the opposite field (odd or even). VBI is in the order of 20 TV lines. Teletext information is transmitted over 4 of these lines (lines 14-17).
VESA (bus)	Video Electronics Standards Association (or VL bus). An internal interconnect standard for transferring video information to a computer display system.
VGA	Video Graphics Array (IBM). The third and most common monitor standard used today. It provides up to 256 simultaneous colors and a screen resolution of 640 x 480 pixels.
virtual address	A binary address issued by a CPU that indirectly refers to the location of information in primary memory, such as main memory. When data is copied from disk to main memory, the physical address is changed to the virtual address.
VL bus	See VESA Local bus (VL bus).
VMEchip2	MCG second generation VMEbus interface ASIC (Motorola)
VME2PCI	MCG ASIC that interfaces between the PCI bus and the VMEchip2 device.
volatile memory	A memory in which the data content is lost when the power supply is disconnected.
VRAM	Video (Dynamic) R andom Access Memory. Memory chips with two ports, one used for random accesses and the other capable of serial accesses. Once the serial port has been initialized (with a transfer cycle), it can operate independently of the random port. This frees the random port for CPU accesses. The result of adding the serial port is a significantly reduced amount of interference from screen refresh. VRAMs cost more per bit than DRAMs.
Windows NT™	The trademark representing Windows New Technology , a computer operating system developed by the Microsoft Corporation.

XGA	EXtended Graphics Array. An improved IBM VGA monitor standard that provides at least 256 simultaneous colors and a screen resolution of 1024 x 768 pixels.
Y Signal	Luminance. This determines the brightness of each spot (pixel) on a CRT screen either color or B/W systems, but not the color.

Numerics

10/100 BASET port 2-4 16/32-bit timers 3-19

Α

abbreviations, acronyms, and terms to know GL-1 abort (interrupt) signal 2-3 ABT switch (S1) 2-3 address pipelining 3-9, 3-10 altitude (operating) A-1 ambient air temperature A-3 appendix listing xvi architecture, MVME2300 1-2 assembly language 5-3 asynchronous debug port 3-16 Autoboot enable 6-6

В

backplane connectors, P1 and P2 1-21 jumpers 1-21 VMEbus 1-3 battery 3-18 baud rate 1-12, 2-5 BFL LED (DS1) 2-4 BG and IACK signals 1-21 bits per character 1-12, 2-5 block diagram memory 3-8 MVME2300 3-3 board failure, what to do C-4 board information block 6-2 board layout, MVME2300 1-9 board placement 1-20 board structure 6-2 board won't autoboot C-3 bridge controller functions 3-16 buses, standard 3-3, 4-1

С

cables, I/O ports A-4 chapter listing (see also appendix listing) xvi chassis, VMEsystem 1-4 clock, real-time 3-17 CNFG 6-2 commands, debugger 5-6 conductive chassis rails A-4 configurable items, MVME2300 base board 1 - 8configuration, debug port 2-5 configurations, MVME2300 1-2 configure PPC1Bug parameters 6-3 VMEbus interface 6-12 Configure Board Information Block (CNFG) 6-2 configuring the hardware 1-7 connector pin assignments B-1 console terminal 1-4 preparing 1-12 contact sales office D-1 content overview xv. xvi cooling requirements A-3 counters 3-18 CPU LED (DS2) 2-3, 2-4

D

debug console terminal 1-4 debug firmware, PPCBug 5-1 DEBUG port 1-21 DEBUG port, MVME2300 2-5 debug prompt gone C-2 debugger commands 5-6 directory 5-10 prompt 5-2 debugger firmware (PPCBug) 3-11, 6-1 DECchip 21140 LAN controller 3-12, 4-4 description of MVME2300 1-1 diagnostics directory 5-10 hardware 5-10 prompt 5-2 test groups 5-10 dimensions of base board A-2 directories, debugger and diagnostic 5-10 DMA channels 4-8 documentation, related D-1 DRAM latency 3-8 DRAM memory 3-7 DRAM speed 6-10 DRAM, base address 1-22

Ε

Electro-Static Discharge (ESD) 1-13 EMC emissions standards A-4 EMC regulatory compliance A-4 endian issues function of Raven ASIC 4-10 function of Universe ASIC 4-11 PCI domain 4-10 processor/memory domain 4-10 VMEbus domain 4-11 ENV command 6-3 environmental parameters 6-1 equipment, required 1-1 Ethernet interface 3-12 expansion mezzanine 1-3

F

Falcon memory controller chip set 4-2, 4-6, 4-10 features, hardware 3-1 features, Universe ASIC 3-15 firmware initialization 5-3 firmware, PPCBug 5-1 flash latency 3-11 flash memory 1-10, 3-10 flash memory bank A/bank B reset vector header (J15) 1-8, 1-10 forced air cooling A-3 front panel controls 2-2 MVME2300 2-2 front panels, using 2-1

G

general description 3-3 general-purpose software-readable header (J17) 1-11 global bus timeout 1-22

Η

hardware configuration 1-7 diagnostics 5-10 initialization 5-3 hardware features 3-1 HE (Help) command 5-10 headers J15 1-10 J16 1-10 J17 1-11 help command 5-10 humidity, relative A-1

IACK and BG signals 1-21 initialization process 5-3 installation considerations 1-21 installing

L

multiple MVME2300 boards 1-22 MVME2300 1-19 MVME2300 hardware 1-13 MVME2300 into chassis 1-19 PCI mezzanine cards 1-13 PMC carrier board 1-18 PMC module 1-14 PMCs 1-13 PMCspan 1-15, 1-17 PMCspan-002 1-16 interconnect signals B-1 interface Ethernet 3-12 PCI bus 3-13 VMEbus 3-15 interrupt architecture, MVME2300 4-7 Interrupt Controller (MPIC) 3-18 interrupt support 4-6 interval timers 3-19 ISA Bus 3-3 ISA bus 2-3, 3-17, 4-4, 4-6 J

J11 and J12 pin assignments B-14 J15, flash memory bank A/bank B reset vector 1-8 J16, VMEbus system controller selection header 1-8, 1-10 J17, general purpose software readable header 1-11 J21 and J22 pin assignments B-16 jumper headers 1-8 jumpers, backplane 1-21 jumpers, software readable 1-11

L

L2 cache 3-1 latency, DRAM 3-8 LED/serial startup diagnostic codes 6-12 **LEDs** MVME2300 front panel 2-2 PMC 2-4

LEDs, MVME2300 front panel 2-4 literature web site D-1 local reset (LRST) 2-3 lowercase 5-11

М

manufacturers' documents D-2 memory available A-1 memory block diagram 3-8 memory maps MVME2300 4-1 PCI local bus 4-2, 4-3 VMEbus 4-3 memory size 6-10 MK48T559 timekeeper device 4-8 MPC604 processor 3-3 MPIC (MultiProcessor Interrupt Controller) 3-18 MPU initialization 5-3 MPU specifications A-1 **MVME2300** board layout 1-9 cooling requirements A-3 EMC regulatory compliance A-4 installing 1-19 LEDs 2-4 programming 4-1 regulatory compliance A-4 specifications A-1 MVME2300 features 3-1 MVME2300 models 1-2 MVME2300 VME processor module 1-2

Ν

NETboot enable 6-8 Network Auto Boot enable 6-8 Non-Volatile RAM (NVRAM) 6-1, 6-3 NVRAM 3-17 NVRAM (BBRAM) configuration area 3-12

Ο

operating parameters 6-1

ordering literature D-1 overview of manual xv

Ρ

P1 and P2 connectors 1-3, 1-21, B-2 parallel port 4-8 parity 1-12, 2-5 PC16550 2-5 PCI bus 3-3, 3-13, 4-3, 4-6 PCI bus latency 3-5 PCI expansion 3-13, 3-15 PCI Host Bridge (PHB) 3-18 PCI Mezzanine Card (PMC) 2-6 PCI mezzanine card slots A-2 PCI Mezzanine Cards (PMCs) 1-4 PCI to ECC memory access timing 3-6 PCI-ISA Bridge (PIB) controller 3-16 Peripheral Computer Interface (PCI) A-2 PHB (PCI Host Bridge) 3-18 PIB controller 3-16, 4-4 pin assignments, connector B-1 PMC carrier board installation on MVME2300 1-18 PMC module installation on MVME2300 1-14 PMC power requirements A-3 PMC slots 1-3, 2-6 PMC1 (PMC slot 1) 2-6 PMC1 connector pin assignments B-14 to B-15 PMC1 LED (DS4) 2-4 PMC2 (PMC slot 2) 2-6 PMC2 connector pin assignments B-16 to **B-19** PMC2 LED (DS3) 2-4 PMCs, installing 1-13 PMCs, preparing 1-12 PMCspan 2-7 PMCspan expansion mezzanine 1-3 PMCspan, preparing 1-12 PMCspan-002 installation 1-16 port

asynchronous 3-16 debug 3-16 Ethernet 2-4 power needs 1-3, 1-21 power requirements 3-5, A-1, A-3 PowerPC bus to DRAM access timing 3-6, 3-8 PPC1-Bug> 5-10PPC1-Diag> 5-10 PPCBug basics 5-1 overview 5-1 prompt 5-2 PPCBug commands 5-5 PPCBug debugger firmware 3-11, 6-1 preparing MVME2300 1-7 PMCs 1-12 PMCspan 1-12 system console terminal 1-12 preparing and installing MVME2300 1-1 primary PMCspan installation 1-15 problem resolution (troubleshooting) C-1 processor bus 3-3 product information, to obtain D-1 programming the MVME2300 4-1 prompt, debugger 5-10

R

Raven MPU/PCI bus bridge controller ASIC 3-5, 3-16, 4-2, 4-4, 4-6, 4-10, 4-11 readable jumpers 1-11 Real-Time Clock/NVRAM/timer function 3-17 regulatory guidelines A-4 related documentation, ordering D-1 related specifications D-5 remote control/status connector 3-19 required equipment 1-1 resetting the system 2-3, 4-8 restart mode 5-11 revision history xvi

L

Ν

DEX

RF emissions A-4 ROMboot enable 6-7, 6-11

S

SCSI bus 6-5 SD command 5-10 secondary PMCspan installation 1-17 sending your comments xvii serial port, MVME2300 2-5 set environment to bug/operating system (ENV) 6-3 setup terminal 1-21 shielded cables A-4 single-width PMC placement on MVME2300 1-14 size of base board A-2 software readable jumpers 1-11 sources of reset 4-8 speaker output 3-19 specifications MVME2300 A-1 related D-5 start-up procedures 1-5 station address, Ethernet 3-12 status indicators 2-4 status indicators. MVME2300 2-4 stop bit per character 1-12, 2-5 submitting comments xvii suggestions and comments xvii switches 2-2 switches, MVME2300 front panel 2-2 SYSFAIL* 6-5 system console terminal 1-4 system console, connecting 1-21 system controller 1-20 system controller function 2-3 system controller selection header 1-10

Т

temperature operating A-1 storage A-1 terminal has no display, display not on terminal C-2 terminal setup 1-21 terminal won't respond to keyboard/mouse **C-2** testing the hardware 5-10 timekeeper device 4-8 timeout, global 1-22 timer function 3-17 timers 16/32-bit 3-19 interval 3-19 timers, programmable 3-18 timers, via Universe chip A-1 timing PCI to ECC memory 3-6 PowerPC bus to DRAM 3-6, 3-8 troubleshooting procedures C-1 troubleshooting the MVME2300 5-10 typographical conventions xviii

U

Universe VMEbus interface ASIC 2-3, 3-15, 4-3, 4-4, 4-9, 4-11 unpacking the hardware 1-7 uppercase 5-11 using the front panels 2-1

V

vibration (operating) A-1 VME processor module 1-2 VME processor module, board layout 1-9 VMEbus 3-3, A-2 address/data configurations 1-22 backplane 1-3 connectors B-2 memory maps 4-3 system controller selection header (J16) 1-10 Universe ASIC and 3-15 VMEbus interface 6-12 VMEbus system controller selection (J16) 1-8 VMEsystem enclosure 1-4

W

Winbond PCI/ISA bus bridge controller 3-16, 4-4