
Disk/ATE™ User's Manual

Manual Rev. 1.1

By Jim Rosenberg

Disk/ATE (C) 1978 by Gary Fitts

INTRODUCTION

DISKATE is a powerful general purpose program development
system for the 8080 which can be used as a text editor, a monitor,
an assembler, and even an operating system. The text editor and
monitor allow powerful content oriented commands. The entire sys
tem is programmable through variables, repetitive loops and com
mand macros. The assembler provides great flexibility by allowing
its two passes to be invoked separately. The user has full control
over all memory allocation, including placement of the symbol
table. Source programs, object programs and symbol tables can all
be stored on and retrieved from the disk. The disk commands auto
matically allocate and deallocate disk space, handling compacting
of the disk whenver necessary. Although configured for the Disk
Jockey disk controller board, all I/O calls are handled through
special vectors, so th~t if you have some other type of hardware
this manual will explain how DISKATE can be customized.

The manual is divided into three major parts. Part I, called
Usage, explains how to use the various features of DISKATE. You
will want to read this carefully before beginning to use DISKATE,
but once you are familiar with the program you will' probably con
sult this section only infrequently. The right hand margin of
this part has left space for important keywords so that you can
quickly locate where concepts are ~xplained. You may also want to
use this space for notes of your own. Part I is divided into sec
tions based on how DISKATE is to be used. This is done for great
er coherence in explaining how the commands work, but there will
inevitably be some overlap. Some of the commands work differently
in monitor usage than in text editing usage, for example, and so
are discussed in both sections. All DISKATE commands are intro
duced in Part I, with the single exception of the V command which

" can only be used in machine language programs, and so is discussed
in Part II.

Part II is called Installation and Maintenance. It explains
the nitty gritty of "how to get this software running on your hard
ware, and how to make the proper changes in DISKATE to customize
your system. It also gives the details of how to interface DISK-
ATE to machine 1 anguage programs. .

Part III is the" System Reference Summary. Almost all the ma
terial in Part III is all contained in Parts I and II, but appears

"here in a 'condensed form'so that you 'can quickly locate something
you need. Experienced programmers who are used to learning new
languages from tersely written manuals may want to skim lightly
over Part I and mainly 'consult Part III. If you are confused
about what a command does by a discussion in Part I, it may help
to refer back and forth to both Parts I and III.

This is a large manual'~' You may be daunted by the task of
reading all of it before beginning any work with DISKATE, but your
work will be more pleasurable if you do. Although DISKATE may
seem complicated, it is one of the most powerful pieces of soft-

__ ooJl.At:.~~"_ilt_ tbe .. ,pe f:,$Q ng.l,_~_Qmp_~t.~J; -m~~_Kc;,~p!_g.g_~.,, __ ?!.r:t~L. t;h is c C?}np I e ~ i ~Y." i~
a reasonable price to pay for the power you get.

TABLE OF CONTENTS

Part I: Usage .. 1

1.1: Using DISKATE as a text ed i tor ..•..•..••.••..•.•..• · .•..• 1

1.2: Using DISKATE as a monitor ••..••.••.•.••.•..••...••..•.• 53

1.3: Using DISKATE input/output •••••••••••..•••....•.••.•••.• 64

1.4: Using D1SKATE as an assembler •..••.••....•.••.......•... 79

1.5: Invoking D1SKATE ••••••..••.•••••••.••......• ~ ••.•••..•.. 97

Part II: Installation and Maintenance •••..•••••.•••••.•.•••.• 101

11.1: Bringing up DISKATE ••••••••.•..•••......•••..•.•••.••.. 101

11.2: Personalizing DISKATE Settings •••••••..•••••••..••..•.• 111

11.3: Interfacing DISKATE to Machine Language Programs ••.••.. 114

Part III: System Reference Summary •••••••••••••••..•••••••••. 121

Index . . '•....... . ' 146

DISKATE User's Manual -1-

Part I: USAGE

1.1: Using DISKATE as a 'rext Ed i tor

A text editor is one of the most crucial pieces of
microcomputer software. It is through the text editor
that you will prepare and maintain a good deal if not
all of the material your computer will deal with.
DISKATE (ATE stands for A,Text Editor) has a variety of
editing commands which can work with any type of text.
The text is entered into and maintained in an area of
the computer's memory called the SOURCE AREA. The
Source Area is divided into one or more units called
FILES. A file is simply a seqeunce of bytes in the
memory, bounded by 0's. Most of the editor's commands
work with a file which is established as the CURRENT
FILE. If this file is expanded or contracted, the
source area is expanded or contracted along with it to
preserve all of the files in the source area. There are
special commands which serve to make a'different file
the current file. Actually, you can have several
different source areas in the computer's memory, but
more about that later. To work with files that reside
on the disk, you will need to move them in and out of

. memory' using the DISKATE I/O commands, which are
discussed in 1.3.

When you bring up DISKATE it will issue U>fj as a
prompt character and wait fora command. There may be
blanks between the name of the command and an argument
if the command takes one, and blanks MUST be present

. "between arguments if the, 'command takes more than one.
Usually in this manual we will omit unnecessary blanks,
though in your own work you can include them if it will
make the DISKATEcommands more' intelligible. A blank
should never occur within an argument, unless that blank
is a significant character as part of the argument.

There 'are -two keyconcep'ts 'which you will need to '
be familiar with to understand how the DISKATE commands
work: The entry pointer and intervals. The ENTRY
POINTER is'a special 16 "bi't location pointing to a mem
ory location which serves as a kind of target for where
an action performed by many DISKA'l'E commands is to take
place.' For inst'ance ;'le~'" scons"idet one of the simplest
DISKATE commands, which serves to enter text into a

·'file. This command has the form:

E [text]

. '(The E stands for Enter.l"Notethat if--this is a
command you are typing in all by itself, the prompt

SOURCE
AREA

FILES

CURRENT
FILE

> IS
PROMPT
CHAR

ENTRY
POINTER

E
COMMAND

DISKATE User's Manual

character ">" will be the first character on the line.
For instance, to enter the string HI have a weak spot
for computers", the line on your terminal should look
like:

>E[I have a weak spot for computers]

To avoid confusion the prompt character will generally
not be shown, since it is not one that you type.

As you type in the characters of the text one by
one, here's what DISKATE will do. Everything in the
current file, and in fact the whole source area, start
ing with the location pointed to by the entry pointer,
will in effect be pushed up in memory by one byte and
the character typed will be entered into the computer's
memory at the location pointed to by the entry pointer.
The entry pointer is then incremented. (Actually, this
doesn't all happen character by character as you enter
the E command, but conceptually you can visualize it
that way.) The E command thus inserts the typed charac
ters into the text without overwriting. To simplify
things, let's think of the entry pointer as pointing to
a character in the file. This character will be called
the TARGET CHARACTER. When you enter text with the E
command, the text is INSERTED into the file ,BETWEEN THE
CHARACTER PRIOR TO THE TARGET CHARACTER AND'THE TARGET
CHARACTER.

Let's look at an example. Suppose the current file
consists entirely of the characters:

My computer is well fed

with the target character being the "w" in "well".
(We'll leave aside for the moment the question of how it

. got that way.) Now suppose we give the DISKATE
command: '. '. .

E [very]

The f'ile will now consist of the characters:

My computer is ver·ywelr· fed"

and the "w" in "well" will remain the target character,
(though it will b~ in a 'different place in the compu
ter's memory.) Because the "w" is the target character,
the "very" goes between the "w" and the preceeding
character. If I now enter the command:

E £.]

the file will consist of the characters:

-2-

TARGET
CHAR

IS CHAR
POINTED
TO BY
ENTRY
POINTER

E
COMMAND
INSERTS
BETWEEN
TARGET
CHAR
AND
PREVIOUS
CHAR

DISKATE User's Manual

My computer is very well fed

The text entered with an E command can be any
number of lines long (so long as it fits into the area
of memory allocated for the source area!) Brackets are
allowed within the text, but they must be balanced. For
instance,

E[Computers, [of course,] are complicated.]

is a perfectly valid DISKATE command. This entire
string of characters will be entered into the file,
including the brackets. Now, you ask, what will happen
if brackets are not balanced? Trouble, dear user! If
you type:

E [Computers, [of]

thinking that this will enter the string "Computers,
[of" then the DISKATE command processor will never have
received the closing right' bracket which ends text
entry. The result will be that you may think you are
typing commands, when in fact what you type is still
being entered inta the text. This will garbage up your
file with what should have gone as commands. When you
are typing-in a' command, check to make sure that the
first character on the line is the prompt character
">" -- if not yriu are probably still in text entry.

The opposite problem, too many right brackets, will
cause the text entry to be terminated prematurely.
DISKATE will interpret the rest of the text as a com
mand, which probably won't make sense. When DISKATE
gets a command that it can't make sense out of, or an
error occurs, it will come back with a question mark.

What if a piece of'-editing-' requires that you insert
a string of characters with unbalanced brackets? There
is a way to do this, which for the moment we'll post-
pone: the-E' comniandcan also be used to enter numerical
code, as well as text. This is discussed in section
1.2. Note that. since parentheses are not used at all in
DISKA'l'E, there 1's Iloprobleni with entering a string
containing unbalanced parentheses.

The text you enter with an E command may include
-ASCII'- controI-'cha:racters in addition to the carriage
r~turn. Some care should be taken in doing this,
however, since such characters may not show on the
termin'alarid could bec'ome~ hidden booby traps. When you
type a carriage return during text entry, only the
carriage return character is entered into the file,

'though both a"carriageretliiri and line feed 'are echoed
back to the terminal. If you are using DISKATE to

-3-

WONT
RESPOND,
STILL
IN TEXT
ENTRY?

ERROR
MESSAGE
IS It? It

CR ONLY
BETWEEN
LINES IN
MEMORY

DISKATE User's Manual

prepare text to be used by another program, you may have
to make sure that this program issues a line feed when
it encounters a carriage return. One way of doing this
is to create an "edit macro" which inserts a line feed
into the text immediately after every carriage return.
We'll see below how to do this.

If you are entering characters for an E command, or
any other command for that matter, and see a mistake on
the current line, you can type BACKSPACE to back up the
cursor to the place where the error is. Each time you
type BACKSPACE, DISKATE will ignore the last valid
character on the line, back up the cursor and remove
from your screen the offending character. You'll then
have to retype the rest of the line. Or, you can type
ESCAPE (ESC) to tell DISKATE to ignore the entire line.
DISKATE will echo the ESC, then a backslash (1I\1t), then
a carriage return and line feed. If you ESC a line
which begins a command, DISKATE will expect a new com
mand and will issue the prompt character. If you ESC a
line of an E command which is not the first line, the
line will be ignored and you will still be in text
entry.

As you type characters to DISKATE, major changes in
the memory do not occur until DISKATE has received an
entire line. In the meantime what you have typed is
placed in a special internal location called a line
buffer. The length of this buffer is 130 characters,
which means that DISKATE cannot process a longer line.
This should normally cause no problems, since most
terminals have a maximum line length of 80 or less. It
could show up, however, if you forgot to end a line with
a carriage return and kept on going to the next line
down on the screen. When the DISKATE line buffer is
full, the CURSOR WON'T MOVE. If this happens while
you're in the middle of the characters for an E command,
you should type BACKSPACE and then a right bracket and a
carriage return to terminate text entry to use other
editing commands to place part of the line which is too
long on'the next line. Or, you can simply type a
carriage return and keep on entering text. The line
buffer always keeps an extra place for the carriage
return at the-end of a line.' -0

In addition to this limit on the maximum length a
line can be, OISKATE has an internal setting for the
width of the teiminal's line. This setting can be
changed by the user at any time. We won't discuss this
at the moment -- a full discussion is contained in sec
tion 1.3 under the WIO"command.

Now that we have a basic idea of how text is
entered using DISKATE, an important but still very basic
function is viewing the text to make sure that it is
correct. There are a n-umber of DISKATE commands which

-4-

BACK
SPACE TO
IGNORE
CHAR
JUST
'I'YPED

ESC TO
IGNORE
WHOLE
LINE

CURSOR
WON'T
MOVE

LINE TOO
LONG
TYPE
CAR RET

OR BACK
SPACE
]
CAR RET

DISKATE User's Manual

serve this purpose. The simplest is the' command,
which will QUOTE ONE LINE. This command will cause the
line containing the 'target charact'er to be pr inted on
the terminal. The symbol 11 " (this prints as a carot on
some terminals and as an upward arrow on older termin-,
als), which is used in DISKATE to denote the entry
pointer, will appear excatly where any text entered with
an E command will go. That is, assuming the line has no
invisible control characters, the " will go between
the target character and the preceding character. The
, command has no arguments, and is a simple way to be
sure the entry pointer is where you want it to be. It
is highly recommended that you use this command often
while you are first getting the hang of DISKATE. It
will show you excatly where the changes you are about to
make will go -- to the nearest line at least. To use
the example from above, if the line with the target
character is:

My computer is well fed

with the target character being "Wll, giving the command
, will print the line:

My computer is "'well fed

Obviously we#ll need' to 'be able to see more than
just the line with the targe't character. The II command
is a more general command that will let us view practic
ally anything. The argument of the n command is an
INTERVAL in the computer's memory. This concept of
interval is probably the most important one in DISKATE,
and so we'll spend some tirnewith it. The underlying
idea of an interval is extremely simple: an interval is
a pair of addresses in the computer's memory. In order
to be valid for use by DISKATE commands, the first
address of the pair should not be larger than the second
address. For instance, if we use the notation ddddH to
refer to memory'location"dddd hex, the pair 2B00H, 2A0BH
is a valid interval, though it is not yet in a form that
DISKATE can recognize. It refers to all of the charac
ters in the memory from 2000H throu~h 2A00H inclusive.
This is why the first address must be less than or equal
to the second address -- to refer to all of the
characters from 2AB0S'"to''' 2'000Hwould not make sense. To
return to the It c,ommand, this command takes an interval
as its argument and prints on the terminal all the
characters in the iriterval;'Issuing' a' line feed also
whenever it encounters a carriage return. To see some
examples we have to consider how intervals are
specified.

The simplest way to specify an interval is to give

-5-

COMMAND

PRINTS
LINE
WITH
TARGET
CHAR

INTERVAL
IS A
PAIR OF
ADDRESSES

"
COMMAND

PRINTS
INTERVAL

DISKATE User's Manual -6-

explicitly the pair of addresses. For instance, the
command:

"2000H •• 2A00H

will cause the characters in the interval from 2000H
through 2A00H inclusive to be printed on the terminal.
To give a complete explanation of the meaning of the •.
symbol at this point would be premature, so for the
moment let's leave it that an interval can be specified
in tne form:

explicit adress •• explicit address

Normally you will give the addresses explicitly when you
are using DISKATE more as a monitor than as an editor,
so there will be more about this in sectio~ 1.2.

A more sophisticated method of specifying an
interval is to use an argument that calls for MATCHING.
In using matching you present to DISKATE a pattern of
characters, and it searches the memory looking for the
pattern. If it finds it then the area that matches the
pattern becomes the interval. A simple form of matching
argument is similar to one we have already seen with the
E command. The argument:

[text]

where in this case text is NOT longer than one line
-- will match the first occurrence in the current file
bf the characters comprising text.

For example, supP?se the current file consists of
the characters:

NAME: JOAN DOE
OCCUPATION: DEER
SEX: FEMALE
ADDRESS: THE WOODS

The argument [NAME] denotes the interval in the memory
occupied by the characters N,A,M,E in the first line of
the file -- wherever that happens -to be. Note that this
form of specifying an interval is CONTENT ORIENTED, in
contrast to specifying the addresses bounding the inter
val 'explicitly. The argument [NAME], will still denote
the first occurrence of N,A,M,E in the file even if the
file is changed so that something else occupies the
memory locations that N,A,M,E once occupied •.

An argument like [NAME] will do us little good as
.an argument for the. n command, since the command:

" [NAME]

MATCHING

[TEXT]
GIVES
1ST
OCCUR
RENCE
OF CHARS
OF TEXT

DISKATE User's Manual

will simply print NAME on the terminal. Simple argu
ments of this 'form are very useful wi th other commands,
however, as we'll see. What will be very useful with
the If command, as well as others, is combining simple
patterns such as [NAME] using the operations DISKATE
recognizes into much more complex ones. One powerful
method is to use the •• construct, which we've seen in
connection with explicit addresses. The argument:

[NAMEj •• [ADDRESS]

refers to the characters from the first occurrence in
the current source file of the characters N,A,M,E up to
the first occurrecne AFTER the N,A,M,E of the characters
A,D,D,R,E,S,S -- so that the command:

n [NAME] •• [ADDRESS]

would print on the terminal:

NAME: JOAN DOE
OCCUPATION: DEER
SEX: FEMALE
ADDRESS

Remember that in'using~. in this way, if two
patterns are combined as in patternl •• pattern2, DISKATE
will look for the first occurrence of pattern2 after
patternl to find the upper limit of the interval. For
instance, if the current file is the same as the example
above, the command:

It [A] •• [Aj

would print on the terminal:

AME: JOA

In many editing applications it is useful to view
the text in units of entire lines. There are several

'ways to accomplish'this. The character" II -- which
prints as an underscore on most terminals-and as a
left-pointing arrow on older terminals, is a matching
argument whichwill'MATCHACARRIAGE RETURN. For

'example, if we are using the same current file as in the
examples above, the command:

, .. [SEX] • __

will print on'the terminal:

-7-

PATTERNl

PATTERN2

GIVES
FROM 1ST
PATTERNl
TO 1ST
PATTERN2
AFTER
THE
PATTERNl

(UNDER
SCORE
OR LEFT
POINTING
ARROW

MATCHES
CAR RET

DISKATE User's Manual

SEX: FEMALE

The matching in this case works just the way it did in
the previous uses of .• to combine intervals. The
argument [SEX] will match the first occurrence of the
characters S,E,X in the current file. The argument by
itself would match the first occurrence of a carriagi
return in the current file, so the argument [SEX] ..
will match the interval starting with the first occur
rence of S,E,X through the first carriage return after
the S,E,X.

The symbol can also be used as an argument for
the E command. The command:

E

will enter a carriage return, just as would the command:

E[
]

In many cases it is advantageous to use the symbol in
an E command to have the command fit on one line.

Suppose we want to see more than one line. To do
this we can use the same symbol in connection with
another operation supported by DISKATE: OCCURRENCING.
An argument using occurrencing gives a number n followed
by a pattern and matches THE NTH OCCURRENCE OF THE
PATTERN. The argument 2 by itself will match the 2nd
occurrence of a carriage-return in the current file.
The argument 2[A] will match the 2nd occurrence of the
character A. To continue with our same example, the
command:

.. [NAME] •• 4_ .

will print on the terminal:

NAME: JOAN ·DOE: '
OCCUPATION: DEER
SEX: FEMALE
ADDRESS: THE WOODS··'

Here the argument [NAME] •• 4 specifies the interval from
the first occurience in the-current file of the charac
ters N,A,M,E through the fourth occurrence after the
NAME of a carriage return. This will give us four lines
from the current file beginning with the first occur-
rence of N,A,M,E. There are a couple of points to be
noted here. Using an argument of the form n as we have
done will not guarantee that first line of tEe resulting
interval is the entire line from which it was taken.

-8-

CAN USE
AS

ARGU~lENT
OF E
COMMAND
TO ENTER
CARRIAGE
RETURN

OCCUR
RENCING

nPATTERN

MATCHES
nTH
OCUR
RENCE OF
PATTERN

DISKATE User's Manual

For instance, the command:

U[JOAN] •• 4_

would print on the terminal:

JOAN DOE
OCCUPATION: DEER
SEX: FEMALE
ADDRESS: THE WOODS

-- there is nothing in the argument [JOAN] •. 4 which
instructs DISKATE to begin the interval with the begin
ning of a line. We'll see how to get entire lines in a
minute.

Remember that a construct like pattern .. n will
give you whatever matches pattern through the NEXT n
line endings. A common error is to assume it will give
you the interval from pattern to the n'th line ending in
the current file, which is not in general what will
happen.

As we just saw, we will often want to get entire
lines. The easiest way to do this is with the % oper

'ator. By adding the suffix % to an argument it will
normally expand the argument to an entire line. The
command:

U[JOAN] %

used with our now weary current file will print on the
terminal:

NAME: 'JOAN DOE

Now suppose we want to see 4 lines beginning with
the first line containing JOAN. Here we've got to be
careful. The command:

If [JOAN1%~.4_

will not give us what we want, but will give an error
message! To' see why we 'have to-keep at the business of
going through exactly how DISKATE will interpret the
argument. The argument [JOAN]% is the interval consist
ing of'the first line in the source file containing the
characters,J,O,A,N. This INCLUDES THE CARRIAGE RETURN
at the end of the line.' The argument [JOAN] % •• 4 is the

""interval' beginning with [JOAN] % through the 4th occur- '
renee of a carriage return AFTER the [JOAN]%. Since
[JOAN]% already includes a carriage return, in order for
this argument to work there -must'be at least 5 carriage
returns in the file, but altogether there are only 4.

-9-

SUFFIX
%
EXPANDS
TO
WHOLE
LINE

PATTERN%
INCLUDES
FINAL
CAR RET

DISKATE User's Manual

This explains the error message. The argument gave a
pattern which DISKATE couldn't match. Note that in this
ca"s"e, tb'ere is nothing syntactic'ally wrong wi th the
command "[JOAN]% •. 4 -- the command caused an error
because the pattern-failed to match. DISKATE does not
distinguish in it's error message between syntax errors
and "logic errors" -- i.e. for instance errors that
arise because a pattern has no match in a particular
file, but which might give a perfectly legitimate match
in a different file.

Occurrencing together with the % operator gives us
a simple way to specify the n'th line in a file. For
instance, suppose your terminal is a video terminal with
24 lines, and you want to view your text in groups of 20
lines -- this way there will be a little overlap and
room for DISKATE to issue the line with the prompt
character. Suppose you want the 3rd such group. The
command:

"41 % •• 19 %

will give the desired result. Remember once again that
in a command of the form: Un % •• m % m will give WIDTH
-- that is the number of lines being viewed, and not the
number of the final line to be viewed. Again note that
even though we want to see 20 lines, we have to use 19 %
in the second part of the command because 41 % matches-a
whole line. If. we had said ii41 % •• 20 % this-would give
21 lines, not 20. Acuta11y, the final % in this command
is superfluous -- "41 % •• 19 will give exactly the same
output. (Of course, with the JOAN DOE file we have been
using as our standard example, this command would return
an error message, since there aren't enough lines in the
file to match even 41 %.)

Suppose you want-to see the last line in the cur
rent file but you don't-know how many lines in the file
there are. This can be easily achieved using occurren
cing with a NEGATIVE OCCURRENCE NUMBER. In an instance
of occurrencing of the fo~m Npattein, if N is negative
DISKATE will look for the Nth occurrence of pattern
COUNTING BACKWARDS FROM THE END OF THE CURRENT FILE.

. The last line of the current file can be viewed by the
command:

"-1 %

At this point we should note that DISKATE con
siders occurrence numbers to be SIGNED 15 BIT INTEGERS.
That means that the high order bit is treated as a sign
bit, and negative numbers are represented in two's
complement notation. On the othe~ hand, an address is'
interpreted as a non-negative 16 bit number. When you

-10-

GIVES m+l
LINES
STARTING
WITH THE
nTH LINE

NEGATIVE
OCCUR
RENCE
NUMBER
COUNTS
BACKWARD
FROM END
OF FILE

POS
OCCUR
ENCE
NUMBER
MUST BE
<=

DISKATE User's Manual -11-

give DISKATE a number, the question of whether it will 32767
be treated as a signed 15 bit number or a non-negative
16 bit number depends on the context. If you give
DISKATE a negative number when it expects an address,
the sign bit will be treated as a digit bit, and if you
give a large number when it expects a signed number, the
highest order bit will automatically be treated as giv-
ing the sign bit. This means that an occurrence number
greater than 32767 will' count as a negative number.
This shouldn't pose a problem, since it's very unlikely
you would ever need an occurrence number this large.

What if you want to see the last 20 lines in the
file? One way to do it would be by the command:

"-20 % •• 19 %

This would literally give you 20 lines beginning with
the 20th line counting back from the end of the file.
However there is an easier way. The command below may
throw you for a loop at first, because so far we have
presented the symbol •• as an operator which connects
intervals into a larger interval. In fact the •• symbol
can itself be used as a pattern matching argument. The
command we just showed will give the same result as the
simpler command:

tt'-29 % ••

Let's see why this works. If you think of •• as an
operator connecting two intervals, then the argument
-20 % •• would appear to be incomplete -- the second
interval is missing. Instead of viewing .• as an
operator, it can be viewed as a MATCHING ARGUMENT WHICH

. MATCHES ANYTHING. The argument -20_% •. can be read as:

"the 1 ine containing the 29th carr iage return
back from the end of the file, followed by
anything.

Because DISKATE is working with the current file, the
term "anything" is restricted in scope to the current
~ile~ '-Notice-alsO there is-a ~onstruct here which we
haven't seen before: 'a matching argument consisting of

AS
MATCHING
ARG
MATCHES
ANYTHING

one pattern followed by another pattern. This is called CONCAT
CONCATENATION~ writing one'patterndirectly after ENATION
another specifies the pattern obtained by joining the
two patterns together. The pattern:

, • ~~'''' " ~< ,~ •

[JOAN] [DOE]

is exactly equivalent to the pattern~

DISKATE User's Manual

[JOAN DOE]

Concatenatin~ two patterns of the form [textl] [text2] is
not very useful, because instead you could just use the
pattern [textltext2]. Concatenation is very important,
however, when the two patterns are specified by differ
ent means. A pattern of the form [text] specifies the
pattern consisting of text followed by a-carriage
return. There is no way to specify this pattern directly
in the form [text] because a pattern of this form cannot
extend accross more than one line.

You can also use concatenation with the E command.
For instance, the command:

would enter first a carriage return, then the characters
T,A,B,L,E,:, and then another carriage return.

If •• is a matching argument, then how should we
interpret the command:

If

? Literally it would mean, print "anything" on the ter
minal. Remember, though, that anything is restricted in
scope to the current file. Thus the command " •• will
PRINT THE ENTIRE CURRENT FILE ON THE TERMINAL. Suppose
we want to see everything after the 35th line. The
command:

"35 ••

will do what we want. Acutally, to be completely pre
cise this is not quite correct, since this will give us
the 35th carriage return followed by anything. Seeing
this extra carriage return at the beginning will not do
us any harm, of course, but an argument error like this
can be very serious with other commands. To get exactly
what we want we should really use the command:

"36 % ••

since the interval consisting of "everything after the
35th line" is the same as Ueverything starting with the
36th line". It is a frequent but ihescapable nuisance
in many areas of programming to worry about whether
something should be n or n+l.

Similarly to get the first 5 lines of the current
file, though the command It % •• 4 % would work, a simpler
command is:

11 •• 5

-12-

CAN USE
CONCAT
ENATION
WITH E
COMMAND

1/

PRINTS
ENTIRE
CURRENT
FILE

" •• n

GIVES

DISKATE User's Manual

Li terally the argument .• 5 means I'anything, followed by
the '5th c'arr iage re't urn It •

Now is the time to confess to a little white lie.
So far in this manual we have seen the use of the symbol
•• both as an operation for combining intervals, and as
a matching argument. In fact, instead of •. you can use
any number of dots from one on up -- so, for example the
argument patternl.pattern2 has the same meaning as
patternl •• pattern2 or patternl ••• pattern2. Let's see
why this "ambiguity" causes DISKATE no problems. The
actual symbol which DISKATE recognizes internally is the
single dot. Since. can be interpreted as a matching
argument which matches anything, .• can be thought of as
a matching argument, which means: anything followed by
anything. Clearly this has the same meaning as just
pla'in anything, which is why any nlUllber (greater than
zero) -of dots amounts to the same thing. The use of two
dots here is simply personal preference. A single dot
by itself in an argument is easy to miss, which is why
two are being used, in this manual, but in your own work
you should use either one, two or three dots together as
your preference suits.

We've seen so far that specifying an interval which
matches a given line number, or a give group of lines
identified by line number, can be slightly tricky.
DISKATE provides a way to deal with numbered lines
directly which eLiminates some of this difficulty, but
which is not as general in building complex expressions.
The symbol ! is similar to % in that it refers to an
entire line, but rather than being a general suffix
which can be appended to any argument, the symbol ! is
only placed after an occurrence number to specify the
n'th line in the current file. Specifically the
argument:

n!

specifies the'n#th'Iine in thedurtent file. This is
NOT A MATCHING ARGUMENT. When evaluating n!, DISKATE
searches through the current file for the n'th line
without regard to anything else. 'Let's see how this
compares to our previous examples.

Above we saw an example of a n command using
'expressions of the: form n% for showing 28 lines
.beginning with line 41. To do this using the ! symbol
we could use the command:

"41! •• 681

Notice here that 60r-isnot a matching argument, 'so it
definitely does not match the 60th line after the 41st

-13-

1ST n
LINES

ETC.

ALL HAVE
-THE SAME
MEANING

nl

SPECI
FIES
THE N'TH
LINE
DIRECTLY

-- NO
MATCHING

DISKATE User's Manual

line. Instead, 60! simply specifies the 60th line -
period, no matter where the expression 601 occurs.

Tne ! is v.ery useful when you want to see specific
numbered lines in a file, but not as useful when you
want to specify lines relative to a c·ontent oriented
argument. We saw for instance, that the command:

I, [JOAN] % •• 3_

will print on the terminal four lines beginning with the
first occurrence in the current file of JOAN -- WHEREVER
that happens to be. The command:

II [JOAN] % •• 3!

would give an error message if the first occurrence of
JOAN happened to be beyond the 3rd line in the current
file. Even though it may seem like more work at first
to learn to specify intervals using expressions of the
form n %, because these expressions can be used more
widely-than expressions like n! it's a good idea to go
to the extra effort.

There is another important way in which expressions
of the form n! differ from expressions like n %. We saw
that the argument -1 %. refers to the last 1 ine in the
current file, the expression -2 % the next to the last
line, and so on. ·In evaluating-expressions of the form
nt, DISKATE will TREAT ALL OCCURRENCE NUMBERS AS POSI
TIVE. If you specify nl and there are no~ n lines in
the file, nl will evaluate to the address of the 0 which
forms the upper bound of the file in the computer's
memory. So, -21 will not give the next to the last line
in the current file, but will give the address of the 0
at the end of the file, as will -31 and so forth, since
-2 is the same thing as 65534, which is surely larger
than the nwnber of lines in the file. This means that

-11

is a convenient expression for the 0 at the end of the
current file. We'll have occasion to need this.

Since DISKATE provides the facilities for referring
to locations in the current file by line number, in more
than one way in fact, you might wonder if there is a way
·for DISKATE to provide you with the numbers of the lines
in the current file. There is indeed a way, but we'll
postpone a detailed discussion until section 1.4 because
it is keyed to the assembler. . To jump the gun a bit,
the P command is similar to the If command and will print
the interval given as argument with line numbers. How
ever, if you give this command with a file consisting of
ordinary prose text~ THE TEXT WILL COME OUT IN A PECUL-

-14-

nl
TREATS n
POSITIVE

IF TOO
BIG
GIVES
ADDRESS
OF 0
AT END
OF FILE

-11

GIVES 0
AT END
OF FILE

P
COMMAND

PRINTS
INTERVAL
WITH
LINE
NUMBERS

IN

DISKATE User's Manual

IAR FORMAT with all kinds of spaces where they shouldn't
be. The P command is designed to print assembler source
code, and the spacing is so that the listing will con
form to a convenient assembler format. If you're able
to recognize lines properly in spite of this format, you
can use the P command to obtain line numbers for use in
expressions like n % and nl. The use of line numbers
obtained in this way is a very good way of making sure
that an occurrence of a pattern is in the right place.

There is a way to make the P command easier to use
for editing prose by using a command which we'll discuss
in more detail later. The command:

TAB 0 0 " 0

will suppress most of the format pecularities. It can
still make your text look slightly odd, since if there
are multiple spaces surrounding the first three words on
a line, the multiple spaces will be reduced to only a
single space, so if the first line of a paragraph is
indented, for instance, this indentation will be sup
pressed. However, giving this command should allow you
to view prose text with line numbers conveniently.

It may seem that we've been spending an undue
amount of time with the II command. DISKATE has many
more commands than just the ones we've discussed so far.
The reason for spending so much time with the .. command
is to develop the concepts of interval, matching, and
many of the ways that intervals can be specified by
using for illustration a-command which simply shows us
the interval in question. Although we are not finished
with seeing new operations by which you.can combine
intervals, perhaps now's the time to begin- introducing
some more commands. Be.fore doing this I should
emphasize as strongly as possible that if you are ever
in doubt as to just what interval an argument actually
specifies, it's always best to give DISKATE a IV command
and see.

So-far the DISKATEcommands we've discussed have
been concerned with two kinds of operations: entering
text, and viewing text already entered. Another impor
tant major operation"involved in editing is DELETING
text. In DISKATE this is accomplished by the K com
mand, which will KILL, or delete, the interval given as
the argument. Let "s --go back to our standard example:

NAME: JOAN-DOE
OCCUPATION: -DEER
SEX: FEMALE
ADDRESS: THE WOODS

Suppose we want to make the following changes, which

-15-

ASSEMBLER
FORMAT

(MANY
EXTRA
SPACES)

K
COMMAND

KILLS
(DELETES)
INTERVAL

DISKATE User's Manual

both involve only deletions: the name JOAN is to be
changed to JON and FEMALE to MALE. Let's do the second
one first. What we want to do is delete the FE from
FEMALE. It happens in this case that the only occur
rence of FE in the file is in FEMALE, so the command:

K [FE]

will do what we want. But!!! Remember that the argu
ment [FE] specifies the FIRST occurrence of the charac
ters F,E in the file. How do we know for sure that this
first occurrence is in the right place? Of course, in
this case the whole file is small enough that we can
look and see, but even then it is possible to make a
mistake. The best thing to do is ALWAYS USE A II COMMAND
TO MAKE SURE THE INTERVAL YOU GIVE IS THE ONE YOU WANT.
If we were being careful we would have said:

ItfFE)%

and DISKATE would have responded wi th:

SEX: FEMALE

Then we would have the confidence that the K[FE] command
would do what we intend. When you give a K command, the
only thing that will be printed on the terminal is the
prompt character when DISKATE is ready to accept another
command -- unless the argument you give involves match- .
ing and DISKATE cannot find anything that matches, in
which case an error message will be printed. If we're
being as cautious as possible, perhaps we ought to take
a look after the K command to make sure everything looks
the way we want it -- this is after all the goal of text
editing. The simplest way to get a quick look is to use
the ' command. If we give the command ' right after the
K[FE] command, then DISKATE will print on the terminal:

SEX: A MALE

Let's take a careful look at this. Remember that
. the ' command pr ints the line wi th the target character I
putting the symbol nAn between the target character and
the previous character -- i.e. exactly where any text
entered with an 'E command would be inserted. It's been
a while since we mentioned the target character and its
cohort the entry pointer. The" command does not affect
the entry pointer, but the K command will SET THE ENTRY
POINTER. After a K command, the TARGET CHARACTER WILL
BE THE FIRST CHARACTER AFTER THE INTERVAL DELETED.
That's why the hAn is in front of MALE in the line shown
above. This setting of the entry pointer can be both

-16-

K
COMMAND
SETS
TARGET
CHAR =
1ST CHAR
AFTER
INTERVAL
DELETED

DISKATE User's Manual

useful and also cause severe difficulties if not kept in
mind.

The d ifficul ti,e·s can a"risebecause it frequently
happens that you want to enter some text, then make some
changes using the K command, and then go on to enter
more text. Becuase the K command resets the entry
pointer, if you're not careful to put the entry pointer
where you want it, the text you enter thinking it is
going at the end of the file will actually be going into
the middle. The reason DISKATE resets the pointer, how
ever, is that a K command followed by an E command will
REPLACE the deleted interval by the text given with the
E command, which is extremely useful. These two consi
derations are very important, but in order to see some
more examples of using the K command, we'll postpone a
detailed discussion.

Now let's do the second change we had planned:
changing JOAN to JON. In this case what we need to do
is delete the A from JOAN. Before getting involved,
let's give a H •• command and see what the file looks
like. In response to ,u •• DISKATE will print:

NAME: JOAN DOE
OCCUPATION: DEER
SEX: MALE
ADDRESS: THE WOODS

Right away we can see that to simply say K[Aj would be
trouble. The first occurrence of A in the file is in
the word NAME, so K[Al would delete the A from NAME,
which is not at all what we want. Orie approach would
be to try to count the number of A's in the file before
the one we want, so we could specify the right one by
using occurrencing. In this case the A in JOAN is the
second A in the file, so the command:

K2[Aj

"'will in 'fact do what we want. " 'But this method has real
difficulties. First of all, we can hardly find out
using a "2[AJcommand whether we've got the right

, occurrence of A; Since "2 [AJ will "only print A -- not
telling us WHICH A it's printing. One way to remedy
this would be with the command:

.... 2[A]

'This would'print the whole current file up to the 2nd
occurrence of A, which would be a way to make sure that
the 2nd A is really what we want. But, a more serious

"problem with this approach is that 'in a long file, it
would hardly be convenient to have to count occurrences

-17-

DISKATE User's Manual

just to specify the one we want. At this point we are
really getting to the whole crux of using DISKATE as a
text editor~ Because matching is content oriented, it
allows us to do some incredibly powerful things, but at
the same time we have to take some care to be sure that
when an interval is specified by matching it is the one
we want. Although this particular change is simple, and
we've already seen one way that will work, let's look at
several different methods that will be very helpful in a
great variety of situations.

Let's suppose for the moment that we can be confi
dent that the JOAN in which we want to delete the A is
the first occurrence of JOAN in the file. Here, of
course, we can be because the file is so simple. The
thing that we want to do is: delete the A' in JOAN.
DISKATE has a construct which reflects exactly this
meaning. We have said repeatedly that in determining
intervals using matching arguments, DISKATE works with
the current file. Actually this has been an oversimpli
fication which normally does no harm, but at this point
we need to be more precise. Whenever an argument
involves matching, before the argument is evaluated
DISKATE restricts the scope of the argument to an
INITIAL REFERENCE INTERVAL. For most commands this
initial reference interval is the current file, which is
why our previous oversimplification is normally not
misleading. DISKATE has a special operation which
allows you to in effect set the initial reference
interval to something else. Whenever DISKATE encoun
ters a I in evaluating an argument, THE INITIAL REFER
ENCE INTERVAL FOR THE REST OF THE ARGUMENT IS THE
INTERVAL CORRESPONDING TO THAT PART OF THE ARGUMENT
ALREADY EVALUATED. The easiest way to understand this
will be by example.

The argument [A] will, to be precise, match the
first occurrence of A in the initial reference interval,
which is normally the current file. The argument [JOAN]
will match the first occurrence of J,O,A,N in the ini
tial reference int.erval ,'which is normally the current
file. The argument [JOAN] I [A] will match the first
occurrence of A WITHIN the first occurence of J,O,A,N in
the initial reference'iriterval,normally the current
file. The command:

K [JOAN] I [A]

will achieve exactly what we want provided, of
course,'as we mentioned, thai we ~re sure that the JOAN
in question is the first occurrence of JOAN in the
current file.

In ~'larger file, however, we would still have the
general problem of making sure that we were in the right

\

-18-

INITIAL
REFER
ENCE
INTERVAL

GIVES
THE
SCOPE
OF
MATCHING

(USUALLY
CURRENT
FILE)

SETS
INITIAL
REF.
INTERVAL
FOR REST
OF ARG
TO PART
OF ARG
TO LEFT
OF t

DISKATE User's Manual

place for a change. In the same way that we saw before,
issuing "[JOAN] I [A] or even h[JOAN] will not tell us we
are making the change in the right place, because it
will not tell us which occurrence of JOAN we are looking
at. Let's suppose that we have a 'file in which we want
to make exactly this same change -- deleting the A from
an occurrence of JOAN, but there are many occurrences of
JOAN in the file and we want to be very careful to de
lete only the right one. The command:

" •• [JOAN]

will print everything in the current file up to the
first occurrence of JOAN. Suppose this is not the right
one, and we want to print the rest of the file up to the
next JOAN. One way of doing it would be:

If[JOAN] •• 2[JOAN]

There's nothing wrong with this, but if this is not the
right JOAN either, we would have to be keeping track of
the occurrence number. Here is a command that you can
keep on issuing successive times to see the intervals of
text between successive JOAN's:

U> •• [JOAN]

This command uses a feature we haven't seen before.
So far the only time we have encountered the character
">"is as the prompt'character. DISKATE recognizes
this symbol as a special argument which does not involve
matching. > denotes the upper address of the LAST IN
TERVAL COMPUTED BY DISKATE. Since we just got through
with the command [JOAN], in this case> will be the
address of the N in the first JOAN in the file. The
argument > •• then will match everything in the current
file from the N in the first JOAN onward.

There is an important but subtle point here that we
should note b~foie going on~ In all the cases we have
seen, DISKATE arguments are intervals -- i. e. a pair
of addresses. But here we've just said that> denotes
the upper' address" in' the lastintetval computed by
DISKATE. This implies that > denotes not an interval
but a single address. In fact, any symbol or expression

.. in DISKATE that determines' a'singleaddress is also
interpreted as AN INTERVAL WHOSE UPPER AND LOWER ADDRES
SES ARE EQUAL. We said that. an interval was a pair of
addresses in which the first address was not greater
than the second, but they certainly may be equal. For
example, in evaluating arguments DISKATE takes the
expression: ". ."

-19-

>

GIVES
UPPER
ADDRESS
IN
LAST
INTERVAL
COMPUTED

SINGLE
ADDRESS
EQUIVA
LENT TO
INTERVAL
WITH
UPPER
AND
LOWER
ADDRESS
THE SAME

DISKATE User's Manual

2000H

to be completely equivalent to the expression:

2000H •• 2000H

Note that this last makes perfect intuitive sense.
Now let's return to the example. We started with

the command II •• [JOAN] , and could see from it that the
first occurrence of JOAN was not the right one. What we
said we wanted to do, then, was view the rest of the
file to the next JOAN. Our command ") •• [JOAN] will do
exactly that, with a minor bit of nuisance. This com
mand will print the interval from the N in the JOAN we
just saw to the next occurrence of JOAN. If this JOAN
is not the right one either, we can type exactly the
same command, ") •• [JOAN], and keep on typing it, to see
the consecutive intervals of text prior to successive
JOAN's. Actually, as we'll see at the end of section
I.l, there is a special command called DEF which is very
useful in exactly this kind of situation where we want
to keep giving the same command repeatedly. The DEF
command will allow just carriage return to invoke a
special default command.

The minor bit of nuisance referred to is the fact
that the N from the last JOAN we looked at will begin
the printout: (We'll see in a minute how to get rid of
that.) The second time we type U) •• [JOAN] the symbol)
will be the upper address from the last interval compu
ted, which in this case will be the N from the second
occurrence of JOAN. Each time we type the command, a
new interval will have been computed, so the value of)
will change. Note that to use this method, you must not
use any other command between the instances of
n) •• [JOAN], since an intervening command will probably
cause an interval to be- computed, so that) will not
have the value we want it to.

'., After having typed in the command II) •• [JOAN] enough
times, we should come to the JOAN we want. But now
there is a problem. We want to kill the A in the JOAN
in the interval we just saw -- but how do we specify it?
There are different possible approaches, but here is a '
simple one which will show another feature of DISKATE
we haven't seen before. In the interval that we just

.. -- computed, we can be absolutely sure that there is only
one occurrence of JOAN, since we set things up so that
the command ") •• [JOAN] is showing us the interval of
text until the NEXT occurrence of JOAN. What we want to
do is delete the A in the JOAN -- and we know there is
only one -- in the interval just computed. The follow-

"jog command will do exactly that:

-20-

DISKATE User's Manual

KI [JOAN] IA

,Let's .take this carefully. The first thing wese,e in
this command is K, which is the symbol for the Kill
command. The very next character in the command is a I.
We have said that 1 causes the part of the argument
already given to become the initial reference interval.
But here we haven't given any argument yet at all! What
we're seeing is an example of an extremely useful
DISKATE feature: IF A COMMAND REQUIRES AN INTERVAL AS
ARGUMENT, AND NO ARGUMENT AT ALL IS GIVEN, THE ARGUMENT
USED IS THE PREVIOUS INTERVAL COMPUTED.

So. The letter K says that this is a kill command,
and what follows is to be the argument. The 1 says to
take that part of the argument already computed and use
it as the initial reference interval. Since no argument
thus far has been given, the I immediately after the K
wilL bause the initial reference interval to be the
previous interval computed. That interval, remember,
went from the N in the JOAN before the one we want, to
the next JOAN, which is the one from which we want to
delete the A. So, the argument up through I [JOAN]
specifies the first occurrence of JOAN in the previous
interval computed,' which is just the JOAN we want. The
next I sets this, that is the JOAN, as the initial
reference interval, so that the total argument
f [JOAN] I [A] specifies: "

the A within the first JOAN within the previous
interval computed before this command is executed.

This is exactly what we want, so the KI [JOAN] 1 CA] does
the trick. Note that this is an example of using more
than one I in a single command. You can use the J
repeatedly in this way to keep narrowing down the scope
of matching to get. what' you want.

We saw that the symbol> can be used to give the
upper address of the last interval computed by DISKATE.

'There is a'correspondingsymbol which denotes THE LOWER
ADDRESS OF THE LAST INTERVAL COMPUTED: <. Here are
some ways this. can be used. Suppose you just saw an
interval using a » command ,""and it d idn ' t amount to a
whole line, and you want to see the line containing this
interval. The command:

fI<%

will do the trick. Notice that the command:

"I . .
-~-" .-..

will not work. The right after the » sets the initial

-21-

MISSING
ARGUMENT

USES
PREVIOUS
INTERVAL
COMPUTED

<

GIVES
THE
LOWER
ADDRESS
OF THE
LAST
INTERVAL
COMPUTED

DISKATE User's Manual

reference interval to the last interval computed, so the
whole argument I •• means the first line of the last
interval computed.- But the last interval computed did
n't contain an entire line, so this command will give an
error. The I operation allows you to specify an interval
with a given interval, but there can't be any overlap.
with < and> you can see intervals that do overlap the
last interval computed. The command:

u< •• 3

will show you three lines beginning with the first char
acter of the last interval computed. (If that character
happpens to be a carriage return you will appear to see
only two lines.) It doesn't matter one way or the other
whether the previous interval computed contained three
lines or not.

Care must be taken in using < in complex arguments,
since its value will change as the argument is evaluat
ed. < is ASSIGNED A VALUE AS SOON AS THE LOWER ADDRESS
OF THE INTERVAL'IS DETERMINED. So, if you wanted to see
everything in the current file up to the first character
of the last interval computed, you could NOT use the
command:

.... <

since as soon as DISKATE sees the •• it knows the lower
address of the interval to be computed will be the
beginning of the current file. < is then assigned this
value, so the argument •• < specifes only the first char
acter of the current file. The value of < can change
several times as a single argument is evlauated. For
instance, in the argument:

[JOAN] I [A]

< is first set to the address of the J in the first
occurrence of JOAN in the file, and then set to the
address o,f the A within that. An argument wi th several
instances of I may cause < to be reevaluated several

'times during a single-argument.
A value is not assigned to > until either the whole

argument is evaluated or a I is encountered. So, the
argument: - '.

[JOAN} I>

specifies the N in the first occurrence of JOAN in the
current file. If you are in doubt about what < or >
should mean, give DISKATE a simple test case using a n

command to see the result.

-22-

< GIVEN
VALUE AS
SOON AS
LOWER
ADDRESS
OF
INTERVAL
IS DETER
MINED

> GIVEN
VALUE
WHEN
WHOLE
ARG
EVAL
UATED OR
AT I

DISKATE User's Manual

Above we saw how we could see successive intervals
of text ending in the next occurrence of JOAN, but men
tioned that by using the command "> •• [JOAN] the first
character printed would be the N in JOAN. It certainly
does no harm to keep having this N printed, since this
is only a " command, but it would be nice to know how to
get rid of it. It's always good practise to be able to
specify precisely the interval we want, because a slight
nuisance such as this initial N could turn into a signi
ficant error with other commands. The interval > •• [JOAN]
includes everything we want to see, but what we want is
the characters from the interval) •• [JOAN] starting with
the first character after the initial N. The command
below will be an effective replacement for the
") •• [JOAN] eliminating the initial N problem. It
introduces a new matching symbol which we haven't seen
before.

Ii) •• [JOAN] 12@ ••

The symbol @ will match ANY SINGLE CHARACTER. As
an argument all by itself it matches the first character
in the initial reference interval. In the command
above, the argument. to the left of the I is exactly what
we used before, so let's look at the part to the right
of the I. 2@ matches the 2nd occurrence of the pattern
@,'or the ~nd occurrence Qf any character. In other
words, 2@ matches THE 2ND CHARACTER in the initial
reference interval. 2@ •• therefore matches everything
in the initial reference interval starting with the 2nd
character. If we're using the command above as a
replacement for the II) •• [JOAN] , before the command above
is given, the last interval computed will presumably be
the interval of text starting with the first character
after an occurrence of JOAN, or the first character in
the current file if we are just starting out. So,
) •• [JOAN] will match everything from the N in the cur
rent JOAN to the next JOAN. The I sets this as the ini
tial reference interval ,. so the argument > •• [JOANlI2@ .•

'becomes everything starting with the second character
WITHIN: the interval from the N in the current JOAN
through the next. entire JOAN.' . This is exactly what we
'want -- the same interval we were getting ,before, but
with the first character trimmed off.

"Here"s a different kind of example . that shows how
you can use the I operation together with the @ matching
symbol. Suppose the file you are editing is a program,
and you want an argument which will match the first
occurrence of a variable name, let's say BUFFER, which
occurs at the BEGINNING OF A LINE. To say that it
bccurs at-the beginning of a-line means either that it
will be the very first thing in the file, or else it

-23-

@

MATCHES
ANY
SINGLE
CHAR

n@
MATCHES
THE
nTH CHAR

DISKATE User's Manual

will be immediately preceded by a carriage return. To
simplify things let's suppose we can rule out the first
possibility. Here's the argument that will work:

[BUFFER] 12@ ••

The argument [BUFFER] matches the first occurrence of a
carriage return followed by the characters B,U,F,F,E,R,
so the whole argument matches everything from the 2nd
character on within the first occurrence of a carriage
return followed by BUFFER. That is, the argument
matches the everything in [BUFFER] after the carriage
return, which is what we want.

Let's return now to our example of deleting the A
in JOAN and see another way it can be done. Recall that
the last way we did it, we ended up marching through the
whole current file using " commands until we found the
right JOAN. But suppose we could be sure we had the
right JOAN just by seeing the line containing it.
Here's an approach where we only view a line at a time,
which will introduce a new DISKATE command' that is very
important to keep in mind in conjunction with the K
command. We recall that the ' command is a simple com
mand with no argument that will show us the line with
the target character, and the position of the target
character in the line~ What we~re going to do is set
the entry pointer to successive JOAN'S and use the '
command to view the line with the target character,
until we get the right JOAN. Then we can go ahead and
use the K command. The first step is to set the entry
pointer to the first JOAN in the file. This is
accomplished with the command:

"'[JOAN]

We encountered the symbol' u'" I. before -- DISKATE
prints this symbol between the target character and the
preceding character in response to a ' command. When
used asa command, A SETS THE ENTRY POINTER TO THE LOWER
ADDRESS IN THE INTERVAL GIVEN AS THE ARGUMENT. That is,
the'" command.setsthe target character as the first
character int.he interval given as the argument. In
this case, [JOAN] matches the first occurrence of JOAN
in the file, so the "'[JOAN] command sets the entry
pointer so that the J in this JOAN becomes the target
character. Now if we give a ' command and the target
character is .the J in ~he w~ong JOAN, the command:

A> •• I [JOAN]

will set the J in the n~xt JOAN t6 be-the target ~harac
ter. Again we can give the' command to see the line

-24-

PATTERN
T2@ ••

MATCHES
PATTERN
AT
BEGIN
NING OF
LINE

COMMAND

SETS
TARGET
CHAR
TO
FIRST
CHAR OF
INTERVAL
GIVEN AS
ARGUMENT

DISKATE User's Manual

with the target character to check to see whether we've
got the right spot. Note that because the ' command
does not take an argument, the symbol 1') 11 has the same
value after the ' command as before it. What command
shall we use once we have the right JOAN? There are
several different commands we could use that would all
have the desired effect. As before, KI [JOAN] I [A] would
do. Or, since we know that the target character is the
J in the JOAN we want, we could use the command:

In this command we see still another use of the
symbol u. The command is a Kill command, so " u is
not used here as a command. Rather, 1. is used here as
part of an argument. The symbol n used as an argument
'gives AN INTERVAL BOTH OF WHOSE ADDRESSES ARE THE VALUE
OF THE ENTRY POINTER. Or, you can think of ""',, as a
SYMBOL WHICH MATCHES THE TARGET CHARACTER. So, the
argument in the command above, translated literally,
means the first A within everything in the current file
starting with the target character. Since we already
arranged for the target character to be the J in the
JOAN from which we want to delete an A, this command
will work.

In fact there is a command for deleting the A in
JOAN in this situation which is even simpler. When we
used the ... command to set the target character to be the
J in successive JOAN'Sr we also set the last interval
computed to be the whole JOAN. So, by the time we've
found the right JOAN we will know that the last interval
computed will be this JOAN. All we need to say, then,
is:

KI [A]

The I before any argument is given sets the initial
reference interval to the last interval computed, which
is the correct JOAN,'and'withln this interval the first
A -- the only A in fact -- is just what we want to
delete. Note that if we use this command for the dele
tion, the"main function of having llsed the A command was
to be able to see where we were using the ' command. It
is often not a bad idea to. use the command this way,
even when you "ateri6t sure whether you will need the
target character to be set to the first character of the
argument in question.

Perh~pi this is the time to mention an important
feature of DISKATE. So far we have been giving exam
ples of DISKATE commands one by one. Actually, you can

, giveDISKATE an ENTIRE 'LINE OF COMMANDS at once
SEPARATED BY COMMAS. Rather that giving two separate

-25-

IN
ARGUMENT

MATCHES
TARGET
CHAR

MULTIPLE
COMMANDS
ON ONE
LINE
SEP
ARATED
BY

DISKATE User's Manual

commands:

"> •• I [JOAN]

it's easier to put both commands on a single line:

" >. . I [J OAN] , ,

By now it should be clear that there will almost
always be many different ways of accomplishing a given
thing in DISKATE, and after using it for a while you
will surely develop your own style. The examples
presented here reflect the style of the author of this
manual -- a style which you may not care for once
DISKATE becomes familiar. One of the things that has
been stressed above, and will be stressed below, is that
you should always look before you leap -- give DISKATE a
.. command or ' command which will preview any change you
are about to make. Constantly giving such viewing com
mands may seem tedious, but they will save an enormous
amount of grief that can result from giving an erroneous
command.

We've seen many examples of various simple dele
tions -- deleting an A from an occurrence of JOAN to
change it to JON. The deletion itself was usually easy,
but the work came in specifying where it was to take
place. Now let's suppose we wanted to change the JOAN
instead to JOHN -- deleting an A from JOAN and inserting
an H. without repeating all of the previous examples,
let's suppose we have set things up, by various"
commands perhaps, so that in the last interval computed
the first JOAN is the one we want to change. We saw
that the command:

. K I [JOAN] I A

will delete the A from this JOAN. Now we want to add in
the H. As mentioned above, the K command sets the tar
get character to be the first character after the inter
val deleted. After the command KI [JOAN] lA, then, the
target character will be the N in the JON. (We just
deleted the A.) To insert the H we will want to use an
E command, and remember the E command inserts the char
acters of its operand between the target character and
the preceding character. Since the target character is
now the N in JON, anything entered with an E command
immediately after the KI [JOAN] I [A] will go between the N
in JON and the previous character, which will be the 0
in JON. This is exactly where we want to put the H.
The command: ,

-26-

COMMAS
ARE
ALLOWED

K
FOLLOWED
BY E

REPLACES
KILLED
INTERVAL

DISKATE User's Manual

K I [J OAN] I [A] ,E [H]

will replace the A in the JOAN with an H in a single
command. In general, Kinterval,E[text] will REPLACE the
characters in the interval with text.

At this point we come to what is possibly the
greatest single potential source of error in ordinary
DISKATE usage. Regardless of whether you want to use an
E command to replace with new text an interval which has
been deleted with a K command, the K command will set
the entry pointer so that the target character is the
first character after the deleted interval. It
frequently happens in using a text editor that you will
enter some text, discover an error perhaps, go back and
make a change, and then resume entering more text. Here
we have a problem. Any change in the file made using
the K command will reset the entry pointer. If we don't
somehow save the value of the entry pointer before the
change is made, and then restore it after making the
change, when we go back to entering text we will be
entering it in the wrong place. How do we get the entry
pointer back to where it was before we made the change?
As usual there are several methods.

Perhaps the safest method is to save the value of
the entry pointer and then restore it. This can be done
using a DISKATE feature we· haven't seen before:
variables. A DISKATE VARIABLE is named by a string of
characters beginning with a letter, and containing only
upper case letters and digits. Variable names can be of
any length." When you br ing up DISKATE certain var iables
used by the assembler will already have values, and
should not be changed unless you are certain you will
not be using the assembler." These variables are:

A, B, C, D, E, H, L, M, SP, PSW

A variable can be assigned a value using the = command,
which has the form:

I

variable=argument

In this case ·there MUST· NOT BE"A BLANK between the =
sign and the variable name, since if there were DISKATE
would interpret the variable name as the name of a
command. There can ~ however," be blanks between the =
sign and the argument if you like. The argument can be
any DISKATE argument, and the variable is given the
value of the LOWER ADDRESS of the interval specified by
the argument. So, if you are going to make some changes
in text you have just entered with the E command, and
want to save the entry pointer,· you can use the command

-27-

WITH
ENTERED
TEXT

TO
RESUME
TEXT
ENTRY
AFTER
MAKING
CHANGES,

ENTRY
POINTER
MUST BE
RESTORED
! ! ! ! ! ! ! !

VARIABLE
NAMES:

LETTERS
& DIGITS
STARTING
WITH
LETTER

VARIABLES
USED BY
ASSEMBLER

=
COMMAND

VAR=ARG
SETS
VARIABLE
TO LOWER
ADDRESS
OF ARG
INTERVAL

DISKATE User's Manual

ENTRY=

and then when you want to restore the value of the entry
pointer give the command:

..... ENTRY

Note that the A command does not use an =, and
automatically assigns the value of the lower address of
the argument to the entry pointer. (In fact =ENTRY
would give an error message, since ~ is not an ordinary
variable.) The choice of "ENTRY" as the name of the
variable is of course arbitrary, and you may want to use
shorter names. Be careful, though, about using single
letter names. If we used the variable E instead of
ENTRY, this could cause real problems since E is one of
the variables used by the assembler. Whenever you are
ready to begin entering text after having made some
changes, it's always a good idea to give a ' or .. com
mand to make sure the entry pointer is where you want it
to be. If you make a change, fail to restore the entry
pointer, and then resume text entry, you may find your
text looking much more botched up than it was before you
made the change.

While a simple way to save the contents of the
entry pointer is to set a variable = ~ and then vice
versa, as we just saw, you must be extremely careful
when you do this. Here is the problem. In many cases
you will want to enter new text at a given RELATIVE
LOCATION within the source file. If you save the
contents of the entry pointer in a variable, make a
change in the text, and then restore the entry pointer
to the original address, the entry pointer may not be
where you want it to be if the change you made in the
text changes its size. In this case the entry pointer
must be restored by invoking a command which sets the
entry pointer to a pattern matching argument. We can
see how to do this using commands that we already know.
Suppose there is asimpl~ pattern that you can be sure
does not occur anywhere in your text, such as: I!!!!
Before changing the entry pointer to make the changes in
your file, give the command :" "'. .

E[!!!!!1

then after the changes have been made, the command:

K[!!!!!]

will remove the exclamation points and restore the entry
pointer in a single step. Of 'course, the entry pointer
will end up in the wrong place if this pattern should

-28-

TO
RESTORE
ENTRY
POINTER
TO
RELATIVE
LOCATION

ENTER
UNUSED
PATTERN
BEFORE
MAKING
CHANGE,

THEN
KILL IT

DISKATE User's Manual

actually occur in the file higher up.
We'll have a great deal to say below about the

special case of setting the entry pointer to the end of
the file.

Variables can also be used as occurrence numbers.
We saw above examples of how to march through your file
seeing successive instances of a given text pattern.
Another way to do it is using variables for occurrence
numbers. Suppose for instance that your file is a list
of lines, each one having a similar format to:

NAME :' JOAN DOE
OCCUPATION: DEER
SEX: FEMALE
ADDRESS: THE WOODS

and you wanted to page through successive entries. To
do it using variable occurrence numbers, begin with the
command:

X=l

Then to see the next entry you can use the command:

"X[NAME] •• 4_,X=X+I

Note once again that we must use the pattern matching
symbol here rather than !, which specifies an absolute
line number. One slight drawback to this method is
that in evaluating the argument X[NAME] •• 4 DISKATE must
search the entire current file from the beginning each
time, so it will tend to be a little slow.

The + we haven't encountered before, so it's worth
taking a minute to understand what it does. On the
surface a command like X=X+I appears straightforward -
it simply adds one to the value of X. However, DISKATE
arguments are generally intervals, and a single number
is simply an interval where both addresses are the same.
+ can be usedwi'th any argument, so we should clarify
what it means with a general interval. An argument of
the form:

arg+value

is evaluated by adding value 'to BOTH addresses of arg.
In our standard example, for instance, the command:

ff[NAMEl+I

will print A,M,E,space on the terminal. Arithmetic
operations you can ~se are +, -; *, and / with their
usual meaning. Di~ision will give only the quotient

-29-

ARGI
+

*
/

ARG2

PERFORMS
OPERA
TION ON
BOTH
ADDRES
SES OF
ARGl
WITH
LOWER
ADR OF
ARG2

DISKATE User's Manual

discarding the remainder, and multiplication will give
only the low order 16 bits of the (possibly) 32 bit
product. However, these operations are carried out left
to right with the same priority, so that for instance

1+2*3

evaluates as 9 rather than 7 as it would in a typical
BASIC. As with +, all of the arithmetic operations
operate on both values of an interval argument.

Let's see some ways these operations can be used.
Suppose you want to see the first 10 characters of the
last interval computed by DISKATE. One way to do it
would be by the command:

"I •• 10@

This would say, print everything up to the 10th charac
ter within the last interval computed. Another way
would be:

"< •• <+9

This method does not actually call for any matching. It
says to print the interval from the lower address of the
last interval computed through 9 more characters.

Suppose you wanted to advance the entry pointer by
one character. The command:

will do the job. Likewise ~~-l will back it up by one
charact~r. Many other use~ of the arithmetic opera
tions will show up when using DISKATE as a monitor which
we'll see in Section 1.2.

, Let's return to the problem of restoring the entry
pointer after changes have been made so that text entry
can continue in the proper place. There is one problem
with the method ~fsa~in9 the va1~~ of A with a variable
and then restoring it. What if you have made some
changes, with a K command say, but suddenly don't remem
ber whether you saved the value of A or not? It would
be useful to be able to put the entry pointer in the
right place regardless of what you did before. Fortun-
ately it's easy to specifi where this place will usually
be. If you want to go on entering new text after
changes have been made in what has already been entered,
the new text ~hould go af the END of the current file.
Because the E command places text between the target
~haracter and the preceding character, to add text to
the end of the file you want the target character to be
THE CHARACTER AFTER THE LAST CHARACTER IN THE FILE. How

-30-

ARITH.
OPS
EVALU
ATED
LEFT TO
RIGHT
SAME
PRIORITY

""+n

ADVANCES
ENTRY
POINTER
n CHARS

TO ADD
TEXT TO
THE END
OF THE
FILE

TARGET
CHAR
MUST BE
CHAR
AFTER
LAST
CHAR IN
THE FILE

DISKATE User's Manual

can we specify this? The argument .• specifies the
current file. The argument .• 1> specifies the upper
address of the current file, since the I causes a new
value to be assigned to >. The address we want is one
higher than .• 1>, so the command:

"' •• 1>+1

will put the entry pointer so that any text entered with
the E command will go at the end of the file. Future
shipments of DISKATE will have a special symbol, FA,
which will denote the position where text should be
entered to be appended to the end of the file. This
will make a command to do the job above much simpler.
We'll also see other methods for doing this same thing
below.

There is a subtle point here which may cause some
confusion. In all of the previous examples we've
stressed that 1 allows us to specify in essence an
argument WITHIN an argument. Here we seem to have
violated this. In the argument •• 1>+1, the part >+1
specifies a location which is outside of the part •• to
the left of the I. How can this work? The answer is
that> is evaluated directly by consulting an internal
DISKATE location WITHOUT ANY MATCHING. When DISKATE has
evaluated the argument as far as •• 1, here is what has
happened, among other things:

1.

2.

The initial reference interval is still the current
file.

< has been assigned the address of the first charac
ter in the file.

3. > has been assigned the address of the last charac
ter in the file.

After these have taken place, the value of >+1 can be
calculated directly. It doesn*t matter that this value
lies outside the initial reference interval, any more
than it matters that an explicit address like 2A00H may
lie outside the initial r.ferertce'interval.

There is an alternative symbol which can be substi
tuted for •• in this example. The symbol <F> is an
argument which callsfot"no matching and denotes the
current file. The command we just saw can be replaced by
the command:

A<F>I>+l

There is an important difference •.• ~. does not really
specify the current file, but rather the initial

-31-

ARGll
ARG2

WITH
ARG2 NOT
INSIDE
ARGI

WILL
WORK IF
ARG2 HAS
NO
MATCHING

<F>

DENOTES
CURRENT
FILE

NO
MATCHING
WHATEVER
INIT REF
INTERVAL

A(F> 1>+1

DISKATE User's Manual

reference interval, as we have discussed. There is a
special DISKATE command which we will discuss below
which can be used to manipulate the initial reference
interval, thus changing the meaning of .. -- but <F>
always refers to the current file, no matter what the
initial reference interval is.

The command that we've just seen, -<F>I>+l, is
probably the command that comes the closest to specify
ing the end of the file within the DISKATE language in a
straightforward way. The argument <F>I>+l may look con
fusing, but it "says" the end of the file quite direct
ly. However, there is a simpler command which will work
by a side effect. We recall from a previous discussion
that -I! will also specify the end of the current file.
The simplest command for setting the entry pointer to
the end of the file which is reliable is probably the
command:

.... -l!

If you use this command in preference to <F>I>+l, be
very sure you don't confuse! for %.

There are simpler commands which will set the
entry pointer to the end of the current file, and
we'll see them later, but they require you to be
certain that particular circumstances obtain and so
can· lead to errors. Probably the safest command to
use is either (F>I>+l or -l!.

Once again, it cannot be emphasized strongly enough
that you MUST absolutely restore the entry pointer
before resuming text entry if you make changes in text
already entered. Failing to do this will mean the new
text you enter will be going" in the wrong place!!!

But suppose the worst does happen, and you find
that you have a large block of text in the wrong place.
Of course, this can happen just because you change your
mind about how you want the text to look even if you've
made no mistakes in using DISKATE. Moving text is one
of the key components of editing, arid DISKATE has a
simple move "command. The M command, M for move, will
move the characters in the interval specified by the

"argument and insert them the same place text entered
with an E command would go: between the target charac
ter and the preceding character. Let's look at an
example.' Suppose the current file consists of:

NAME: JOHN DOE
OCCUPATION: DEER
SEX: MALE
ADDRESS: THE WOODS

and suppose we want to move the line with the address so

-32-

SAFE
COMMAND
TO PUT
ENTRY
PTR AT
END OF
FILE

A_I!
SIMPLEST
COMMAND.
TO PUT A

AT END
OF FILE

M
COMMAND

MOVES
INTERVAL
GIVEN AS
ARGUMENT
AND
INSERTS
PRIOR TO
TARGET
CHAR

DISKATE User's Manual

that it is the third line instead of the fourth line.
The first step is to set the entry pointer to the right
place. In trying to determine where to set the entry
pointer, the key is always to determine which two char
acters you want an insertion to go between. Since we
want the line with the address to become the third line,
we want it to go between the second line and what is
currently the third line. In other words, we want to
move what is now the fourth line to the location between
the first character of what is now the third line and
the preceding character. This is achieved by:

or alternately

Now to actually execute the move we use the command:

M4 %
or

M4!

The file will now look like:

NAME: JOHN DOE
OCCUPATION: DEER
ADDRESS: . THE WOODS
SEX: MALE

Notice that the whole job c'ould have been done with
a single command, say:

A 3! ,M4!

However, while you may find yourself using such commands
often when you are accustomed to DISKATE, it's always
wise at first to make sure the entry pointer is in the
right place before making any change. A more cautious
sequence· would be ""3!,' to see the position of the entry
pointer, fol1owedby M4!~

The move command is one of the most powerful in the
DISKATE text editor, and there'is no limit to the size
of the block than can be moved. After a move command
has been executed the target character will be the same
chatacter within-the 'text ~~ it was before, but the
address of that character will be changed by the inser
tion. In the example above, after A31 the target char
acter'is the S iri SEX, and'after the move command the
target character remains the S in SEX, even though this
is now in a different place. To be specific, after an M
command the target character is the character after the
group of characters inserted by the move.

-33-

AFTER M
COMMAND

. TARGET
CHAR IS
1ST CHAR
AFTER
CHARS
INSERTED

DISKATE User's Manual

Let's look at another example of using the Move
command -- one that hopefully you won't have to use.
Over and over we've mentioned that to resume text entry
after having made some changes, the entry pointer must
somehow be restored. Several methods for doing this
have been shown. But suppose the worst happens, and you
forget to do this. How do you repair the text? Typi
cally it will be with a Move command, and what follows
is a "realistic" example. To make it seem natural and
easy to understand, we'll assume in the example that
we're creating and editing a BASIC program -- even
though you may not be using DISKATE to edit BASIC.
We're just at the stage of writing the body of comments
that will go at the beginning of the program. Because
this example will deal with several DISKATE commands in
succession, in this case we will SHOW THE PROMPT
CHARACTER so that the example listings will look just
like they would on your terminal. Here is how the
current file looks:

>" . .
100 REM BASIC PROGRAM FOR BENCHMARKING CHARACTER HANDLING
200 REM
300 REM PROGRAM WILL ENTER INTO A STRING VARIABLE A
400 REM SEQUENCE OF RANDOM LENGTH INITIAL SEGMENT.S OF
450 REM THE ALPHABET TERMINATED BY A CARRIAGE RETURN.
460 REM
500 REM ON A SECOND PASS THE SEGMENTS WILL BE
600 REM SEPARATED AND PRINTED OUT.
>

We notice that there is an extra space following
the word PASS in statement 500, and we want to get rid
of it.

> A [500] % I [], ,.
500 REM ON A SECOND PASS A THE SEGMENTS WILL BE
>K A

," ••

100 REM
200 REM
300 REM
400· REM
450 REM
460 REM
500 REM
600 REM
>

BASIC PROGRAM FORBENCHMARKING.CHARACTER HANDLING

PROGRAM WILL ENTER INTO A STRING VARIABLE A
SEQUENCE OF RANDOM LENGTH INITIAL SEGMENTS OF
THE ALPHABET TERMINATED BY A CARRIAGE RETURN.

ON A SECOND· PA·SS THE SEGMENTS WILL BE
I

SEPARATED AND PRINTED OUT.

Everrthing looks good. (Remember that in a command
like KA, serves as an interval consisting of only one
ch~racter, the taigetcbaracter.) Forgetting to reset
the entry pointer to the end of the file, we go blithely

-34-

EXAMPLE
OF
USING M
COMMAND
TO
RECOVER
FROM
POINTER
IN THE
WRONG
PLACE

DISKATE User's Manual

along entering additional comments:

)E· [70·0 ,REM
800 REM PROGRAM WRITTEN IN VIRTUAL BASIC VERSION 1.0
900 REM
]
>" . .
100 REM BASIC PROGRAM FOR BENCHMARKING CHARACTER HANDLING
200 REM
300 REM PROGRAM WILL ENTER INTO A STRING VARIABLE A
40~ REM SEQUENCE OF RANDOM LENGTH INITIAL SEGMENTS OF
450 REM THE ALPHABET TERMINATED BY A CARRIAGE RETURN.
460 REM
500 REM ON A SECOND PASS700 REM
800 REM PROGRAM WRITTEN IN VIRTUAL BASIC VERSION 1.0
900 REM

THE SEGMENTS WILL BE
600 REM SEPARATED AND PRINTED OUT.
>

Help!! This is not the way the text was supposed
to look! Now the question is how to put it back together.
In this case we're somewhat lucky because the statement
numbers provide an easy way to figure out where things
should go. If this were an assembler program things
might be tougher. After staring at this garbaged up text
for a minute we can s'ee that the last thing we entered,
statements 700, 800, and 900, are out of place. They
should have gone at the end of the file, but instead
have wound up in the middle of statement 500. Here is
one way of correcting the damage. We'll use the entry
pointer to be able to see just where things are by means
of' the' . command.' Clearly the problem starts on what is
now line 500. .

>A[500]%rC700J,'
500 REM ON A SECOND PASS"'700 REM
>X=
>' [900 J % I > ~ ... '"
900 REM'"
>y='"
)"X •• Y
700 REM
800 REM PROGRAM WRITTEN IN VIRTUAL BASIC VERSION 1.0
900 REM ..
> (F> I >+1
>MX •• Y , It ••

100 REM'BASIC PROGRAM FOR"SENCHMARKING CHARACTER HANDLING
200 REM
300 REM PROGRAM WILL ENTER INTO A STRING VARIABLE A
4'00 REM SEQUENCE OF' RANDOM LENGTH INITIAL SEGMENTS OF
450 REM THE ALPHABET TERMINATED BY A CARRIAGE RETURN.

-35-

DISKATE User's Manual

460 REM
500 REM ON A SECOND PASS THE SEGMENTS WILL BE
600 REM SEPARATED AND PRINTED OUT.
700 REM
800 REM PROGRAM WRITTEN IN VIRTUAL BASIC VERSION 1.0
900 REM
>

Success! Let's go over this carefully. First a
word about the general method. The problem is that we
have a piece of text in the wrong place, and to correct
that it has to be moved with the Move command. To
specify the Move command requires we determine three
things: the lower address of the interval to be moved,
the upper address of the interval to be moved, and the
target location to which we want the interval moved.
The method to be used here, which is a fairly cautious
use of DISKATE, is to determine each of these
separately. First the lower address of the interval to
be moved. We decided that the thing which is out of
place is statements 700 through 900, and statement 700
now begins in the middle of line 500. The first thing
we do, then, is set the entry pointer to the beginning
of where statement 700 now is, and use the ' command to
make sure we've got it. The value of the pointer is
then saved in X, which will be the lower address in the
interval to be moved. The use of the pointer here is
not absolutely necessary, but setting the pointer and
then viewing its location with the ' command is so
convenient as a way of seeing what we're doing that it's
worth the extra bother. Remember that the A command
sets the entry pointer to the LOWER address of the
interval which is its argument.

The next step is to set the upper address of the
interval to be moved, which we'll do by setting the
pointer, verifying that it's in the right place, and
then saving it in the variable Y. Right here is another
important possible source of error. The A command, as
well a.sa command of the form: variable=argument, will
take the LOWER address of the argument. What we want
here is the UPPER address of the interval to be moved.
That's why we had to give the command A[900]%I> instead
of simply A[900]%. A[900]%I> sets the entry pointer to
the upper address of the interval [900]%.

... Finally we set the entry pointer to the place where
we want the interval moved, which is the end of the
file. The command for doing this we've already seen.
As a final precaution, the' command "X •• Y will show us
the interval we are about to move, so that we can have
one last check that it is specified correctly. At last
we are ready for the Move'command itself, which is
simply MX •• Y since we have set everything else up.

-36-

DISKATE User's Manual

This may seem like a lot of trouble to have gone to.
In fact, the whole thing could have been accomplished by
the single command:

~<F>I>+I,M[700] •• [900]%

Why on earth should you go through all the work that we
did when such a simple command will work?? The answer
is that the simple' command will work because we happen
to know it is correct. When you are working on editing
in actual usage, you may be just as likely to make a
mistake in a command such as the one just above as you
were to make the mistake which this command is supposed
to correct. The simple command above gives you no
feedback at all to see if the operands are specified
correctly before tha actual move takes place. There is
nothing more frustrating in text editing than to make a
mistake in entering a command which is simply aimed at
correcting a still previous mistake. Of course, the
more experience you get with DISKATE, the more you will
be able to use such simplified commands with no trouble.

By now we have presented all of the most basic
DISKATE text editing commands. The editing commands
that are presented below are on a more advanced level,
and allow you to perform editing tasks repetitively and
create your own "edit macros" -~ programs that accom
plish complex editing functions. You should probably
attempt to familiarize yourself with the use of the
commands discussed so far before going on to try the
techniques that are going to be presented now.

Above we saw that you can replace a portion of text
with something else by giving a K command followed by an
E command. This is fine if' you want to change a single
instance, but what if you want to make the change in
several places? It frequently happens in text editing

, thaE yo~ have to ch~ng~'EVERY occurrence of a part of
the text to something else. For instance, you might
discover that you had systematically misspelled a word
every time' you used it,-o~ in editing a ptogram you
might be forced to change the name of a variable, which
would mean changing it everywhere it occurred. DISKATE
provides verypower'ful" commands for' performing this kind
of task. Of cours~r this power if used erroneously can
leave you with a monster job of cleaning up, so great
care' must be used 'toinakesure' 'these powerful commands
do not themselves contain errors.

Let's start with a simple example. Suppose that we
have a file--whicnis 'a"list o'f entries each one having
the same format as our~og-eared JOAN DOE file. After

-37-

DISKATE User's Manual

numerous complaints from the clientele we are pursuaded
that it isn't good form at all to keep maintaining a
line in each entry for the sex of the creature
described. This is the seventies, after all. So, every
line in the entire file containing the pattern [SEX:]
must go. Before showing how it all can be done with a
single command, let's see how we would get rid of these
lines one at a time. The first such line in the file
could be eliminated by the command:

K[SEX:]%

Now what about the next such line? Remember that a
pattern matching argument such as [SEX:]% will call for
a search through the entire initial reference interval,
in this case the current file, starting at the
beginning. We have already axed what was the first
occurrence of [SEX:]%, so the pattern [SEX:]% will NOW
match what originally was the SECOND ocurrence of
[SEX:]%, since we deleted the original first occurrence.
This means that to kill the next occurrence of the
pattern we can give the identical command K[SEX:]%, and
keep on giving the same command any number of times to
kill off the offending lines one by one. Suppose for
the moment that we happen to know that the file has 47
entries, so that the command will have to be given 47
times. It's obviously a ridiculous nuisance to have to
actually type in the command this many times. Fortun
ately there is a DISKATE command which will cause other
commands to be REPEATED a given number of times. This
is the R command. In a multi-command command line, the
sequence:

Rn,othercommands

will cause othercommands to be repeated n times. We are
now able to purge our notorious file of its baser
instincts by the single, c:_omm~nd:

R47,K[SEX:]%

A word of warning. °lri g1v1ng such commands as this
you have to be extremely careful that a pattern in the
part of the command to be repeated does not match more
than you intend. Suppose for instance that instead of
using the pattern [SEX:]% we had used [SEX]%. This
pattern would also match a line containing the name
THOMAS WESSEX, for instance, which is not one of the
lines we want to delete. "Boundary characters", such as
spaces, punctuation and carriage returns, are often very
important in specifying patterns that match the right
thing.

-38-

R
COMMAND

Rn

CAUSES
REST OF
COMMAND
LINE
TO BE
REPEATED
n TIMES

DISKATE User's Manual

I An obvious question here is what to do when you
don't know how many times the command will have to be
repeated. Actually, you can program DISKATE to count
the number of times a pattern occurs, and we'll see
below how to do that. But we don't really need to go to
all that work. The simplest approach in giving a repeat
command which you want to apply to every occurrence of a
pattern is to give a repetition number which you can be
sure is greater than the number of times the pattern
will occur. If we know for instance that there are not
more than a few hundred entries in the file but don't
know exactly how many, we could use the command:

R9999,K[SEX:]%

Assuming we're correct that there are not nearly this
many occurrences of the pattern [SEX:]% in the file, the
command will be repeated untill all of the occurrences
of the pattern have been deleted. Then what? The
pattern [SEX:]% will fail to match anything, so an error
message will occur.

Though this method will work perfectly well, the
obvious problem is that we have to assume that the error
message is given because DISKATE ran out of occurrences
of the pattern to match, rather than because of some
error that should really concern us. It,' s better not to
have to rely on an error to terminate a process, so
we'll see in a minute how to avoid this. One note.
Repetition numbers are treated as POSITIVE. That means
that -1 is the same thing as 65535. So, if you want to
use the "large number" method for the R command, the
simplest number to use for the number of repetitions is
-1, since this is the largest'repetition number DISKATE
will allow. (65535 is obviously large enough for any
thing you would want to dO r since files must fit in the
memory and 65K is the limit to the size of the memory.)

The problem we just encountered can be phrased as
follows: How can we break a repetition loop when we've
run out of matches withotit terminating the loop with an
error? There is a DISKATE command especially for this
purpose. The command QF, which stands for Quit on
Failure, will terminate a r~pe~t'loop without an error
if in evaluating the argument of the QF command a match
fails. So, we can do what we did above without having
to end in an error by 'the command:

R-I ,QF [SEX: 1% ,K[SEX:]% '
.... . " ~,

The R-I will cause the rest of the command to be repeat
ed 65535 times, and the QF[SEX:]% command will terminate
the loop withotit-~n ~rror if thet~ i~nothing which
matches [SEX:]%. In fact we can make the command much

-39-

IN Rn
COMMAND,
n IS
TREATED
AS

, POSITIVE

R-l IS
THE SAME
AS
R65535

QF
COMMAND

TERMIN
ATES
LOOP
WITHOUT
ERROR IF
ARGUMENT
GIVES
MA'I'CHING
'FAILURE

DISKATE User's Manual

simpler. Recall that if a command takes an argument but
none is given, DISKATE uses the last argument computed.
In the command line above the argument of the QF command
is identical to the argument of the K command, so the
command can be simplified to:

R-I,QF[SEX:]%,K

This is an example, then, of a general form of
command which will delete every occurrence of a pattern
in a file. In general you would use the command:

R-I,QFpattern,K

to delete from the current file every occurrence of
pattern. Suppose we want to REPLACE EVERY OCCURRENCE of
one pattern by a piece of text. This can be done exact
ly the same way, remembering that a K command followed
by an E command replaces the argument of the K command
with the entered text. Thus the command:

R-I,QFpattern,K,E[text]

will replace every occurrence of pattern with text. (In
word processing systems this operation is often called
"global search and replace".)

In determining wh~th~r a matching failure has taken
place for an argument of a OF command, even if there are
no matching symbols in the argument, a "matching
failure" -- perhaps argument failure is a better term -
will still occur if the lower address of an interval
turns out to be larger than the upper address. This can
acutally be used for comparison operations •. We'll see
an example of this in I.2.

In effect a command line using the R command
'constitutes a miniature program. Becuase it so often
happens that you will want to execute a programmed
sequence of DISKATE commands, DISKATE provides the
facility to execute" a" sequence of commands that are
stored in the memory as all or part of a file. Our next
major goal is to discuss this facility, but before we do
it's time"" to present -the 'commands that enable you to use
multiple files. Often you may only work with a single
source file at a time, but when entering a sequence of
commands which isOto be" executed by DISKATE, more than
likely they will want to go into a file separate from
the material they operate on.

As we mentioned at the begInning of the manual, a
file is a sequence of bytes bounded by 0's. The current
file is included in the source area, which may contain
several files. Suppose you want to begin-editing a new
file, while retaining the current file in the source

-40-

DELETE
EVERY
OCCUR
RENCE OF
A
PATTERN

REPLACE
EVERY
OCCUR
RENCE OF
A
PATTERN
WITH
TEXT

N
COMMAND

CREATES
NEW

DISKATE User's Manual

area for use later. The command to be used is the N
command, (N for New file,) which takes no argument.
This command creates a new empty current file at the end
of the source area, and expands the source area to
include it. Any editing you do on this new current file
will leave the old file intact. (That's assuming, of
course, that in editing the new file you don't make an
error in an argument causing it to specify an address
outside of the current file.) If you want to edit
several files, the N command can be given any number of
times, as long as you don't run out of memory_

By using the N command you can create several files
in the memory_ Now the question is, suppose you want to
go back and look at one of the previous files? To do
this you use the F command, (F for File.) The F command
is differ~nt from all of the commands we have described
so far in that THE INITIAL REFERENCE INTERVAL FOR THE F
COMMAND IS THE WHOLE SOURCE AREA. The actual operation
of the F command is somewhat detailed, but the basic
idea is that it TAKES THE LOWER ADDRESS of the argument
given and MAKES THE FILE CONTAINING THAT ADDRESS
CURRENT. Remember that a file in the memory is bounded
by 0's. When DISKATE is given an F command it evaluates
the argument and uses only the lower address. First it
looks to see if this location contains a 0 -- if so it
assumes that this is the beginning location of the file.
If not, it begins 'searching backward from this location
looking for a 0 r and when it finds it, sets this as the
beginning of the file. Having found the beginning of
the file,DISKATE searches forward from the argument
location looking for another 0 which will be the end of
the file. When it has determined the file boundaries,
the file'is made current and THE TARGET CHARACTER IS SET
TO BE THE 0 WHICH ENDS THE FILE.

The F command also ADJUSTS THE SOURCE AREA. If the
file boundaries determined place the file entirely
within the current source area, the source area stays
unchanged. If the file boundaries place the file
~ntirelyoutside of the current source area, the source
area is redefined t6 be the file determined by the F
command. Nothing happens to the old source area, in the
memory '.;.;-'the'onlythingthat is·chCanged"is that the
internal pointers DISKATE uses to define the limits of
the source 'area are reset. If one of the file boundar-

-'ies lies inside "the 'current " source area but the other
doesn't,: the,source area is expanded to include the file
determined by the F command.

Let's see how the'''F'coriimand 'would work with a
simple example. Let's' suppose we're using DISKATE to
edit a letter to George Morrow expressing how much we
like hisinemory boards. " Somewhere in the first few' ,
lines will bea line,containing the pattern [George].

-41-

EMPTY
FILE AT
TOP OF
SOURCE
AREA &
MAKES
NEW
FILE
CURRENT

F
COMMAND

SETS
CURRENT
FILE TO
THE FILE
CONTAIN
ING THE
LOWER
ADDRESS
OF ARG

INITIAL
REF
INTERVAL
IS WHOLE
SOURCE
AREA

TARGET
CHAR IS
END OF
FILE

SOURCE
AREA
ADJUSTED
TO
INCLUDE
THE FILE

DISKATE User's Manual

Now suppose we use the N command to set up a new empty
file, and in this file we put a string of DISKATE
commands used to format the letter. We'll see below
some examples of such "edit macros". Before we execute
these we want to look over the file with the letter one
more time to make sure it is O.K. At this point the
source area consists of two files: the file with the
letter, followed by the file with the DISKATE commands.
The file with the commands is current. The command:

F[George]

will make the file with the letter current, and set the
target character to the end of the file. Remember that
the initial reference interval for the F command is the
whole source area, so in executing the F command DISKATE
will begin searching for the pattern [George] at the
beginning of the source area, which is the file with the
letter.

Suppose we had written three letters, one each to
Tom, Dick, and Harry, and following that had a file with
commands. If we want to see the file with the letter to
Harry we can use the command:

F [Dear Harry]

(It might not be a good idea to use the command
F[Harry], since the letter to Tom might talk about
Harry.)

There is also a simple way you can "page through"
the files without knowing what any of their contents
are. Suppose you want the current file to be the first
file in the source area, ~hatever that is. The command:

F<S>

will do the trick. <S> is a symbol we haven't seen
before. It is analogous to <F> and denotes the source
area. It does not call for matching. Since the F com
mand only uses the lower address of its argument, F<S>
will make the first file in the source area current.

Now suppose we want'to see "the 'next file in the
source area. As usual with DISKATE there are many ways
of doing this. We saw above that the command A<F>I>+1
will set the entry pointer" so that the target character
is the 0 at the end of the file. That means that the
argument <F>I>+l will specify the 0 at the end of
current file. But, if anrither file f6110ws the cu~rent
file in the source area, this 0 will also be the 0 which
forms the lower bound of the file which follows. So, if
we '9 i ve the command:'"

-42-

<8>

ARGUMENT
DENOTING
SOURCE
AREA

(NO
MATCHING)

DISKATE User's Manual

F<F>I>+l

it will set the ~urrent file to be the file following
what had been the current file. (Don't be confused
about t1F"appearing in both the command and the argument
-- this is just the same as the principle behind a
statement like X=X+l.) Or, we could just as well have
given the command:

F-l!

There is just one problem with this method. Sup
pose you just don't remember which is the last file in
the source area, so that you aren't able to recognize
the last file when you see it. The command F<F>I>+l
calls for no matching, and neither does F-l!, so that if
the current file happens to be the last one in the
source area and you execute this command anyway, it may
not return an error message, but instead will give you a
file consisting of garbage. This could give you a
significant surprise! What we would like is a method of
setting the current file to be the next file in the
source area but which would' give an error message if we
happened to already be at the last file. Here is a
command that will do the trick:

Let's see how this works.<F>I>+l we have already
seen as a command which will set the pointer to the end
of the file. This may not be necessary if you have done
no editing on the current file, but we'll include it to
be safe. Now let's look at the argument in the second
command on the command line above. Becuase it is the
argument of an F command, the initial reference interval
is the entir& source area, so - •• specifies everything
in the source area following and including the 0 at the
end of the current file. A •• 12@ specifies the second
character within the intervalw~ just mentioned. If
there is a file following the current file, then, the
argument A •• J2@ will give the first character of that
file. (A.'~I @' would give the 0 forming the lower bound
of the file.) However, if there is no such file then
after A<F>I>+l, A will point to the highest address in
the 'source ar'ea, so 'the argument'" ~ ~ 12@ will produce a
matching failure and hence an error. Thus the FA •• 12@
will give an error if there is no file following the
currentfile~ or else if there is such a file will make
it current. Of course, the command:

A_I! ,FA .• ·.12@ ····e

-43-

COMMAND
TO MAKE
NEXT
FILE'IN
SOURCE
AREA
CURRENT

DISKATE User's Manual

would work just as well.
At this point a digression is in order to discuss

one of the "side effects" of the F command. Above we
gave a great deal of attention to the problem of having
as close to a foolproof method as possible for setting
the entry pointer to the end of the file after correc
tions have been made on entered text. We also saw an
example of how unpleasant it can be to forget to do
this. We've also mentioned that the F command will
position the entry pointer to the end of the file that
it makes current. Perhaps this is a clue to how we might
be able to have a shorter command which will set the
entry pointer to the end of the current file. One
possibility, which is certainly a short command, is:

While this will work in many cases, it is somewhat
dangerous to rely on it habitually. The reason is that
there is no guarantee that the target character is
actually within the current file. In all of the exam
ples we have seen so far, the target character did stay
within the current file, but in those cases where you
are using DISKATE as a monitor, which is discussed in
the next section, you will frequently execute commands
which place the target character outside of the source
area altogether.

A much safer alternative is the command:

F<F>

This command says, take the current file and make it
~urrent. A bit redundant, of course, but it will
position the entry pointer reliably to the end of the
current file, and is shorter and simpler than the com
mand A(F>I>+l. It's more straightforward than A_I!, but
you can choose whichever is easier to remember.

Now we can get to the real goal of the present
discussion: how t6 write sequences of tiISKATE commands
which can be executed as "edit macros". The flexibil
ity which this feature of DISKATE allows provides for a
virtually unlimited rarige of applications. We'll begin
with examples which are very simple. One simple appli
cation for edit macros which could arise very often is
~ubstituting for an abbreviation the text the abbrevia
tion stands for. If there is a long phrase that occurs
over and over in your text, for instance, it would be
ni~e to have an abbre~iation for it and then use the
DISKATE edit macro facility to replace the abbreviations
with the expanded form. To use an example that occurs

(frequently in this manual, suppose we use the symbol
I.R.I. to stand for initial reference interval. Without

-44-

F(F>

ANOTHER
SIMPLE
COMMAND
TO PUT
ENTRY
POINTER
AT END
OF
CURRENT
FILE

DISKATE User's Manual

using any edit macros, we could instruct DISKATE to
replace every occurrence of the I.R.I. by the full text
using the command:

R-I,QF[I.R.I.] ,K,E[initial reference interval]

If we found ourselves wanting to issue this command
frequently, it's a long one to keep having to type in
every time. Let's see how to set it up as a macro, so
that it can be executed with a very short command line.
First we have to enter it into the memory. We can do
this with the commands:

N,E[R-I,QF[I.R.I.] ,K,E[initial reference interval]]
F<S>

For the moment we'll assume that there will be only one
fil~ with the text, and then a second file with the
macro. The F<S> command will restore the text file as
the current file. Now the question is, how do we exe
cute the macro? Macros are executed using the DISKATE
command D, which stands for Do. Like the F command, THE
INITIAL REFERENCE INTERVAL FOR THE D COMMAND IS THE
ENTIRE SOURCE AREA, -- and the D command only uses the
lower address of its argument. To execute the macro all
we have to do is figure out an argument which will spe
cify where th~ macro is-in the source area and give a D
command with_ this argument.

The current file is the text -file on which the
macro will operate. <F> is an argument which will
specify this file, and the upper address in <F> is the
last character of the file. <F>I>+1 would specify the 0
forming the upper bound of the file, so since the macro
immediately follows the text file, <F>I>+2 will specify
the first character of the macro. So, every time we
want to execute the macro we can type the command:

D<F>I>+2

There is something very unsatisfying about this.
The command D<F>I>+2 is one that is difficult to remem
ber and it wouldh be easy-to make a mistake in-typing it.
It would be better if we could give the macro a name and
then execute it by calling it by name. DISKATE has just

-such a- provision.- -- To name a macro you use the * com
mand. The * command does nothing and is ignored. This
means that the characters following the * in a * command
can be used asa labeT. Let-'s- see how this would work.
Let's say we want to give our macro the name IRI. The
macro originally looked like:

R-l,QF[I.R.I.],K,E[initial reference interval]

-45-

D
COMMAND

EXECUTES
STRING
OF
DISKATE
COMMANDS
STARTING
WITH
LOWER
ADDRESS
OF ARG

INITIAL
REF
INTERVAL
IS
SOURCE
AREA

* COMMAND

DOES
NOTHING,
IS
IGNORED

CAN BE
USED AS
LABEL
TO NAME
MACROS

DISKA'I'E User's Manual

To add the name to the macro it should look like:

*IRI
R-l,QF[I.R.I.] ,K,E[initial reference interval]

When the macro is executed the command *IRI will simply
be ignored. Now the question is, how do we execute the
macro by name? Remember that the initial reference
interval for the D command is the whole source area.
The command:

D[*IRI]

will take as its argument the beginning address of the
first occurrence within the whole source area of the
characters *IRI. Assuming the text file does not
contain such a pattern, since ~he initial reference
interval is the whole source area this argument will
evaluate as exactly the beginning of our macro. Of
course, in giving a macro a name in this way you have to
be care,ful that the pattern *macname -- where macname is
the name of the macro -- does not occur anywhere in the
source area ahead of the beginning of the macro. Note
that using this method of naming a macro using the *
command and executing it by D[*macname], you can have as
many macros as you want, and they can all be in a single
file after your textfile(s) or they can be in several
separate files. It doesn't matter where they are within
the source area, as long as the name is properly unique.

The commands within a macro end in a carriage
return, just as if they were typed in a command line,
and of course there can be several on a line separated
by commas. When a macro is being executed, when the end
of the file is reached this is automatically treated as
a return. If the macro was invoked from the terminal by
a command line, control will be returned to the termin
al., However, a macro can contain a D command, so that
macros can call other macros.' In this case when the
macro returns, control is passed to the next command in
the calling macro. Thus the D command works like a
GOSUB in BASIC. We saw above that the command QF can be
used to break out of a repeat loop. It can also be used
in a macro to return the to caller. OF will quit
whatever is the inner'most process in which it occur s,
whether this is a repeat loop or a macro, if its argu
ment produces a matching failure.

There is a special argument that can be used in
connection with macros. As a macro is executed, a
special "command interpretation pointer" is maintained
internally by DISKATE. If the macro aborts in an error,
the value of this pointer is saved in a special loca-

-46-

COMMAND
D [*name]

EXECUTES
MACRO
WHICH
BEGINS
WITH
*name

?

AS ARG
SYMBOL

DISKATE User's Manual

tion. The contents of this location are denoted by the
symbol ?, which does not call for matching. In other
words, ? is an argument which gives the address of the
character of a macro that caused an error. You can use
this to help debug a macro which produces errors. For
instance, if we had a macro in the source area which
began with the command *IRI, and this macro was produ
cing errors, we could find the point where the error
occurred by the command:

I1<S> I [*IRI] •• ?

This would print the macro on the terminal up to the
point that caused the error.

When the R command was introduced we said that it
would cause the rest of the command to be repeated.
This is correct if the command is entered from the ter
minal, but if an R command occurs as part of a macro it
will cause THE ENTIRE REST OF THE MACRO to be repeated
until either an end of file or a quit command is
encountered.

Analagous to the QF command is the QS command,
which stands for Quit on Success. If its argument does
not produce a matching failure it will quit the inner
most process be it a repeat loop or a macro. The QS
command can be used in repeat loops in commands entered
from the terminal, just like'the QF command. If the QS
command is given with no argument, the argument used
will be the previous interval computed, as with any
other DISKATE command. This argument can be presumed
not to have given a matching failure, so that QS WITH NO

. ARGUMENT CAN BE USED AS A RETURN COMMAND. This is
especially useful if you want to have several macros in
a single file'.

Let's put some of these pieces together and look at
a macro which performs a function which occurs frequent
ly in text editing: formatting paragraphs. After mak
ing editing changes in prose text it will often happen
that the margins~f the lines will have to be readjust
ed. The macro we will look at will have three
parameters, which are given by setting the values for
the 'variables' X,Y, and Z'~' ,z will give the number of
characters that we want as the maximum line length, and
X •• Y will serve as an interval forming the boundaries of

--' the paragraph. OnceX,Y, and Z are set we want the
command D'[*PARAGRAPH] ,to adjust the right-hand margins.

The macro will work in two stages. First we will
delete all the darriag€ r~tllrns iri'the paragtaph,
replacing them with blanks. This will in effect turn
the paragraph into one enormous line. The second stage
wiTI"'chop it up into "l"ines '. of 'the proper length. Each
of the two.stages will have its own "submacro", which

-47-

GIVES
CHAR OF
MACRO
THAT
CAUSED
AN
ERROR

R
COMMAND
IN MACRO
REPEATS
TO END
OF FILE
OR QS,
QF
CAUSING
QUIT

QS
COMMAND

QUITS
INNER
MOST
PROCESS
IF NO
MATCHING
FAILURE
IN
ARGUMENT

QS WITH
NO ARG
ACTS AS
RETURN

G
COMMAND

TRANS-

DISKATE User'~ Manual

PARAGRAPH will call. The macro will contain a new
command, the G command which stands for Goto. The G
command causes execution of a OISKATE macro to be
transferred to the lower address of the argument, and
works just like a GO TO in BASIC. Like the D command,
the initial reference interval for the G command is the
whole source area. And now for the macro:

*FUSE
QFX •• y I ,K,E [] ,G [*FUSE]
*CHOP
QFx •• YIA •• Z@,KI-I[] ,E_,G[*CHOP]
* PARAGRAPH
D[*FUSE]
AX
D [*CHOP]
QS

A few notes. The final QS can be done away with if
this macro ends the file. If as shown the entire macro
is going to go in one file, the lines beginning with
*PARAGRAPH must NOT begin the file. The reason is that
if they do, the pattern [*FUSE] will match not· the name
of the submacro, as we want it to, but rather the
characters *FUSE within the D[*FUSE]. This could cause
all kinds of problems. Note that in the macro CHOP, the
K followed by the E command will leave the target
character as the character following the carriage return
just entered, setting it properly for the next time
around the G loop.

There is one difficulty with this method: invoking
a macro or using G commands with an argument like [*name]
will work perfectly well but could end up being extremely
slow, since each time the command is executed DISKATE has
to search through the whole source area looking for the
argument. One way around this is to use variables. For
instance, the above example could also be done this way:

*FUSE
QFX •• Y I , K , E [], G FUSE
*CHOP
QFX •• Y I A •• Z@;KI-l [] ,E-=~'G CHOP'
* PARAGRAPH
FUSE=<S> I [*FUSE]
D FUSE .
CHOP=<S> I [*CHOP] AX .
D CHOP
QS

Here the macro assfgns the DISKATEvariables FUSE and
CHOP to the respective arguments. This way the G com-

-48-

FERS
EXECU
TION OF
MACRO
TO
LOWER
ADDRESS
OF ARG

INITIAL
REF
INTERVAL
IS
SOURCE
AREA

DISKATE User's Manual

mands do not call for any matching, and so execute much
faster. Note that whereas a D command could be given
simply in the form D[*FUSE], in the = statement above
the form <S>I [*FUSE] had to be given. The reason is
that the D command is one of the few commands for which
the initial reference interval is the entire source
area, so the prefix <S>I was not needed. For the =
statement the initial reference interval is the current
file, so the source area must be explicitly set as the
initial reference interval.

There is one VERY IMPORTANT CAUTION when using the
G command with an argument which is a variable rather
than a pattern matching argument. If the macro is
located inside the source area, and follows the text to
be edited, editing commands within the macro can cause
the size of the text to change, and thus cause the
entire macro to be moved about in the memory as the
source area behind the change is shifted up or down. In
this case, the value of the variables used as arguments
of G commands will NOT be updated as the source area is
shifted. It just happens that in the macro above, no
net change in the length of the text is caused, so this
problem does not occur. One way of preventing this
difficulty is to locate edit macros outside of the
source area completely. This can be done, for instance,
by editing the macros "in the source area, storing them
on disk for future use, then loading them into a vacant
part of the memory which will not be overwritten by the
source area. Or, as we "11 see below, it's possible to
have more than one source area, though of course only
one at a time can be current. Another way of getting
around this problem is to put the macros at the BEGIN
NING OF THE SOURCE AREA. "That way, as changes are made
within the text, addresses within the macros will not
change. Of course, when using only pattern matching
arguments the problem does not occur at all.

An alternative method to using G commands would be
to use the R command, but this would require that FUSE,
CHOP and PARAGRAPH be in separate files, since the R
command will repeat to the end of the entire file until
a OF or OS causes a quit. To enter the macros using

" this method, you "could" use ""the following sequence of
commands:

N
E[*FUSE
R-I,OFX •• YI ,K,El]
1 ,N "<"

E[*CHOP
J~i ,OFX. • Y I A •• Z@ ,K f-~[J ~E-."

E[*PARAGRAPH

-49-

EDIT
MACROS
WHICH
CHANGE
THE
LENGTH
OF TEXT
MUST NOT
FOLLOW
TEXT IN
SOURCE
AREA

CAN BE
AHEAD OF
TEXT OR
OUTSIDE
SOURCE
AREA

DISKATE User's Manual

D[*FUSE]
AX
D [*CHOP]
]

A special command which can be used in macros or
command lines is the PAUSE command. The PAUSE command,
which has no argument, will cause the process in which
it occurs to stop in a "panic detect" state. You can
stop to examine the printout on the terminal, and then
resume execution of the process by typing any character
other than S or ESC. The II pan ic detect" is discussed
more fully in Section 1.3. The message PAUSE is printed
on the terminal to notify you that you're in the pause
state. This command is especially useful for such
things as changing diskettes.

We conclude the discussion of using DISKATE as a
text editor with two special commands which can be used
as a convenience to save extra typing. The command DEF
takes as its argument a string of characters up to 24 in
length enclosed in brackets, as you would for an E
command. DEF stands for Default. When DISKATE is given
a DEF command, the string forming its argument is saved
in a special internal location. Thereafter, whenever
DISKATE expects a command, if you simply type a carriage
return with an empty command line, the string given as
the argument to the DEF command will be executed as a
default command. For instance, above we had examples of
using the same command repetitively to see successive
intervals of text, such as "> •• [JOAN] 12@.. By giving
the command:

DEF ["> •• [JOAN] 12@ ••]

whenever you typed a carriage return in response to the
prompt character, DISKATE would execute the command
n> •• [JOAN] 12@ ••

tf youdon"t remem"ber" what the default command is,
typing DEF with no argument will show it to you. If you
have given a default command and then want to stop using
this feature, the command: "- ~"

DEF [],

(DEF with an empty argument in brackets) will discontin
ue using the default command feature until another DEF
command is given. "" "

A similar command to DEF is REF. This command also
takes as argument a character string up to 24 characters
in length enclosed in brackets. This string is treated
as a DISKATE argument and is evaluated prior to any

-50-

PAUSE
COMMAND

STOPS
PROCESS
IN
PANIC
DETECT
STATE

DEF[cmd]

CAUSES
cmd
TO BE
EXECUTED
FOR CAR
RET ONLY
AS
COMMAND

DEF
WITHOUT
ARG
SHOWS
cmd

DEF []

DISCON
TINUES
USE OF
cmd

REF[arg]

CAUSES
INI'I'IAL

DISKATE User's Manual

subsequent command which normally takes the current file
as the initial reference interval. This argument then
becomes the initial reference interval for every such
command. Those commands which use the whole source area
for their initial reference interval, i.e. G, 0, or F,
are not affected, and a missing argument, <, and) also
are not affected. The best way to see how this works is

- by an example. Suppose you give the command:

REF["'%]

Normally the argument •• by itself would match the
current file, but after the REF command it would match
the line with the pointer. Note that the argument of
the REF command is kept as a character string and
reevaluated each time a command would normally take the
current file as its initial reference interval. With
the command above, the initial reference interval
changes every time the entry pointer is moved to a new
line. As with DEF, REF with no argument shows the
string that is being saved as the argument of the last
REF command executed, and REF[] discontinues the use of
this feature until the next REF command.

REF and DEF can be used in combination to work
quickly through blocks of text. For instance, suppose
you are editing a letter in which paragraphs are sepa
rated by two carriage returns in a row. The commands:

REF [,.. • • 1
DEF [A •• T>+ll

can be used together to edit paragraph by paragraph.
You would begin by giving the command A<F). This sets
the pointer at the beginning of the file. Now the
symbol •• matches the CURRENT PARAGRAPH. To get to the
next paragraph- simply type carriage return in response
to the prompt character. Of course, if you make some
changes, resetting the entry pointer, •• will then match

." the portion of the current paragraph from the entry
pointer onwards. You must be very careful when using
this editing method, since the REF command CHANGES THE
MEANING of the syrnbol'~--.' In fact 'virtually every

'matching argument may have a different meaning if the
REF command feature is being used.

'In exactly the same 'way; the pair of commands:

REF["'%l
DEF["'_+l,If.~r

can be used to edit line by line. The REF command

-51-

REF
INTERVAL
FOR ALL
COMMANDS
NORMALLY
TAKING
IT AS <F)
TO BE arg

REF
NO ARG
SHOWS
LAST
ARG
GIVEN

REF []
DISCON
TINUES

NOTE:
REF
CHANGES
THE
MEANING
OF ••
AND
OTHER
MATCHING
SYMBOLS

establishes-the "current linetr~- i.e. the line contain- COMMANDS
ing the entry pointer, as the .initial reference inter- TO EDIT

DISKATE User's Manual -52-

val. By giving the default command, (carriage return LINE BY
with an empty command line,) the entry pointer will be LINE
set to the next line and that line will be printed on
the terminal. Note that when giving the default
command, the part of the default command ~ +1 sets the
entry pointer to the address of the byte beyond the
first carriage return in the initial reference interval,
which because of the REF command is the line containing
the entry pointer, rather than the whole source area.

DISKATE User's Manual

I.2 Using DISKATE as a Monitor

As mentioned in the introduction, there is consi
derable overlap between this section and the previous
one. Most of the commands we will discuss have already
been introduced. In using DISKATE as a text editor, the
commands you give will usually apply to the current file
within the source area, or sometimes the whole source
area. In using DISKATE as a monitor, the commands you
give may apply anywhere in the computer's memory. Some
of these commands WILL FUNCTION DIFFERENTLY IF THE
TARGET IS OUTSIDE THE SOURCE AREA. Naturally all such
differences will be pointed out.

In addition to using ASCII codes, when using
DISKATE as a monitor you will also want to deal with the
codes directly, probably in hexadecimal or octal. When
you bring up DISKATE there will be an initially estab
lished CURRENT BASE. The current base represents the
base in which numbers from DISKATE are OUTPUT. When you
input numbers to DISKATE, THE BASE MUST ALWAYS BE GIVEN
EXPLICITLY. If no base is specified, DISKATE assumes
that the base of any number typed in is DECIMAL. There
are several options for specifying numbers to DISKATE.
First of all, a number may either be SPLIT or not. A
number in split form is specified by giving two numbers
separated only by a colon. The first number gives the
value of the high order byte of a 16 bit value, and the
second number gives the value of the low order byte.

For instance, suppose you are reserving the first
"page" -- i.e. the first 256 byte segment in the compu
ter's memory, for special drivers or interrupt handling
or the like. The first address that you might have a
program occupy, then, c'ould be specified as:

1:0

This means the number = 1*256 + 0. Note that since no
base was specified,DISKATE assumes decimal. Of course
numbers in hexadecimal do not need to. be split, since
the hexadecimal form is "naturally" split already.
Numbers in hex areirtdicated" by· adding the character "HtI'
as a suffix to the number. The number 1: 0 is equivalent
to:

100H

.. in hex.

To specify a number in octal, or base 8, the suffix "Q"
is added to the end" of the number.' So, for example the
numbers:

-53-

CURRENT
BASE

IS BASE
FOR OUT
PUT OF
NUMBERS

FOR
NUMBER
INPUT
BASE
MUST BE
GIVEN -
DEFAULT
IS
DECIMAL

n:m

GIVES
n*256+m
(SPLIT
FORM)

SUFFIX
H FOR
HEX,

Q FOR

DISKATE User's Manual

2000H
40:000Q
32:0

all specify the same number, which is 32*256. There is
one important point about hex numbers. A HEXADECIMAL
NUMBER MUST BEGIN WITH A DECIMAL DIGIT. Otherwise there
would be difficulty distinguishing it from a variable
name. Thus FFFFH is not a valid way to specify a number
for DISKATE --you would have to use 0FFFFH.

The current base can be changed at any time by
using the B command. For instance, to change from
hexadecimal to octal you would use the command:

B8

When the current base is not hexadecimal, outputs of
numeric codes from DISKATE will always be in split form.

As mentioned briefly in the previous section, num
bers can be used to specify an interval explicitly. For
instance, the first 8K bytes of memory can be specified
by the intervals:

0 •• 1FFFH
0 •• 37:377Q
0 •• 31:255

To view an interval in memory in numeric, rather than
ASCII form, the i"command may be given. It works like
the" command, except that interval given as the
argument is output byte by byte in numeric form in the
current base. For each line of output there will also
be a field at the left of the printout showing the
address of the first byte being printed on that line.
The i command will thus perform a CORE DUMP to your
terminal of the interval given as the argument.

Arguments given with the i command may call for
matching, just like so many'of the ones we saw in the
previous section. The i command is especially useful
for viewing non-printing control characters if these

'''''',.,- must be used. Suppose, for instarice, you suspect that
there is a non-printing character in the line in the
current file containing the target character. The
command:·"·"""·

will dump this line on the terminal, and you can inspect

-54-

OCTAL

HEX NUM
BER MUST
BEGIN
WITH
DECIMAL
DIGIT

B
COMMAND

Bn
SETS n
AS
CURRENT
BASE

t
COMMAND

DUMPS
INTERVAL
TO
TERMINAL
BYTE BY
BYTE IN
CURRENT
BASE

the codes to try to find out where there may be a E#codes#
trouble spot'. '

You can also use the E command to enter numeric ENTERS

DISKATE User's Manual

codes as well as ASCII characters. When entering text
using the E command, the ASCII characters comprising the
text are surrounded by brackets. To enter numeric codes
using the E command, the codes are surrounded by the
character "I" and separated by blanks. In this case the
base must NOT be given -- the base is automatically
assumed to be the current base. A string of codes sur
rounded by the I symbol can also be concatenated with
other valid arguments of an E command to form a compo
site argument. The E command is one of those that works
differently if the target character is outside of the
source area. When the E command was introduced it was
explained that it will INSERT the entered text into the
current file between the target character and the
previous character. However, if an E command is given
and THE TARGET CHARACTER IS OUTSIDE THE SOURCE AREA, the
bytes entered WILL OVERWRITE whatever is there and there
will be no insertion.

Let's look at an example. Suppose location 200DH
contains a jump to an output routine for your terminal,
but you want to change the jump to a jump to location
307AH. First we can examine the place we want to change
using the I command:

12000H •• <+2

This will show us three bytes beginning with 200DH. (We
want to look at 3 bytes because the jump instruction is
three bytes long.) We'll assume that the current base
is 16. In response'to the 'I command,'OISKATE would print
on the terminal something like:

2000 C3' 03 29

The C3 is the opcode for the JMP instruction, and the
jump 'is to location'2903H. '(Remember that 8080 instruc
tions put the low order byte of an address at the low
order location.) The C3 we want to leave alone, but the

'""two' byte's 0329we'want to 'change to 7A 30. Just as we
did when entering text, to use the E command to enter
numbers we first have to set the entry pointer. The

, command to"'do "the:~wh6Ie job" is:

~200EH, E#7A 30# '

Note that we say A200EH instead of ~200DH because at
200DH is the opcode C3 which we don't want to change.

" 'ObviOusly' if shc'-uld' <.io wiffiout saying that if you'
use OISKATE as a monitor as in this example, and then go
back to editing a source file having failed to restore

'the entry pointer't6'the'rlght' place back inside the
'source area, a total disaster could result. Entering

-55-

NUMERIC
CODES

CODES
HUST BE
IN
CURRENT
BASE
WITHOUT
Q OR H
SUFFIX
SEPA
RATED BY
BLANKS

IF "
OUTSIDE
SOURCE
AREA

E
COMMAND
WILL
OVER
WRITE
NOT
INSERT

DISKATE User's Manual

text following a monitor usage such as we just saw
without having restored the entry pointer could very
well dump Ugarbage li on top of part of the resident
software, which could certainly result not in merely
garbaging up your source file but in a total crash which
could wipe out the contents of the entire memory!!!
Once again, always be sure the entry pointer is in the
right place before beginning to edit.

You can use the E command with numeric codes rather
than text in editing source files also. Once upon a
time we promised to show a method for entering into a
text file unbalanced brackets. This can be done by
using an E command with the numeric code for the bracket
rather than using the E command with ASCII text. The
command:

Ei133i
EiSBi

(if the current base is 8)
(if the current base is 16)

for instance will enter a left bracket.
You can also use a sequence of numeric codes

enclosed in #'s, with each number separated by a blank,
as part of arguments calling for matching. The pattern:

#numeric code sequence#

where numeric code sequence is a sequence of numeric
codes in the current base separated by blanks, will
match a sequence of characters having the same value in
the current base as given codes. There are many ways
this can be used. Suppose for instance you have a piece
of text which was created using another piece of
software and each line concludes with a carriage return
followed by a line feed. To delete the line feeds you
can use the command:

B16,R-l,QF#D Ail>,K

Here the pattern iD Ai m-atches the characters carr iage
return, line feed since we made sure the current base
was 16. Thus iD Atl> matches a line feed at the end of
aline, and this command will get rid of all of them.
Of course, such commands can be easily turned into edit
macros if you are going to use them frequently.
. . Using a matching argument of the form icodesi
together with the t command can be a powerful way to use
the DISKATE monitor. Suppose for instance there is a
jump somewhere between 2B0BH and 2lBBH with the follow
ing hex code:

-56-

#codes#

ARGUMENT
THAT
MATCHES
SEQUENCE
OF CHARS
WITH
VALUES
lflATCHING
codes

DISKATE User's Manual

and we want to patch this so the 03 29 is changed to 7A
30. However, we don't remember just where this jump is
located. Let's assume that the current base is 16. The
command:

#2000H •. 2l00HI#C3 03 29#

will print on the screen the address where the jump is
located, and then the codes. The patch can then be put
in and we can see the result with the command:

"<+1,E#7A 30#,#

(Note that the last .# in the command line above is a #
command using the default argument.)

One of the main differences between using DISKATE
as a monitor and using it as an editor is that in using
it as a monitor you will tend more to use numeric codes
and explicit addresses. In this regard it is important
to be able to know the explicit address for constructs
that we specified before by matching and such symbols as
<F), <, etc. The DISKATE ? command will print on the
terminal in the current base the lower and upper addres
ses of the interval given. For instance, if you want to
know where the source area is in the memory, type the
command:

?<S)

Likewise ?<F) will' give you the location of the current
file. It is strongly recommended that while you are
editing you give such commands from time to time to make
sure the source area is not getting too big. There is
no built-in protection to prevent the source area from
overflowing the actual amount of RAM you have, but by
giving a ?<S) command from time to time you can find out
how big the source area is getting and save your file on
the disk before things get out of hand. If you deter
mine that a file is in "danger of'getting too big, you
can save part of it on the disk, kill that part and then
go on editing the rest. The commands for working with
the d:isk are discussed in" the" next'·Section.

The ? command can also be used to find out the
value of a variable. Remember that a single address is

- interpreted by DISKATEas an 'interval where both
addresses are the same. So for instance if X is a
variable, the command:

• < ••

?X

will' print"on 'the' termlnal the value' of X twice, since
it interprets X as an interval where both addresses

-57-

?
COMMAND

PRINTS
UPPER
AND
LOWER
ADDRESS
OF
INTERVAL
GIVEN AS
ARGUMENT

DISKATE User's Manual

equal the value of X.
Note that this can be used to count the number of

occurrences of a pattern in a text file. Suppose for
instanc~, that we are writing a piece of prose and we
get the sneaking suspicion that we are using the word
i'however" too often. Let's say the current base is 16.
The commands:

B10,X=0, A<F),R-l,QFA •• 1 [however],),X=X+l
?X,BI6

will restore the current base after printing on the
terminal (in split decimal) the number of times the word
however occurs in the current file.

Of course, not only will you need to know where
various things are in the memory, you will need to be
able to put things where you want them. When you bring
up DISKATE it will have an initial value for where the
source area is to go in the computer's memory. Suppose
you want the source area somewhere else? This can be
achieved with the 0 command, which stands for Originate
new source area. When the 0 command is given with an
argument, the interval comprising the argument is estab
lished as the source area. A 0 is written at the upper
and lower address of the interval to form the boundaries
of the source area, unless the upper and lower addresses
are equal. In this case two consecutive 0's are written
at this address to establish an empty source area.
Nothing is changed in the old source area unless the
argument of the 0 command overlaps it, in which case the
0's written will overwrite something there. What is
changed are DISKATE's internal pointers to where the
source area is. When the 0 command is executed, the
LAST file in the new source area is made current, and
the target character is set to the 0 giving the end of
the file. Of course, "this file might be empty.

The 0 command can also be given without any argu
ment. In this case, rather than following the standard
procedure of using the last argument computed, an empty
source area will be established beginning at the same
place that the current source area begins. This is very
useful for "scrubbing"'the work you've already done and
starting with a clean slate to bring in a new file from
the disk.

Using the 0 command you can maintain several dif-
ferent source areas in the memory. Suppose for instance
you want to create a new source area at a special
location which will be used by a piece of software that
requires a file in a particular place. If you want to
be able to go back to the current source area, you can
save its location by:' ..

-58-

COUNTING
NUMBER
OF TIMES
A
PATTERN
OCCURS

o
COMMAND

ORIGIN
ATES
NEW
SOURCE
AREA
AT
INTERVAL
GIVEN

WITH NO
ARGUMENT
CREATES
EMPTY
SOURCE
AREA
STARTING
SAME
PLACE AS
CURRENT
<5)

DISKATE User's Manual

OLDSOURCEl=<S>,OLDSOURCE2=>

The new source area can be set up using the 0 command,
and if you want to go back to editing the old source
area the command:

o OLDSOURCEI •• OLDSOURCE2

will reestablish it as the source area.
The 0 command is what you want if you want to cre

ate a fresh source area somewhere in memory other than
where DISKATE wants <S> to be, or if you want to make a
given interval into the source area. But what if you
want the whole source area as it already exists to be
moved somewhere else? The DISKATE M command, which
we've already introduced, is actually an extremely flex
ible and powerful command and can very easily accomplish
moving whole blocks of memory -- not only moving the
actual bytes but also changing the internal DISKATE
pointers so the change will be properly kept track of.
Suppose for instance that your source area begins at
2A00H and you have 'done some work editing a file. Now
you decide you want to consult a BASIC program, which
needs this area of memory_ Of course your file could
be saved on the disk and then reloaded, but perhaps
the BASIC program is able to examine the file and you
want the file still to be in memory for speed reasons.'"
Let's say that a block beginning at 7000H is free and
big enough to hold the file. The single command:

.... 7000H,M<S>

will move the entire source area to 7000H, and update
the pointers delimiting both <S> and <F>. The M command
is another which behaves differently if the entry
pointer lies outside the sourc& area, which here it
certainly does. In such a case the interval to be moved
is NOT deleted from anything, but is simply COPIED to
the area of memory beginning with the target character.
There is no insertion -- whatever used to be at the
interval to which the argument is copied is simply
overwritten. "-, " -

There is a special case of using the M command with
an interval outside the source area which may save you
some trouble .-Whenyoll are using the " edi tor, deleting
text using the K command actually works internally by
calling the routine invoked by the M command. The
INTERVAL TO BE DELETED" IS MOVED IMMEDIATELY OUTSIDE THE
SOURCE AREA, and, in the event that you change your mind
and want back the interval deleted, it can be recovered

. 'if the source area' has not been enlarged'. However, the
deleted text is NOT surrounded by 0's, so it may cause

-59-

M
COMMAND
UPDATES
POINTERS

E.G.
~l<S>
DOES
MOVE &
UPDATES
<S>, <F>

M
COMMAND
WITH "-
OUTSIDE
SOURCE
AREA
SIMPLY
COPIES
INTERVAL
TO BYTE
STARTING
WITH
TARGET
CHAR

K
COlolMAND
MOVES
DELETED
INTERVAL
JUST
OUTSIDE
SOURCE
AREA

DISKATE User's Manual

some trouble in general to determine just what the
boundaries are for this piece of text.

However, if you act fast enough you may be able to
recover deleted text with very little trouble. The M
command updates all internal DISKATE pointers that it
knows about, which includes < and >. After a Move
command, these two pointers will give the location TO
WHICH THE INTERVAL HAS BEEN lvIOVED. Since the K command
issues an internal call to the M command routine,
immediately after a K command < and> give the lower and
upper addresses respectively of the area in memory to
which the killed text has been moved. Thus, if you give
a K command, and then IMMEDIATELY afterward realize that
it was a mistake, GIVING THE M COMMAND WITH NO ARGUMENT
JUST AFTER THE K COMMAND ~ILL RESTORE THE DELETED TEXT.

Suppose you delete an interval with a K command,
and then decide you want the deleted text ba6k but only
after you've already given a command after the K com
mand, say a If •• The text comprising the interval will
still be just outside the source area, unless the com
mand(s) you gave after the K command entered text. The
deleted interval can be moved back to where it should go
if a way can be found to specify the right interval.
The first thing to do is ·to SAVE THE ENTRY POINTER by
giving a variable='" command. Unless you have given a
command after the K command which changes the entry
pointer, it will point exactly to the place where the
text is to be put back. Suppose you know that you
deleted 3 lines. In this case the interval of the
deleted text can be specified by the argument:

SA •• -11 .• 3_

SA is a symbol which we haven't seen before, and it
denotes the address of the FIRST BYTE BEYOND THE SOURCE
AREA. What about the -I? The -1 occurs in a position
where DISKATE expects an interval argument of some kind,
which means it is looking for something it can turn into
an address (or actually a pair of addresses to be
correct.) Remember that addresses are treated as 16 bit
non-negative numbers. This means that the sign bit in
-1 i~ treated as a digit "bit, so -I-is the same as
65535, which is the highest address in the memory. So,
the argument 8

A •• -11 •• 3 means: everything up to the
·3rd car r iage return wi tnin the interval star ting just
beyond the source area and extending to the end of
m~mory •.. The deleted text.canbe restored by:

"8"' •• -11 •. 3
M -

In this case the " is given as a precaution, to

-60-

!Vi
COMMAND
WITH NO
ARG
JUST
AFTER K
COMMAND
RESTORES
DELETED
TEXT

GIVES
FIRST
BYTE
BEYOND
SOURCE
AREA

COMMANDS
TO
RECOVER
3 DELETED
LINES

DISKATE User's Manual

make sure we're getting what we want, and saving the
entry pointer was a precaution which wasn't really
necessary. However, in general you may not be sure how
to specify the deleted text. In this case you may want
to give ~ or # commands to try to pin down exactly where
the upper bound is of the material that was deleted, and
being able to set the entry pointer might be useful. In
general, if you can figure out a pattern which will
match the ,ending of the interval you want back, the
commands:

"S" •• -11 •• pattern
M

will put you back on the track. Note however that you
must set the initial reference interval by an argument
such as S" •• -l, since matching will always fail outside
the source area unless the initial reference interval
has been set.

There may be instances where you want to perform a
block move but you don't want DISKATE to know about it.
For instance, it may be useful to have a separate copy
in the memory of all the files in the source area. This
can be achieved by using the C command, C for Copy,
which works similarly to an M command with the target
character is outside the source area. The C command
copies the interval 'given as argument to the memory
locations beginning with the target character. Whatever
used to be at the block beginning with the target
character is simply overwritten. The C command works the
same whether the target character is in the source area
or not, and does not update any of the DISKATE internal
pointers as does the M command. Thus if you give the
command "1000H, and this location is outside the current
source area, the difference between:

M(S)
and

C(S)

is that after the M(S) the current source area will
begin at 1000H, the"pointers to (S) having been updated,
whereas after the C(S) command the source area will be
exactly where it was before the command. You should be
fairly careful in'-using' this 'command, since it would be
easy to overwrite a part of the memory DISKATE is using
for something else.
"<As you mightstispect by" now,' the K command also
works differently if its argument is outside the source
area. In this case, rather than removing the interval
given' as "the-- argument',~-the K- 'command will ZERO this '
interval. Zeroing a block of memory can be especially

-61-

C
COMMAND

COPIES
INTERVAL
GIVEN AS
A:RGUMENT
TO BYTES
STARTING
WITH
TARGET
CHAR

NO
POINTERS
UPDATED

K
COMMAND

WITH
ARGUMENT
OUTSIDE
SOURCE
AREA

WILL

DISKATE User's Manual

useful for machine language programming, where you may
want to be sure that a program which is still being
debugged is only modifying those areas of the memory
that it's supposed to. By zeroing a large block of
memory before you begin work, you can easily see with
the i command whether a program has dumped garbage in
the wrong place. This method also makes it especially
easy to see how much stack is being used.

The DISKATE commands discussed in this section make
DISKATE the most powerful monitor available for personal
computers. They can be used in macros, just as the
editing commands discussed in the previous section. For
instance, suppose you wanted to fill a block of memory
with repetitions of the pattern consisting of 80 ASCII
blanks followed by a carriage return and a line feed.
Let's say you want to set up 100 such lines, beginning
at location l000H. The commands:

N,E[*LINE
R80
E []
] ,N,E[*FILL
"1000H
B16
R100
D[*LINE]
EiD Ai
]

will set up a macro which will do this job and can be
invoked by the command D[*FILL].

Suppose we want to do the same thing, but we want
to fill all of the memory available up to 2000H, but
without overwriting anything beginning at 2000H. Of
course, we could calculate the number of lines that
would be needed, figuring 82 bytes per line, and substi
tute that for the 188 in the macro above. Another way
is to set up the macro to keep entering the lines until
it determines that no ~ore.cari be added. We can do this
with the OF command. There is only one way that OF can
produce a matching failure if the interval is given in
the form expressionl •• expression2 where the two
expressions do not involve mat,ching: in the case that
the value of expressionl is greater th~n the value of

,'expression2. Using this fact , we can modify the
commands above as follows:

N,E[*LINE
R88
E []
],N,E[*FILL

-62-

ZERO THE
INTERVAL
GIVEN AS
ARGUMENT

DISKATE User's Manual

"1000H
B16
R-l
QF +82 •• 2000H
D[*LINE]
EiD Ai
]

This macro will keep on -entering the lines until the
entry pointer comes within 82 bytes of the area we want
to leave alone, in which case it will quit.

Using techniques such as this there is no limit to
the flexibility that DISKATE will allow. Again, as so
often in this manual, it must be emphasized very
emphatically that after using DISKATE as a monitor, if
you want to resume editing text already established in
the source area you must be absolutely sure the entry
pointer has been restored in the proper place.

To conclude this section we introduce a command by
which you can call machine language subroutines from
DISKATE. The X command, for eXecute, will issue a CALL
to the. lower address of the argument given. This can of
course be either an explicit address or a more complex
expression. If the machine language subroutine is
properly written and exits with one of the 8080 return
instructions, a call to it by an X command can be
included in a command line or macro and the rest of the
command line. or macro will be executed upon return. If
the address given is a program which goes into its own
loop and does not return, such as a BASIC or DOS, then
the X command will serve as a jump command, since such a
program will certainly intialize its own stack. The
details of how to write machine language programs for
interfacing to DISKATE are discussed in Part II. Here's
an example of using the X command. If you're using
DISKATE with software that locates a DOS entry point at
2028B, you can get back to the DOS from DISKATE with the
command:

X2028H

. 'If you want to do this fr~quently ybu can set a varia
ble, say DOS, equal to 2028H and then use the command:

XDOS

This method is highly recommended, since (as with any
jump command) if you make a mistake" typing an explicit
address for the X command a system crash could result.

-63-

X
COMMAND

ISSUES
CALL
TO
MACHINE
LANGUAGE
SUBROU
TINE AT
LOWER
ADDRESS
OF
INTERVAL
GIVEN
AS
ARGUMENT

DISKATE User's Manual

1.3 Using DISKATE input/output

In this section we'll deal first with terminal I/O
handling and then talk about how to use the disk com
mands. All of the I/O in DISKATE is handled through
calls to locations in a jump table, so that any type of
terminal can be interfaced to DISKATE. The details of
how to do this are discussed in Part II of this manual.
For the moment all we need to know is the general struc
ture of how DISKATE handles the I/O calls. The terminal
I/O routines involve calls to the following basic
drivers:

1. A routine to initialize the t~rminal.

2. A routine get one character of input, presumably
from the keyboard, and return it in the A register.

3. A routine to output one character from the B
register to the terminal.

4. A "panic detect 'f routine. This routine quer ies the
terminal to see if a key has been pressed. If not
it returns, with a flag set to indicate nothing is
doing. Otherwise, if a key has been pressed it
inspects the byte corresponding to the key, and if
it meets the conditions set by the user to indicate
that a process should be stopped, it returns with a
flag set indicating this. Otherwise it returns with
the flag set as before indicating nothing doing.

The basic terminal input and output routines can
handle multiple I/O devices. When the routines are
called, a device number is supplied in the A register.
The routine can use this number to vector the call to
one of several devices. Normally calls are made to
device 0 -- i.e. 0 is in the A register when the
terminal routines are called. The device number can be
changed by giving an 10 command. The command:

10 n

will cause n to be henceforth passed in the A register
to the terminal I/Oroutin·es·," so that all of the termin
al I/O from the time the 10 command is executed will go
to device n instead of device 0. Also, when this com
mand is executed, a carriage return and line feed will
be printed on the device -- i.e. the output routine will
be called with the new device number in the A register
first for carriage return, and then for line feed.

Here is how this can be used. Suppose you have

-64-

10
COMMAND

CAUSES
ARGUMENT
TO BE
SUPPLIED
AS I/O
DEVICE
NUfvlBER

CR, LF
ISSUED
TO

DISKATE User's Manual

both a video terminal and a printer, and your drivers
are set up so that when the output routine is given a
call to device 0 it prints on the video terminal, but
device 1 prints on the printer. To get a hard-copy
listing of the current file you could give the command:

10 1, ,10 0

This would cause the Ii •• command to send its output to
device 1, following which printout is restored to the
video terminal by the 10 0 command.

The 10 command applies to both subsequent input and
output. If your printer does not have a keyboard, your
input driver should be set up so that it gets the call
no matter what the device number is. Otherwise, if you
forget to give an 10 0 command at the end of a command
string containing an 10 1, for instance, DISKATE will be
unable to get any input. The 10 command can also be
given an argument other than a constant. The command:

10 DEVICE

would supply the value of the variable DEVICE as the I/O
device number.

If you. don't have multiple input or output devices,
your terminal routines can simply ignore the device num
ber in the "A register,' and this discussion won't apply.

You can execute the terminal initialization routine
at any time by giving the Y command,. (Y for "Wipe ",)
which takes no argument. A device number is presented
to the terminal initialization routine as for any of the
other terminal I/O routines. If you have multiple
devices, you may want your terminal initialization
routine to initialize all of them at once, or you may
want it to intialize only the device whose number is
passed to it. If you'do'it this second way, then when
ever you use a new device by means of an 10 command, you
will have to remember to give a Y command unless the
device needs' -no ini tializing. All this is discussed
more fully in 11.1.

Another command pertaining to the terminal allows
you-to set the terminal width. This 'is the WID command.
If you give the WID command with no argument, it will
print the current terminal width, while if you supply an

"argument, the low order byte'o-f the value of the argu
ment will be set as the terminal width. The widest line
which the line. buffer can hold is 130 characters, though

. 'if a WID cominandis given for a value "greater than this,
the value will be set as the width of the terminal for
output purposes. This width determines how many.charac
ters are output_beforeDISKATE automatically inserts a
carriage return and line feed for an overflow line.

-65-

DEVICE

Y
COMMAND

EXECUTES
TERMINAL
INITIAL
IZATION
ROUTINE

(NO ARG)

WID
COMMAND

SETS
TERMINAL
WIDTH
TO ARG

WITH NO
ARGUMENT
PRINTS
TERMINAL
WIDTH

DISKATE User's Manual -66-

There is a simple command for printing a message on
the terminal. The command: ECHO

ECHO[one-line character string]

will simply cause the string within the brackets to be
printed on the terminal. This differs from the" com
mand, in that to print a message on the terminal using a
n command, the message must be part of the current file.
The echo command will print its argument without any
matching, so that the contents of the curr~nt file don't
matter.

The Panic Detect State is important so we'll spend
a minute discussing it in detail. The panic detect
routine is called periodically by DISKATE, including
PRIOR TO THE OUTPUT OF EVERY BYTE TO THE TERMINAL. In
the version supplied with DISKATE which is written for
the serial I/O port on the disk controller, the panic
detect routine will respond to ANY KEY ON THE KEYBOARD
BEING PRESSED. Because there are timing considerations
involved, the best way to register the panic state to
DISKATE if you're using the panic detect routine
provided is to press the Break key if your terminal has
one. (These details are discussed more fully in Part
II.) If you are writing your own panic detect, you may
wish it to respond to only a certain character, such as
a Control-C. In any event, if the panic detect routine
returns to DISKATE signalling the condition that you
desire a process to be stopped, DISKATE will STOP AND
WAIT FOR THE NEXT CHARACTER TO BE INPUT FROM THE
KEYBOARD.

If this character is ESC, (IBH) then the ongoing
DISKATE process will be TERMINATED. A question mark
will be printed on the screen to echo the abort. If you
type S instead of ESC, (S for Single-step,) the next
character of the output will be printed but the panic
state will remain in effect. Thus a single character
will be printed, but prior to the output of the next
character DISKATE will automatically go into the panic
state as if you had again interrupted it. Thus if you
want to slowdown a printout, interrupt it by invoking
the panic detect 'routine, and then-repeatedly type S, or
if your terminal will transmit a character repeatedly,
transmit the S. This way the characters will be printed
slowly enough for you to be able to read them as they
are being printed. If you are in a panic state and you
type any character other, than S or ESC, the process will
continue full steam: Recall that you can force entry to
the panic state by executing the PAUSE command.

If a printout from a If command is interrupted by
'invoking the panic detect "and then aborted, there is a
way to continue. the printout where you left off. The

COMMAND

PRINTS
ARGUMENT
ON TER
MINAL

PANIC
DETECT
PROVIDED
RESPONDS
BEST TO
BREAK

UPON
PANIC
DETECT,
PROCESS
WILL
STOP &
WAIT FOR
INPUT:

ESC =
ABORT,

S = DO
ONE CHAR
& STAY
IN
PANIC
STATE,

OTHER =
RESUME

?
AS ARG-
WILL

DISKATE User's Manual

symbol "?" can be used as an argument and will give the
address within the file where the output was halted.
For instance, if you abort a h •• command and then decide
you want it to go ahead and finish, the command:

"?.

will work. In general, if you've given no commands
since aborting the printout, you can use the command:

"?.>

to resume the printout and have it continue to whatever
upper bound you orignally specified. This feature is
implemented only for the" command, and will not work if
a # command is similarly interrupted.

As we mentioned at the beginning of the manual,
DISKATE scans its input and if the back-space key, 08H
or Control-H, is pressed, the pointer to the line buffer
holding the line currently being typed is backed up one
character, and the following is echoed to the terminal:
a back-space, a space, and another back-space. If you
are using a video terminal this will erase the last
character typed from the screen. You can do this any
number of times to wipe out several characters that have
been typed that contain:'mfstakes. If you type ESC then
the entire line is ignored. A backslash, 11\ n, is pr inted
on the terminal to echo this.

The details for creating the actual drivers to han
dle these I/O calls are discussed in Part II. At this
point we are ready to begin discussing the disk file
handling commands. 'Internall'y DISKATE is divided into
two parts: a program called 10, which has all of the
disk handling routines and other input/output, and a
program called ATE which'is independent of any particu
lar I/O requirements. DISKATE comes with drivers for
handling both the Disk Jockey controller and the North
Star Disk. "However,'lf"youhave another controller, it
is possible tointerfa6e that controlleI to DISKATE by
rewriting part of the module 10.

A disk 'file 'is~'named by 'a combination of the file
name and a designator which indicates which drive the
file is on. DISKATE maintains a CURRENT DRIVE, and the
disk drive'designatot can be omitted when specifying a
file, in which case the file will be assumed to be on
the current drive. File names may be up to 8 characters
long and can c'ontai'ri'''ANY PRINTING CHARACTERS EXCEPT: a
comma or colon. In addition, the file name must not
begin with II or @. The disk drive designator is a
single letter, A tnroughH':':In' the current version,
drives A through Dare vectored to routines for the Disk

-67-

GIVE
ADDRESS
IN THE
FILE
WHERE
PRINTOUT
FROM Ii

COMMAND
WAS
ABORTED

BACK
SPACE
WIPES
OUT
LAST
CHAR
TYPED,
ESC
WIPES
OUT
CURRENT
LINE

DISK
FILE
SPECI
FIED BY
FILENAME
COLON
DRIVE

DRIVE
OMITTED
ASSUMES
CURRENT
DRIVE

DRIVES

DISKATE User's Manual

Jockey controlled drives 1 through 4, drives E, F, G are
vectored to routines for North Star Disk drives 1, 2, 3,
and drive H is undefined. To specify the disk drive
along with the file name, the file name is given
followed immediately by a colon followed by the drive
designator. Thus a file named CONTRACT on Disk Jockey
drive 2 could be specified:

CONTRACT:B

In your version of DISKATE as supplied, the current
drive on power-up will be drive A. (In Part II we'll
see how this can be changed.)

Each file has associated with it the following
information:

1. The file name.
2. The location on the disk where the file resides.

-68-

DESIG
NATED BY
LETTER

A-D DISK·
JOCKEY
E-G NORTH
STAR

3. The length of the file. BLOCK =
4. The file type. 256 BYTES
5. The address in memory from which the file was saved.

File names we've already discussed. DISKATE
assumes that each disk is divided into units called
BLOCKS which are 256 bytes long. The block is the
smallest unit of information for dealing with the disk.
The actual details of how characters are stored on the
disk are irrelevant here: the DISKATE block structure
can be thought of as a logical construct which does not
depend on the physical details of the acutal disk con
troller organization. The Disk Jockey controller, for
example, will read and write information in units of 128
bytes. The location or address of the file, #2 above,
is the BLOCK NUMBER of the file on the disk. The length
is the number of blocks. Thus the smallest file possi
ble in DISKATE is 256 bytes long. The length of a file
is a one-byte number, so that DISKATE files are LIMITED
TO A LENGTH OF 65K, or 256 blocks to be exact. DISKATE
recognizes only two file types: 'source files and non
source files. A source file has a type of 0, and a non
source file may have any other type. The file type is
given by a one-byte 'niurlbe'r. '''When DISKATE saves a file
on the disk it automatically sets the file type. Any
file saved FROM WITHIN THE SOURCE AREA will be assumed
to be a source file arid will be given type 0, while any
other file will be given type 1.

All of this information is stored in a special
10~ation on the disk called the DIRECTORY. The direc
tory occupies the first 4 blocks on each disk, and each
file on the disk has an entry in the directory which is
16 bytes long. The format of the directory is: .

IS
SMALLEST
UNIT OF
DISK
STORAGE

FILE
LENGTH
LIMITED
TO 256
BLOCKS

SOURCE
FILE IS
FILE
SAVED
FROM
SOURCE
AREA

DIREC
TORY
USES
1ST 4
BLOCKS,

DISKATE User's Manual

byte contents

0-7 file name

8-9 disk address

10 file length

11 ignored

12 file type

13-14 memory address

15 unused

North Star Disk users will note that this format is com
pletely compatible with North Star DOS. In this table
bytes are numbered with low order bytes getting low
numbers, and addresses follow the 8080 convention of low
order byte in the low order address. Because each entry
in the directory is 16 bytes long, the directory has
space for 64 files. Thus each disk is limited to'64
DISKATE files.

As with any floppy disk system, a program which
goes out of control and manages to dump garbage on the
directory ofa disk' MAY RENDER THE ENTIRE DISKETTE
UNREADABLE!! For this reason you are emphatically
advised to make backups of all disks containing impor
tant information. >Ifyou have a dual disk system,
backups can be made by copying entire diskettes.
DISKATE has a command for doing this, which we'll see
below. If you have only a single drive, you can keep
"consecutive backups" by STORING A FILE ON A BACKUP
DISKETTE EVERY TIME YOU STORE IT ON THE WORKING
DISKETTE. If you consider this to be too much of a
nuisance to be worth the bother, it is a safe bet you
will change your mind the first time you lose a whole
diskette worth"of information.

Now let's begin the discussion of the file handling
commands. Suppose you are working on a file which is

-, brand new ~...;. 'you started with an empty source area and
have created the file for the first time using the
editor commands, and now it must be saved on the disk.
Let's say 'you" want to save it under the name SPECS.
This can be done with the command:

'SSPECS<F> .,

The DISKATE file handling commands will do a lot of work
automatically~ so we had better-be careful to understand
just how the commands work. First of all, since only

-69-

16 BYTES
PER FILE

THOU
SHALT
MAKE
BACKUPS!

PLEASE!

S
COMMAND

SAVES
INTERVAL
GIVEN AS
SECOND
ARGUMENT

. ON FILE
WHOSE
NAME IS
FIRST
ARGUMENT

DISKATE User's Manual

SPECS was given as the file name,DISKATE assumes that
SPECS is to be saved on the current drive. Before the
cQrnI[land etbove was given, presumably there is no such
file as SPECS. No matter, DISKATE will create the file.
The information saved on the file is the interval which
is the second argument of the S command. In this case
we've given the entire current file as the argument.
Because <F> is surely within the source area, SPECS will
automatically be given type 0, which makes it a source
file. In the memory address section of the directory,
the current address of the beginning of the current file
will be written, though for source files this informa
tion is generally not consulted.

Now suppose you do some more work editing the file,
and want to save the newer version. The identical
command: S'SPECS <F> will save the current file as the
disk file SPECS. Note that the old contents of SPECS on
the disk are overwritten by the S command. So: the S
command will create a new file if there is no file
corresponding to the file name given as the first
argument; if there is such a file its old contents are
overwritten. Note that this is a great convenience, as
long as you haven't made a mistake in typing the S
command. However, it does make it possible to get into
the following tangle. If you make a mistake entering
the file name in the S command and specify a file which
doesn't exist, when you meant to specify a file which
does exist, the file will be stored under the incorrect
name. This will have two consequences: there will be
an extra file on the disk under an erroneous name, and
the file with the correct name will not contain the
latest version of the file. Below we'll see some ways
to prevent this type of situation. .

One other caution. To specify the current file as
the interval to be saved, we used the argument <F>. We
could have used •• instead of <F>, since like most
DISKATE commands, the initial reference interval for the
S command is the current'file. Remember, though, that
if you are using the REF cominarid to specify a different
initial reference interval, this will also apply to the
S command. We used <F) to specify the current file
because it giv~~ th~~urrent £ile without matching,
regardless of the initial reference interval.

Here's one way of avoiding the problem of saving a
file' under the wrong file" name. Whenever a DISKATE
command is to be given a file name, the symbol .. can be
given in place of the file name and refers to THE MOST

. RECENTLY REFERENCED FILE. Thus if you create a brand .
new file and save it by a command S SPECS <F>, as above,
and then do some more work on the file and want to save
th~ updat~d version as the same file, you can use the
command:

-70-

IF NO
SUCH
FILE
EXISTS
IT IS
CREATED

SYMBOL
It

CAN BE
USED IN
PLACE OF
FILE
NAME FOR
MOST

DISKATE User's Manual

5 II <F)

PROVIDED you have not given any disk commands with other
file names or changed the current drive in the meantime.
Even immediately after power-up, Ii will have a meaning,

,since as we'll see below, when DISKATE powers up it
references a special file called STARTUP.

If you want ,to see what the most recent file is,
you can give the command:

? I.

This will print the file name and drive on the terminal.
Use of the It file name provision is highly recommended.

So far we've said nothing about the length of the
file after an S command. When the 5 command is given,
the length' of the file will be set 'at just enough blocks
to hold the interval saved. Suppose the file already
exists and the length is not long enough to hold the
interval? If ther~ is a contiguous block on the disk
large enough for the interval that is free, DISKATE will
save the file in this block and release the block where
the file existed before. If there is enough free space
on the disk to hold the interval but not in one block,
DISKATE will compact the disk and make the file just
long enough to hold the interval. In this case a message
of the form:

COMPACTING ON DRIVE (drive designator)

will be printed while the compacting is going on. In
this way DISKATE handles all disk space allocation for
you, and you needn't be concerned about allocating
lengths for files. Of course, the situation can always
arise that you run out of space On ~ diskette. In this
case DISKATE will print an error message to this effect
on the terminal. It can also happen that the directory
becomes full if tnereare 64 files on the diskette. An
S command for a new file will also cause an error in
this si.tuation. The error messages will tell you that
either the disk orthedirectoryis'too full, and will
tell you which drive. A similar error message will be
printed in case of hard disk errors •

. , Because DISKATE will automatically compact the disk
if an existing file is too short, if you have a DOS or
other piece of software that can directly manipulate the
directory,'you MUST NEVER CREATE OVERLAPPING FILES as
the DISKATE compacting routine will not work if files
overlap. Of course~ if all of the files on a diskette
were created usingDISKATE, this will be no problem.

Any interval can be given as the second argument of

-71-

RECENTLY
REFER
ENCED
FILE

? II

COMMAND

SHOWS
MOST
RECENT
FILE

FILE
LENGTH'
SET AT
JUST
LONG
ENOUGH
TO HOLD
INTERVAL

IF FILE
TOO
SHORT
DISK
WILL BE
COM
PACTED

NO OVER
LAPPING
FILES
ALLOWED!

DISKATE User's Manual

an S command. The general form of the S command is:

S filename interval

Here the interval MUST be given -- you can't use the de
fault argument for the disk commands, to prevent errors.
Using an S command for an interval smaller than the
whole file gives a simple way to BREAK UP A FILE INTO
SMALLER PARTS. Editing a file in parts has some advan
tages. There is less chance that you will run out of
room in the memory just at a time when you don't want
such considerations to disrupt your train of thought in
editing the text, and DISKATE will run faster with
smaller files. Suppose you have a file called SPECS,
for instance, and you want to break it into 2 parts, the
first part being the first 147 lines and the second part
being the rest. Let's call the two parts SPECS and
SPECS'. (Note that' is a valid symbol to be part of a
file name.) We'll also assume that the whole thing is
in the memory as the current file. To break it up into
two pieces you can use the commands:

S SPECS •• 1471
S SPECS' 1481 ••

(In this case we're assuming that the REF command is not
being used.) Note that after these commands, It used as
a file name will denote SPECS'. You can also save
intervals from' outside the source area. We'll see some
examples of this below.

To examine what is on a disk you can give the I
command -- I for Identify. The I command with no argu
ment will list the files on the current drive. If you
want the files on a specific drive listed, the drive
designator can be given as an argument. For each file
the listing will tell you the length of the file,
whether it is a source file or not, and if not will give
the memory address. The listing will also.print the
number of blocks of free space on the disk, as well as
the number of remaining directory entries. The address
of the file on the disk is not included in the listing
from an I command, 'since you don't have to worry about
specific disk addresses. However, if you need all the
information that exists in the directory, DISKATE keeps
a copy of the entire directory in the memory, and we'll
see in Part II how you can access this if you need to.
If you are using many S commands without using the file
name .. , giving the I command periodically is a good idea
to make sure there are no extraneous files on the disk
resulting from an erroneous S command.

You may want to know only how much space is left on
a disk, without needing a complete listing of all of the

-72-

I
COMMAND

LISTS
FILES
ON DISK
DRIVE
GIVEN AS
ARGUMENT

WITH NO
ARGUMENT
LISTS
CURRENT
DRIVE

FS
COMMAND

PRINTS
AMOUNT
OF FREE
SPACE ON
DRIVE

SAME ARG
CONVEN-

DISKATE User's Manual

files. This can be obtained with the FS command, FS for
Free Space. The argument for this command works the
$ame a$tor the I command: either a disk drive designa
tor, or no argument indicating the current drive.

Of course there has to be a way to delete a file,
and this is accomplished with the U command, U for Un
save. The U command takes a file name as its argument,
and deletes the file from the disk. Of course, the file
name can include a disk drive designator.

At this point we come to another important command,
the command for loading a file. Although it might seem
straightforward, there are several ways that trouble can
occur if not used carefully. The L command, L for Load,
will load the file given as the first argument into the
memory. The memory address where it is loaded can
either be given as the second argument, or omitted, in
which case DISKATE will determine the load address in
the following way. If the file is not a source file
then it is loaded at the memory address given by the
memory address portion of the directory entry for the
file. If the file was saved by DISKATE then this
address will be the address in memory where the file
began at the time it was saved. If the file was created
by another piece of software, you should always give the
load address as a second argument to the L command
unless the file is of type 0. Otherwise there may be no
telling what is writtten in the space in the directory
where DISKATE expects the memory address. You will get
quite a surprise if you give an L command without a load
address and the file clobbers part of the resident
software.

If the file to be loaded is a source file and the
'load address is not given as a second argument, then it
is INSERTED into the current file between the target
character and the preceding character -- i. e. excatly
where text is inserted by anE or M command. The target
character will then be set to the first character after
the text loaded from the disk file. There are two
important considerations here. -- First, if the target
character happens to be outside the source area, then
the file will be loaded at the location given by the

'entry pointer OVERWRITING WHATEVER IS THERE. The source
area remains unchanged. Because an L command can affect
a very large number of bytes, an error of this kind can
be catastrophic • If you ha've been using DISKATE as a
monitor to work with memory outside the source area,
then give an L command with no second argument for a

"sourcefileb'ut have forgotten to restore the entry
pointer, this could overlay a substantial portion of the
memory and possibly clobber part of the resident soft
ware-resulting iIlacr-ash"'~ ·c~ Second, even if the entry
pointer is in the proper place, if the file is a long

-73-

TION AS
I
COMMAND

U
COMMAND

DELETES
FILE
FROM
DISK

L
COMMAND

LOADS
FILE
GIVEN AS
1ST ARGU
MENT TO
MEMORY
LOCATION
GIVEN AS
2ND ARG

IF NO
2ND ARG
GIVEN,
USES
MEMORY
ADDRESS
FROM
DIREC
TORY IF
NOT
SOURCE,

INSERTS
AT
TARGET
CHAR IF
SOURCE
AND A

WITHIN
SOURCE

, AREA,

ELSE
OVER
WRITES

DISKATE User's Manual

one it will expand the source area considerably. You
should always check to make sure that the expanded
source area will still fit in the area of your memory
that is safe for the source area to occupy. If you
want to work with only a single source file all by
itself, it's always good practise to give an 0 command
with no argument first. That way you have an empty
source area to work with.

Obviously you can use the L command to load into
memory a file which was previously saved. But there are
also some powerful Uses for the L command in addition to
this. We recall that a K c,ommand followed by an E com
mand will replace the deleted text by the text entered
with the E command. A K command followed by an L com
mand which gives a source file as the first argument and
has no second argument will REPLACE THE DELETED TEXT BY
THE LOADED FILE. In this way it is possible, for
instance, to maintain a library on the disk of standard
paragraphs, use an abbreviation to denote the paragraphs
in editing and then write a macro which will substitute
directly from disk the paragraph for the abbreviation.
This can be used to write form letters, just to cite one
application.

Another important way the L command can be used is
to concatenate or combine files. Suppose we go back to
the example above where a file SPECS was split into two
files, SPECS and SPECS'. Suppose that after further
editing the verbosity is reduced and the two file are
now small enough that it would be more convenient to
have them combined into a single file. Because the two
files were saved from the source area they are both
source files. The job we want to do can be done by the
following commands: "

0,1
L SPECS,L SPECS'," .•
U SPECS',S SPECS ••

The O'command will collapse 'the source area so that the
combined file will not pick up any extraneous informa
tion.' The I command is given so that we can verify that
there 'will be enough room in the memory to hold the com
bined file. Note that the 0 command will put the entry
pointer at the end of the empty current file, which will
be the only file in"the source area. After L SPECS, the
entry pointer will be at the end of the material loaded,
so we can go ahead and give the second L command. "
is given to make' sure the fil~ looks correct before we
go ahead and make any changes on the disk. Now that we
know that the file is correct in the memory, we FIRST
delete SPECS'. That way there will be no doubt that
there will be room on the disk for the combined file.

-74-

AT ...

GIVE 0
COMMAND
BEFORE
L TO
WORK
WITH
ONLY
ONE FILE

0,
L filel,
L file2

WITH
filel,
file2
SOURCE
FILES

WILL
COMBINE
THE
FILES
INTO
ONE
FILE
AS THE
CURRENT
FILE IN
MEMORY

DISKATE User's Manual

The S command will save the file and juggle the position
of the files on the disk if necessary to make room for
it.

Suppose you are working with source files in this
way and give an L command, but by mistake specify the
wrong file, so that you want to delete that part of the
current file in the source area that you just loaded.
Of course, you could backtrack, give an 0 command and
set up the current file allover again up to the point
you gave the load command, but this is a lot of work,
and anyway you may not be able to reconstruct how it was
done. DISKATE has a special symbol which will help in
this case. <R) is a symbol analogous to <S) and denotes
the INTERVAL IN MEMORY\OCCUPIED BY THE LAST RECORD (I.E.
FILE) READ IN FROM DISK. If you are combining source
files by the technique above and realize that the last L
command given was in error, that part of the current
file that was put there by the last L command can be
deleted by the command:

K<R)

Because the K command will position the entry pointer to
the end of the deleted material, you can immediately
follow it with the correct L command, and the mistake
will be corrected.

'There are several disk commands which can be used
to copy information or change the status of files. If
you want to CHANGE THE CURRENT DRIVE, the command CD,
which takes as its argument a disk drive designator,
will establish the drive indicated by the argument as
the current drive. In Part II we will see how to
customize your system so that DISKATE knows which drive
designators are valid. It is important that this be
done correctly, or else a CD command to a non-existent
drive will cause very bad mischief. If you have
followed the customization procedure outlined in Part
II, you will not have proble~s, but here is what will
happen if you give a CD command by mistake for a non
existent drive. DISKATE will go ahead and register the
drive as the current drive without giving an error
message; but after that, EVERY SINGLE DISK COMMAND FOR
THE CURRENT DRIVE WILL GIVE A DISK ERROR. You will know
what has happened, since the disk error messages print
the drive designator for the drive that caused the
error, and this will show a drive that you don't have.

You can RENAME a file with the RN command, in the
. form: '"

RN oldname newname

be sure to remember to separate the two file names by a

-75-

<R)

GIVES
INTERVAL
OCCUPIED
BY LAST
RECORD
LOADED
FROM
DISK

K<R)
DELETES
LAST
TEXT
LOADED

CD
COMMAND

TAKES
DISK
DRIVE
DESIG
NATOR
AS ARG
& MAKES
IT
CURRENT

RN
COMMAND

RENAMES
FIRST
FILE

DISKATE User's Manual

blank. Of course in renaming a file, the file does not
change its location on the disk, so that a disk drive
des.ignatox in newname is superfluous. If one is present
it is ignored, even if it incorrectly specifies a drive
other than the one the file oldname resides on.

It frequently happens that you want to copy the
contents of a file from one file to another. This is
done with the DISKATE T command, T for Transfer. The T
command has the form:

T old file newfile

In this case drive designators are significant, since
the file to which you want the information copied could
be on another drive from the file which is to be copied.
The DIRECTORY ATTRIBUTES -- i.e. size, file type, and
memory address are also copied. The T command works
analogously to the S command in that if newfile does not
exist it is created.

An entire disk worth of information can be copied
at once with the TD command, which stands for Transfer
Disk. The TO command has the form:

TD olddrive newdrive

where both olddrive and newdrive are drive deisgnators.
The TD command is more flexible than the usual copy disk
command found in floppy disk operating systems. Usually
such a command will copy the old disk onto the new disk
sector for sector, completely overwriting whatever was
on the new disk. The DISKATE TO command WILL COpy TO
THE NEW DRIVE ALL FILES FROM THE OLDRIVE LEAVING ALONE
ALL FILES ON THE NEW DRIVE THAT DON'T EXIST ON THE OLD
DRIVE. To be specific,

TD olddrive new drive'

is equivalent to giving:

T file:olddrive file:newdrive

for every "file on olddrive. -Thus if a file from
olddrive does not exist on newdrive it is created. If
it does exist the contents from the file on oldrive are
copied into it." ..

Of course, it is possible that if there is already
considerable information on newdrive that DISKATE will
run out of room"before theTD command is finished. If
this happens, a message informing you of this fact will
be printed. In this case not all of the files from
olddrive will have been transferred. However, there
will be no files which were only partially transferred.

-76-

AS 2ND
FILE

T
COMMAND

COPIES
FIRST
FILE
TO 2ND
FILE

TD
COMMAND

COPIES
ALL
FILES
ON 1ST
DRIVE
TO 2ND
DRIVE
LEAVING
ALONE
FILES
UNIQUE
TO 2ND
DRIVE

DISKATE User's Maijual

DISKATE will check BEFORE copying the file to see if
there is room, and if not the TD command will terminate.
~When this happens you may want to give the command I
newdrive to see what files exist on this drive that
weren't on olddrive, and delete some of them with a U
command to make more room.

The memory address portion of the directory for a
file can be set to a given address by using the W com
mand, which stands for write address. The W command has
the form:

W filename argument

where the argument is the same kind of DISKATE argument
that would be recognized by the editing and monitor com
mands. The only thing that is changed by the W command
is the memory address. This is especially useful in ,
connection with the assembler, where during assembly the
object code is placed one place in the memory but when
executed the code is to be loaded at another place.
We'll look at this in more detail in the next section.

We conclude this section with a command which is
extremely convenient but which can also cause serious
grief if used incautiously. 'The GO command, which takes
only a file name as its argument, will load a file from
disk and then automatically execute it. If the file is

, a source file, then:

GO file

is equivalent to:

L file,D<R>

whereas if the file is NOT a source file, then GO file
is equivalent to:

L file,X<R>

The same cautions that applied to the L command apply
here, but in addition you will have lots of trouble if
the file type' has 'somehow become incorrect. If you are
processing a source file with other software which
requires it to be of a non-a type, and then forget to
retype 'it as a~a GO command to that file will cause
DISKATE to call it as a machine language subroutine,
which will almost certainly result in a crash. Note
'that just as with the L command, you must be careful to
make sure that A is in the right place, or you can
clobber part of the memory with a GO command to a source

'file~ If the file-~s an edit macro to be used to work
on the current file, SAFE PROCDURE IS TO GIVE AN N

-77-

W
COMMAND

WRITES
VALUE OF
2ND ARG
IN
MEMORY
ADDRESS
PART OF
DIREC
TORY FOR
FILE
GIVEN AS
1ST ARG

GO
COMMAND

LOADS
FILE
AND
EXECUTES
'IT

EQUIVA
LENT TO
L & D
COMMANDS
FOR
SOURCE
FILES,
L & X
FOR
NON
SOURCE

DISKATE User's Manual

COMMAND BEFORE THE GO COMMAND. Note that in this case
the macro will have to restablish the file that was
current before the N command as the current file.

-78-

DISKATE User's Manual

I.4 Using DISKATE as an Assembler

Space will not permit this to be a general textbook
on 8080 assembler programming. It will be assumed that
you are at least roughly familiar with what an assembler
is all about, and that you've had some exposure to the
8080 instruction set. The DISKATE assembler operates in
TWO PASSES. In Pass 1, the assembler does not create
any object code. Rather, it goes through the source
code keeping track of where each symbol is defined. In
the process it compiles a SYMBOL TABLE. The symbol
table is a string of items containing the symbol and
then a 16 bit number giving the value of that symbol.
At the end of the table is a 0. The symbol itself is
recorded in the following format. There is no field for
the length of a symbol. Instead the characters of the
symbol occur until the last character, which has the
high-order bit set. Thus the symbol AB would be given
the hex value 41 C2. In hex normally the character A
has the value 41, and B has the value 42. Setting the
high-order bit for the B gives the value C2. The symbol
table will also contain an entry for every DISKATE
variable which has been given a value. There is no
distinction made between a variable given a value with
an = command and a variable given a value by Pass 1 of
the assembl er'. . ,

There are several commands which can be used to
deal with the symbol table. The symbol <T>, analogous
to <S), is a DIS KATE' symbol which can be used in an
argument to DENOTE THE SYMBOL TABLE without any match
ing. For instance, if you want to know where the symbol
table is in the memory, you can give the command:

?<T>

Just as the symbol SA denotes the address of the first
byte beyond the source area, TA is a non-matching symbol
which denotes the first byte beyond the symbol table.
This symbol can be useful in commands which serve to
allocate memory. We'll see an example of how this can

'be used below.
It is the user's responsibility in DISKATE to see

that the symbol table is not overlaid and is located
within the memory so that there will be enough space for
it. THE MOST COMMON SOURCE OF MYSTERIOUS ERRORS USING
THE ASSEMBLER COMES FROM A FAILURE TO MAINTAIN THE
INTEGRITY OF THE SYMBOL TABLE. For instance: you can
be making an assembly listing and everything is going
normally, when all of a sudden every symbol is flagged
as not having been defined, when you can see their
definition right in front of your eyes. What will have

-79-

ASSEM
BLER
PASS 1
COMPILES
SYMBOL
TABLE

SYMBOL
TABLE
FORMAT:

CHARS OF
SYMBOL,
LAST
CHAR HAS
HIGH
ORDER
BIT SET,

, THEN
16-BIT
VALUE OF
SYMBOL

INCLUDES
VARIA
BLES

<T>

DENOTES
SYMBOL
TABLE

TA

DENOTES
1ST BYTE
BEYOND
<T>

UNUSUAL
ASSEM
BLER
ERROS

CHECK

DISKATE User's Manual

happened in this case is that <T> is located at the top
of RAM and has overflowed off the top. No matter where
you have the s'ymbol table in the memory, when assembl ing
a large program for the first time it is a good idea to
have a ?<T>, or perhaps several, in the middle of the
assembly so you can keep track of how large <T> is
getting, to make sure it won't overflow the area it is
safe for it to occupy.

Every symbol will be retained in the symbol table
until a command is given to remove it. The Z command,
given with no argument, will Zero -- i.e. remove from
the symbol table -- all symbols except those symbols
that are always initially present in the symbol table on
power-up. As mentioned in 1.1, these are:

A, B, C, D, E, H, L, M, SP, PSW

When the Z command is given with no argument, DISKATE
rewrites a fresh copy of the initial symbol table, so
that if the variables had inadvertantly been given the
wrong values, the Z command will restore the initial
symbol table to the correct values. If you assemble a
program, see some mistakes, then assemble it again
without having zeroed the symbol table, you will get an
enormous number of assembler errors for having defined
symbols twice. If you have symbols of your own that you
want to keep in the symbol table, such as the addresses
of macros, for instance, you can use the Z> command.
This command takes a symbol from the symbol table as its
argument, and will ZERO ALL SYMBOLS DEFINED SUBSEQUENTLY
TO THE ARGUMENT SYMBOL.

Suppose for instance you have defined all of the
symbols that you will be wanting to keep. You can give
the command:

KEEP=9

to define the variable KEEP as a marker for those varia
bl~s that will need to be' zeroed for- each assembly.
Then, to zero all of the symbols except those you want
to keep you can give the,command:

Z>KEEP

You can· also·zero a specific . individual symbol.
This is done by giving the Z command with the symbol as
an argument. The symbol will be removed from the symbol
table and the symbol table will be compacted if the sym
bol zeroed was not the last symbol in the table. Note
that in giving this command, there must be NO BLANK
BETWEEN THE Z AND THE SYMBOL. If there is such a blank,
DISKATE will perform a straight Z command and zero the

-80-

<T>

Z
COMMAND

NO ARG

ZEROS
SYMBOL
TABLE
EXCEPT
FOR
INITIAL
SYMBOLS

Z>symbol
COMMAND

ZEROS
ALL
SYMBOLS
DEFINED
AFTER
symbol

Zsymbol
COMMAND

ZEROS
ONLY
symbol

DISKATE User's Manual

entire symbol table.
There are several ways of managing the symbol table

using commands we have already seen. Above we mentioned
that the M command will update all of the relevant DISK
ATE pointers. This includes the pointers that define

'the boundaries of <T>. If your memory is limited, you
may want to allocate only a small amount of space to <T>
while editing, when the number of symbols in use is
small but you will need a lot of space for <S>. But,
as we'll see, DISKATE can assemble directly from disk,
so that when assembling you may not need a large source
area but will want a large space for <T>. Thus the
ability to change the location of the symbol table in
the memory is important. Let's say you have the symbol
table at lE00H and want to move it to 2C00H. This can
be done with the command:

"'2C00H,M<T>

The symbol <T> can also be used with the Land S
commands to save and restore symbol tables. This is a
useful technique for assembling one program to go with
another, without having to assemble the two of them
together. For instance the command:

S TBLSAVE <T>

will save the symbol table in a file called TBLSAVE.
Now suppose you want to restore the symbol table to the
way it was just before you saved TBLSAVE. There are two
things that have to be done. First we give the command:

L'TBLSAVE <T>

This will OVERWRITE the current symbol table with the
contents of the file TBLSAVE. Now there is one problem.
DISKATE will still have the old value stored internally
for the,upper bound of the symbol table. It is unlikely
that this will be the 'same as the upper bound for the
table saved in TBLSAVE. To set the upper bound of a
symbol table just read in from disk, the easiest method
is to SETA VARIABLE NOT IN- THE SYMBOL TABLE EQUAL TO 0.
So, if we can be sure the variable JUNK was not in the
symbol table saved in TBLSAVE, the command:

JUNK=0

will establish thetlppeibound 'of the "symbol table. The
reason this works is that when an = command is given,
DISKATE searches through <T> from the beginning for the

--symbol ,and when it finds it assigns' it the value. It
defines the symbol if it reaches the end of <T> before

-81-

M<T>
COMMAND

WILL
RELOCATE
SYMBOL
TABLE
TO START
AT A

L
filename
<T>

WILL
OVER
WRITE
<T>

TO SET
UPPER
BOUND
SET
UNUSED
VARIABLE
= 0

DISKATE User's Manual

finding it. But, in defining a new symbol, the size of
the symbol table increases, so a new upper bound for <T>
must be recorded. This is why an = command to a non
used variable will set the upper bound. This technique
will be the cornerstone of the process of customizing
DISKATE discussed in Part II.

In many cases you may find that commands will work
properly if you give only an L filename <T> command
without setting a dummy variable =~. For instance, you
could give a command:

L TBLSAVE <T>

and then a command ?symbol where symbol is one of the
symbols in TBLSAVE, and even though DISKATE will not
have recorded internally the proper upper bound for the
symbol table TBLSAVE, the? command will work properly
anyway. This is because the? command will scan through
<T> taking the 0 at the end as its indication of the end
of the table, rather than consulting the pointer giving
the upper bound. However, if you have not set the value
of a dummy variable and then give the command ?<T>, an
incorrect value will be printed for the upper bound of
<T>. Under these circumstances if you move <T> with the
M command, you may very well end up moving only a small
part of it and losing most of your symbols. In all of
our examples in this manual we have gone to the extra
trouble to set the dummy variable just to be safe.

Now that we've thoroughly discussed the symbol
table, we can get on to describing how the assembler
works. A complete understanding of <T> is crucial,
because as mentioned above, not properly managing <T> is
the greatest source of peculiar assembler errors.

Assembler language statements are divided into two
types: PSEUDO operations and MACHINE INSTRUCTIONS. The
machine instructions are each coded into a single
machine language instruction of object code, whereas the
pseudo ops are directives to the assembler itself.
There ar~ four fields to every assembler statement, some
of which may be empty:

r .. ·-- -- The label field
2. The opcode field
3. The operand field
4. The comment field

The DISKATE assembler allows you to use TWO DIFFERENT
formats for specifying these fields. In the PROCESSOR
TECHNOLOGY FORMAT:

a. 'The label' field begins in the first character of
each line. If an assembler statement is not to be

-82-

PROCES
SOR
TECH
NOLOGY
FORMAT

DISKATE User's Manual

given a label, the first character of the line must
be blank. The label is given without any symbol to
te'rmi'nate it. A label must contain only upper-case
letters or digits and must begin with a letter.

b. The opcode field is separated from the label field
by one or more blanks.

c. If the statement takes an operand, the operand field
is separated from the opcode field by one or more
blanks

d. The comment field is separated from the previous
field by one or more blanks.

e. The entire line can be designated as a comment by
giving * as the first character on the line.

The INTEL format differs from this in the following
respects:

a. A label is terminated with a colon. If a statement
is not to be given a label, the opcode may begin the
line since the absence of the colon following opcode
designates it as the opcode field.

b. The comment field begins with a semicolon (";").

In both formats the mnemonics for the machine instruc
tion opcodes are the same, which are referred to as
INTEL MNEMONICS.

On power-up, DISKATE will recognize the Processor
Technology format unless you have customized your system
so that it comes up recognizing the Intel format. (The
method for doing this is described in Part'II.) You can
change the format for the assembler using INTE for Intel
format, and PROS for Processor Technology. These can
either be given from the terminal as commands with no
argument, or as pseudo;"'ops Ina -source program. Thus a
program can be a mosaic of segments in both formats.

When the assembler begins Pass 1, it will be going
through your source statements, counting where the bytes
of object code will go but without actually putting any
thing anywhere. The assembler needs to know where the
first'-machine' instruction is to be located. In DISKATE
this is handled by two internal 16 bit locations: the
assembler PROGRAM COUNTER, which is denoted by &, and
the assembler STORAGE COUNTER which is denoted by $.
The program counter keeps track of the location of each
machine instruction in terms of WHERE THE INSTRUCTION
WILL BE IN THE MEMORY-WHEN EXECUTED. The storage coun
ter keeps track of WHERE EACH INSTRUCTION IS STORED IN

-83-

INTEL
FORMAT

INTE
PROS

COMMANDS
OR
PSEUDOS

SET
FORMAT
AS
INTEL,
PRO.
TECH.
RESPEC
TIVELY

&

GIVES
PROGRAM
COUNTER

LOCATION
OF
INSTRUC
TIONS
WHEN
EXECUTED

DISKATE User's Manual

THE MEMORY AS THE OUTPUT OF PASS 2 OF THE ASSEMBLER.
The storage counter is not changed during Pass 1, since
no object code is generated during this pass. DISKATE
needs an initial value for the program counter. You may
want the default value for & to be 0, but then again you
may not. The value of & at power-up can be set by the
customization procedure-described in Part II. You can
give it any value within the range of 16 bits. You can
also set its value using the & command. This command is
analogous to the A command: it sets & to the value of
the argument. Likewise, the $ command will set the
storage counter to the value of its argument. When you
customize DISKATE you must be sure that the power-up
value for $ is the location of a place in memory where
object code can safely go, in case you forget to set $
from within an assembler source program.

Here is one way the & and $ can be used. Suppose
you have a machine language program which you wish to
use in connection with editing, but you don't want to
commit yourself to where in the memory it will go. Now
suppose you have done some work on a source file, and
have decided you want this program to be brought in from
the disk and to reside 1024 bytes past the end of the
source area. First give the command:

&S"'+1024,$

then assemble the program directly from disk. We'll see
how to do this below. The method of not specifying
initial values for & and $ within a source program but
relying on $ and & commands from the terminal can be
used to great advantage for flexibility as to where a
program will go, but it does have some risk. Assembling
the program and forgetting to give the values for & and
$ will deposit the code in the wrong place in memory,
which could lead to trouble.

In many cases, possibly in most cases, you will
want to set the initial values for & and $ from within
the assembler source program. There are three pseudo
ops for this- purpose. The pseudo-op AORG (for Assembler
Origin) will set & to the value of the operand, while
SORG (for Storage Origin) will set $ to the value of the
operand. It is important to remember that a SORG state
ment DOES NOT TAKE EFFECT UNTIL PASS 2, unless $ is used
as part of an operand of an assembler statement. A SORG
statement will set $ during Pass 1, but after that the
storage counter is left completely untouched until Pass
2. - - -

Another pseudo-op that affects both & and $ is ORG.
The value of separating the function of & and $ is that
it allows you to assemble programs which will execute
from a place in the memory currently occupied by some-

-84-

$

GIVES
STORAGE
COUNTER

LOCATION
WHERE
INSTRUC
TIONS
ARE
STORED
BY
PASS 2

&
COMMAND

SETS &
TO
ARGUMENT

$
COMMAND

SETS $
TO
ARGUMENT

AORG
PSEUDO

SETS &
TO
OPERAND,

SORG

SETS $
TO
OPERAND

DISKATE User's Manual

thing else in the DISKATE environment. In such a case
you want the object code to be stored in a different
place from the place where it will go when the program
is run. Here you will need separate AORG and SORG
statements. However, in many cases you will be able to
assemble a program directly into place. This will have
the advantage that you can begin debugging immediately
after assembly, while the symbol table is still in the
memory. In this type of situation you will probably
want to use the ORG statement. The ORG statement resets
both & and $ by the following rule:

1. & is reset from the value it had before the ORG,
which we'll call old&, to the value of the operand
of the ORG statement, which we'll call new&.

2. $ is reset to $ + new& - old&.

In other words, first & is reset to the operand of the
ORG statement, and then $ is reset BY THE SAME RELATIVE
AMOUNT AS & WAS. This means that a source program only
needs to have one instance of a separate AORG and SORG
at the beginning -- after that ORG will maintain the
proper offset between & and $ that was established with
the AORG and SORGe However, if you go on to assemble a
new program with a different offset between the initial
value of & and the initial value of $, you may have to
first reset & and $ from the terminal.

Operands of assembler statements can be labels, and
can include arithmetic operations +, -, *, and / provi
ded the expression can be given a value at the time the
assembler encounters it. You can also use DISKATE
symbols such as <S), <T), $, &, etc., but you can't use
complex arguments involving matching of the kind we saw
in section 1. The pseudo-op EQU (for EQUate) can be
used to assign the value of an expression to a label.
If an EQU statement has a label, though, that label had
better not appear in -the operand. Thus, if you had a
table and wanted to set a label equal to the length of
the table, you could have:

TABLE

TBLEND EQU &

TBLLEN EQU TBLEND-TABLE

-85-

ORG

SETS &
TO
OPERAND
AND
CHANGES
$ BY
THE SAME·
AMOUNT
AS & WAS
CHANGED

PSEUDO
EQU

ASSIGNS
LABEL
THE
VALUE
OF THE
OPERAND

DISKATE User's Manual

but you can't have:

TABLE EQU TBLEND-TABLE

Also, you cannot give a label a value with an EQU more
than once. In any assembly, labels are defined once and
then retain that value throughout the duration of the
assembly process, unlike variables that may be changed
at any time. However, you CAN attatch several labels to
the same location in a program. For instance, if you
had a label called DATA to indicate the beginning of a
data section, and TABLE was to be the first label in
this section, both DATA and TABLE should label the same
place. This can be accomplished by giving an assembler
statement with the label DATA as THE ONLY FIELD PRESENT.
In Intel format this might look like:

DATA:
TABLE:

Most of the other pseudo-ops in the DISKATE assem
bler are standard for most assemblers. To define con
stants you can use the pseudo-ops DB, for Define Byte,
and DW for Define Word. DB creates a one-byte constant
with the value of the operand, and DW creates a l6-bit
constant with the value of the operand. In addition to
numerical expressions, you can also enclose an ASCII
character in single quote marks. Thus to define a
one-byte constant with the label STAR which is an ASCII
asterisk, in Intel format you could give the statement:

STAR: DB '*'

Operands such as '*' can also be used with the EQU pseu
do and machine instructions. DISKATE will also allow
you to use multiple operands for a DB or DW, separated
only by commas. Thus to define three consecutive bytes

'of 0's you could use:

.. 08. .. 0 ,0~~

-86-

FOR
MULTIPLE
LABELS
AT ONE
LOCATION
GIVE
STATE
MENTS
WITH
NAME
FIELD
ONLY

DB
PSEUDO

DEFINES
BYTE

DW

DEFINES
WORD
(16 BITS)

WITH
VALUE OF
OPERAND

MULTIPLE
OPERANDS
ALLOWED

DS

DEFINES
STORAGE
BLOCK

To define a block of storage where you don't need
to give the bytes in the block an initial value you can
use the pseudo OS, for Define Storage. It will advance
& and $ by the value of the operand, creating the area
as a block of free storage. For instance, to define a
block called BUFFER 80 bytes long, in Processor Tech
nology format you could use the statement:

.) WITH

BUFFER OS' 80"

LENGTH
GIVEN BY
OPERAND

DISKATE User's Manual

In addition DISKATE has a statement for defining a
field of ASCI,I constants which is not standard. The
pseudo ASC will define the string of bytes given by the
operand. The string is NOT delimited by quotes, but by
blanks. The string may also be terminated by the
carriage return at the end of the statement line. For
instance, to define a constant which is the ASCII string
'ERROR' you could use the statement:

ASC ERROR

There are two special rules to keep in mind with ASC.
First, if mnemonic ASC is suffixed immediately (no
intervening blank) with a non-alphanumeric character,
then ANY PLACE THAT CHARACTER APPEARS IN THE OPERAND IT
WILL BE REPLACED BY A BLANK IN THE STRING CONSTANT
GENERATED. Thus the statement:

ASCi AiBiC

defines a 5 byte constant whose value is the string:

'A B C'

Second, the character .. AU (hex SE) WILL NOT BE GENERATED
into the string constant but WILL CAUSE THE HIGH ORDER
BIT OF' THE PREVIOUS BYTE TO BE SET. This can be used to
define a symbol table in the same format DISKATE uses
for the symbol table it generates itself. For instance,
to define a short symbol table called SHORTBL with
entries for program labels ALHPA, BETA, and GAMMA in
Intel format you could use the statements:

SHORTBL: ASC ALPHA
OW ALPHA
ASe BETA-
DW BETA
ASC GAMMA-
DW GAMMA
DB ((J

There is a special pseudo, IF, which allows for
conditional assembly. The form of the IF statement, not
counting the label field, is:

IF expression,label

The operand thus consists of expression and label with a
comma between BUT NO BLANKS. (A blank would prematurely
terminate the operand field.) DISKATE evaluates the
expression, and if it is not 0, the assembly continues
as it normally would. However, IF THE EXPRESSION HAS

-87-

PSEUDO
ASC

DEFINES
STRING
GIVEN
BY
OPERAND

OPERAND
DELIM
ITED BY
BLANKS

ASCx
WITH x =
ANY NON
ALPHANU
MERIC'
REPLACES
x WITH
BLANK IN
STRING
GENER
ATED
_ IN

OPERAND
NOT
GENER
ATED,
SETS
HIGH
ORDER
BIT IN
PREVIOUS
CHAR

IF
PSEUDO,

EXPRES
SION
COMMA
LABEL

SKIPS TO
LABEL IF
EXPRES-

DISKATE User's Manual

THE VALUE 0, THEN THE ASSEMBLY SKIPS AHEAD TO THE
STATEME~T WITH LABEL label. You can use this to have
several variants of an assembler program that share most
of their code.

Last, appropriately; is the pseudo-op END, which is
used to terminate an assembly. The END pseudo is not
really necessary, since the 0 at the end of the last
file in an assembly will also work to terminate the
assembly. One use for the END pseudo is if you should
want to incorporate an assembly source program and one
or more edit macros into the same file.

Now let's focus on how to invoke and ·use the assem
bler. A strong advantage of DISKATE over many other
assemblers is that the two passes of the assembler may
be ·invoked separately. There are three pertinent assem
bler commands in DISKATE. The A command, for Assemble,
will invoke both passes of the assembler, while the Al
command will invoke only Pass 1 and the A2 will invoke
only Pass 2. There are two ways for giving arguments
for the various A commands. IF NO ARGUMENT IS GIVEN,
THEN THE ARGUMENT IS THE CURRENT FILE. The command A
all by itself will simply assemble the current file. On
the other hand, you can supply as an argument A LIST OF
FILE NAMES SEPARATED BY BLANKS. When given such a list,
the assembler will assemble the program logically equi
valent to the concatenation of the files given in the
list, though the files are not actually concatenated.
The files in the list can be pieces of one large pro
gram, or separate subroutines. When a list of tiles is
given as the argument, the source area is left entirely
free for other use. The files are processed through a
special disk buffer within the internal area occupied by
DISKATE. (In Part II we'll discuss where this buffer
is.) The file list can be given to any of the assembler
commands, A, AI, or A2. You can also include in a file
list the symbol @ in place of a file name. When the
assembler encounters this it will execute a PAUSE com
mand, and you can use this pause to change diskettes in
case a source program is too long to fit on one disk
ette.

Until you are used to the assembler, BEFORE giving
a command to invoke the assembler you should make sure
you have taken care of the following points:

1." Check to make sure & arid $ will be set properly,
either from the terminal, or preferably from
within the sour~e code by ORG or AORG and SORGe

2. If this is not the first assembly during the run,
you will have to give a Z or Z> ~ommand to prevent
labels from being doubly defined.

-88-

SION HAS
VALUE 0

END
PSEUDO

ENDS
ASSEMBLY

A
COMMAND

INVOKES
BOTH
ASSEM
BLER
PASSES,

Al PASSl
ONLY,
A2 PASS2
ONLY

NO ARG
USES <F>

ARG IS
LIST OF
FILES
SEP. BY
BLANKS

@ AS
FILE
NAME
CAUSES
PAUSE

DISKATE User's Manual

3. Make sure there will be enough room in the memory
for the symbol table.

If you are assembling from disk there is a simple
method for allocating memory. This method is used in
source programs supplied with DISKATE, ·and at first
sight may seem confusing, so we'll look at it carefully
to see why it works. When assembling by giving a list
of disk files, there is no need for a source area at
all. However, you will need: 1. room for the symbol
table, and 2. room for the object code. How do you
allocate this division? One method is to let the assem
bler do it for you by giving the following pseudo-op in
your source program:

SORG TA+10

This statement says to put the object code 10 bytes past
the end of the symbol table. (The 10 byte cushion is
just to play it safe.) But, as your program is assem
bled, during Pass 1 the size of the symbol table is
expanded considerably. How does this statement not
result in having the symbol table clobber the beginning
of the object code as more and more symbols are defined?
The answer comes from an understanding of the separation
of function of the two passes of the assembler. All
symbols are defined during Pass 1, but no code is gener
ated and the'storage counter is not changed. The SORG
statement DOES NOT TAKE EFFECT UNTIL PASS 2. Thus by
this time the symbol table has been completely compiled,
so the object code can safely be placed just beyond it.
If you use this method, though, you must save the object
code on'disk before going on to assemble something else.
A subsequent assembly definitely will cause the symbol
table to begin overwriting the area of object code for
the first assembly. ,~

There are a number of commands which are related to
the process of assembling. Normally the assembler will
produce a listing on your terminal of th~ ~ource and
object codes during Pass 2. In many cases, however, you
will want to assemble a program without producing the
listing. This is accomplished using the Q command, Q
for Quiet. The Q command, which takes no argument, will
cause the assembler to henceforth refrain from producing
a listing during Pass 2~ However, during both passes,
if the assembler was given a file list for its argument,
it will print on the terminal the name of the file
currently being processed. Assembler error messages are
always printed out regardless of any Q command. The
assembler will also print the value of & in the current
base on encountering a pseudo INTE or PROS. To cause
the assembler to resume printing listings, give the J

-89-

SORG
T"+10

PUTS
OBJECT
CODE
JUST
BEYOND
<T)

Q
COMMAND

CAUSES
ASSEM
BLER TO
QUIT
MAKING
LISTINGS
DURING
PASS 1:

J
COMMAND

CAUSES
LISTINGS
TO
RESUME

TAB

DISKATE User's Manual

command, J for Jabber, also taking no argument.
When listings are printed during Pass 2, the source

code is printed with a "tab" setting for:

1.
2.
3.
4.

The label field
The opcode field
The operand field
The comment field

Line numbers will be printed at the beginning of the
field for each source statement. The normal tab
settings for these four fields are, repectively, 8 15 20
29. In addition, the entire source code field is offset
with respect to the left margin, to allow room for the
object code. This offset is normally 21. These values
can be changed by giving the TAB command. If the TAB
command is given with no argument, the current tab
settings will be printed on the terminal, first the four
settings for the four fields above, and last the source
code offset. To change the settings, give the TAB
command with an argument consisting of a list of numbers
separated by blanks, the order of the numbers again
being the four fields above and lastly the offset. Note
that the tab stops for the four fields are each WITH
RESPECT TO THE MARGIN + THE SOURCE CODE OFFSET and not
with respect to the previous tab stop. In the list of
numbers given as argument to a TAB command, the five
numbers need not all be given. Any that are omitted
will keep their old value.

In editing assembler source programs, you may want
to keep the source code in as compressed a form as
possible, to save storage. (Note that the Intel format
is usually more frugal with storage than the Processor
Technology format, since you don't need to begin a line
which has no label with a blank.) DISKATE provides an
editing command which will print an interval in the same
format as that used by the assembler, except there is no
object code present, so that the tab stops are relative
to the left hand margin rather than the source code
offset. The line numbers will also be printed. This is
the P command, which takes as argument any of the kinds
of intervals discussed above. The P command will format
the printout in whichever of the Intel or Processor
Technology formats is current. If the source code

'contains INTE or PROS pseudos,' these will NOT cause the
P command to change formats. Thus the argument of the P
command should not specify an interval that includes
code with both formats. The P command WILL respond to
INTE or PROS commands given from the terminal, so if the
format is wrong one of these commands can be used to
change it. " ,

-90-

COMMAND

~lITH NO
ARGUMENT
WILL
PRINT
CURRENT
ASSEM
BLER TAB
SETTINGS

ARGUMENT
IS LIST
OF
NUMBERS

WHICH
REPLACE
OLD
SETTINGS

OMMITTED
SETTING
KEEPS
OLD
VALUE

P
COMMAND

PRINTS
INTERVAL
GIVEN AS
ARGUMENT
IN
ASSEM
BLER
FORMAT

The P command can also be used with ordinary text to /~

DISKATE User's Manual

obtain line numbers, for referencing with arguments like
n!, but the lines will come out looking rather peculiar,
since they will be formatted as if they were assembler
source statements.

There are several ERROR CODES that the assembler
will generate if it finds something wrong in your source
code. If an A, AI, or A2 command results in assembler
errors, the message:

ASSEMBLY ERRORS?

will be printed on the terminal when execution of the
command is finished, and if the command was part of a
larger command string, such as a macro or multiple
command command line, the command string will abort in
the same way as for any other DISKATE error. The
meaning of the error codes is as follows:

A Argument Error. The operand field is invalid for the
given opcode. This will also occur at a statement
Ibl after an IF pseudo of the form IF expression,lbl
if the expression refers to an undefined variable.
The A code usually occurs only in Pass 2, though an
invalid EQU operand, for instance, will cause it to
occur in Pass 1.

M . Missing Label. An EQU statement occurs without a
label. Printed during both passes.

D Doubly Defined Label. A label is given where the
label is identical to a symbol already defined.
Failing to give a Z or Z> command after a previous
assembly will usually generate quite a few of these.

L Label Error. The first character in a label field is
not an upper-case letter of the alphabet. When this
occurs, 3 NOPs will be generated in place of the
statement. This error can occur especially in
Processor Technology format if there are extraneous
characters in the source code.

o Opcode Error. The opcode field is not a proper op
code or pseudo-oPe 3 NOPs will be generated in place
of the statement.

To conclude this section, let's look at a simple
example of an assembler program which performs a useful
function. We've already seen that DISKATE symbol tables
are kept in a format consisting of: (1) the characters
of the symbol, with the last character having the high
order bit set: followed by (2) a 16-bit number giving

-91-

ASSEMBLY
ERRORS
TERMIN
ATE A
COMMAND
STRING

ERROR
CODES

DISKATE User's Manual

the value of the symbol; (3) with a 0 at the end of the
table. It would be useful to have a simple program
which will print out a symbol table. The example below
will print on the terminal the entire current symbol
table <T>. Because the program uses DISKATE's own
internal print routines, all of the usual conventions
regarding the panic state, current base etc. apply
precisely as if this were a normal DISKATE command.

Some comments about the program. First, it is
quite elementary, doing only the minimal in the way of
formatting the output, and the symbol table is not
sorted. The symbol is printed, then two spaces, then
the value of the symbol in the current base. You could
make it a bit more elegant by having the symbol printed
out in a given column. There are three labels not
defined within the program. These are OUT, which prints
one character on the terminal, PHLSB, which prints on
the terminal in the current base the value in the HL
register pair, and SYMTB which is the address of the
pointer to the beginning of the symbol table. Where did
the addresses come from for these three labels? This
question is discussed thoroughly in Part II, but to jump
the gun a little bit, your version of DISKATE is provi
ded with a file called ATETBL. This file is an abbrevi
ated version of the symbol table for an assembly of
DISKATE, and a complete list of all the symbols in it
and their meaning can be found in Part III. This table
provides the addresses for a number of internal DISKATE
routines and registers. AS mentioned above, the table
can be made into the current symbol table by the
commands:

L ATETBL <T)
KEEP=0

Then to zero all of the new symbols defined during the
assembly of this program, the command Z>KEEP can be
given. The addresses for OUT and PHLSB have come from
this table. It should be emphatically emphasized that
in the listing below, these addresses refer to the
corresponding locations ONLY IN THE VERSION OF DISKATE
CURRENTLY BEING USED BY THE AUTHOR OF THIS MANUAL. IN
YOUR VERSION THEY WILL ALMOST CERTAINLY NOT BE THOSE
SHOWN IN THE LISTING!! In no case should you take
addresses for OUT 'and PHLSB by reading them off from the
object code of this listing. All of this is more fully
discussed in Part II.

The program is set to be executed from location
7F00H. Note that the program sets this initial value
for both & and $ at once using the ORG pseudo. You must
'always be careful when you do this, since the ORG state
ment preserves the relative offset of & to $, so that in

-92-

DISKATE User's Manual

this case we're assuming no previous assembly gave $ a
different value than &. One way of avoiding this
situation is to ,alway's give separate AORG and SORG
statements.

By storing the object code in a file called
PRNTSYM, the symbol table can be printed by giving the
DISKATE command:

GO PRNTSYM

which will load the object code, and then execute the
equivalent to the command X<R>. The RET at the end of
the program will return control to DISKATE. After the
assembly, the object code can be stored by the command:

S PRNTSYM PRNTSYM •• SYMEND

Notice that in this command, the first time PRNTSYM is
used it is a file name, and the second time it is used
it is a symbol in the symbol table. There is no
ambiguity here, but if you find it confusing you can use
a different name for the file containing the program and
an assembler label for the program itself.

Here is the listing of the program, exactly as gen
erated by the assembler. The source code was assembled
directly from the disk file PRNTSYMS, and the tab set
tings were adjusted by changing the last setting, i.e.
the source code offset, to 15.

>A PRNTSYMS
PRNTSYMS
PRNTSYMS

1 INTE
2 · ,

c,'," '3 · ,

-93-

4 ; PROGRAM TO PRINT
5 · SYMBOL TABLE ,
6 · ,

7F00 7 " ORG 7F00H
8 ;

7F0~r " '2A SB 45 9 PRNTSYMi' LHLD SYMTB · SET POINTER ,
10 · ,

7F03 7E 11 SYMBEGIN: MOV A,M · GET SYMBOL ,
'''7F04 " 'B7 12 ORA A · SET FLAGS ,

7F0S CA 38 7F 13 JZ SYMEND · QUIT IF 0 ,
14 · I

7F08 " '7E"- 15 SYMLOOP: MOV'A,M · GET SYMBOL LETTER ,
7F09 47 16' MOV B,A · SAVE COpy ,
?F0A E6 80 17 ANI 80H ; CHECK HIGH

18'- 'r._. . • ,~_ ,.;- .".., ".- · ORDER BIT ,
7FaC C2 17 7F 19 JNZ ENDSYM · JUMP IF ON ,

DISKATE User's Manual

7F0F
7Fl0
7FI3
7Fl4

7Fl7
7Fl8
7FIA
7FlD
7FIF
7F22
7F25
7F26

7F27
7F28
7F29
7F2A
7F2B

7F2C
7F2F
7F3l
7F34
7F35

7F38

>

78 20
CD 38 35 21
23 22
C3 08 7F 23

24
25

78 26
E6 7F 27
CD 38 35 28
3E 20 29
CD 38 35 30
CD 38 35 31
23 32
5E 33

34
23 35
56 36
23 37
E5 38
EB 39

40
CD E2 34 41
3E 0D 42
CD 38 35 43
EI 44
C3 03 7F 45

46
47

C9 48
49

MOV A,B
CALL OUT
INX H
JMP SYMLOOP

ENDSYM: MOV A,B
ANI 7FH
CALL OUT
MVI A,' ,
CALL OUT
CALL OUT
INX H
MOV E,M

INX H
MOV D,M
INX H
PUSH H
XCHG

CALL PHLSB
MVI A,13
CALL OUT
POP H

· ,
:

· , · ,
:
· , · , · , · , · , · , · ,
:
· , · ,
:
:
:
:
;

· , · , · , · ,
JMP SYMBEGIN:

SYMEND: RET

· ,
:
· , · ,

-94-

RESTORE LETTER
PRINT LETTER
INCREMENT POINTER
GET NEXT LETTER

RESTORE LETTER
STRIP OFF BIT
PRINT OUT LETTER
PRINT OUT A
SPACE
AND ANOTHER
INCREMENT POINTER
LOW ORDER
SYMBOL VALUE
INCREMENT POINTER
HIGH ORDER
INCREMENT POINTER
SAVE POINTER
HL CONTAINS
SYMBOL VALUE
PRINT VALUE
CARRIAGE RETURN
PRINT CR,LF
RESTORE POINTER
GET NEXT SYMBOL

RETURN TO DISKATE

Notice that DISKATE will generate line numbers.
The reason for having line numbers is to correlate with
the error messages. A line number MUST NOT begin a line
in the original assembler source code. If you want to
use line numbers for your own reference in the source
code, and the P command will not suffice, the line num
bers must be part of the comment field. The format in
this example, of course, is Intel. By way of contrast,
he:t;e is how the,origin,al source code looks:

• ,
• ,

INTE

; PROGRAM TO PRINT
; SYMBOL TABLE
;
ORG 7F0as
• ,
PRNTSYM: LHLD SYMTB ; SET POINTER

· ,

DISKATE User's Manual

SYMBEGIN:
ORA A ;
JZ SYMEND
· ,

MOV A,M ; GET SYMBOL
SET FLAGS

; QUIT IF 0

SYMLOOP: MOV A,M ; GET SYMBOL LETTER
MOV B,A ; SAVE COpy
ANI 80H ; CHECK HIGH
; ORDER BIT
JNZ ENDSYM ; JUMP IF ON
MOV A,B ; RESTORE LETTER
CALL OUT ; PRINT LETTER
INX H ; INCREMENT POINTER
JMP SYMLOOP ; GET NEXT LETTER
;

· ,
ENDSYM: MOV A,B ; RESTORE LETTER
ANI 7FH ; STRIP OFF BIT
CALL OUT ; PRINT OUT LETTER
MVI A," ; PRINT OUT A
CALL OUT ; SPACE
CALL OUT ; AND ANOTHER
INX H ; INCREMENT POINTER
MOV E,M ; LOW ORDER
; SYMBOL VALUE
INX H ; INCREMENT POINTER
MOV D,M ; HIGH ORDER
INX H ; INCREMENT POINTER
PUSH H ; SAVE POINTER
XCHG ; HL CONTAINS
; SYMBOL VALUE
CALL PHLSB ; PRINT VALUE
MVI A,13 ; CARRIAGE RETURN
CALL OUT ; PRINT CR,LF
POP H ; RESTORE POINTER
JMP SYMBEGIN ; GET NEXT SYMBOL
;

· ,
SYMEND: RET ; RETURN TO DISKATE
· ,

Obviously, the -assembler listing is far more intel-
. ligible, whereas the' compressed format of the original

source code saves on storage. The listing generated by
the P command is identical to that given by the assem
bIer, except that it includes no object code. (Of
course it can happen that a line which is too long in
the assembler listing will not be in the P command list
ing.) ·Onenote • The program assumes that the Processor
Technology format might be in force before it is assem
bled, so the INTEpseudo begins in column 2 to indicate

. an empty name field. 'If -the Intel format is in force
then the lack ofacolon automatically indicates an

-95-

DISKATE User's Manual -96-

empty name field.

DISKATE User's Manual -97-

..
1.5 Invoking DISKATE

In this section we will discuss the various ways of
invoking DISKATE, including the power-up procedure. It
might seem like a dirty trick to have put off the power
up procedure until so late into the manual, but there is
a good reason for it. When DISKATE initializes it
issues internally commands that are exactly like some
you might give yourself from the terminal, so it is
important to have an understanding of how they work.
First a word about how DISKATE is organized. DISKATE
actually consists of two separate but linked programs:
ATE and 10. ATE consists of everything but the I/O
routines, and is completely independent of any particu
lar I/O or disk configuration. 10 contains the I/O
routines, including the disk drivers, and also contains
a loader which loads ATE. To bring up DISKATE, all you
do is instruct your system to load and execute 10. If
your disk will allow any program to be bootstrapped, as
does the Disk Jockey, you will probably want it to boot
strap 10. This is the way DISKATE is provided. If you
are using the North Star disk then DISKATE can be
brought up with the DOS command GO 10. There is one
very important point here if you go to create another
copy of DISKATE on another disk. 10 ASSUMES THAT ATE IS
THE SECOND ENTRY IN THE DIRECTORY. If you use DISKATE
to create another copy of itself, you must make sure
that this holds.'

When 10 has loaded ATE, it will transfer control to
it. Initialization then takes place. This includes
executing the command string:

O,Z,Y

The last thing DISKATE does at power-up is to execute
the command:

·GO STARTUP

STARTUP as provided is an ordinary source file. To see
"what it contains in your version, type 0, L STARTUP, n ••

The STARTUP file can be used to initialize your own
variables which you want to have a value every time you
use'DISKATE. However~--since'the'GO command will either
Land Da source file or L and X a non-source file, the
STARTUP file can also be a machine language program.
If you create a'newcopy 6fDISKATE,'you might happen
to forget the STARTUP file. This is not serious. In
this case DISKATE will issue an error message that it
can't find STARTUP, and then take commands from the
terminal as usual. You can edit STARTUP just as you

TO
POWER UP

LOAD &
EXECUTE
10

VERSION
PROVIDED
BOOT
STRAPS
10

ATE MUST
BE 2ND
ENTRY IN
DIREC
TORY

ON
POWER-UP
COMMAND
GO
STARTUP
IS
EXECUTED

STARTUP
PERFORMS
USER'S
INITIAL
IZATION

ENTRY
POINT
TO
INITIAL-

DISKATE User's Manual

would any other file.
Now suppose you want to leave DISKATE for another

program., such as a DOS, which will be co-resident wi th
DISKATE, and then return to DISKATE. What entry point
should you use? There are two. If you give an I
command for the disk containing DISKATE, the address for
the file ATE will give you the entry point which causes
initialization. You can jump to this address from a
front panel, DOS, or a piece of software. To re-enter
DISKATE without full initialization, the entry point
RENT as given in ATETBL can be used. To find out its
value, mount the disk provided and type the command:

L ATETBL <T),KEEP=0,?RENT

In DISKATE release 1.0 this entry point is 12 bytes
beyond the beginning of ATE, though this might change in
the future. Jumping to this entry point WILL initialize
the stack, but will not change the pointers to <S), <F)
etc. In Part II we'll discuss how a machine language
program can call DISKATE as a subroutine and have
DISKATE return to it. If you jump to RENT in such a
situation, the stack in the program from which you jump
will be lost.

You might want to reload DISKATE from the disk, in
case something serious has gone wrong. 10 will write at
memory location 3 a jump to 10. ' Since 10 beg ins wi th
the loader for ATE, you can reload DISKATE by jumping to
memory location 3, so long as the area of memory occu
pied by 10 is intact. To do this from within DISKATE,
you can give the command:

X3

In addition to these entry points, DISKATE provides
some recursive features whereby it can be invoked from
within DISKATE. These commands allow a macro to issue a
prompt, accept a DISKATE command, and then resume. The
command COM, for command, takes as argument a string
enclosed in brackets. When this is executed, the string
is printed on the terminal as a prompt, replacing the
normal DISKATE prompt. You can then type in one "com
mand line", which may include a mUlti-line E command.
When the command has been executed, execution of your
macro will resume." Here's an example of how this can be
used. Suppose in loading files you want to have a way
to prevent yourself from giving an L command without
first having given an o command. 'That way you will
avoid clobbering the wrong part of the memory. You can
do this by having the following macro tucked away in an
out of the way place in the'memory: -

-98-

IZE IS
LOAD
ADDRESS
OF ATE

REENTRY
POINT
GIVEN BY
SYMBOL
RENT IN
ATETBL

. 10 PUTS
JUMP TO
LOADER
AT
MEMORY
LOCATION
3

TO
RELOAD
DISKATE
JUMP TO
3 IF 10
INTACT

COM
COMMAND

PRINTS
STRING
GIVEN AS
ARGUMENT
FOR A
PROMPT,
ACCEPTS
ONE
COMMAND

DISKATE User's Manual

O,I,COM[TYPE LOAD COMMAND] ," ••

The best way to invoke the macro is to set a variable
equal to the address of the macro, then give the command
D variable. Note that the macro can be loaded and the
variable set to its location by the STARTUP file. In
using this method you must be very careful that the
macro DOES NOT RESIDE IN THE SOURCE AREA, since the 0
command in the macro collapses the source area.

Using the COM command can be slightly tricky, since
you can easily get confused about whether you are talk
ing to the terminal at the "ground level" or via a COM
command. If you give an ESC to the command line being
typed in response to a COM command, DISKATE expects the
line to be retyped. On receipt of the line, whatever
process contained the COM command continues. Thus typ
ing ESC to a command expected by the COM command DOES
NOT return you to the ground level. If you want to
return to the ground level when DISKATE expects a com
mand line for a COM command, you can give the command
RENT, for Reenter. This command performs a jump to the
DISKATE reentrY,location. The stack will be reinitial
ized, but all of your variables will keep their old
values.

Note that the COM command will accept only a single
command, and then returns to the process that invoked
it • There is a similar -. command, ATE ,which when execu
ted CALLS DISKATE RECURSIVELY. The ATE command allows
you to give DISKATE any number-of commands, precisely as
1f"youwere talking to the "ground level" DISKATE. An
error will cause the error message to be printed, but
you will NOT be returned to the ground level. Instead
you will still be 'within the invokation of DISKATE which
is a subprocess of whatever process contained the ATE
command. Then when you give the BYE command, DISKATE
returns to the process that inVOked the ATE command. As
with COM, ATE takes as argument a string enclosed in
brackets which it prints on the terminal as a prompt.
The ATE command can be used to create macros which han
dle various functions automatically, but where you want
to leave some "holes" for doing work with an indefinite

"number 'of DISKATE commands yourself. Here's an example
of how you might use this. C.onsider the following
macro:

R-l,"(F>f>+l,ATE[POINTER IS NOW AT END OF FILE],S n

Suppose you begin your editing work by loadIng- a file
and then invoking this macro. The macro will make
certain that you start to work with the entry pointer at
the end of the file • - "DISKATE will -issue the prompt, and
then you can give any number of editing commands. Then,

-99-

RENT
COMMAND

JUMPS TO
REENTRY
POINT
(GROUND
LEVEL)
INITIAL
IZES
STACK
ONLY

ATE
COMMAND

PRINTS
AS
PROMPT
THE
STRING
GIVEN AS
ARGUMENT,

ACCEPTS
ANY
NUMBER
OF
COMMANDS

RETURNS
WHEN
GIVEN:

BYE
COMMAND

DISKATE User's Manual

you give the BYE command to resume with the macro. This
will automatically store the file on the disk, restore
the entry pOinter to the end of the file, and then issue
the prompt and wait for more commands. As long as none
of the editing commands you type in response to the ATE
command changes the latest file reference, this macro
will allow you to do any editing work you want, and will
automatically handle storing the file on the disk and
restoring the entry pointer. If properly written, such
macros can decrease the likelihood of catastrophic
errors significantly.

One final point. Although this is discussed in
detail in Part II, we must note that DISKATE can be
called by other machine language programs. In addition
to the jump to 10 written at memory location 3, a jump
is written at location 0 to a special DISKATE entry
point called ATECOMS. This entry point will cause·
DISKATE to be calleq as a subroutine, with the HL
register pair pointing to a string of DISKATE commands.
This string will be executed, and then control will be
returned to the calling program. In this case if this
string does not cause DISKATE to leave the "ground
level", then a BYE command in the command string will
cause control to be returned to the calling program.
(Control will also be returned to the calling program if
a 0 indicating the end of the string is encountered.)
Note however that invoking the entry point RENT, either
by a RENT command or by jumping to the entry point RENT,
will cause reentr¥ at the ground level and the return
address to DISATE s caller will be lost. If you are at
the ground level and there was no calling program, i.e.
you invoked DISKATE by the usual power-up procedure,
then the BYE command will cause DISKATE TO BE RELOADED
FROM THE DISK.

-100-

BYE
COMMAND
AT
GROUND
LEVEL
RETURNS
TO
CALLING
PROGRAM

IF THERE
IS NONE
CAUSES
DISKATE
TO BE
RELOADED
FROM
DISK

RENT
LOSES
RETURN
ADDRESS

DISKATE User's Manual

Part II Installation and Maintenance

11.1 Bringing up DISKATE

The version of DISKATE supplied with the Disk
Jockey controller comes ready to run with a serial ter
minal attached to the Disk Jockey serial I/O port. If
you have a serial terminal, attach it to this serial
port and set the terminal to run at at 1200 baud. Then
all you have to do is bootstrap the DISKATE diskette and
you should be up and running. If you have a serial
terminal and want to run it from another I/O board, the
best thing to do is bring up DISKATE from the serial
terminal on the Disk Jocky, then use DISKATE itself to
customize your I/O routines. If your terminal hardware
is not simply a serial terminal, or if it is a serial
terminal but won't run at 1200 baud, then you will have
to make some minor patches. Before describing the patch
ing procedure in detail, here is the general structure
of how DISKATE is brought up. As mentioned in Part I,
DISKATE consists of two independent but linked modules,
10 and ATE. 10 contains all of the I/O drivers includ
ing those for the disk. It also contains a loader which
looks in the directory for ATE, which IT ASSUMES IS THE
SECOND ENTRY IN THE DIRECTORY, and loads it. 10 writes
a jump to the beginning of 10 at memory location 3. This
jump is the only link ATE has to 10. Thus ATE and 10 can
be positioned in the memory completely independently.

The beginning of 10 is a JUMP TABLE to all of the
I/O drivers DISKATE will need. The initial power-up
procedure if your terminal system is not connected to
the Disk Jocky serial port is·to bootstrap as if you
were, and then to patch into this jump table. We'll
.discuss the first part of the jump table first, because
the first part deals with the terminal I/O and the
second part deals with the disk drivers. Here is the
format for the beginning of 10:

Location

10
10+3
10+6
10+9
10+12

-, "'JMP'
JMP
JMP

'''JMP'
JMP

Contents

'Loader'
Character Output Routine
Character Input Routine
Terminal Initialization Routine
Panic Detect Routine

In "the standard versi6n currently provided, 10 begins at
0100H.

A jump to the loader begins the jump table. Thus
DISKATE can be reloaded at any time by jumping to 10.

-101-

BAUD
RATE FOR
SERIAL
TERMINAL
ON D.J.
IS 1200

DISKATE
READY TO
RUN WITH
SERIAL
TERMINAL
CONNEC
TED TO
D.J.

ATE MUST
BE 2ND
FILE IN
DIREC
TORY

10
BEGINS
WITH
JUMP
TABLE

1ST
JUMP TO
LOADER,
THEN
TERMINAL
I/O
DRIVERS

DISKATE User's Manual

Since a jump to 10 is written at memory location 3, the
easiest way "to jump to 10 to reload DISKATE is simply to
jump to memory location 3.

The general procedure for getting started with a
terminal either not connected to the Disk Jockey or a
serial terminal such as a TTY that won't run at 1200
baud is as follows:

1. Bootstrap in the diskette anyway. The system will
not respond, but that doesn't matter.

2. Stop the machine, and using a front panel or moni
tor, install your own I/O routines in the computer's
memory. The guidelines that these routines must
satisfy are given below. A safe place to put them
when you first bring up DISKATE is the 256 bytes
from 2900H to 29FFH •. Once you have DISKATE running
you can use it to incorporate your I/O routines
within 10. If your I/O routines won't fit in 256
bytes, use the top of the memory available.

" 3. Again using a front panel or moni tor, change the
jumps in the jump table to jump to your I/O rou
tines. Be sure to remember that the addresses of
the jumps must be stored with the low order byte
fir st.

4.

5.

Cause your system to begin executing instructions at
the beginning of 10. This should be 0l00H
(001:000Q), unless your version of DISKATE comes
with a corrections sheet indicating a different
starting address. The module ATE will be reloaded
from the disk, and at this point a start-up message
should appear on the screen and then the prompt
symbol, ") It.

Once DISKATE is running, the source code for 10 is
contained in the disk file SYSIO. This should be
reassembled to contain your own I/O routines, so
that they will automatically be loaded when DISKATE
is bootstrapped. If your I/O routines are in PROM
or otherwise manage to find their way into the
memory without needing to be loaded within 10, 10
should be reassembled so that the jump table con
tains the "proper jumps.

The procedure for connecting a serial device that
won't run at 1200 baud, such as a TTY, to the Disk
Jockey serial port, is a special case that is somewhat
simpler. In this case the only thing that will have to
be patched is the' instruction which loads the baud rate
constant for the serial I/O port. Here is what you do:

-102-

DURING
FIRST
STARTUP
I/O
ROUTINES
CAN GO
AT
2900H ••
29FFH

AFTER
PATCHING
JUMP TO
0l00H
UNLESS
OTHER
WISE
INDICA
TED ON
CORREC
TION
SHEET

TO RUN
SERIAL
TERMINAL
FROM
D.J.
PORT AT

DISKATE User's Manual

1.

2.

Obtain the address of the terminal initialization
routine from the jump table. The low order byte of
this address is at 10+10 and the high order byte at
10+11.

Unless otherwise indicated in a corrections sheet,
the first byte of the terminal initialization rou
tine will be a NOP, or 0. The next instruction will
be:

mnemonics octal hex

LXI H,041Q 041 041 000 21 21 00

This is the instruction which loads the initial
speed constant for the Disk Jockey serial port.
Consult the Disk Jockey manual to find the speed
constant for the baud rate you want, then patch it
in in place of the 041 000 octal or the 21 00 hex in
this instruction. Be Sure to patch only the address
portion of the instruction and not the opcode, and
be sure to enter the speed constant as a 16 bit
address, low order byte first.

3. Jump to the beginning of 10. There is no need to
patch anything in the jump table.

Once you have DISKATE up for the first time, the
next thing you will want to do is to customize your I/O
routines, unless you should happen to want to run from
the on-board serial port at 1200 baud indefinitely.
We've seen that the module 10 begins with a jump table,
and that the four jumps after the first jump to the
loader are for the terminal I/O routines. Here are the
guidelines you will need for your own terminal routines.

1. All of the four terminal I/O routines will be,passed
a number in the A register which will serve as a DEVICE
NUMBER. Initially this device number is 0,' and is
changed by an 10 command. If you don't have multiple
I/O devices tnis feature can be ignored. If you have
both a video terminal' of some kind and a pr inter, for
example, then you could have the output routine check
the A register for 0, branching to the printer driver if
the A register is not 0. Note that the 10 command will
cause its argument to be supplied to all the terminal
I/O routines in the A register. Thus your character
input routine should always go to the keyboard, unless
you have more than one keyboard. You can have up to 256
different devices--- the maximum number of codes that
can be contained in the A register.

-103-

OTHER
THAN
1200

PATCH
SPEED
CONSTANT
LOAD
IN
TERMINAL
INITIAL
IZATION
ROUTINE

ADDRESS
OF THE
ROUTINE
AT 10+10

DEVICE
NUMBER
IN
A
REGISTER

CHAR OUT
PRINTS

DISKATE User's Manual

2. The character output routine should print on the
terminal the character supplied in the B register. Be
very careful not to make the mistake of printing the
character in the A register -- remember this is the
device number.

3. The character input routine should return the input
character in the A register, replacing the device num
ber.

4. The terminal initialization routine is executed only
in response to the Y command and at power up. If you
have multiple I/O devices you may want to initialize all
of them in response to any call to the initialization
routine, or you may want to initialize only the device
whose number is in the accumulator. If you have this
routine initialize only the device whose number is in
the accumulator, then you will have to remember to issue
a Y command before using any devices other than 0. The
IO command will issue a carriage return and line feed to
the device given as argument. Thus if you initialize
only the device whose number is in the A register, the
first time you give an IO command for a non-zero device
this carriage return and line feed will be passed to the
character out driver for a device which has not been
initialized. This will not cause a problem if the
driver for this device simply loses the carriage return
and line feed, but you should be careful that it doesn't
cause an error. You may find it more convenient to
initialize all devices at one time.

5. The panic detect routine should inspect your key
board for whatever condition you want to use to indicate
that a proce$s should be interrupted. This can be a
special character having been pressed, such as control
C, or any key having been pressed. The panic routine
should return with the Z flag on if it determines a
panic stop, and with th~ l flag off otherwise. The
device number is in the A register. If you have a
printer and a video terminal, and the printer is a TTY
or Decwriter or the like that has a keyboard of its own
in addition to the keyboard on your video terminal, you
will have to decide whether to have the panic routine
con,sult the keyboard for the'device in the A register,
or always consult your terminal keyboard. Note that the
panic detect routine could also consult a front panel
sense switch if you have one,' but this is usually less
convenient than inspecting the keyboard.

The panic detect routine MUST NOT WAIT for a key
board input, but should simply inspect to see if a panic
is being requested. For instance, if you have a serial

-104-

CHAR IN
B
REGISTER

CHAR IN
PUTS
CHAR IN
A
REGISTER

PANIC
DETECT
RETURNS
WITH
Z FLAG
ON IF
PANIC,

OTHER
WISE OFF

SHOULD
NOT WAIT
FOR
INPUT

DISKATE User's Manual

terminal being run from an I/O board with a UART, and
one port serves as a status port, issue an input to the
status port to see if input is ready. If not return to
the calling program with the Z flag off. If the proper
status bit indicates there is an input present, take the
input if you want to use it to determine whether or not
to interrupt the process, but your routine should not
loop in case there is no input present.

The panic detect provided in SYSIO will respond to
any key being pressed, if it can detect it. Because
there are timing considerations involved in sampling the
input line with the "software DART" on the Disk Jockey,
it's best to request a panic stop by hitting the break
key on your terminal if it has one, since this transmits
0's continuously.

6. In all of the terminal I/O routines the only regi
ster that need be preserved is the stack pointer.

If you are using DISKATE with a North Star Disk,
the protocol above is compatible with that for the North
Star DOS I/O routines, though less restrictive. (You
don't have all of their requirements to preserve the
contents of registers.) Thus for North Star users the
jumps in the IO jump table can go directly to the North
Star I/O vectors.

When you go to reassemble IO if this is necessary,
you can give an I command to the DISKATE diskette to
find out where in the memory ATE and IO will go. The
memory address listed in the directory printout gives
the address, and the size in blocks is also given. If
ATE follows IO immediately in memory, then you must be
sure that your reassembly of IO will not result in a
module to big to fit. After an assembly of IO, the
command:

?IOEND-SYSIO

will tell you now- big IO is~- -If the number of b~ocks
needed to contain it is more than the number listed in
your directory printout, you may have to change the AORG
statement in SYSIO and-reassemble so that IO goes some
where else in memory. This will not affect ATE, since
ATE picks up the location of IO by the jump at memory
location 3: -

The I/O system in DISKATE also allows you to
customize the drivers for the disk. In most cases you
would not need to -do this~ unless DISKATE were being
used with some other kind of hardware, but you might
want to consider this for certain special applications.
For instance, if you wanted-to include on diskettes
files which you would not want DISKATE to touch or even

-105-

I/O
PROTOCOL
COMPATI
BLE WITH
NORTH
STAR DOS

WHEN 10
REASSEM
BLED IF
TOO BIG
FOR SAME
SPOT,
MUST BE
RELO
CATED BY
CHANGING
THE AORG

DISKATE User's Manual·

know about, this could be achieved by rewriting the
DISKATE disk drivers to only begin reading the disk at a
particula·r block. Or, to interface DISKATE to someone
else's operating system, a single very large file could
be created for each diskette within this operating
system, and then the DISKATE disk drivers could call
direct access reads and writes to this file through the
operating system. So, the protocol for the disk drivers
will be given, even though in many cases you won't need
to use it.

There is one important way in which YOU MUST CUS
TOMIZE'THE DISK DRIVERS. The version supplied assumes
that there actually exists a disk drive for all of the
possible disk drive designators. You should alter the
jump table to indicate that a drive is not present in
your system, so that if you try to access a file on a
non-existent drive an error will be returned.

The format for that part of the jump table for the
disk drivers is:

Location Contents

10+15 MVI C, <code for drive A>
JMP <driver for drive A>

10+20 MVI C,<code for drive B>
JMP . <driver for drive B>

IO+25 MVI C,<code for drive C>
JMP <driver for drive C>

10+30 MVI C,<code for drive D>
JMP <driver for drive D>

10+35 MV1 C,<code for drive E>
JMP <driver for drive E>

10+40 MV1 C,<code for drive F>
JMP <driver for drive F>

10+45 MVI C,<code for drive G>
JMP· <driver for drive G>

10+50 STC
RET

The pair of instructions STC, RET at 10+50 is in
lieu of a driver' for drive H. All of the disk drivers
return with the carry flag set in case of error. When
you reassemble SYSIO, then, you should substitute a STC,
RET for the MV1, JMP' for each drive that does not exist
in your system. This way any access to d~ives that

-106-

MUST
SUBSTI-
TUTE:

STC
RET

FOR THE
MVI
JMP

FOR EACH
DRIVE
THAT
DOES NOT
EXIST

DISKATE User's Manual

don't exist will properly signal an error. Be sure that
when you do this, the name fields are preserved. If you
are running DISKATE with only North Star disks, then the
loader part of SYSIO must also be changed so that all of
the calls to DRIVEA go to DRIVEE.

The protocol for the disk drivers is as follows.

When the disk drivers are called, the B reister contains
a code giving the disk command. The codes are:

B=3: The disk drive should be initialized. This is
given when a disk is first accessed after power
up, and also after a disk error. If. initializa
tion is not required, this should simply return.
Note that this command is given to initialize the
disk DRIVE and/or drivers, rather than to initial
ize a diskette. (For the Disk Jockey, diskettes
are initialized by invoking the program DISKINT.)
Nothing should actually be written on the diskette
when this command is executed. Usually the
routine, executing command will want to be sure it
knows where the head of the disk is. This can be
achieved by moving the head to track 0.

B=2: The size of the disk in blocks is to be returned
in BC. For the Disk Jockey this is 1000. (The
drivers supplied for the Disk Jockey leave the

, bootstr ap record for controller routines
untouched. This record is not included in the 1000
blocks~, and as far as DISKATE is concerned is not
even there.) For the North Star disk this number
is 350. The maximum number of blocks DISKATE can

'handle is given by the constant MAXBS which is a
symbol in ATETBL. (The use of ATETBL is discussed
in the next section.) If this command returns
with a value larger than MAXBS, a disk error will
result. Each block is 256 bytes long, regardless
of how the controller physically organizes disk
'records.' . ' "- "

'B=1: A r'ead operation., A contains the number of
'0 "blocks, DEcontaifis the beginning memory address

to which the information is to be transferred, and
HL contains the beginning disk address in blocks.
The"directory occupies blocks 0-3. 'The drivers
supplied for the North Star Disk invoke only the
North Star DOS routine DeOM and not DLOOK.

, ,. M·.

B=0:A write operation. The registers A, DE and HL
follow the same convention as for the read opera-
tion. '

-107-

DISKATE User's Manual

For all disk commands, a return with the carry flag set
is the indication of a disk error.

If you should want to rewrite the disk drivers for
your own applications, all DISKATE disk addressing is
relative to your drivers. Thus if your drivers examine
only a certain portion of the disk, leaving the rest
beyond the reach of DISKATE, DISKATE's block n refers to
the n'th 256 byte block within the area of disk you've
set aside. The same would apply for drivers that work
through an operating system's direct access file
routines. In most cas-es, however, you will probably not
need to touch the disk drivers themselves, and the only
customizing needed as far as the disk is concerned is to
maintain in the jump table the proper indication of
non-existent drives.

Let's go review now the step-by-step procedure for
getting DISKATE J;'unning for the first time.

1. Bootstrap in the DISKATE diskette, with a serial
terminal at 1200 baud connected to the Disk Jockey
serial port if this is possible. If not, boot anyway
and wait for the disk to become quiet. Even if you
intend to run at 1200 baud from the serial port, you
should make a backup copy of DISKATE, so you will need
to do some of the steps below.

2. Put the patches in the jump table for jumps to your
I/O routines if needed. If you'want to run from the
serial port at a slow speed, patch in the initial baud
rate constant. The STe, RET for non-existent drives
can also be patched in if needed.

3. If you have needed to make patches, force the compu
ter to jump back to the beginning of 10. DISKATE should
now respond. .

4.

_type:
GO DSKINT

Mount a fresh diskette.

- I
I
I
I

dual drive

Mount a fresh diskette on
drive B and type:

GO DSKINT

DSKINT will ask which disk is to be initialized.

5.

Remount DISKATE diskette,
type:

L IOTBL <T),KEEP=0

I
I
I -" I
I

type:

L IOTBL <T>,KEEP=0

-108-

DISKATE User's Manual

6.

Remount new diskette,
type:

S 10 SYSIO •• IOEND

7.

Remount DISKATE diskette,
type:

L ATETBL <T),KEEP=0

8.

Remount new diskette,
type:

SATE BEGIN •• END
ZKEEP
S ATETBL <T>

9.

Remount DISKATE diskette,
type:

L IOTBL <T),KEEP=0

10.

Remount new diskette,
type:

ZKEEP
S II <T>

11.

I
I
I'
I
I
I

I
Remount DISKATE diskette, I
type: I

I
O,L STARTUP ""1'-

12. .. I

type:

S IO:B SYSIO •• IOEND

type:

TATE ATE:B
T ATETBL ATETBL:B

type:

T IOTBL IOTBL:B

Remount new diskette,
type:

I type:

S tf .' .
I
I T STARTUP STARTUP:B

, I

-109-

DISKATE User's Manual

At this point your new diskette will have a copy of
the ·DISKATE system .in which the patches to the 10 jump
table and/or new Disk Jockey serial port baud rate will
have been installed. If you need to reassemble 10 to
include your own I/O routines, continue on. Be sure to
change those entries in the jump table for disk drivers
so that there is a STC,RET for each non-existent drive.

13.

Mount DISKATE diskette,
type:

O,L SYSIO

type·:

O,L SYSIO

14. Edit SYSIO using the DISKATE editor commands to
install your I/O routines in place of those there.
Change the AORG statement to relocate 10 in case your
I/O routines make 10 large enough to conflict with the
space occupied by ATE.

15 • Type: Z , A

If the assembly has errors go back and correct with
the edi tor. ..

16.

Remount new diskette, I
type: I

I
S 10 TA +10 •• <+IOEND-SYSIO I
S IOTBL <T) I
S SYSIO <F) I

type:

S IO:B TA +10 •• <+IOEND-SYSIO
S IOTBL:B <T)
S SYSIO:B <F)

Note that this procedure does not necessarily call
for you to transfer every file to the new disk. The
rest are discretionary. It's very important, though,
that whenever you reassemble 10 you also save the symbol
table as the file IOTBL.

-110-

DISKATE User's Manual

II.2 personalizing DISKATE Settings

When DISKATE is brought up, many DISKATE variables
will already have been given values. Because these
values serve to allocate the ,memory, you may wish to
change their power-up settings. In working with the
assembler, for instance, memory must be allocated for
the source area, the symbol table, and the area of
memory into which the object code is to be placed.
These may require different amounts of area depending on
the type of job. For complex programs the symbol table
area will have to be quite large, perhaps upwards of
several K. On the other hand, when editing source files
where there is no question of assembly, the only
requirement for a symbol table is to hold variables to
be used in commands and macros, so that a symbol table
of only 512 bytes or less may suffice. DISKATE provide~
two ways that your own choice of values at power-up time
can be established, and both of them are both simple and
systematic.

The easiest way to establish your own settings it
to include commands for them in the STARTUP file.
Suppose you want the memory at power-up to be allocated
as follows:

3288H •• 4lFFH
4288H •• 6FFFH
7888H •• 7FFFH

Symbol' Table'"
Source Area
Object Code Area

These settings can be achieved by the following com
mands:

A3208H,M<T)
04208H
&7808H,$&

In order" for these commands to be executed automatically
at power-up; all you have to do is make sure they are
included in the STARTUP file. This file can also
include such commands as INTE or PROS, Q or J, TAB, WID,
and so forth.' Since STARTUP isa source file it is easy
to change: just type O,L STARTUP and then edit it like
.a~y other source file, then type S II <F) when you are
finished.' When STARTUP is 'executed at' power-up time, it
may be anywhere on the disk. The advantage of concen
trating your personalization in the startup file is that
it~s easy to change, and you can' initialize your system
easily by typing O,GO STARTUP. Because STARTUP will
most likely be a very small file, you may find it con
venient to include~ ~opy on each diskette.

In some instances this may be inconvenient, or

-111-

CAN
PERSON
ALIZE
BY
SETTING
VALUES
IN
STARTUP
FILE

o
COMMAND
FOR <S),
&, $ FOR
OBJECT
CODE,
Aadr,
M<T)
FOR <T),
ETC.

CAN

DISKATE User's Manual

won't even work at all. For instance, if you want a
drive other than A to be the default drive at power up,
this cannot be done with a CD command in the STARTUP
file, since at power-up DISKATE will get STARTUP from
the default drive, which unless you change it will be A.
The other method for personalizing values is to set them
however you would like, and then save ATE on the disk
with these values having been established. Whenever you
do this YOU MUST MAKE CERTAIN ATE WILL BE THE SECOND
ENTRY IN THE DIRECTORY. Otherwise the loader in 10 will
load the wrong file. If you save a new copy of ATE, any
commands you have given which change internal settings,
such as CD, INTE, and the like, will result in DISKATE
being brought up at power-up in just the state in which
it was saved, unless settings are changed by the STARTUP
file or the power-up initial command string O,Z,Y. Thus
for instance, if you move the source area and the symbol
table, then save a new copy of ATE, afterwards at power
up the source area and symbol table will begin at the
same places they did at the time ATE was saved, but the
symbol table will contain only the initial assembler
variables and the source area will be empty.

To aid in this process you can use the symbols
contained in ATETBL. ATETBL is a file on the DISKATE
diskette which gives an abbreviated version of the actu
al symbol table from an assembly of your version of ATE.
For the module 10, of course, the entire source code is
given. ATETBL includes a large number of addresses
which are important for use in machine language pro-

-. grams, which will be discussed in the next section. A
listing of the meaning of the symbols in ATETBL is given
at the end of Part III. In this section two symbols
concern us particularly: BEGIN and END. The interval
BEGIN •• END, where BEGIN and END are symbols from ATETBL,
is the interval in memory occupied by the code for the
module ATE. Thus to save a new copy of ATE, here is the
procedure:

1. Give the command L ATETBL <T>,KEEP=0. This will
establish ATETBL as the.symbol table, with KEEP at
the end.

_ _ r< 0

2. Change whatever settings you want to personalize.

3. - Give the command- SATE BEGIN •• END

Remember, again, that if the copy of ATE is being cre
ated on- a new diskette, ATE must be the second directory
entry. When a file is saved which does not exist in the
directory, DISKATE creates a directory entry for it in
the first empty slot in the directory. (The I command
lists the files in the order in which they occur in the

-112-

PERSON
ALIZE
BY
MAKING
SETTINGS.
THEN
SAVING
ATE

THEN AT
POWER-UP
ALL
SETTINGS
WILL BE
AS THEY
WERE AT
THE TIME
ATE WAS
SAVED
EXCEPT
AS
CHANGED
BY
0, Z, Y
OR
STARTUP

PROCE
DURE FOR
SAVING
NEW COpy
OF ATE

ATE MUST
BE 2ND
DIREC
TORY
ENTRY

DISKATE User's Manual

directory.) If you are creating a new copy of your sys
tem on an initialized diskette, if ATE is the second
file saved it will be the second directory entry. If
another file is already the second directory entry, you
can reclaim the second directory entry by making a copy
of the file under another name wi th the T c·ommand,
unsaving the file under the orginal name, and then
renaming the copy. Also, you should be sure that the
power-up version of ATE you create allocates enough
memory in the symbol table to hold ATETBL. You can find
the size of ATETBL by giving an I command for a diskette
containing it. ATETBL is not particularly large, so
this should be no problem. Don't make the mistake,
though, of thinking you don't need any space at all for
the symbol table even if you want to prepare a version
only for ed~ting prose text.

If you want to make a copy of DISKATE on a new
diskette with new settings, you can follow the same type
of procedure already given to make a backup of DISKATE
when you first get up and running. Rather than review
ing all of the details of this procedure again, there
are a few important points to note. The minimum steps
needed to create a new copy of DISKATE are:

1. The new diskette must be initialized.

2. A copy6f IO'must"be saved as the first entry in the
directory. (This is not necessary if your system
will be bootstrapped from a North Star Disk.)

3. A copy of ATE must be saved as the second entry in
the, directory.

4. A copy of STARTUP must be saved.

Whenever you reassemble 10 you should also update IOTBL
so that IOTBL is the symbol table for an assembly of the
same code" as IO~ In this way, 10 can be saved by set-

"'ting the sYmbol table to IOTBL and typing:

S 10 SYSIO •• IOEND

Likewise, 'ATE can be saved by setting the symbol table
to ATETBL .. and _ .. _~~_in~,:

S BEGIN •• END

-113-

SHOULD
ALLOCATE
<T> BIG
ENOUGH
TO HOLD
ATETBL
AT LEAST

DISKATE User's Manual

II.3 Interfacing DISKATE to Machine Language Programs

DISKATE provides no less than three different
methods for interfacing machine language programs. They
can either be called from DISKATE, or they can call
DISKATE and execute it as a subroutine. We'll discuss
these in order. The easiest method of invoking a
machine language program is with the X command, which
we've already discussed. Writing a program to be
invoked in this way gives great flexibility since the
program need not actually be resident in memory at the
time it is invoked -- it can just as well be invoked by
a GO command. Of course, when you issue a GO command to
a machine language program, you must be sure it will not
overlay a part of the memory needed for something else.
In this section we'll describe how such a program can
have access to DISKATE information.

There are 3 subroutines within DISKATE whose
addresses are given in ATETBL that can be used in a
linkage procedure whereby the same kind of interval
arguments used by DISKATE commands can be passed to a
machine language program. The structure of the process
is this: the machine language program calls a subrou
tine within DISKATE to determine if an argument is
present. If so, another subroutine can be called to
evaluate it. The easiest way to link the source code of
your machine language program to the addresses of these
subroutines within DISKATE is to set the symbol table to
ATETBL before assembling your program by the same proce
dure we saw in the last section. The routine to be
called to see if an argument is present is called VCHK.
It returns with the Z flag OFF if an argument is pre
sent, otherwise the Z flag is on. This allows writing a
program which takes special action in the default case
of no argument.' .

If an argument is present you can call the subrou
tine called CVALS to evaluate it. It is important that
a blank separate the argument and the address of the
subroutine in the case of an X command, or the file name
in the case of a GO command. CVALS will return with the
lower address of the argument in HL, and the upper
address in DE, unless an error occurs. In this case
CVALS WILL NOT RETURN AT ALL but will exit by jumping to
the same error exit used' by"DISKATE commands which have
an error. This exit routine is called WHAT and its
address is also given in ATETBL. You could trap all
DISKATE errors by patching at the' location of WHAT,
though this is not recommended except for experienced
programmers.

For example, you might have a memory test program
located at an address in memory which has been set as

-114-

CALL
VCHK

TO SEE
IF ARG
PRESENT

Z FLAG
OFF IF
THERE IS
AN ARG

GET ADDR
OF VCHK
FROM
ATETBL

CALL
CVALS TO
EVALUATE
ARG -
RETURNS
LOWER
ADDR IN
HL,
UPPER IN
DE
JUMPS TO
WHAT
IF ERROR

DISKATE User's Manual

the value of a variable MEMTEST, and which takes as an
argument the interval of memory to be tested. To test
·the block o,fmemory from 300·0H to 31FFH, the program
could be invoked by the command:

X MEMTEST 3000H •• 31FFH

(Be sure to leave a blank between the first argument of
the X command, which gives the address of the subroutine
to be executed, and the second argument, which gives the
subroutine's argument.) The subroutine can then obtain
the value of the argument by calling CVALS: CVALS will
put the lower address of the argument in the HL register
pair and the upper address in DE.

What if you want to evaluate an argument and have
control passed back to your machine languag.e program in
case of an error? In this case you can call VALUS in
stead of CVALS.This routine works like CVALS, but will
return with the Z flag OFF if there is an error in
evaluating the argument. There is one important other
difference. You must supply to VALUS the addresses of
the initial reference interval yourself, the lower
address in HL and the upper address in DE. Note that
this can be used to have the machine language program
determine the initial reference interval and the argu
ment within it passed from the terminal or a macro. You
don't need to supply the initial reference interval if
you can be certain that an argument will not contain any
matching symbols, but this is risky since if the argu
ment contained matching symbols by mistake you could get
unintended results.

You can have multiple arguments, as long as they
are separated by blanks. To evaluate further arguments'
just call CVALS or VALUS repeatedly. .

Suppose you wanted a machine language program to
follow the same protocol as DISKATE commands and use the
last interval computed in case the argument is missing.
How do you obtain this interval? Such information as
this can be obtained by reading the contents of the
relevant internal DISKATE registers. Again this is done
by using symbols fromATETBL. In this particular exam
pIe, the loweraddress"of the' last interval computed is
stored at the address denoted by the symbol PI, and the
upper address at P2. As it happens this example is not
really' too useful , sincetheCVALS' subroutine will
automatically give you the addresses for the previous
interval computed if it detects that there is no
argument. . ."

If you take a minute to skim through the listing of
the meaning of the symbols in ATETBL at the end of Part
III, you will see that 'you have complete access to all
of. the information available to DISKATE commands. The

-115-

VALUS
WILL
EVALUATE
ARG &
RETURN,
Z FLAG
OFF IF
ERROR.
MUST
GIVE
INIT REF
INTERVAL
IN HL DE

ARGS
MUST BE
PRECEDED
BY BLANK

GET
ADDRS OF
DISKATE
INTERNAL
REGI
STERS
FROM
ATETBL

E.G.
< AT PI .
) AT P2

<S) AT
BOSAP,
EOSAP

<F) AT

DISKATE User's Manual

source area is the interval from the contents of BOSAP
to the contents of EOSAP, and the current file is the
interval from the contents of BOFP to the contents of
EOFP, for instance. You will need such information to
supply an initial reference interval if you call VALUS.
Note that reading the contents of internal DISKATE loca
tions in this way is a second method of passing informa
tion from DISKATE to a machine language subroutine. If
you use this method be careful to avoid mistaking an
address like BOSAP, which is the address WHERE THE LOWER
ADDRESS of the source area IS STORED, for the contents
of the 16 bit area beginning at this address.

A second method of invoking a machine language
program from DISKATE is by using a special feature which
we haven't discussed before: the USER COMMAND TABLE.
To execute a machine language program by the method
above you have to give a command in the form X addr, or
GO filename, optionally followed by an argument. By
using the user command table you can invoke a command
precisely as if it were a DISKATE command. When DISKATE
is powered up, it contains a table which it consults
whenever a command is given. The format of this table
is identical to the format of the symbol table, which
we've already seen. However, the symbols in this table
are not labels or variables, but are the names of
commands created by the user. The "values" for these
symbols are the addresses of the machine language
programs which are to perform the given commands.
Whenever a command is given, DISKATE first scans this
user command table to see if there is a command with
that name. If so, it calls the program whose address
follows the symbol for the command in the user command
table. If not, it scans the internal DISKATE command
table. Hence if you have any user defined commands,
their names will have priority over the DISKATE built-in
commands. For instance, if you had a user-defined
command called PRINT, the command PRINT would invoke
you'r command instead of invoking the DISKATE P command
and assuming RINT, is" a variable name. . . .

When the version supplied of DISKATE is brought up,
a small amount of space within the code for the module
ATE is allocated for" a user command table, and the user
command table will be in this space unless you make a
new copy of DISKATE with the user command table

'somewhere else." Of course, to start with there are no
user-defined commands, so the initial contents of this
space is a0 indicating the end of the user command
table. This space consists of the interval
USRCT •• ROMEND, where USRCT and ROMEND are symbols from
ATETBL. Let's see an example of how to create a user
defined command. In Part I we gave a functional but
inelegant program calledPRNTSYM to print out the symbol

-116-

BOFP,
EOFP

USER
COMMAND
'l'ABLE

SAME
FORMAT
AS
SYMBOL
TABLE

SCANNED
BEFORE
TABLE OF
BUILT-IN
COMMANDS

LISTS
COMMAND
NAME
THEN
ADDR OF
PROGRAM
TO PER
FORM IT,
o AT THE
END

SPACE
WITHIN
ATE FOR
IT AT
USRCT ••
ROM END

DISKATE User's Manual

taple. Suppose we want to make this into a user defined
command, which to abbreviate we'll call PSYM. Recall
that PRNTSYM was assembled to begin at 7F00H, and that
to assemble PRNTSYM properly we had to set the symbol
table to ATETBL to get addresses for OUT, PHLSB, and
SYMTB. Let's suppose that we've just assembled PRNTSYM,
that the source code for it is the current file, and
that the symbol table has not been zeroed. Let's also
assume that there are no user defined commands at this
point. To create the user command table, we can give
the following commands:

N
E[ORG USRCT
ASC PSYM'"
DW PRNTSYM
DB 0
]
A

(Remember that PRNTSYM sets the assembler format to
Intel.) This simple source program will create a user
command table with only one entry, PSYM. Now any time
we want to print out the symbol table we can give the
command PSYM as if it were a built-in DISKATE command.
However, for this to become permanent there are two
things that must be done' immediately. First, we have to
save a new copy of the module ATE, so that when DISKATE
is brought up the new user command table will be in
place. Since the symbol.s for'ATETBL are already in the
symbol table, we can do this by mounting a diskette with
ATE as the second directory entry and typing:

S ATE BEGIN •• END

Since the user command table is located within the space
for the module ATE, when DISKATE is brought up from this
version, our user command table will be there. The
second thing that must be done is" to incl ude the com-
mand: .

LPRNTSYM

in the STARTUP file, for otherwise the code for the user
command PSYM'will not be in the memory at power-up, and
giving the command PSYMwould probably cause a crash.

In general there are three things to keep in mind
when' 'you create' a newliser defined command:

1. The code for the new part of the user command table
must be ADDED ON TOTHE'END of any code that you already
have for a user command table, so that existing user

-117-

CAN SAVE
NEW COpy
OF ATE
WITH
USER
COMMAND
TABLE TO
HAVE IN
PLACE AT
POWER-UP

COMMAND
TO LOAD
CODE FOR
EXE
CUTING
USER
COMMAND
SHOULD
GO IN
STARTUP
FILE

DISKATE User's Manual

defined commands are not lost. Thus you should always
keep on disk a copy of the file which assembles the user
command table.

2. After assembly of a new user command table you have
to resave ATE.

3. You must make sure you have provided a way at power
up time for the object code for the routine which will
carry out the user defined command to be brought into
the memory. The easiest way is to include the proper L
command in the STARTUP file.

The third method of interfacing a machine language
program to DISKATE has a completely different structure.
It is possible for DISKATE to serve as a subroutine to
be called by a machine language program. The machine
language program can pass a string of commands for
DISKATE to execute, and if these commands include an ATE
command, further commands can be entered from the
terminal just as if DISKATE were being executed from the
power-up state. To use this method you must NOT call
the entry point ATE, since this will initialize the
stack and lose the return address. Rather, you call a
special entry point called ATECOMS. This entry point
assumes that the HL register pair contains the beginning
address of a string of DISKATE commands. It will
execute the string, then return back to the calling
program. If the command string results in an error, the
error message will be printed on the terminal but con
trol will still return to the calling program. The one
thing you must be careful of is that the command string
cannot include a RENT command, nor should this be given
from the keyboard during an invokation of DISKATE called
by a machine language program, since it will result in
the return address being lost.

To make it easier to use this feature, when DISKATE
is powered up a jump to ATECOMS is written at memory
location 0. Thus DISKATE can be called by a machine
language'program by the following procedure:

1. Load HL with the address of a string of DISKATE
commands ending with a 0. The 'string can include sever
al command lines. -

, 2 ~- ·.Execute-'the Instruction 'RST 0. DISKATE will be
called and will execute the command string. Note that
it will be using the stack of the machine language
program that called it. 100 bytes of stack should be
sufficient for most applications.

3. When coritr61 -is'passed back to the machine language
program, the carry flag will have been set if an error

-118-

MACHINE
LANGUAGE
PROGRAMS
CAN CALL
DISKATE
VIA
ENTRY
POINT
ATECOMS

EXECUTES
COMMAND
STRING
WHOSE
ADDRESS
IS IN
HL

JUMP TO
ATECOMS
WRITTEN
AT
MEMORY
LOCATION
o -- CAN
BE IN-
VOKED BY
RST 0

RETURNS
WITH
CARRY
SET IF
ERROR

DISKATE User's Manual

has occurred, so your program can check for this case.

'Because o,f the jump to ATECOMS at memory location 0, the
RST 0 will automatically cause a call to be vectored to
ATECOMS.

One way for your machine language program to pass
information to DISKATE using this method is to set the
value of internal DISKATE variables. For instance, sup
pose you want ,to generate a source file using a machine
language program and then operate on it with DISKATE
commands. The contents of BOFP and EOFP can be set to
point to the beginning and ending of the file, with the
contents of BOSAP and EOSAP being set to point to a 0 at
the beginning and a 0 at the end of the file. Then when
you call DISKATE the current file will be the file
generated by your machine language program.

Information can be passed from DISKATE to a machine
language program with this method using a special com
mand which we haven't seen before. The V command, V for
eValuate, will put the lower address of the argument in
HL and the upper address in DE. This command will not
achieve anything if given from within DISKATE itself,
since the information in HL and DE will be overwritten
by subsequent internal routines. However, if the V com
mand is the last command in a string of commands execu
ted by ATECOMS, on returning to the caller HL and DE
will have the addresses of the argument. For instance,
suppose you wanted the value of the DISKATE variable x.
The machine language source statements:

LABEL

LXI H,COMMAND
RST (()

COMMAND ASC VX
DB (()

as part of a machine language program would cause the
value of X to be in both HL and DE after the return to
the statement LABEL."

The commands in a command string executed by
ATECOMS can certainly include disk commands. You can
even USe this"method"tolink to the value of symbols in
ATETBL during the execution of a machine language pro
gram, rather than during assembly, by having a command
string include L ATETBL'<T>,KEEP=((), or the like, and
then a V command for a symbol in ATETBL. With this
flexibility, virtually any type of interface needed
between DISKATE and a machine language program can be
constructed.

-119-

V
COMMAND

PUTS
LOWER
ADDR OF
ARG IN
HL,
UPPER IN
DE

ONLY OF
USE IN
COMMAND
STRING
TO BE
EXECUTED
BY
ATECOMS

DISKATE User's Manual

If a machine language program needs access to the
information in the directory regarding a disk file, it
can be obtained by consulting the DISKATE disk buffer.
This buffer begins at the address DISKBUF, where DISKBUF
is again a symbol from ATETBL. After an I command, or
any other disk command, a copy of the entire directory
of the accessed drive will occupy 1024 bytes beginning
with DISKBUF. (DISKATE consults the disk-resident copy
of the directory for any disk commands -- this copy of
the directory is left in memory only for use by user
programs.) A machine language program can consult the
directory by statements such as:

DIRCOM

*
*
*
*

LXI H,DIRCOM
RST 0

ASCi LiATETBLi<T>,
ASC KEEP=0

ASCi Iidrive-designator

ASC VDISKBUF
DB 0

if file not on
current drive

Upon returning to the machine language program after the
RST a, HL will point to a copy of the directory of the
current drive. If the directory is needed for a differ
ent drive than the current drive, the command string at
DIRCOM above should include an I command for the proper
drive. The program can page through the directory at
DISKBUF entry by entry, testing the first 8 bytes of
each 16 byte entry for the desired file name, then
reading from memory the desired information.

Note that you can also consult the directory
directly from DISKATE. For instance, to get a core dump
of the directory type:" ...

L ATETBL <T> "
KEEP=a
I
iDISKBUF •• <+la23

-120-

COpy OF
DIREC
TORY
LEFT AT
1ST 1024
BYTES OF
DISKBUF
AFTER
DISK
COMMANDS

DISKATE User's Manual -121-

Part III: System Reference Summary

Special input characters:

ESC causes current line to be ingnored, \ echoed. ESC causes
escape from the panic state.

BACKSPACE causes just-typed character to be ignored. Backspace,
space, backspace is echoed.

S in the panic state causes one character to be printed and the
panic state remains in effect.

Panic State:

A panic detect routine -whose address is given by the jump at 10+12
is called periodically, including prior to the output of each
character, to determine if a process is to be interrupted. The
routin~ provided will cause a process to be interrupted if any key
is pressed, provided it can be detected. The Break key gives the
most easily detected signal. A user-provided panic detect estab
lishes its own conditions for determining when a process is to be
interrupted. If the process is to be interrupted, the panic state
is entered. The panic state is also entered when a PAUSE command
is executed or @-is encountered as the file name in a file name
list for assembler .commands.

When the panic state 1s entered, the system will wait for an
input. If this input is the character S, the process continues
but the panic state is automatically still in effect the next time
the panic detect routine is to be consulted. Thus S will allow
one character to be output during listings. If the character
input is ESC, the process is aborted. If the character is any
thing'·otherthan"S or ESC the process resumes with the panic state
no longer in effect.

Command Format:

Blanks allowed anywhere EXCEPT WITHIN AN ARGUMENT. A blank is
'mandatory to separate multiple arguments of one command. Multiple

commands separated by commas may be given on a single line.

DISKATE User's Manual -122-

Number Symbols:

A simple number is given by a string of digits or hexadecimal
digits beginning with a decimal digit, preceded by a minus sign
for negative numbers, and suffixed immediately by:

no suffix
Q
H

decimal
octal
hexadecimal

A number can be given in the SPLIT FORM a:b where a and bare
simple numbers. a:b denotes 256*a + b. Numbers denote 16 bit
values. Negative numbers are represented in two's complelement
form as signed 15 bit integers. Addresses are 16 bit non-negative
integers. When a negative number is treated as an address the
sign bit will be treated as a digit bit.

Variables:

A variable name may be any length, must contain only upper case
letters and digits and must begin with a digit. Variables denote
16 bit values.

Arithmetic Operations:

The arithmetic operations +, -, *, / are performed left to right
with the same priority, and all operations are modulo 65536. The
/ operation gives only the quotient discarding the remainder.

Arithmetic Expressions:

Variables and numbers may combined into an arithmetic expression
using the arithmetic operations. Parentheses are not allowed.

Intervals:

An interval is a pair of addresses, with the first address <= the
second address. It specifies the interval in the computer's
memory from the lower address to the upper address inclusive. A
single number is identified with an interval whose lower and upper

OISKATE User's Manual -123-

addresses are equal.

Initial Reference Interval:

The initial reference interval is determined by:
1. The command, and
2. The argument of the last REF command if one has been given.

The initial reference interval for 0, G, and F commands is the
source area. For all others the initial reference interval is
the current' file if no REF command was given or the argument of
the last REF command was empty; otherwise the initial reference
interval is the argument of the last REF command given as appl ied
to the current file.

Matching Interval Symbols:

[text] matches the first occurrence of text within the initial
reference interval. text may contain any ASCII characters
including non-printing control characters.

isequence of numbers separated by blanksi

matches the first occurrence in the initial reference
interval of the sequence of bytes whose codes in the
current base are given by the numbers. The numbers
must be positive, (= 255 and should NOT have a Q or H
base suffix •

. matches the first carriage return in the initial reference
interval

@ match.~th~ first character in the initial reference
interval

matches anything in the initial reference interval. (Any
number of consecutive dots can be used.)

Non-Matching Interval Symbols

exp an arithmetic expression specifies the address given by
the value of the .xpression. Expressions are treated as
non-negative 16 bit numbers.

DISKATE User's Manual -124-

<F) denotes the current file. See below under Memory Files.

<5) denotes the source area. See below under Memory Files.

<T) denotes the symbol table. See below under Symbol Table.

<R) denotes the' last record read from disk. See below under
Disk File Reference Symbols.

SA denotes the address next after the end of the source area

TA denotes the address next after the end of the symbol table

denotes the address given by the entry pointer. The char
acter whose address is the value of A is called the target
character. The value of A is given by the 16 bit number
stored at CHPTR where CHPTR is a symbol from ATETBL.

< denotes the lower address of the last interval computed.
This is assigned a value as soon the lower address is
determined, even if the upper address has not yet been
determined. The value of < is given by the 16 bit number
stored at PI where PI is a symbol from ATETBL.

) denotes the upper address of the last interval computed.
Assigned a value when the complete argument is evaluated
or I is encountered. The value of) is given by a 16 bit
number stored at P2 where P2 is a symbol from ATETBL.

? denotes the address of the last error in a macro or com
mand line, or the point at which printout from a " command
was aborted via panic detect. The value of ? is the 16
bit number stored at ERSAV where ERSAV is a symbol from
ATETBL.

& denotes the assembler program counter. The value of & is
the ,,16 bit, number. stored. at ASPC, a symbol from ATETBL.

$ denotes the assembler storage counter. The value of $ is
,the .. 16 bi t,number s1:~redat STCTR, a symbol from ATETBL.

exp! where exp is a numerical expression, denotes the exp'th
line in the current file. exp is interpreted as a posi
'tive 16 bit'number, and if this is larger than the number
of lines in the file exp! denotes the 9 at the end of the
file. ! without~exp and 0! a~ethe same as I!.

Interval Arguments.:

DISKATE User's Manual -125-

An Interval Argument may be specified by a Matching Interval Sym
bol, a Non-Matching Interval Symbol, or an expression in which
interval symbols are combined by:

Interval Operations:

Concatenation: Denoted by one interval symbol immediately
followed by another. Neither interval symbols may contain
any non-matching interval symbols. The interval denoted
is the interval matching the concatenation of the patterns
specified by the two interval symbols.

Arithmetic Operations: The symbol <Il><op><I2>, where <II> and
<12> are interval symbols and <op> is an arithmetic opera
tion has lower address = <lower address of Il><op><lower
address of 12>, upper address = <upper address of
Il><op><lower address of 12>.

% The symbol <1>% where <I> is an interval symbol expands
the upper end of the interval to an entire line

Occurrencing: The symbol <exp><I> where <exp> is an arithmetic
expression and <I> is an interval symbol containing no

- non-matching symbols denotes the exp' th occurrence of
the pattern given by <I>. <exp> is interpreted as a
signed 15 bit number. If the value of <exp> is negative,
<exp><I> denotes the ABS{exp) 'th occurrence of the
pattern given by <I> counting backwards from the end of
the initial reference interval.

Any number of consecutive dots can be used. <11>.<12>
denotes the interval from the beginning of II to the end
of 12. If <12> contains only matching symbols, they
match the first occurrence of the pattern given which
occurs AFTER II. If the end of 12 is lower than II an
·errorand a matching failure will occur, even if <II> and
<12> contain no ma.tching symbols.

<II> r-<I2) causes the"·initial reference interval for all
matching symbols in <12> to be the interval denoted by

. <II>, and as soon as I is encountered > is given the value
·of,-·the upper address of Il~

~ Order·of Priority of Interval Operations:

1 Concatenation Highest
2 Arithmetic,' %,occllrrencing
3·

DISKATE User's Manual -126-

4 Lowest

Default Interval Argument:

For any command except disk commands which take an Interval Argu
ment where no argument is given, the argument used will be the
last interval computed.

Disk File Reference Symbols:

Disk Drive Designator:
a letter A through H. A through D denote Disk Jockey
Drives 1 through 4, E through G denote North Star Drives 1
through 3. H is currently unused.

Disk File Names:
Any sequence of up to 8 ASCII characters whose value is
greater than hex 20 (a blank) except for:

1.
2.
3.
4.

, . .
@ as the first character of the file name
II as the first character of the file name

optionally followed immediately (no intervening blank) by
: then a Disk Drive Designator. If no Disk Drive Desig
nator is present it is assumed the file resides on the
Current Drive. .

In place of a file name, the symbol II denotes the most
recently referenced file. If a file name is prefixed
immediately (no intervening blank) by the character @,
a disk command referencing this file will first execute
a PAUSE command and then execute the disk command.

<R) denotes the interval in the memory occupied by the
... most recently' read record from the disk. The lower

address of <R) is given by the 16 bit value stored at
RECAD and the upper address by the 16 bit value stored at
RECND, where RECAD and RECND are symbols from ATETBL.

Memory Files:
Files in the memory are located within an area called the
source area, denoted by <S). The lower address of <S) is
given by the 16 bit value stored at BOSAP and the upper

DISKATE User's Manual -127-

address by the 16 bit value stored at EOSAP, where BOSAP
and EOSAP are symbols from ATETBL. SA deontes the same
value as 1 + the contents of EOSAP. Each file is a
sequence of bytes bounded by 0's. One such file is the
current file, denoted by <F>. The lower address of <F>
is given by the 16 bit value stored at BOFP and the upper
address by the 16 bit value stored at EOFP, where BOFP and
EOFP are symbols from ATETBL. <F> does not include its
bounding 0's. <S> includes the 0 giving the lower bound
of the lowest file and the 0 giving the upper bound of the
highest file.

Symbol Table:
The symbol table is denoted by <T>. The lower address of
<T) is given by the 16 bit value stored at SYMTB, and the
upper address by the 16 bit value stored at TABA, where
SYMTB and TABA are symbols from ATETBL. Each entry in the
symbol table consists of the characters of the symbol with
the last character having its high order bit set, followed
by the 16 bit value of the symbol. A 0 occurs at the end
of the table. The symbol table includes both variables
and assembler labels. When a value is assigned to a
symbol, the symbol table is searched until the terminal 0
regardless of the value of TABA, and if the symbol is
undefined it is added to the end of the table and TABA
updated. TA denotes the same value as 1 + the contents of
TASA. On power-up and after the Z command the symbol table
contains values for the following symbols used by the
assembler:

A, S, C, 0, E, H, L. M, SP, PSW

Command Summary:

Ii <Interval Argument) ("Quote interval")

Prints on the terminal the characters contained in the
interval given as argument, with a line feed issued

. atitom~tically at each carriage return.

,. (no argument) "("Quote one 1 ine Ii)

Prints on the terminal the line containing the target
- ch~ractei, with the character A immediately preceding

the target character.

E <Entry Argument) where ("Enter")

DISKATE User's Manual -128-

an Entry Argument is a sequence of Matching Symbols of
the form [text] or #sequence of numbers# or as defined
above. In this case text may extend across any number
of lines.

If the entry pointer is within the source area, the char
acters denoted by the argument are inserted into the cur
rent file between the target character and the preceding
character, expanding both the current file and the source
area: otherwise they overwrite those characters in the
memory beginning with the target character. In either
case the target character after the command is the charac
ter after the material entered by the E command.

K <Interval Argument) ("Kill")

Kills the interval given as argument. If the interval' is
within the source area, the interval is deleted from the
file in which it occurs and moved to the area of memory
immediately following the source area by an internal M
command. The deleted text is not surrounded by 0's.
Immediately after a K command the Default Interval Argu
ment will be the interval occupied by the deleted text
outside the source area. The target character will be the
first character in the source file after the material that
was deleted.

If the interval is not within the source area, the inter
val is zeroed and the target character becomes the first
character in the interval.

M <Interval Arg~ent). ("Move ")

Moves the interval given as argument to the address given
by the entry pointer. If the entry pointer is within the
source area, then the interval is inserted into the file
containing the entry pointer between the target character
and the preceding character. Otherwise the characters of
the interval areccipied to overwrite the area of memory
beginning with the target character. The target character
becomes the character after the new location of the last

"character moved. Internal pointers to the following are
updated by the M command:

<S) ,<F>'~'<R>~'<T>'; S"', TA, <,), (and hence the default
interval argument), User Command Table, Macro Command
Interpretation Pointer, Return Adresses, Repeat Addresses.

'1\ pointer is updated if the address it gives is within the
interval given by the argument before the move takes

DISKATE User's Manual -129-

place. There is a pointer for both the lower and upper
address for each of <S>, <F>, <R>, and <T>, and if only
one such pointer lies within the argument because the
argument overlaps, only the one pointer will be updated.
This may cause an erroneous value.

~ <Interval Argument> ("set Entry Pointer Ii)

The entry pointer is set to the lower address of the
argument.

C <Interval Argument> (ncopy")

The characters of the interval are copied to the area of
memory beginning with the target character. No pointers
are updated and the action of the command is not affectd
by whether the entry pointer is within the source area.

B <Arithemetic Expression> ("Base ")

The low order byte of the value of the expression becomes
the current base. It may be any number> 4. For bases>
10, ASCII characters in order beginning with A are used
for digits. Numbers ar·e pr inted in split form for' all
bases other than 16.

<Interval Argument> ("Quote numbers (core dump) ")

The numefical value" in the current base for the bytes of
the interval are printed on the terminal, with the address
of the first byte of a line printed at the left of the

"'1 ine~'

("Wher e? ")

Prints on the terminal in the current base the upper and
lower address of the interval given as argument.

? n" 'Printsonthe'terminal the fire name including disk drive
designator for the most recently referenced file.

N (no argument) ("New file ")

'Creates a new empty source file at the end of the source
. area and makes it current. The target character becomes

DISKATE User's Manual -130-

the 0 at the end of this file.

REF [<Interval Argument string up to 24 characters>]

REF []

(tiReference interval II)

The string in brackets is saved in a special location.
For all subsequent commands which take <F> as the initial
reference interval the Interval Argument given by this
string is evaluated and becomes the initial reference
interval. Commands taking <S> as the initial reference
interval are unaffected.

Discontinue use of the REF feature.

REF (no argument)

Print on the terminal the last string saved as the argu
ment for a REF command.

DEF [<command string up to 24 characters>] ("Default command")

DEF []

The string in brackets is saved in a special location.
Subsequently whenever a command is expected and a carriage
return only is typed with an empty command line, the
string saved will be executed as a default command.

Discontinue use of the DEF feature

DEF (no argument)

Print on the terminal the last string saved as the argu
'merit fora DEF command.

F' <Interval Argument:> ' ' ''',(.tFile ")

Establishes as the current file the file containing the
lower address of the' interval given as argument. If this
address contains 9 this 9 becomes the lower bounding 0
of the file, otherwise the lower bounding 0 is the first
o backward in the memory from this address. The upper
bounding 0 is the first 0 in the memory forward from the
lower bounding 0. The entry pointer is set to the upper
bounding 0.' 'If either bounding 0 is within the source
area, the source are is expanded if necessary to include

nISKATE User's Manual -131-

the new file. If the new file is entirely outside the
source area the source area consists only of the new file
and its bounding 0's. The initial reference interval is
<S> regardless of any REF commands.

o <Interval Argument> ("Originate source area")

The interval given as argument is established as the
source area. If the lower address of the interval and the
upper address are the same, an empty source area consist
ing only of two consecutive zeros is created at the
address. Otherwise the 0 forming the lower bound of the
source area is written at the lower address of the inter
val and the upper bound 0 is written at the upper address.
The highest (possibly empty) file in the new source area
is made current and the target character becomes the 0 at
the end of this file and hence also at the end of the
source area.

o (no argument)

An empty source area is created at the beginning of the
current source area.

D <Interval Argument> ("Do ")

The string of commands located at the lower address of the
interval given as argument is executed. Execution of this
string is terminated by either an end of the file (a 0) or
a OS or OF command •.. When execution terminates control is
passed back to whatever command string invoked the D com
mand. Analogous to subroutine call. The initial refer
ence interval is the source area regardless of any REF
commands.

G <Interval Argument> . ('''Go to ..)

Execution of commands is transferred to the lower address
of the interval given as argument.' There is no return to
the command string invoking the G command. Analagous to a
GOTO command. The initial reference interval is the
sdurce area' r~9ardlessbf any REF commands.

R <Interval Argument> ("Repeat tf
)

The rest of the command line or file in which the command
occurs 1's repeated the number of times given by the lower
address of the argument, which is usually an arithmetic

DISKATE User's Manual -132-

expression. The value of the lower address of the argu
ment is treated as a 16 bit non-negative integer. If the
arqument is 0 the remainder of the command string contain
ing the R command is not executed. Execution of an R loop
may be terminated by a QS or QF command. R loops may be
nested. If the command string containing the R command is
to issue a return on completion, the return is issued
after the repetition has been terminated.

* <string> where ("comment It)

the string contains no commas, blanks, carriage returns,
or end of file characters (0's).

All characters from the * up to the next comma, blank,
carriage return or end of file are ignored allowing the
string to serve as a label.

QF <Interval Argument> ("Qui t on Fail ure It)

Execution ·of a command string invoked by a D command, or
repetition invoked by an R command, is terminated and a
return if pending is executed provided the argument
results in an Argument Failure, where an Argument Failure
is caused by either the failure to obtain a match for a
matching argument, or by an interval which results in the
lower address being greater than the upper address. An
argument containing a syntax error or undefined variable
will cause an actual error rather than an Argument
Failure. If an Argument Failure does not occur execution
continues. Only the innermost process is terminated. An
Argument Failure does not result in an error condition.

/ QS <Interval Argument>

Execution of a command string invoked by a D-command, or
repetition invoked by an R command, is terminated and a
return if pending is executed unless the argument results
in an Argument Failure, where an Argument Failure is
defined as above. If an argument failure occurs execution
continues. Only the innermost process is terminated. An
Argument Failure does not result in an error condition.

X <Interval Argument> . ("Execute ")

Them~chine language-subroutine at the lower address of
the interval given as argument is called. If it maintains

DISKATE User's Manual -133-

the integrity of the stack it may end with a RET statement
and execution of the process which invoked the X command
will continue.

<variable>= <Interval Argument>

The lower address of the argument is assigned to be the
value of the variable. If the variable is not present in
the symbol table it is entered there as described above
under Symbol Table. There must not be a blank between the
variable name and the -= sign.

COM [<prompt string>] ("Accept Command")

The string within brackets given as argument is printed on
tae terminal as a prompt. One command will be accepted
and executed and then the process invoking the COM command
will continue. The command may be a multi-line E command,
or a multiple command command line. The command line
typed in response to the COM command may be ESC'ed and
retyped. An error in the command will cause the process
invoking the COM command to terminate and issue an error
condition.

ATE [<prompt string>] (ltinvoke DISKATE recursivelyll)

The string within brackets given as argument is printed on
the terminal as a prompt. DISKATE calls itself recursively,
and then will accept and execute any number of commands.
An error condition terminates only those processes invoked
by commands given after the ATE command is executed. Exe
cution of DISKATE continues in this state until the BYE
command is given, at which time execution of the process
that invoked the ATE command continues.

BYE (no argument) ("bye-bye: return to to DISKATE callerlf)

DISKATE returns to its caller. If it was called internal
ly by an ATE command, the process invoking the ATE command
resumes. If it was called by a machine language program,

--execution"of tha-t program resumes. If DISKATE was invoked
only by the power-up procedure, the BYE command will cause
DISKATE to be reloaded from the disk.

RENT (no argument) (ItReenter tI)

DISKATE is reentered at the Uground level" at the same

DISKATE User's Manual -134-

entry point given by RENT where RENT is a symbol in
ATETBL. The stack is reinitialized but all other varia
bles and pointers are left intact. All processes active
at the time the RENT command is given are terminated,
including processes invoking ATE commands. If a machine
language program has called DISKATE, the RENT command will
cause the return address to be lost.

Y (no argument) ("Wipe ")

Calls the terminal initialization routine. The vector to
this routine is located in the vector table which begins
the module 10, at 10+9. On power-up this routine is
called by an internal Y command.

WID <arithmetic expression> ("terminal Width U)

The width for the terminal is set to the low order byte of
the value of the argument. If the terminal produces a new
line automatically on line overflow, a width equal to the
hardware terminal width will produce an extra blank line
for lines whose length is exactly the terminal width.

WID (no argument)

Prints the current terminal width on the terminal.

ECHO [<one-line character string>]

The character string given as argument is printed on the
terminal. There is no matching.

PAUSE (no argument)

The message PAUSE 'is printed on the terminal and the panic
state is entered.

10 <arithmetic expression> ("se t I/O d ev ice n umber It)

The low order byte of the value of the arithmetic expres
sion is subsequently supplied in the A register as an I/O
device number to all calls to the terminal I/O routines.
A carriage return and line' feed are printed on the device.

L <filename> <Interval Argument> '. ("Load disk file h
)

DISKATE User's Manual -135-

The file is loaded at the lower address of the interval
given as the second argument. The Default Interval Argu
ment may not be used as the Interval Argument.

L <filename> (no Interval Argument)

If the file is not a source file it is loaded at the
address given by the memory address portion of the direct
ory. If the file is a source file it is loaded at the
address given by the entry pointer. If the entry pointer
is within the source area, the file is inserted into the
memory file containing the target character between the
target character and the preceding character, with any
bounding 0's removed. In this case the target character
becomes the character in the source area after the last
character of the disk file.

S <filename> <Interval Argument> ("Save disk file")

The interval given as the second argument is saved as a
disk file whose name is the first argument. If a file
with this name already exists, it is replaced by the con
tents of the interval. If no file exists with this name
it is created. If enough room for the file exists on the
disk but not in one contiguous block the disk will be com
pacted and the message COMPACTING ON DRIVE (drive designa
tor) will be printed on the terminal. If the interval is
within the source area the file type is set at 0 (source
file) , otherwise the file type is set at 1. The memory
address portion of the directory will contain the lower
address of the interval given as the second argument. If
the disk or directory is full, an error message to that
effect will result and the contents of the disk will be

. unchanged.

GO <filename>

The disk file whose name is the argument is loaded and
executed, via an internal D command if it is a source file
'or' '·via' an internal X command otherwise. Equivalent to L
<filename>,D<R> for source files or L <filename>,X<R> for
non-source files. The same conventions for loading the
filEfthatappry to' the L command apply to the GO command.

I-'<optional" Disk" 'Dr rve'" Designator> ~-- ("Identify")

The directory on the disk drive given as argument is list
., ed.If no argument ·is ·given" the directory on the current

drive i~ listed. A copy of the directory is left at the

DISKATE User's Manual -136-

1024 bytes beginning at DISKBUF, where DISKBUF is a symbol
in ATETBL.

FS <optional Disk Drive Designator> ("Free Space li
)

The amount of free space on the disk and on the directory
for the drive given as argument is listed. If no argument
is given the listing is for the current drive.

U <filename> ("Un save ")

The disk file whose name is the argument is deleted from
the directory.

T <source filename> <destination filename> ("Tr ansfer n)

The contents and directory attributes of the disk file
whose name is the first argument are transferred to the
file whose name is the second argument. If there is no
file whose name is the second argument it is created,
with compacting occurring as with the S command.

TD <source Disk Drive Designator> <destination Disk Drive Desig.>

(ItTransfer Disk")

Each file on the disk designated by the first argument is
transferred, to the disk designated by the second argument
with the same conventions as for the T command. Files on
the destination disk drive whose names are not in the
directory on the source disk drive are unaffected. If the
destination disk drive or directory does not have enough
room to complete the transfer for every file on the source
disk drive, the transfer will be carried out for each file
for which there is room and then an error message will
occur indicating that the disk or directory is full.

RN <current filename> <new filename> ("Rename ")

The file whose-name is given by the first argument is
renamed to the name given as the second argument. If the

,second argument includes a Disk Drive Designator it is
. ignored.

W <filename> <Interval Argument> ("Write memory address")

DISKATE User's Manual -137-

The lower address of the interval given as the second
argument is written in the memory address portion of the
directory for the fil·e name given as the first argument.

CD <Disk Drive Designator> ("Current Dr ive ")

The disk drive designated by the argument is established
as the current drive.

A <list of file names separated by blanks> ("Assemble ")

Invokes both passes of the assembler to assemble the
source program logically equivalent to the concatenation
of the files given in the argument list. @ may be
included as a file name to cause a PAUSE command to be
executed while diskettes are changed. The name of each
file in the list is printed on the terminal as it is
assembled by each pass. The source area is not affected.

A (no argument)

Invokes both passes of the assembler to assemble the cur
r en t f il e • (I • e. < F> •)

Al <list of file names>
Al (no argument)

("Assembler Pass Iii)

Identical to the A command but invokes only Pass 1 of the
assembler. The symbol table is compiled but no object
code is generated.

A2 <list of file names>
A2 (no argument)

Identical to the A command but invokes only Pass 2 of the
assembler.

Q (no argument) ("Quiet ")
-. . ~ ~

Assembler listings are suppressed execpt for assembler
errorm~ssag.es 'llntil the next J command is encountered.

J (no argument) ("Jabber It)

The assembler will resume printing listings.

DISKATE User's Manual -138-

& <Interval Argument> ("set assembler program counter")

The assembler program counter is assigned the value of the
lower address of the interval given as argument.

$ <Interval Argument> ("set assembler storage counter U
)

The assembler storage counter is assigned the value of the
lower address of the interval given as argument.

Z (no argument) ("Zero the Symbol Table If)

All symbols are removed from the symbol table except the
initial symbols used by the assembler (see above under
Symbol Tabl e •)

Z <symbol>

The symbol, either a variable or assembler label, is
removed from the symbol table and the symbol table is
compacted.

z> <symbol>

All symbols defined after the symbol given as the argument
are removed from the symbol table. The symbol given as
the argument is left intact.

INTE (no argument) ("use Intel Format")

All subsequent P commands and Assembler commands will use
the Intel format until a PROS is encountered.

PROS (no argument) ("use Processor Technology Format")

All·subsequent P commands and Assembler commands will use
the Processor Technology Format until an INTE is
encountered.

P <Interval Argument> ("Print in Assembler Format")

The interval given as argument is printed on the terminal
with line numbers in assembler format, with label fields,
opcode fields, operand fields, and comment fields in col
umns as determined by the TAB settings. The choice of

DISKATE User's Manual -139-

Intel or Processor Technology format is unaffected by any
INTE or PROS psuedo-ops within the source code printed,
but is "affected by INTE or PROS commands as well as INTE
or PROS pseudo-ops executed by the assembler during Pass
2.

TAB (no argument) ("list TAB settings")

The current TAB settings are printed on the terminal in
the following order:

1. relative column for the label field
2. II " .. it opcode field
3. It II Ii " operand field
4. II .. " II comment field
5. source code offset

The columns for items 1-4 above are relative to 0 for P
command listings, and relative to item 5 for assembler
listings.

TAB <list of up to 5 a~ithmetic expressions, separated by blanks>

The TAB setting items listed above are replaced by the
value of the corresponding expressions in the argument
list. If there are less than 5 expressions in the list,
items for which no expression is given are unchanged. The
TAB is set to the low order byte of the value of the
expressio~.

V <Interval Argument) (IfEv al ua te II)

The lower address of the interval given as argument is
left in the HL register pair and the upper address in the
the DE register pair. Nothing is printed on the terminal
except for error messages. For use only in machine
language"progt~ms calling the entry point ATECOMS, where
ATECOMS is a symbol in ATETBL. A jump to ATECOMS is
wr itten. at. ,memory location 0 •

Assembler Formats:

Processor Technology Format:

The label field begins in the first character of each line. If a .
statement is not to be given a label, the first character of the

DISKATE User's Manual -140-

line must be blank. The label is given without any symbol to ter
minate it. A label must contain only upper-case letters or digits
and must begin with a letter. A statement consisting of only a
label field assigns the value of the program counter to the label.
The opcode field is separated from the label field by one or more
blanks. If the statement takes an operand, the operand field is
separated from the opcode field by one or more blanks. The com
ment field is separated from the previous field by one or more
blanks. The entire line can be designated as a comment by giving
* as the first character on the line.

Intel Format:

Same as above, with the following differences: a label is termi
nated with a colon. If a statement is not to be given a label,
the opcode may begin the line. The comment field begins with a
semicolon (";11).

Assembler Pseudo-ops:

AORG

SORG

(ltAddress Origin")'

The assembler program counter, &, is set to the value of
the operand.

("Storage Origin")

The assembler storage counter, $, is set to the value of
the operand

ORG (nOr igin")

DB

The assembler program counter is set to the value of the
oPerand. The assembler storage counter is set to its
current value + the new value of the program counter -

.. _th~. prev,~ous~al .. uE:l.,()f the, pr.ogram counter.

j~Defin~, ~yte"~

The operand is defined as a one byte constant. Multiple
operands separated by commas may be given, in which case
a one-byte 'constant is defined for each operand.

DW ("Define Word"),

Same as above except that constants defined are 16 bit

DISKATE User's Manual -141-

words.

DS ("Define Storage ")

A block of storage is defined whose length is the value of
the operand. The storage is not initialized.

ASC ("Define ASCII string")

ASCx

Generates a string constant consisting of the ASCII char
acters comprising the operand field.

where

x is any printing non-alphabetic or digit character

Same as ASC except that in the string generated each
occurrence of x is replaced by a blank.

EQU ('iEquate ")

END

INTE

PROS

IF

The label of the EQU statement is assigned the value of
the operand. A label must be present, and the same label
cannot be given a value by more than one EQU statement.

Indicates the end of the source code. In the absence of
an END pseudo the end of file serves the same purpose.

Sets the current format as ,the Intel Format.

Sets-the current format as the Processor Technology
Format.

("Conditional assembly")

The operand must'beln the form:

<expression>,<label>

If the value of the expression is 0, assembly skips ahead
to the label. Otherwise assembly continues with the next

"statement.' ."

Assembler Error Codes:

DISKATE User's Manual -142-

A Argument Error. The operand field is inv'alid for the
given opcode. The A code usually occurs only in Pass 2,
though an invalid EQU operand will cause it to occur in
Pass 1.

M Missing Label. An EQU statement occurs without a label.
Printed during both passes.

D Doubly Defined Label. A label is given where the label is
identical to a symbol already defined.

L Label Error. The first character in a label field is not
an upper-case letter of the alphabet. When this occurs, 3
NOPs will be generated in place of the statement.

o Opcode Error. The opcode field is not a proper opcode or
pseudo-ope 3 NOPs will be generated in place of the
statement.

Symbols in ATETBL:

< ATETBL is an abbreviation of the symbol table from an assembly of
ATE, the non-I/O portion of DISKATE. It correlates with the
version of DISKATE supplied, but in different versions of DISKATE
the symbols in ATETBL may not have the same value. Any reference
to such a symbol should take its value from ATETBL itself and not
a listing of any previous version of ATETBL.

BEGIN

RENT

ATECOMS

The' beginning of ATE~- This location is an entry point
which performs initialization. The stack and some
internal variables are initialized. The command O,Z,Y
is executed,' a message is printed on the terminal, and
the command GO STARTUP is executed.

The entry'point to ,ATE that'avoids initialization. Only
the stack is initialized. If DISKATE has been called by
another machine language program, jumping to this loca
tion ~ill caus~ the return address to be lost.- ,

An entry point which executes an arbitrary string of
DISKATE commands and then'returns. HL must contain the
address of the beginning of the command string. A jump
to ATECOMS is written at memory location a when DISKATE
is loaded from the disk. ATECOMS may be invoked by
loading the address of a command string in HL and then

DISKATE User' s ~lanual -143-

WHAT

READER

VCHK

CVALS

VALUS

OUT

INECO

executing the instruction RST 0.

The entry point to the DISKATE error exit. A machine
language program which detects an error can return to
DISKATE by jumping to this entry point.

A subroutine which reads one line from the terminal. DE
must point to a buffer which begins with a string ter
minated by a ~ byte. This string will be printed on the
terminal as a prompt. The characters are stored in the
buffer beginning immediately after the 0 at the end of
the prompt. The byte in the B register must be 2 greater
than the maximum number of characters which can be
stored in the buffer. (This number should not include
the length of the prompt string.)

A subroutine which determines if an argument follows the
invokation of a machine language program. Returns with
the Z flag OFF if an argument is present.

A subroutine which evaluates an interval argument after
the invokation of a machine language program. The lower
address is placed in HL and the upper address in DE.
In case of error it exits via WHAT rather than returning
to the machine language program that called it.

A subroutine similar to CVALS which evaluates an inter
val argument after the invokation of a machine language
program. This routine will return to the calling pro-

, gram even incase of error. Returning with the Z flag
OFF indicates an error. When called the lower and upper
addreses respectively of the initial reference interval
must be supplied in HL and DE. The initial reference
interval need not be given if it is known the argument
will contain no.~atchi~g symbols.

A subroutine which prints the character in A at the
terminal. The I/O device number is whatever has been

. 'established by an to command r and is ~ at power-up.
Before printing the character the panic detect routine
is called. All registers and flags are preserved, a

'line feed- is' supplied automatically after a carriage
return. The internal print head counter is updated.
When the terminal width is reached a carriage return and

'''line feed' are 'pr inted. .

A subroutine which obtains a character from the terminal
and 'echoes it via"the OUT routine above. All flags and
registers are preserved except A, which contains the
input character. ESC and backspace are treated like any
other' character-;·

DISKATE User's Manual -144-

PHLSB

PHLDC

USRCT

ROMEND

UCTAD

\

ASPC

STCTR

BOSAP

SYMTB

END

EOSAP

BOFP

EOFP

TABA

CHPTR

PI

P2

A subroutine which prints the value in HL in the current
base, including leading 0's. The value is printed in
split form with 3 digits per byte for all bases other
than 16. If the base is 16 4 digits are printed.

A subroutine which prints the value in HL in base 10
suppressing leading 0's.

An address giving the beginning of space provided inside
ATE for a user command table.

An address giving the upper address of space provided
inside ATE for a user command table.

The address of a 16 bit value giving the address of the
beginning of the user command table. If this is not
changed by personalization, the contents of

. UCTAD •• UCTAD+l on power up will be the same address as
USRCT.

The address of the assembler program counter.

The address of the assembler storage counter.

The address of a 16 bit value giving the lower address
of the source area.

The address of a 16 bit value giving the beginning
address of the symbol table.

The address in memory of the last byte of code in the
module ATE.

The address of a 16 bit value giving the upper address
of the source area.

The address of a 16 bit value giving the lower address
of the current file.

The address of a 16 bit value giving the upper address
of the current file.

The address of aI6 bit value g1v1ng the 0 ending the
symbol table. (Not consulted when values are defined
for a new symbol".)

The address of the entry pointer.

The address of a 16 bit value giving the lower address
the last ~Jlteryal computed and the value of <.

The address of a 16 bit value giving the upper address

DISKATE User's Manual -145-

RECAD

RECND

ERSAV

PHD

MAXBS

DISKBUF

RAMEND

the last interval computed and the value of >.

The address of a 16 bit value giving the lower address
the area of memory occupied by the most recently read
record from disk.

The address of a 16 bit value giving the upper address
the area of memory occupied by the most recently read
record from disk.

The address of a 16 bit value giving the address of the
most recent program execution error, or the memory
address at which a printout was interrupted -- i.e. the
value of ?

The address of 1 byte value giving the column in which
the print head is waiting.

A 16 bit constant giving the maximum number of blocks
allowed on a disk drive.

The beginning address of the ATE disk buffer. After an
I command a copy of the entire directory will begin at
this location. The first la24 bytes of this buffer are
used only during disk commands. The rest is shared by
other buffers.

The end of RAM used internally by ATE. Memory above this
address is free to the user.

DISKATE User's Manual -146-

Index

1 following a page number indicates the page number is part of the
System Reference Summary. Non alphabetic characters are given in
order of their ASCII codes.

A (assembler error code) 91, 1421
A Command 88, 1371
Al Command 88, 1371
A2 Command 88, 1371
AORG Pseudo 84, 1401
Argument missing 21
Argument Passing (to machine language) 114
Arithmetic Expressions 1221
Ase Pseudo 87, 1411
ASPC 1441
ATE Command 99, 1331
ATE Module 97, 101,112
ATECOMS 118, 1421
ATETBL 92, 1421
B Command 54, 129!
Backspace key 4, 64, 1211
Base, current 53, 54
BEGIN 1421
Block (disk) 68
BOFP 116, 1441
Bootstrapping 97
BOSAP 115,1441
BYE Command 100, 133!
C Command 61, 1291
CD Command 75, 1371
CHPTR 1441
COM Command 98, 1331
Commands, format of 1211
Compacting Disk 71
Concatenation 11, 55, 1251
Criunting occurrences 58 .
Create disk file -- see S,T Commands
Current Drive 67, 75
Currentfil~ 1, 18,41, 43, 115
Cursor frozen 4
CVALS 114, 1431
D (assembler error code) 91, 1421
D Command 46, 1311
DB Pseudo 86, 1401
Decimal numbers 53
DEF Command 50, 1301
Default Interval Argument 1261 See Argument missing
Device numbers 64, 103
Directory 68, 72, 76, 120

DISKA'I'E User's Manual

Disk Drive Designator 67, 1261
Disk Drivers 105
DISKBUF 120, 1451
DS Pseudo 86, 1411
OW Pseudo 86, 140!
E command 1, 8, 12, 54, 55, 127!
ECHO command 66, 134!
END (symbol in ATETBL) 144!
END Pseudo 88, 141!
End of the file 14, 31, 42
Entry Pointer 1

See target character
Recovery from being in wrong place 34

EOFP 116, 1441
EOSAP 115, 144!
ERSAV 145!
EQU Pseudo 85, 1411
ESC 4, 66, 121!
F Command 41, 130!
File names (disk) 67, 126!
File Type (disk) 68
Files (memory) 1, 40, 43, 1261
FS Command 72, 1361
G Command 44, 1311
Global Search and Replace 40
GO Command 77, 1351
H 53,' 1221
Hexadecimal numbers 53

. I Command 72, 1351
IF Pseudo 87, 1411
Indexed Sequential Files 147
INECO 1431
Initial Reference Interval 18, 41, 45, 48, 51, 1231
INTE Command, Pseudo 83, 90, 1391, 1411
Input Routine, Character 104
Intel Format 83, 1401
Interval 5, 122!
Interval Argument 125!
IO'Command 64,1341
10 Jump Table 101, 106
10 Module 97, 98, 101, 105
J Command 89, 1371-
K Command 15, 59, 61, 1281
KEEP (dummy variable) see JUNK, 80

"L (~~§e~b1er ~rror cod~) 91, 1421
L Command 73, 1341
M (assembler error code) 91, 1421

--. M Command 32 ,"59 ,60, 128!
Macros 44
N Command 40, 1291-
Matching'6, 18
Matching Failure 39, 40

-147-

DISKATE User's Manual

MAXBS 1451
Memory Address (in directory entry) 68, 77
'Number Symbol s 1221
Negative numbers 10, 39, 60
o (assembler error code) _ 91, 142!
o Command 58, 1311
Obscure, Jude the 38
Occurrencing 8, 29, 1251
Octal numbers 53
ORG Pseudo 85, 1401
OUT 1431
Output Routine, Character 104
P Command 14, 90, 1381
PIllS, 1441
P2 115, 1441
Panic Detect Routine 104
Panic State 50, 66, 1211
Pass 1 (assembler) 79
Pass 2 79
PAUSE Command 50, 1261, 1341
PHD 1451
PHLDC 1441
PHLSB 1441
Power-up Procdure 97
priority of operations 1251
Processor Technology Format 82, 1391
Prompt character 1
PRNTSYM (example) 93
PROS Command, Pseudo 83, 90, 1391, 1411
o (base suffix) 53, 1221
o Command 89, 1371
OF Command 39, 1321
OS Command 47, 1321
R Command 38, 47, 1311
RAM END 1451
READER 1431
RECAD 1451
RECND 1451
REF Command 59, 1301
RENT (Symbol in ATETBL) 98, 1421
RENT Command 99, 1331
Reentry Point -- see RENT'
Return from macro 47
RN Command 75, 1361
ROMEND 116, 1441
S (in panic state) 66, 1211
S Command 69, 1351
Speed Constant 103
SORG Pseudo 84, 1401
Source Area 1, 41, 45, 48, 58, 115
Sourc~ File (disk) 68
STARTUP (file) 97, III

-148-

DISKATE User's Manual

STCTR 1441
Symbol Table 79-82, 113, 1271

example of program to print 93
SYMTB 1441
S'" 60, 1241
T Command 76, 1361
TAB Command 89, 1391
TABA 1271,1441
Target character 2, 16, 24, 33
TD Command 76, 1361
Terminal Initialization Routine 65, 103
T.... 79, 1241

(in SORG operand) 89
U Command 73, 1361
UCTAD 1441
User Command Table 116
USRCT 116, 1441
V Command 119, 1391
VALUS 115, 1431
Variables 27, 80, 1221
VCHK 114, 143!
W~Command 77, 1361
WHAT 1431

·WID Command 65, 1341
X Command 63, 1321
Y Command 65, 1341
Z Command 80, 138!
Z> Command 80, 1381
1 . suffix 13, 1241
ft (as file name) 70, 1261
"Command 5, 1271
~t .. Command 54, 129!
'codes' 54, 56, 123!
$ (argument) 84, 1241
$ Command 84, 1381
% suffix 9, 1251
& (argument) 83, 124!
& Command 84, 1381
, Command 5, 127!
, (separating commands on

one line) 25
-It 29, 122!~··

-It Command 45, 1321
+ 29, 1221 .

29, 1221
-11 14

See ••
6, 11,· -1231, 1251

/ 29, 122!
: 53, 68, 1221, 1261
< 21, 115, 124!
<F> 31,1241

-149-

DISKATE User's Manual -150-

<R) 75, 1241
<S> 42, 1241
<T> 79 See Symbol Table
= Command 27, 133!
> (prompt character) 1

(Upper address.of last interval) 19, 22, 31, 115, 124!
? (argument symbol) 46, 66, 124!
? Command 57, 129!
?" Command 71, 129!
@- (as file name) 88, 126!
@ (matching symbol) 23, 1231
[text1 (matching symbol) 6, 123!
\ (echoed by ESC) 4
A (argument) 25, 1241
A Command 24, 1291
A (in ASC Pseudo operand) 87
A (in ' command output) 5

7,8, 123!
T 18, 22, l25!

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150

