
USERS' MANUAL

Copyright 1977 Gary Fitts. All rights reserved.

TEXT EDITOR

ASSEMBLER

PROGRAMMING

A product of Soft Corp for

<i> Thinker
Thys·m
120110th St Berkeley, CA 94710

ATE

AN ASSEMBLER AND TEXT EDITOR
(AND CASSETTE OPERATING SYSTEM)

A stand-alone BOBO program development system designed
to run with Morrow's Micro-Stuff Speakeasy I/O board

Features

One of the most versati Ie text editors ever writtenl ATE can edit any
kind of text from assembly language to "English" language.

ATE is completely programmable. You can create your own high-level
editing commands (or "edit macros"). Repetitious editing operations
or time consuming tape references can be run automatically.

The assembler can handle programs larger than memorYI can produce
object code listings in any base you want {hex or octal or decimal or
whatever)1 and al lows you to edit the obj~ct code easi Iy even without
an object code listing.

ATE fits into 4K of memory and runs in BK. More memory can easily be
uti lized since everything (the symbol table l the source fi Ie areal etc. l)
is moveable.

Copyright 4/15/77 Gary Fitts. All ri ghts reserved.

Contents

Introduction

ATE text ed i tor

Design phi losophy

Text addressing

Summary of text addressing

An editing example

Line typing

ATE command s

+ Set the pointer

E Enter

K Ki II

M Move

C Copy

Printing commands

" Quote

Quote one line

P Print

B Base

Quote numbers

1 Where1

Memory f i I e commands

F FIle

N New

o Origi nate

Programming commands

D Do

:>

R

*

Goto

Repeat

Label

Error hand ling

QF Quit on fai lure

QS Quit on success

= Equals

X. Execute

Prog ram examp I e

Page

1

5

5

6

13

15

18

19

19

20

22

22

23

24

24

24

24

25

25

26

26

27

27

28

28

28

29

30

30

31

31

32

32

32

33

Contents

ATE assembler introduction

Assembler summary

Pseudo-ops

Error codes

& Set &
$ Set $

A Assemble the table

G Generate object code

H Hold the presses

Z Zero the table

Ziabel Zero the label

Z label Zero after

Tape handl ing commands

I Identify

I (TITLE)

L Load

J Jump over

V Verify

S Save

T Title

W Write address

RS Resave

Tape handling examples

Gory deta i Is

Hardware requirements

Loading ATE

Initial ization

10 patching

Sample 10 patches

The tape driver

The user command table

ATE add resses

Functional descriptions
Memory map

Numerical values

Bugs

34

46

46

47

47

48

48

48

49

49

49

49

50

50

50

51

51

52

52

53

53

53

54

54

54

55

56

56

58

60

62

64

64

68

69

73

Command reference chart 74

Introduction

For the reader who enjoys learning a new language by total

immersion, here is an introduction to the text addressing

capabil ities of ATE. Skip this part if you want -- detailed

explanations fol low.

"
I CANNOT FIND MY WAY. THERE IS NO STAR

IN ALL THE SHROUDED HEAVENS ANYWHERE.

"(THERE) ..

THERE IS NO STAR

IN ALL THE SHROUDED HEAVENS ANYWHERE.

" .. (OED)

I CANNOT FIND MY WAY. THERE IS NO STAR

IN ALL THE SHROUDED

" (TH) .. (H)

THERE IS NO STAR

IN ALL TH

" (TH) .. (H) .. (0)

THERE IS NO STAR

IN ALL THE SHRO

" (TH) .. (0)

THERE IS NO

"(IN)..(ED)

IND MY WAY. THERE IS NO STAR

IN ALL THE SHROUDED

" (IN), . (ED)

IN ALL THE SHROUDED

"(IN)'.(ED)

IN ALL THE SHROUDED
" / (TH) . • (0)

THE SHRO

" / .. (HE)
THE
"(IN).. (ED)/(TH) •• (0)/ •• (HE)

THE

" .. (HE)
I CANNOT FIND MY WAY. THE

" •• 2 (HE)

2

I CANNOT FIND MY WAY. THERE IS NO STAR

IN ALL THE

" •• 3()

I CANNOT FIND
"2() .. 3()

FIND MY WAY.
"-1()..

ANYWHERE.
"-2() .•

HEAVENS ANYWHERE.

" •• +

I CANNOT FIND MY WAY. THERE IS NO STAR

"+ •• +

IN ALL THE SHROUDED HEAVENS ANYWHERE.
"(HEAVENS)*

IN ALL THE SHROUDED HEAVENS ANYWHERE.
"2+*

IN ALL THE SHROUDED HEAVENS ANYWHERE.

"(A)@@(N)

AVEN
"()@@@ ()

ALL

"2 ()@@@ (

THE
"2() ... (

FIND
"15@

M

" •. 15@

I CANNOT FIND M
"80@

?

"(.) .. (.)
. THERE IS NO STAR

3

IN ALL THE SHROUDED HEAVENS ANYWHERE.
"(.)+2 •• (.)-1

THERE IS NO STAR

IN ALL THE SHROUDED HEAVENS ANYWHERE
"(HEAVEN)+1

EAVENS

"(C)'. (D)

CANNOT FIND

"< •• >

CANNOT FIND

"
CANNOT FIND

C

"
C

"(CL • (D)

CANNOT FIND.

">

o

"
o
"(C) •• (0)

CANNOT FIND

"<+2 •• >-2

NNOT FI

"(C) •• (0)/<+3 ••

NOT FIND

">-2 •• >+ 3

INO MY

4

ATE Text Editor

Design Phi losophy

A text editor should be:

(a) easy to learn

(b) easy to use

5

(c) versati Ie enough to edit any kind of text.

Most editors avai lable today fai I at least one of the above tests.

For example, the ,most common kind of editor (from a hobbyist's point of

view) is probably the simple line editor present in al I BASICs and -in

most assembly language systems. This is just dandy as far as (a) and

(b) above are concerned, as long as you limit your text to relatively

smal I computer programs. But large programs are difficult and time

consuming to edit this way. And trying to edit non-line-oriented text

(such as this) is ridiculous.

At another extreme are wei I known editors (supported on large

computer systems) such as QED and its descendents. They are relatively

easy to use--once you learn how. But to the non-initiate, they appear

as such an ad-hocery of special conventions that few take the time to

learn to use them efficiently. And even these editors usually leave

something to be desired as far as (c) goes.

ATE is an attempt to achieve (a), (b), and (c) in one editor.

(a), by syntactical logic and consistency more typical of a programming

language than an editor; (b), by keeping verbosity to an absolute

minimum and al lowing immediate as wei I as programmed execution of al I

functions; and (c), by imposing almost no restrictions on the contents

of a fi Ie and providing a very powerful and general text-addresssing

capabi lity.

6

Basic editing in ATE

There are really only a few operations involved in actual text editing.

Consider what is involved in writing a rough draft by hand:

The operations illustrated here boi I down to 3 basics: entering, ki I ling,

and moving. (Writing the text in the first place is simply entering

into an initially empty fi Ie. Correcting consists of ki I I ing and then

entering the replacement.) What is needed to make these 3 basic operations

work effectively is a means of viewing the text and indicating what is

to be moved or ki I led, what the destination of the move is, or where an

entry is to be made. So we come to

Text Addressing

The examples in this section assume that we already have a text

fi Ie in memory. Initialization of new fi les and fi Ie storage and paging

wi I I be covered later. Also, ATE commands wi I I be covered in more detai I

later. Most commands require an argument (or value). AI I the commands

use the same argument format, and this section is devoted to explaining

th at fo rmat .

Suppose the fi Ie we are editing contains the fol lowing character?:

WRITING_THE_TEXT. CR ENTERI NG_NEW_TEXT.

Here we have used for a blank and c~ for a carriage return. When

printed out, the fi Ie would appear:

WRITING THE TEXT.

ENTERING NEW TEXT.

Suppose we wanted to eliminate the word THE from the fi Ie. The easiest

way to do this would be to use the Ki I I function as fol lows:

K(THE)

7

To understand how this works, we need the concept of an interval. Suppose

we knew that the characters THE occupied memory addresses 2009H, 200AH,

and 200BH. (H = hex.) Another (seldom used) way to ki I I THE would be

to type

K 2009H ••• 200BH

(THE) and 2009H ••• 200BH are both legal arguments to any ATE command, and

in this case, both would evaluate to the same thing: an interval beginning

at address 2009H and ending at 200BH. The evaluation process is quite

different for these two arguments, however. In the second case, ATE would

not look at the contents of the fi Ie at al I. It would simply evaluate

the two numbers (which we could also have given in decimal or octal,·

straight or split; but more of that later) and pass those two values to

the Ki I I routine. The other argument involves a process cal led matching.

When' ATE encounters an expression such as (THE) in a command argument,

it searches the fi Ie for a string of characters that match the ones

enclosed in parentheses. If found, the beginning and ending ~ddress of

the string become the values of the expression (THE).

Suppose we want to ki I I THE; TEXT, and ENTERING, leaving in the fi Ie only

WRITING NEW TEXT.

Here is one way to do it.

K (THE) ••• (ING)

Note: Including the blank after the ING keeps the fi Ie from being left

with two blanks between NEW and TEXT. We could just as wei I have typed

K (tHE) .•. (ING). Leaving a blank between the command K and its argument

is optional.

To evaluate this argument, ATE first finds a match for (THE), and then

searches forward from there to find a match for (ING). Then it combines

these two intervals into a single one extending from the beginning of

the first to the end of the second. (The ..• operator can of course be

shortened to .)

8

As may now be apparent, al I ATE expressions evaluate at an interval.

For example, 2009H evaluates to an interval beginning and ending at that

address.

Suppose we want to ki I I the word TEXT in our fi Ie. It is apparent that

we need to be able to distinguish different occurrences of the same string.

To ki I I the first occurrence of TEXT, we need only type K(TEXT). To ki I I

the second occurrence and not the first (assuming we are sure that it is

the second occurrence we are after): K 2(TEXT)

nd The argument 2(TEXT) matches the 2 occurrence of TEXT. In general, N(
th matches the N occurrence of the enclosed characters, as long as the

value of N is positive (less than 32,768). -1() wi I I cause the search

to proceed backwards from the end of the fi Ie, matching the first

occurrence in that direction. -2(

the end, etc.

) matches the second occurrence from

But what if we aren't sure how many occurrences of TEXT there are, and we

don't want to count?

K (THE) •.• (ING)/(TEXT)

(This may look like a lot of typing, but things wi I I get better.) This

brings us to the concept of a reference string. When ATE begins

evaluating an argument, it performs any required searches within the

current fi Ie. Thus, we say that the current fi Ie is the initial

reference string. But when ATE encounters a I, it takes the interval

that has been calculated so far and makes it the reference string. Any

subsequent searches wi I I be performed within this new reference string.

The I operator may be used repeatedly, eg

K (THE) ... (ING)/(TEXT)/(El

This wi I I ki I I the E that is within TEXT that is within THE ... ING.

To ki I I al I occurrences of TEXT within the fi Ie, we use the Repeat command,

which is explained later.

9

Notice that giving a numerical address within an argument does not require

a search, so the fol lowing is legal: 0 •.• 4095/(ABC). This wi I I cause

a search for the characters ABC within the first 4K block of memory.

The initial reference string is sti I I the current fi Ie, and this

probably does not contain the interval 0 •.. 4095. But since 0 .•• 4095

does not cal I for a search, there is no problem of not finding this

interval within the reference string. When the / is encountered, this

interval becomes the reference string.

Note: The fol lowing example assumes some experience with machine

language programming. Suppose that the first 4K block of memory does

not contain an ASCII source fi Ie at al I, but instead a version of BASIC

whose I/O routines we are trying to modify. Then we wouldn't want to

search for ASCII characters such as ABC, but for object code bytes

such as DB 00 E6 (hex). (This is the object code for IN 0, ANI). We

couldn't write 0 .•. 4095/(OB 00 E6), since this would search for the 8

enclosed ASCII characters. We need a delimiter other than parentheses

to tel I ATE to interpret the enclosed characters as numerical bytes.

We use a number sign # for this: 0 .•• 4095/#OB 00 E6#

The bytes enclosed by the #'s must be expressed in the current

operating base, which is set by the B command (see command summary).

After typing B 8, we would type the above argument as 0 .•• 4095/#333 0 346# •

A feature of ATE that helps minimize typing: if a command needs an

argument, but none is given, the interval computed for the last

command is used. For example, here is a common editing operation.

First we view an interval of text to make sure it is the one we want.

To do this we use the quote command" •

" (THE), •. (I NG) } we type th i s.

THE TEXT.

ENTERING } the computer responds with this.

The" command simply sends the addressed text to the terminal (inserting

a line feed after a carriage return). After seeing the addressed text,

we. may decide to ki I I it:

K

10

Since no argument is given, it ki I Is the most recently computed interval,

namely (THE) ••• (ING).

Suppose that after seeing the text, we decide that we only want to ki I I

the word TEXT within it (but not any other occurrence of TEXT within our

file) •
K /(TEXT)

Remember that / takes the most recently computed interval and makes it

the reference string. (Otherwise, the current fi Ie is the reference

string.) In this case, the most recently computed interval is THE ••• ING

from the previous argument. So the match wi I I occur within THE .•• lNG, if

at all.

Carriage returns occur frequently in most text, so there should be some

way to address them. Trying to enclose one in parentheses wi I I not work,

since that would terminate the argument prematurely. We could use the

numerical value of the character, #D# (hex) or #15# (octal), but a more

convenient and mneumonic character has been provided: +. For example,

suppose we wanted to ki I I the first carriage return in our fi Ie (thus

combining the 2 lines into 1).

K+

Carriage return addressing is one way to address lines in ATE. The nth

line extends from the n_l st carriage return to the nth cr., not including

the former. For instance, to quote the 3rd I ine, we could type

"2+...... (although this wi II give us 2 cr. 's)

Recal I that after a ••• , the search proceeds forward from the interval

calculated so far. To view 4 lines starting at the second cr., we could

type

"2+ ••• 4+

Notice that this wi I I quote 4 lines, not 2.

11

What if we want to ki I I the 3rd line without ki I ling the cr. that

precedes it? Here is one way (although there is an easier way that

we wi I I see short I y) •

K 2++1 ••• +

To ki I I 4 I ines starting just beyond the 2nd cr., we could type

K 2++1 ••• 4+

Remember that al I expressions in ATE evaluate to an interval, which

is simply a pair of memory addresses. Interval+l simply adds 1 to

both of these addresses. Thus, using our original example, (TEX)+1

evaluates to the same thing as (EXT).

What does (WR) ••• (XT.)+l evaluate to? Does the +1 apply to everything

that comes before it, or just the (XT.)? Answer: just the (XT.).

The + operator has a higher precedence than the ••• operator, so it is

performed first. Thus (WR) ••• (XT.)+l extends from the W to the

character after the period (which is a cr in this example).

Here is another way to get the same interval: (WR) ••• (XT.)+

This introduCes another -operator, concatenation. (XT.)+ matches the

first occurrence of the four characters X,T,period, and carriage

return. 3(XT.)+ wou I d match the th i rd occurrence of th i s four

character string. (As you can see, concatenation has a higher

priority than ••• , and a higher priority than "occurrencing".)

Some further examples: +(PRINT)+l ••• + matches the first line beginning

with PRINT. (We'l I see an easier way to do this.) (ABD) (DEF) is

equivalent to (ABCDEF). (ABC)+(DEF) is equivalent to (ABD)#D#(DEF).

No blanks are permitted between elements to be concatenated. In fact,

no blanks are per~itted at al I in ATE arguments, except within

lite ra Is, as i n (I NG.).

12

Another means of line addressing in ATE is the * operator. This takes an

interval and expands it to a ful I I ine. In case the interval crosses a

line boundary, it returns only the line containing the end of the interval.

For examp Ie,

K3+-*

ki I Is the third line. The interval3+- is a l-character interval contained

in the 3rd line. (It is the carriage return at the end of this line.)

* expands this to the entire line.

K+(PRI NT)*

ki I Is the line that begins with PRINT, not including the preceding carriage

return.

"(TEXT)* quotes the line containing the first occurrence of TEXT, whether

or not it begins the line.

"(TEXT) ••• (TEXT)*, using our original example, resu'lts in the computer

printing

TEXT.

ENTERING NEW TEXT.

Notice that the * operator has a higher priority than the ••• operator.

There are a few more special symbols to make text addressing easier. @

matches any single character (as long as there is one left in the

reference string to match). (ABD)@(DEF) wi II match any occurrence of

ABC_DEF, where the blank contains any single character. Contrast this

to (ABD) ••• (DEF), which matches ABC thru DEF with any number of char

acters in between. Using an argument of 72@ would not only give the

72nd character in the reference string, it would test whether or not the

reference string is at least 72 characters long. If not, the match would

fai I. (See the QF and QS commands for the consequences of match fai lure.)

What if we wanted to match the first 72 characters of the reference

string? (72@ only matches the 72nd, not the first 72.) Here is one way:

" ••• 72@

This quotes the first 72 characters of the current fi Ie (if there are that

many). In general, ••. at the beginning or end of an interval extends the

13

match to the beginning or end of the reference string.

K 2+*I ••• (NEW)

wil I ki I I everything in the 2nd line up to and including NEW.

K 77+* •••

ki I Is everything in the current fi Ie from the 77th line on.

The symbols < and> refer to the left and right addresses of the most

recently computed interval. They do not cal I for any matching, they

simply return the appropriate address. K<+2 ••• >-2 wi I I ki I I every

thing in the most recently computed interval except the leading and

trai ling 2 characters.

When ATE begins computing an argument, a new value is assigned

to < as soon as the left address of an interval is computed. This

allows

"(DO YOU, MR. JONES?) ... <+63, which quotes 64 characters starting

with DO YOU ••• The symbol> retains its old value unti I the end of

the interval is computed, either at the end of the argument or at a I.

Summary of text addressing

Most of the symbols below were covered in the preceding

narrative. The rest are covered elsewhere as indicated.

Operands that invoke match i ng:

() Matches the enclosed ASCII characters within the

@

current reference string.

Matches the enclosed bytes (expressed numerically

in the current operating base).

Matches a carriage return.

Matches any single character.

Operands that return values without matching.

number 1234 (decimal), 1234Q (octal), OF12AH (hex). May

also be expressed in byte-oriented or "split"

fashion: 123:456Q (octal), 123:456 (decimal).

In both cases, the 123 gives the value of the

variable

<

>

t

<F>

<S>

<T>

<R>

?

, ,

&

$

Operators:

Highest priority:

14

high order byte, wh i I.e 456 gives the va I ue of

the low order byte. 1:20 = 001:0020. Note

that hex numbers are naturally byte-oriented:

12:34H = 1234H.

X, ABC, SI23, POINTER, etc. May be any" length.

16-bit integer values. See the = command.

Left address of most recently computed interval.

Right address of most recently computed interval.

Address of entry pointer. See the command summary.

The current fi Ie (beginning and ending addresses).

The source code area--al I fi les.

The symbol table (see assembler).

The record most recently read in from tape.

The address of the most recent execution error

(see programming).

The numerical value of one or two ASCII characters,

e. g., '3' =630.

The assembly program counter.

The assembly storage counter.

Concatenation Applies when any matching-type operands are juxtaposed.

Middle priority (evaluated left-to-right):

+

*

occurrencing

Addition

Subtraction

Expands the end of the preceding interval to a

ful I I ine. Must be preceded in the same argument

by an interval-valued operand.

Applies when a value precedes a matching operand.

1+2(ABC) is equivalent to 3(ABC).

Lowest priority (evaluated left-to-right):

Combines two intervals into one. Can also be thought

of as an operand that matches any number of

characters. May be used repeatedly, e.g.,

An example

15

(I HAVE) •. (PAVEMENT) •• (BEFORE). This would

address .the first 2 lines of the song "On

the Street Where You Live," where

(I HAVE) •. (BEFORE) would address only the

first line. Values connected by ..• must

be in non-decreasing order. 5 .. 3 •. 7 would

fai I. See the QF and QS commands.

may be shortened to a single.

Takes the most recently computed interval and

makes it the reference string.

The fol lowing page presents a "typical" editing session with

ATE (typical in its use of the editing commands, not in the inanity

of the text). The commands presented are E (enter), K (ki II),

M (move), R (repeat), t (set the entry pointer), " (quote), and

, (quote one line). As ,each command is introduced, please refer

to the command summary for a detai led explanation of what it does.

Even more importantly, please make sure you have read the preceding

section on text addressing.

The> character at the beginning of a I ine is a prompt issued

by ATE when it is ready to receive a command. Note that blanks are

optional everywhere except within command arguments, where they

are i I legal except within literals.

>E(ENTERING NEW TEXT
WRITING THE TEXT
KILLING AND MOVING TEXT
)

>" ••
ENTERING NEW TEXT
WRITING THE TEXT
KILLING AND MOVING TEXT
> t .. , M (WR) • . (K), ".
WRITING THE TEXT
KENTERING NEW TEXT
ILLING AND MOVING TEXT
>K(K),K(IL) •. , ".
WRITING THE TEXT
ENTERING NEW TEXT
>t(THE), ,
WRITING tTHE TEXT
>E (IN) , ,
WRITING IN tTHE TEXT
>tt+1 , ,
WRITING IN TtHE TEXT
>t+7, ,
WRITING IN THE TEXTt
>E(BOOK
I S FORB I DDEN), " .• 2+
WRITING IN THE TEXT BOOK
IS FORBIDDEN
>"3+-*
ENTERING NEW TEXT
>K/(TEXT), " ..
WRITING IN THE TEXT BOOK
IS FORBIDDEN
ENTERING NEW

ENTERING NEW t
>K t-1, ,
ENTERING NEWt
>E(CASTLE
IS RISKY), " ••
WRITING IN THE TEXT BOOK
IS FORBIDDEN
ENTERING NEWCASTLE
IS RISKY
>R99,K(IS),E(WILL BE)
?
>" ..
WRITING IN THE TEXT BOOK
WILL BE FORBIDDEN
ENTERING NEWCASTLE
WILL BE RWILL BEKY
>K 3(WILL BE), E(IS), "
WRITING IN THE TEXT BOOK
WILL BE FORBIDDEN
ENTERING NEWCASTLE
WILL BE RISKY
> t (IN) , E (") , M (ENT) •. (KY) , E ("),".
WRITING "ENTERING NEWCASTLE
WILL BE RISKY" IN THE TEXT BOOK
WILL BE FORBIDDEN

>

16
NOTES

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Notes

I. When ATE is first powered up, it in i ti a Ii zes an empty f i I e (among

other things), issues a prompt character> , and waits for a command.

In this case, the first command is an Enter. After typing the

third I ine, we typed a carriage return before typing the closing

parenthesis. This isn't strictly necessary, but if a fi Ie contains

more than one line, it is good practice to end every line, including

the last, with a carriage return.

2. In this example, we have used two dots •• for readabi lity. Most

often, you wi I I probably only want to use one dot for brevity.

3. t •• sets the entry pointer to the beginning address of its argument.

Since .• matches the entire reference string, and si.nce the

reference string is the current fi Ie unless otherwise indicated,

t •• sets the entry pointer to the beginning of the fi Ie. This

pointer a}so indicates the desti~ation of an M (move) command, as

this example shows. (After the move, the pointer is updated to the

end of the inserted material, ready for additional entries or moves~

See #15 below.)

4. This introduces the single-quote' command. See the command summary.

5. Note that we inserted 3 ASCII characters, and that the pointer was

updated past the inserted material.

6. The character t, when used as a command, means set the pointer to

the beginning of the fol lowing interval. When used in an argument,

it returns the (old) address of the pointer. Thus tt+1 is analogous

to X=X+l with the = command. (But note that the t command does not

use an equal sign.)

7. This shows that ATE wi I I recognize t+7 as an abbreviated version of

tt+7. Note that the entry pointer is now set between the letter

T and a carriage return.

8. Here we have asked ATE to quote everything in the fi Ie up through

the 2nd carriage return, i.e., the first two lines.

9. Quote the line containing the 3rd carriage return, i.e., the third

line. See the explanation of * under text addressing.

10. Recal I that / takes the most recently computed interval (in this

case the 3rd line) and makes it the reference string. This way,

we won't ki I I any other occurrence of TEXT within the fi Ie.

18

II. Note that no matter where it was before, the entry pointer is left in

the position of the deleted text.

12. Here we are ki I ling the character just before the pointer, again

leaving the pointer in the place of the deleted text. (The deleted

character was a blank.)

13. R means repeat. After 3 times, ATE could find no more occurrences of

IS, so it responded with a 1.

14. Here we are saying "ki I I the 3rd occurrence of WILL BE". In a large

fi Ie, we probably would have quoted the offending text, and then used

the restriction operator / •

15. Notice that the entry pointer is continually updated throughout this

process.

16. We have left'2 carriage returns at the end of the fi Ie, as we can see

by the empty line that was quoted there. See the programming commands

for an example of an editing macro that can be used to clean up a fi Ie

that has accumulated adjacent carriage returns and blanks.

ATE Command Summary

Li ne Ty~i ng

Rubout Deletes the last character, echoing a back-s I ash \ •

Control-Z Deletes the line being typed, echoing a back-slash, carriage

return, and line feed.

Control-A Whi Ie AlE is typing output or running a program, hitting any

key wi I I halt the current process (without otherwise affecting

it) and wait for you to peruse the output (or whatever). At

this point, typing control-A wi I I abort the process and retur~

control to the terminal. Hitting any other non-printing

character wi I I continue the process where it left off.

Note: With the exception of the above three characters, ATE wi I I

ignore whatever is being typed unti I the line is terminated by a

carriage return. But if the line being typed exceeds 72 characters,

ATE wi I I echo a back-slash after each additional character to

19

indicate that the character has been lost. The "terminal width"

can be set to less than 72 characters if desired (see the section

on initialization). If the I ine being typed exceeds the terminal

width, ATE supplies a new line (crlf) automatically and lets you

continue typing the line (unti I the 72 character I imit). The

automatic carriage return and line feed wi I I not be part of the

line.

The terminal width can be set to exceed 72 characters in

order to obtain a wider printout, but input I ines wi I I sti I I be

limited to 72 characters.

If you set the terminal width too sma I I, the printout wi I I

not be wide enough to accommodate an assembly I isting. In that

case, see the address LISTR in the appendix for a patch.

ATE Command Summary

Note: Most of ATE's power lies in the arguments that you can give

to its commands, not in the commands themselves .. AI I command arguments

have the same format, which is explained in the section on text

addressing.

Basic Editing Commands

t "Set pointer." ATE maintains an entry pointer to indicate where

text is to be entered, or what the destination of a Move or Copy

instruct i on is. Us i ng t as a command wi I I ass i gn the beg inn i ng

address of the argument to this entry pointer. For instance,

suppose that WRITING is the first word in the current fi Ie.

t(TING) wi I I leave the entry pointer pointing to the letter T.

However, it is customary to think of t as pointing between the

T and the preceding I, WRltTING, since that is where entered

text wi I I appear. So when you type t(TING), it helps to think

"set the pointer to precede TING."

20

The t character may also be used in an argument to reference

the entry pointer address. For instance, continuing the above

example, typing "t would cause ATE to respond with a T. Typing tt+1

wi I I increment the pointer. As a special case, ATE wi I I recognize

the commandt+1 as an abbreviation of tt+1, not as an attempt to set

the pointer to the absolute address 1. (To do this, you could type

t1.) You may use an absolute address (a number or a variable,

instead of a matching operand) and set the pointer outside of your

text fi les altogether. In this case, the Enter command wi I I behave

somewhat differently. See the Enter summary for a ful I explanation.

As is the case with al I ATE commands that take an argument, t

may be typed without an argument, in which case the most recently

computed argument wi I I be assumed. For instance, after typing

"3-E-* to view the 3rd line, we could type t,E(LABEL) to .insert LABEL

at the beginning of this I ine. Or we could type t>,E(COMMENT) to

append COMMENT to the end of the I ine. In fact, after viewing the

3rd line with "3+*, we cou I d type the fo I low i ng :

t,E(LABEL),t> ,E(COMMENT)

to accompl ish both these operations. To understand why this works,

read about the Enter and Move comm~nds. In a nutshel I: the Enter

command does not change the default argument. But it may cause

text to be moved (to expand thefi Ie), and whenever ATE moves any

thing that it knows about (such as >, <, the fi Ie, the symbol

table, etc.), it remembers the new location.

The only commands that affect the position of the entry

pointer are: t,E,K,M,C,F,N,O, and L. t sets it to the beginning

of the addressed interval, K sets it to the deletion point, and al I

others set it to the end .of the interval in question.

E "Enter." Text which fol lows the E command (as long as it is

properly del imited) is entered at t, and t is set past the entered

material, ready for continued entry. The text to be entered must

be delimited in the same manner as for matching-type operands:

parentheses around ASCII characters, and number-signs around numeri

cally expressed bytes. These two types can be concatenated (with

no intervening space), as can the symbol + for carriage return.

21

However, in contrast to matching-type operands, the delimited

text can be many lines long, i.e., it can contain carriage returns.

Also, no matching takes place. ATE does not compute any new

argument values for the E command, so the default argument (the

most recently computed interval) remains unchanged.

The interpretation of what it means to "enter the text at

ttl is necessarily different depending on whether or not t lies

within a text (source) fi Ie. If it does I ie within a source fi Ie,

then we think of t as pointing between characters (just before

the one it was addressed to). The source fi Ie (and any adjacent

fi les in the source code area--see the memory fi Ie commands for

an explanation) is expanded and the given text is inserted. If

t is not in any source fi Ie recognized by ATE, then the given

text simply overwrites what is already in memory, beginning right

at t. This latter operation is used most often in editing object

code (= machine language program). For an example of this, see

the # command.

It is legal to include parentheses in the ASCII text to

be entered, as long as they are balanced, i.e., as long as they

occur in matched pairs. For instance, E(LET X=SIN(Y» is legal.

It wi I I enter al I but the outer-most parentheses. In ATE, this

feature is often used as fol lows. We might type:

E(*BLANKS, QF(), K<, (*BLANKS»

This enters a string of ATE commands (most of which we haven't

covered yet) into a fi Ie. Later, we might ask ATE to execute

these commands. Their effect would be to eliminate multiple

blanks in whatever fi Ie was then current. This is cal led an edit

macro, and wi I I be covered with the programming commands.

Error handling: suppose that the current operating base

is 16, and you type E#C3 12 AX#. ATE wi I I enter the C3 and

the 12, but it wi I I not recognize the X"as a legitimate base 16

dig it. t wi I I be updated past the entered 12, and an error

sign? wi I I appear at the terminal. Then you could type E#AC#

(if AC was your intention) to complete the operation.

22

K "Ki I I." The addressed text is deleted, and t (no matter where it

was before) is set to the deletion spot. Thus a Ki I I fol lowed by

an Enter wi I I replace the deleted text, with no need to use the t

command. For instance,

K(SAMUEL CLEMENS), E(MARK TWAIN) replaces the first occurrence of

SAMUEL CLEMENS With MARK TWAIN. R999, K(SAMUEL CLEMENS), E(MARK

TWAIN) wi I I replace al I occurrences (unless the text is extra

ordinari Iy repetitious of that name). (See the Repeat command.)

As with Enter, Ki I I behaves differently when used to edit

object code, i.e., memory data outside a text fi Ie. If the

addressed text is inside a source (text) fi Ie, then it is moved

outside the source fi Ie area, and the remaining source code is

compacted to fi I I the gap. (Thus the ki I led text is not actually

overwritten, and can be retrieved, unti I the next Enter causes the

source area to expand.) But if the addressed interval is outside

the source area, then it is zeroed, i.e., the addressed interval

is fi I led with zeros, and t is left pointing to the first zero.

Machine language example: Suppose we have a version of

Basic whose input routine we want to change. From the documentation,

we know that it does teletype 10 using the Processor Technology

standard ports (0 for status, 1 for data). We could load Basic at,

say, 3000H and then type the fol lowing:

K 3000H •• 5000H/#DB 00 E6#@@@@#DB 01#

E #CD 5:1 23#

What we have done is put zeros (NOPS) in place of the old input code,

and then put in a cal I to our new input routine at the beginning of

this zeroed section. We used the four @'s so that we didn't have

to worry about what the mask was, whether the jump was a JZ or JNZ,

and what the jump address was.

In actual practice, we would want to look at the code before

we zeroed it. See the # command for an example of this.

M "Move." The addressed text is removed from its present location

and inserted at the entry pointer. The pointer is updated past the

inserted material, ready for additional moves or entries. If the

addressed text included any of the internal pointers known to ATE,

23

then these are updated to their new location. These are: <F>

(the current fi Ie), <S> (the source area), <T> (the symbol

table), <R> (the record most recently read in from tape), <

(the left address of the most recently computed interval), >

~the right address of the same), the user command table, the

command interpretation pointer (in case a macro is currently

executing), and any return or repeat addresses. The Kil I command

uses the same subroutines to move text out of the source area, and

the Enter command uses them to expand the source area if necessary.

Example: To put lines 10 through 12 between lines 2 and 3,

t~*, M 10+* .. 2+

+2++1, M 9++1 .• 3+

Or we could type

In either case, if we then typed a " command without an argument,

we would see the'text that had been lines 10 through 12, but in

the new location. + wi I I now be at the end of these I ines, but

if we want it at the beginning, al I we have to do is type +

without an argument (or type +<).

As with the Enter command, Move behaves somewhat differently

when used to edit object code. If + is outside the source area,

then the addressed interval is simply copied to +, overwriting

what is already there. This happens no matter where the addressed

interval is, and the original interval remains unchanged (unless +

was within it). For example, to move the symbol table up 100

bytes: +<T>+100, M<T>

If you didn't want ATE to know about the new copy of the symbol

table, you would use the Copy command.

C "Copy." This is a seldom-used command. It copies the addressed

interval to +, overwriting what is already there, and updates t
past the copied material. There are two differences between

this and the Move command. (A) Copy is insensitive to whether

or not + lies within source code. Even if it does, Copy simply

overwrites what is there; it never expands and inserts. So you

wi I I probably not want to Copy anything into a source fi Ie.

(S) Copy "hides" the new location of the copied material from

ATE, i.e., none of ATE's internal pointers are updated. One

· 24

example of when you might find this useful: you might want to

create a duplicate copy of (say) the current fi Ie somewhere else

in memory, without having that copy actually become the current

f i Ie.

Printing Commands

" "Quote." Sends the addressed characters to the terminal, inserting

a I ine feed after each carriage return. For example

>"{THE) •• {NEW)

THE TEXT

ENTERING NEW

If the terminal prints garbage in response to this command, you have

probably given it an argument outside your source fi les. In that

case, you probably wanted to have the characters expressed numerically.

Use the # command for this.

"Quote one line." Takes no argument. This quotes the line

containing the entry pointer, showing the position of this pointer

by a + character. The t appears just before the position to which

it is addressed, since this is where Entered or Moved text wi I I

appear. For instance:

>t (E T), " E (ES), ,

WRITING THtE TEXT

WRITING THEStE TEXT

Using' does not affect the default argument.

P "Print." This is mainly used with assembly language programs. It

prints the I ines containing the addressed text in assembly language

format. Each line is given a line number (which is not part of the

text). The first line of the fi Ie is 1, the second is 2, etc.

Here is an example that shows the difference between" and P.

25

>" (IN), • (MASK)

IN STATUS GET THE STATUS BYTE

ANI MASK

>P

>"

79

80

I NCHR IN STATUS

AN I MASK

IN STATUS GET THE STATUS BYTE

ANI MASK

GET THE STATUS BYTE

SCREEN OFF IRRELEVANT BITS

Note that P only prints entire lines, even if the argument

does not come up to line boundaries. But this does not change

the default argument--it remains exactly as typed. (No

implicit * operation is performed.)

P can be used to get the I ine number of a non-assembly

language line, even though the output wi I I be strange. (The

I isting can be control-A'ed.)

B "Base." Sets the current operating base to the given value.

This does not produce any output itself, but subsequently al I

numerical output wi I I be qenerated in this base. The only

effect on input is that numerically-expressed bytes delimited

by #'s in command arguments must be expressed in this base.

The base may not be less than 5. Typing B8 gives you

octal, BID gives decimal, and B16 gives hex.

"Quofe numbers." This is simi lar to the "command, except that

the characters are expressed numerically in ~he current operating

base. The beginning address of the interval is printed,

fol lowed by up to b (=base) bytes, and then fol lowed if necessary

by more such lines. (Th i s comman dis often ca I I ed "Dump" i n

other systems.)

Machine language example: (This expands the example

given with the Ki I I command.> Suppose we have a version of Basic

whose input routine we want to modify. From its documentation,

we know that it comes set up for teletype 10 using Processor

26

Technology standard ports (0 for status, 1 for data). We can load

Basic at (say) 3000H, and then look for the machine language code

for IN 0, ANI __ , fol lowed by IN 1.

># 3000H .• 5000H/#DB 00 E6# .. #DB 01#

31DA DB 00 E6 80 CA DA 01 DB 01

>K, E#C3 #1 23#, #

31DA C3 El 23 00 00 00 00 00 00

After looking at the code and deciding that it was what we wanted,

we zeroed it, entered a cal I to our new input routine, and then

looked at it again to confirm that the change was made correctly.

? "Where?" Prints the beginning and ending addresses of the argument.

For example, ?. wi I I give the addresses of the current fi Ie.

(Note: this works unless the fi Ie is empty. .. is a matching

operator, and it wi I I fai I if the reference string is empty. On the

other hand, <F> is an operand that returns values without matching,

so ?<F> wi I I always work.)

Memory Fi Ie Commands

ATE keeps its text fi les adjacent in one area of memory,

cal led the "source area," denoted <S>. The left address of <S>

is ordinari Iy fixed (although it may be changed by M<S> or by an

o command), whi Ie the right address varies dynamically in response

to enter and ki I I commands. <S> consists of a zero byte, fol lowed

by the first fi Ie, fol lowed by another zero byte, fol lowed by the

second fi Ie, etc., ending with a zero byte. There is no I imit on

the number of fi les. No separate fi Ie directory is maintained;

fi les can be accessed (via the F command) by addressing any of

their contents. By convention, fi les can be "named" by entering a

uniquely identifying name as the first I ine. (The name should be

preceded by a * if the fi Ie is gqing to be assembled.) The F com

mand can then address th i s name. No check is made to keep <S> from

overflowing memory, but the user can periodically check its size

by typing ?<S> •

27

F "Fi Ie." This finds the fi Ie containing the given argument, makes

it current, and sets t to the end of the fi Ie. Unlike any

command covered so far, the initial reference string of this

command is <S>, not <F>. So for instance, F(WRITING) wi I I find

the first occurrence of WRITING within the source area, and then

make the fi Ie that contains this current.

If for some reason you have memory fi les isolated from the

source area (by use of the 0 command, perhaps, or by loading from

a peripheral not recognized by ATE), you can access them by

giving an absolute address with the F command. Suppose you have

loaded a fi Ie from a disk at address 4000H. As long as the

limiting zeros are in place, you can type F 4000H. ATE wi I I

look forwards and backwards for the I imiting zeros. If the given

address contains a zero, ATE assumes that it is the beginning of

the f i Ie.

After finding the fi Ie boundaries, ATE checks the

relationship of these boundaries to the source area. If the

fi Ie is within the source area, it is made current, t is set to

the end, and nothing else happens. But in addition, if one

edge of the fi Ie is within <S> whi Ie the other isn't, then <S>

is expanded to include the new fi Ie. If the new fi Ie is

entirely outside <S> , then ATE forgets the old source area

(leaving it intact) and adopts the new fi Ie as the new source

area. The old source area can be recovered later by repeated

use of the F command, or with the 0 command.

N "New fi Ie." Opens a new, empty fi Ie at the top of the source

area and makes it current, ready for entry. Specifically, a

zero is written into memory just beyond the last zero in the

source area. <S> is expanded to include this new zero, and

the current fi Ie pointers and the entry pointer are set to the

empty fi Ie between these two zeroes. Note that N does not take

an argument.

28

o "Originate new source area." Sets up a new source area at the given

addressees). If only one address is given, as in 0 3000H, then two

consecutive zeros are written into memory starting at this address

(at 3000H and 3001H, for example). If two addresses are given, as

in 0 3000H •• 360AH, then zeros are written at these addresses. In

either case, the last (possibly empty) fi Ie of this new source area

is made current, and t is set to its end.

Programming commands

ATE can create (and edit) source fi les which are actually

strings of ATE commands. Later, these commands can be executed

by typing a 0 or > command addressed to the desired point.

o "Do." This is analagous to an assembly language CALL or a Basic

GOSUB. ATE remembers the location of this command, computes the

argument, and then starts executing commands at this address (the

beginning address of the argument). In computing the argument,

the initial reference string is <S> ATE wi I I continue executing

commands unti I it encounters an end-of-fi Ie or one of the Quit

commands, at which point it wi II return to the command following

the Do. If there is no command fol lo~ing the Do and no previous

Do to return to, or if an error is encountered, control returns

to the terminal. See the end of this section for an example of

an ATE program using Do's.

Do's may be nested. To see how deeply they can be nested,

you could type the fol lowing:

N, E(X=X+l, O(X=X+l», X=O, O(X=X+l)

This line creates and then executes an ATE program. The trouble

with this program is that it never lets ATE return from the Do.

It keeps executing Do's unti I ATE runs out of storage for return

addresses. At that point, ATE issues an error sign (a ?) and returns

con tro I to the term ina I. (See "Error Hand ling" for more i nformat i on.)

You could then type #X or ?X to see how many Do's had been stored.

(Note: the return address storage area is also shared by the Repeat

command.)

29

Notice that when ATE sees D(X=X+l), it does not immediately

increment X. Instead, it stores the return address, searches the

source area for the first occurrence of the string X=X+l, and

then begins executing commands at that point.

Rather than address commands directly, as in D(X=X+l), we

usually address labels, as in D(*COUNT). See the * command below.

For maximum brevity, we can use a variable to hold the absolute

address of the desired command. We could say Y=(X=X+l) or

Y=(*COUNT), and later type DY. This is useful for often-repeated

edit macros (see the example at the end of this section). But

then we must be careful not to change the absolute location of

the command by some edit operation. Placing it at the bottom

of the source area (or in an isolated source area) wi I I ensure

against this.

Caution: D(STRING) contains an occurrence of STRING. If

you want to address an occurrence of STRING at some later point

in the program, you could use 0 2(STRING).

"Goto." Causes ATE to execute commands beginning at the given

address. Like Do, > may be used within a program, or it may be

used to start a program from the terminal. Unlike Do, no return

address is stored, so ATE wi I I never automatically return to the

succeeding command. As with 0, the initial reference string is

<S>. (The only ATE commands for which this is true are F, 0,

and> Note that the initial reference string never includes

the command line being typed.) Here is a simple example. Note

that the prompt character is not a Goto command.

>N, E("(HELP, IJ'M TRAPPED IN AN INFINITE LOOP),>("))., >(")

This command line creates and executes a program that quotes

HELP, I '·M TRAPPED IN AN INFINITE LOOP indefinitely unti I

control-A'ed.

30

R "Repeat." May be used ina program or in the command line. If

used in a program, the rest of the fi Ie up to an end-of-fi Ie zero

byte, or up to a Quit command (see below) is repeated the given

number of times. (If this value is 0, the fol lowing commands are

not executed.) When the repetition is exhausted, a return is

performed (to an outer loop or to a Do, whichever is more recent,

or to the terminal). For example:

*

N, E(S=O,N=O,R 100,N=N+l,S=S+N), D(S=O), #S

This creates and executes a program that finds the sum of the

integers 1 to 100.

When R is used directly in a command line, then the rest of

that I ine wi I I be repeated the given number of times before con

trol returns to the terminal (unless an error or a control-A

forces an early return). For instance, R999,K(SOON),E(IMMEDIATELY)

wi I I replace al I occurrences of SOON with IMMEDIATELY and then

return with an error sign? when it can find no more.

toeeOOH, RI024, E() wi I I clear the screen of your VDM (i .e.,

it wi I I fi I I lK of memory, beginning at OeeOOH, with blanks).

"Label." This use of * is simi lar to its use in assembly language-

it tel Is the system to ignore the fol lowing characters. (This has

no relation to *'s use as a I ine operator in command arguments.)

When ATE encounters a * as a command, it skips ahead to the next

command, ignoring al I intervening characters. Thus these inter

vening characters can be a mneumonic label for that point in the

program. For example, we could create a program as fol lows:

>N, E(*BLANKS, K(), E(), >(*BLANKS»

Later, whenever we wanted to eliminate double blanks from the

current fi Ie, we could type

> > (*BLANKS)

We could use a shorter mneumonic, of course. This program has the

defect that it wi I I always end with an error, when no more double

blanks can be found. So it cannot be cal led by a Do command with

any hope of returning. For this we need the Quit commands.

Specifically, * causes ATE to skip ahead to the next blank,

31

comma, carriage return, or end-of-fi Ie (zero), whichever comes

first.

Error Handl ing: Ordinari Iy, ~ error in a command argument causes ATE

to stop an execution, issue an error sign ?, and return control

to the terminal. To see what caused the error, you could type

>" ?-5 •• ?

This wi I I quote 6 characters from the program, ending with the one

that ATE was looking at when it gave up. (Of course, any other

number of characters could be used.) For instance, suppose we

executed *BLANKS given above.

> >(*BLANKS)

?

>" ?-5 .• ?

K() ,

This shows that ATE was unable to evaluate the argument to the K

command, i.e., it could not find any more adjacent blanks in the

current fi Ie.

OF "Ouit on Fai lure." In general, both quit commands (OF and OS)

mean "quit this sUbroutine." When the argument to OF is evaluated,

a match fai lure or a comparison fai lure wi I I not abort the

program. Instead, it wi I I cause a return to the latest Do or to

the terminal. In performing this return, one Repeat' loop wi II

be broken, if present. I f Repeats are nested, the outer loops

wi I I not be broken.

Examples: We can use this command to repair the defect

in our program *BLANKS mentioned above (with the * command).

*BLANKS, OF(), K>, >(*BLANKS)

Now this routine can be cal led with a Do. As long as there are

adjacent blanks in the current fi Ie, this wi I I Ki I lone of them

and loop. When it cannot find any more adjacent blanks, the OF

wi I I force a return instead of an error.

Since OF wi I I break a repeat loop, we could also write

*BLANKS this way: *BLANKS, R9999, OF(), K>

32

In addition to match fai lure, OF wi I I force a return instead

of an error on a comparison fai lure. Values connected by •.• must

be in non-decreasing order. SO OF X •• Y wi I I succeed and continue

if X~Y, and wi I I fai I and return if X>Y. More than two values at

a time may be checked, as in OF X •• Y •• Z. OF X •• Y •• X wi I I return

if Xt-Y.

QS "Quit on Success." This is the same as OF above, except that it

forces a return if its argument is successfully computed. If a

match fai lure or comparison fai lure occurs in the argument, then

execution continues. If any other kind of error occurs in the

argument, the program is aborted and control returns to the terminal.

For an example, see the end of the section on cassette commands.

= "Equals." This is the only command that doesn't precede its

arguments. It is used in the conventional manner to set the value

of a variable, e.g., X=X+1, POINTER=VALUE, S1=-1, etc. Blanks

aroun~ the = are optional. Variables can be any length, must

start with a letter, and may contain only upper case letters and

digits. Values are 16 bit unsigned integers. (So Sl=-l is

equivalent to Sl=OFFFFH) Any ATE argument (including no argument)

may occur to the right of the = The variable on the left is

assigned the beginning address of the (default) argument. F=2(X=X+1)

assigns the address of the 2nd occurrence of the string X=X+I to

the variable F. X=, Y=> saves the current default argument in X and

Y (although it creates a new default argument).

Variables are kept in a symbol table shared with the assembler.

This al lows you to set external references prior to an assembly, and

to address object code symbolically after an assembly. See the Z

commands for more information.

X "Execute." This is used to cal I machine language subroutines (as

opposed to 0 which cal Is ATE subroutines). The machine language

routine may end with a RET (as long as the stack has not been

lost) in which case X can be part of any ATE command line or program

33

just like any other ATE command. You have between 20 and 40

stack levels (40 to 80 bytes) depending on how deeply nested

the Do's and Repeats are when the X is encountered. If your

routine loses the stack, it should end with a jump to address
SYSI (see appendix). This returns control to the terminal

Ignoring any commands following the X.

Your routine can evaluate an ATE argument:

X ROUTINE X •• Y, OTHER COMMANDS

Leave a space between the address of your routine (which you can

set with an =, e.g., ROUTINE=3456H) and the arg~ment you want to

evaluate. X •• Y can be any ATE argument. Your routine can CALL

address CVALS (see the appendix). On return, HL and DE wi I I

contain the beginning and ending values of the argument.

Additional arguments can be evaluated by repeated 'cal Is to CVALS,

as long as the additional arguments are separated in the command

line by blanks, not commas or carriage returns.

User machine language routines can also be accessed by

entering a name and address for the routine into the user

command table (explained later).

Example of a useful ATE program

This is a program (or "edit macro") to "clean up" an

English language fi Ie after extensive editing. Unless you are

quite careful when editing such a fi Ie, you wi I I probably end

up with lots of adjacent blanks and very short or long lines

that wi I I spoi I·the looks of the fi Ie when it is printed out.

After creating the f.ollowing program, typing O(*CLEAN) wi II

eliminate multiple blanks and fix the carriage returns so that

each line is ~ LENGTH long. (Don't forget to set LENGTH first,

e.g., LENGTH=72.)

*CLEAN uses three subroutines: *CRS replaces al I

carriage returns with blanks. *BLS eliminates multiple blanks.

*LNS fixes the line length.

34

*CRS, OF+, K, E(), >

*BLS, OF() , K>, >(*BLS)

*LNS, OF t .. LENGTH@, K I-ie) , E+, > (*LNS)

*CLEAN, D(*CRS), D(*BLS), t .. , D(*LNS)

This program can easi Iy be extended to detect special symbols and

replace them with new paragraphs (a carriage return and several

spaces), or new pages (several carriage returns, depending on the

number of cr's since the last new page).

Introduction to the ATE assembler

If you already have some experience with assembly language programming,

you should skip ahead and read the Assembler Summary. If any of the summary

is unclear to you, then come back and read this introduction.

If you haven't had any experience with 8080 machine language (in

particular, if you haven't learned the instruction mneumonics such as

CALL and XCHG and what they do), then you should read a text on 8080

machine language before continuing •.

This manual assumes that you know at least enough about 8080

machine language programming to code the fol lowing subroutine:

If you

Take the byte in the memory location addressed by the HL

register pair, add it to the byte addressed by the DE

register pair, and store the result at the address in the BC

reg i ster pa i r.

were doi ng a II

keys or switches, you

your programming by hand through the front panel

might first write down the mneumonics for the

look up their values in a table, and key these desired instructions,

values into memory:

Mneumonics

LDAX D

ADD M

STAX B

RET

Hex

1A

86

02

C9

Octal

032

206

002

311

35

For this little subroutine, there is not much work involved. But

whe~ you try to write larger programs this way, you begin to wish that

your computer could do some of the busy-work for you. The first step-

figuring out the instructions that wi I I do thejob--is not always busy

work. Sometimes this may involve ingenuity. But the second and third

steps are easi Iy automated. Looking up mneumonics in tables and putting

the values where they belong in memory are the major tasks of an assembler.

Example I. Power up ATE and type the fol lowing. (The> sign at the

beginning of a line is a prompt issued by ATE when it is waiting for

a command. No prompt is issued whi Ie you are entering text. Notice

that we put each mneumonic on a separate I ine, and precede each one

with a blank. The reason for this wi I I be covered shortly.)

>E(LDAX 0

ADD M You type this.
STAX 0

RET)

>G

0000 1A 1 LOA X 0
0001 86 2 ADD M ATE responds with this.
0002 02 3 STAX B
0003 C9 4 RET

Here is what we have just done: We Entered the mneumonics into a fi Ie

in the computer's memory, and then we told ATE to Generate a machine

language program from these mneumonics. ATE stored the resulting·

machine instructions in memory starting at address 0, and

printed out the hex code for each instruction along with the mneumonic

that produced it. (It also numbered these mneumonics for later

reference.) Of course, we could have told ATE to use some other

address than 0 --this wi I I be covered later. And we could have told

ATE to use octal or decimal, rather than hex, by typing B8 or B10

(see the B command).

36

In order to use the subroutine that we have just written, we of

course need to call it. We don't want to write CALL ·0 each t'ime,

however. We want to give the subroutine a name and write the fol lowing:

CALL MAOO

MAOO LOAX 0

ADD M

STAX 8

RET

This way, we don't have to know the address of the subroutine whi Ie we

are writing the program--we can let ATE figure this out later.

Example 2. Type the fol lowing. (Notice that we are using some of the

text editing features of ATE. We wi I I explain them briefly in the notes

below. They are described fully elsewhere in this manual.)

>t.

>E(CALL MADD

*
*
MAOD)

>".
CALL MADD

*
*
MAOD LDAX 0

ADD M
STAX 8

RET

>P.

1

2 *

notes

1

2

3

CALL MAOD 4

3 *
4

5

6

7

MADD LDAX D

ADD M

STAX B

RET

37

Notes (1) t stands for the "entry pointer", i.e., the position in the

current fi Ie at which new text wi II be entered. The dot "." as it is

used here stands for the current fi Ie. t. tel Is ATE to posit-ion the

entry pointer at the beginning of the current fi Ie. Note that the

current fi Ie already contains the mneumonics from example 1.

(2) An * at the beginning of a line (i.e., not preceded by a

space) has a special meaning to the ATE assembler. We can put

anything we want on the rest of the line (including nothing), and

the assembler wi I I ignore the whole line. This lets us comment our

programs and "space out" the instruction mneuonics.

(3) ". tel Is ATE to quote the current fi Ie. This shows us the

fi Ie as it resides in memory. Notice that the instruction mneumonics

are preceded by blanks, but the *'s and the subroutine label MADD are

not preceded by blanks.

(4) P. tel Is ATE to print the current fi Ie. Spaces and line

numbers are added to the printout to make the assembly language easier

to read.

Example 3. Now let's assemble this program.

>G

0004 CO 00 00 A 1 CALL MAOO

2 *
3 *

0007 lA 4 MAOO LOAX 0
0008, 86 5 ADD M
0009 02 6 STAX B
DOD A C9 7 RET

38

The "A" in the first line of the program listing is an error message.

It stands for argument error: ATE did not know the value of the

argument to the CALL instruction, i.e., it did not know the address

of the MADD subroutine.

The problem is this: the assembler looks at the program one

line at a time, beginning with the first line. When ATE saw CALL

MADD, it had not yet come to the subroutine labeled MADD, so it

did not know what address to use with the CALL instruction. So it

simply used an address of 0 and flagged an error.

This is often called the "forward reference" problem. One way

to solve it would be to have ATE look forward through the program,

counting instruction bytes unti I it comes to MADD. Then it could

go back to the CALL MADD instruction with the correct address. But

the trouble with this is that the program might be on tape (if it

were too large for memory), and moving tape back and forth is very

time consuming.

To get around this, we would like ATE to look over the entire

program once, before it begins to print anything. This way it can

figure out the address of the subroutine MADD (and any other

subroutine) before it actually needs it. It can store the label

MADD together with the proper address in a symbol table. Then

later when it sees CALL MADD, it can look in this table to find

the appropriate address.

What this al I boi Is down to is that the assembler can make two

passes over our program. On pass 1, it reads through the program

and constructs a symbol table, i.e., a list of labels and their

corresponding machine language addresses. Then on pass 2~ it rereads

the program and actually generates the machine language instructions

and stores them in memory.

The command A tel Is ATE to do pass I. (It stands for Assemble

the symbol table.) It is not necessary if the program has no labels

(as in example I) or if the symbol table is already in memory

(possibly restored from tape). The command G (for Generate machine
~

language) tel Is ATE to do pass 2. We can command ATE to do both

passes by typing A,G. (Most assembly language systems don't let

39

you command the two passes separately. They use a single command such as

ASSM where ATE would use A,G. But there are real advantages to the.A,G

approach, as we wi I I see.)

Example 4. The current fi Ie sti I I contains the same program as in

example 3. Suppose we now type

>Z,A

The first command Z (Zero the symbol table) simply makes sure that we are

starting out with a clean slate. It removes any old symbols that might

be left over from a previous programming session. (Sometimes we want to

save these symbols. More about this later.) The A command then does

pass lover our program and puts MADD (and any other labels) into the

symbol table. (Notice that this does not produce any printout.) To

see that ATE does know the address of MADD now, we can type

>?MADD
OOOE OOOE

(To see why ATE responds with two values, try typing ?MADD .. MADO+9)

Now we can do pass 2 over our program.

>G

OOOB CO OE 00

OOOE IA

GOOF 86"

0010 02

0011 09

1

2

3

4

5

6

7

CALL MADO

*
*
MADO LDAX 0

ADD M

STAX B

RET

This time there was no error. Note: we could have typed Z,A,G al I

on one line to accomplish the same thing.

40

How do we tel I ATE where in memory to store the assembled machine

language? Actually, there are two problems here. (a) Where in memory

wi I I the machine language program be located when it is executing? and

(b) Should the program be temporari Iy stored somewhere else first? For

instance, we might want to assemble a program that wi I I begin executing

at address 1000H. But ATE itself begins at 1000H, so we would want the

assembler to store the new machine language somewhere out of the way unti I

we are ready to use it.

The symbol & stands for the "assembly program counter" (remember

that they both begin with an "a"). This holds the execution address of

the instructions being assembled. The symbol $ stands for the "storage

pointer" (remember that they both begin with an "s"). This holds the

address where the assembled instructions are being stored. (In many

assembly language systems, $ stands for both; the two uses cannot be

separated.) For example, we can use & and $ as commands:

>&lOOOH,$ODOOH

This tel Is ATE to set the assembly program co~nter to.lOOOH, and set the

storage pointer to 0000. Now, the next program to be assembled wi I I be

stored at 0000. But it wi I I have to be loaded at address 1000 in order to

execute properly. (In more detai I: the next A command wi I I assemble

the symbol table assuming that the program begins at address 1000. Thus

al I CALL and JMP addresses wi I I be based on this starting addres~.

The next G command wi I I use the symbol table and generate machine language,

but wi I I store this machine language beginning at 0000.)

Example 5. Let's write a new program.

>N

>E(FIRST LXI H,1234H

SECOND MVI A,l

JMP FI RST

JMP SECOND THIS IS A SILLY PROGRAM

)

>&lOOOH,$ODOOH,Z,A,G

41

1000 21 34 12 1 FI RST LXI H,1234F1

1003 3E 01 2 SECOND MVI A,l

1005 C3 00 10 3 JMP FIRST

1008 C3 03 10 4 JMP SECOND THIS IS A SILLY PROGRAM

Notice that the assembler al lows us to fi I lout a line with comments.

The listing shows the machine code at the addresses for which it is

assembled, not where it is stored. We can check this:

>'CDOOH .. ODOAH (The number sign # command is cal led DUMP on most systems~)

0000 21 34 12 3E 01 C3 00 10 C3 03 10

>#1000H .. 100AH

0000 C3 5F 1D 31 C4 OE CO 51 14 CD C3

We can see that the assembled machine language was stored at 0000, not

at 1000 which sti I I holds the beginning of ATE.

There is another way to tel I ATE where to begin the assembly

or where to store the object code. (Note: object code = assembled

machine language.) We can put instructions to this effect right in

our assembly language program:

Example 6

>t.

>E (AORG 1000H

SORG OOOOH

)

>Z,A,G,

: 000

1000 0000

1000 21 34 12
1003 3E 01
1005 C3 00 10
1008 C3 03 10

1 AORG 0

2 SORG ODOOH

3 FIRST LXI H,1234H
4 SECOND MVI A,l
5 JMP FIRST

6 JMP SECOND THIS IS A SILLY PROGRAM

42

AORG (Assembly ORiGin) tel Is ATE to assign the fol lowing value to the

assembly program counter. SORG (Storage ORiGin) tel Is ATE to assign the

fol lowing value to the storage pointer. These two assembly language

instructions are cal led pseudo operations, since they are not actual CPU

operations.

Another pseudo-op, ORG, affects both & and $. (It is included

mainly for compatabi I ity with other systems, which don't have AORG and

SORG.) Using ORG 2000H in a program wi I I increment & to 2000H, and then

increment $ by the ~ amount (not necessari Iy to 2000H). That is, after

the assembler sees ORG 2000H, then & = 2000H, and $ - $ Id = & new new 0 new
&old. One reason for this is to al low you to use ORG to reserve

storage space in the middle of your machine language program. For

instance, ORG &+100 would reserve 100 bytes.

An easier way to reserve memory space is to use the OS (Define

Storage) pseudo-oPe OS 100 wi I I reserve 100 bytes. OS, however, does

not put any information into the reserved space. To do this, use DB

(Define Byte), or OW (Define Word).

Example 7

>N,E(LHLD ADORES

ADORES OW SECOND,1234H

DB 12H 34H 'A' 'B' , , , ,
)

>&ODOOH,$,A,G,

0000 2A 03 10 1

0003 03 10 34 12

0007 12 34 41 42

2

3

ADORES OW

DB

SECOND, 1234H

12H,34H,'A' ,'B'

There are several things to notice in this example:

(a) In the command line &OOOOH,$,A,G, we didn't give any argument after

the $ command. As always, whenever a command argument is missing, ATE

uses the argument from the last command. We could have typed &ODOOH,$O.DOOH,

A,G, but that would have been redundant.

43

(b) We didn't Zero the symbol table before we gave the A command, so the

symbols FIRST and SECOND (from the last example) are left in the table,

along with their values of 1000 and 1003. So when the assembler sees OW

SECOND, it assembles that correctly.

(c) OW reverses the natural order of a two-byte word, as required by

the 8080.

(d) DB can be used to put ASCII characters into the program, as shown

above, but an easier way is to use the ASC pseudo-op:

Example 8

>N,E(ASC HELLO

ASC- BY-BY
)

>G

OOOB 48 45 4C 4C 4F 1

0010 42 59 20 42 59 2

ASC HELLO

ASC- BY-BY

Note that to insert a space (blank) character in the ASCII string, we

signal that a dash (or any other non-alphanumeric character) wi I I stand

for a space by putting the dash right after the ASC.

Example 9. Another important pseudo-op is EQU.

>K.

>E(LXI H,ADORES

ADORES EQU 1234H

) ,Z,A,G,

0015 21 34 12

1234

1

2

LXI

ADORES EQU

H,ADORES

1234H

Notice that in this example, we ki I led the contents of the current

fi Ie and put new text into it, rather than leaving the old fi Ie in

memory and starting a new one as we d~d before.

44

The EQU pseudo-op puts the statement label (such as ADORES above) into

the symbol table, and gives it the stated value. We can use the name ADORES

many times in the program, and if we ever want to change its value, we need

only change the EQU statement. (However, we ca~not change the value of

ADORES from one thing to another within the same program, i.e., we can have

at most one EQU statement for each label.)

Example 10. The last pseudo-op is END.

>E(END

THE REST OF THE FILE CAN HAVE ANYTHING IN IT. THE ASSEMBLER WILL NOT GO

BEYOND AN "END" PSUEDO-OP.)

>".
LXI H,ADDRES

ADORES EQU 1234H

END

THE REST OF THE FILE CAN HAVE ANYTHING IN IT. THE ASSEMBLER WILL NOT GO

BEYOND AN "END" PSUEOD-OP.

>Z,A,G

0018

0018

21 34 12

1234

1

2

3

LXI

ADORES EQU

END

Assembly language format rules:

H,ADDRES

1234H

The assembly language program (or "source code") is a text fi Ie

containing lines, or "statements". Each I ine looks I ike this:

label opcode argument comment

or

* comment

(I) Lines may not begin with a line number, as they must in some systems.

However, a line number wi I I be supplied with the program listing.

(2) If the first character (not the first non-blank character) is an *,

then the rest of the line is taken to be a comment.

45

(3) The label is optional. If the line does begin with a label, then the

first character in the line must be the first I etter of the I abe I. If

the line has no label, then the first character must be a blank. The

label must begin with a letter, and can contain only upper case letters

and digits.

(4) The opcode can be either a machine instruction or a pseudo-oPe It

must be preceded by a blank.

(5) An argument is necessary for some opcodes. It must be preceded by

a blank, and it cannot contain blanks except within quotes, such as MVI A,' , •

Here, MVI is the opcode and A,' , is the argument.

(6) Anything after the argument is assumed to be a comment.

(7) The number of blanks (as long as there is at least one) separating

the label, opcode, argument, and comment have no effect on the format

of the printout. This format may be changed by changing the tab stops

(see Initialization Data).

The assembler stops when it reaches an end-of-fi Ie marker or an END

pseudo-oPe (Any byte that is numerically less than a carriage return

wi I I be treated as an end-of-fi Ie marker.)

Assembly error messages:

A Argument error. This can be caused by an undefined symbol (i .e.,

a name not in the symbol table, such as MADD in example 3) or by bad

syntax. Arguments are generally not computed during pass 1, so

this error message wi I I be printed only during pass 2. Exception:
arguments of pseudo-ops are computed during pass 1, and may cause
this error message.

M Missing label. This occurs only if you use an EQU pseudo-op

without a label. This error message, along with the offending

line, wi I I be printed during pass 1 and pass 2.

D Doubly-defined label. The label is already in the symbol

table, and you are attempting to change its value. The old

value is retained. This can happen if you have just assembled

46

a program, and you are trying to re-assemble it without first zeroing

the symbol table. Pass 1 'and 2.

L Label error--bad character in label. This can happen only if the

first character in the I ine is neither alphabetic, nor blank, nor

* (In particular, it can happen if the line begins with a number.)

The assembler gives up on the offending I ine, and 3 NOPS (zero-bytes)

are generated in place of whatever machine instruction was intended.

Pass 1 and 2.

o Opcode error. The opcode is not any recognizable operation or

pseudo-operation. 3 NOPS (zero-bytes) are generated. Pass 1 and 2.

The fol lowing summary of the ATE assembler contains some information

not covered in this introduction.

ATE Assembler summary

ATE contains an assembler based on the Processor Technology

assembly language format. However, lines must not begin with a line

number (although one wi I I be suppl ied on the output I isting). Old line

numbers can be removed with a simple edit macro. Each line must begin

with a label, if it has one, or else with a blank. Labels can be any

length; the assembler wi I I recognize al I characters. But to keep the

I isting neat, labels should be ~ 6 characters. The label, opcode,

argument, and comment must be separated by blanks, and the argument

cannot contain blanks except within literals.

AI I instruction opcodes are standard. The pseudo-ops are:

ORG Sets the assembly program counter (&) to the given value, and

increments the code storage pointer ($) by a like amount.

& -& Id=$ -$ Id· The ORG statement may be labeled, in new 0 new 0

which case the lable wi I I have the new & as its value.

47

AORG "Address Origin." Sets & to the given value without changing $.

If this statement is labeled, the label receives the new & value.

SORG "Storage Origin." Sets $ to the given value without changing &.
A label receives the current value of &, not $.

DB "Define Byte." Standard, except that multiple bytes may be

defined, separated by commas.

DW "Define Word." Standard, except that multiple words may be

defined, separated by commas.

DS "Define storage." Standard.

ASC "ASCII." Not standard. The ASCII string must be delimited by

blanks (but may end with a carriage return). To embed blanks

in the ASCII string:

LABEL ASC- HELLO-WORLD- COMMENT

Any non-alphanumeric character may be used in place of the -.

Finally, the character t has a special significance within

the ASCII string. It sets bit 7 of the preceding character.

This is useful in constructing tables. See the section on

The User Command Table for an example.

EQU "Equals." Standard. May occur at most once for each label.

END Standa rd.

Assembly errors: A--Argument error. Zero is used in place of the bad

argument. Pass 2 only.

Assembly Commands

M--Missing lab Ie. Pass 1 and 2.

D--Doubly-defined label. The old value of the label

is retained. Pass 1 and 2.

L--Label error, bad character. 3 NOPS (zeros) are

generated. Pass 1 and 2.

O--Opcode error. 3 NOPS are generated. Pass 1 and 2.

& Set the assembly program counter (which can be referenced by an

& character in opcode arguments) to the given address. For

example, & lOOOH. This command is superceded by an AORG or ORG

statement in the source code.

48

$ Set the code storage pointer (which can be referenced by a $

character in opcode arguments) to the given address. For example,

. $ ODOOOH. This command is superceded by a SORG statement in the

source code.

A "Assemble the symbol table." This performs pass lover the current

fi Ie. The two passes of the assembler can be commanded separately

in ATE. This al lows you to treat many different fi les as one

program. You can have a library of subroutines in source code

on tape, for example, and incorporate selected ones into a new

program by doing pass lover the desired fi les and then going back

and doing pass 2 over the same fi les. The total amount of source

code can be larger than memory, and there is no need to physically

cocatenate al I the fi les before assembling them. Of course, both

passes can be commanded together by typing A,G.

Note that A does not take an argument. The assembly program

counter (&) and the code storage pointer ($) can be set before the

first pass over the first fi Ie either by the & and $ commands above

(e.g., &1000H,$ sets them both to 1000H), or by AORG, SORG, or ORG

statements in the source code. $ does not need to be set for pass

1 unless it is referenced in the program.

If an error is detected, an error code (M,D,L, or 0 for pass

1) is printed, fol lowed by the offending I ine. Otherwise, pass 1

produces no listing.

G "Generate object code." This performs pass 2 over the current fi Ie,

storing object code in memory and producing a ful I I isting. If &

and $ were set previously, they do not need to be reset for pass 2-

ATE does this automatically. The object code listing is produced

in the current operating base (see the B command).

Example: (This uses the tape commands ldentify and Load,

which wi I I be covered later.) Suppose we have 11 consecutive source

fi les on tape, which together would be too large to fit in memory.

But we do have room to fit them in one at a time, and in addition

we have room to store the 4K of object code they wi I I produce.

49

(We could also put the code out onto tape--an example wi I I be

given later.) We can assemble these fi les as one program by

typing the fol lowing command lines:

>&0, $ODOOOH, RII, I, L, A, K.. Then we rewind the tape and type

> RII , I , L, G, K.. We ki I I each fi Ie after we are

through with it to make room

for the next one.

H "Hold the presses." This is the same as G except that it

suppresses the listing of everything except the error lines.

Note that even without a listing we can look at and edit the

object code. Suppose that we want to look at the code for a

routine cal led INIT, which ends just before a line labeled READ.

We can type # INIT .• READ-l, since these symbols are now in the

table. If we had assembled our code at one address and stored

it at another, we could type

F=$-&, # INIT+F .. READ-l+F

Z "Zero the symbol table." Initializes a new symbol table

containing only the 8080 register symbols and their values.

(A=7,B=0,C=1,D=2,E=3,H=4,L=5,M~6,SP=6,PSW=6). After initial i

zation, these symbols have no special status; they can be

removed (using Zsymbol) or redefined (using = just I ike any

other symbol. Note: if the table was Moved (as described under

the Move command) then Z wi I I initialize the new table at the

new address.

Zsymbol Zero the given symbol. This removes the symbol from the

table and compacts the table. For instance, Z INIT removes al I

traces of INIT (and its value) from the table and compacts the

table, freeing 6 bytes of table space.

Z>symbol Zero after the given symbol. Removes al I symbols from the

table that were created chronologically after the given symbol.

Before assembl ing a program, you can use this to remove confl icting

symbols from the table (from a former assembly of the same

50

program, say) without destroying previously created variables that

you want to save. There is usually no need to completely Zero the

table. For instance, suppose you have saved some names for your

often-used machine language routines (instead of putting these in

the user command table). If the last such name to be saved was DOS,

they typing Z>DOS before an assembly wi I I preserve these names whi Ie

giving you an otherwise clean slate.

Tape Handling Commands

These commands are fairly simple--they were designed with the

realities of audio cassette recording in mind. But in combination

with ATE's multi-command I ine and programming capabi lity, they are

quite powerful. See the examples at the end of this section.

l "Identify." Identifies the next record on the tape (i.e., reads

the record header) and prints information at the terminal. For

example, if after loading ATE from cassette, you rewind the

cassette to the lead-in tone:

>1

1000 IFFF ATE OBJECT CODE COPYRIGHT 4/15/77 G.FITTS

This gives the addresses to which the record wi I I load (unless you

specify otherwise), and the record title. The tape is now stopped

between the header and the record body, waiting for an L, J, or V

command.

Note: Every record on the tape consists of (a) a 5 second

lead-in tone, (b) the record header--256 bytes, approx. 9 seconds,

(c) another 5 second tone, and (d) the record body. When a tape

is first mounted, or after it is rewound, you must position it

manually to the first lead-in tone. After this, ATE wi I I automatically

start and stop the tape at the correct positions with no further need

for manual intervention.

I(TITLE) Searches the tape (forward) for a record whose title begins

with the given string. The entire title need not be given. For

51

example, !(ATE) would find the record mentioned above, as would

!(ATE OBJECT), etc. Header info from other records encountered

during the search is printed, so !(any non-existent title) wi I I

catalog the tape. (The tape wi I I run for about 1 minute beyond

the end of recorded material before ATE wi I I stop it, issue an

error sign ?, and return control to the terminal.)

Note: Control-A does not function whi Ie the tape is

running. But stopping the computer and restarting ATE at ad

dress SYSI wil I stop the tape. The tape must then be repositioned

to a header lead-in tone.

L "Load." If used without an argument (there is no default

argument in this case), the record is loaded at the address that

was printed in response to the I command. If it is a source

fi Ie, then this address is the top of the source area. In this

case, the fi Ie is loaded, the source area is expanded to include

the new fi Ie, and the new fi Ie becomes current with t at its end.

(That is, unless a checksum error occurs. See below.)

If an address is given with the L command, then the fi Ie

(source or not) is simply loaded to that address. Even if it

was a source fi Ie, it is not made current or incorporated into

the source area.

After loading, a checksum is comput~d across the loaded

record. An error wi I I cause a ?, and control wi I I return to

the terminal. If the bad record was a source fi Ie, it wi I I not

be incorporated into the source area or made current.

Of course, multiple tape commands can be included in the

command line or in a program, as for any ATE commands. !,L

wi I I identffy and load the next record. I(BASIC),L,X<R> wi I I

find, load, and execute that record (as long as its entry point

is the first byte). Note than an I command must precede an L,

although other non-tape commands can intervene.

J "Jump over." Moves the tape past the previously Identified record

and stops it.

52

V "Verify." Checks the record byte-for-byte against memory, issuing

a ? at the end if there is any difference. To use this command,

first Save the record (see below), rewind the tape to the lead-in

tone for the record body, and type V. (Or you can rewind to the

header lead-in tone and type l,V)

S "Save." Takes an argument, and saves the addressed interval on

tape. For instance, S .. saves the current fi Ie. S<S> saves al I

fi les. S1000H .. IFFFH creates a new copy of ATE.

(A) If no title was given (see the T command below), then a

default title is used. For source fi les, this is the first

line of the fi Ie. For object code, this is the first 8 bytes.

(ATE labels a record "source" if it begins in the source area.)

(8) If no write-address was given (see the W command below), then

by default the write-address that is saved with the record is

the same as the address from which the record is saved. (This

address can always be changed at load time. It is irrelevant

for source fi les, which are always loaded onto the source area.)

(C) Records saved with the S command (including ATE itself) can

be loaded and executed by the ROM bootstrap loader on the

Morrow interface board. Simply set the tape to the 'lead-in

tone and execute the bootstrap (address 815FH=201:137Q).

The sense switches play the fol lowing role:

If al I switches are off, the program loads and executes

(as long as there is no checksum error). If switch 0 is on,

the tape wi I I stop after the record header has been loaded.

You can then change the load address from the front panel.

It is stored at address 8277H=202:167Q, low byte first. Then

turn switch 0 off and restart the computer from where you

stopped it.

After the load is complete, a checksum is computed, and

if in error, the computer enters a jump-self loop (C2 OC 82,

or 302 014 202). Otherwi se, switch 7 is checked. I f off,

the record is executed. If on, the computer loops, reading

switch 7. At this point, you can go into the record from

the front panel and change its to, or whatever.

53

And one more feature: after changing the I/O or whatever,

you can create an updated tape of the same record by setting

your recorder to record and executing address 823EH=202:076Q.

(Of course it would probably be easier to load ATE and use it

to edit and save the new version of the record.)

(D) George Morrow's Speakeasy board can control up to three recorders.

ATE always reads from machine #1, and at first it also writes to

machine #1. But editing a tape is ten times easier with two

recorders. To make ATE write to recorder #2, type fOEF5H,

E#85#. For further detai Is, see the sections entitled

"initial ization" and "Initial ization Values".

T "Title." If used before the Save command (with no intervening tape

commands), this titles the record about to be saved with the given

text. The given text must be enclosed in parantheses. For example,

T(ATE OBJECT CODE COPYRIGHT 4/15/77 G. FITTS}, S 1000H .• 1FFFH

wil I create the record mentioned under the I command.

Note that there is really no need to title source code, since

the default title (the first I ine) is the conventional title for

the fi Ie once it is loaded into memory.

W "Wri te address." I f used before the Save command (w ith no i nterve

ning tape commands), this sets the write address (load address) of

the record about to be saved to the given value. For instance, if

you copied ATE to ODOOOH (say), and then instal led some of your

own custom patches, you could save the new version by typing:

T(PERSONALIZED ATE), W 1000H, S ODOOOH •. ODFFFH

RS "Resave." If used after a load (with no intervening tape commands),

this resaves the the record using the original title and load

address. For instance, if you had just loaded ATE at ODOOOH, then

typing RS would create a copy from this address that sti I I had its

original title and load address 1000H

54

But if you typed S ODOOOH .• ODFFFH, then the load address of the

new copy would be ODOOOH, and the title would be the first 8 bytes

of code.

Tape examples

Here is a command I ine to search the tape for a record containing STRING.

R999, l, L, QS<R>/(STRING), K<R>

Here is a program (cal led *EDTAPE) to read through a tape, changing every

occurrence of STRINGI to STRING2 and creating an updated tape. Note

that ATE must write to recorder #2 (as described under Save) to make this

feasible.

*LOOP, QF(STRING1), K, E(STRING2), >(*LOOP)

*EDTAPE, I, L, D(*LOOP), RS, K<R> , >(*EDTAPE)

If you want to assemble 10 fi les into a single program and you don't

have enough memory to store the assembled object code, you could type

the fo I lowi ng lines:

&0, RIO, $ODOOOH, I, L, A, K .. (Then rewind the tape)

&0, RIO, $ODOOOH, I , Li W&, G, S ODOOOH .. $-I, K ..

Gory deta i Is

Hardward Requirements

To run ATE with no modifications, you need at least 8K of memory

beginning at address 0 and Morrow's 10 board connected to recorder #1

and to a teletype (or other 110 baud serial device). More memory is

desireable, as is a second recorder.

If you meet al I the above requirements except for the baud rate,

then you can patch in the new rate by changing one byte. See below.

If your terminal is not connected through Morrow's 10 board, you

can patch your own 10 routines into ATE by changing three jump instructions.

The procedure is described below.

55

If your tape recorder is not connected through Morrow's board,

then (assuming you can load ATE--see below) you can sti I I use the

editor and assembler parts of ATE, but you won't be able to use the

tape commands, unless you patch in a new tape driver (see below).

Loading ATE

Assuming that you have the standard hardware described above,

proceed as fol lows: mount the ATE cassette in recorder #1 and

position the tape to the beginning of the first lead-in tone (about

25 seconds into the tape). Then execute address 815FH = 201:137Q

with al I sense switches off. The ROM bootstrap loader on the

Morrow 10 board wi I I read in a loader from the tape, which wi I I then

load the ATE object code to addresses .1000H .. IFFFH. This takes about

2-3/4 minutes. Then, unless a checksum error is detected, ATE wi I I

begin executing, printing a prompt> character at the terminal.

(If a checksum error is detected, the loader enters a jump-self

loop: C2 OC 82 or 302 014 202).

If you can load ATE as above, but you want to patch the baud

rate or change the 10 before ATE starts executing, then turn sense

switch 7 on before the load is complete. This wi I I prevent the

loader from passing control to ATE. When the tape stops, you can

make the patches as described below and then execute ATE from

address lO.oOH.

If you want to load ATE through some other cassette interface:

ATE is recorded at 300 baud Kansas City Standard. ·The tape consists

of (a) a 5 second lead-in tone, (b) a 256 byte header (approx. 9

seconds), (c) a 1/2 second gap, (d) another 5 second lead-in tone,

and (d) 4096 bytes of core image ATE object code, which should be

loaded at address 1000H. The 2 byte checksum for these 4096 bytes is

stored in the header. It is the 43rd and 44th bytes of the header,

low byte first.

56

In it i a I i zat ion

ATE is written so that it can be stored in ROM. Consequently, you can

write-protect the 2nd 4K block of memory after loading ATE, if you want.

ATE keeps its variables, stack, etc., in RAM beginning at qddress 0~60H =

016:140Q, When ATE is executed from address lOOOH, initial values for many of

these variables are copied into RAM. These initial values are stored

together in a I ist within ATE.

To make a permanent change in any of these values, you can make

changes within this list. (See the addresses appendix for the detai Is of

this list.) To do this, you can load ATE with sense switch 7 on, make

changes from the front panel, and then execute from address 1000H. Or -you can

let ATE begin executing, make the changes using the Enter command, and then

type Xl000H. In either case, you wi I I want to make an updated copy of

ATE by typing T(PERSONALIZED ATE), S 1000H .• IFFFH

If you don't waht your changes to be permanent, you can alter the

desired data at its new location in RAM after initialization. (Again,

see the addresses appendix for these locations.)

10 Patching

If you are using the serial port on the MMS 10 board and you simply

want to patch in a new speed constant, enter it at one of the addresses

given in the append i x (e i ther the pre or post- i n i ti a Ii zati on address, I BAUD O~I\ SCON,

depending on whether you want a permanent or temporary change).

Three routines are required for terminal 10: (a) a character

input-echo routine, (b) a character output routine (which can be the

echo part of the first routine), and (c) a panic detect routine. ATE

accesses each routine through a single jump instruction, and a new

routine can be patched in simply by changing the jump address. See the

addresses appendix for the locations of these jumps.

The requirements for these routines are as fol lows: In every

case, the only CPU register that must be maintained is SP. You can

use up to 20 bytes of stack. (a) The character input-echo routine

should get a character from the terminal, strip off the parity bit if

necessary, echo the character <possibly by fal I ing into the character

output routine), and return with the character in register A. (b) The

57

character output routine should output the character in register A.

(c) The panic detect routine should RETurn to continue the current

process, or jump to SYSl to abort it (see addresses appendix).

Suggestions:

The character output routine can drive a· different device than

the echo routine. For instance, commands could be echoed to your

CRT, whi Ie printouts (which come from the character output routine)

could appear on your hardcopy device.

Of course, ATE can change 10 devices under program control by

entering a jump to the new driver at OTPAD (see appendix). For

instance, suppose that your hardcopy driver is located at ODOOOH,

while your CRT driver is at OEOOOH. You could create the fol lowing

edit macros:

*HARDCOPY, X=t, t OTPAD, E#C3 00 00#, tX

*SOFTCOPY, X=t, t OTPAD, E#C3 00 EO#, tX

Now, D(*HARDCOPY) can be used in a command line or in a program to

route output to the hardcopy device, while D(*SOFTCOPY) wil I return

output to the CRT. (In each case, the entry pointer is saved and

restored.)

ATE can be used with a half-duplex terminal by eliminating

the echo part of the character input routine.

58

1 *SA1\IIPLE 10 ROUTINES FOR 'rHE 3P+S
000:000 2 S'I'Al'US BQO 0 StrATUS POR'r
000:001 3 DAlfA EQU 1 DA/rA POR'r
000:100 4 DATAREADY EQU 40H
1000:200 5 PRIN'rERREADY EQU 80H
1000:001 6 ABORT EQU 1 CONTROL-A
020:003 7 SYSI EQU 1003H ATE RE ENTRY POINT

8 *
000:000 333 000 9 INECHO IN S'I'ATUS
000:002 346 100 10 ANI DATAREADY
000:004 312 000 000 11 JZ INECHO
000:007 333 001 12 IN DATA
000:011 346 177 13 ANI 7FH
000:013 107 14 OUTCHR MOV B,A
000:fJ14 333 000 15 OOTLOP IN STATUS
000!016 346 200 16 ANI PRINTERREADY
1000:020 312 014 000 17 JZ OU'rLOP
000:023 17~ 18 lYl0V A,B
000:024 323 001 19 OUT DA'rA
000:026 311 20 RET

21 *
000:027 333 000 22 PANDET IN STATUS
000:031 346 100 23 ANI DATAREADY
000:033 310 24 RZ
000:034 333 001 25 IN DATA
000:036 315 000 000 26 CALL INECHO
000:041 376 0£IJI 27 CPI ABOR'r
000:043 300 28 RNZ
000:044 303 003 020 29 JtriP SYSI
>

1 * SA~"'l.pLE 10 ROU'I'INES FOR 'THE 3P+S
0000 2 S'I'A/I'US BQO 0 S'1'ArllUS POR1l1

0001 3 DA'rA hQD 1 DAtTA POR1'
004£1 4 DATAREADY BQU 40H
0080 5 PRIN'1'ERREADY EQU 80H
0001 6 ABOR'I' EQU 1 CON'l'ROL-A
11303 7 SYS1 EQU 1003H AffE !i.E I:; NfliRY POINr:£'

8 *
0000 DB 00 9 INECHO IN S'IA'I'US
OfhJ2 E6 40 10 ANI DA1'AREADY
l~.I(HQ 4 CA o k1 0t, 11 JZ INECBO
0007 DB 01 12 IN DAliA
0009 £6 7F 13 ANI 7FH
0~0B 47 14 OU'l'CHR t.OV B,A
000C DB kJ 0 15 OUT'LOP IN S'I'A'I'US
000E E6 80 16 ANI .PRINTERREADY
01010 CA 0C 00 17 JZ OUT'LOP
0013 78 18 !~iOV A,B
0014 D3 01

1
19 OU1' DATA

0016 C9 20 RE1'
21 *

0017 Db 00 22 PANDE'I IN ST'ArI1US
k:'J019 £6 4k.'J 23 ANI DA'TAREADY
0k'J1B C8 24 RZ
0g1C DB 01 25 IN DAliA
001E CD 00 0i-J 26 CALL IN~CHO
0021 FE 01 27 CPI AbURT'
0023 C0 28 RNZ
00;G4 C3 03 10 29 JNP SYSI
>

60

The Tape Driver

I f you don't have George Morrow's I nterface board,. you wi I I have

to duplicate some of its onboard ROM software with your own tape

driver, and you wi I I have to provide 512 bytes of memory at 8200H =

202:000Q. (This data buffer cannot be relocated without reassembling

ATE, since ATE contains code that executes within this address space.)

ATE accesses its tape driver thru a single cal I instruction at

TAPCAL (see appendix and (5) below), and uses these conventions:

(I) If bit 0 of the A register is 1, then a write operation is

requ ired:

(a) The HL register pair contains the beginning address of

the data to be written.

(b) The DE register pair contains the number of bytes to be

wri tten.

(2) If bit 0 of the A register is 0, then a read operation is

requ ired:

(a)

(b)

(c)

The HL register pair contains the beginning address of

the buffer where the data should be stored.

The DE register pair contains the number of bytes to

be read and stored.

If the C register equals 0, then the data should simply'

be read and stored. However, if the C register equals

1, the data should be read but not stored (i.e., the

tape should be advanced over DE bytes). If the C

register equals 40H, then the data should be read and

compared to memory beginning at address HL. If a

discrepancy is found, a non-zero byte should be stored

at address DERR (see appendix). (In addition, you could

store the address of the offending byte at ERSAV. Then

one of the commands "?, I?, or ?? would give information

about this address).

(3) If your tape interface is capable of detecting any physical

error conditions in your tape hardware, you can signal this

to ATE by storing a non-zero byte at SERR and returning.

61

(This is what al lows ATE to signal an error after one minute of

listening to a blank or motionless tape.)

(4) If your tape interface has motion control, it should stop the tape

after each read or wri te operati on.

(5) You will a I so have to provi de a checksum computi ng routi"ne. ATE uses

the routine CHECK on Morrow's I/O board, calling this routine twice

at CHECK1 and CHECK2 (see appendix). If you want, you can duplicate

the code for CHECK, which follows. In any case, you wil I have to use

the same conventions.

(6) Fi na II y, if you want the bootstrapp ing capab iii ty and the reproduc-

t i ve capab iii ty provided by each ATE record header, you wi I I have to

keep your tape driver and checksum computer in ROM, and you wi I I have

to provide a bootstrap loader in ROM. that can read the 256 byte header

into TAPRAM and then branch there.

COMPUTE CHECK-SUM ROUTINE

Cal ling conventions:
(A) The register pair H-L is loaded with the starting address of

the data block on which the check-sum is to be computed.
(B) The register pair D-E is loaded with the word count of the

data block.
(C) The computed check is returned in the register pair H-L.

Including. the return address of the cal ling program, the routine uses
four levels of the stack.

814D E5 CHECK PUSH H SAVE ADDRESS POINTER
814E 21 00 00 LXI H,O INITIALIZE CHECK SUM
8151 44 f\iDV B,H
8152 E3 GDATA XTHL SAVE AND EXCHANGE/ADDR POINTER
8153 4E MOV C,M GET DATA
8154 23 INX H INCREMENT ADDRESS POINTER
8155 E3 XTHL SAVE & GET PARTIAL CHECK SUM
8156 09 DAD B ADD NEW DATA
8157 lB DCX D DECREMENT WORD COUNT
8158 7A MOV A,D TEST FOR
8159 83 ORA E WORD COUNT
815A C2 52 81 JNZ GDATA EQUAL ZERO
8150 01 POP D RESTORE STACK
815E C9 RET

62

The user command table

The user command table is initially located at IUSRCT (see

appendix), but this may be changed at any time (see below).

Command names may be any length, and may contain any printing

ASCII characters. The on Iy restrictions are:

(a) The last byte of each command name in the table must

have its high order bit set to 1. (Since the ASCI I

code only requires the low order 7 bits, this does not

restrict your choice of characters.)

(b) The command name must be fol lowed by the command

address, low byte first.

(c) The table must end with a zero byte.

You can crea.te a user command tab lew i th the Enter command,

but the easiest way is to assemble it in place, as in the example

on the next page. Onc~ you have created a table, you can save it

on tape (along with the object code for its routines), and re

load it at any time. See the Save command.

When ATE is initialized, it writes a zero (= end-of-table

byte) at IUSRCT, and writes the address IUSRCT into RAM at USRCT.

Thereafter, whenever ATE is given a command, it begins searching

at USRCT first before searching its own internal command tables.

Thus user commands can supercede ATE's. For instance, if you

create a command cal led PUNCH, ATE wi I I not interpret this as

Pri nt UNCH.

The user command table can be relocated in several ways.

You can always change IUSRCT before initialization, or change

USRCT after initialization. If you already have a table occupying

addresses OEOOH .• OEOCH, for instance, and you want to move it to

3000H, simply type t3000H, M OEOOH •. OEOCH. ATE wi I I realize

that you have moved the user command table, and wi I I remember the

new location.

>
>
>
>
>
>
>
>
>
>
>
>
>N,E(AORG ~E00H

63

SORG 0E00H START OF USER COMMA~D TABLE
ASC PNCH'"
DW 0D000H ADDRESS OF ~NCH
ASC PAPR
DW 0E000H ADDRESS OF PAPR
DB 0 END OF TABLE)

>
>G
016:000 1 AORG 0E00H
016:000 016:000 2 SORG 0E00H

016:000
016:004
016:006
016:012
016:014
>
>
>B16,G
~E00
0E00

0E00
0E04
0E06
0E0A
0E0C
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

120 116
000 320
120 101
000 340
000

0E00

50 4E 43
00 D0
50 41 50
kJ0 E0
00

103 310 3
4

120 322 5
6
7

1
2

C8 3
4

D2 5
6
7

ASC PNCH
A

DW 0D00011
ASC PAPR

A

D~~ 0E000H
DB 0

AORG 0E00H
SORG 0Ekj0H

Ase PNCH'"
DW 0D000H
ASC PAPR'"
OW 0E000H
DB 0

START OF USER COMMAND
TABLE

ADDRESS OF PNCH

ADDRESS OF PAPR
END OF trABLE

S'rAR'r OF USER COMMAND
'lIABLE

ADDRESS OF PNCH

ADDRESS OF PAPR
END OF l'ABLE

64

ATE addresses -- functional descriptions (numerical values fol low)

I BOSA

ICODE

I BAUD

ISYMTB

IBASE

IWCHNL

IUSRCT

IINPAD

10TPAD

IPNPAD

IWIDTH

ITABl

ITAB2

ITAB3

ITAB4

IALOFF

Pointer to initial beginning of source fi Ie area

Initial value of & and $

Initial speed constant for Morrow's interface board

Pointer to initial beginning of symbol table

Initial base for numerical input and output

Initial write channel -- ie, reg A constant for WRITE

cal Is to COPE (the ROM tape driver on Morrow's 10 board).

83H = 2030 for recorder #1, 85H = 2050 for recorder #2,

or 89H = 2110 for recorder #3.

Pointer to the beginning of the initial user command table.

(ATE writes a zero there during initial ization.)

Contains a jump to the initial character input-echo routine.

Contains a jump to the initial character output routine.

Contains a jump to the initial panic-detect routine.

Initial terminal width

Initial TAB1; column number for labels

Initial TAB2; column number for opcodes

Initial TAB3; column number for arguments

Initial TAB4; column number for comments

Initial assembly source-I isting offset; column number for

error flag (if any). The source listing fol lows to the

right of this column, with TABS 1-4 interpreted relative

to this column.

BASE Current base for numerical input and output.

WCHNL Current write channel (see IWCHNL above)

USRCT Pointer to the beginning of the current user command table

INPAD Contains a jump to the current input-echo routine.

OTPAD Contains a jump to the current character output routine.

PNPAD Contains a jump to the current panic-detect routine.

65

WIDTH Current terminal width

TAB1 Current tab· 1; co I umn number for I abe I s

TAB2 Current tab 2; column number for opcodes

TAB3 Current tab 3; column number for arguments

TAB4 Current tab 4; column number for comments

ALOFF Current assembly source-listing offset. The source code

is listed to the right of the object code, with tabs 1-4

interpreted relative to this offset.

ATE RAM

BOSAP

EOSAP

BOFP

EOFP

ASPC

STCTR

SYMTB

TABA

CHPTR

PNTR

Pl

P2

RECAD

RECND

ERSAV

The beginning address for storage of ATE's variables and stack

Pointer to the beginning of the current source fi Ie area

Pointer to the end of the current source fi Ie area

Pointer to the beginning of the current fi Ie

Pointer to the end of the current fi Ie

Assembly program counter (&)

Assembly storage po i nte r ($)

Poi nter to the beginning of the current symbol

Poi nter to the end of the current symbol table

The entry pointer (t)

The command interpretation pointer

The beginning value of the argument «)
The ending value of the argument (»

table

Pointer to the beginning of the record read in from tape

Pointer to the end at the record read in from tape

Pointer to the character that caused a command interpretation

error (?)

PHD The column in which the print head is waiting

SYSO This is the beginning of ATE, ie, the entry point that

initializes everything. Jump here after power up. Typing

X fol lowed by this address wi I I re-initialize ATE.

SYSl This is the re-entry point to ATE that avoids re-initialization.

66

VCHK This is useful with user-written machine language routines

cal led from ATE (via the user command table, or via an X

command). VCHK wi I I return with the Z flag off if there ~

an argument fol lowing the command, or with the Z flag on

if there is no argument. (See the X command for more info.)

CVALS This routine returns the values of any ATE argument that

fol lows a user command. The beginning value is returned

in HL, while the ending value is returned in DE. If there

is no argument, the values computed for the last command

are returned. Any error encountered wil I cause a ?-output

and wi I I return control to the terminal. If the user has

supplied several arguments (separated by blanks), these

can be detected by VCHK and evaluated by repeated cal Is

to CVALS. CVALS wi II not proceed beyond a comma, carriage

return, or end-of-file zero byte. The reference string for

any matching operands is the current fi Ie.

VALUS This routine is the same as CVALS with two exceptions:

you must provide the beginning and ending addresses of any

reference string in HL and DE; and in case of an error,

VALUS simply returns with the Z flag off.

LISTR A terminal width of less than approximately 50 (depending

on your tab settings) wi I I not accomodate an assembly

listing properly. To remedy this, replace the CALL TAB

MARGN at LISTR with a CALL MARGN.

CHECKl If you don't have Morrow's 10 board and you are supplying

CHECK2 your own tape driver, you wi I I also have to supply a

checksum computing routine as described earl ier in the

TAPE DRIVER section. Replace the CALL CHECK at CHECKl and

CHECK2 with a cal I to your own checksum routine.

67

TAPCAL This is ATE's only cal I to its tape driver, so you can
I

patch in your own driver by changing this cal I. See also

CHECK1 and CHECK2 above and the "tape driver" section of

the manual.

TAPRAM Each I command, and each bootstrap I~ad, reads a 256 byte

record header into this location.

SCON Speed constant for the serial interface on Morrow's 10 board

DERR DATA ERROR and STATUS ERROR. Before each tape driver cal I,

SERR ATE sets these bytes to zero. On return from the tape

driver, ATE checks both bytes, and if either one is non

zero, ATE signals an error and returns control to the

termina I. See the "tape driver" section for more info.

Note that ATE's checksum logic is independent of these

bytes.

CHKSM

LODAD

LNGTH

TYPE

WUNIT

TITYP

TITLE

The record checksum

The record load-address

The record length

The record type: an ASCI I 's' for source, 'B' for binary

The recorder (see WCHNL) that wil I be used if the

reproducti ve capab i I ity of the record header is invoked.

See the Save command for more info.

The type of the record title. See TYPE above.

The title that was given at Save ·time, if any, or else

the first 128 bytes of the record.

68

ATE memory map: standard initialization, minimal 8K system

o

200H

400H

OEOOH

OE60H

1000H

2000H

8000H

8200H

8400H

object
code
area
512 bytes

symbol
table
area
512 bytes

source
fi Ie
area
2560 bytes

user
command
table
96 bytes

ATE
RAM
416 bytes

ATE
ROM
4K bytes

Tape
ROM
512 bytes

Tape
RAM
512 bytes

o

002:0000

004:0000

016:0000

016: 1400

020:0000

040:0000

200:0000

202:0000

. 204:0000

These addresses can
be changed from the
terminal at any time.

These addresses can
be changed only by
reassembling ATE.

>

035:224 000 004
035:226 000 000
035:230 254 000
035:232 000 002
035:234 010
035:235 2~3
035:236 000 016
035:240 303 345 027
035:243 303 263 201
035:246 303 202 027
035:251 110
035:252 010
035:253 017
035:254 024
035:255 035
035:256 025

016:364 000:001
016:365 00kJ:001
016:366 000:002
016:370 000:003
016:373 000:003
016:376 000:003
017:001 000:001
017:002 0U0:001
017:003 0kJ0:l101
017:004 0kJ0:001
017:0~5 000:001
017:006 0l10:001

016:140 001:240
016:322 000:002
016:326 0v.i0:002

'016:332 000:002
016:336 000:002
016:320 000:002
016:324 00k1:002
016:362 000:002
016:356 0t'J0:002
016:342 0k'Jk:I:~02
016:306 000:002
016:312 0b0:002
016:316 000:002
016:346 000:002
016:352 0fJ0:002

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4~
41
42
43
44
45
46
47
48
49
5£1
51
52
53
54
55
56
57

69

*ATE ADDRESSES -- NUMERICAL VALUES
*
*
*THE FOLLOWING ARE COPIED INTO RAM
*AT INITIALIZATION TIME
* Dw

DW
IBOSA
ICODE
IBAUD DW
I SYI~''l'l;B Dw

JNP
JI\'iP

IBASE DB
IvvCHNL DB
IUSRe'!' DW
IINPAD
IO~;PAD

IPNPAD
Iw-IDTH
IIJ:1AB1 DB
Iil'AB2 DB
I'l'AB3 DB
I'1'AB4 DB
IALOFF DB

*

400H
o
0ACH
2"00H
8
83H
0E00H
r-1INPT
SROU'f
PANIC
72
8
15
20
29
21

*STARTING ~ITH IBASE, THE ABOVE
*VALUES ARE COPIED INTO THE
*FOLLO~ING RAM LOCATIONS
*
BASE DS 1
W'~CHNL DS 1
USRC'I' DS 2
INPAD DS 3
O'I'PAD DS 3
PNPAD DS 3
WIDTH DS 1
IrABI DS 1
TAB2 DS 1
rI'AB3 DS 1
TAB4 DS 1
ALOFr"' DS 1
*
*0THER LOCATIONS IN ATE RAM
*
A'rERAM DS
BOSAP DS
EOSAP DS
EOFP DS
EOFP DS
ASPC OS
S'I'C'I'j{ DS
SYN'l'S DS
Il'ABA DS
CHPTR DS
PNr:I'R DS
PI uS
P2 DS
bECAD DS
RECI-JD DS

20 0+DU FLN+BU r' LN+l:3(J F LN
2
2
2
2
2
2
2
2
2
2
2
2
2
2

016:354 0"00:002
017:032 000:002

020:000 303 137
020:003 12161 304
021:014 315 005
021:025 315 067
021:103 257
033:075 315 222
027:260 257
034:061 315 115
034:122 315 115
034:164 315 012

202:000 002:000
203:363 00~:002
203:365 000:001
203:366 fHHJ:001

202:052 000:002
202:167 000:002
202:171 0(00:002
202:173 1000:001
202:174 000:001
202:175 000:001
202:176 000:202
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

58
59
60
61
62

035 63
016 64
030 65
021 66

67
031 68

69
201 70
2k:J1 71
201 72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

70

ERSAV DS 2
PHD DS 2
*
*ADDRESSES INSIDE ATE

*
SYS0 JlvtfJ INIT
SYSI LXI SP ,s'rACK
VCHK CALL SBLK
CVALS CALL FVALS
VALUS XRA A
LISTR CALL f£AB
NARGN XRA A
CHECKl CALL CHECK
CHECK2 CALL CHECK
'I'APCAL CALL COPE
*
*ADDRESSES IN i'HE IrAPE RAM
*
'IiAPRAM DS 512
SCON DS 2
DERR DS 1
SERR DS 1
*
*'I'HE FOLLOWING ARE LOADED
*WI'ra EACH RECORD HEADER
*
CHKStvi DS 2
LODAD DS 2
LNG'I'H DS 2
TYPE DS 1
WUNIT DS 1
II'I'rYp DS 1
'l'ITLE DS tI;AP RAM+ 2 5 6-&

71

>
>

1 *1\'1E ADDRESSES -- NUl\lERI CAL VALUES
2 *
3 *
4 *1'HE FOLLO~'~ING ARE COPIED INTO RA1"1
5 *Air lNI'l'lALIZATlON l'IHE
6 *

1D94 00 04 7 lBOSA DVv 400H
ID96 00 00 8 lCODE Dw 0
1098 AC 00 9 IBAUD DW l!lACH
ID9A 00 02 10 ISY~l(rB Dw 200H
lD9C 08 11 lBASE DB 8
ID9D 83 12 Iv~CHNL DB 83H
ID9E 00 0E 13 IUSRCT Dw 0E00h
IDA0 C3 E5 17 14 IINPAD JfllP NINP'r"
IDA3 C3 B3 81 15 IOIIPAD J~1P SROU'l'
IDA6 C3 82 17 16 lPNPAD JHP PANIC
IDA9 48 17 IWlD'rH DB 72
IDAA 08 18 Ii'ABl DB 8
lDAB 0P 19 ITAB2 DB 15
lDAC 14 20 11'AB3 DB 20
lDAD ID 21 l'fAB4 DB 29
1DAE 15 22 IALOFF DB 21

23 *
24 *S:f'AR'11 ING v~ I 'l'H IBASB, 'IHE ABOVE
25 *VALUES ARE COPIED INtrO 'l'RE
26 *lj\OLLO~~ING RAlv1 LOCA'Ii I ON S
27 *

0EF4 0001 28 BASE DS 1
0EF'5 0001 29 VvCHNL DS 1
0Ef'6 0002 30 USRCT DS 2
0EE'8 0003 31 lNPAD DS 3
0EF'B 0003 32 O'I'PAD DS 3
0EFE 0003 33 PNPAD DS 3
0F01 0001 34 v~ID'rH DS 1
0F02 0001 35 1'ABI DS 1
0.f\03 0001 36 'l'AB2 DS 1
0F04 00101 37 IJ:AB3 DS 1
0F05 0001 38 'I'AB4 DS 1
0F06 0001 39 ALOF'F DS 1

4fJ *
41 *O'I1 HER LOCA'l'IONS IN AI'E RAf.'l
42 1c

0E60 01A0' 43 ATEkAM DS 200+BUFLN+bUFLN+BUFLN
0ED2 0002 44 BOSAP DS 2
0ED6 00tj2 45 LOSAP DS 2
0EDA 0002- 46 BOFf' DS 2
0EDE 0002 47 EOFP DS 2
0ED0 0002 48 ASPC DS 2
0ED4 0002 49 bjIC'TR DS 2
0EF2 0002 50 SYiy!IIb DS 2
0tEB 0002 51 l'ABA uS 2
0EE2 0002 52 CfiPTR D5 2
0EC6 00102 53 ~NtlR DS 2
0ECA 0002 54 !!1 DS 2
0ECE 0002 55 P2 DS 2
0EE6 0002 56 kECAD DS 2

72

0EEA 0002 57 HECND DS 2
0EEC 0002 58 ERSAV DS 2
0FIA 0b02 59 PHD DS 2

60 *
61 *ADDRESSES INSIDE A'J.1E
62 *

1000 C3 5F ID 63 SY50 JIvlP INIiI'
1003 31 C4 bE 64 SYSI LXI SP ,S'l'ACK
110C CD 05 18 65 VCHK CALL SBLK
1115 cu 37 11 66 CVALS CALL i'VALS
1143 AF 67 VALUS XRA A
IB3D CD 92 19 68 LIST'R CALL 'I'AB
17B0 AF 69 i"iARGN XRA A
le31 C[; 4D 81 70 CHECKI CALL CHECK
lC52 CD 4D 81 71 CHECK2 CALL CHECK
lC74 CD 0A 81 72 'rAPCAL CALL COPE

73 *
74 *ADDRESSES IN 'l'HE 'rAPE RAM
75 *

8200 0200 76 'I'APRA1.Vl DS 512
83F'3 0002 77 SCON DS 2
83F5 0001 78 DERR DS 1
8314'6 0001 79 SERR. DS 1

80 -Ie

81 *1~HE FOLLOWING ARE LOADED
82 *~I'rH EACH RECORD HEADER
83 *

822A 0002 84 CBKSM DS 2
8277 0002 85 LODAD DS 2
8279 0002 86 LNG/rH DS 2
B27B 0001 87 T'YPE DS 1
827C 0001 88 ~'l.;NljI DS 1
827D 0001 89 'rI'rYp DS 1
827E 0~82 90 I'Il'LE DS tl1APRALVi+256-&
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

73

#FF#@ doesn't work properly as a command argument. Using the any

character matching operand @ cocatenated with numerically

expressed bytes wil I confl ict with an FF byte, if there is

one within the # signs. (It wi I I cause the FF byte to match

anything.) Rule: don't use FF and @ together.

OPCOOE COMMENT does not print properly when the opcode requires no

argument. The print routine does not know which opcodes

require arguments and which don't, so in this case the commenf

wi I I be printed in the argument fielO. Rule: if you want to

comment a line where the opcode doesn't require an argument,

use some visually inoffensive character (such as a period)

as the 'argument'. This won't affect the assembly, and the

line will list correctly.

ASC TOO-MANY-CHARACTERS wi I I assemble correctly but wi I I not list

correctly. Instead of keeping the object code in its proper

columns, the I isting wi I I al low the object code to run over

into the source code columns, displacing the source listing

of that I ine to the right. Rule: to keep a hex assembly

list i ng neat, use 5, or fewer ASC characters per line. For

an octal listing, use 4 or fewer. Or, more characters can

be accomodated per I ine by increasing ALOFF (see appendix).

DB too many bytes, and OW too many words: same comments as for

ASC above.

Takes an argument? Re fe rence str i ng See page

Basic editing

+ Set the po inter
E Enter •••••••••••••••
K Kt II ••••••••••••••••
M Move ••••••••••••••••
C Copy ••••••••••••••••

Printing

" Quote ·
Quote one line

P Print ·
B Base
II Quote numbers
? Where ·
Memory f I I es

F File ••••••••••••••••
N New •••••••••••••••••
o Originate •••••••••••

Programm I n9

o Do ••••••••••••••••••
> Goto ••••••••••••••••
R Repeat ••••••••••••••
* Label •••••••••••••••
QF Quit on failure
QS Quit on success
= Equals ••••••••••••••
X Execute •••••••••••••

Assemb ling

&
$
A
G
H

Set &
Set $

·
Assemble
Generate
Hold the

the table
object code
presses

Z Zero the tabl e ••••••
Ziabel Zero the label
Z labe I Zero after ••••••

Tape hand ling

I Identify ••••••••••••
I(Title) ••••••••••••••••
L LClad ••••••••••••••••
J Jump over •••••••••••
V Verify ••••••••••••••
S Save ••••••••••••••••
T Title •••••••••••••••
W Write address •••••••
RS Resave ••••••••••••••

yes
no
yes
yes
yes

yes
no
yes
yes
yes
yes

yes
no
yes

yes
yes
yes
no
yes
yes
yes
yes

yes
yes
no
no
no
no
no
no

no

· current file · · · current file · current file · current file ·

· current fi Ie · · · · current file · · • • •• (current f i I e) · · current file · · current file ·

source area ·
•••• •••••••• current ft Ie

· source area · source area
•••••••••••• (current file) ••••••••• · · current f i Ie · current file · current file
•••••••••••• (current f i I e)

• •••••••••••. current f i Ie
•••••••••••• current file

· · · ·

· · · · · ·

·
no ••••••••••••••••••••••••••••••••••••
optional ••••••• current file •••••••••
no
no
yes
no
yes
no

............................... ·
• ••••••••••• current file

•••••••••••• current file
.......................................

19
20
22
22
23

24
24
24
25
25
26

27
27
28

28
29
30
30
31
32
32
32

47
48
48
48
49
49
49
49

50
50
51
51
52
52
53
53
53

