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ABSTRACT 

This thesis develops methods of frequency analysis and synthesis 

of digital computer programs describable in the form of a linear difference 

equation with constant coefficients. 

The mainspring of this investigation was the need for dealing 

with control systems consisting of both analog and digital filters. 

Most conventional control ·systems consist of analog units and operate 

on continuous data, but digital computers use sampled data. A uniform 

treatment of the two types of data is essential in the analysis of control 

systems incorporating a digital computer. The conventional method of 

treating systems operating on only continuous data uses Fourier or Laplace 

transformation} that is, transformation to the frequency domain. The 

conventional method of treating digital programs is numerical analysis, which 

deals almost exclusively in the domain of the independent variablel that 

is, the time domain. By exploiting and further developing those areas of 

numerical analysis to which frequency-transformation techniques were 

applied, the thesis points the way to a common language of dealing with a 

mixed-data system. 

If data/are sampled. at equal intervals of time (a practical 

feature), description of a linear computer program always reduces to a 

difference equation. It is possible to describe such a program by a transfer 

function in the frequency domain in a manner ana+0gous to the conventional 

description ot analog filters. Whereas components using continuous data 

have transfer functions which are rational functions of the complex frequency 

iii 
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variable !, those of a digital program are rational functions of ~ = e-sT, 

where ~ is the Naperian base and T is the constant interval of sampling. 

Having described the dig! tal computer with its program by a 

transfer function, one may apply all the techniques of complex-variable 

and transform theory to deal with digital filters. Theorems on realizability, 

stability and other properties of programs are developed, and the amplitude, 

phase and locus of a program are defined. The adaptation of the methods 

of analog filters to digital ones is direct, although the necessary 

modifications are often significant. 

The synthesis of computer programs can be conducted along lines 

employed in the synthesis of networks. First, the desired frequency charac-

teristics of the program are stated; next, a rational function of 

z = e-
sT ~s found which approximates the desired characteristics for real 

frequencies, s = jw; finally, the program is realized on bas~s of the 

approximat~ng transfer function. For facilitating the approximation 

basic entities or blocks of programs are analysed and methods are shown 

by which such programming units can be combined to obtain the frequency 

characteristics of the complete program. Various methods of program 

realization, that is, programming, are developed and compared on the 

basis of time and storage requirements, and criteria are developed to 

permit the choice of the optimum programming procedure by considering 

the mere form of the program transfer function. 

Numerous examples of program analysis -and synthesis are shown, 

and one example of synthesizing a program for the compensation of a control 

system is worked out. The latter example shows that the frequency analysis 

of a complete hybrid system can be undertaken along the conventional lines 

and that digital compensation of a control system is possible. 

iv 



Report 1-225 

The application of the methods of the thesis to various problems 

in numerical analysis is also shown. The problems of convergence (stability) 

and of truncation errors (approximation) can be analyzed in the frequency 

domain effectively_ The study of convergence ~y conformal mapping is related 

to the usual methods, and a novel way of estimating truncation error is 

shown provided only that the function to which the numerical process is 

applied can be described by its frequency spectrum. 

v 
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INTRODUC nON 

The use· of digital computers in control sys tems is now coming 

into the fore. Unlike most conventional control sye terns involving analog 

units which operate on continuous data, a control system employing a 

digi tal computer of the present-day type must use sampled data in the 

part of the system involving the digital computer. Hence, some parts 

of this system use continuous data and others, sampled data. The Fourier 

and Laplace transform methods of} analyzing continuous-data control systems 

is well-mown and developed, but the conventional treatment of digital 

computer progrBms is by numerical analYSis or in the time domain. There-

fore, in order to apply the methods of frequency analysis to control 

systems involving dig! tal computers (mixed-data systems), the sampled 

data part of the system must be described in the frequency domain. Some 

work along these line s has been done but it must be further developed. 

An .analog system is a physical model of a set of differential 

equationSI whereas, a digital system is a physical model of a set of 

difference equations. Operational and transform methods have been applied 

to difference equations for some time. In 194.2 Gardner and Barnesl 

presented a comprehensive and s.rstematic treatment of the solution of 

linear difference equations with constant coefficients by the Laplace 

transform method. However J they do not deal with stability and errors 

1 Gardner and Barnes, Transients in Linear Systems, John Wiley and Sons 
New York, 1942, Chapter IX. 
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which are important in control applications. The control point of view 

is stressed in Tustin' sl work on time sequences. In 1949 and 1950 Tustlnl s 

method was further developed by Madwed2, who shows the relations of his 

aspects of stabilit,r, but they do not analyze the errors associated with 

their approximations. 

In the meantime I Hurewicz3 pioneered the analysis of pulsed 

filters in the frequency domain, developed stability cri teria, and 

showEld several examples of choosing parame ters. I t should be noted, 

however, tha,t Hurewicz' s til ters are only simple units such as differ-

entiators and lead networks, which are incapable of performing involved 

computations as a computer can. Also, Hurewicz evaluates the output of a 

pulsed filter at the sampling instants only. The behavior of the filter 

between pulses remains a separate problem, and no ready methai is pre-

sented to investigate the whole question in the frequency domain. 

W. K. Linvil14 shows that sampling a continuous function is. 

equivalent to the modulation of a series of unit impulses by the function. 

The result is a new time function which can be thought of as being applied 

to the sampled data part 0 r the sys tem. Furthermore, this new time 

function has a Laplace transform; thus a frequency-domain analysis is 

possible. Linvill shows that reconversion from discontinuous to continuous 

1 Tustin, A Method of Anal sing the Behavior of ~near stems in 
lerms of Time Series, J.I.EEo Vol. 9 , Part 2A, 1, pp. 130 - 1 2. 

2 Madwed, Number Series Method of Solving Linear and Non-Linear 
Differential Equations, SC.D .. thesis in Mechanical Engineering, MIT. 

3 Hurewicz , Filters and Servo Systems with Pulsed Data, Chapter 5 of 
James, Nichols and Phillips, Theory of Servomechanisms. 

4 Linvill, W.K., Analysis and Design of Sampled-Data Control Systems, 
Digi tal Computer Laboratory, MIT, Report R ... 170. ' 
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data is -a filtering process and also shows what happens when the loop 

is closed on a mixed data system. He is concerned only wi th the effect 

of sampling on the system and d:>es not consider the influence of digital 

computer operations on the system. 

1 This report is a su.mmary of the work done by Salzer. His 

results permit the analysis of linear digital computer programs in the 

frequena,y domain; i.e., the operation of a digital computer program is 

described by a transfer functiono Thus the field is opened for the 

complete analysis and s,ynthesis, wholly in the frequency domain, of control 

systems employing digital computers 0 

From the frequencr,r-doma.in point of view, conditions governing 

the realizabilit,y of program transfer functions are developed, the problem 

of stabiIi ty is studied, and conditions to insure stability are given. 

Three methods of realization of programs from their transfer functions are 

presented, and the time and storage requirements of each are studied. An 

elementary example of transfer function synthesis is gi veno As in the case 

of network_ theory, the analysis of a computer program in the frequency domain 

is straightforward with a unique result, but the synthesis of a transfer 

function has many alternate realizations. Also as in network theory, the 

characteristics of the transfer function to be realized may not be given 

directly in a form leading to immediate realization but an internediate 

approximation problem may need to be solved. The background for solving 

the approximation problem has been set up in that conditions of physical 

1 Salzer, J oM., Treatment of Digital Control Systems and Numerical Processes 
in the Frequency Domain, SC.Do thesis in Electrical Engineering 
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realizabili ty have been derived and methods of realization of all 

realizable transfer functions have be-en} obtained. While s>me work has 

been done directly on the approximation problem, much remains to be done 

in this respe ct. 

The function of this report is to provide a concise picture 

of the frequency analysis of digital control systems and numerical pro

cesses. The first chapter describes the processes of sampling and de

sampling continuous functions and indicates that sampling is anal~gous 

to impulse modulation while desampling is analagous to ripple filtering 

in demodulation. Thinking of sarr:pling as impulse modulation allows one 

tD rela te the sampled to the continuous function in ei ther the frequency 

domain or the time domain. Furthermore, thinking of sampled functions 

as impulse modulated functions allows one to characterize linear computer 

operations on the sampled functionS b.Y transfer functions. 

Chapter II deti vas the conditions of physical realizability 

for computer-program transfer functions, discusses stability conditions 

on these transfer functions, and presents procedures for plotting transfer 

loci. 

Chapter' III deals with techniques for realization of transfer 

functions with some attention to the approximation problem, while Chapter 

IV deals with frequency analysis of sone numerical integration formulas. 
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CHAPTER I 

DESCRIPTION OF THE SAMPLING PROCESS 

1.1 S~pling a Continuous Function 

A digital computer operates on numbers that represent samples of 

continuous signals taken at discrete instants of time. The time interval, 

T, between samples is a constant as shovm in Figure 1.1, page 7. In this 

case, the input to the computer is the sampled function, i (t). The com

puter senses the amplitude of each of these pulses (as a number) and 

operates on the number. 

The purpose of this chapter is to describe the sampling process, 

to characterize it ma thema tically, to evaluate how well a continuous signal 

may be represented by its sanples, and to show how and under what conditions 

a ,continuous signal may be recovered from its samples. 

The mathematical model of the sampling process which will be de

rived later is very similar to actual physical processes. For example, 

assume that i (t) is the voltage across a pair of terminals of some net

work. How might it be sampled? The voltage may be sampled by connecting 

a condenser across the terminals, allowing a current flow to build up a 

charge on the condenser un til the condenser voltage is equal to the terminal 

voltage, and then disconnecting the condenser. In order that the condenser 

voltage be equal to the terminal voltage at some instant of time, the 

sampling time should be a s small as possible. I t may be made very small, but 

not ~ero. The total charge on the condenser is the ;integralof. the c~t 
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flowing over the time required to take the sample. Thus, as the 

sampling time decreases, the current intensit.y must increase. 

Physically this is how sampling might be done. Ideally, however, 

we wi sh to take the sample ins tan taneously or in zero time. Therefore, 

for ideal sampling in the above example the current ·flow must be infinite 

for zero time at each sampling instant. Thus, in the ideal case the 

charging current is an impulse whose area equals the amount of charge 

required to build up the condenser to the sampled value. Physically, 

ideal samp~ng is not possible, but the idea permits us to set up a 

me del of sampling that can be treated rna thema tically • 

1.2 Equivalent Mathematical Model of.I4eal SaS'ling - Impulse Modulation 

The ideal 8i tuation in, the above example is to transfer to the 

pIa tes of the condenser a portion of charge in zero time, or to "hit" the 

condenser with an impulse of current. The same end can be obtained if we 

modula te the voltage waveform with an inf'ini te series ,of unit impulses 

separated by equal intervals, T, as shown in Figure 2. 1.be area of any 

one of the modulated impulses equals the value of the input function at the 

corresponding ins tant of time. Thus, impulse modulation is ana]Q.gous to 
1 

the process of sampling. The samples of Figure 1.1 have finite height, zero 

width, and zero area; therefore, the sampled function does not have a Laplace 

transform. '!he is'ulses of Figure 1.21 have infinite height, zero width, 

1 The bar (-) over i{t) indicates the sampled functions. 

2 The circumflex ~ over i(t) indicates the impulse - modulated function. 



Report R-225 .;.71-
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Figure 1.2 Relation between continuous and impulse modplat,d functions. 
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but non-zero area; therefore, the impulse-modulated function does have a 

Laplace transfor.m, which is why this mathematical model has been set up. 

1.3 Use of Impulse Modulated Functions in the Analysis of Linear Digital 
Computer Programs 

A digital computer operates on numbers that occur at discrete 

instants of time, i.e. it operates on samples of a continuous function. 

In the previous section it was shown that for the ideal case, sampling is 

equivalent to impulse modulation. If we think of the computer as ttsensing" 

the amplitude of samples, we may just as easily think of it as "sensing" 

the area of impulses .Wi th this extension or rna. thema tical model, we may 

analyze computer programs by describing the input to the computer as 

impulses instead of samples. Since a sample does not have a Laplace trans-

form, while an impulse does, the advantage of this extension is immediately 

obvious. In this mathematical model, both input and output are treated 

as impulses, and both have Laplace transforms. In conventional (continuous-

data) systems, the transfer function is the ratio of the transform of the 

output to that of the input. Since both input and output of computer 

programs (when treated as impulse-modula ted functions) have transforms, 

we may define the transfer function of a linear computer program as the 

ratio of the transform of its output to the transfonn of its input. In order 

to carry out this analysis, we must have a knowledge of some of the properties 

of impulse-modulated functions, or impulsed functions. The remainder 

of this chapter is devoted to a discussion of sone of these more useful 

properties. 
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1.4 Laplace Transforms of Impulse-Modulated Functionsl 

O~~ analysis of computer programs is restricted to the cases in 

which the time interval between samples is a constant, T. Thus, the 

impulsed function can be expressed as the product of a continuous input 

function and an infinite string of unit impulses, the interval between 

impulses being T. 

As the following derivation will show, the process of impulse 

modula tion may be readily described in the frequency domain. EssentialJ.;v , 

since the string of unit impulses (which is the carrier) has all harmonics 

of equal amplitude, the impulse modulated wave has an infinite number of 

side-bands rather than just the two which are present for a sinusoidal 

9.arrier. The method of the derivation is to;<make:: a"l"Fcilurier.,:'artal$siis· of 

the carrier and to associate each side-band of the impulse modulated wave 

with a Fourier component of the carrier. Let i(t) be the conti~uous input 

!unction and b __ IL(t - kT) be the infinite string of unit impulses. 

(p. (x) = un! t ~pu1se oc curring at x = 0 J Then the :Lmpulse -modula te d input 

function is,.~ 

N 
i(t) = i( t) (1-1) 

To find the Laplace transform of (1-1) let us first find the 

complex Fourier series of the string of unit impulses. 

.&.> __ ~ ~(t - kT)= ~~_~ c 
k = _Q::::> m = _0- m 

ejm.1lt (1-2) 

1 A more comp]e te derivation and discussion of the transforms of impulse 
modula ted runc tions is given in Reference 2, page 3. 
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In (1-2), JL = 2 1'1' ' ~. The c m s are the complex Fourier coefficients. 

Solving for cm in the usual manner we have l 

1 c =m T 

T/2 

J (J.(t - kT) J e -jm..!\.t dt. 

-T/2 

(1-3) 

1\1 writing out a few terms of the series, (1-3) becomes,_ 

T/2 

em = ~ 5 [ ......... + (J.{t - T) + (J.{t) + (J.Ct + T) x ••• J e -jm.!\t dt 

-T/2 

Within the range of the integral, the only term inside the bracket of the 

integrand that is non-zero is the term, tJ.(t). Thus (1-4) becomes, 

T/2 

5 (1-5) 

-T/2 

Because of the, unit impulse in the integrand, the value of the integral is 
_·m1\-t 

just e J evaluated at t = 0, which is unity. Therefore, 

1 c = m T (1-6) 

and the Fourier series of a string of unit impulses is, 

, ) 1 > p.(t-kT = T (1-7) 

k= -~ m= 
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Then the impulsed function becomes, 

i( t) = -T-
~b 

> 
jmSLt e (1-8) 

m=--<1 

Now take the Laplace transform. of the above equation. 

'1(6) = L ~(t) 1 = L ~~t) (1-9) 

The indicated summation can be done after the transformation is made. 

/'J 1 
I(s) = T 

m - - C!\c::) 

L [ i(t) (1-10) 

A fundamental theorem in Laplace transform theor,y leads directly to the 

following result: 

rr (s) = ~ I (s + jmJ\..) (1-11) 

m = - CIIII:::l 

Thus we see that the Laplace transform of an impulsed function is periodic 

having a repetition interval of j..JL .. 
, rv 

An important fact about I (s) should be observed from (1-11). It 
r-

is that there is a unique correspondence between I (s) and I (s) if and 

only if the frequency spectrum of i(t), the continuous time function" lies 

in the range, -~< c»( --t- If the spectrum of 1(t) lies outside this 

range, 1'(s) will s~cify the spectr~ (in the range -~<oo<~) of a 

continuous time function, but this time function will differ from the 
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-~ 2 

A. Specturm of i(t) 

B. Spectrum of let) 

o 

Figure 1.3 Unique Correspondence Between ICa) and I{s) 
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original time function. Thus, there is a limitation of bandwidth 

caused by sampling. Figure 1.3 illustrates the case of unique corres-

pondence, and Figure 1.4, the case in which the spectrum of i(t) is too 

wide. 

. ,-. 
As given by (1-11), I ( s) consi s ts 0 £' an infinite number of terms; 

however, an infini te series is difficult to handle, and it is desirable 

~ 
to have a closed form expression for I(s). This can be obtained from 

the partial fraction expansion of I(s). Consider a t.ypical term, 
Ki 

s - s.' 
l. 

of the partial fraction expansion of 1(s). Referring to (1-11) we see 

that corresponding to this typical term, /f(s) will have a typical series of 

terms of the form, 

K. 
]. 

T 
00 1 -> s - s. + .jk""O-

k = _ CIt:t l. 
• 

Thus we see tha t the pole at s = si is repeated .ap infinite number of times 

at intel"vals of j...n., the line through these poles being parallel to the 

imaginary axis in the s - plane. 

A closed form equivalent of the above typical series can be 

obtained b.1 a change of variable in the following equation.l 

1 

2 
'IT z' cot rr 'z = 1 + 2 z· L 

n=l 

1 

- n 
2 (1-12) 

Knopp, "Theory and Application of Infini te Series lt , New York, 1948, p. 419 
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111 (joo)1 

1.iJ. 
, 2 

A. Spectrum of i1(t) whose spectrum is too wide for the sampling 

rate. 

o 

B. Spectrum of 11 (t). 

o 

..Q. 
2 

c. Spectrum of i 2(t) that would produce the same sampled function 

as (B). 

Figure 1.4 'Illustration of ,1~andwidth Limitation Caused sy Sampling. 
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Divide each side of (1-12) by Z'" and make the change of variable, ~ = j ~. , ..n... 

tr co -'L m 
TI' cot j ::n:- = jo) - j2 :rc 0.0 

> 
n=l 

Multiply both sides or (1-13) by jilL.. and obtain, 

1 
co2-- 2 

.1'L~ + n 

J. _It • It co It It co 1 .. ~; . 2co ..n. cot J:rc = ..rr coth ::n:- = 00 + ... _ .. _ 002 + n2 ...n... 2 
n= 

(1-13) 

(1-14) 

The infinite series of poles ofT( s) corresponding to a pole of 

I(s) at s. can be put into a form that is identical to the right-hand member 
l-

of (1-14) as follows: separate the term for k = O. 

'd: _"'" S - si /jkK. = S _lSi· + >: = l~-S~ + jk~ S-S~ - jIt~ 

Combine the two terms in the- summation. 

~ 1 _ 1 + ~ » _ s - si + -jkIt - s - s1 .. > __ _ 
k--~ k=l 

A comparison of (1-14) and (1-16) shows that, 

1 
s- s. + jkSL 

J. 
= ooth 

2( s - s) 

TJ' (s - Sj) . 

-fl-

(1-15) 

'hi L"1V) \.:,L-lo:i / 

(1-17) 

Thus we haye the following closed form equivalent of the typical series of 

I{s), . 

> (1-18) 

k = - 00 
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for a· pole of I(s) at s = s.. Therefore, corresponding to the partial 
1. 

fraction expansions of I( s), we have the following series for~s). 

n 

L. Ki ooth ~ 
i=l 

(8 - s.) , 
1. 

where "nit is the total number of poles of Ie s), ta1d.ng into account multiple 

poles. 

Let us now investigate the limitat:lons on the positions of the 

poles of r'(s) due to sampling. Co~sider an infinite strip of width.J")... in 

the s.-plane and parallel to the real axis as show in Figure 1.5. Assume 

tha t all the poles of I( s) lie wi thin tnis strip and in the left half plane 

(LHP). 
~ 

Thus, ICs) has 

x 

I 

'---------

s. 
1. 

s-:!-. 
1. 

jw 

s-plane 

----- - --------*-

Figure 1.5 Infinite Strip Containing Poles of I(s) 
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t 
poles at these points plus poles at points shifted from the s. sand 

. 1 

s*. 's (* means conj'w.gate) by the distance t.jk ...n. • Since ~(s) has 
~ 

poles only in the strips being considered, there is a one-to-one correspondence 

between the poles or I{s) andI(s) that lie in the same strip. However, 

if I(s) had poles outside this strip, there no longer would be this one-to-one 

correspondence. 



Report R-225 

CHAPTER II 

TRANSFER FUNCTION OF COMPUTER PROGRAMS - REALIZABILITY AND STABILITY 

Using the properties of impulse-modulated functions given in 

Chapter I, we are now ready to investigate transfer functions of computer 

programs. Our interest in program transfer functions is much more than 

academic. The transfer function describes the program completely and 

with it we can analyze and synthesize control systems employing digital 

computers by conventional frequency domain methods. 

In this chapter a linear digital computer program is defined in 

terms of the mathematical model of sampling set up in Chapter 1., its transfer 

function is derived, and methods for determining the realizability and 

stability of transfer functions are given. Several examples of stability 

determination are also presented. 

2.1 Transfer Function of Linear, Real-Time, Digital Computer Program 

As pointed out in Chapter I, the. input to a digital computer 

may be assumed to be an impulsed function, for purposes of mathematical 

analysis. A linear program of a'digital computer operating in real time 

is one in which the present output is a linear function of the present 

and past inputs and the past outputs.. The general form of this rela.tion 

is, 
m -.. n 

oCt) = L ak iet CD kT) - > bk o{t - kT), 

k-O k=l 

in which all ~'s and bk's are real, and T is the time between samples_ 

The time required for the computation must be less than T if each 

calculation is to be completed before the next input arrives. 
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Taking the Laplace transform of (2-1) yields, 

-- ) -().~ -ksT rJ) m -ksT 
O(a == I s ~ ~ e - O{s.> bk e • 

-k == 0 k = 1 

As in continuous data systems, we will define the transfer function 

of a computer program as the ratio of the transform of the output 

to that of the input 0 Let W( a) be the transfer function of a computer 

program; then, 

W(s) :Ii '0(5) 0 

ICs) 

Solving for n{s)/ Its) from (2-2) we ob~~n, 

L ~ e-
ksT 

wee) • 0'(5) I: _k_-_O ___ _ 

I(s) n 
1 + L. b. e -kaT 

k == 1 k 

(2-2) 

(2-3) 

(2-4) 

as the transfer function of a linear, real-time, digital computer program. 

With the understanding that b = 1, (~-h) becomes, 
o 

wes) == (2-5) 

The inverse steps from (2-5) to (2-l) are unique; therefore, 

(2-,) is the general form of the transfer function of a realizable, linear, 

digital computer program~. Thus, to be realizable, the transfer function 

of a linear, digital computer progran. must be expressible as the ratio of 

two polynomials in e -sT. The criteria for stability will be di scussed in 

a late,r section. 
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It has already been shown that the Laplace transform,I(s), of 

the impulsed input function is periodic of period...!"L, as seen in (I-II). 

By showing that W(s) is also periodic with the same period, we can prove 

that a(s) is also periodic of period ..n... e A typical term of either numerator 

( ) .... ksT ( or denominator of W s contains e 0 For s ~ s + jmfl m is a posi ti ve or 

negative integer), the typical term becomes 9 

-k(s ... jmn)T -kaT -j1on fiT 
e ,:,=e e 0 

As T~ = 2w and k and m are integers, the second factor is, 

-jlon £L.T .... j2trkm 1 e = e = 0 

Hence, 
=k(s • jm~)T . -ksT 

e = e • 

Therefore, the terms of th~ numerator and denominator pt:W(s) are periodic 

of period.(l, and so is W(s)o In equation form this means, W(s) lit 

W(s .. jm£L), for m a positive or negative integero The pr()duet of two 

periodic functions is also periodico Since O(s) = W(s) I(s), O(s) ie also 

periodic of period~, as indeed it should because the computer output is 

also sampledo 

Since all the coefficients of (2-5) are real, it is readily 

** seen that w{s) = W{s ),. in which the asterisk means conjugateo For real 

* frequencies this becomes W(jco) = W(=jco). This fact together with the 

. periodicity of Wes) tells us that W(s) is completely specified for all s 

if it is defined over the range, 0 ~(O~~ 

Summary~ In order to be realizable, the transfer function of 

a linear digital computer program must be expressible as the ratio of 

polynomials in e .... sT 0 W(s) is periodic of period..n...9 ioeo, W(s) • 

W{s + jm..f1.). Specification ofW(s) over the range, 0 ~ co 61; completely 

determines W(s). 
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202 Stability of Programs 

We have expressed the transfer function of computer programs as 

a function of the complex frequency "s"g therefore, the same methods of 

investigating stability as used in network analysis and servomechanisms 

are applicableo The general necessary and sufficient criterion for stability 

of a unit is that its transfer function have no poles in the right half 

s-plane (RHP) or multiple poles on the joo-axiso In network analysis the 

frequency-domain method used to study stability is to map a contour 

enclosing the right half of the s=plane (the contour is usually the joo-axis 

and an infinite semicircle) into the W=planeo Because of the transcendental 

nature of the transfer function of a realizable computer program, the 

mapping contour in the s-plane must be modifiedo 
I 

As we have shown before, the transfer function of the computer 

program iss 

W(s) = pes) := 

Q(s) 

m 

> 
k = 0 

k =: 0 

-ksT 
~e 

-ksT e 

(2-6) 

in which pes) is the numerator and Q(S)9 the denominator of W{s); and it is 

assumed that p(s) and Q(s) have no common factoro Both pes) and Q(s) are 

entire transcendental functions having as their only singularity an essential 

singularity at infinityof Hence, we see that the only singularities of 

Wes) in the finite s=plane are poles, and these poles occur at the zeros 

of Q{s) 0 Our stability criterion is. that there be no polesofW(s) in the 

RHP and only si~ple poles on the imagipary axiso Therefore, in order for 

t For a further discussion of entire transcendental functions, consult Knopp, 

"Theory of FU1lctions,9" or Guillemin,9 "The Mathematics of Cireuit Analysiso· 
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the program to be stable, Q(s) must have no zeros in the RHP and only simPle 

zeros on the j~axiso To investigate the possibility of Q(s) having zeros 

in the RHP or on the imaginary axis, we may take advantage of the pe riodi ci ty 

of Q( s) 0 In p roving that w( s) is periodic, it was shown that e -ksT is 

periodic p rope rt yo Thererore~ if Q(s) has a zero in the RHP, it must have 

one in the semi-inifinite strip shown in Figo 2010 

jQ) 
s-plane 

(0) 

Figure 201 Semi=inifinite strip of s-plane that must have a zero 

orQ(s} if Q(s) has any zeros in the RHPo 

Consider the map of the contour of Figo 201 into the e-sT planeo 

Let us begin the path at the origin in the s=plane and encircle the strip 

in a clockwise direction, corresponding to increasing frequencyo It is 

readily understood that corresponding .. path and enclosed region in the e .... sT 

plane is shown in Figo 2020 The origin of the s-plane maps into the 

point (1,0) in the e .... sT planeo The corresponding sections of the path are 

marked by small letters on both contoursc In Figo 202 we see that the 

paths (b) and (d) cancel leaving the annular ring as the region.conformal 

to the strip of the s=plane that is under consideration 0 As cr 
o 

(of 

Figo 201) approaches QO, the radius of the circular path (c) in Figo 202 

approaches zeroo Thus, the conformal map of the indicated strip consists 

of two separate contours! one,S) a unit circle centered at the origin 
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-aT e -plane 

unit circle 

Figure 2.2 Conformal map of the semi-inifinite strip of Fig. 2.1 

"'st into the e plane. 

and the other an infinitesimally small circle that excludes the origin 

in this particular case. Only a slight extension of the foregoing prooedure 

-sT -ksT is required to determine the map of powers of e 0 The map of e 

-sT will appear like that of e except that each of the two separate paths 

will be traversed "k" times,; the region excluded by the infinitesimally 

small circle will be that at the origin. Thus we see that the map of 

this semi -infinite strip of the s-plane is effecti!Ve in handling the 
I 

eS$ential singularity of Q(s) at 00 0 

Now, oonsider the conformal map''''' of the semi-infinite strip of 

.• . (' ) -sT.. -2sT Fig 0 2.1 l.nto theQ-p1ane. Remembering. that. Qs - l+b" e .. b2e + 

-nsT 
o ..+ be, we see that the map of this strip into the Q-plane will n 

exclude the point (1,O), (the map of each term except the first excludes 

the origin). This eliminates the need for mapping path (c). Moreover, 

since the paths (b) and (d) cancel, we ll$ed to plot only the Piths (a) 

and (e) 0 In other words the only part of the s-plane contour that we 

need to plot in order to determine the lO'eus of Q( sJ is the part of the 

contour that lies on the imaginar,r axis. This contour in the Q-plane 

Win encircle the origin Z-N'i times~i:tL the coUnterclockwise direc.ti9n,. where 
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z is the number of zeros and N is the number of poles of Q{s) (taking into 

account their multiplicity) in this strip of the s-plane. It has already 

been pointed out that Q{s} is an entire transcendental function and, therefore, 

has no poles in this strip. So, N = 0, and the contour in the Q-plane will 

encircle the origin Z times (clockwise is to be understood). The condition 

for stability of W(s) states that Q{s) must not have any zeros in the RHP 

or any multiple order zeros on the imaginar,r axis. Therefore, the map in 

the Q-plane must not enclose the origin; Z must be zero. If Q(s) has zeros 

on the imaginary axis, the Q-plane locus will pass through the origin. In 

this case, we must determine the order of the zero. The folloWing method 

can be used: Assume that the locus in the Q-plane passes through the origin 

( ) ( -sT -joo T)n for s = joo .• Then Qs must contain the factor e - e i where 
~ 

n is the order of the zero. Divide Q(s) by (e-sT - e- jOOi T)2. If there is 

no remainder, the zero is of higher order than the first and the program 

will be unstable. 

In addition to determining the stability of programs, conformal 

maps give an indication of the degree of stability or instability and an 

approximate value of the frequency at which the program is or may become 

unstable 0 The amount by which the locus in the Q ... plane misses encircling 

the origin gives a measure of the stability of the program. The farther the 

locus is from the origin, the more stable or convergent the program. The 

frequency corresponding to the point on the Q;';"planelocus neare.stthe origin 

is approximately the frequency at which the program is or may become unstable, 

or at which it will oscillate in a damped fashion. 
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In addition to expressing the program transfer function as a function 

r " Yf a1. t . t f to f -s T o s we may so wr1 e 1 as a unc 10n 0 e 0 Make the change .of variable, 

=sT 
z = e 0 Then we may define a new function, 

V(z) iii! Nez) = 
D(z) 

(2-8) 

It is readily seen that the right half of the s-plane maps into the inside 

of a unit circle centered at the origin in the z-plane. The imaginar.y axis 

of the s=plane becomes the unit circle in the z-plane (see Fig. 2.3). 

,/11/ 

z-plane 

-aT 
z - e 

Figure 203 Map of right half of s-plane into z-plane 

Therefore~ if the program is to be stable, all the zeros ~f D{z) must lie 

outside the unit circle except that single order zeros may occur on the 

unit circleo In otherwords~ the magnitude of the roots of D{z) must be 

greater than or equal to unity, and the roots of unity magnitude must be 

simple 0 

0" x 
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Summary: To test for the stability of a program, map the semi-infinite 

strip ot Fig. 2.1 into the Q-plane[Q(s) is the depQminator of the program 

transfer function.J If the locus in the Q-plane does not enclose the origin" 

the program is stable or convergent. If the locus passes through the origin, 

Q{s) has a zero and the order of this zero must be determined. It the zero 

is of first order, the program is stable; otherwise, unstable. An alternate 

-sT method is I Make the change of variable, z - e , and find the magnitude 

of the z-roots. If each root has either a-magnitude greater than unity or 

equal to unity and is simple, the program is stable or convergent; ot.herwise 

unstable or divergent. 

2.3 Loci of Q(s) 

In the previous section it was demonstrated that the stability 

of a program can be determined by mapping the contour enclosing the 

semi-infinite strip of Fig. 2.1 into the Q-plane. It was also shown that 

the only part of this contour that we need to plot is that on the imaginary 

axis. The paths (b) and (d) cancel and the path (c) excludes the point 

(l,O) in the Q-plane.,. Hence, we are interested in the properties of Q(jc.o) 

and its locus in the range, - ~~CJ.) ~~ 

locus. 

Q(joo) has several properties that are helpful in determining its 

(1) Q(jc.o) is periodic of period~. This was proved in the 

previous section. 

*' (2) Q(jGO) = Q(-jc.o) 0 This property follows directly from 

the fact that Q(jro) is a polynomial in e-jc.oT, and as a 

consequence, the locus of Q(jro) must be symmetrical about 

the real axis. 
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(3) At 00 - 0 and !2 Q(joo) is real and its locus at these two 

points crosses the real axis either normally or tangentially. 

This statement is proved and elaborated upon in Appendix A. 

As a consequence of the first two properties, the locus ot Q(j~) 

for Ok co ~-9completely determines the locus in the Q-plane. The locus 

for -f Loo ~O is just the mirror of that for the positive values of co.' 

Thus the first two properties result in a substantial reduction in the amount 

of work required to plot the locus of Q(j~). The third property enables 

one to determine accurately the shape of the locus in the neighborhood 

..a 
of co • 0 and ! 2' • 

Several methods may be used to determine the locus of Q(jc.o). 

Three of these are: (1) add the loci of the individual terms of the 

polynomial (each locus is a circle) to obtain that of Q(jc.o)j (2) factor 

Q(jc.o) and multiply the loci of the factors; and (3) express Q(jc.o) in the 

form R{c.o)!¢(c.o) and make a point by point plot. The method that is best 

to use depends on the particular Q(jc.o). However, it is to be expected that 

the extra analytic work required in methods (2) and (3) will result in 

less graphical work and more accurate loci 0 .• None oftl}~ methods ~ll be 
, 

discussed, but tgey will be illustrated. 

Let us now consider several examples of loci of Q(joo). 

1. Let Q{s) = 1 - 0.8 e-aT + 0.3 e-281' 

Take the derivative with respect to s. 

dQ -sT 6 -sT -- = 0.8Te - o. Te ds 
(a) 

dQ . -s1' ( -s'1') 
ds • O.?Te 4 - 3e (b) 
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For neither s • 0 nor !j~iS the derivative zero, so the locus is normal 

to the real axis at both points. Fig. 2.4 (a) shows the locus of Q(jo.l) and 

how it was obtained (for the point cot = ~) from the loci of the individual 

terms. The locus for negative values of o.l is shown by the dashed curve, 

since it may be obtained from the other half of the .loeus. Atter this, only 

the locus for positive Q) will be drawn. The locus does not enclose the origin; 

therefore,. a program whose transfer function has the denominator, 

1 - O.Be-sT + 0.3e-2sT, will be stable. 

( ) 8 -sT 4 -2sT 2. Let Qs • 1 - 00 e + Ooe 

Take the derivative with respect.to s • 

. - dQ :.. 0 8T· .-sT 0 81ft -
2sT 

.......... - o· e - • .1.e as (a) 
(2-12) 

For s • 0, the derivative is zero~ Q(sl has a saddle point here. Q(s) can 

be rewritten as, 
.. ~sT 2 

Q(s) • 006+ 0.4 (1 - e ) (2-13) 

which brings the saddle point into-evidence. In this case p • 2, so at 
, .Jl- dQ 

co • O. the locus is tangent to the real axis 0 At s • !:J2"' dB 1 0, so the 

locus is normal to the real axis at this-point. Fig. 2.4 (b) shows the 

resulting locus. It does not enclose or pass through the origin; therefore, 

this Q(s) will lead to a stable progr-amo 
< 

3. Let Q(s) • 1 - 0.8e-sT ... 005e-2sT 

Take the derivative with respect to so 

dQ. 0 aT· -sT T··· -2sT as·. e ... e 

-sT (1. -sT) • 0.2Teq. - 5e 

(a) 

(b) 
(2-IS) 
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For neither s == 0 nor !,jfiS the derivative zero, so the locus of Q(jCA» is 

perpendicular to the real axis at both points. The locus (as shown in 

Fig. 2.4 (c» does not enclose the orig~nj therefore, this Q(s) is the 

denominator of a stable program trans£er funetio,no 



;. 

(e) Q{s)-a 1-0.&-81' ~O.Se-2sT 

Figure 2.4 Loci or some typical. Q( s) 

Q-plane 

I 

"'" o 
I 
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CHAPTER III 

ANALYSIS AND SYNTHESIS OF LINEAR, DIGITAL COMPUTER PROGRAMS IN THE 
FREQUENCY DOMAIN 

In the first part of this chapter the analysis of transfer functions 

is dealt with by expanding the transfer function into partial fractions. 

Next~ programs are realized from transfer functions by three methods: direct 

programming, cascade programming, and parallel. programming; and the storage 

and time requirements.o.feach are,presented.e. In the last part of the chapter 

a short, general discussion of synthesis is given, and one possible synthesis 

procedure is illustrated by the synthesis of a program for differentiation. 

3.1 Response of Programs at Real. Frequencies 

The input to a computer has a certain frequency spectrum, and 

in order to analY'Ze the Action of a computer program on this input function, 

we need to have a knowledge of the frequency response of the program. Thus, 

we are interested in the locus of W(joo), the map of the jco-axis of the s-plane 

into the V-plane. A familiarity with the frequency characteristics of the 

simple transfer fun~tions is es.s.ential.for the understanding of the possibilj~ties 

and limitations of more complicated ones. 

In many cases the desired locus of the transfer function of a 

digital computer program is given, and the problem is to approximate this 

locus by that of a realizable program; i oe ., by a ratio of polynomials in 

-sT e • A study of the loci of typical terms of W(joo) is helpful in making 

this approximation. 

3.2 Analysis of Building Blocks of Transfer Functions 

As we have seen, the transfer function of a linear, digital 

computer program is most generally expressed as the ratio of polynomials in 

-sT e • 
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W(s) 

=32 ... 

.L -sT + a2.e .... 2ST ... -msT O(s) aO ~ ~e 00000 + ame 
= ---- = ------~----------------------------

I(s) -sT -28T 1 ... ble + b2e ... o /) 0 /) 0 

-nsT ... a e 
n 

()-l) 

A partial fraction expansion of W(s) can be made, and we may call the individual 

terms of the expansion the basic building blocks of a program transfer functioDo 

In general W(s.) may be broken up into a polynomial plus first and second degree 

partial fractions (£~om the real and conjugate complex roots of the denominator, 

respectively)~ 

In analyzing computer programs in the frequency domain [!inding 

the locus of W(jOO)~ se~eral methods can be usedo Two of these are: (1) 

Find the loci of the numerator and denominator polynomials and then divide; 

-(2) exPand W(s) into partial fractions, find the locus of each term of the 

expan~ion, and add the resultant locio In most cases the first method 

is easier to use, but the second is included here because of its connection 

to the synthesis of program transfer functions (approximation of a desired 

locus by a sum of the basic building blocks) 0 A familiarity with some of 

the possible loci of polynomials and first and second degree partial fractions 

is an aid in the synthesis procedureo 

The loci of second degree polynomials have already been discussed, 

and the locus of a fourth degree polynomial will be illustrated in connection 

with polynomial building blockso Since there is only a short step from 

the l~c.iof polynomials. to the locus of a transfer function, the first '. 

method of finding the locus of W(joo) will not be discussedo 

For use of the second method, we will investigate the loci of typical 

terms of the partial fraction expansion of W(joo) 0 
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3.2J., Paqru>mials 

A typicalpol1,nomial transfer function is of the form, 
r 

W(s) - ~cke-kST 
k • o· 

:' (,3-2) 

For s • j~, the locus of each term of the polynomial is a ci+.ole. For 

Q(s),the constant term is unitY', but :for polynomial bulldingblocks, the 

constant term may have any real value. In the previous -chapter, three 

examp~es of the locus of se.cond order polynomials ide-aT are given, so now 

let us find the l.oousof a fourth order polynomial. Let, 

First examine the function for saddle points. 

(3-4) 

~ 2T -aT (2 3 -sT + 3 -2.T 2 -3sT) ds' = ·'-15 e '- e e - ' e • 

The derivative is zero far s = 0, therefore W(s) has a saddle point there. 

W( s) can be written in the form 

( ) 1 (' -2sT) ( " _ST)2 W's .. I - 1;' ,2 + e ',1 - e , (3-6) 

which brings the saddle point at s = 0 into evidence. The saddle point 

is of first order; therefore, the locus is tangent to the real axis at 

s = O. W(jco) is 

W(jm) • 1 - i> (2 + e-j2roT) (l _ e-jroT}2 (3-7) 

In this oase it is easier to determine the locus of W(j~) by 

plotting the second term of (3-7) and shifting the origin one unit to the 

left. A convenient way to find the locus of the second term is to let 

_ (2 + e- j2CAlT) (1 .. e-3Q)T)2 • Rej9J , C3-8) 
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where both R and ~ are functions of ooTo Some trigonometric manipulation 

yields, 

R = 2(1 - cos ooT) V, + 4 cos 200T (3-9) 

and 

(3-10) 

The resulting locus ofW(joo) is shown in Fig. 3.1. 

~--------------~----1 
ooT • 0 

Figure 3.1 LgSy.s of a Fourth-Degree Po;tynomial Transfer Function 

3.22 ~irst-Degree Partial Fractions (real roots) 

In the partial fraction expansion of a rational function e -ST, 

a typical term has the form, 

• (3-11) 
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If the constants ~ and J3 are real, then (3.-11) Cal be considered 

a basie building blook. In this section we will consider the case in which 

~ and p are real. The case of complex constants is considered in the next 

section. 

First, we may set ~ = 1 because it is merely a scale factor. 

Second, the m~gnitude of J3 must not be greater than unity for Wl(s) is 

then unstable. If I~t ~ 1, the typical term is stable. 

To.determine the loci of typical terms .oftheform (3-11), we need 

only apply SOMe of the rules of the loci of complex functions. First, note 

that the locus of I + ~ e-j~T is a circle of radius 1131 centered at the 

point (1.0). To find the locus of W1(jro), the inverse of a circle must be 

found. If Ipl -= 1, the circle (I + e-jcoT) passes through the origin, 

and its inverse is a straight line parallel to the imaginary axis. If 

1f3/Ll, the circle does not pass through the origin, and its inverse is 

another circle. The loci of two stable first-degree partial fractions are 

shown in Fig. 3.2. 

1 
1 

1 
a. W( s) = I • 0.5 e -aT 

I b. 

Figure 3.2 Loci of First-Degree Partial Fractions 
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3.23 Second-Degree Partial Fractions (complex roots) 

If a typical term, 

= 0< 
1 + ~ e-sT , (3-12) 

-sT in the partial fraction expansion of a rational function of e has complex 

constants, there will be another ter.m~ 

(3-13) 

in the expansion whose constants are the conjugates of those of Wlfs). 

(The ast.erisk means conjugate.) Both WI (s)' and W2(s.) will be stable if and 

only if I ~ I L 1. If the rational function has real coefficients (as in 

practical problems) the ~erms such as Wl(s)and W2(s) must come in pairs. 

Add the two and obtain a typical s~cond degree partial fraction with real 

coefficients. 

( *) * *\ -sT w
3

(s) -= W. (s) + W (s) = 0( +0<. + (all! .. oL PJe 
1 2 1 + (~ + ~*) a-sT + ~~* e-2sT ()-14) 

In this section the discussion is restricted to second-degree partial fractions 

-sT whose denominators have complex rOQtsof, e 0 To simplify the analysis, 

w3(s) can be written ,as, 

(3-15) 

which differs from (3-14) by only a constant multiplying factor. 

To insure that the roots of the denominator of (3-15) are complex, 

b1
2 ~ 4b2o With this condition imposed on the constants of the ~enominator 

of ()-lS), it can be considered a basic building block of a program transfer 

function. 
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Now let us consider the stability of such a building block. 

w3(s) will be stable if and only if both Wl{s) and W2(s) are stable. A 

comparison of (3-14) and (3-1,) shows that, 

(3-16) 

Therefore, the necessar.y and sufficient condition for the stability of 

W
3

(s) is that, 0 < b2 ,,1. We may combine this with the condition for 

complex roots in the de~ominator of W
3

(s) and obtain, 

(tr <.. b2 < 1 (3-17) 

as the necessary and sufficient condition that insures stability of W
3

(s) 

and complex roots of its denominator. 

In Fig. 3.3 there are plotted three loci of building blocks 

of the form (3-1,). All three are stableo It should be observed that by 

changing only the numerator of the transfer function, three completely 

different loci have been obtainedo 

By adding building blocks of the form discussed in these section~, 
, ", ,",,'.;;' 

a desired frequency characteristic can be synthesized 0 The synthes~B of 

a differentiating program is discussed in a subsequent section. 
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-sT 
(a) 1 - 0.8e 

1 - 0.8e-sT + 0.4e-2$T 

11 

4 

1 - 0.4e-aT 
(b)--------~----~~--

1 - 0.8e-sT + 0.4e-2sT 

Figure 3.3 Loci of Second-Degree Partial Fractions 
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.3.3 Realization of Programs From Their Transfer Func,tions 

The purpose of this section is to develop and compare methods by 

hi h b d f f t o -sT h h· w c a program can e erived rom a rational unc ~on z ., e ~ ic ~s 

the transfer function of the program. How this rational function is arrived 

at in the first place is the concern of the last section of this chapter. 

3.31 General Considerations in ProsramRealization 

In choosing a particular method of programming, one may consider 

the following factors: storage requirements and time requirements., To a 

certain extent ODe of these requirements can be reduced at the 'expense 

of increasing the other and the optimum method will depend on the particular 

application. It is necessary, therefore, to make available various possible 

methods of programming and to form some idea about the requirements of each; 

intelligent program realization can then be adapted to each application. 

In the consideration of storage requirements of linear programs, 

it is convenient to distinguish three types of ' storage: data storage, oonstant 

1 storage, and instruction storage. The data are the successive sampled 

values of input and output. The complexity of a program is closely related 

to the number of constants and to the age of the data to which the program 

refers. The progran can be divided into arithmetic and manipulative parts. 

The number of arithmetic opera,tions involved is roughly proportional to 

the number of constants, each implying a multiplcation (of apiece of data 

by the constant) and an a.ddition (of the product to the other terms). 

The number of manipulative operations is related to the "age" of the oldest 

1 
It is understood that in a general-purpose computer there is no physical 
difference between the stora.ge registers containing numbers or instructions, 
and any register may hold either kind of informationo The distinction 
made here is only for the purpose of discussion. 
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data used, where age is expressed in terms of sampling interval,s 0 All 

"younger" data must also be stored even if not used at each calculation 

(the corresponding constants being zero), for eventually they will become 

the oldest data. After each calculation of a new output value, the manipulative 

instructions shift each piece of data to a storage location at which an older 

piece of data has been, the oldest data being lost. The manipulative program 

is seen to rearranga the data storage in such a manner that at the new sampling 

point the!!!! arithmetic program will calculate aE!! output value. 

The time requirement of a program is the product of the number of 

instructionsHto be carried out and the average duration of an instruction. 

The latter factor depends on the physical characteristics of a particular 

computer and is more or less fixed; the number of instructions performed 

in sequence, however, depends in part on the manner of program realization. 

In each particular realization a significant trading of time for storage 

is possible by so-called cyclic procedureso One notes that often the calculation 

of each term in a program involves the same sequence of arithmetic operations. 

The simplest and fastest procedure is to store as many of these sequences 

as. there are terms to be calculatedo Considerable storage may be saved, 

however, by storing these instructions only once and cycling through them as 

many times as there are terms to calculateo Unfortunately, the time requirement 

increases considerably, for in each cycle the addresses of the instructions 

must be adjusted to make them refer to different storage locations for different 

terms and the number of cycles must be counted to permit t$rmination of 

the cycling process. 

The following sections and related appendices will serve as specific 

illustrations of these considerations in programmingo 
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3.32 Direct Regression or Direct Programming 

The starting point of our realization procedure is the general 

expression for the transfer function of a linear program, 
-sT . -2sT -msT 

ao + ~e + a2e + 00. + Qme . 

W{s) • T 2 T -nsT • 1 + b e-s + b a-' s + + b e 1 2 ••• n 

(3-18) 

In order to interpret a program in the time domain it is necessary to eliminate 

fractional expressionso The most straightforward way of doing this follows 

directly from (3-18). From it we can obtain 

..J ) . -msT) "'() (- -sT O( s = (aO .. 0 o. + am e I s - bl e + 0.0 
-ns T) "'"'I } +':.b e 0\8 • . ,n 

The inverse transform of this expression is 

'5(t) = vet) + ~i(t .... T) + 0 •• + am~(t -' mT) - b{O(t - T) 

- 00. CD b -cf(t - nT), 
n 

(3-19) 

()-20) 

where oCt) and1[(t) are impulse-modulated (sampled) time functions having 

~he value zero everywhere except at the sampling points. In terms of some 

continuous functions o~t) and f(t), which agree with the area-values of 

oCt) and:1(t) at the sampling points, (3-20) is often written as 

oJ" = a i. + a. i. 1 + 0 0 0+ a i 0 - b10. 1 - '. ~ 0 - b 0 , o J 1. J- m J-m .. :1 J- n j-n (3-21) 

where j signifies particular sampling point and j-k thek-th preceding sampling 
} . 

point. Eq. (3-21) is more familiar to the numerical analyst than (3-20), 

but the two are entirely equivalent and are called regression formulas. 

These equations state that the present result (output) is computed by a 

finite linear c~mbination of the present and past input values and of 

past results (output v~lues)o 
: .~,}:i . 

Several characteristics of regression formulas should be observed. 

If the right side of (4-20) or (4=2l) has at least one non-zero bk, then 
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the present output depends on at least one previous output, which in turn 

depends on an output further back and so on. It follows that the present 

output value is affected by output values as far back as the start of the 

problem and therefore, also by input values that far back. Thus regressing 

to a finite number of output values corresponds to regressing to an unlimited 

number of input values. This aspect of the regression equations is important 

and will be further emphasized in the following sections. 

Interesting conclusions can be drawn concerning memory requirements 

on the digital computer by considering the actual programming of the regression 

formula, (,3-21). Assuming that none of the coefficients ~ and bk are zero, 

one can easily see that in order to calculate a new output value OJ' when 

a new input value i. is received, m previous input values and n previous 
J 

output values will have to have been remembered, requiring m + n memory 

positions for data where m and n are the subscripts of the last non-zero 

coefficients, and furthermore, it is necessary to store all these data even 

if some other coefficients are zero because at the next sampling point 
./ 

the same pieces of data will be associated with different coefficients. 

It can be stated that, B.t least when programining is done by the 

illustrated direct regression meth,,4~ the data memory consists of m + n 

registers (memory positions) where m and n are the degrees of the numerator 

and denominator polynomials in z ~ e-sT of the program transfer function W(s). 

Actually this data storage requirement may be reduced, as will be shown in 

Sections 3.33 and 3.34. 

To be able to make comparisons between the various synthesis 

procedures it is necessary to do the actual programming. This exercise 

is left to the appendices, and the results will be compared after the 

other synthesis procedures will have been discussed. In Appendix B the 



Report R-225 =43-

arithmetic and manipulative parts of the direct regression program are first 

constructed separately; then a new more compact program is shown which inter-

leaves the arithmetic and manipulative instructions. Although the Whirlwind 

code is used, the results and conclusions can be considered quite general 

in view of the fact that the instrUction complements of most general-purpose 

digital computers are conspicuously similar. 

3.33 Cascade Programming 

-sT lfthe numerator and denominator polynomials in Z • e are 

factored, C4-l8) takes the form 

(3-22) 

where -(lick) and -(l/~) are the roots of numerator and denominator 

respectively, when considered as polynomials in Zo Because the coefficients 

~ and bk of these polynomials are real, the ck and ~ will also be real 

or will come in conjugate pairs. At any rate, it is possible to group the 

monic factors of ()-22) in some manner 

where each Wk{s) is of a rational form in z having a numerator and a 

denominator of not higher, degree in z than W(s) itself has. 

(3-23) 

The form of (3-23) reminds one of the transfer function of cascaded 

linear units in a servo sy-stemo Cascading means that the output of one 

unit becomes the input to the next oneo There is no difficulty in using 

the same interpretation to define cascaded programso At every sampling 

point the output of each regression equation is used in calculating the 

o~tput of the next one. 
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To be more specific, let us assume that: (1) W(s) is a proper 

rational fraction in z, that is, m < nl; (2) all roots -lick and -l/~ 
are real and distinct, since generalization to the case of conjugate complex 

roots turns out to be direct; (3) a = 1 in order to avoid its nuisance 
o 

value in the discussion2 o With these assumptions it is possible to have 

p = n in (3-23) with the denominator of each Wk(s) being a single monic 

factor in Zj that is, 

-sT 
1 + oke 

~sT 9 
1 + ~e 

(3-24) 

where ck mayor may not be zero, but ~ I 0. There are n factors of the 

type (3-24) each representing a simple regression equation. In m of 

the factors ck 1 0, in the other n-m factors ck = O. The data storage 

associated with each Wk(s) equals 2 when ok f 0, and 1 when ck • 0.3 

However, the input data that must be stored when ck I 0, is also the output 

data that had to be stored for the preceding cascade program Wk_l(s)j 

consequently, there is only one data to be stored for each Wk(s) regardless 

of the. value of ck' except for the first one WI (s) 0 But when m < n (proper 

rational fraction), one ek - 0, say cl = 09 making the total required data 

1 If m.,) n, W{s) can be written as the sum of a polynomial and a proper 
rational fraction in z = e-sT. The prograun corresponding to the polynomial 
part is a simple linear combination of input values. Discussion of this 
case is omitted without any serious loss of generality. 

2 If aO F 1, only a simple mult~plication has to be added to the programo 

3 Each Wk(s) is the transfer function of just a regression equation and 

its data storage is the sum of degree of numerator and denominator, as 
discussed in the previous article. 



Report R-225 -45-

storage nj a material reduction over the m + n data needed in direct regression 

programming. 

In order to translate the cascade scheme into an actual program, 

we may proceed as follows. First, we write (3-23) (with p == n) in terms 

of input and output transforms, as 

(5(s) _ 01 (s) 

-
I(s) ~(s) 

• o;(s) • 

~(s) 
••• 

oCs) 
• _n_:_ 

T ('s) 
n 

One way of making (3-25) an identity is by letting 

which make 

Ii (6) == l(s) 

I;(s) :I 0;. (s) 

"-

I
3

(s) == 0;(,)' 
• 

• 

• 

a(s-) == 7f (s). 
n 

Using the relations (3-25) and (,3-26) we obtain 

Goe o ---
0. l(s) n-

• 

(,3-26) 

(,3-27) 

The various factors equal the respective progr.am transfer functionsj namely, 
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0;. (s) 
Wl(s) = 1 = 

1 + ~e-ST T(s) 

°2(s) 1 + c2e -aT 
W

2
(s) = - = 

1 + d e-sT o;.(s) 2 (3-28) 

• 
• 
• 

o(s) 1 + c e-sT 
__ '. = W Ce) n = -sT 
0n_l(s) n 1 + d e 

n 

where m of the ok are not zero. Multiplying by the denominators changes 

the set (3-28) into 

(1 + ~e-ST)()l(S) ~][(e) 

(1 + d
2
e-eT) '02(s) = (1 + c

2
e-ST) 0;, (s) 

(1 + d
3

e -sT) o;<s) = (1 + c
3
e-ST) (1'2(s) 

o 
(3-29) 

The inverse transform of the foregoing set, with one term of each equation 

transposed to the right side, is the desired set of regression equations • 

.. ~OJ. (t-T) 

02(t) = 01 (t) + 0 20;. (t-T) - d2O'2(t-T) 

o;<t) * o;(t) + 0302 (t-T) - d3Oj(t-T) 

• 
e 

• 
ott) = 0 l(t) + e 0- l(l...,T) - d o{t-T) 

n~ n n- n 

(3-30) 
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The detailed coded program corresponding to (3-30) is shown in Appendix C. 

Cascade programming, although not referred to by that name, is 

a familiar technique in numerical procedureso However, the clear-cut and 

general equivalence of the direct regression and cascade programming is not 

always well understood. Cascade programming arises naturally from the kind 

of thinking prevelant in numeric.al work. Consider the simple example of 

solving the second-order differential equation, 

(3-31) 

The derivatives may be considered as the separate variables, y'{t) and 

y"(t); then we obtain the following three sampled functions: 

y"(t) = -~y( t·· - '1') 

yf (t) - 'l'y."(t) + yf (t - '1') 

y(t) = Tit (t) + yet - '1') 

(3-32) 

where the first equation of the set is derived from (3-31) while the second 

and third are elementary first-difference extrapolations. The set (3-32) 

indicates cascade programming because the output of the first equation is 

in the input of the second, and the output of the second equation is the 

input to the third. The peculiar thing in this case is that the input 

to the first equation is not an independent function but directly related 

to the output of the last equation& ,This feature establishes the constraint 

imposed by the differential equation: 

The Laplace transform of the set (3-32) is. 

-sT ......... yn = _ e Y 

Y' = TY" + e-sTy

Y = IT + e-sTy-

(3-33) 
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from which the explicit relations between inputs and outputs are obtained 

as follows: 

yn -sTy 
• - e 

I' 1:1 

I • 

T ytt 
1 -sT - e 

T Y' -aT 
1 - e 

For realization by three cascaded factors, we have 

W
2
(s) = T 

1 _ e-sT 

W
3
(s) = T 

-sT 
1 - e 

(3-35) 

It is clear that a single transfer function can be made to replace the 

cascaded system of three; thus 

W(s) 1:1 W1(s)W2(s)W3(s) 

_~T2e-sT 

W(s) == ---~-~-
1 _ 2e-sT + e-2sT 

The corresponding regression equation is simply obtained as 

yes) == (2 - ~T2)e -sTyes) == e -2sTy(s). 

The inverse transform of this equation is 

Ytt) - (2 - ~'1'2)y(t - '1') -:r(t - 2T)o 

(3-36) 

(3-37) 

(3-38) 

which could have been otained from (3-32) by the elimination of y' (t) and 

yn(t), but even in this simple case the process of elimination in the time 

domain is pot direct. 
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The fact is that in numerical work a cascade method such as (3-42) is 

much more generally used than the direct regression of (3-38). Often there 

is good justification for this preference; for instance the values of the 

first and second derivatives may also be neededo However, when such or 

similar justifications do not exist, the direct regression may turn out to 

be simpler than cascading. In the present example, (3-32) calls for one 

more constant, two more multiplications and one more addition than (3-38). 

If the first two equations of the set (3-32) are combined, one multiplication 

is saved; furthermore, the manipulations in the direct method happen to be 

more awkward. Because in this case the input and output are the same quanti ty 

the formulas of Appendices B and C are not directly applicable, the requirements 

of the t-.o methods must be determined by actual trials. 

3034 Parallel Programming 

l·r the tr ansrer function of a program. is expanded by partial 

fractions in terms of z, (3-18) take.s the form 

+ 
f2 

-----=Tr"- + 000 + -s 
1 + ~e 

f 
n 

i + d e~sT 
n 

(3-39) 

as long as m ~ no Thus, the transfer function W(s) is replaced by the 

sum of a nuniber of simpler transfer functions; namely, 

where some of the Wk(s) may be the combination of several partial fractions, 

but all are of lower degree than W(s) itself. 

The torm of (3-40) may remind one of parallel combinations of 

network admittances. Paralleling means that the same input (driving voltage) 

is applied to all component admittances and the output (driving-point current) 

is obtained as the sum of individual outputs (current through each admittance). 
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The same interpretation can be applied to parallel programmingo The programming 

will involve p regression equations all using the same input values, and all 

their outputs adding to produce the desired over-all output. 

To arrive at a more specific interpretation, we first make a few 

restrictions again: (1) W(s) is a proper fraction, ioeo, m <: n, and (2) 

the roots of the denominator polynomial are real and distinct. Then all 

constants fk and ~ of (3-39) are real and in (3-40) p can equal nj more'over, 

each term of (3-39) is a simple regression equation involving two eonstants 

and one data storage. Thus, the total number of data to be stored is only n. 

Just like in the case of cascade programming, the lower requirement for data 

storage of parallel programming. may be a great advantage over the direct 

programming methodo However, this feature does not mean that parallel or 

cascade programming should always be employed in preference to direct 

programming. For instance, there is the case when m = OJ ioeo, the numerator 

of W(s) is 1 (or ao). Of the input values the program uses only the present 

one and the total data storage is n regardless of the programming scheme 

used; on the other hand, the number or constants will be n for the direct 

and cascade method, but 2n for the parallel method, putting the latter at 

a disadvantag~ 0 Similarly, if the denominator of the over-all transfer 

function lacks several terms (say, the denominator is 1 - b e-nsT), then 
n 

factorization of the denominator introduces all terms, making the cascade 

and par~lel program much longer than the direct program. Another factor 

which may militate against the use of parallel programming is the presence 

of multiple roots in the denominator. If a root is of multiplicity r, • 

it may produce up to r terms of degrees r, (r ... l), 00.2,1 (the r .... degree 

term never being absent) in the partial fraction exapnsion, but the same 

root will require only one r=degree, or r first=degree, cascaded factors. 
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In order to interpret the parallel method of programming, we 

proceed in the usual manner~ For the various terms of (3-40) with p • n, 

we write 

and 

0: r w. (s). 1(s). 1 
1 I{a} 1 + ~e-ST 

• 
• 

1 + de-aT 
2 ' 

• 0' (a) :r w (s) • _n_· _ • n 
n "I (a) 1 + d e -sT 

n 

O(s) W(s). - 0 

T(s) 

Cross-multiplication by the denominators in (3-41) yields the set 

-sT ,.., i..-

(1 + d2e )02(s) = £21(s) 
! 

o 

o 

o 

-sT --- -(1 + d e )0 (6) • r I(s) n n n 

while in view of (3-41) and (3-42), (3-40) can be written as 

(3-41) 

(3-42) 

(3-43) 

(3-44) 
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The inverse transforms of {3-43} and (3-44) yield the desired set of 

regression equations, which follows. 

<tl (t) = f1 ret) .... ~ a;. (t-:-T) 

1)2(t) • £2~{t) - d2112(t-T) 

• 
• 
• 

7) (t) • f ret) - d 0' (t-T) n n n n . 

(3-4,) 

The detailed coded program corresponding to (3-45) is shown in Appendix D. 

Parallel programming has not been generally used in numerical 

work. To the knowledge of the writer, the usual methods of numerical 

analysis do not naturally lead from a direct regression equation, which 

has reference to several previous input and output values, to a set of 

simpler regression equations, each of which refers only to the last 

input value and to a preceding1 output value 0 By the method of frequency 

transformation the parallel method is found quite directly. 

1 In case of complex <\ts in (3-39), a combination of two conjugate complex 

partial fractions in z will result in a slightly more complicated regression 
equation, involving one additional input and output. 
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3.35 Comparison of Programming Methods 

The purpose of this section is to compare the effectiveness of 

the various methods of program realizations based on the transfer 

functions of the programs. A complete general treatment appears too 

far-fetched and, therefore, this study is limited to a certain class of 

programs. Despite these limitations, which are discussed below, the 

investigation is surficiently general to show how the results can be 

used to improve the instruction code of a general-purpose compute.r or 

to design a special-purpose computer, when these are used in control 

applications. 

The three methods which will be compared are listed below: 

(a) direct programming, 

(b) cascade programming, 

(c) parallel programming. 

Other programming schemes may be derived from the rational transfer 

function W(s). One may carr.y out the long division in z of the numerator 

by the denominator until he arrives at a certain number of terms of the 

quotient. The transfer function can then be expressed as the sum of the 

quotient terms and of the remainder divided by the divisor (the original 

denominator). Any number of variations can be obtained by stopping the 

long division after different number of steps~ but only in the most unusual 

cases can this approach be expected to yield a more efficient scheme of 

programming than the three major methods discussed in the preceding sections. 
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Other schemes that are even more artificial than the long-division scheme may 

be derived, but no other general programming method has been found that gives 

promise of effectiveness comparable to the three which are considered. It 

is noted that in certain cases a combination of two of the three listed 

methods may turn out to be more efficient than anyone. An example of 

such a case is described belowo 

As the basis of comparison of programming methods, the requirements 

in storage and time are used. The particular application or purpose 4eeides 

which of these two factors should deserve moreiattentiono It is assumed 

that the complete sequence of instructions, as used at each sampling point, 

is stored; the possibility of cycling programs, which re-uses a short 

sequence of instructions for the calculation of each term, is not discussed. 

Essentially the Whirlwind I code is used throughout, but variations are 

considered. 

As a starting point we recall that the transfer function of a 

linear program is, 

W(s) ()-46) 

In general, m and n may be any positive intege~l and indeed, their relative 

sizes will hardly influence the comparisons to follow. Nevertheless, it is 

helpful to distinguish three cases~ 

1 

(1) n = O. ()-46) reduces to a polynomial in z = e .... sT; i.e., 

the new output value dependa oaly on present and 

past input values, not on past outputs also. 

Present .... day nume rical analysis abounds in numerical 

This is in contrast with networks where certain restrictions on the 
degrees of nurrerator and denominator polynomials often exist. 
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1 processes corresponding to this special case. 

(2) m < n •. (3-46) has the torm of a proper rational function 

of z in this case. In Sections 3.32, 3.33, and 3.34 

dealing with the various programming schemes, this 

case was assumed for the sake of simplicity. 

(3) m ~ n. The rational function in z of (3-46) may be called 

improper, but it can be converted to the sum of a 

polynomial (ease 1) and of a proper rational fraction 

(Case 2) in . -sT 
z =e 0 

In order that the storage and time estimates to be arrived at should apply 

to all cases, it is necessary to define the folldwitlg quantities with 

reference to (3-46): 

m = degree of numerator, 

n = degree of denominator, 

~ = one less than, the number of non-zero constants in 
the numerator (~~ n). 

~ = one less than the number of non-zero constants in 
the denominator (~~ n) • 

= one more than the excess of mover nj i.e., 
me = m-n+l when m ~ n, and me = 0 otherwise. For 

proper rational f.ractions m <: n andm = 0' e 
On basis of the coded programs shown in the appendices, the table of 

Fig. 304 summarizes the storage and time requirements in terms of the 

quantities just definedo This tabulation is more general than the results 

given in the appendices, for in the appendices it was al?o aS$umed that 

none of the constants were zero, that is, ~ = m and ~ = nj furtherm~re, 

1 Examples are numerical methods based on polynomial approximations with 
equidistant spaCing of the independent variable 0 Indeed, such example,s 
form not an insignificant portion of the available numerical techniques. 
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only ease (2) was treated making m = 00 On the other hand, in the tabulation 
e 

of Fig. 3.4 these restrictions of the appendices are absent, but the fol1o~ng 

assumptions are still made: the roots of the numerator and denominator 

are real and distinct, and the straightforward programming techniques of 

the appendices is used. Thus, the c(Xlstants stored are thos e that appear 

explicit1t in the various regression equations. Actually some saving in 

instructions would result from the use of certain ratios of these constants. 

For instance, the regression equation [2f. (6-4,17 

~(t) = f 1jl(t) - ~ol(t-T) 

take s six instructions, as shown in the coded program of Appendix D. 

If, however, (3-47) is written as 

-(t) f ril." (t) - ~ 
01 .= 1 L f1 ~(t-T~ , 

(3-47) 

(3-48) 

its coding would cost five instructions only, but certain questions on the 

relative sizes of the constants would arise 0 It seemed best to avoid such 

questions, because the considerations here are rather general and the value 

of a too-specialized treatment is questionable. 

The comparison of the three methods of programming can be undertaken 

bY' considering each item of Fig 0 3040 . Because of the straight sequential 

programming the time requirements are the same as the storage for instructions 

and, therefore, consideration of storage will give a complete picture. 

As far as the number of constants stored are concerned, the direct 

method is not worse than the cascade, which in turn is not worse than the 

parallel methodo This is so because in the direct method only the non-zero 

constants of (3-46) have to be stored, while factorization in the cascade 

case will produce as many constants as there are roots in Zo In the parallel 

method two constants (root and residue) are produced for each denominator 
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root and if the numerator is not of lesser degree than the denominator, 

further terms and constants result. As an example, consider 

W(a) = 

for which 

m = 1, 

n :II 4, 

1 3 -2sT + 1 -4eT 
-4"e 'B'e 

~ I: 1, 

~ = 2, 

m = 0 
e 

(3-49) 

According to the table of Fig. 3.4 the various constant storage requirements 

are 

direct: 

cascade: m + n + 1 = 6 

parallel~ 2n = B 

These figures can be simply checked. In the direct case the four constants 

are apparent in (3~) 0 For the cascade case, the transfer function is 

wri tten as 

5 1 -sT 
W(s) = 1 1 1 '8"-[e 

(3-,0) 1 -sT • 1 -aT 0 1 -sT 0 1 -aT , 
1 ... ~e 1 ., - e l+-e 1 - - .. e 

ff V2 ,2 .2 

and the six constants in question are~ +1/(2, -1/(2, +1/2, -1/2, +5/8, 

and -1/40 The manner of programming illustrated in Appendix C actually 

necessitates the separate storing of positive and negative constants, 

even though bfthesame magnitude. 

For parallel programming W(s) of (3-49) is expanded in partial 

fractions in terms of z and takes the form 



Report R ... 225 

W(s) = 

, + 21/2 
a 

1 -aT l+r: 
9 

- 10 
1 -eT 

1 + '2 e 
,+ 

, - 2V2 
+ 

B + 1 -aT 1 --e 
V2 

The eight constants to be stored are evident in the foregoing ,quation. 

The next item of comparison is the data storage, for which the 

above example reads, on basia of Fig. 3.4 

direct g m + n = , 

cascade: n = 4 

parallel: n • 4 

These figures can be verified in the three foregoing equations. The numerator 

of (3-49) indieates that one past input value (corresponding to the e-aT term) 

must be stored; the present input i8 used as it arrives and then stored 

as the past input for the next calculation, as shown in Appendix B. Thus 

the numerator implies one data register onlyo Similarly the denominator 

-sT implies the storage of four past output values, even though the eand 

e=3sT terms are absent; for the corresponding past outputs must be remembered 

for the next calculationo 

For the cascade method, (3=50) seems to indicate five past data 

-sT /. - . to be remenberedj however, the e term of the last numerator re~i.f~:tO·· 

a past input that is also the past output of the preceding factor, since 

in cascade programming the input of a component program. is the output of 

the previous one. 

In case of parallel programs the four past data are quickly 

identified with the e""8T terms of (3 ... ,1)0 
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The expressions for instruction storage and for time requirements 

are identical, and produce the following tally in the present example: 

direct 8 

cascade~ 

parallel~ 

2(m + ~ + n + ~) + 7 - 23 

3m + 4n + 6 - 2, 
7n + 4· 32 

No verification of these figures is carried out by detailed coding of the 

programs because the appendiges cover the general case. The advantage 

seems to be on the side of direct programming as far as time is concerned, 

but this advantage is slight and arises from the fact that in the present 

example two denominator constants are zero'. An advantage of direct programming 

appears also in the total storage requirements for the same reason: 

direct·~ 

cascade: 

parallel: 

4 + 5 .. 23 • 32 

6 + 4 + 25·+ 1 = 36 

8 + 4 + 32 + 1 • 45 

This example, as well as the tabulation of Fig. 3.4,~indicates 

the disadvantage of parallel programmingo It seems that this kind of 

programming may have an advantage over either of the other two in certain 

cases, but hardly ever over both at the same timeo Thus, the choice narrows 

down to direct and cascade programs, or possible combinations thereof. 

To show how a combination of methods may be used, we write (3-49) as 

W(s) = 1 (3-52) 

which indicates a cascade combination of two direct programs, for which 

respectively 
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m =0 m -= 1 

~= 0 ~ • 1 

n = 2 n • 2 

~ 
.. 1 nk .. 1 

Me • 0 m \III 0 e 

The direct program of each cascaded component is somewhat simpler than it 

would be for two separate direct programs because the input and output devices 

are manipulated only once for the composite program, rather than once for 

each component programo ~is saving amountsto six instructions, thus the 

instruction storage or ti~ requirement is: 

first compQnents: 2(m + ~ + n :+ ~),'+ 6 = 12 

second components: 2(m + ~ ~ n + '~) + 6 = 16 

saving as indicated above -6 

total instructions '22 

Four constants appear in (3-.5.2), two of which are accidentally identical, 

and one of which is made 1; thus, the constant ,stor!!ieis: 

first component~ ~+ ~ + 1- 2 

saving • -1 - 1 

second component: 

saving =-1 2 

total constants 

A saving arises in data memory also, because the past input of the second 

component is also the past output of the first oneo This gives the following 

need of ~ storageg 
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first componentg 

second component: 

saving 

m + n • 3 

m + n = 3 

-1 

4 

The results of this example are summarized in Figc 305, which shows a small 

advantage of the mixed method over the direct one. 

To pursue further the detailed comparison of these various methods 

of programming would lead to undue specializations in the Whirlwind code and 

to results of doubtful general valueo The illustrated attack on the 

realization problem, however, shows how a useful estimate of the complexity 

of coded programs can be gained from the evident properties of their transfer 

functions 0 Three further problems will be touched on briefiyg (1) computing 

delays,9 (2) means of using the results to select -computer codes; and (3) 

means of using the results to design special-purpose computers. 

A consideration that has been omitted in our discussion is the 

delay incurred through-the computation itselfo If a digital computer is 

used as part of a number of control systems =- say, 50 systems --, then 

in each sampling interval it performs 50 computations, one for each system. 

The time of a computation is then at most 1/50 of the sampling time, T, 

and this delay is presumably negligibleo If, however, one digital computer 

were used with each system, the computation may and, for the sake of efficiency, 

should take an appreciable part of the sampling time 0 Such' a delay would 

be very serious and the computer would have to perform a prediction in 

addition to the required compensationc In turn, this would lengthen 

the program, make it less effeGtive~ and may even force a longer sampling 

timel indeed~ in a marginal case~ in which the original compensating p~ogram 

had a delay nearly as large as the sampling time, the effect may become 
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cumulative, since a longer sampling time would in turn require a better 

and longer program j and so ono In such marginal cases and in any case in 

which the computing time is not negligible with respect to t he sampling 

time j the direct programming has a tremendous advantage over all other 

,methodso A glance at the direct regression equation (3-20) shows clearly 

that all terms but the first one on the right side of the equation can 

be computed before the new input value is obta1nedol The computing delay 

will thus be the time of merely calculating the term, a 1'(t), and adding 
o 

it to the already prepared partial resulto This delay may conceivably 

be negligibleo 

All realizations of real-time linear programs involve accumulation 

of products as their arithmetic :action and the transfer of data from one 

register to another as their manipUlative actiono In case of a single-address2 

instruction code, such as that of Whirlwind, the ~ (exchange) operation3 

was shown in Appendix B to be very helpful in improving the efficiency 

of the codeo other improvements are possible by incorporating special 

Operations which facilitate the particular type of programs on hando 

Computers using multiple-address codes could be particularly efficient in 

such applicationso For instance, in a three-address code an instruction 

could locate a constant, a piece of data, and transfer .that data to a 

third address j after which it would multiply the con,stant and data 

1 The second composite program fn Appendix B is written in this mannero 

2 Each instruction specifies an operation and the storage address of a 
single operand 0 

3 This operation exchanges the contents of the accumulator register with 
the ~pecifiedstorage registero Thus, one instruction performs a double 
duty by obtaining new data from storage and also transferring to storage 
a partial result~ 
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accumulating this product with the partial result always left in the arithmetic 

element of the computero This single order would complete both the arithmetic 

action (accumulation of products) and the manipulative action (transfer of 

data to an "older-data" register) associated with one term of a regression 

equation 0 

Similar considerations allow one to adapt special-purpose or 

fixed-program digital computers to control specificationso To be somewhat 

specific we assume that the computer is used as part of a single control 

system and will have to perform only one computation in each sampling periodo 

The computer would not operate appreciably faster than one computation per 

sampling period and in order to minimize the computational delay it would 

follow a direct regression programo In order to keep such a single-system 

computing equipment from becoming excessive, a seriall computer would 

probably be usedo The program or the computer would be fixed to correspond 

to a direct regression program of certain complexity as defined by the 

de~rees of m of the numerator and n of the denominator of the program 

transfer functiono The constants. could be set manually on toggle switches 

or relays, or they could be stored on the same high-speed storage device2 

on which the data are storedo A serial adding unit with proper switching 

equipment would allow the multiplication of constant and data (by repeated 

additions) and the addition of such product to the accumulated partial 

result 0 The physical size of such a digital control unit may be quite 

feasible in certain applications and the design of such a simple special-purpose 

digital computer would be particularly justified if the incoming data were 

sampled and digital to start witho 

1 A serial computer operates on each digit of a number 1n sequence; thus, 
the equipment i·s not duplicated for each digit. 

2 Magnetic-drmn memory, for instance. 
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304 Synthesis of Programs in the Frequency Domain 

3041 General Synthesis Procedure 

The synthesis of computer pro.grams in the frequency domain may 

be b:roken down into the three following stages. (1.) specification of the 

desired frequency characteristic or lous of W(jeo), (2) approximation of 

the desired locus by a realizable program transfer function, and (3) 

realization of the program. One way to determine the desired locus is 

from the Laplace transform of the operation the computer is to perform. 

The second step is the difficult part of the problem. The desired frequency 

-aT characteristic must be approximated by a rational function of e • No 

gene ral rules are available i"or making this approximation, but before 

making the approximation, one should gain some experience in analyzing 

program building blocks in the complex: plane 0 Possibly the most systematic 

approach, at present,' to the approximation problem is to make successive 

approxima. tions to the desired charac.teristic, using the basic program 

building blocks of Section 3.2. The third step involves only a straight-

forward inverse Laplace. transform. As an example of program syhthesis 

in the frequency domain, a program i"or differentiation will now be synthesizedo 

3042 Synthesis of a Differentiation Program 

An ideal differentiator establishes the following relation between 

input and output: 

OCt) d 
=: Cit 

i(t) 
o 

Disregarding initial conditions, the Laplace transform of (3-52) is 

HCs) = O(s) = s, 
I(s) 

and this is the desired transfer function. For s = jc.o, Hfa) becomes 

C3-54) 
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So the locus of the desired transfer function is the imaginar,y axis. This 

completes the first step of the synthesis procedure. 

I,:The second step is to find a rational function of e -sT that 

approximates this locus. This approximation is to be made by geometric 

considerations based on the desired locus. In this particular eXSJIIPle it 

is also possible to employ analytic considerations based on the desired 

transfer function of (3-,4). It so happens that in the present case the 

analytic approach is simpler; nevertheless, the geometric approach is shown 

first. 

The crudest numerical approximation to a first derivative 

is the first divided difference. 

'O(t) = l(t) -1'(t-T) 
T 

The Laplace transform of (3-55) is 

~ 1 -sT 
ata) = I(s~. - e 0 

T 

Thus the transfer function of the dif~erencing process is 

w (s)ots) 1 - e-
sT 

o = I( ~ ), = , T • 

(3-55) 

(3-56) 

(3-57) 

Fig!) 3.6 shows the locus of W' ,(jco) and compares it .with the desired one • .0 . , 

At low values of roT (1".e1, when' the frequency of the input function is :Low 
. ~i(t) -i(t-T) 

• s .... locus i(t) dl T 
2' 1, .... a-aT em -"""="'-- -locus 

T i(t) 

Ji 

4' 

t 

Figure >e6 Comparison of first derivative and first difference operators 
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with respect to the sampling frequency) the two loci agree reasonably well. 

If we could straighten out the circular locus, we would have a better 

approximation of the desired locus. Figure 3.7 illustrates a geometric 

construction that straightens out the locus and gives us ideal phase 

characteristicso 

2 I _ e-s'!' 

~ i .. e-sT 

di(t-T) 
dt let) - i(t-T) 

T 

diet) 
dt -sT 

- e 
T 

~----~~~----.---------------~t 
(a) Frequency domain (b) Time domain 

Figure 307 Derivation of an ideal phase; realizable differentiation 

operator 

The vectors (l/'!'){l - e-j~,!,) and (1/2)(1 + eCDj~,!,) are drawn for 

a particular frequencyo Using the geometric rule that a triangle inscribed 

in a semicircle is a right triangle, one can readily show that /ell + 'pi 
o add up to 90 0 However, since 0( is a positive phase angle, it must be 

subtracted from p (which is negative) to give a resulting angle of _90°, 

which is the phase of an ideal integrator. It follows that division of 

the ~-locus by the 0( -locus tdll y:i:eld an ideal-phase formula. The 

resulting transfer function is 

I 
-sT 

- e 

I 
... sT' .. e 

(3-58) 
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which has the desired phase in the'range, 0 LooT ~ffo The interpretation 

in the time domain is both plausible and illuminating. The inverse transform 

of (3-58) shows that, 

-wet) + a'(t - T) I(t) - i(t-T) 
2 • T (3-59) 

(3-59) states that the average of the derivatives at two neighboring 

points is approximately equal to the divided difference for those points. 

It is interesting to note that the s~e approximate transfer 

function~ (3-58), can be obtained analytically based on a rather good 

o t" f -sT approXl.ma 10n or e • 

T 
~l - 1

2
. sT 

.oS = 
e ----

1 
1 + 2' sT 

Solving (3-=-60)- for s yields 

-sT , ....... 2l-e 
s = - • 

T 1 + e-sT 

(3-60) 

(3-61) 

Although in this particular case the above analytic approach is 

simple and fairly accurate, its general use has certain drawbacks. The 

most obvious one is that the rational function of Us" to be approximated, 

which in the present case is "s" itself, is in many cases not explicitly 

knoW'n,9 rather it may be obtained as an approximation to a desi.red locus 

or amplitude and phase response. Then to approximate the ra.tional 

function of "s", which itself is but an approximation, by a rational 

=sT function of e puts the designer on shak,r grounds, and it might lead to 

far more involved programs than necessar,y. There is no substitute to 

going back to the original specifications and designing directly on their 

basiso Another disadvantage of the above analytic approach is that it 

is not general. One could replace all usn by the approximation (3-61), 

but how one would get a better solution is not obvious. 
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We have an approximation of the differentiation operator, so the 

next thing to do is see how good it iso Since the desired locus and its 

approximation lie along the same path, a locus study does not give a good 

comparison 0 In such a case separate amplitude and phase plots can be studied. 

For s = joo, W2{s) becomes 

(3-62) 

which verifies the previous statement that W2(joo) has ideal phase characteristics. 

Hence, it is sufficent to study the amplitude characteristic only. 

therefore, 

H( jco) = jOOj 

W
2

(jOO) 

H(jro) = 

roT 
tanT 

roT 
2 

(3-63) 

o (3-64) 

Thus we see from (3-64) that the ratio of the approximate function to the ideal 

one is always greater than unit yo Figure 308, a plot of the amplitude 

characteristics, shows us that for low values of coT, say for roT ~ ~2 ' the 

(1) H(jro) = mT 

(2) W2(joo) roT = 2 tan -2 

(3) W3 ('jco) I: 1.814 t coT an 2 

ft 

Figure,308 Comparison of amplitude characteristics of Differentiating Operators 
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differentiation program will give quite good accruacy. For certain control 

applications, values of ~T up to ~ or even ¥ might give acceptable accuracies. 

An examination of the amplitude characteristic of W2(s) in Fig. 3.8 

reveals that if W2(s) is multiplied by a constant, which is slightly less than 

unit, we will obtain a better derivative on the average. The new transfer 

function is 
-sT 

W
3
(s) = C W2(s) = C; 1 - e_ST • 

1+ e 

Let us arbitrarily choose C so that W
3
(s) = H(s) for sT • j~. Then, 

(3-6,) 

2 C tan ~ = j ; (3-66) 

so 

If 
C = ----11' 

6 tan b 

The implUved transfer function is 

w (s) = 1.814 
3 T 

-sT 
1 - e 

= 0.907. 

1 + e -s'f ' 

and its amplitude characteristic is also shown in Fig. 3.8. 

(3-67) 

(3-68) 

Both curves 2 and 3 of Fig. 3.8 accentuate high frequencies which 

may be present at the input because of noise 4t. . In this case, a transfer function 

whose amplitude characteristic is like that of curve 4 would be a more desirable 

approximation for differentiation. 

The inverse transform of {J-68} completes the synthesis of a 

differentiation program. The result is 

O(t) = ~ [t(t) - 1(t-T>] - o(t-T). (3-69) 

The accuracy of this differentiation program may be determined from ;Fig. 3.8, 

Curve 3. 
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CHAPTER IV 

FREQUENCY ANALYSIS OF SOME NUMERICAL INTEGRA. TION FORMULAS 

In this chapter we apply the methods of frequency analysis to 

several numerical integration formulas: the trapezoidal, Simpson's 1/3 

rule, Simpson's 3/8 rule, and Weddle's rule. Frequency analysis is 

applied to determine the stability of these formulas, compare 1:heir ac

curacy, and compare their transfer functions with that of the ideal 

integrator. 

401 Numerical Integration 

In the numerical integration of definite integrals, the range 

of integration is divided into a convenient number of equal intervals, 

and the values of the integrand are defined only at the ends of these inter

vals o Essentially this is the same as sampling (or impulse modulating) 

the integrand. Let the distance between samples be T. To obtain an 

approximate value of the integral 'We may determine an nth order polynomial 

that passes through n + 1 of the sampled pOints and integrate the poly

nomial over the corresponding range, repeating the process until the com

plete range of the original integral has been covered. If the sampled 

points are joined by straight lines, (approximation by a first order of 

polynomial) the resulting integration formula is Imown as the trapezoidal 

rule (each interval of the integrand is approximated by a trapezoid). 

Joining the points in each group of three sampled points by a parabola 

lea.ds to an integration formula mown as Simpson's 1/3 rule. If the 

points in each group of four sampled points are joined by a cubic curve, we 
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get Simpsoni s 3/8 rule. The trapezoidal rule and Simpson's 1/3 rule 

are quite widely !mown and used, but therEfis another one, called Weddle's 

rule, that is used to obtain great accuracy. Joining the points in each group 

of seven sampled points by a sixth order polynomial leads to Weddle's rule. 

In each case the range of integration should be divided into an integral 

multiple of nnW intervals. For example, to use Weddle's rule, the range 

of integration should be diVided into 6, 12, 18 •••••• equal·intervals. 

In what follows we shall designate the transfer f'unctidn of an 

ideal integrator as HCs): Thus, 

H(s) = ~ (4-1) 

with which the approximate integration formulas will be compared. 

4.11 Trapezoidal Rule 

Using the trapezoidal rule the definite integral, 

o(t) = 
(t. i- i(x) dx 

may be approximated by, 

0l(t) '" ~[[ i(t) + i(t - T)] + 

The Laplace transform of (4-3) is 

(4-2) 

(i( t - T) + i( t - 2T) J + •••••• ] 

(4-3) 

0l(s) = ~ [(1 + e-ST) (1 + e-ST) + e-2sT + •••••••• ) ] I(s). 

(4-4) 
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So the transfer function is 

-72-

1 -aT + e 

1 -sT 
- e 

A 11 ttle algebra shows that for s = 3-. 

4.12 Simpson' s 1/3 Rule, 

(4-5) 

(4-6) 

Using Simpson's 1/3 rule the definite integral (4-2) maY' be 

approxima. ted by 

02(t} :: j ([ 1(t) + 4i(t - T} + i(t - 2T} )+ 

[i(t - 2T} +4i(t - 3T) + i(t - 4T} J + ••••••• J' (4"'1) 

1be Laplace transform or (4-B) is 

or, 

02(S} :: ~ I{s) (1 + 4 a-sT + a -2ST) (1 + a-2sT + a -4sT + ••• ) 

(4~) 

1 + 4 e -sT + . e -2sT 
-28T 

1 - e 
l(s). 
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Thererore~ the transfer function for Simpson's 1/3 rule is 

1 4 -sT -2sT + e + e 

1 -281' 
- e 

• (4-10) 

Dividing (4 .... 10) by (4-1), letting s = jm and using some algebraic and 

trigonometric manipula tiona leads to the ratio 

2 + cos (41' 
sin coT 

4013 Si!psonts 3/8 Rule 

o (4-11) 

The approximation to1he detini te integral (4-2) that is obtained 

using Simpson's 3/8 rule is 

0l t) :: ~ ( L 1( t) + 31{t - T) + 31( t - 21') + 1( t - 3T) J + 

l1(t - 3T) + 31(t - 4T) + 3i(t - 5T) + 1(t - 6T) + ••••••• ] 

(4-12) 

ihe Laplace transform or 03(t) is 

0ls) = ~ r{s) (1 + 3 e -sT + 3 e-2sT + e-3S~(1 + e-
3sT 

+' e-6ST+) 

(4-13) 

or~ 

1 3 -sT 3 -2sT -3sT + e + e +e 
1 - e -3sT 

I(8) (4-14) 
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Hence for Simpson's 3/8 rule, the transfer function is 

For s = je&, the ratio of W
3
(jm) to H(jOl) 1s 

1 + cos (J)T 
caT • (1 + 2 cos (J)T) tan 2' 

(4-15) 

(4-16) 

A considerable amount of manipu1.a tion is required to obtain the above form. 

By Weddle's rule the approxima tion of the definite integral 

(4=2) is 

04(t) = ~ [[iCt) + 5i(t - T) + i(t - 2T) + 6i(t \- 3T) + 

i( t - 4T) + 5i{ t - 5T) + i{ t - 6T)] + ~(t - 6T) + 

,i(t - 7T) + i(t - 8T) + 6i(t - 9T) + i(t - lOT) + 

51 (t ... lIT) + i( t - l2T) ] + 00 •• 0000000 oj 
(4 .... 17) 

In the SaJrS manner as before, the transform of 04(t) is 

. 3T .1+ 5 e-sT + e-2sT + 6 e-3sT + e-4sT + 5e-5sT -6sT 
04(8) ~ ~IIQ + e l(s) .. 

.LV 1 CD e -osT J 

(4-18) 
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so the transfer tunc tion f or Weddle 1 s rule is 

1 + 5 e -sT + e -2sT + 6. -3aT + e -4sT + 5e -SsT+ e -6sT 
1 _ e=6sT --0 

(4-19) 

By using a considerable amunt of algebraic and trigonometric manipulation, 

we get for s :: jco: 

1 + 3 cos mT + C08
2 coT 

(1 + 2 cos CDT) sin O)T • 

4~2 Comparison of Numerical Integration Formulas 

(4-20) 

With the above equationa, we can get a complete picture ot the 

four approximation formulas in both the time and frequency domains. 

Equations (4-.5), (4 .. 10), (4-15), and (4-19) are the transfer functions 

of each ot the numerical integration processes and from these the stability 

of each one can be determined. Let us now examine the denominator of each 

transfer function. rf the change of variable, z :: e-sT, is made, it is 

easily seen that the magni tude of the roots of all the de nomina tor poly-

nomials is unit.y; however, there are no multiple roots. Therefore, each 

of the numerical processes is stable. 

Now we must consider the accuracy of each of the integra tion 

formulas 0 Equations (4-6), (4-11), (4-16), and (4-20) give the ratio of 

the particular transfer function to tha t of the ideal integrator. -In Figure 

401 these ratios are plotted as functions of coT, and we see clearly tha t, 

of the four" Simpson t a 1/3 rule and Weddle's rule are the best for coT 
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2.0 

0.9 

Trapezoidal Rule 

.. 0...... Simpson's 1/3 Rule 

--------- Simpson's 3/8 Rule 
----- Weddle's Rule 

, , 
I 
~ 

4 , 
t 

:1 

r 

'" 
, 
f 
i 

• 

• 

, , 
, 

Figure 4.1 Comparison of Errors in Various Numerical Integration 

Formulas 
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below i radians. For example, suppose tha t we wish to integrate a sine 

wave of radian frequency (J)o and want the error to be less than 2.5%. 

For each of the approximation formulas, how many samples must be taken 

in a cycle of the sine. wave? '!he answer can be obtained rapidly trom 

Figure 4.1 by noting the frequencies at which the amplitude ratios become 

0.975 or 1.025, as listed below. 

Trapezoidal 

Simpson's 1/3 Rule 

Simpson's 3/8 Rule 

Weddle I S Rule 

0 
co T = 30 ; 

0 

moT = 7~ • , 
(0 l' = 600 

; 
0 

cooT = 80
0 

; 

12 samples/cycle 

5.8 • • 
6.0 .. II 

4.5 " II 

The number of samples per cycle is indicated for each rule, and this is 

obtained by dividing 3600 
by' the indicated angle. 
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APPENDIX A 

Proof that the Locus of Q( ~) Crosses the Real Axis either Normall 

or Tangentially at ~ := 0 and - 2 

Recall that Q(s) is given by the polynomial in e-sf, 

~ sT 
Q{s) = ~ bke- ; 

k 1: 0 
b 1: 1 • 

o 

For s = 0 and:!: j..!f, Q( s) is real because each term of the polynomial is 

real. Since the locus is symmetrical about the real axis, it must cross the 

real axis at these points. 

In order to examine the behavior of t·he locus of Q{ jco) at these 

points, take the derivative of Q(s) with respect to s • 

. .JIl 
dQ 1: ~ _ k T b e -sT 
dsL-- k 0 

k = I 

Observer that ~~ is also a polynomial in e -sT; therefore, it will also be 

al f ·", d + .il. re or s = 0 an - J 2 • 

Now consider the derivative in the neighborhood of s =t 0 and 

! j -9- 0 If'! ~ 0 at these points, we will prove that the Q-Iocus cr~sses 
i 

the real axis perpendicularly. In the region of interest let ds := j S , 
where J is a small increment of 00. Since ~ must be real (and unequal 

to zero as we have assumed), dQ = !j IdQ J in order to .s.ti~.ty this condition. 

(Q\.E.Do) 

We must now discuss the case in which ~:~ = 0 for s • 0 or !~. 

First::'observe that if! = 0, Q must have a saddle pointl in the region 

dQ near the point where ds = o. .Let us now make the change of variable, 

I For an excellent discussion of t~e behavio~ of functions near saddle 
points, see Guillemn, "The Mathematics of Circuit Analysis~,~.~Jbli:ri'l1il.y 
and Sons, New York, 1949, pp. 298-302. . 
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~sT ( ) ( ) z =: e :p so that Q s becomes D z which is 

m k 
D(z) = ~ bk z • 

In the immediate vicinity of a saddle point, the function behaves as 

D( z) ~ C + C (z - z )p 
o p 0 

in which the C'a are constants, z is the value of z at which the saddle 
o 

point occurs, and tIp .... 1" is the order of the saddle point. In this case, 

z e +le ,In plotting the locus of D(z), we map the unit circle of the z-plane 
o """': 

into the D-plane (see Figo A-I). 

j y z-plane 

unit 
circle 

Figo A=l Unit circle in the z-plane that 
maps into the D-plane 

Consider the map in the vicinity 

of a possible saddle point (z • !l). 

Observe that for z near Zo~ 

z - z • dz +j/dZ/. There-o -
fore, in the vicinity of a saddle 

point nez) is 

n(z) = c • C (!j fdzl)P. o p 

This readily shows that if "ptt is even, the locus jn the D-plane (or Q-plane) 

is tangent to the real axis 0 If "p" is odd, the locus is normal to the real 

axis. 

We will now summarize the results obtained. 

a) If ~~ 1 0 for s = 0 or !j~, the locus of Q{joo) is normal to 

the real axis for s = 0 for!j.1.j respectively. 
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b) If ~~ = 0 for s = 0 or !. j 1; Q(s) has a saddle point at the 

point where the derivative is zeroo -sT The change of variable, z - e , 

permits us to write, D{z) = C + C (z - z )p for z in the immediate vicinity o p 0 

of the saddle pointo If "pH is even, the ~plane locus is tangent to the 

real axis at the saddle pointo If "p" is odd, the locus is normal to the 

real axis. 
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APPENDIX B 

Coding of Direct Regression Programs 

The regression formula 

- ••• - b o( t -nt) 
n 

(B-1) 

is to be programmed. Assume that the data and the constants are stored. 

as follows8 

Register Content Register Content 

No o (Constants) No. (Data) 

A.O a r.o1 'i(t) 
0 

Ao1 ~ 1.1 i(t - T) 

• 0 • • 
• • 

') 
• • 

I 

• • • • 

ADm a 
m 

T.m 'r(t - m'1') 

B.l -bl 0.1 ~(t - '1') 

B.2 -b2 0.2 'a'(t -2'1') 

0 · · • 

• • -. • 

• • • • 

B.n -b D.n 'O{t - nT) n 
R.Ol Partial and 

final results 

1 These registers are not used in the second composite program. 
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The program will first be coded in two distinct parts: arithmetic and 

man~pulativeo The arithmetic part performs, at each sampling point, the 

arithmetic operations called for by the above regression formula and thus 

calculates a new output value: 

1 

First Pro gram, Arithmetic 1 Portion 

Register Content Result Noo (Instruction) 

Pol ca O.n 

P.2 mr B.n 

P.3 ts R.O - ~ -b cr(t - nT} n . 
~ 

Po4 ca Oen-I- t 

P.5 mrB .• n-I 

Po6 ad R.O 

Po7 tsR.O .\,. -b «5 ~ .. (n-~)~ -b oCt - nT) 
" n-l n 

0 • • 
0 • • 
0 • • 

Po (hn-h) ca 0.1 

etc. mr B.l 

ad RoO n 

tsRoO ~ -L. bkS'(t - kT) r 
k=l 

caI.m 

mrAom 

ad RoO 
n 

Po (4n+3J ts R.O \ a i(t - mT) -~ bk~{t - kT) , m -I 

The code is explaiDedin Sc.D. Thesis "Treatment of Digital Control Systems 
and Numerical Processes in the Frequency Domain, "J.K. Salzer, Appendix 1.C, 
VOl. 2, August 1, 1951, M.I.T. 



Continuedg 

Register Content Result Noo (Instruction) 

0 0 

0 0 

0 0 

P.4(n+m) ca 100 

etc. mr AoO 

ad RoO 

ts :a., 0 - ~ oCt) 

si selects the r~levant Qutput device - (as specified by the address section) 

Po (4n+4m+5) rc RoO records output, oCt), into output 
device 

It is clear that in this illustration each term of the regression equation 

costs 4 instructions. 

After the c-alculation of oCt) at a particular sampling point 

the data storage has to be rearranged for the next calculation: the present 

O{t CD nT) ean be lost, all other C5'(t - kT) are to be stepped down one storage 

register, and the new output value, oCt), just computed is put into O.li 

the rearrangement of the 3r(t - kT) is analogous, and the new input value to 

be-'r~ceived goes into 1000 The ooded program performing these manipulations 

folloWs. 

;. 
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Register 
No o 

o 

• 
o 

0 

0 

0 

Po(6m+6n+6) 

! 

=84= 

FIRST PROGRAM~ MANIPULATIVE PORTION 

Content 
(Instruction) 

ca Oon=2 
ts D.n=l 

cs 001 

ts 002 

ca RoO 

ts 0.1 

ca rom-I 

ts rom 

0 

0 

0 

ca 100 

ts 101 

si -

rd 100 

sp Pol 

] 
] 

} 

J 
] 

} 

Description 

moves 0' ~ =. (n=l) Tl into location 
of oCt = nT) and roses oCt - nT) 

moves/ref!, ~ (n ... 2)T] into 
(5 ~ .. (n=l)~ location 

moves oCt ~ T) intoo(t - 2T) 

location 

moves oCt) into oCt = T) 

location 

moves I ~ "'" (m=l)!] into Yet-mT) 

location and loses i(t=mT) 

moves f(t) into i(t <= T) location 

selects the relevant input device 
(as specified by the address section) 
and makes computer wait until device 
receives a new input value 

reads content of input device into 
ret) location 

returns control to beginning of 
whole program. 
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The manipulations are seen to cost 2 instructions per term of the regression 

equation. 

There are various ways in which this program can be streamlined. 

The main considerations are storage and time. It is possible to save 

substantial storage (with a sufficiently long regression equation) by 

programming the 6 instructions (4 arithmetic and 2 manipulative) required 

for each term only once and using them over and over for the various terms, 

each timeo In order to do so, a short program must be added to change the 

appropriate address sections in the 6 instructions, whicn can thus be 

made to compute a different term each time. This address-changing routine 

materially lengthens the time of calculation, unless some very specialized 

instructions or equipment is designed. 

It appears more desirable to concentrate_ on reducing the time 

requirements in most control applications_,_ for storage is easier to increase 

than speed, which seems to be the ultimate limitation in _the applicability 
\ 

of digital computers to controlling. In our present example a notable 

reduction in time, and also in storage, results from mixing the arithmetic 

and manipulative steps and using a new instruction,l ex, which exchanges 

the content of the storage register _specified by its address with the 

content of the accumulator. The corresponding coded program, which still 

uses the same constant and data storage, follows. 

1 This instruction is actually used in Whirlwind applications on a temporary 
basis 0 The code used for this instruction is .9!. to indicate its temporary 
nature; final adoption of this instruction, however, is likely. 
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SECOND PROGRAM, COMPOSITE 
Register Content 'Results No o (Instructions) 

Pol ca O.n 

P.2 mr B.n 

Pe3 j9X o..n-I - ~ into Storage: -b ~(t - nT), 
partial' result n 

J into AC: a- ~ - (n-l)f] 
~ 

p~4 ts O.n ~ puts '0 ~ - (n-l~ into o'{t - nT) , 
location for ne . samplin, .. 
AC still holds '0 (!, - (n-l '!1 

Po, mr B.n-I 
P.6 ad O.n-l 
Po7 ex O~n-,2 .-~ into Storage: partial result 

+- f-- into AC: o[t - {n-2)f] 
P.B ts O.n-l - ~ Cf f!, - (n-2 )T] to 1S ~ - (n-l)'!] 

location 

• • 
f) • 
• • 

P.4n-7 mr B.2 

etc. ad 0.2 

ex 0.1 - r+ into Storage: partial result 
~ f-- into AC: OCt - T) 

ts 0.2 - ~ O(t - T) to~{t - 2T) location 

mr B.l 

ad o~l 

ex T.m ...... ~ into Storage; partial result 

'1:.. bk~(t - kT) 
k=l 

~ ~ into AC: ?(t - mT) 

mr A.m 

ad T.m 

ex I.m-I - r? into Stor~e: partial re suI t 
~ I-- intoAC: 1. ~ - (m-l)t] 

P.4n+3 ts r.m - ~ i~ - (m-I)!] to 1"( t-mT) location 
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Register Content Result No. . (Instructions) 

• • 
• • 
• • 

P.(4n·4m-8) mr A.2 

ad 1.2 

ex 1.1 - ~ into Storaie: partial result 
-t-~ into AC: ift - T) 

ts 1.2 lot. ret - T) into r(t - 2T} location r 

mr A.1 

.. ad r·.1 

ts 0.1 \. into Storage: partial result , 
(note content of 0.1 has already 
been used so that this register 
is available) 

si selects the relevant input device - (as specified by the address section) 
and makes computer wait until device 
receives a new input value 

rd 1.1 £eads content of input device, 
i(t) into itt - T) location 

mr A.O 

ad 0.1 

ts 0.1 ... into Storage: final result 
r <ret) into oCt - T) location 

si selects the relevant output device - (as specified by the address section) 

rc 0.1 records output, ~t), into output 
device 

P.(4n+4m.6) sp P.1 returns control to beginning· of 
program f 
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The abov~ composite program is seen to result in considerable 

saving of storage and time over the first program, which was given mainly 

for illustrative purposes. It uses four instructions per term ealcula ted 

rather than 6, and even saves two data registers, 1.0 and R.O. Register 1.0 

is not needed because the incoming data is immediately used in the ealcula tion 

while register R.O is superfluous because the partial results can be stored 

in the register from which the data has just be.en removed for calculation. 

One should note another important advantage of the second program: 

to all practical extent, it eliminates computational delays entirely. 

This is so, because all the computation is performed in advance of receiving 

the input, and when the input value 1r(t) is received, there are only a few 

instructions to be carried out in order to obtain the output,~{ t) • Only 

direct regression programming has this advantage. 

The tally of direct regression composite programming in terms of 

m and n, the degree of numerator and denominator polynomials of the program 

transfer function, is as follows: 

Time requirement (in number of 
instructions to be carried out 
in sequence at each sampling) 

Storage Requirements: 

Constants 
Data 
Instruction 
Total 

4m+4n+6 

m+n:ftl 
m+n 

4m+4n+6 

6m+ 6n + 7 

The above tally is made under the assumption that none of the constants 

are zero. If some constants are zero, the constant and program storage, 

as well as the time, requirements will be reduced, but not the data storage 

requirement. These more specific requirements are taken into account in 

the summary of Art. 3.35'. 
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APPENDIX C 

Coding of Cascaded Programs 

The set of regression equations 

0i(t) = i(t) 

02(t) = ()l(t) + c2ol (t-T) -d202(t-T) 
I 

• (C-l) 
• 
• 

is to be programmed. Assume the following arrangements of number storage: 

Register Content Register Content 
No. (Constants) No. (Data) 

D.l -~ 0.1 '01 (t-T) 

D.2 -ci2 0.2 a'2{t-T) 

• • • • 
0 • • • 
0 • • • 

Don -d O.n oCt - T) n 

Co2 c2 R.O Partial Result 

0 • 
• • 
• • 

C.n c 
n 

A.O a 
0 
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In the coded program to follow it is assumed that none of the indicated 

Ck is zero; i.e., m • n - 1. Variations are easily accounted for. The 

program instructions follow~ 
--

Register Ccmtent Description No. .... "<::rllS truction) ." .,. 

P.1 si selects input device and waits until 
device has new input valu~ ret) -

P.2 rd R.O - ~ reads i( t) into temporary locati·on 

P.3 ca 0.1 

P.4 mr D.l -~ '8J. (t - T) obtained 

P., ad R.O ~l (t) obtaine4 

P.6 ex 0.1 - r+- to Storage: ~l (t) into '01 (t-T) 
location 

~ - to AC: 0i(t - T) 

fi .1 mr C.2 

P.B ad 0.1 0i (t) + c26i (t - T) obtained 

P.9 ts R.O - r+- to Storage: partial result 

P.lO ca 0.2 

P.ll mr D.2 

P.l2 ad R.O "02(t) obtained 

• • 
• · ,.. 

• • 
-r 
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Continued: 

Register Content 
No. (Instruction) Description 

P.(7n-S) ex O.n-l - ~ to Storage: ern_let) into 

etc~ o l(t-T) location 
n-

+--- to AC: '0 l(t-T) n-
mr O.n 

ad O.n-l ~ let) + c W l(t-~) obtained n- n n-

ts R.O - -+ to Storage: partial result 

ca O.n 

mr D.n 

ad R.O 

mr A.O o( t) obtained 

ts O.n - r+ to etorage: 'O{t) into o(t-T) 

location 

si - select output device 

rc O.n records output, -0'( t), into output 

device 

P.(7n~3) sp P.l returns control to beginning of 

program 

Thus, if m = n - 1, the program is 7n + 2 instructions long. Suppose 

m = n - 2 and let c2 = OJ then the sequence P.6 through P.12 above would 

be replaced by the following shorter sequence, p\'.9 through P' .12. 

P' .9 ts 0.1 - + puts 'O],{t) into ~l ( t-T) location 

Pl.10 ca 0.2 

PI.ll mr D.2 

P' .12 ad 0.1 °2(t) obtained 
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Thus, each ck = 0 saves 3 instructions. 

The tally for cascade programming can now be written: 

Time Requirements: 

Storage Requirement: 

Constants 

Data 

Temporary 

Instruction 

Total 

3m + 4n + , 

m+n+l 

n 

1 

3m .:tr 4n+ 6 
4m+6n+8 

Comparison of these requirements with those of other methods ·of programming 

is done in Art. 3.35. 
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APPENDIX D 

.Coding.of . Parallel Progr.ama 

The set of regression equations 

()l(t) • f1-r(t) - ~ol(t -T) 

'02(t) • f 21(t) - d21Y'2(t - T) 

• 
• 
• 

~ (t) • f1(t) - do{t - T) 
n n n n 

(D-l) 

is to be programmed. Assume the following arrangement of number storage: 

Register Content Register Content 
No. (Constants) No. Data 

D.l -'i. 0.1 0i(t - T) 

D.2 -d2 0.2 o;(t - T) 

• • • • 
• • • • 

D.n -d O.n o (t - T) 
n n 

F.1 f1 1.0 i(t)j also oCt) 

F.2 £2 
e • 
• • 
• • 

F.n f n 

None of the constants can be zero. The program instructions follow. 
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Register Content 
No. (Instructions) .. Des c riDti on 

P.l a1 selects input device and waits - until device has new input value; 
1(t) 

P.2 . rd 1.0 - • reads let) into its assigned 
storage register 

P.3 ca 1.0 . 

P.4 mr F.l 

P.S ex 0.1 -~ to Storage: r{i(t) 

~ ~ to AC: 15'l(t - T) 

P.6 mr D.l 

P.7 ad 0.1 

P.8 ts 0.1 , 
~ to Storage: 1:>1 (t) -

P.9 ca 1.0 
I 

PolO mr F.2 

P.ll ex 0.2 --~ to Storage: f
2
i:(t) 

-+-- to AC: a-2(t - 1') 

P.12 mr D.2 

Po13 ad 0.2 

Po14 ts 0.2 - ~ to Storage: °2(t) 

• • . 
0 • 
0 • 

P.{6n-) ca 1.0 

etc. mr F.n 

ex O.n - r+ to Storage: £ "ret) n 

"f-I-- to AC: 0' (t - 1') 
n 
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Register Content 
No. (Instructions) Description 

mr D.n 

ad O.n 

ts O.n "- to Storage: art) , n 
P.(6n+3) ad 0.n-1 0n(t) + 'On_l (t) obtained 

etc. ad 0.nt!'2 etc. 

• • 
• • 
0 • 

ad 0.2 

ad 0.1 'O( t) obtained 

P.(7n+2) ts 1.0 - ~ to Storage: oCt) 

etc. si selects output device -
rc T.O records output, oCt) into 

output device 

P.(7n+5) sp P.l returns control to beginning of 
oro gram. 

In parallel programming none of the indicated constants can be 

zero, and the only possible saving is when several constants have the same 

value. Even then the program itself is not affected materiallyo 

The tally for pa.rallel programming follows t 

Time Requirement 

Storage Requirements: 

Constants 

Data 

Instructions 

Total 

1..n + 5 

2n 

n+1 

7n ... 5 

IOn ... 6 

Further discussion of these requirements is left to Art. 3.35. 


