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An analysis of errors arising in linear filtering and prediction
of samples of a function and its derivative is performed by

the method of inverse probability. The results, showing the
dependence of the errors on data accuracy, are presented in

a graphical form.

The following analysis is concerned with the problem of smoothing

and prediction of a random time series when past and present sampled
measurements of both the function and its first derivative are -simultane-
ously available. The discussion is limited to functions generated by a
specific statistical process requiring that the second derivative of the
function remain constant over each sampling interval with a Gaussian
probability density distribution about a zero mean (cf. Fig. 1). It is
also assumed that the values of the second derivative in each sampling
interval are independent of each other.
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Figure 1
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The probability density distribution function of the second
derivative is

WE)= —— e 2 @
" 29T
where the standard deviation O is assumed to be known.

Since the second derivative is constant over each sampling
interval, the sampled values of the first derivative and the function are

Xpn = Xpo T Xny @
and

Xn= Xh—|+>.<n-| +"|Z.>.( (3)

n—\

The noise in the samples of the function and its derivative is
assumed to have independent Gaussian distributions. These are
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W(N,) = N e |
and |
Pﬂa'

\ T 9w (5)
W(M,)=\/“2-‘?-r;€ *

in the function and the derivative respectively.

Fig. 2 shows a signal flow diagram of this problem in the
complex frequency domain. = Since only the second derivative is statistically
prescribed, it is considered as the input in the diagram, while Egs. (2)
~ and (3) generating the samples of the derivative and the function are
represented by appropriate linear operators. Here z = e~%¥ denotes a
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-unit delay operator. The corrupted samples f and d are fed into a smoothing
filter F. Since both the signal and the noise have Gaussian distributions,
the optimum smoothing filter must be linear and can be synthesized by the
Wiener-Lee method. This analysis, however, illustrates a more direct
approach by the use of inverse probability.

1 1+ X
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Figure 2

As a starting point, we assume the form of the probability
distribution of the samples of the function and the derivative, given all
the past and present data. Let L. represent all data up to and including
the n-th sample. In particular, D et

‘ -A(X,,,_,-l—BV _l+qz—])@h¢§)"
-\/\7! (an,\/n-\/l_“_\) = "'.Q_{‘ e "

where A, B, C, D and E are arbitrary constants, Kis a normalizing factor,
and Vn denotes in’ By changing the variables to express the distribution

(6)

about the mean, Eq. (6) reduces to

A BV, ' DVE ¢
Wn‘(xh-l)\/h—\/Lh_b = _Il{_ ej (X""+ V“b— -1 \“\(7)
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When all transients have died out and when the system has reached steady
state, the distribution described by Eq. (7) will become invariant and
independent of n. In matrix notation, this distribution must attain the
form

W reslV]S] o
AL

WA, =

regardless of the value of n. Here q/ is the inverse of the correlation

matrix @ o
-1 ‘#kx ¢§V
qhvx qbvv

In the notation of Eq. (7),

2A  2AB AB*+D  —AB .
= 1 (9)
2AB  2(AB*+D) 24D _ae A
Therefore, the values of the correlation coefficients
4) - AB*+D
XX 2AD B |
| Cbxv = ~32p (10)

b= 33

must remain the same for all values of n.

By computing from the distribution expressed by Eq. (6) the
form of distribution corresponding to the next higher value of n, and by
comparing these expressions and equating respective correlation coefficients,
it is possible to obtain and solve a set of simultaneous algebraic equations
in A, B, and D,
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The first step in this procedure is to forms:

Wk Mo/l )=
[jw(x Vo / X, Ny, Oney, Lw‘bwé(““:v“"'a“"/L““) dxﬂg VAo,

Here, V and a_ denote I and X respectively. Using Eqs. (1), (2), (3),
and (6) , and integrating, the above expression can be reduced to

4 -
W (%, N /Ln-\\) = _1%7 o 7P " (11)
where F= A(‘;'_“B)2+D+ ij_;(z
= 2{AO A9 T rach9) -De
= Axy+ [AB-D+DVE + 2AB-DxnVn +2ACK, +
+ 2 [AC(B-)+DE]V,, +AC*+DE?

From Eqs..(h) and (5):
(d""xn?‘l

2 g2

(12)

W(d, / %n, L“‘B (Ra'n

and
W(nfn L) = =& (13)

Since the noise in the samples of the function is assumed to be
independent of the noise in the samples of the derivative,

— @n - Xﬁ)_l__ ﬁn‘vvy

Wi g €
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But,

W (VL) = W (Ko, Vo [ fo, L) =
W (Xn, Vi, ol,,,' ‘;n/l—nﬂ _
Wit as)
—_— W(dn,-fn/x.., Vi, L“_:)W(anvn /an\
jfw (dn,‘gﬂ/xn,\/n, L“‘DW(X“GVYL/L n-l) dxn dvn

Substituting from Egs. (11) and (1k),

Uﬁ
W (%n, N L) = -_E;'. e (16)

where

___)“%n L._‘_’Q F -+ +r+5

and S is a function of fn and dn only.

From Eq. (6) the corresponding expression for the previous
sample is:

Upo = A + Bv,_‘+c)"+ ])(\lh,‘ +E)?'

Equating the coefficients of second degree terms in X and V and
solving the resulting set of three simultaneous equations, one obtainsg

/ A 2\..:. +\/(';'\:zz + '/4._\_2..2
ZqQ VAR A j

S (17)

|

B = 3-2A

} N — A(Ji‘ﬂ)“zl&‘z
(“ A=
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where | / K+£\2‘ 1Y k}_
A = é’%%\) \/4\X+') f +

with
§ = o,
4 k3 + K,

By using Eqs. (10) and (17), it is now possible to compute the
correlation coefficients as functions of O , Q* , and p. The normalized

Pov

non-dimensional ratios -2—;%- and W are functions of the parameters

ol 2
k— 2.) kz=§i

kl and k2 only. They are plotted in Figs. 1A and 24 as functions of k2
for two values of klo For large values of k2 these curves approach

asymptotically the normalized variance of error in the smoothed samples
of the function and its derivative in the case when the measured samples
of the derivative are not available,

It is oi‘ interest to investigate also the accuracy of the

samples of the function and the derivative predicted one sampling interval
into the future. Egs. (2) and (3) can be written

—_ L
oy = Xn +V, + FQ,
: - (18)

Vg = Vot Q.

Since the mean of the acceleration is zero,

(19)
Therefore, the expressions for the variance of predicted values are
2 ( —_—\2 ( — —\Z \ 2,
Y = (X.,— = (Xp=X,. +V, -V + - Q

OE(X) N+l mﬂ m= A n W\ 4 " (20

0FO) = Qo Vo = (Vo] +
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since a is independent of Xh and Vn.

Eqs; (20) : are equivalent to
2 | 2
(T; CK) = 4%(x + 4{,V,'E ZZCPX\, + % X
2 2
= o

2 2/
X v
The normalized, non-dimensional ratios _OZLO%? and QLQ

2 o
are plotted in Figs. 34 and L4A as functions of k, for two different
values of k1° For large values of k2 these curves approach asymptotically

(21)

the normalized variance of error in the predicted samples of the function
and its derivative in the case when only the measured samples of the
function are available.

Fig. 5A shows the functional dependence of the variance of
error of the smoothed and predicted samples of the function on the
parameter k1 for one particular value of k2.

To investigate the effect of acceleration on the accuracy
of prediction, a plot of the variance of error in the predicted samples
of the function against the variance of the probability density distri-
bution of the second derivative is shown in Fig. 6A. The family of
curves corresponds to several representative values of the standard
deviation of the error in the measured samples of the first derivative,
while the standard deviation of the error in the measured samples of the
function is kept constant. As can be seen from Fig. 64, the less accurately
we measure the first derivative, the more rapidly does the accuracy of
prediction deteriorate with increasing variance of the second derivative.

The results of this analysis describe statistically the
errors in the output of an optimum linear smoothing filter in the mini-
mum mean square error sense., This filter is realizable, and the associated
smoothing equations can be obtained from the mean of the distribution
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described by Eq. (16). They are

—_ — ﬁg ——\} ¢xv
Xh b —4 XV\"\ + » (Tz\ (dn- Xn_) + /A-E .‘$“ +

25+ bo(ux=20%) -
W-‘z((pvv + 2 quV) | "

o= e Sy (dw)

4

5

+ O‘z¢vv + Pev (2¢xx +¢XV*20")
\ U'Z(q’vv + 2 ¢xv) |

b}
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