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SUBJECT: 3mOTHING OF . SAMPLES OF A FUNCTION AND ITS DERIVATIVE IN THE 
PRESENCE OF" NOISE -

To ~ William Ie o Linvil1 

From: Bronislaw Smulowicz 

Date: April 22, 1954 

Abstractg An analysis of errors arising in linear filtering and prediction 
of samples of a function and its derivative is performed by 
the method of inverseprobabilityo The results, showing the 
dependence of the errors on data accuracy, are presented in 
a graphical formo 

The following analysis is concerned with the problem of smoothing 
and.prediction of a random time series when past and present sampled 
mea.surements of-both the function and its first derivative are -simultane­
ously available 0 The discussion is1imi ted to functions generated by a 
specific statistical process requiring that the second derivative of the 
function remain constant over eaeh sampling interval with a' Gaussian 
probability density distribution about a zero mean (efo 'Figo 1)0 It is 
also as_surned that the values of the second darivati va in each sampling 
interval are independent of each othero 
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The probability density distribution function of the second 
derivative is 

•• 2-
XV\ 

, - 2.. oc:&. 
W(X J -== e \'\ ¥2.crr'oc 

where the standard deviation ex. is assumed to be knowo 

Since the second derivative is constant over each sampling 
interval, the sampled values of the first derivative and the function are 

• • •• 
Xn == Xn-, + Xh-, 

(2) 

and 

The noise in the samples of the function and its derivative is 
assumed to have independent Gaussian distributions. These are 

and 

\ e. 
{iir'cr 

W(Mn)= ~ e 
2.,,-)A 

in the function and the derivativerespectivelyo 

Figo 2 shows a signal flow diagram of this problem in the 

(4) 

(S) 

complex frequency domaino Since only the second derivative is statistically 
prescribed, it is considered as the input in the diagram, while Eqso (2) 
and (3) generating the samples of the derivative and the function are 
represented by appropriate linear operatorso Here z = e-' denotes a 
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-unit delay operatoro The corrupted samples f and d are fed into a smoothing 
filter F. Since both the signal and the noise have Gaussian distributions, 
the optimum smoothing filter must· be linear and can be synthesized by the 
Wiener-Lee method. This analysis, however, illustrates a more direct 
approach by the Use of inverse probability • 
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Figure 2 
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As a starting point, we assume the form of the probability 
distribution of the samples of the function and the derivative, given all 
the past and 'present datao Let L represent all data up to and including 
the n-th sample. In particular, n let 

where A, B, C, D ~d E are arb! trary constants, K is a normalizing factor, 
and V denotes i 0 By changing the variables to express the distribution n n 
about the mean, Eqo (6) reduces to 

,(7) 
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When all transients have died out and when the s.ystem has reached steady 
state, the distribution described by Eqo (7) will become invariant and 
independent of no In matrix notation, this distribution must attain the 
form 

regardless of the value of no Here ~ is the inverse of the correlation 

matrix~ 0 

-I 

~= y; :: 

Ihthe notation of Eqo (7), 

cp _ [2A 
.2AB 

-AS 

2.A'D -AS A 

Therefore, the values of the correlation coefficients 
~ AB2.+D 
\f"'XX = 2.AD 

B --I 2.]) -lD 
must remain the same for all values of no 

By computing from the distribution expressed by Eqo (6) the 

(8) 

(10) 

form of distribution corresponding to the next higher value of n, and by 
comparing these expressions and equating respective correlation coefficients, 
it is possible to obtain and solve a set of simultaneous algebraic equations 
in A, B, and De 
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The first step in this procedure is to form: 

W~"''''Yl/L,,_~= 

.[[1'; ()(n,"" Ix"." ",,-I, 0."·'1 L ... ':)W ~""\ ""." an· v'L VI· 0 d xJ V".p 0."'_1 
o " . . 

Here,'V and a denote X and X respectively. Using Eqs. (1), (2):, (3). 
nn n n " 

and (6), and integrating, the above expression can be reduced to 

~ 

\ ..$1.:- ... 
W(XVI,V.,./L""I) = l{I e Itf' (11) 

(.1 ~2 ..L P = A ,1-B J + D + .1 ()( 2-

where 

~ =2 {A('i-a)X" + [A (-i-B)(B-t)-~V" + AC.e:-B) -:DE] 
r = A x~ + [A(l>-i)~+ 1>] v! + 2.A(B-~X. .. ">'I + lAC.X II + 

+ .1 [AC(B-')+J)E]"~ + AG2. + DEl 

<"From Eqs •. (4) and (.5): 

(12) 

and 

Since the noise in the samples of the function is assllltled to be 
independent of the noise in the samples of the derivative, 

(14) 
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But, 

- W(Xftl V.,... d~1 t~/L\"\-, 
-. 

W dn,fn/L~_,) 
W(dY\,-\Y\/xY\I V~. LW\-JW(xW\,VY\/Ln-,') 

Substituting from Eqs.(ll) and (14), 

\ -U'" 
e 

K" 
where 

u= n 

and S is a function of f and d only. 
n n 

From Eq. (6) the corresponding expression for the previous 
sample ist 

(16) 

Equating the coefficients of second degree terms in X and V and 
solving the resulting set of three simultaneous equations, one obtains, 

. 2. I 
---I-----I--+----::::=-- .~A---:(~t_-~\);&..;...X_+ -6]:i}~2. ,.---___ _ 

A. -, 
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where 
A -

with 

_I (0+*\ + 
G 0+ I) 

_, (0 +1:'1 + Q k:. 
4- (+1 0+1 

By using Eqs. (10) and, (17), it is now possible to compute the 
correlation coefficients as functions of OC , 0- , and tJ.. The nonnalized 

¢x)( 4>vv ' 
'non-dimensional ratios 2a 0(2. and I ~ ~ are functions of the parameters 

kl and k2 only. They are plotted in Figs. LA and 2A as functions of k2 

for two values of ~o For large values of k2 these curves approach 

arsymptGtieally the normalized variance of error in the smoothed samples 
of the function and its derivative in the case when the measured samples 
of the derivative are not available. 

It is of interest to investigate also"the accuracy of the 
samples of the function and the derivative predicted one sampling interval 
into the futuree Eqso (2) and (3) can be written 

, 
Xt\+, = X\f\ + \I h + 2: Q.V\ 

('18) 

Since the mean of,the acceleration is zero, 

X.,,+, = )(. V\ + V'r\ 
(19) 

Therefore, the expressions for the variance of predicted values are 

cr;Cx) - (XM\ x;;.S; (X", -X;; + " YI -" Vl Y + 4 Q~ 
(20) 

op\v) = ('iM1-"'*0= ("YI-'T:,.)'1 + ~ 
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since a is independent of X and V 0 n n . n 

Eqs. (20).: are eq'liivalent-:to 

op2(x) = cf>X)( + ~'IV + 2. cf>xv + t ex
l 

op'- (,,) = 4>vv + ($.2. 

The normalized, non-dimensional ratios 

(21) 

are plotted inFlgs 0 3A and 4A as functions of k2 for two different 

~alues of ~ 0 For large values of k2 these curves approach aSJllPtoticaUj' 

the normalized variance of error in· the predi cted samples of the fun etion 
and its derivative in the case when only the measured samples of the 
function are availableo 

Flgeo $A shows the functional dependence of the variance of 
error of the snoothed and predicted samples of the function on the 
parameter kl for one particular. value of k20 

To investigate the effect of acceleration on the aceurae.y 
of prediction, a plot of the variance of error in the predicted samples 
of the function against the variance of the probability density distri­
bution of the second derivative is shown in .F.i.go 6A. The family of 
curves corresponds to several representative values of the standard 
deviation of the error in the measured sanples of the first derivative, 
while the standard deviation of the error in the measured samples of the 
function is kept constant. As can be seen from Fig. 61, the less accurately 
we measure the first derivative, the more rapidly does the accuracy of 
prediction deteriorate with increasing variance of the second derivativeo 

The results of this analysis describe statistically the 
errors in the output of an optimum linear smoothing filter in the mini­
mum mean square error senseo This filter is realizable, and the associated 
smoothing equations can be obtained rrom the mean of the distribution 
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described by Eq. (16). They are 

!k (d -\1 cP'l.V f X'(\ = )(1'1-1 +'. 0-2.'~. 1\ - '1."_'1 + /A'i' VI + 

+ 2 4>x~ '1 +.4>xv(¢>xx-2.~) 'Y
NI

-
1 

<t. (¢vv + l CPx") 

\In - ~t fn + ~~ (d n - Xn-J + 

+ rr~v + ¢Xv (2 cbcx + <Pxv - 2.r:r~ 
0-2. (CPvv + 2. tPxv) 

Approved y~ ~ 
William I. '=nViil)i::)t/. 

BS/mrs 
cc: Group 61 

6782 Distribution List 

Figures Attachedt Figo 1A A-58459 
Fig'o 2A A-58460 
J!go 3A A-58461 
Figo 4A A-58448 
Fig 0 ,A A-58449 
Fig. 6A A-58450 
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FIG. fA 
VARIANCE OF ERROR IN SMOOTHED SAMPLES 

vs VARIANCE OF ERROR IN MEASURED DERIVATIVE 
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0.3 FIG. 2A 
VARIANCE OF ERROR.IN SMOOTHED SAMPLES 

vs VARIANCE OF ERROR IN MEASURED DERIVATIVE 2a 2 
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1.4 VARIANCE OF 
vs VARIANCE OF 

FIG.3A 
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FIG. 4A 

VARIANCE OF ERROR IN PREDICTED SAMPLES 
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FIG. SA 

0.4 t----VARIANCE OF ER ROR IN PREDICTED SAMPLES 

vs VARIANCE OF ERROR IN MEASURED FUNCTION 
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FIG. GA 

ERROR IN PREDICTED SAMPLES 
vs VARIAN CE OF SECOND DERIVATIVE 
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