61
Memorandum M-1624-1 Page 1 ol 13

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: SHORT GUIDE TO CODING AND WHIRLWIND I OPERATION CODE

To: Group 61 and ApplicationskGroup
From: Philip R, Bagley
Date: September 2, 1952; Revised November 28, 1952

Abstract: This note contains an up-to-date version of the Short Guide to
Coding and the Whirlwind I Operation Code,

FOREWORD

The following definitions have been adopted and consistently.
adhered to: :

sequence: the numberical or other arrangement of a set of words stored
or performed

instruction: a 16-digit binary word used to control the computer

operation: ' thé 5 digits of an instruction which go to the operation
control switch

command : a control pulse from the control matrix
process: an automatic manipulation initiated by a command
modulo: (abbreviated "mod") A number p modulo q is defined as the
numeretor of the fractional remainder when..p is:-divided by q
Ex, 1: 60 mod 32, %% =1+ %%, hence 60 mod 32 = 28

Bx,.2: 1,37 mod 1, 3330 =) 4«20 hence 1.37 mod 1= .37

SECTICN 1, SHORT GUIDE TO CODING

COMPUTER PROGEAMS

u///Program. A program is a sequence of actions by which a computer
handles a problem, The process of détermining the sequence of actions
is known as programming, , Co -

V/»FlOW'diag;ams.:‘A flow disgram is & series of statemehts of what the
computer has-to do at various stages in a program, Lines of flow indicate
how the computer passes from one stage of the program to another,

61 :
Memorandum M~-162/~-1 Page 2

Coded program, Programs and flow diagrams are somewhat idependent
of computer characteristics, but instructions for a computer must be
expressed in terms of a code, A set of instructions that will enable
a computer to execute a progrem is called a coded program, and the
process of preparing a coded program is known as coding, Individual
coded instructions call for specific operations such as multiply, add,
shift, etc, ‘

COMPUTER COMPONENTS

Registers and words. A register has 16 digit positions, each able to
store a one or a zero, A word is a set of 16 digits that may be stored in
a register, A word can represent an instruction or a number,

Arithmetic element., Arithmetic operations take place in the arithmetic
element, whose main components are three flip-flop registers, the i-Register,
the Accumulator, and the B-Register (4R, AC, and BR), The 16 digit positions
of AR starting from the left are denoted by AR O, AR 1 .., AR 15, The digit
positions of AC and BR are denoted in a similar fashion, Words enter AC
through AR; BR is an extension of AC to the right.

Storage, The term "register" by itself refers to the main electrostatic
storage, which consists of 1024 registers, each of which is identified by an
address, These addresses are ll=-digit binary numbers from 32 to 1055, The
computer identifies a register by its address, ZElectrostatic storage may at
some future date be expanded to 2048 registers, numbered O through 2047,

Input-output, All information entering or leaving the computer is
temporarily stored in the input-output register (IOR), The computer
regulates the flow of information between the internal storage and IOR, and
also calls for any necessary manipulation of external units,

Control element, The control element conirols the sequence of computer
operations and their execution, The control element takes the instructions
one at & time from storage, where the instructions are stored as individual
words,

Inter-connections, The four main elements of the computer (storage,
control, arithmetic, and input-output) are connected by a parallel communica-
tions system, known as the bus, .

REPRESENTATION OF INSTRUCTIONS

Operation section, When a word is used to represent am instruction the
first (left-hand) 5 digits, or operation section, specify a particular
operation in accordance with the operation code,

Address section, The remaining 11 digits, or address section, are
interpreted as a number with the binary point at the right-hand end, For
the majority of instructions this number is the address of the register whose
contents will be used in the operation, In the instructions slh, slr, srh,
srr, clc, and clh, the number specifies the extent of a shift, and also an

61
Memorandum M-1624-1 Page 3

additional variant, such as roundoff; in rs, rd, and rc, the address section
is not used,

Example, The instruction ca x has the effect of clearing AC (meking all
the digits zero) and then copying into AC the word that is in the register
whose address is x, If q is a quantity in some register, the operation needed
to copy q in AC is not ca g but ca x, where x is the address of the register
that contains q. '

REPRESENTATION_OF NUMBEAS

Single-word representations, When a word is used to represent a number
the first digit indicates the sign and the remaining 15 are numerical digits,
For a positive number the sign digit is zero, and the 15 numerical digits with
a binary point at their left specify the magnitude of the number, The nega-
tive -y of a positive number y is represented by complementing all the digits,
including the sign digit, that would represent y. (The complement is formed
by replacing every zero by a one_and every one by a zero,) _In this way a word
can represent any multiple of 2-15 from -1 + 2-15 to 1 - 2715, Neither +1 nor
-1 can be represented by a single word, Zero has two representations, either
16 zeros or 16 ones, which are called +0 and -0 respectively,

Overflow--increase of range and precision.1 With single-word representation
the range is limited to numbers between -1 + 27 5 and 1 - 2‘15. Programs must
be so planned that arithmentic operations will not cause an overflow beyond this
range, The range may be extended by using a scale factor, which must be
a 30-digit number, Overflow will stop the computer in an arithmentic check
alarm except where special provision has been made to accommodate the overflow
(see sa operation), ’

COMPUTER PROCEDURE .=

Sequence of operations., After the execution of an instruction the program
counter in the control element holds the address of the register from which the
next instruction is to be taken., Control calls for this instruction and
carries out the specified operation, If the operation is not sp or ¢p the
address in the program counter then increases by one so that the next instruc-
tion is taken from the next consecutive register., The sp and cp instructions
permit a change in this sequential procedure,

Tranfers, A transfer of a digit from one digit position to another
affects onlythe latter digit position, whose previous content is lost,

Zero, All sums snd differences resulting in zero are represented as
negative zero (1,111 111 111 111 111) except in the two cases: (+0) + (+0)
and (+0) - (-0). The sign of a zero resulting from multiplication, dividion,
or shifting is in accordance with the usual sign convention,

Manipulation of instructions., Words representing instructions may be
handled in the arithmetic element as numbers,

61
Memorandum M-1624-1 Page 4

Procedure in the arithmetic element. The execution of an addition
includes the process of adding in carries; thls process treats all-16 digits
as if they were numerical digits, a carry from AC O being added into AC 15.
(This compensation is necessary because of the method of representing negative
numbers.) A subtraction is executed by adding the complement. Multiplication,
division, scale factoring, shifting (by not cycling) and roundoff are all
executed with positive numbers, complementing being performed before and
after the process when necessary. For roundoff the digit in BR 0 is effectively
added into AC 15,

BR. The final binary value of digits which pass from AC to BR or vice
verga ag a result of operations which multiply, divide, scale factor, or
shift (but not cycle) is determined by the sign digit assigned to AC at the
end of the operation. If the sign is negative the digits were in effect
complemented as they crossed the digit-boundary between AC and BR. If the
sign is positive no complementinz occurred. The net effect is that a number
in BR is treated a§ a positive magnitude, the sign of the number being
indicated by the sign digit of AC. Therefore, if a number is to be recalled
from BR for further operations, it is necessary to compensate for any change
in the sign digit of AC which may have occurred after the number was placed
in BR.. No complementing of any sort occurs in the execution of the cycle
instructions, during which AC and BR may be considered a closed ring of 32
digit positions.

NOTATION FOR CODING

Addresses. A coded program requires certain registers to be used for
gpecified purposes. The addresses of these registers must be chosen before
the program can be run on the computer, but for study purposes this final
choice is unnecessary, and the addresses can be indicated by a system of
symbols or index numbers.

Writing a coded program. Reigsters from which control obtains instructions
may be called action registers, and should be listed separately from registers
containing other information, which may be called data registers. A coded
program is written out in two columns: the first containsg the index number
of each action or data registers, and the second column indicates the word
that is initielly stored in that register. In many cages part or all of a
word may be immaterial because the contents of the register in question will
be changed during the course of the program. Thig state of affairs is indicated
by two dashes, for example, ca--. ' .

Conventional notation. In order to make a program more readily under-
standable to others and more easily remembered by the author himsgelf, it is
desirable to write short descriptions of the functionsg served by certain key
instructions and groups of instructions. It is also desirable to indicate
breaks and confluences in the "flow" of the program and to indicate instructions
which are altered or otherwise abnormally used during the program. Some
generally accepted symbols for this purpose are exemplified and described below:

120 td 124
start---» 121 ca 161 initial entry (i.e., start of program)
122 td 132

61 ‘
Memorandum M-1624-1 Page 5

139--9 123 ca 181 re-entry point, showing origin of re-entry

124 gu(182) address altered by program, initial value shown

125 sr 16
126 £p 128 conditional short break in consecutivity
/ (note other form below)
127 ! ad 140
- \

128 Yad 133

129 . ts address indicated by arrow (e.g. address = 130 in
‘this case), used primarily at early stages of
writing

130 (ca217/cs21?) word altered by program, alternative values
shown ’

131 sp 78 no break in consecutivity, despite sp operation,
where a cloged subroutine ig called in

(122,167) 132 ts (-) address altered by program, initial value
immaterial, locations of altering instructions
shown, alternative values not shown

133 jca 217 semi-pseudo instruction, serves both as instructim
and number

134 ,sp 95 short break in consecutivity, used especially
135 3 where a cloged subroutine with program
p parameters is called for
136 “ex 114
137 ¢p_141_ conditional break in consecutivity (note short
form above)
138 +ts 114

139 ép 123 break in consecutivity (note short form above)

140 ”rs 0 pseudo-instruction, serves only as a number,
not as instruction

137, 171-5 141 ts 171 entry point, showing origins of entry

The abbreviationg RC, CR. Abbreviations used in referring to the
register that contains 2 certain word or the word in a certain register are

RC . . .= (Address of) register containing . . .

CR. . .= Contents of register (whose address is) . . .

61
Memorandum M-1624-1 Page 6

The symbol gi x. When an address forms part of an instruction it is
represented by the last 11 digits of a word whose first 5 digits gpecify an
operation. An address that is not part of an instruction is represented by
the last 11 digits of a word whose first 5 digits are zero, which is equivalent
to specifying the operation gi. Thus the word for an unattached address x
may be written gi x. It may also be written as +x or as *tx X 27 5,

SECTION 2, WHIRLWIND I OPERATION COIE

NOTES ON THE OPERATION CODE

Introduction. The Whirlwind I Operation Code hasg been rewritten to
bring it up-to-date, and to incorporate all notes, wherever possible, with
the specific operations to which they apply, regardless of the undue repetition.
Included under each operation are the average time of execution, the function,
the contents (if altered) of AC, BR, AR, IOR, SAM, and register x after the
operation, and possible alarms.

Abbreviations. The abbreviations used are the following:

AC = Accumulator IOR = In-Out Register

AR = A-Register ES = ZElectrostatic Storage

BR = 3-Register x = address of a storage register
SAM = Special-Add Memory n = a positive integer

Contents of various registers. The contents of AC, BR, AR, IOR, SAM,
and the register whose address is x are undisturbed unless the contrary is
stated.

Alarmg. Arithmetic check, divide error, and check register alarms due
to programming cannot be caused except as specifically noted. M-1623,
"Programming for In-Out Units" discusses in-out alarms.

Execution times. The times given are average times for the execution
of single instructions which are stored in ES and which refer to addresses
in BS. Further details are given in M-1623 and in E-340.

In-Out Operations., Operations which call for the transmission of informa-
tion to and from various units of terminal equipment termed "in-out operations,"
are described briefly in the Operation Code. Details of the actual applica-
tion of these operations (gi, bi, rd, bo, and rc) appear in M-1623.

Three-letter operationg. The three-letter operations slh, slr, srh,
grr, clc, and clh utilize part of the address section of the instruction
(namely, digit 6) to specify the operation. If an address is inserted in
one of these instructions by a ta or td operation, care must be taken to
maintain the presence or absence of digit 6 in the address of the modified
instruction. The two-letter designations, sl, sr, £l, are ambiguous and
cannot be used in programs, but they may be used in general descriptions
and comments.

61

Memorandum M-1624-1 ” T Page 7
Operation Function Number Binary Time
si pagr gselect in-out unit/stop $0 00000 45 microgec si

Stop any in-out unit that may be running. Select a particular in-out
unit and start it operating in a specified mode, designated by the digits
p_g r; or, stop the computer. si O will stop the computer; si 1 will stop
the computer only if the "Conditional Stop" switch is ON, An in-out alarm
may subsequently occur if the computer is not ready to receive information
transmitted to it from the selected in-out unit. A transfer check alarm
may result from the use of an illegal gi address. For further detalls, see
M-1623, "Programming For In-Out Units." :

rs X reset - #1 00001 30 microsec s

Reset any flip-flop storage registers connected to the "reset on rs'"
circuit.

bi x block transfer in #2 00010 (see M-1623) ~ bi
AVAIIABLE ABOUT JAN, 1953 '

Transfer a block of n words or characters from an in-out unit to ES,
whfge register x is the initial address of the block in ES, and # n times

is contained in AC., The computer is stopped while the transfer is taking
place. After a block transfer, AC contains the address which is one greater
than the ES address at which the last word was placed; AR containg the initial
address of the block in ES. Fur further details, see M-1623, "Programming
For In-Out Units." :

rd x read 43 00011 30 microsec rd

Transfer word from IOR to AC, then clear IOR, (Wait, if necessary,
for information to arrive in IOR from an in-out unit.) Contents of AR is
identical to contents of AC. The address section of the instruction has
no significance. For further details, see M-1623.

bo x block transfer out #4 00100 (see M-1623) bo
AVAILABLE ABOUT JAN. 1953 i

Transfer block of n words from ES to an in-out unit, where x is the
initial address of the block in ES, and + n times 2-15 15 contained in AC.
The computer is stopped while the transfer is taking place. After the block
-transfer, AC contains the address which is one greater than the ES address
from which the last word was taken and stored; AR contains the initial
address of the block in ES. TFor further details, see M-1623, "Programming
For In-Out Units." :

61

Memorandum M-1624 -1 . L | : Page 8
| A L0
. 4 < /.,([
- Operation Function Number Binary Ti.me’/ '
rex record #5 00101 30 microsec

. Transfer contents of AC wia IOR to an in~out unit. IOR is
cleared only after an rc used as a display instruction. The address
section of the instruction has no significance. For further details,
see M-1623, "Programming For In-Out Units."

ts x transfer to storage i 01000 86 microsec

Transfer contents of AC to register x. The original contents
of x is destroyed. A '

td x transfer digits. A #9 01001 86 microsec -

Transfer last 11 digits of AC to last 1l digit positions of
register x. The original contents of the last 1l digit positions
of register x is’destrpyeéd.

‘tax transfer address #L].O 01010 86 microsec

Transfer last 1l digits of AR to last 11 digit positions of
register x. The original contents of the last 11 digit positions of
register x is destroyed. The ta operation normally follows an sp
or sf operation. - :

ck x check | : $#11 01011 48 microsec

|Compare contents of AC with contents of register x. .If contents of
AC is 1déntidal to contents of register x, proceed to next instruction;

othorwise stop the computer and give a "check-register alarm." (+0 is not
identical to -0). '

ex x exchange #13 01101 86 microsec

Bxchange contents of AC with contents of register x (original
contents of AC in register x, original contents of register x in
AC .and AR). ex O will clear AC without cleafing BR.

ep X conditional program {14 01110 30 microsec

If mmber in AC is negative, proceed as in sp. If number in AC
is positive, proceed to next instruction, but clear the AR.

8p X subprogram | #15 01111 30 microsec

Take next instruction from register x. If the sp imstruction was
at address y, store .t 1 in last 11 digit positioms of AR. All of the
original contents of AR is loste. .

ca x clear and add #16 10000 48 microsec

Clear AC and BR, then obtain contents of SAM (+1, O, or 1) times 2~
and add contents of register x; storing result in AC. The contents of
register x appears in AR. SAM is cleared. Overflow may occur, giving en
arithmetic check alarm. '

16

61

Memorandum M-1624-1 _ Page 9
Operation Function Number Binaq[~ Time
68 X clear and subtract #417 10001 48 miorosec

Clear AC and BR, then obtain contents of 8AM (+1, O, or -1)

. times-2~15 and subtract contents of register x, storing result in
AC. The contents of régister x appears An AR. SAM is oleared.
Overflow may occur, giving en arithmetic check alarm.

adx add - 418 10010 48 miorosec

Add the contents ot register x' to contents of AC, storing result
in AC. The contents of register x appears in AR. SAM is cleared.
Overflow may occur, giving an arithmetic check alarm. :

sux _ subtract_ - $19 10011 48 microseoc

Subtract contents of regiater x from contents of Ac, storing
result in AC. The contents of register x appears in AR. SAM is
cleared. Overflow may occur, giving an arithmetic check alarm.

X clear and add magnitude 20 10100 48 microseo

_ Clear AC and BER, then obtain contents of SAM (+1, 0, =1)

times 2-15 and add magnitude of contents of register x, storing
result in AC. The magnitude of the contents of register x appears
in AR. SAM is cleared. Qverflow may occur, giving an arithmetic
check alarm.

sa x special add #21 10101 48 microsec

Add contents of register x to contents of AC, storing result in

AC and retaining in SAM any overflow (inoluding sign) for use with
next ca, os, or cm instruction. Between ga dnd the next ca, cs, or em, -
for whioh The sa Is a preparation, the use of any instruction which
~clears SAM will result in the loss of the overflow, with mo other
effect on the normal function of the intervening operation. (In
_ addition to ca, os, and cm, the following operations clear SAM:
ad, su, sa, 80, dm, mr, mh, dv, sl, sr, and sf.) If the overflow
resulting from the sa is to be disregarded, care must be taken to
 destroy it before the next ca, cs, or am instruction. The contents
* of register x appears in AR. SAM is cleared before, but not after,

the addition is performed. ‘ ' '

80 x ~ add one 22 10110 86 microseo

, Add the number 1 times 2718 4o contents of register x, storing
the result in AC and in register x. The original contents of register x
appears in AR, SAM is cleared. Overflow may occur, giving an arithmetic
- check alarm.

61

Memorandum M-1624-1 Page 10
Operation Function Number Binary Time
dm x difference magnitudes #23 10111 118 microsec

Subtract the magnitude of contents of register x from the magni-
tude of contents of AC, leaving result in AC. The magnitude of contents
of register x appears in AR. OSAM is cleared,

mr x mult iply and roundoff #20 11000 65 microsec

Multiply contents of AC by contents of register x. Roundoff
result to 15 significant binary digits and store it in AC. Clear BR.
The magnitude of contents of register x appears in AR. SAM is cleared,

mh x multiply and hold #25 111001 65 microsec.

Multiply contents of AC by contents of register x. Retain the
full product in AC and the first 15 digit positions of BR, the last
digit position of BR being cleared, The magnitude of contents of
register x appears in AR. SAM is cleared.

dv x divide #26 11010 120 microsec

Divide contents of AC by contents of register x, leaving 16 binary
digits of-the quotient in BR and * 0 in AC according to the sign of the
quotient., The instruction slr 15 following the dv operation will round-
off the quotient to 15 binary digits and store it in AC. ILet u and v be
the numbers in AC and register x respectively when the instruction

dv x is performed, If |ul<:| the correct quotient is obtained and no
overflow can arise, >.|v the quotient exceeds unity and a divide-
error alarm will result f u=v#0, the dv instruction leaves 16

ones in BRj roundoff in a subsequent slr 15 Will cause overflow and give

an arithmetic check alarm, If u = v = 0, a zero quotient of the appropriate
sign is obtained. The magnitude of contents of register x appears in AR.
SAM is cleared,

slr n shift left and roundoff #27 11011 L1 microsec

Shift contents of AC and BR (except sign digit) to the left n
places. The integer n is treated modulo 323 digits shifted left out
of AC 1 are lost. (Shifting left n places is equivalent to multiplying
by 2%, with the result reduced modulo 1l,) Roundoff the result to 15
binary digits and store it in AC, Clear BR. Negative numbers are
complemented before and after the shift, hence ones appear in the
digit glaces made vacant by the shift of negative number, Digit 6
(the 2 512 digit of the address) of the instruction slr n must be
a zero t distinguish slr n from slh n described below, ~ The instruction
slr O simply causes roundoff and clears BR. SAM is cleared. Rowundoff
may cause overflow, with a consequent arithmetic check alarm.

61

Memorandum M-162}-1 » Page 11
Operation Function Number = Binary Time
slh n shift left and hold #27 11011 N1 microsec slh

Shift contents of AC and BR (except sign digit) to the left n
places. The integer n is treated modulo 32; digits shifted left out of
AC 1 are lost. (Shifting left n places is equivalent to multiplying by
2n, with the result reduced modulo 1.) Do not roundoff nor clear BR.
Negative numbers are complemented before and after the shift, hence ones
appear in the digit places made vacant by the shift of a negative number,
Digit 6 (the 27 = 512 digit of the address) of the instruction slh n must
be a one to dlstlngulsh slh n from slr n described above., SAM is
cleared.

srr n shift right and roundoff #28 11100 1 microsec srr

Shift contents of AC and BR (except sign digit) to the right n
places. The integer n is treated modulo 32; digits shifted right out
of BR 15 are lost. (Shifting right n places is equivalent to multiplying
by 2-1,) Roundoff the result to 15 binary digits and store it in AC., Clear
BR. Negative numbers are complemented before and after the shift, hence
ones appear in the digit places made vacant by the shift of a negative number.
Digit 6 (the 29 = 512 digit of the address) of the instruction srr n must be
a zero to distinguish srr n from srh n described below. The instruction
srr 0 simply causes roundoff and clears BR, SAM is cleared. Roundoff
(in a srr 0) may cause overflow, with a consequent arlthemetlc check alarm.

srh n shift right and hold ~ #08 11100 Il microsec srh

Shift contents of AC and BR (except sign digit) to the right n
places. The integer n is treated modulo 32; digits shifted right out of
BR 15 are lost. (Shifting right n places is equivalent to multiplying by
2-1,) Do not roundoft the result nor clear BR. Negative numbers are
complemented before and after the shift, hence ones appear in the digit places
made vacant by the shift of a negative number. Digit 6 (the 29 = 512 digit
of the address) of the instruction srh n must be a one to dlstlngulsh srh n
from srr n described above. SAM is cleared.

sf x scale factor | #29 - 11101 97 microsec sf

Multiply the contents of AC and BR by 2 sufflclently often to
make the positive magnitude of the product equal to or greater than 1/2.
Leavethe final product in AC and BR. Store the number of multiplications in
last 11 digit places of AR and register x, the first 5 digits being
undisturbed. If all the digits in BR are zero and AC contains + O, the
instruction sf x leaves AC and BR undisturbed and stores the number 33
times 2-15 in the last 11 digit positions of AR and register x. Negative
numbers are complemented before and after the multiplication (by shifting),
hence ones appear in the digit places made vacant by the shift. SAM is
clearad,

61

Memorandum M-1624-1 Page 12

Operation Function Number Binary Time

clec n cycle left and clear (BR) #30 11110 L1 microsec cle

Shift the full contents of AC and BR (including sign digit) to the
left n places. The integer n is treated modulo 32; digits shifted left
out of AC O are carried around into BR 15 so that no digits are lost.
Clear BR., No roundoff. With the clc operation there is no complementing
of AC either before or after the shift; theactual numerié¢al digits in AC
and BR are cycled to the left. The digit finally shifted into the sign
digit position determines whether the result is to be considered a positive
or negative quantity. Digit 6 (the 29 = 512 digit of the address) of the
instruction clc n must be a zero to distinguish clec n from clh n described
below. The instruction clc O simply clears BR without affecting AC.

¢lh n cycle left and hold . #30 11110 - 41 microsec clh

Shift the full contents of AC and BR (including sign digit) to the

" left n places. The integer n istreated modulo 32; digits shifted left out
of AC O are carried around into BR'15 so that no digits are lost. With the
Cclh operation there is no complementing of AC either before or after the
shlft the actual numerical digits in AC and BR are cycled to the left. The
digit flnally shifted into the sign digit position determines whether the
result is to be ~onsidered a positive or negative quantity. Digit 6
(the 27 = 512 di«it of the address) of the instruction clh n must be a one
to distinguish clh n from clc n described above. The instruction clh O
does nothing,

61
Memorandum M-1624-1 ‘ Page 13

ALPHABETIC LIST OF OPERATIONS

This is an alphabetic list of Whirlwind opera&tions, including operations
and designations which have become obsolete since 1950,

Operation Number Remarks Cperation Number Remarks
ad 18 gm 0 now dm
ao 22 | ap 31 obsolete
bi 2 . qr 30 obsolete
bo 4 as 12 obsolete
ca 16 re
ck 11 rd
cl 2 now clec ri 0 obsolete
cl* 2 now clh rs
cle 30 sa 2l
clh 30 sf 29
cm 20 sl 0
cp 14 sl 27 now slr
cs 17 s1* 27 now slh
dm 23 slh 27
dv 26 slr 27
ex 13 ' sp 15
mh 25 sT 28 now srr
mr 24 sr* 28 now srh
qd 7 obsoléte srh 28
qe 13 now ex srr 28
qf 23 obsolete su 19
gh 6 obsolete ta 10
ql 2 now cle td
ql* 2 now clh ts . 8

Signed //izfazgliﬁ

P.R, Bagley

Approved ﬂ, ﬁ L{),Lﬂ/slﬁ-nf’

C.R. Wieger

cc: C.W, Adams
PRB/sc/ jum/ jmc/mrs

