PDP-1 COMPUTER
KILECTRICAL ENG INEERING DEPARTMENT
MASSACHUSETTS INSTITUTE CGF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

PDP-45
CERTAINLY (ABRIDGED)

31 January 1972

Introduction

Certainly asscmbles source programs written 1in PDP-1
assembly languwge into obJect programs. The source language
provides a convenlent way of coding algorlithms whlle giving
the programmer complete control over the content of the
obJect program. The source program mey be read from the drum
or the on=-line typewriter. The object program is wriltten
onto drum {ield 1,

This 1s an abrildged edlitlon of the Certalinly manual. Many
advanced and powerful features of the assembler are not
descrlibed 1n thls manual,

Notes Sectlons ldentifled wilith an asterisk (%) my be
omitted on a first reading.

Certalnly processes the source program twice. During pass
1 address tags and other symbols are defilned, and constants
and varlables areas are allocated. During pass 2 the object
program 1ls produced.s Macros, rcpeats, and conditionals are
expanded during both passes. '

A sample program written in Certalnly assembler language
1s shown below.

sum

n=100

12/

a, law tab
dap b
dzm s

b, lac
adm s
ldx b
gas ¢
Jmp b
dsm

tab, tab+n/

s, o

C, lac tab+n

start a

The filrst non-blank line 1s the title, which 1s printed
on the typewriter. The program ends wlth the start pseudo-
Instructlion, or, if there is no start pseudo-instructilon,
with the end of the source program,

The Source Iangwpe

For clarity, the followlng symbols are asslpgned to the
Invislble characters when needed in examples of parts of
source pPrograms.

carriage return (cr}
tabulation (tav

The source program 1s considered to be a series of
syllables &and separators, A separator is one of the
fcllowing characters = space, tab, cry +, =, x, A, V, & D,

, =, com, (,), [,], and slash. A syllable is & stri
of alphanumerlc characters (digits, letters, and period
preceded and followed by separators,

The most lmportant obJject In the source larguage 1s the
expresslon, which has a numerical value to be used as a
storage word of the obJect program, location assignment,
argument, etce An expression is one or more terms separated
by sultable comblning operators. The following are some of
the forms terms can take -

A symbol 1s 2 syllable containing at least one letter,
Symbols may be of arbitrary length, but are recognized
by their first six characters. If a symbol is
undef ined, +the expression in which 1t appears is
undefined. If it is defined as a macro=-instruction or
pseudo=instructlion, speclal action 1s taken. The
mnemonles for the PDP-1 machine 1nstructions are
lnltlally deflned as shown 1ln Appendix I,

A number 1ls a syllable which 1s a string of digits wilth
an optlonal deciml point at the end. The value of a
number 1s computed modulo 777777, except that 777777
1s not changed to O. If a number 1s 1mmedlately
followed by &a decimal polnt, then it 1s taken as
decilmal regardless of the current radix.

The syllable conslsting of a single point evaluates to

the current location, which 1s the address at which
the current Instruction is to be assembled,

A term conslsting of upper case .characters is a micro-
program instructlon (see memo PDP-35), The syllable
must not contain case shifts.

A double quote (") followed Dby an upper or lower case
character 1o a term, which has the value of the 7=bit
conclse code of the character. The T-blt conclse code
of a character 1s 1ts conclse code, plus 100 if the
character 1ls 1n upper case,

Certaln pseudo-instructlons generate terms. See the
descrliptlons of the pseudo=lnstructlons for details.

flexo abe 1s a term wlth value 616263

Terms may be comblned by use of the followlng operators.
Arithmetic 1s performed in one's complement.

+ or space means addition. A sum of Zero 1s always plus
Zero,

- means subtraction. Minus signs count out properly, thus
~==3 = =3, =0 15 not changed to +0.

V means bltwilse Inclusive or

A means bltwlse and

means bltwlse exclusive or

X means lnteger multiply. Multiplication iLs mod 777777

> means Integer quotlent. The arpument on the left 1s
dlvlded by the arpument on the right, Divislon by zero
returns the origlmal dividend, ‘

< means remalnder of Integer dilvision. Division by 2zZero
returns zero,

Operator prilorilty

Operations of the same prlority are performed from left
to rlght. Operatlons of different priorities are performed
in the order gilven in the table below,

unary + and - (executed first)
<
>
A
?5
A%
b

lnary + and - (executed last)

Two consecutllve operators arec assumed to have 2zcoro

between them. The followlng arc some cxamples of expres—
slons, gilving the values (1n octal) on the right.

expression va lue

26 A 2
262143, 177777
262144 , 1
=0 TTTTTT
243 5
2=3 177776
2x3 6
400000xT 400003
2v3 3
2A3 2
2~3 1
-5v1 177773
543 2
13> 2
T-2V3 b
add 40 Loooko
clavema 761200
=} 777773
—) 1
3Ixxe 0
TAZ+30 774032

X 173

Operations on expressions

An expression enclosed 1In brackets is a term with the
value of the cxpresslon, Brackets may thus be wused for
grouplng, 1n order to force evaluation of parts of an
expresslon 1n a certain order. :

2x [3+4] has value 16

Warnlng, - brackets are removed In a repcat range or NmECro

arpument llste An extra palr of brackets ls sometimes needed
to clrcumwent this.

An cxpression encloscd ln parcentheses ls a term whilch
evaluates to the address of the register 1In the next
constants area where the expresslon 1s stored. See the
descriptlon of constants for details.,

lio (20), or, as usually wrltten, 1llo (20, assembles an
Instructlon whilich places 20 in the in-out register by
loadlng 1t from a register 1n the constants area in
whilch 20 1s stored. \

(#) An expresslon preceded by one of the conditiomal
pseudo=-instructions ifp, 1ifm, ifz, 1ifn, or 1fup, and
followed by & slash, 1s a term with value 1 or O depending
on the result of a test applled to the expresslon. See the
descriptlion of these pseudo=lnstructlons for detalls,

1Ifup 2/ has value 1 If sense swltch 2 1s up, 2ero
otherwise.

ifz a/ALfp b+2/+3 has value 4 if a 1is zero and b+2 1is
positive, and 3 otherwise.

Note that the bltwise and, or and excluslve or- operators
my be used as logical operators with logical values O and
1,

Grouplny brackets, constants, and condltlonals may be
nested to any reasonmdble depth. ‘

The closlng, parenthesls, closing brackel, or slash that
ends the expresslon wlthin a constant, condltlonal, or
grouplny, brackets may be omltted. The assembler will assume
that the missling character was placed 1ln the last position
that wlll result 1in a syntactlcally correct expression.

examples - llo (20
The assembler assumes a rilght paren.
Just before the cr.

repeat ifz a,foo
The assembler assumes & slash before the comma,

Uses of Expressions

The meaning of an expresslon to Certalnly is determined
by the context in which 1t appears 1n the source program.

The character immedlately following the expression usually
Indicates its use.

Storage word

An expression terminated by a cr or tab is a storage word
and 1ls assembled lnto the obJect program.

examples - jmp ret
lac abc

The 18 bilt number which 1s the value of the expression is
assligned &a locatlon 1in memory determined by the location
counter in the assembler, After each word is stored, the
locatlon counter is advanced by one. A storage word may be
an instructlon, a constant, or data. A tab or cr not
preceded by an expresslon, or preceded by arithmetlc opera-
tors only, with no syllables, does nothing. If a storage

Jwgrd is undefined on pass 2, the usw error message will be
given,

Locatlion assignment

An expresslon terminated by & slash 1s a location
agsignment. The current location 1s set to the value of the
expression truncated to twelve bilts.

example - 100/ sza
Jmp 100

The above source program part will cause the instructions
sza and Jmp 100 to be assembled into locations 100 and 101
of the obJect program, respectively.

An undefined location assignment wlll give the usl ‘error
message., .

A ddress tag

An expression followed by a comm 1s an address tag. If
the tag 1s & single undefined symbol, that symbol will be
deflned ¢to be equal to the current location. If 1t is a
def lned expression, lt 1s compared with the current loca=-

tion, and a ?isagreement willl cause an mdt error message to
be printed. Use of the same symbol as an address tag twice

In one program 1s a common cause of this error.) If the tag
is undefined but more complicated than a single symbol, 1t
1s 1ignored on pass 1 and a2 ust error is glven on pass 2,

example - a, dzm 1 tab+n
SXXZ
Jmp a

When the assembler defines a symbol as an address tag, if
the comma 1s preceded by a centerdot, the symbol 1s defined
In such a way that 1t will not be transmitted to ID.

Note the opposlte character of locatlon assignments and
address tags. A location assignment moves the value of an
expresslon 1Into the locatlon counter, while a tag moves the
locatlon counter 1nto the symbol which forms the tag.

A sequence such as tab,
tab+n/

1s frequently used to reserve a block of registers for a

~table of data., In the above example, the length of the block
s n, and tab ls defined as the address of the first
reglster In the block,

() Formal symbol def inition

A symbol followed by an equals slgn and an expression 1is
deflined to have the value of the expression 1If the expres-
Sslon 1s defined. If the expression 1is not defined, no action
ls taken on pass 1, and the use error is glven on pass 2, A
formal symbol definition overrides any previous definition
of the symbol, whether it wasg a numeric definition, an
Instruction mnemonic, & pseudo-instruction, or mecro., If an
underbar precedes the equals sign, the symbol will be
deflned in such a way that it will not be transmltted to ID,

examples = n==100
t=t+t
sml=spil 1

No storuge word ls generated by a formal symbol definitilon.
Comments

A slagh, when not preceded by an expfesslon, begins a
comment.s All characters are lgnored up to the next carriage
return,

The location counter

The locatlon counter records the address at which the
current storage word i1s to be assembled. It 1is set to zero
at the beginning of each pass and is advanced by one after
each storage word ls assembled, Any attempt to assemble a
word, constant, or variable into location 10000 will produce
an rpm crror,. ‘

example - dzm 1 tab+n
SXXZ
Jmp =2

assembles 1nto the same sequence of instructlons as the
example (zlven In the sectlon on address tags.

Pseudo=-instructions

Pseudo=-instructions are speclal commnds to the asseme
bler. They are usuwally used for generating certain types of
data, controlling the assembly process, and def ining macros.
Each pseudo=-instruction has one Or more names in the initlal
symbol table. Certainly acts on a pseudo=~instruction when-
ever 1t encounters its name followed by any separator other
than equals sign, Some of the descriptions below give names
that are more than six characters long. Silnce symbols are
recognized by theilr first six characters only, any pseudo-
lnstructlon name may be shortened to six characters (for
example, charac instead of character). They may not be
shortenced further except for character and f'lexo, for which
the altermate names char and flex are defined Lln the initial
symbol table,

Data Generating Pseudo-~Instructions

character and char

The pseudo-lnstructlion character (or its abbreviated form
char) 1s used to generate a syllable containing the concise
code for a given character, The name of the pseudo-
Instruction 1s followed by a separator, the letter 1, m, or
r, &nd then the character to be translated. The letter 1, m,
or r determines whether the following character 1s to be
placed 1n the left, mlddle, or ripght six blts of the word,
respectively. The other twelve bilts are set to zero, If the
character followlnpg the separator 1is not 1,. m, or r, that
character ltsclf 1is used, and 1s placed ln the right six
blts. The term pgenerated by character may be used anywhere
Withln an expresslon, '

examples - char ra = 000061
char mb = 006200
char lc = 630000
char d = 000064

flexo and flex

The pseudo-instruction flexo (or 1ts abbreviated form
flex) 1s used to pack three characters into one word. The
three characters lmmedlately following the separator after
the pseudo=-instructlon name are packed from left to right.
The resulting term my be used anywhere withlin an expres—
slon,

example - flexo abe = 616263

thls 1s equlvalent to char laVchar mbvVchar rec

/o

Ltext

The pseudo=lnstructlon text 1s used (o assemble an
arbitrarlly long strilng of characters. The character immedl—
ately following the separator after the pseudo-instruction
reme ls used as the break character. Following characters,
Up to but not lncluding the next appearance of the break
character, are packed three to a word and assembled into the
object program, If the break character which ends the string
Is followed by octal digits instead of a separator, the
assembler goes into “octal" mode, in which pairs of digits
are taken as 6 blt numbers and packed as If they were

characters. When the break chagactem 1s next encountered the
assembler reverts to normal "text mode, The assembler

alternates between text and octal modes untlil the break
character, followed by & separator, is found while in text
mode. Note that the string begins and ends in text mode, and

there are always an even number of appearences of the break
character,

examples - text .abc.7652.de. assembles into
61626
76526
650000

text //14 /ave/13// assembles into
146162
631300

Because text may gcnerate more than one word of data, 1t
should only be used to generate storage words. It should not
be used ln constants, arguments, etc.

Of) text7

The pseudo-lnstruction text7? assembles characters in T-
blt form, The pseudo-lnstruction name 1s followed by a
string 1in the same formt as for text. The T-blt concise
codey of the characters are packed five per two words, left

ustifled. Bit O of the first word in each pailr is zero., In
"octal" mode, three digits are used for each character.

example - text7 /Mhat??/
assembles into
octal binary
254703 0 1010110 0411000 011
o421 0001 0010011 1010001
242000 0 1010001 0000000000

I

(%) ifp, ifm, 1fz, and ifn

These four pseudo-lnstructilons apply a test to a numeric
argument and generate one or zero depending on the result.
Ifp, ifm, 1ifz, and Ifn generate 1 1f and only . if the
argument 1is positive, negative, uzero, and nonzero, respec-—
tively. For the purposes of the test, +0 1s positive and
zero, and 777777 (-0) 1s negative and nonzero., The expres—
slon to be tested follows the separator after the pseudo-
Instruction name and 1s ended by the next unpaired slash
(see the sectlon on syntax). If the expression under test 1s
undef ined durlng pass 1, the term generated by the pseudo-
instruction 1s undefined. 1If the expression under test is
undef'lned during pass 2, the usi error i1s given instead.

(%) ifup

The pseudo=instruction ifup 1s used to test a sense
swltch at assembly time, The expression following the
separator after i1fup and ended by the next unpaired slash is
taken to be the number of the switch. A value of 1 1is
generated 1f that switch 1s up, zero if down.

/12,

Radix Control

All numbers not followed by a declmal polnt are inter-
preted according to the current radix. At the beglinning of
each pass, the radix 1s set to octal,

decimal

Declmal sets the radix to decimal.

octal

Octal sets the radix to octal. These pseudo~instructions
My be used anywhere within an expression, hence an expres-—
slon my be Interpreted partly in deciml and partly in
octal,

(%) radix

Radlx 1s followed by an expression and sets the radix to
the value of that expression. The expresslon must be def ined

on both passes. The usx error 1s given If thils 1s not the
case.

3

Auvtomatic Constant Allocation

It 1s frequently necessary to assemble an instruction
whose address part ls the address of & reglster in which a
constant 1s stored. The assembler facllitates thils operation
by automitically assemblling a reglster containing a constant
whenever the constant appears enclosed in parentheses in an
expresslon. The constant with its parentheses then evaluates
to the address 1in whlch the constant ls assembled. The right
parenthesls after the constant may be (and almost always is)
omitted. A constant does not need to be defined on pass 1.

If 1t 1s undefined on pass 2 the usc error will be given.

example - sas (13
assembles Into an instruction which ckips 1if
the accunulator contains 13

constants

The actwrl constants are saved 1In & table 1in the
agsembler and then assembled In a block at the next
appeusrance of the constants pseudo=lnstructlone. Duplicated
constants arce comhlned and stored 1n the same reglster. The
amount of space allocated for the constants area durlng pass
1 my exceed the amount actually wused on pass 2, since, if
constants are undefined on pass 1 the assembler is sometimes

unable to determlne whether they are duplicated and must
. @ssume that they are not.

The pseudo=lnstruction constants may be . used up to 8
times In a program. Each constant is placed 1in the next
constants arca regardless of whether the same constant
appecared ln an earller constants area, The programmer should
not make any assumptions about the order of constants wlthin
a constants arcu,

Automitlc Variable and Array Allocation

Certainly will autometlcally allocate one register of
memory for a varlable or temporary 1f the name of the
variable appears wlth an overbar, The overbar my be
anywhere withlin the names Onl one appearance of the name
nceds an overbar, The symbol will be deflned to have a value
of the address of the regilster which 1is allocated. A
varlable must have been previously undefined on pass 1. The
miv error wlll occur 1f thils 1s not the case.

dlmenslon

The dimenslon pseudo=instructlon declares a symbol as an
array or table to be automatically allocated. Dimenslon 1is
followed by a serles of array declaratlions separated by
comag and termlnated by a carrlapge return. Each declaratilon
consists of the array name optionally followed by 1ts length
enclosed In parentheses. If the length specification 1s
absent, the length 1ls assumed to be 1, The length may be any
expresslon, whlch must be deflned on pass 1. The usd error
will occur if the array slze 1s nol deflned. kach array name
W1lll be deflned as the value of the address of the first
word of the array. An array name must have been previously
Egdeflned on pass 1. The mdd error will occur if this 1s not

e casc, ,

example - dlmension a(10),b(20),c(1),d

declares a, b, ¢, and d as arrays of 10, 20, 1, and 1
words respectively. The declarations: for c and d
could have heen accomplished by thelr appearance
wlth an overbar 1n any expression.

variluables

All varilables and arrays are placed in a variaoles area,
which the assembler constructs when 1t encounters the
arlables, psgudeo=lns{ructlon., This pseudo=~inst ;lon me
VTSP PoE° 188 T T prggrgmf BESRAPa AR bTaest Srrad be
placed ln the next varlables area after the overbar or
dimenslon pseudo-lnstruction that declares it. The program-—
neris%guld not make any assumptlons about the order of
varlables and arrays wlthin an area. The initial cont S
varlables and arrays are not assigned by the assggglegf

The use of dlmension, constants, and varlables 1ls shown
In the program below, '

sum
n=100
dimension tab(n)
i1/
a, law tabd
dap
dzm s
b, lac
adm s
1dx b
sas (lac tab+n
Jmp b
dsm
varlables
constants
start a

Thls wlll produce the same obJect program as the example
glven In the introductlon, except that s ls not initlallzed,
and the reclative order of s and tab in the variables area is
unknown. The array tab 1s not 1lnitlallzed in elther example,

It -

(X) repeay

The pseudo=-ilnstructlon repeat 1ls used to make the assem~-
bler process part of the source program a specified number
of times. The pscudo-instruction 1s followed by the count,
whilch my be any expresslion and i1s terminated by a coma.
The characters following the comm up to and including the
next carrilage return are the range, The assembler behaves
exactly as 1f the range had been typed & number of times
equal to the count.

example - repeat 3,rll 6s ivk 300
1s treated as 1f 1t were
ril 6s ivk 300
ril 6s ivk 300
ril 6s ivk 300

another example

2=0
repeat 3,z=2+10 y=0 repeat 3,y=y+l

1s treated as 1f 1t were

2 =0

z=Z+10 y=0 repeat 3,y=y+l y+2
z=2410 y=0 repeat 3,y=y+l y+Z
z2=Z+10 y=0 repeat 3,y=y+1 y+z

whilch 1ls treated as if 1t were

z =0

2=2+10 y=0 y=y+l V42
y=y+l y+z

y=y+l y+z

z=2+10 y=0 y=y+l y+Z
v=y+1 V42

v=y+l y+z

z=2+10 y=0 y=y+1 yi2
y=y+1 y+z

y=y+l y42

whilch assembles into the sequence of words
11,12,13,21,22,23,31,32,33

The count must be deflnlte on both passes, or the usr error
wlll occur. A negative count ls taken as Zero,

7

The repeat range ends on the first carrlage return not
contalned within brackets. These brackets are not ¢to be
confused with the brackets used for arilthmetic grouplng.
They serve only to “hide" carriage returns and prevent them
from endlng the repeat range. The brackets are removed, that
is, the &assembler behaves as if the range without the
brackets had been typed the specified number of times. If a
wracket 1s lmmediately preceded by &an upper case shift and
followed by & lower case shift, both case shifts are removed

also, In order to permlt brackets to appear wilithin the
range, only the outermost pair is removed. Where repeats are

nested, one pair is removed at each level. Thus, in order to
place the arithmetic expression 3x([4+5] within three levels
of repeats, three extra pairs of brackets must be used even
when there are no carriage returns to hlde.
repedt 1,[repeat 1,[repeat 1,[3x[4+5]]]]
becomes
repeat 1,[repeat 1,[3x4+5]]]
which becomes
repeat 1, [3x[4+5]]
whlch becomes

3x [445]

(%) Macro~instructions

A macro=instruction is a user-defined "abbreviation"® for

& glven string of characters. Micro-lnstructions are created
by use of the define and terminate pseudo-instructions.
Subsequent appearances of the macro-instruction name cause

the macro to be "called'. The assembler behaves exactly as
if the characters that form the definition had been typed in

place of the call, A macro-instruction call my supply
arguments that are inserted into the definition at specified
points. The characters that are substituted for the call are

the "expansion" of the macro. Macro-instructions must be
def'lned before they are called,

example with no arguments

(def lnltion) deflne abs
spa
cnB

terminate

(call) lac x
abs
dac vy

1ls treated as 1f 1t were

lac x
spa
cm
dac y

example wilth two arguments

(definitlon) deflne move &,b
llo a
dio b
terminate

(call) move J,k+3
1ls treated as 1f 1t were

lio J
dlo k+3

9

another

(def lnltlon) defilne clear a,b
law a
dap .+1
dzm
id)c o"i
sas (dzm a+b

m 0‘3
termigage
(call) clear tab,100
ls treated as Uf 1t were

law tab

dap .+1

dzm

ldx =1

sas (dzm tab+100
Jmp 0‘3

def lne and terminate

The pseudo=instruction define 1s followed by the mame of
the meero to be defined and then the 1llst of "dummy
symbols", separated by commas and termimated by a carriage
return. The following text, up to the appearance of the
pseudo-ilnstruction terminate, become the definitlon, All
appearances of dummy symbols wlthln the defilnlition are
removed and mrked as places where arguments are to be
substltuted when the macro 1is called.s The actul definitlon
beglns wlth the character after the tab or carrliage return
that cends the dummy symbol llst. It ends on and lncludes the
separator before the termlnate pseudo-instructlon. In order
to permit macro deflnltlons withln & macro, appearances of
define and terminate are counted. The macro ends on the
first terminate not palred with a define. If terminate 1is
followed by @ separator other than tab or carriage return, a
symbol must follow. It 1s compared wlth the name of the
mcro being deflnede A dlsagreement causes the mnd error,
This 1s sometimes helpful 1in debugging complicated mRcros,

In order for the assembler to recognize a dummy symbol in
the deflinition, the symbol must be preceded and followed by
separators or non=2lphanumeric characters such as overbr,
underbar, centerdot, or 1llepal characters. In some cases 1t
1s desirable to substltute an argument adjcent to an
alphanumerlc character, such as a symbol. Thls would requlre
adJjolning & dummy symbol wlth another symbol, which makes L1t
Impossible for the assembler to determine where one symbol
ends and the other begins. To prevent thls diffilculty, the
separator single quote 1s provided. A slngle quote separates
the symbols, permitting recognition of the dummy symbol. The
slngle dquote 1s then removed and does not appear 1in the
expansclon, If 1t 1s ilmmediately surrounded by case shifts,
they are removed also,

cxample -« def lne type x
law char r'x

vk 100

terminate

type 4 then becomes
law char rg
vk 100

The use of rx wlthout the single quotc would have prevented
recognltion of x. Where the count of defines ls nonzero,
leeo in a definltlon within a macro, single quotes are not
removed, slnce they willl presumably be needed again.

me.cro calls

A macro 1ls called whenever its name appears followed by a
separator other than equals slgn. If the separator is tab or
carrlage return, there are no arguments. Otherwlse the
followlny; characters, up to the next tab or carrlage return,
form the argument 1lilst. The arguments are separated from
edch other by commas, They do not include the commas, the
separator after the maero name, or the tab or carrlage
return after the last argument. In order to permlt coma,
tab, and carriage return in an argument, thesc characters
m be hldden lnslde brackets in the same way that carriage
returns arc hidden in a repeat range. The outermost pair of
brackets 1s removed from each argument. The arguments are
then substiltuted as character strings for the dummy symbols
In the deflinition, and the resultlnyg expanslon ls substi-
tuted for the macro call, After the expansion has Dbeen
processed, assembly resumes wlth the character after the tab
or carriage return that ended the argument list,.

2|

If more arguments arc supplled than the number of dummy
symbols 1n the definitlon, the extra arguments are lgnored.
If too few arguments are supplied, the empty character
string 1s used for the mlssing arguments, unless a symbol is
generated.

generated symbols

It 1s sometlmes helpful to have a nacro generate one or
more symbols to be wused as address tags, etc. wWlthin the
mcro., For thls purpose dummy symbols may be declared to be
candlidates for generated symbols, If a slash appears 1n the
dumy symbol list, all the following symbols are candidates
for symbol generation., If, at the time the macro 1s called,
the arpument corresponding to such a symbol is missing, the
assembler will generate a symbol and use it for the
argument. A new symbol 1s ecenerated for each call. Generated
symbols are of the form .g0001, .;0002, etc. If the argument
ls supplled, 1t overrides the generated symbol.,

example = definc ifzero x/y

sza
Jmp y
X
Yo
terminate

The pgenerated symbol provides an address for the instruction
to Jump over x wlthout knowlng how many words x will become.

ifzero [lac a
dac b
lio ¢]

becomes

sza

mp 50001

ac a

dac b

llo ¢
{50001,

stop

The pocudo-instructlon stop causes an itmmedlate exit {rom
the most recently entered macro. The asscmbler bchaves as if
1t had rcached the last character of the definitlon, and
contlnues from the character after the call,

22

Miscellaneous Pseudo-instructions
starg

The start pseudo-instruction indicates the end of the
source program. It 1s optlonally followed by an expression

to be used as the starting address for the progﬁﬁm. If
Certalnly was started at location 12 (as by from

Expensive Typewrlter), the starting address is placed in the
program counter when control is returned to ID.

23

Program Format

While Certalnly has fcw requlirements on format, mny

programmers have found that adherence to & falrly rigild
format is helpful ln wrlting and correcting programs, The

following suggestions have been found useful 1in this
respect.

Place address tags at the left margin, and run Instruc-
tions vertlcally down the page 1indented one tab stop

from the left margin,

Use only & single carrlage return between Instructions,
except where there 1s a logical break ln the flow of
the program. Then put in an extra carrlage return.

Forget that you ever learned to count higher than five,

Let Certalnly count for you. Do not write “"dac .+16",
use an address tag. This will save grief when

corrections are required,

Have a 1listing handy when assembling or debugging a
program, Carefully note corrections thereon as soon as
they are found so as to mintain an up-to-=date
listing.

Az macro=instructions must be defilned before they are
used, put these definltlons at the beginnlng of the
program,

If the pseudo=linstructions variables and constants are

used, place them at the end of the program, Just
bef ore start,

24

Assembly Procedure

Certainly normally reads the source program from EXpen-
slve Typewriter's text buffer and places the object program

on drum field 1., However, many variations in procedure are
possible by typing control characters on the typewriter.

When Certainly is started at location 102 (as 1t 1is when
the "N" command 1s gilven 1n Expensive Typewriter), it
autometically goes through both passes of the assembly and
returns to ID as 1f the sequence 2z, s, s, and b had been
typed. It directs ID to place the starting address of the
program in the program counter, read the symbol table and
unsave drum field 1 (which contains the obJect program) into
core,

When Certainly is started at locatlion 104 (as it is when
the "M' commend 1s given 1in Expensive Typewriter), 1t
listens f'or control characters from the typewriter. After
each pass on a program section, 1t listens for more control
characters.

Whenever sense switch 1 1s up, Certainly types out every
character of the source program, lncluding expansions of
repetts and macros. This 1s useful when debugging macros.

25

26
Control Characters

Input medlum
e Expensive Typewrlter text buffer
y online typewrlter

output medium
d ‘drun fleld 1

W without output (Jjust check for errors)

assembly control

(6]

begln next pass

f forget (inltlallize everything)
% assign and zero drum ficld 1
k print constants and varlables areas
exit
b back to ID, leaving symbol téble in core where

"20" command can read lt

m mellorete source program (back to Expensive
Typewriter)

Error Messages

q?on detecting an error, Certainly will print a line in
the following formt,.

aaa P,1 c d e

where aaa 1s a three letter code indicating the error, p,l
1s the page and line numbers at which the error occurred (if
Input 1s from Exp?nsive Typewriter text b fer), ¢ is the

symbolle address

relative to the last tag), and 4 1s the

mme of the last pseudo-lnstructlon or macro. In the case of
an error caused by a symbol, e 1s the symbol, Following 1s a

list of crror messages and the actlon taken if assembly is

contlnued.
sce

pce

cce

mce

lch

rpm

110

ipl

mdv

mdd

mdt

Symbol table capaclty cxceeded. No recovery,

Pushdown capacity exceeded (nestlng of repeats
and mcros ls too deep)s The pushdown list

ls cleared and assembly starts over at the
top level.

Constants capaclty exceeded (more than about 400
constants). The current constant will evaluwate to
Zero,.

Macro capaclty exceeded and the garbage collector
could recover no space, No recovery,

Illegal character. It ls ignored.

Wrap around memory. The locatlion counter has
exceeded T777. It wlill be resct to zero.

Illegal format. Characters are lgnored to the next
tab or carrlage return.

Illepgal pseudo-instructlion. A pseudo-instruction is
used 1ln an 1llegal context. Same recovery as ilf.

Multiple definition of a variable (a symbol with an
overbar was previously defined). The old
definition remains.

Multiple definition in dimension (a symbol in a
dimension declaration was previously def ined).
The old definition remains.

Multlple definitlon of a tag. A defined tag does
not match the locatlon counter. The tag is
not redefilned.

27

mnd
uer
v1ia
tmv
cld
tme
ctl

eot

2&

Undef lned symbol 1n a storage word. The symbol is
taken as zero. All crror messages beglnning with
"us" refer to undefined symbols and are
ldentified by the third letter as followse

In a location assignment.

In a constant,

In a conditiomal (if),

In argument for start.

In an address tag that 1t not a single symbol.

In & repeat count,

In an array size for dimenslon.

Ina forml symbol deflnitlion (with equals sign).

In an argument for radix.

No constants area. The constant is asgembled as zero,.

Illegal forml symbol assipgnment. Tt is lgnored,

Micro name dlsagreces with name after terminate
The origlnal name Is used.

Mlecro-proprum error (upper case lectters do not form a
mlcro-program Instructlon). Same recovery as 1ilf,

Varlables locatlon dlsagrees between passes 1 and
s The locatlon ls forced to apree.

Too many varlables arcas, The pseudo~instruction
varlables 1s ignored.

Constants locatlon disapgrces between passes 1 and
2, The locatlon ls forced to agree,

Too many constants areas, The pseudo=-instruction
constants ls ignored.

Constants area too long (longer on pass 2 than on
pass 1). The constants area 1s truncated.

End of text reached in lmproper congext (eege, in
the mlddle of a macro definltion). The current
pass 1s ended.

Michilne Instructilons

1s
28
3s
4s

5s
6s

bs

9s -

1

and
lor
Xor
xel
Ixr
Jdp
cal
Jda
lac
lio
dc
G2 p
dip
dlo
dzm
adm
add
sub
ldx

sad
sas

dilv
Jmp
Jsp
skp
szf
SzZs
SZa
spa
Sma
szZm
SZ 0
spl
sni
oo
sf't
rel
rll

377
77
10000
20000
40000
60000
100006
120000
140000
160000
170000
200000
220000
240000
260000
300000
320000
340000
360000
400000
420000
440000
460000
500000
52 0000
540000
560000
600000
62 0000
640000
640000
64 0000
640100
64200
64 0l 00
640500
641000
642000
guuooo
50500
22200
65,0000
661000
662000

Appendix T

Inltlal Symbolys

29

rcl
sal
sll
scl
rar
rir
rer
sar
sir
scr
law
lan
ilot
tyl
ckn
cko
dsc
ase
¢
lsm
esm
cha
dra
rbt
W t
sdl
le L
lea
rer
tyo
dpy
vk
opr
nop
clf
stf
lia
lal
awDp
cmil
cla
cma
cle
=2t
cli
lol¢
ulk
frk
ait
bpt
cem
lem
rpf
1pf
reem
am

663000
665000
666000
667000
671000
672000
673000
675000
676000
677000
700000
107777
720000
72 0004
T2 002
720033
720050
T2 0051
(<0053
T2 0054
720055
T2 0056
72 0063
37
el
723477
TeUsTT7
24677
RUTTT
730003
730007
T4 0000
760000
760000
760000
760010
760020
760040
760060
760100
T6Q2 00
761000
7612 00
7622 00
T6H000
770040
TTO0M
770042
170043
770044
770046
770047
770050
770071
770052
770053

i &

lam
dam
aam
cem
elm
mba
hlt
dsm

7' 70054
'(0055
770056
770060
770061
770070
77007H
770077

Pseudo~instruct Llons

ccoun’t
ccount
char
charac
consgtia
declimal
def inc
dlmens
e ud 1o
lex
flexo
functi
ira
Ua
Ifm
1fn
Ifp
fsym
i up
ifu
Irp
Lrps
lrpinf
no lnpu
octal
o fset
ones
printc
printo
prlntx
radix
readln
repeadt
return
spell
sguose
start
stop
termin
text
textT
twos
varlab
word

2

Appendix II - Conclse Codes

Character Conclse Code
a A o6l
bB 62

sy N XE=<gsuILCrvoZIERyHICTEg Q
=
o

0

16
11
21
55
56
5k

33

73

? 21

downshlft T2
upshlift Th
space 00
backspace

sl 12
carrlage return 77
black shift 34
red shift 35
stop code 13

Vﬁomqmm:meoN%N£<cdm3£©osawxuwsmﬂoao

F—rmaa VAU ¥t -

4o

2
]

DX 1t}

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

