PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT
M.I.T,
CAMBRIDGE 39, MASSACHUSETTS

PDP-11

PROGRAMMING THE PDP-1 COMPUTER

J. B. Dennis

February 14, 1963

Introduction

The PDP-1 is a high-speed, general purpose, stored program cal-
culator. The fundamental unit of data is an 18-digit binary word. The
PDP-1 may be used to mechanize any computation or processing procedure
which can be expressed in terms of a sequence of arithmetic and logi-
cal operations on these quantities. The circultry of any machine
which is to be used in this manner must contain four basic elements.
First, there must be components which can perform the arithmetic and
logical operations required for a computation. This collection of
hardware is commonly known as the arithmetic element of a computer.
Secondly, there must be components which will hold data words until
needed in the computation and save partial results for later reference.

This is the memory element. The most important property of contempo-

rary high-speed calculators is that the algorithm, or specification
of the sequence of logical and arithmetic steps required to perform

a compubation, is also stored in the memory element. The collection
of memory words which specifies an algorithm is known as & program in
machine language. The third important section of a computer is a
group of devices which provide for communication between the machine
and the user of other entities of the outside world. This is the

input-output element of a computer and typically contains means of

accepting information from punched cards or paper tape, and display-
ing results via alphanumeric printing or graphically with a cathode
ray tube or plotting board.

Finally, a computer must contain components which can examine
the algorithm specification in the memory element, and translate this
specification into the appropriate sequence of actions in the arithme-
tic element, memory element and input-output element. The relation-

ships among the four elements are indicated in Figure 1.

directions
Arithmetic A algorithm
Element M 3 Control
emory specifications Element
N
results directions
data and
programs Input-
Output

Figure ;~—The Four Basic Elements of a Stored Program Computer

The system organization of the PDP-1 is shown in Figure 2.
The accumulator (AC), memory buffer register (MB) and the in-out (10)
are flip-flop registers which can hold 18-digit binary words. These
registers constitute the arithmetic element of the machine. All arith-
metic and logical operations performed by the computer are executed
on the contents of these registers.

The input-output element of the PDP-1 includes a paper tape
reader which is used to communicate programs and data to the machine.

The typewriter keyboard may be used %o direct a program to select a

4096 oC Program
1.8-bit Counter
words
Magnetic Core <
Memory
“ren | Memor
// y Ad-
e \\\iicpe MA dress Reglste
AC Accumulator h4ﬁﬂ3 Meggggsﬁgifer ;
Instructidn
' IR Register
i ,
Adding, ¢ |
I0 In-Out Register "—-————%

\
Control
Gates

_ b

Paper Tape Reader

N///”‘ Time Pulse
? o Generator

———

t

Typewriter
_ Paper Tape Punch

Figure 2--PDP System Organizaftion

~5-

particular compubtation when many possibilities are present, and can
21lso be used to change parameters or to modify a program. Calculated
results may be presented to the user in a numerical form by printing
with the typewriter, or in graphical form on the oscilloscope display.
Results may also be punched into paper tape for further processing
at a later time., A unique input device available with the PDP-1 is
the light pen which is used in conjunction with the oscilloscope to
read in empirical curves or to direct a program to take a specified
action., Means are also provided to transfer information to and from
users! equipment.

The PDP-1 is equipped with a ferrite core memory having 4096
registers, each capable of holding a 18 binary digit word. With each
register a unique address 1s assoclated which, in octal notation¥

may range from 0 to 7777. One memory cycle time, or five microseconds,

is required whenever a word is read from a memory register into the
memory buffer register, or a word in the MB is placed in a memory reg-
ister. The memory register involved is always specified by the address
contained in the memory address register, (MA).

The control element of the PDP-1 consists of two 12-bift regis-

ters, the program counter (PC) and the memory address reglster (MA),
and a 6-bit register called the instruction register (IR). The con-
trol element also contains a time pulse generator which produces a
sequence of 10 pulses which is repeated for each five microsecond

memory cycle. Gate circuits in the control element allow these pulses ©

*A11 numerical quantities subsequently used in this memo are in octal
notation unless otherwise indicated by the appropriate subscript.

6

cause various actions in the machine according to the contents of the

instruction register, and in some cases, the memory buffer register.

Actions which the control element may effect include the fol-

-lowing:
1.

2.

5e

Action of

transfer a word to the arithmetic element from a spe-
cified location in memory.

transfer a word to a specified location in storage
from the arithmetic element.

perform a logical or arithmetic operation within the
arithmetic element, such as clear, add, etc.

transfer data from an input device to the arithmetic
element, e.g., read a line of punched tape via the
photo electric tape reader.

transfer data to an output device, e.g., type a char-
acter by means of the typewriter.

transfer the contents of a memory register to IR and

MA for interpretation by the control element.

Control

In

the PDP-1 compuber, the words making up the program for a

particular computation are called instructions and are interpreted

one at a time by the control element. The program counter (PC) indi-

cates to the control element which memory register contains the next

instruction to be interpreted and executed. The contents of the PC

is indexed for each instruction performed so that instructions Iin suc-

cessive memory locations are executed in sequence. (There are excep-

tions to this which will be taken up later.)

-T-

Tc show the steps by which an instruction is executed by the
control element, consider the following example: It is desired to
add the number 45 to the contents of the AC which is initially 413.

To be able to accomplish this, the 18-digit binary representation of
45 must be in some memory location, say register 100. The instruc-
tion which will cause the addition must specify two things: First,
it must give the address of the register whose contents are to be ad-
ded. Second, 1t must specify that addition is to be performed rather
than some other operation. This 1s accomplished by employing the 1in-
struction format given in Figure 3.

The operation code consists of six binary digits and could
select one out of 6410 different possibilities. For instance, an ad-
dition instruction has the operation code 100000,. The address sec-
tion of an instruction usually specifies which memory register is in-
volved in the operation.

To return to our example, the instruction to add the contents
of register 100 to the present contents of the AC would be represented
by the octal number

400100

In order to be executed as part of a program, this instruction must
be stored in some memory register of the machine, séy register 200.
We may indicate the initial status of memory registers of interest
by writing the address followed by a slash, then the contents of the
register. Thus we have

100/ 45

200/ 400400

1 b T 10 13 16

o

olojo|olo|ilaja|alalaja]alala]a|a

\ _ /

T
operation code memory address
6 bits 12 bits

Figure 3--PDP-1 Instruction Format

It is evident now that the execution of the addition instruction will
require at least two memory cycle times. One is necessary to read
the instruction from register 200 and transfer it to the control ele-
ment. This is known as cycle zero. A second memory cycle is then
needed to read the contents of register 100 into the MB so that it
may be added to the AC. The actual sequenée of events is given be-
low. In this description, the symbol AC will mean "the contents of
the accumulator®, and likewise for MB, PC and MA. An arrow means
"peplaces". The abbreviation CM<MA> refers to the core memory reg-

ister selected by MA.

Initial Conditions: AC/ 13

PC/ 200
200/ 400400
100/ 45

Cycle gzero--fetch instruction
1. PCMA MA/ 200
Memory register 200 containing the instruction to be executed

is selected.

2. CM<MA>>MB MB/ 4004.00
The instruction to be executed is read from memory register

200.

3. MBy IR IR/ 100000, = 40

The instruction code for add is placed in the control element.

L. PC + 1-PC PC/ 201
The program counter is indexed so that the instruction in

register 201 will be interpreted next.

Cycle one-—execute instruction
1. MB6_179MA MA/ 100

Memory register 100 containing the addend is selected.

2, CM<MA>-MB MB/ 45

The addend is read into the memory buffer register.

3. MB + AC~AC AC/ 60

The addition is performed

Final Conditions: AC/ 60
PC/ 204
200/ 400400
100/ 45

The control element will then return to the sequence of steps
under cycle zero, which 1s essentially the same for all instructions.

-10-

The PDP-1 Instruction Code--Information Transfer Instructions

Pive of the PDP-1 instruction codes provide for the transfer of
information between the registers of the arithmetic element and the
memory element., These instructlons are listed in Table 1. In the
"symbol" and "octal value® columns of the chart, the symbol g repre-
sents an arbitrary memory address ranging from 0 through 7777« It is
convenient to think of the symbols for the operations codes as having
a value as given in the second column. The last column of the chart
gives a symbolic description of the execution of the instruction where
the notation is the same as used in the previous section. TFor example,
the description ot the lac instruction should be read as "The contents
of the ath memory register becomes tThe new contents of the accumulator.”
The halt instruction is included in the table so that we will have a
means of stopping the computation at the completion of our examples.

Suppose as part of an algorithm, it is desired to interchange
the values assigned to two quantities named x and .

We could indicate this in an algorithm diagram as shown in fig-
ure La. So that we can perform this computation with the available

PDP-1 instructions, we may elaborate on this as shown in Figure Lb.

—~
v
N

A
M
e
v

Figure 4--Togical Diagrams for Interchange

11~

Lable 1
Symbol Octal Value Name Description
lac a 200000 + a Load Accumulator ClM<a>>AC
Ioad the accumulator from register a.
lio a 220000 + a Ioad in-out CM<a>>I0
ILoad the in-out register from register a.
dac a 240000 + a Deposit Accumulator AC>CM<a>
Copy the number in the accumulator into memory
register a.
dio a 320000 + a Deposit in-out I0->CM<a>
Copy the number in the in-out register into
memory register a.
dzm 340000 + a Deposit zero in 0->CM<a>
memory
Place plus zero in memory register a.
hlt 760400 Halt | mm——

Halt execution of instructilions.
will continue in sequence when the continue
lever is pressed,

Execution

-12-

To convert this into a computer program, we must think of the names
x and y as being associated with specific registers in the memory of
~our computer. The value assigned to a name by an algorithm is tThen
the contents of the register assoclated with the name. It is con-
vénient for programming purposes to think of name or symbol X as hav-
ing a value equal to the address of the register containing The quan-
tity named x, and similarly for y. The notation in Figure 4a can
then be interpreted to mean, "Interchange the contents of reglsters
x and y."

With this understanding, the computation specified in Figure

4b may be performed by the following symbolic program for the PDP-1

computer.

20/ lac x x>AC
lio ¥ y=>10
dac ¥y ACy
dio X I0>x
hlt Halt

The beginning programmer should be very careful to distinguish be-
tween the value assigned to a name by an algorithm (meaning'the
contents of a register), and the value of the name itself (meaning
the address of the register).

The notation "20/" on the first line of the program indicates
that the first instruction lac x is to be placed in register 20 of
the PDP-1. If x and y are associated with registers 100 and 101 of
the memory, the program would appear in memory as the following se-

quence of octal numbers:

-13-

20/ 200100
21/ 220101
22/ 240101
23/ 320400
2L/ 760400

These numbers may be found by adding together the value of the sym-

bols making up the instruction, for instance
lio y = 220000 + 101 = 220101

It is helpful in this regard to think of the space between two sym-
bols as equivalent to a plus sign.

Note that it is impossible to tell whether the contents of
any given register is meant as an instruction or a word of data. The
distinction is that only those words meant as instructions ever en-
ter the PDP-1 control element to cause the corresponding action to
be performed. It frequently happens, however, that an error in
programming leads the computer to interpret a succession of data
words as instructions. When this happens, the consequences may be

startling!

Arithmetic Instructions

The PDP-1 computer performs arithmetic operations on quanti-
ties using the one's complement form for negative numbers. In the
following chart the plus sign is used to indicate one's complement
addition of 18-bit binary quantities and the minus sign indicates

that one's complement of the following quantity 1s to be taken.

Y.

Symbecl Octal Value Name Description
add a 4L00000+a Add AC + ClMa>—AC
Add the contents of register a to the
accumulator.
sub a 420000+a Subtract AC + (-OM<a>)->AC

Subtract the contents of regilster g from
the accumulator.

cma 761000 Complement AC —-AC>AC

Complement the contents of the accumulator.

Note that there are two representations fpr zero—--plus zero (OOOOOO),
and minus zero (777777). The logic of thé PDP-1 is arranged so that
a zero result of addition or subtraction is always represented as
plus zero.

To illustrate the computation shown in Figure 5

t>_~——- W-X-y=z —P

Figure 5--Simple Arithmetic Compubation

Simple arithmetic computation could be accomplished by either of

the following programs:

(a) 20/ lac w (b) 20/ 1lac x
sub x add y
sub y cma
dac z add w
hlt dac =z

hlt

15—

Decision Instructlions

With our catalog of instructions so far, the control element

of PDP-1 steps through memory one register at a time interpreting

each word as an operation in the arithmetic element or a transfer to
or from memory.

that certain groups of instructions may be repeated, and there is no

There is no means of interrupting the sequence soO

provision for testing instructions which could direct control along

different paths depending on a computer result.

In the PDP-1 machine these features are provided by the jump

instruction together with skip commands. These instructions are given

in the chart below:

Symbol Octal Value Name Description
——— et e
Jmp a 60000C + a Jump a-~>PC
Take next instruction from register a.
sma 640400 Skip on minus AC PC + 2»PC if AC,=1
PC + 1~»PC if ACO=O
Skip next instruction if AC is minus.
spa 640200 Skip on plus AC PC + 2->PC if ACO=0
PC + 1-PC if Acozi
Skip next instruction if AC is plus.
spi 642000 Skip on plus IO PC + 2»PC if IOO=O
PC + 1-»PC if IOO=1
Skip next instruction if IO is plus.
sza 640400 Skip on zero AC PC + 2-PC if AC=+0
PC + 1»PC if AC#+0
Skip next instruction if AC is zero.

—-16-

A simple program which illustrates the use of these instruc-
tions forms the magnitude of the contents of the PDP-1 accumulator.

Figure 6 shows how this operation may be indicated in an algorithm

diagram.
+
P- X~ AC — ~AC>AC (Y ——p

Figure 6--Computation of Magnitude

Two ways of writing the corresponding program are given below.

(a) (b)

20/ sma 20/ spa
Jmp 23 cma
cma

The second way 1s preferred as i1t requires fewer instructions,
and less time for execution. In octal notation, these programs would
be:

(a) (b)

20/ 640400 20/ 640200
600023 761000
761000

Bit five of a skip instruction will invert the sense of The

skip condition when set to one. For example, if we let the symbolic

-7~

name 1 have an assoclated value of 100005 , the instruction written
as

sza 1

will skip when the accumulator does not contain zero. The same rule

applies to all skip instructions listed in the above chart.

The Macro language--The Tdiot Multiply Routine

Our next example is an illustration of the MACRO programming
language used with the PDP-1 computer. MACRO 1s a program which will
translate an algorithm into the PDP-1 machine language from the sym-
bolic language used for the program examples in these notes. The in-
put for the MACRO conversion program is a paper tape punched with a
sequence of 6-bit codes corresponding to the keys of a speclal type-
writer known as a Flexowriter. Each time any key of the Flexowriter
is struck, whether alphabetic, numeric, punctuation, or a machine
function such as carriage return or tabulate, a distinct 6-bit code
is punched in the paper tape. Indeed, the tape may be subsequently
read by the Flexowriter, producing the exact same typescript that was
produced when the tape was prepared. The output of the MACRO conver-
sion program is a paper tape which may be read directly into the ma-
chine without further processing.

To illustrate the format of a source program written in MACRO
language we will use an algorithm with two inputs--a quantity x which
may be positive or negative, and an integer n (x and n will be the
symbols for the registers which contain these quantities)° The out-
put will be a gquantity s equal to the product of x and n obtained by
adding x to itself n times. An algorithm diagram for this algorithm

appears in Figure 7.

-18-~

Figure T--Algorithm Diagram for Tdioft Multiply

The PDP-1 program for this algorithm is given below as it would be

prepared for conversion by MACRO.

Idiot Multiply

40/
beg, dzm s - box 1
ret, lac n
sza 1 lbox 2
jmp end)
sub one ;
dac n J box 3
lac s
add x 1 box 4
dac s -~
jmp ret
end, hlt
X, 0
n,
Sy
one, +4

start beg

-19-

The first item on the symbolic program tape must be a title which is
followed by a carriage return. Then the body of the program is typed.
The last line of the symbolic program is always start z where z desig-

nates the address of the first instruction to be executed.

Logical Operations

The PDP-1 Computer includes a group of instructions which per-
form the common logical operations on each pair of bits from two
operand words. The operations are inclusive and exclusive "or" and

logical product indicated by the signs V, @, and A, respectively.,

Symbol Octal Value Name Description:

ior a 040000+a Inclusive or ACVCM<a>>AC

Inclusive or (Unite) contents of
register a with accumulator.

xor a 060000+a Exclusive or ACECM<a>>AC

Exclusive or (partial add) contents of
register a to accumulator.

a
i

and a 020000+2 Add ACACM<La>>AC

And {logical product) contents of
register a with accumulator.

The complement instruction cma, which was mentioned previously, per-
forms the logical operation of replacing ones by zeros and zeros by
ones in the accumulator.

Also included in a group of instructions which rotate the bi-
nary digits of the IO, AC, or both combined as shown in Figure 8.
The instructions are given in the chart below. In each instruction

the number of positions that each bit moves is given by the number

I0

AC

AC

I0

AC

I0

-20-

ral rar
¥ N YR ; A
CITI=I=TLlL e [IT NEEE
N Ko A_,_/’//
ril Tir gy
P o [T M1
. —A X 4
rcr
o~~~ B . . . B
AC HEERE HRER

I0

Figure 8--Rotate Configurations

sal sar

TLLL T e [TITI 111]

F NN
CTi1d HRE 10 NN
g ,

si sir
4
scl ser
'Q) —
b~

Figure 10--Shift Configurations

-2

of ones in the right hand nine bits of the instruction word.

To sim-

plify writing programs, it is convenient to use symbolic names to

represent bit configurations for each possible number of positions

of rotation as follows:

Symbol Octal Value Positions of Rotation
1s 1 1
2s 3 2
38 7 3
Lg 17 4
58 37 5
6s 7 6
s N 7
8s 377 8
9s 7 9

For describing the rotate operation in the chart, the notation

rr (x,n)

means the result of rotating the quantity x to the right for n posi-

tions, etc.

Symbol Octal Value § Name Description
rar n 671000+n }Rotate AC right rr(AC,k)>AC
ral n 661000+n Rotate AC left r1(AC,k)>AC
rir n 672000+n Rotate IO right rr(I10,k)>I0
ril n 662000+n Rotate I0 left rl(I0,1)>I0
rer n 673000+n Rotate combined rr(AC,I0,k)>AC,IO
: right
rcl n 663000+n tﬁiz%ge combined rl(AC,I0,k)~AC,IO

22—

A simple illustration of these instructions is a procedure which
counts the number of ones in a glven word. Let the given word Dbe
in register w and suppose the count is to be placed in register n.
The algorithm will proceed by examlning each bit in succession and
setting each one to zero as 1 is found and counted. The algorithm
is finished when the word contains all zeros. An algorithm diagram

is given in Figure 9.

[;>———e> 0+n

rl(w,1)>w 1+n-»n

y
WA3TTTT(>w

- Figure 9--Procedure for Counting Ones in a Word

-23-

A PDP-1 program for this procedure is given below:

COUNT BITS

20/

a, dzm -box 1
lac w

b, sza 1 ~-box 2
hlt
sma box 3
Jjmp ¢
dac w box 4
idx n
lac w
and m -box 5

¢, ral ls box 6
Jmp b

m, 377777

W, 0

n, 0

start a

Shifting

Shifting instructions are built into the FDP-1 computer to
permit sealing of quantities, and are arithmetic operations. They
are exactly the same as the rotate operations déscribed above with
the sole exception that the sign bit remaihs unchanged. Figure 10
illustrates their operation. On a left shift, the bit lmmediately
to the right of the sign is lost and replaced by its right hand
neighbor. The least significant bit is moved to the left and a copy
of the sign bit put in its place. The left shift has the effect of
multiplying the sign bit put in its place. The left shift has the
effect of multiplying the number represented by two for each posi-

tion shifted. For negative humbers, this property follows from the

—2l.

observation that complementing may be done either before or after
the shift without any effect on the result.

On the right shift command, the most significant bit is re-
placed by a copy of the sign bit, and the least significant bit is
lost. Arithmetically, shifting right amounts to successively di-
viding by two and rounding down in magnitude.

In a combined shift of AC and IO, the contents of the two reg-
.isters are treated as a 36-bit onets complement number with sign in
bit zero of AC.

The shifting instructions are given in the following chart.
As in the rotate instructions, the number of shifts is governed by

the number of ones in the right nine bits of the instruction word.

Symbol Octal Value Name | Description

sar n 675000+n Shift AC right | sr(AC,k)-AC

sal n 665000+n Shift AC left | s1(AC,k)>AC

sir n 676000+n Snift I0 right | sr(I0,k)->IO

siln 666000+n Shift I0 left s1(I0,k)~>I0

ser n 677000+n Shift combined | sr(AC,IO,k)->AC,IOs
right

sel n 66700040 Shift combined | s1(AC,IO,k)-AC,IO
left

Indexing a Table
Finding a number of a list of quantities equal to a given

quantity 1s a frequently occurring task in computation. An algorithm
for performing this task by a linear search is shown in Figure 11a.
Fach number of the 1list tab <k> is compared with the given quantity

w until a match is found (exit a) or the list is exhausted (exit b).

~25~

In the PDP-1 memory we suppose the 1ist is stored with the zeroth
entry in the register named tab, and the other entries placed se-
quentially in memory locations following tab.

The new problem in mechanizing this procedure for the PDP-1

occurs in the comparison step which refers to the kﬁh

entry of the
list, where k 1s a variable quantity of the procedure. To facili-
tate our discussion we may consider the comparison to be done in two
steps as shown in Figure 11b: Firs%,#the kth table entry 1ls placed
in the PDP-1 accumulator; then the decision is made by comparing the
contents of register w with the number in the accumulator,

Now, step 2 of the procedure is to place the entry tab <k>
in the AC, that is, the contents of The memory register beyond reg-
ister tab by the value assigned to the quantity k 1s %o be placed
in the accumulator. To perform this operation, we would use an in-
styuction whose operation code is lac and address 1is greater than
tab by the value assigned to k. Since the quantity k will take on
a succession of values during the course of the procedure, this in-
struction must also be changed as the computation proceeds. This 1s
possible because instructions are stored in the memory of the com-
puter as configurations of ones and zeros and may be operated on by
the computer just as 1f they represented numerical quantities. To
discuss this point in more detai 1, assume the zeroth table entry is
in register 400 of the memory, so that we may associate a value of
400 with the symbolic address tab. A%t the beginning of the algorithm,
k is assigned the value zero, and step 2 is accomplished by the in-

struction:

lac tab represented by the octal number 220400

(a)

()

N

26

0>k

L

£

k + 1k

0-k

/Y =

Figure 11--Linear Search Procedure

.} (W : tab <k>).:_=__b exit a

exit a

exit b

-27-

After step 4 has been performed once, the value assigned to k is

one and step 2 is accomplished by the instruction:
lac tab+l or 220401

To effect the computation specified in step 2 of the algori-
thm diagram, we must first calculate and then execute the appropriate

instruction. This may be done by the following program steps:

s2, lac k bse, lac tab
add bse
dac ins

ins, O

The line

bse, lac+tab

indicates that a register whose address is bse contains the instruc-
tion lac tab (or the number 220400), To 1llustrate the operation
of}this instruction sequence, suppose the value 24 is assigned to
the index quantity k. Then, the first instruction will place the
number 24 in the accumulator, the second will add the number 200400
leaving the result 220424 in the accumulator, and the third instruc-
tion will place this result in register ins. The control element

of the computer will immediately read the content of register ins
and interpret this as the instruction whose numerical form is 220424,

that is the instruction lac tab+2l, which places the contents of

register tabi+24 (or register 4ol) in the accumulator. It is impor-
tant to realize that the sequence of instructions we write down to
form a program only specifies the contents of the computer memory

at the beginning of program executlon. Specifically, the line

-28-
ins, O

in the sequence given above means that memory register ins initially
contains the number zero. However, the computer does not attempt
to interpret the number in register ins as an instruction until 1t
has been changed to 220424 or lac tabi2l4 through the execution of
the preceding instructions.

The comparisons in the linear search algorithm may be per-

formed by the following PDP-1 instructions:

. Symbol| Octal Value Name Description

sas a 520000 + a Skip if AC same as PC + 2-»PC if AC=CM<a>

Skip next instruction 1f AC is same as contents
of memory reglster Qe

sad a 500000 + a |Skip if AC dif- PC + 2>PC if AC#CM<a>
ferent PC + 1->PC if AC=CM<a>

Skip next instruction if AC is different
from content? of memory reglsterla.

For example, step 3 is accomplished by the following:

@!IIIH)———% sad w
\L # jmp —> =

v

The PDP-1 machine has two special instructions to simplify index-

ing operations as required in step L

-20-

Symbol Octal Value Name Description

idx a 410000 + a Index CM<a> + 1+CM<a>, AC

Index the contents of register a by one and
leave the result also in the AC. A zero
result is represented by plus zeros

isp a 460000 + a Tndex and skip on | CM<a> + 1->CM<a>, AC

plus AC :
PC + 2»PC if ACO=0

PC + 1-»PC if ACO=1

Tndex the contents of register a by one and
skip the next instruction if the result is
positive.

below,.

A complete program for the linear search algorithm is given

Iinear search
20/
beg, dzm k
lac k
ret, add bse
dac ins
ins, 0
sad w
hlt /entry found
idx k
sas tst
Jmp ret
hlt /entry not in table

bse, lac tab

tst, 100
k, 0
W, 0
tab,

start beg

-30-

The alert reader will note that the value assigned to the quan-
tity k is represented in two ways by the above program: It is stored
in the usual manner as the contents of a memory register with sym-
bolic address k, but it 1s also represented by the amount that the
address portion of the instruction in register ins exceeds the ad-
dress of the zeroth table entry. It is possible to write a program
to mechanize the linear search algorithm in which the value assigned
to the quantity k is represented solely by the instruction in regis-
ter lns. Thus, step 1 of the algorithm must assign zero to k by plac-
ing the instruction

lac tab

in register ins, as follows:

beg, lac set set, lac tab

dac ins

The value assigned to k may be indexed by merely indexing the con-

tents of register ins. Thus, step L becomes:
idx ins

After the last table entry is compared with quantity w, k will be

Oth

indexed for the 4 time and register ins will contain the instruc-

tion
lac tab+40 or 200440

in numerical form. This condition may be indentified by

sas tst tst, lac tab+40

to accomplish step 5 of the algorithm. The complete program is

given below.

-31-

Linear Search
20/
beg, lac set
dac ins
ins, O
sad w
hlt /exit a
idx ins
sas tst
Jmp ins
hlt /exit b
set, lac tab
tst, lac tab+40
W, 0
tab,
tab+40/
start beg

The above program could be further improved through the use
of the following PDP-1 instructions:

Symbol Value Name Description

law a 700000+a Iovad AC with a a->AC

Place: the address part of the instructlon
in the AC with zeros in bits zero through
five. |

dap a |260000+a | Deposit address AC >CM<a>
part 6-17 | 6-17

Place the address part of AC contents in the
address part of memory register a. The in-
struction part of CM<a)> is ?ot disturbed.

I

-32-

Thus, the coding of the linear search procedure could begin as
follows:
beg, law tab
dap ins

ins, lac

and register bse could be omitted as the table base address is con-
tained as the address part of the law instruction. In this case it
is necessary to place the operation code lac as the initlal contents
of register ins as the new initlalizing sequence only provides the

correct address part.

Indirect Addressing

As a second illustration of indexing, consider the algorifhm

described by Figure 12, which complements the entries of a tables

(a) (b) 1
p—7_ ok p— ok
v G
> | tavcsstanas | > | tabdoac
“AC~AC
K + 1k _
'
AC~>tab<k>
>
K + 19k
4 © -
AT P

Figure 12-~-Algorithm to Complement Table Entries

This algorithm makes two references to the kt

...33_.

h table entry--

one to read out the entry, and one to store its complemented value.

Using the coding principles illustrated in the previous example,

we would program this algorithm as follows:

Complement Table

tab
ini box 1

20/
beg, law
dap
dap
ini, 0
ema
in2, 0
idx
idx
sas
Jmp
hlt
tst, dac
tab,
tab+40/
start beg

in2

ind } box"
in2

tst'}
ind
tab+40

)

\.

- box
- box
- box

U= W

box 6

- constant

space for table

However, the PDP-1 has a feature which permits this process to be

coded more compactly.

This is indirect addressing. -Although this

feature applies to nearly all addressable instructions of the PDP-1,

we will illustrate it in terms of the dac instruetion.

Symbol

Value

Name Description

dac 1 a

25000+a

Deposit AC indirect A01+CM

where b = CM<adg -

The contents of the accumulator
is placed in register b, where Db
is the address portion of the
contents of register a.

34~

By means of this feature, we need not set up individually all instruc-
tion addresses referring to a given table entry. Instead, we may
set up one reference, and use indirect addressing for all others.

This is illustrated by the recording of the last example shown below.

Complement Table

20/
beg, law tab
dap ing} box 4
ins, lac box 2
cma box 3
dac i ins box 4
idx ins box 5
sas tst
smp ing} box 6
hlt
tst, lac tab+it0 constant
tab,
tab+t0/ l; space for table
start beg

At a point in the algorithm where the index k is assigned a
value say 15, register ins will contain the instruction

lac tab+15
When the instruction

dac i ins
is performed, the address part of register ins, that is, tab+l5, will
be used to select the memory register in which the accumulator con-
tent is stored. Thus, the accumulator content becomes the new value

th

of the k table entry as required by step 4 of the procedure.

~35-

Indirect addressing is effected by a one in bit five of the
instruction word and may be used with any of the PDP instructions
in which the address part selects a memory register.* Of the in-
structions described so far, this excludes law in which the address
part is the operand, and instructions ¢la, ¢li, cma, hlt, sza, sma,
spa, spl in which the address portion is an extension of the opera-
tion code. If we regard the symbol 1 as having a value of 100008,
the value of an instruction may still be thought of as the sum of
the components of its symbolic representation.

So far we have defined and given an example of single level
indirect addressing. If an instruction with an indirect bit addresses
a register in which bit five is also one, the indirect addressing
is carried to a second level.

Thus 1f we have

ins, lac i a a, 1D b, ¢

where a, b, and ¢ are symbolic addresses, execution of the instruc-
tion in register ins will place the content of register ¢ in the PDP
accumulator. This process may be continued for as many levels as
desired, although few, if any, programmers have found practical value
in more than two levels of indirect addressing.

A second example of the use of indirect addressing is the
interchange sort algorithm, which is described in Figure 13. A pro-

gram for this computation is given below.

*The exceptions to this rule are the instructions jda and cal which
which are described later in these notes.

-36-

R
_eﬂgoesw
2
03
3|
l 0-k 4 _
L)
tab<k>—tab<j>Aj
N A 8 v
3 rbesw l
main
loo
5 | tab<k>>AC
[1] tab<J>>I0
5 10 |,
Sk + 1%
AC>tab<i>
11 T~ 10->tab
+ NG =(k: N # | O>tabdc>

Figure 13--Interchange Sort Algorithm

In this case, the use of indirect addressing simplifies the
coding of the minor program loop without placing any extra burden
of address setting on the main program loop. This results in a com-

pact program with no sacrifice of speed.

Interchange sort

20/
beg,

in2,
ind,

ind,
set,

int,

tst,
SW,
tab,

cla
cma
dac
law
dap
dap
Jmp
lac
sub
spa
Jmp
idx
idx
sas

jmp

lac
sma
Jmp
hlt
dzm
lac
lio
dac
dio
Jmp
lac

tab+40/

start beg

sSwW

tab
ini

in2
set

int
in2
in2

i in2
i in%}
iinl
i iné}
ind
tab+40

}

..37_

box 1

box 2

box 3

box 4

box 5
box 6

box T
box 414

box 8

box 9

box 410

constant

space for table

-38-~

Subroutines

Frequently the same computation must be performed at several
points in a large prograim. We may indicate this in an algorithm dia-
gram by giving the compubation a name and using a box with the name
written inside at points in the diagram where the computation is to
be performed. If the computation is very complex, it is desirable
to have the group of machine language instructions for its performance
stored only once in the computer memory. It is then necessary to
transfer control to this group of instructions whenever the multiply-
referenced computation is required by the main program, and to make
arrangements to properly return control to the main program when the
special computation 1is finished. A group of insftructions which per-
form a speciflc operation when called at any point in a main program
is called a subroutine.

To illustrate the construction of subroutines, we shall use
the very simple computation of forming the sum of two guantities.
This compubation would not be done by a subroutine in practice as it
would be more efficient to write the required instruction sequence
each time it 1s necegssarye.

Execubing the sum computation by a subroutine 1s indicated
in an algorithm diagram as in Figure 14, Here it-is assumed that
the computation gum is required at two points in the main program.

The double-walled box contains the name of the computation
performed by the subroutine and indicates that the following boxes
give the steps defining this computation, The box containing the
word "return" indicates that the subroutine's computation is com-

pleted and control is to return to the next maln program step.

(a)

in main
program

3

sum ()

L

-39~

(b
subroutine
2 l
sum ()
sum ()
— 3
i ' X+y->z
Y
return

Figure 14--Description of a Simple Subroutine in an Al

Note that it is necessary to fransmit to the subroutine infor-

mation that will allow the subroutine to return control to the correct

point in the main program.

All modern computers have speclal instruc-

tions which make this easy to accomplish., In the PDP-1 machine the

jsp instruction is used.

Symbol

jsp a

‘Name

Description

e —

620000+a Jump save
program counter

Place the address of the memory register
following the one containing the jsp in
the AC, and take the next instruction from

register a.

PC + 1-AC
a~»PC

Through the use of jsp instruction, the point of the return

to the main program can be given to a subroutine via the PDP accu-

0=

mulator. The program corresponding to the diagram in Figure 14 is

given below.

subroutine
in main program sum, dap xit box 1
Jac X
\y add y box 2
a, Jjsp sum box a dac z
xit, Jjmp box 3
¢ b, Jjsp sum }box b

!

When the Jsp instruction corresponding to box g of the maln program .
is feached, control is transferred to the instruction in register ggg
with the address a+l in the accumulator.

The dap instruection places the address portion of the accumu-
lator content in the address portion of register xit, making the new

content of register xit the instruction

Jnp a+l

The next group of three instructions performé the computation indi-
cated in box 2. Finally, the instruction in register xit is executed,
returning control to the main program at the instruection stored in
register a+l immediately following the jsp instruction which "called"
the subroutine. If the subroutine were called by box b, the contents

of register xit would become
Jmp b+l

and the subroutine would return control to the instruction in reg-

ister b+l.

41

Many times, the same computation is desired at several points
in an algorithm, but the computation is to be performed on different
quantities. Thus, information must be conveyed to the subroutine con-
cerning the quantities involved in the computation. Figure 15 shows
how this may be indicated in an algorithm diagram. Here, the symbols

X, ¥ and z are dummy names used to define the computation performed

by the subroutine. A reference to the subroutine

main program subroutine
a 1
_sun(p,r)s sum(x,y)>z
° v
2
sum(u, v)>w X + y>z

l 3

Figure 15--Subroutine Construction by transmitting Values

from the main program is interpreted by substituting the names of
main program quantities for the corresponding dummy names in the de-
finition of the subroutine computation. Information about gquanti-
ties to be manipulated may be transmitted to the subroutine through
the arithmetic registers of the computer. In our example,'for in-
stance, the values currently assigned to the quantities substituted

for the dummy arguments x and y will be transferred to the subroutine

in the AC and IO registers of the machine, resgpectively.
computed by the subroutine is to be assigned to the quantity whose

name is substituted for the dummy name ZzZ.

o~

the main program in the PDP accumulator.

The value

This will be returned to

Tn constructing the subroutine to operate in this manner, it

is convenient to use the jda instruction of the PDP-1 computer.

Symbol Value Name Description
jda a 170000+a Jump AC->CM<La>
deposit AC PC + 1->AC
a + 1->PC

Store the AC in register a, place the
return address in the accumulator as
in the jsp instruction, and take the
next instruction from register a+l.

|

Using the jda instruction to transfer control to the sub-

routine, the coding for Figure 15 is as follows:

\L main program

box a \l

a, lac
lio
Jjda
dac

y

p
r

sum

t

b, lac u
lio v
jda sum box b

dac w

subroutine
sum, O
dap xit
dio y
lac sum
add y
xit, Jmp
v, O

box 1

box 2
box 3

Supposing that box g 1s being execubed, control will be transferred

to the subroutine at register gum+l with the value assigned to r in
The

in the IO register and that assigned to p in the register sum.

instruction in register xit becomes

-43-~

Jmp a+3

and control returns to the main program with the new value of z in
the accumulator.

Another way of constructing the subroutine is to transmit to
the subroutine the memory addresses of the quantities involved in
the computation. For our example, there would be three data from
the subroutine aside from the point of return; these are the memory
addresses of the quantities being substituted for the dummy names
x, y and z. No data is returned to the main program. Thus, it is

appropriate to describe the process as in Figure 16.

main program

a 1
sum(r,s,t) sum(x,y,z)
2 ¥
X + y>z
3 eturn

Figure 16--Subroutine Construction by Transmibting Iocations

A convenient way of coding this construction makes use of pro-

gram parameters and is shown below:

VI

main program subroutine

sum, dap xit
dap gx
idx xit
dap gy box 1
idx xit (prelude)
dap gz
dix xit
X, lac 1
&Y s add 1 box 2
87, dac 1
xit, Jmp box 3

a, JsSp sum
r program parameters
8 box a
£ (calling sequence)

Note that registers a+l, a+2 and a+3 conbain the values of the sym-
bols r, s, and t, that is, fThe memory addresses at which these quan-
tities are stored. If the subroutine is entered from box g, the exe-
cution of the instruction marked "prelude" will modify the subsequent

instructions of the subroutine to:read:

gx, lac i a+l
gy, add i at2
gzs dac 1 a+3
xit, jmp a+i4

Thus, the required computation will be performed by means of in-
direct addressing, and control will then be returned to the main pro-
gram at register a+ld, The numbers in registers a+i through a+3 are
called program parameters because they are data for the subroutine
which may be different at each point from which the main program calls
_the subroutine. The group of words in the main program required to
call a subroutine and apply the necessary information is known as the

calling sequence for the subroutine.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44

