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ABSTRACT

The periodic position and velocity perturbations of an
artificial earth satellite are developed to the first order for all
J_, based on the theory by Brouwer as extended by Giacaglia. An

LIk : : f
explicit formulation is also provided for the subset J,, J,, J4.
The use of a position and velocity formulation circumvents” the
equatorial and circular orbit singularities found in conventional
developments, The definition of the mean elements of the theory
is modified to reduce the complexity of the position perturbations,
as suggested by Merson's Theory, and the resulting changes to the
secular terms are developed. In order to facilitate an empirical
correction for drag, the observed mean motion is introduced as a
mean element in place of the semi-major axis.
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SECTION I

INTRODUCTION

The motion of a near-earth satellite is, in the first approximation,
"Keplerian"; i.e., it conforms to certain empirical laws formulated in
the seventeenth century by Kepler. In his Principia, Newton demonstrated
that these laws described motion in an inverse-square force field. The

force (or negative potential) function for such a field is of the form

U=t (1)

g
where r 1is the geocentric distance of the satellite and | 1is the
gravitational constant. The motion is conventionally described by six
"orbital elements," a, e, I, M, w, {I. Kepler's second law states that
the motion occurs along an ellipse with one focus at the primary. The
inclination, I, and the argument of the ascending node, (), serve to
locate the plane containing this ellipse. The eccentricity, e, and the
argument of perigee, w, define the shape of the ellipse and its
orientation within the orbital plane. The semi-major axis, a, provides
the scale of the ellipse as well as the orbital period; from Kepler's

third law the period P is given by

P= -4 a (2)

The location of the satellite within the ellipse is given by the mean
anomaly, M, which measures the area swept out by the radius vector

since perigee passage. In accordance with Kepler's first law the area



swept out and hence the mean anomaly increases at a uniform rate; then
M(t) =M +nt (3)
) o
where n is the mean motion, given by

B =
I ¥ L ()

The mean anomaly must be converted to a geometric angle to be of use;
the eccentric and true anomalies, E and v, are related to M by

Kepler's equation
E-esinE =M (5)

which must be solved by iteration, and by

Ean .= (6)

Following these computations, the geocentric position and velocity

vectors r and t are given by (See Figure 1),

=S 5 C7)
E=iU+ W (8)
where
T <) S
r l1+e cos v (9)
%
r= (=) e sinv (10)
L
p B 2
v = (E) (l+e cos V) (11)
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U = cos u cos () - sin u sin () cos I (12)
cos u sin () + sin u cos ) cos I

sin u sin I

v = [~ sin u cos 0 - cos u sin {} cos I_w (13)

- sinu sin) + cos u cos 1 cos I

cos u sin 1 J
with
o)
p = an (14)
2. %
n = (l-e) (15)
u = vhy (16)

This simplified model cannot adequately represent the motion of a
satellite; it must be augmented to include the effects of various
"perturbing forces." These forces may be conservative, i.e., gravita-
tional, or may affect the energy of the satellite's orbit, e.g., atmo-
spheric drag and solar radiation pressure. More sophisticated models
may be implemented via numeric integration or "special perturbations"
techniques, which fall into three major categeries:

(a) Integration in cartesian coordinates of accelerations
resulting from all forces acting on satellite, to obtain
position and velocity (Cowell's method).

(b) 1Integration in cartesian coordinates of accelerations
resulting from perturbing forces only, to obtain deviations
in position and velocity from a Keplerian orbit (Encke's

method) .




(c¢) 1Integration of the variations due to perturbing forces in
the orbital elements of an "osculating" Keplerian orbit,
i.e., the Keplerian orbit defined by the position and
velocity of a satellite at each instant (Variation of

Parameters) .

These methods have a theoretical disadvantage, in that the
accumulation of roundoff and truncation errors must eventually result
in inadequate precision; it appears that in practice the length of arc
is limited by the uncertainty in modeling non-conservative forces, which
involve not only a complex and highly variable atmospheric structure,
but also the configuration and orientation of the satellite. A more
practical problem in some applications is that the integration must be
carried from epoch to the most distant observation, regardless of
whether useful data exists in the intervening period. In addition, the
integrated orbit, whether in terms of coordinates or elements, provides
little insight into the effects of the various forces operating on the
satellite, so that it is difficult to identify and correct deficiencies
in the model. Despite these disadvantages, special perturbations
programs are widely employed for precision tracking where the frequency
of data mitigates their relative inefficiency, or the cost is justified
by the requirements for maximum precision. They are also extensively
employed in feasibility studies and similar investigations, to avoid

time consuming (and possibly impractical) analytic developments.



It is generally possible to obtain analytic expressions for the
effects of the perturbing forces, to any desired precision and for any
time span. Such "general perturbations'" models are universally employed
in routine cataloging systems, where a considerable number of satallites
must be tracked with data that is sparsely distributed in time. In
addition, general perturbations are usually employed in satellite
geodesy. A considerable number of analytic theories have been developed
for the conservative perturbing forces, i.e., the departure of the
earth's gravity field “rom an inverse-square law and lunar and solar

gravity.

For greater efficiency, semi-analytic theories are often employed
ror the luni-solar perturbations which are relatively small and of low
requency; the same approach is generally followed for the solar
-radiation pressure perturbations. Thus, for solar radiation pressure,
~he analytic development may be carried through a formal integration of
:he perturbations, but the results are left as a function of the limits
»f integration. These limits depend on the points at which the satellite
:nters and leaves the earth's shadow, which vary slowly with time. The
>valuation of the perturbations proceeds n revolutions at a time,

Jith the shadow limits reevaluated at each step.

Analytic models of the drag perturbation have been produced for
simplified atmospheric models. The theory is complex, particularly

when interactions with the earth's oblateness perturbations are considered.



As a result, empirical models are generally employed, with only the long
term effects of drag considered. The results are generally satisfactory
for high altitude objects, but there appears to be considerable merit

in the development of a semi-analytic drag theory.

This paper deals only with perturbations due to the earth's gravity.

In geodesy the gravity field is described in terms of a reference
ellipsoid, a reasonably tractable figure which approximates the figure
of a rotating fluid in equilibrium to about 1 part in 106. The actual
gravity at any point is shown in terms of a map of the elevation or
depression of the "geoid" with respect to this ellipsoid; this 'geoid"
is an equipotential surface, i.e., a surface everywhere perpendicular
to the local vertical. Before artificial satellites were launched the

"geoid" were determined from the reduction of direct

ellipsoid and
gravity measurements and from astronomical determinations of the
deviation of the local vertical from the local perpendicular to the
ellipsoid. This "geoid" data is not employed in the theory of an
artificial satellite, however. An analytic expansion for the potential
is required; in spherical polar coordinates the generalized force (or

negative potential) function is a series of Legendre polynomials and

associated functions:

w© a n
u=2{1- g (-—‘3] J P (sinB) + T J P (sinB) cos m () -\

r I n n nm nm n

n=2 m=1
ol
o] n a
=k I A% b3 (_g) P (sin 8) (C cos m\ + S sin m\)
r n=2 m=0 r nm nm nm

(17)

m

\
)



where a, is the equatorial radius and 3, 3 are the gecocentric

latitude and longitude of the satellite. The Legendre polynomials and

associated functions are defined by

n-m . )

b o 2 LM o a e AMP I (hIeneagy o2

i 2™n! dx" ™ 2" =0 it (n-3)! (n-m-23)
(18)

where I(B%E) is the integer part of (B%m). The Pn (or Pno) harmonics
are '"zonal," while the an harmonics are "tesseral." The largest

coefficient is JZ; it is of order 10-3. The remaining coefficients do

not exceed the second order, i.e., 10-6. In order to evaluate the effects
of the harmonics, it is necessary to substitute orbital parameters for
r, B, and X. In general, a method of successive approximations must

be employed, so that a series of perturbations of increasingly higher

order arises, e.g.,

first order: J
2
2
second order: oo Sin &
2 n nm
; . 3
third order: J2 . JZJn’ JZJnm

Most general perturbation theories neglect periodic effects of the
second order; the residual perturbations will then be on the order of
15 meters. However, under certain circumstances the perturbations due
to higher order terms are amplified and must be included in a first
order theory. If the potential function and its derivatives are
expressed in terms of conventional orbital parameters, they will be

found to have arguments of the form:



&n-2p+q)M + (n-2p)w + m(Q-X{]

sin
where n,m are the indices of the harmonic, p ranges from 0 to n
(it is the parameter of a power series in sin I and cos I), and q
ranges from -» to o (it is the parameter of a power series in e,
with the lowest power of e being e|ql). From a simple first order
theory, it will be found that M, w, and Q all increase linearly

with time, so that when the perturbations are integrated divisors will

arise of the form
(n-2p+q)n_ + (n-2p)d + m(Q2-1)

where n_ is the perturbed mean motion. The perturbations are classi-

fied in terms of n, m, p, q as follows:

(a) Secular terms p = (nt+q)/2
qQ=0
m =0

These terms give rise to a linear increase in the elements
M, w, (I, and are therefore computed to the second order
in a first order theory (so that the theory is valid for
about 10-20 days, after which the neglected third order
terms exceed the second order). These terms only arise for
even order zonal harmonics, i.e., n =2, 4, ... ; the
values of the even zonal harmonics are generally based upon

observed secular perturbations.



(b)

(c)

Long period terms p = (n+q)/2
q #0
m=20

These terms have a divisor of the form -q@ which is of

) ) .
order 10 ~; second order forces therefore integrate into
first order perturbations and must be included in a first
order theory. There is no J2 term of this form; if there
were,a different type of solution would be required (there
5 2 : :
is a J2 term of this form which reduces to J2 on
integration). There is a special case for the '"critical
. . T o ., -6
inclination" I~ 63.4 , where w 1is of order 10 ~, so
that a '"resonance'" occurs. 1In this case, either a special
solution is employed or the long period terms are not
integrated, i.e., they are left in the form of secular rates.
The long period perturbations for even zonal harmonics are
factored by the eccentricity e and can often be ignored;
this is not the case for the odd zonals whose values are

usually determined by analysis of observed long period

variations in eccentricity and inclination.
Short period terms p # (ntq)/2

These terms have a divisor containing n, so that the order
of the perturbation remains unchanged upon integration.
Therefore, only the J terms need be included in a first

2

order theory.

10



(d)

Tesseral harmonic terms m # 0

There are two cases of interest here. For p = (ntq)/2
there are terms with frequencies necar some multiple of the
siderial rate, since to the zeroth order

(n-2p)w + m(é—i):w -mi
The integration results in an increase on the order of
no/mi or about 16/m for near earth satellites. These
terms contribute perturbations on the order of 100 meters,

and decrease in importance as n and m increase.

For

(n—2p+q)n0 + (n-2p)w + m(é—i);z 0
there 1s a resonance analagous to that holding near the
critical inclination. The resonance will be in general
larger for smaller values of (n-2p) and q. The principle
resonances thus arise for

ma n n odd

where no is expressed in revolutions/day. Obvious cases
of potential near resonance are 24 and 12 hour satellites.
High order resonances, e.g., (n,m) of (13,13), (15,13),
and (15,14) have been reported for certain satellites with
magnitudes on the order of 100-150 meters and periods of

2.5-5 days. Obviously, by going to a sufficiently high

11



order harmonic, a resonance can be found for any near
earth satellite. Fortunately, the net effect of these
higher order terms is considered to approach the second

order.

This paper does not deal with the tesseral harmonic perturbations.

It is limited to some minor modifications of the secular terms developed

(1) (2)

by Brouwer and extended by Giacaglia , and to a non-singular

development of the long and short period perturbations due to the zonal
harmonics. In the Brouwer and Giacaglia papers the perturbations of

conventional elements are computed, which leads to singularities for

(3)

low eccentricity or inclination. Lyddane showed that the problem

could be circumvented by either computing the perturbations to '"non-
singular" elements, e.g., e cos M and e sin M, or by computing the

perturbations in the position and velocity vectors. The former approach

(4)

is employed in most general perturbations ephemeris generators , while

the latter approach is employed in this paper. Although Garfinkel(s)
6D (7)

Kozai , and Merson

3
have computed some of the position perturbations,

velocity perturbations have generally been neglected.

The use of position and velocity perturbations has the advantage
of revealing the '"real" or observable effects of the perturbing forces;

(7)

Merson , for example, has shown that some of the apparent perturbations
of the orbital plane affect only the velocity vector and can be ignored

in a tracking network based on positional data. 1In addition, a

12



position and velocity theory appears to be somewhat more efficient than
a '"mon-singular" elements theory, particularly when only positional
data is used for element correction. The position and velocity theory
has one disadvantage, in that the frequency of the long period terms
becomes comparable to the short period terms, and they must be recom-
puted for each ephemeris point. (However, they are recomputed for

each point in most theories, whether or not the computation is necessary.)

13



SECTION II

PERTURBATIONS IN POSITION AND VELOCITY

In developing the perturbations it is convenient to use the angular

momentum unit vector W, given by

W=UxV= [sin{l sin I
-cos Qsin I
cos sin (19)
cos I
The perturbed position and velocity may be computed as
g = (v ¥ ) (U 8y (20)
= (f + 8%) (U + 8U) + (x¥ + 6r¥) (VU + 8V) (21)
or the perturbations alone may be computed as
ér = 6r U + r &U (22)
8r = 6t U + 8rv V + 1t 8U + rv 6V (23)
ignoring second order terms.
The quantities §8U and 6V may be written as
8U = V (8u + cos I 80) + W (sin u 81 - cos u sin I &0) (24)
8V =-U(Su + cos I 801) + W (cos u &I + sin u sin I 8Q) (25)
and hence we have
6r = 6r U+ r (u + cos I 600) V (26)
+ r (sin u 81 - cos u sin I &0Q) W
6t = (8% - v (bu + cos I 60)) U
#[s ro + & (bu+ cos T 6] ¥
+( r (sin u 8I - cos u sin I &Q)
+ rv (cos u 81 + sin u sin I 60)) W 27)

14



For 8r, 8f, and 6u we can either use Taylor series expansions

in the conventional elements, or the ingenious equations of Izsak(s) with
the Brouwer determining function S written in Hill's canonical
variables {f, G, H | r.u, Q). The equations are
Sr = r L acosvoe + 23V &M (28)
e n
: 12 2 1/2 2
§f = - & L + (E) (ke cag v) sin v &e + (E) {1+e cos v) cos v e &M
2 a P 2 p 3
M m
(29)
(2+e cos v) (1+e cos v)2
du = > sin v de + 3 &M + Sw (30)
n n
or
38
br = - =
r S (31)
. _ as
8T = 37 (32)
J8
G = =g (33)

The second set of equations appears much simpler, and has been
solved for the short period terms by Izsak. They are not sc simple,
however, when dealing with the long-period terms containing tcigonometric

functions of W.

The perturbation in rv may be computed from

%? 4 Cos v (1;e cos v) - e fo - SLOV (§+e cos v)e M

i n

orv = rvi|- i
V 2

(34)

* Brouwer and Giacaglia employ the Delauney canonical variables
{L, G, H]| 1, g, h}, where

7

L = (wa)? 1 =M
G =1n g =uw
H=G cos 1 h =

15



or
s G .
Srv = 6(;) = v (— - =) (35)

using intermediate results for §G.

If the Taylor series expansions are employed, it is possible to
rewrite Equation (27) using Equations (29), (30), and (34) as

1/2
-
ot = & X

2 “a )
g

( e sinv & (l+e cos v) sin v £ o

(l+e cos v)2
3 6M - (l+e cos v) (6w + cos T 6) | U
n
™ -1&%6—3+—°—§2v—ﬂ6e+esinv(6w+cosléﬂ) v
n
+ (cos u + e cos ) &8I + (sin u + e sin @) sin I &0 W
(361)

16




SECTION III

SHORT PERIOD PERTURBATIONS

Izsak(s) has already computed 6r, §r, and 6&u as

2
J.a
_ 2 e . 2 2 2n e cos v
6r = = sin” I cos 2u + (1-387) |1 + T ¥
(37)
2
J.a
" 2
T e 9 i T ke oo )~ s 26
S5/2
4p
2 (l+e cos v)2
+ (1-38") e sinv | N + v (38)
J,.a 2
By s 25 (¢ 60567 Cosil) o GEI=BR% & 2 o i w
) 1+
8 p
2 : 2 .
+ (1-38°) (1-M) sin 2v + 2 (58" - 2) e sin (2u-v)
2 R 2 3
+ (707 - 1) sin 2u + 28" e sin (2utv) (39)
where
J2 = coefficient of the second zonal harmonic
a, = earth's equatorial radius
8 = cos 1

From Brouwer's theory, with

17



we have

5G gt 2 .
< - 3 5 sin” I cos 2u + e cos (2u-v) + 3 cos (2utv) (40)
4 p
Jzae2 D
cos I 80 = - > 046 (v-M + e sin v) - 3 sin 2u
4 p
- 3 e sin (2u-v) - e sin (2utv) (41)
Jza 2
81 = ; sin I © 3 cos 2u + 3 e cos (2u-v) + e cos (2u+tv)
4 p
(42)
Hence
J2ae2 2 sin 2u
u + cos I 80 = > (sin” 1) S=r— + 2 e sin (2u-v)
4 p
2 . 241
- (1-3687) (3 (v-M) + 2 e sin v (T:a)
+ léﬂ sin ZV) (43)
2
J.a
sin u 6I - cos u sin I 60 = 2 € sin I 6 )(
2
4 p
- 3 sinu - 4 e sinuw
+ 4 e cos u sin v + 6 cos u (v-M) (44)
JZae2
cos u I + sin u sin T 80 = > sin I O 3 cos u + 4e cos (utv)
4 p

- 6 sin u (v-M) (45)



2
J

Zae
—————= (l+e cos v) ><
4 p5/2

65 rv = M%

(sinZI) (2 cos 2u + 2e cos (2u-v) + e cos 2u cos v)

- (1-392) (% (141) + e cos v (Ziﬂ) + 85 cos 2v

141 2 (6D

Substituting these terms in Equations (26) and (27) gives, after

some simplification, the short period terms in Table I.

In some tracking programs the relationship of the mean semi-major

axis and the secularly perturbed mean motion is taken from Kozai's

6,

equation 14

2
3 Jote 2
'ﬁz‘z = u \1 + 3 > (1-369) 7 (47)
4 p
Since
Jzae2 2
T =n = (1-30°) 7 + ...) (48)
o 2
Zp
this implies
J2a ¢ 2
T=a [1+3 55 @1-30) 1+... (49)
4 p

where a is the mean semi-major axis of the Brouwer theory, defined by

n a = W . (50)

19
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The use of a in place of a 1in the computation of unperturbed r
and r requires that a compensating perturbation be applied to 6r

and Gi:

o 2
2e

4 p2

on
)
o)
1]
wf

(1-30%) m (51)

o
s3]

This results in the following changes in Table I:

(a) The term 2n in the U component of §r

becomes -M

(b) The term -n e sin v in the U component of 6r

N .
becomes + — e sin v

2

(7)

Merson has developed a theory in which the short period position
perturbations are minimized. His formulae (153-157) relate the osculating
elements to conditions at the ascending node, to the second order in J2.
By eliminating all first order terms whose argument is a multiple of w,
and terms factored by u, a set of first order pseudo short period terms
is obtained. These result in the position perturbations given in

Table II. (The first order terms factored by u in Merson's theory are
actually the sum of secular terms factored by M and short period terms

factored by (u-M). They can therefore be included in the secular term

computation, and we have taken this approach.)

Now, if we define €i to be Brouwer's mean elements updated for

1
secular perturbations, and €, to be "smoothed" mean elements updated

21
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for secular terms, then:

6
B = 6-EBrouwer = xle;) +.§: 5

'_
o€ . (ei E"i) 0

Smoothed (52)
i=1 1
so that we have three simultaneous equations:

6

N2 e, =6 - 5 (53)

%—& o€ § Brouwer Smoothed

1=
where

= L
Aei-ei €

Using Equations (26), (28), (30) and Tables I and II,

in v
(r é; - a cos v Ne + SELILRY eAM

2
=r al (1-30 ))(

2 2
1+3n+e {2+n e
+ — 2
| > +\1 )(e cos v 5 COS 2V

]

r‘(Z sin v + =

2
- ZV) Dde " (l1+e cos v)~
2 2

A al= :
: et i 4008 ——ral(l-SQ)X
n
24n e2
[3 (v-M) + T+ (Ze sin v +-E— sin 2v
r (sin u A1 - cos u sin IAQ) =r

1 sin 16 [6 cos u (v-M) - 3 sin u]

(54)
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If the QAe are restricted to contain only constants or terms with

(v-M) as angular arguments these equations may be solved to yield:

Aa

a

2 ay (1-392) n

o Lanly (29 2
Ae = al (1-307) T4 en
AI=-3alsinIG
AM =0
2
L\w=-3a1 (1-58°) (v-M)
AQ=-60L19(V-M) (55)

The resulting changes in the velocity perturbations may be obtained
from an equation similar to Equation (53); the signs of the Aei

should be changed to yield:

6
33 - 6f - - Z OL pe, (56)
Smoothed Brouwer i=1 &
With the aid of Equation (36)
%
o sk =BT X
P 1
Smoothed Brouwer
(1-392){e sin v|-n + %E% (1+e cos v)|+ 3(l+e cos v)(v-M)] U
- (1-392) -1 - e2 - e cos vin + %E% - 3e sin v (v-M)| V

- 3 sin I8 |cos ute cos W + 2(sin ute sin w)(v-M)| W

(57)
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which, when added to &r from Table I, yields the velocity perturbations

in Table II.

These position and velocity perturbations represent a useful
simplification of the equations in Table I; corresponding modifications

to the J2 and J; secular terms are derived in Section V.
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SECTION IV

LONG PERIOD PERTURBATIONS

The first order long period perturbations for J

(2)

, n> 2, have
n
been developed by Giacaglia and Garfinkel and McAllister(g).

Giacaglia's results have been employed since they are more readily

truncated; the published paper unfortunately contains a number of errors:

(a) For the even harmonics, the upper index limit for k in

z is incorrect, since values of i within the permitted
kij
range do not exist for k= %. Furthermore, for k = 0, i
an o q . "
can exceed j; in this case, 6p+1, 2§, 2i vanishes.
Therefore
p-2 : p-2
2 min B%EE 2
= = X = =
kij k=0 i=l j=1

Similarly for the odd harmonics

p-l Sopegl B3
2 min 2—%E—l 2
= = 3 z z
ki j k=0 i=0 j=0
p-2j-1 ’ : ;
where 2 was incorrectly given as the upper index

limit of 1.

" These practical problews veflect thcoretical errors; i.e., k = 2 terms
are sccular terws ard also appear in the 3 portion of the disturbing
function, : kj

26



(b) 1In equation 21, the term

should be

- imet
= 23 2
e

(c) Equation 22 must be multiplied by H.

(d) In equation 28, the factor

2j-1
2i+1

should be

2j+1
2i+1

(e) In equation 30 the term

4 D2k

2
sin I
should have a minus sign, and the factor

cos (2i+l)g

2i+1

has been omitted.

Also, Giacaglia has the wrong signs for the third through fifth
harmonic Brouwer coefficients (k , y _, and A ) as functions of J_.
n’ 'n n.0 n
With these corrections, Giacaglia's results may be summarized as
6 = S Ae (58)

where S and Ae for even and odd n are summarized in Table III.
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It is convenient to reduce these equations to a common form.

note that the summations can be written as

n-2 n-2 n-2i
2 2 2
; % 2
i=1 j=i k=0
n-3 n-2 n-2i-1
2 2 2
o z
i=0 j=i k=0

Now introduce a variable )

Y= 2i
= 2i+l
so that
ko= 2, 4,
=1, 3,

Similarly introduce

wo= 2]
= 2j+1
so that
o= A, A2,
Also introduce
v = n-2k

with

v o= A, L42,

’ (n-2)

3 (n-2)

] (n-2)

po
D

even

odd

even

odd

even

odd

even

odd

First,

(59)

(60)

(61)



Note that S 1is factored by e sin I. Moving this factor from S
into the Ac¢, and employing
g =TT/2 -0 (62)

we obtain the results in Table IV.

It is now a simple matter to obtain

dr = -aﬂz sin I S {cos v cos A\E + % sin v sin \§ } (63)
6y = (%)1/2(1+e cos v)zsin IS {sin vV cos X@-% cos v sin \E } (64)
brv = (%)1/2(1+e cos v) sin I S

>< {(1+e cos V) (cos v cos A\E + % sin v sin XE) - e cos AE }

(65)

sin 2v

du + cos I 80 =sin I S {(2 sin vte >

) cos \E

- (2 cos vte EQ%_EX 4 %F ) E_E%ILLS + e (2n-5) si; hE }

(66)

sinud I -cosusinId&(Q=-e8635§

. 2 :
X <{sin ucos A\ + cos ulv - LUK I) Sl; A5 } (67)

1—592

cos ué I +sinusinI 8§l =-e083S5

o 2 :
10 sin'I _ N ) sin \& } (68)
1502 A

)( {cos u cos A€ + sin u

from which, with Equations (26) and (27), the results in

Table V are obtained.
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It will be voted that S wvanishes for n=2. If this were not the
case, it would be necessary to modify the basic unperturbed solution,
since the resulting terms would have a JZ/JZ coefficient and could nct

be treated as a perturbation. Howcever, the magnitude of J2 is such

that the long period solution for J2 must be carried to one higher

approximation than for the other Jn, yielding perturbations with the

coefficient Jg/ J2 or J As giver: by Brouwer, these terms are:

G

ba =0 (69)

de = S; nz sin I cos 2w (70)

2
81 = -5, e @ cos 2w (71)
2 3
1 . .
OM = SZ — sin I sin 2y (72)
e
3 2 2
bw = - Sg e sin I l% +-l§ - 2 > 2109 3 ] sin 2w (73)
e sin’ I (1-587) (1-1587)
80 = - Sg e sin 10 ( 12 + 12 5 ) sin 2y (74)
sin’I (1-587) (1-1527)
where
72
J, a
2 1 2 in I 2
8= o= ‘;: = 51“2 (1-1567) (75)
p (1=-587)

The additional perturbations are easily obtained:
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1L 428 @sdnd 2
632 =r I é 5= (1-1507) (- sin I (l#e cos v) cos (2u-v) U
P (1-587)
+ sin 1( 2 sin (2u-v) *.E;E%ILZE ) v
10 sin’T in 2w
- €@ (sin (u-2w) - sin ; cos u s;n . } W
(1-587) (1-1587)
(76)
2
% J, a :
8x, = (&) %3 = ; = Slnzl (1-156%)
p (1-587)
>K< - sin I (l4e cosv) sin (2u-v) - e s;n 2w u
? si in 2W
+sin 1 (COS (2u-v) + e cos 2w - =—2iC Z sin v
16 sl T Ceiln uite shaw) &ds 20
- eB (cos (u-28) + e cos W + sin 81; u+te 51n2 sin ’ W
(L=58") (1~158 )
(77)

In most general perturbations formulations it is customary to employ

only the J:, J3, and J lorg period perturbations. For comparative

&

purposes, these are given explicitly in Table VI. An evaluation yields

For J3

0
!
=
£~
<
"
=

(78)

w
]
+
to |
e
o
[}
7~
-
]
w
©
N
p—g
'
w
17}
P-l-
=
=
<
|
w



§r, =r 2 sin I (14+e cos v) sinu U
=3 27 =
2
+ sin I (2+e cos v) cos u V
+ e8 cos v W (79)
% J. ‘&
.o n 3 e/ _ _. .
853 = (p ) 2J2 S sir I (14e cos v) cos u U
- sin I (sin ute sinw) V
- ed sinv W (80)
For J4
A= o=2 v = 2,4
J, a 2 . 6 v =2
s = 4 5 74 ; e 51n21 >< S 2 .
4 16 Jz B (1-50%) -7 sin” I = (81)
5 J4 ae2 e sin 1 2
br, = r — S (1-787) - sin I (1+e cos v) cos (2u-v) U
-4 16 2 2 =
J, P (L-58")

+ sin I |2 sin (2u-v) +

s_éiﬂ_zg)

<

1 2 sinZI cO0s U sin 2u)

(1-50%) (1-76%)

- eB (sin (u-2w) -
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B ¢ ) J4 % esinI 2
g, =131 T6 > == {1-79")
° J, P (1-507)
>< -sin I (l14e cos v) {sin (2u-v) - E_E%H_EE U
2 . s 5 O
+ sin I (cos (2u-v) + e cos 2W - e _sin ; sin v

2
2 sin I (sin ut+e sin W) sin 2W

(1-56%) (1-76%)

- e@ (cos (u-2w) + e cos w +
i
(83)

From which the equations in Table VI are easily obtained.
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SECTION V

SECULAR TERMS

The results of Brouwer(l) and Giacaglia(z) are given in Table VII,
where
| 12
s E: (a1 Jna " E oMt M ey
sl 0 300 23 k(e 1 @2k 21y 2 (51 2 (ne25-1)
n even (84)

In most practical applications it is the parameter n rather than
a which is determined. From the relationship

1 2
m—l-a-&-a + ...
where (141) represents the terms factored by n, in the equation for
T we obtain to the second order:

2

n =" (la +a” + ...)
2 4
3 2 e 45 J48e 2 2 4
- 2 3-3002 + 350
bl 1+4 n(130)+128—-4—ne { 35
2 4
3_ 2% 10-8n-25e2 + (-60+48n+90e2)0° + (130-7zn-25e2)9“]
T128 8 e E
Teg® [ 2
=7 (1 - 81 (2j 2 -3) + [Jz term ab0ve.§ (85)
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~

if n  1s substituted ior n, in the equations for w and (I in

‘)
Table V11, tic coayploity of the J, terms is reduced; they become:

2 2
Far
5 9 | 2 . Do
n 158 Sy I-l()-25e + (-36+126e°)6° + (430-45e7)0 (86)
p ~
For 0
Jza “or 2
5 372 e , 2 LA
w8 35 — |4-9¢” + (-40+5e7)8 J (87)
p 5
po oconputed from the relatioanship
T 3 = 2
a = u.1/3 Ny RS o gl 2/3 (1+2/3 o - 1/9a°...)
11 S we whitadn
; 2
-2/3 i, a
—_— 2
2 el 'jl-1/2 —2—%—?1(1-39)
] p
I
1 J2ae i 2 i 42
s Ryt L10+12T|-25€ + (-60-72H90e°)8
p
+(13o+108n-25e2)9“]
4
J,a
G A2 e of [3-3092 + 3591‘]
64 pa
2/3 . 2
= pl/3 1+8M %l 1-e2 - 2 + [Ji term abov%] (88)
e
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Note that p, which is a function of a, enters into these equations.

If we employ

2 1/3 _-2/3 2
P =u g (1-e7)
24
J.a
=p 1+l e n(1-392)+...
2 p2

in the equations in Table VII five Jg T terms are added to Equations

~

(86), (87), and (88). 1t is therefore more efficient to compute p

from m and p from

J.a 2
p 2= Pl 2% a-30h) 4 .. (89)

P

2
2

terms, since the error in using p is of the third order. If, however,

for use in the J2 terms. Either 'E or p may be used in the J

Equation (88) is only carried to the first order, it may be entered with

~

p, and p computed from a, so that Equation (89) is not required.

If the Kozai 3@ 4is to be employed as an element, then Equation (88)

is replaced by

2
J,a
- 3 T2 . )
a=a (1 e > M (1-387)
p
2
-2/3 J,8
= u1/3 = / (1 o 2_%_ n (1_392)) (88a)
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to the first order. The use of T and

T =i e

in the equations in Table VII would again lead to additional terms
in 7 in Equations (86) and (87). The preferred approach is therefore

to correct p using

2
p D To%e

|
i (1-392)' (89a)

o
1
ol
—
+
N lw

|%

A rather more complicated approach is employed in the GEPERS

xug:ihq(a) dovelcped for use in the SPACETRACK system. The parameters

~

¢ooteyed incluce 2 and p, with a mean motion parameter n defined

t"
2
J,a !
~ I )
nfad ey 142 En 30 (90)
: P
t..--h is intcerpreted to mean
2
J.a
~ 3 2 e 2
n = no[l e 5N (1-30 )]
p
2
J,a
- LS Ze 2
= no[l 3 5~ M (1-389)
| %
2 4
J.a
3 2 e 2 4
+ 128 —_;Z_ N (48N-288M8° + 432M6 )]
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(where either p or P may be used in terms of order Jg.) If
this equation is subtracted from the equation for T in Table VII

and 1 is subtracted for no in the second order terms we obtain:

J2a 4
— o~ 3 2
e (1o n[1o-3zn-2se2 + (-60+192M+90e%) 02
P 2 .4
+ (130-288n-25¢2)0
i
J,a
45 74 2 2 G
B _54 n e [3-309 +359] (912

The expressions for @ and d in GEPERS employ T and P in
place of @ and p; n agrees with T to the first order, but
the use of p makes it necessary to modify Equations (86) and (87).

The results may be obtained from Equation (86a) and are:

For o
Jza ki
R [-10-48n-25e2 + (-36+384+126e2)0% + (430-720n-45e%)0"
p
(86a)
Bor 0
33234' 2 2.2
e == Z |4-24n-9e” + (-40+72n+5e¢7)0 (87a)
L -
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Suppose now that we wish to use the smoothed elements T, a',

e', I', ' and Q' as defined in Equation (55). If we enter the J

terms for ¢ and é in Table VII with

p' = a' (1-e'?)

1./:2
n' = (l-e'z) 4
0' = cos I

then the Jg terms in Equation (86) and (87) will be changed by

2
J,a .
éu) = 1-] (- % —2_(22— (1_592)) [_ 2 6_2 + 49268 + 10 sin ée 61} (92)
P n (1-56°)
J,a 2
50 =mo |-3-2=2 _pba  4ebe sinT 61l (93)
- P2 = l-e2 ©

where the e, are related to the A€i of Equation (55) by

e, =€, -e! = - A€,
ik 1

The results are

For

J.a

e
4
P

2_ 4
2

5 ng [-42-57e2 + (-20+382¢%)0% + (190-525e2)94] (86b)
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For é

a r

2 4 )
= 370 2 2.2
58 5T l-zse + (=B%538°)0 J (87b)

These terms differ from those given by Merson(7) because he employs
u as the argument of the secular terms rather than M (in the form

Tit ), i.e., his rates apply for a nodal rather than an anomalistic

. 2
frequency and may be obtained by subtracting % and = from
Equations (86b) and (87b).
Now since from Equation (553),
2
J,a g
- - _3_2¢ -502) (v-M) ~2 (-
W' sw == 5~ (1-587) (v-M) m— (v-M)
p
J,a 2
: 3 "2e
Q' -Q=-73 > 8 (v-M) = — (v-M)
p
if we define the increase in mean anomaly to be
AM = T At (94)
and we define Av to be the related quantity
Av = AM + (v-M) (957

(note that Av 1is not zero at the epoch, unless epoch is defined to

be at perigee or apogee )
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we have

- : 9 -
w' =w o tw At = (v-M) (96)
=o' +& Av
il
and similarly

B o i o
Q' =0' += Av (97)

o 1

where J%— and —%— are obtained from Table VII as modified by
Equations (86b) and (87b). It remains to determine a'
(and, thereby p'). Since
2
] J.a
a' =a 1 +lie—-n (1-392))
2 p2

\

Equation (88) becomes

2 4
_-2/3 Joa
ot S e —6—2 2 . n[m-zm-zsez + (-60+24n+90e2)0?
p
= (130-36n-25e2)9“]
4
J,a
_ L he . o?lanee® 5 550"
6 G
p
1/3 =--~2/3 T 2
=4 n 1 4+ SN 31 " -2 + J2 term above (88b)
(n> 2)
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Thus, to the first order, a' may be computed from T

using the

Keplerian relationship and no special provisions are required for

computing p'.

The non-conservative perturbations are sometimes represented

by polynomials in time. If, for example

M =M+nAt+%At2+§At3

Tl=n+f1At+'I—21At2
then the coefficients for a'

a' = a + a At +-% At2

are easily obtained from Equation (88b) as

1/3 -2/3
v n

[++]

I

1
(RN
313

2]

Nolwe
|
wluw
33
1
Wi
3 |3
o

A similar polynomial can be employed for e

e'=e+éAt+%At2

47
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The time dependent terms may be obtained empirically, or from the

approximation that perigee height remains constant

4 v (1-e') =
ic @ (l-e') =0
which yields
s o L€ o 2 1-& .
g G e & == (105)
s _ 1 | g 1 1 a 1
QP S R R R R PN T
2 & a n {9 n 3 n’ HICES

The inclination is usually assumed constant, although it may be
represented by a similar series. Where these secular perturbations
on n, a', and e' exist, they must be reflected in the motion

of node and perigee. The variations in T are already incorporated

in Equations (96) and (97). It is usually adequate to carry the

additional variations due to a', e', and I' to the first order
in JZ; the necessary derivatives of 4%— and —%r may be obtained
from Equations (92) and (93). . The resulting equations are
f _ 0} - 10 sinlB
o Yol |® = 1-50
a
= +ls | AV 1-2—a+4e28e+ - 51 (107)
] a 1= sin
Q Qo n € e

where the §&§'s represent the change from epoch, or
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i + 1| av (1+® (108)
i Q
Q Qo =
\ \J

where (using Equations (102) and (103) )

10 sig 16

o =|%1, 3e 5 & & el i At
3o l-e - sin 1
(8]
“( 10 sin 10
3 - 1-502 . ,
T 3) +28, 28 ¢, = | at
9 1n 3n 1- 2 2
= - sin 1
® (109)
or, for constant perigee height and inclination (see Equations
(105) and (106) ),
_ Allze) W -10-6e L 2(-e) 2
G 3(1+e) n At + 9(1+e) ( ) 3(1+e) r At (109a)

In some cases it is desirable to express the secular terms as

functions of time rather than as functions of Av. It is possible
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to expand Equations (108), (109) and (109a) using Equation (95),

and by separating like powers of At to obtain

7 @ w
(W w, W 2 6
i 3
- % (At kA G (110)
' & Q Q
‘
9! Qo Q 2 6}
where
@ L
n
= 1. n (111)
a Q
n
\
0 W 10 sin I8
2 n 1-58
= l% n + e 3 né + nl (112)
i . 1-e
9} Q. _sin 1
&)
n 11 - 5e .
- [l [6(1+e) nJ (112a)
a
n
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