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ABSTRACT 

The periodic position and velocity perturbations of an 
artificial earth satellite are developed to the first order for all 
J , based on the theory by Brouwer as extended by Giacaglia.  An 
explicit formulation is also provided for the subset J„, J_, J,. 
The use of a position and velocity formulation circumvents the 
equatorial and circular orbit singularities found in conventional 
developments.  The definition of the mean elements of the theory 
is modified to reduce the complexity of the position perturbations, 
as suggested by Merson's Theory, and the resulting changes to the 
secular terms are developed.  In order to facilitate an empirical 
correction for drag, the observed mean motion is introduced as a 
mean element in place of the semi-major axis. 
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SECTION I 

INTRODUCTION 

The motion of a near-earth satellite is, in the first approximation, 

"Keplerian"; i.e., it conforms to certain empirical laws formulated in 

the seventeenth century by Kepler.  In his Principia, Newton demonstrated 

that these laws described motion in an inverse-square force field.  The 

force (or negative potential) function for such a field is of the form 

U = ^ (1) 
r y 

where  r  is the geocentric distance of the satellite and u,  is the 

gravitational constant.  The motion is conventionally described by six 

"orbital elements," a, e, I, M, UJ , fi.  Kepler's second law states that 

the motion occurs along an ellipse with one focus at the primary.  The 

inclination,  I,  and the argument of the ascending node, fi,  serve to 

locate the plane containing this ellipse.  The eccentricity,  e,  and the 

argument of perigee, uu, define the shape of the ellipse and its 

orientation within the orbital plane.  The semi-major axis,  a,  provides 

the scale of the ellipse as well as the orbital period; from Kepler's 

third law the period P  is given by 

P - ^ a3''2 (2) 

v> 

The location of the satellite within the ellipse is given by the mean 

anomaly,  M,  which measures the area swept out by the radius vector 

since perigee passage.  In accordance with Kepler's first law the area 



swept out and hence the mean anomaly increases at a uniform rate; then 

M(t) - M + n t 
o   o 

where  n  is the mean motion  given by 
o 

(3) 

2jT 
o  P 
n = — = p,2 a 

•3/2 
(4) 

The mean anomaly must be converted to a geometric angle to be of use; 

the eccentric and true anomalies,  E  and v, are related to M by 

Kepler's equation 

e sin E = M (5) 

which must be solved by iteration, and by 

v    1+e 
tan - =  

2   I 1-e 
tan 

Following these computations, the geocentric position and velocity 

vectors _r  and jr  are given by (See Figure 1) , 

(6) 

r = r U 

r = r U + rvV 

(7) 

(8) 

where 

r = 

r = 

rv = 

1+e cos v 

k 
(—)  e sin v 
P 

(—)  (1+e cos v) 
P 

(9) 

(10) 

(11) 
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u = 

V  = 

cos u cos Q - sin u sin Q cos I 

cos u sin 0 + sin u cos fi cos I 

sin u sin I 

- sin u cos fi - cos u sin Q cos I 

- sin u sin fi + cos u cos Q cos I 

cos u sin I 

(12) 

(13) 

with 

P a?] 

(l-eZ) 

v-Hu 

(14) 

(15) 

(16) 

This simplified model cannot adequately represent the motion of a 

satellite; it must be augmented to include the effects of various 

"perturbing forces."  These forces may be conservative, i.e., gravita- 

tional, or may affect the energy of the satellite's orbit, e.g., atmo- 

spheric drag and solar radiation pressure.  Mere sophisticated models 

may be implemented via numeric integration or "special perturbations" 

techniques, which fail into three major categories: 

(a) Integration in cartesian coordinates of accelerations 

resulting from all forces acting on satellite, to obtain 

position and velocity (Cowell's method). 

(b) Integration in cartesian coordinates of accelerations 

resulting from perturbing forces only, to obtain deviations 

in position and velocity from a Keplerian orbit (Encke's 

method). 



(c)  Integration of the variations due to perturbing forces in 

the orbital elements of an "osculating" Keplerian orbit, 

i.e., the Keplerian orbit defined by the position and 

velocity of a satellite at each instant (Variation of 

Parameters). 

These methods have a theoretical disadvantage, in that the 

accumulation of roundoff and truncation errors must eventually result 

in inadequate precision; it appears that in practice the length of arc 

is limited by the uncertainty in modeling non-conservative forces, which 

involve not only a complex and highly variable atmospheric structure, 

but also the configuration and orientation of the satellite.  A more 

practical problem in some applications is that the integration must be 

carried from epoch to the most distant observation, regardless of 

whether useful data exists in the intervening period.  In addition, the 

integrated orbit, whether in terms of coordinates or elements, provides 

little insight into the effects of the various forces operating on the 

satellite, so that it is difficult to identify and correct deficiencies 

in the model.  Despite these disadvantages, special perturbations 

programs are widely employed for precision tracking where the frequency 

of data mitigates their relative inefficiency, or the cost is justified 

by the requirements for maximum precision.  They are also extensively 

employed in feasibility studies and similar investigations, to avoid 

time consuming (and possibly impractical) analytic developments. 



It is generally possible to obtain analytic expressions for the 

effects of the perturbing forces, to any desired precision and for any 

time span.  Such "general perturbations" models ;ire universally employed 

in routine cataloging systems, where a considerable number of satellites 

must be tracked with data that is sparsely distributed in time.  In 

addition, general perturbations are usually employed in satellite 

geodesy.  A considerable number of analytic theories have been developed 

for the conservative perturbing forces, i.e., the departure of the 

earth's gravity field ::rom an inve:rse-square law and lunar and solar 

(gravity. 

For greater efficiency, semi-analytic theories are often employed 

•or the luni-solar perturbations which are relatively small and of low 

frequency; the same approach is generally followed for the solar 

radiation pressure perturbations.  Thus, for solar radiation pressure, 

,:he analytic development: may be carried through a formal integration of 

:he perturbations, but the results are left as a function of the limits 

if integration.  These limits depend on the points at which the satellite 

inters and leaves the earth's shadow, which vary slowly with time.  The 

'valuation of the perturbations proceeds  n  revolutions at a time, 

Ath the shadow limits reevaluated at each step. 

Analytic models of the drag perturbation have been produced for 

simplified atmospheric models.  The theory is complex, particularly 

when interactions with the earth's oblateness perturbations are considered 



As a result, empirical models are generally employed, with only the long 

term effects of drag considered.  The results are generally satisfactory 

for high altitude objects, but there appears to be considerable merit 

in the development of a semi-analytic drag theory. 

This paper deals only with perturbations due to the earth's gravity 

In geodesy the gravity field is described in terms of a reference 

ellipsoid, a reasonably tractable figure which approximates the figure 

of a rotating fluid in equilibrium to about 1 part in 10 .  The actual 

gravity at any point is shown in terms of a map of the elevation or 

depression of the "geoid" with respect to this ellipsoid; this "geoid" 

is an equipotential surface, i.e., a surface everywhere perpendicular 

to the local vertical.  Before artificial satellites were launched the 

ellipsoid and "geoid" were determined from the reduction of direct 

gravity measurements and from astronomical determinations of the 

deviation of the local vertical from the local perpendicular to the 

ellipsoid.  This "geoid" data is not employed in the theory of an 

artificial satellite, however.  An analytic expansion for the potential 

is required; in spherical polar coordinates the generalized force (or 

negative potential) function is a series of Legendre polynomials and 

associated functions: 

(°°   n I a I 
1 + 2   E —   P   (sin 0) (C  cos m\ + S  sin m\)' 

„    - I r     nm nm nm n=2 m=0 ' 
(17) 



where a  is the equatorial radius and 6 ,  >.  are the geocentric 

latitude and longitude of the satellite.  The Legendre polynomials and 

associated functions are defined by 

(x) _ HzAm/2 ^L  (x2 nn _ (l-x
2)m/2 ^TT) (-l)J(2n-2J)! ,n—2J 

2nn!    dxn+m 2n     j=0    J! (n-J>! (n-m-2j)! 

(18) 

where  I(——)  is the integer part of  (—7—).  The  P   (or P  )  harmonics 

are "zonal," while the P   harmonics are "tesseral,"  The largest 
nm ° 

-3 
coefficient is J ;  it is of order 10  .  The remaining coefficients do 

- ft 
not exceed the second order, i.e., 10  .  In order to evaluate the effects 

of the harmonics, it is necessary to substitute orbital parameters for 

r,  3,  and \.     In general, a method of successive approximations must 

be employed, so that a series of perturbations of increasingly higher 

order arises, e.g., 

first order:    J 

2 
second order:   J„ ,  J ,  J 

2    n   nm 
3 

third order:    J. ,  J„J ,   J„J 
2    2 n    2 nm 

Most general perturbation theories neglect periodic effects of the 

second order; the residual perturbations will then be on the order of 

15 meters.  However, under certain circumstances the perturbations due 

to higher order terms are amplified and must be included in a first 

order theory.  If the potential function and its derivatives are 

expressed in terms of conventional orbital parameters, they will be 

found to have arguments of the form: 



COS 

sin 
(n-2p+q)M + (n-2p)<D + m(Cl-\) 

where  n,m are the indices of the harmonic,  p  ranges from 0 to n 

(it is the parameter of a power series in sin I and cos I), and  q 

ranges from -co  to oo  (it is the parameter of a power series in  e, 

with the lowest power of  e being  e' ').  From a simple first order 

theory, it will be found that M, uu,  and Q  all increase linearly 

with time, so that when the perturbations are integrated divisors will 

arise of the form 

(n-2p+q)n + (n-2p)o) + m(n-X) 

where n  is the perturbed mean motion.  The perturbations are classi- 
o 

fied in terms of  n,  m,  p,  q  as follows: 

(a)  Secular terms  p = (n+q)/2 

q = 0 

m = 0 

These terms give rise to a linear increase in the elements 

M, uu,  fi,  and are therefore computed to the second order 

in a first order theory (so that the theory is valid for 

about 10-20 days, after which the neglected third order 

terms exceed the second order).  These terms only arise for 

even order zonal harmonics, i.e.,  n=2, 4, ... ; the 

values of the even zonal harmonics are generally based upon 

observed secular perturbations. 



(b) Long period terms  p = (n+q)/2 

q I* 0 

m = 0 

These terms have a divisor of the form -qi which is of 

-3 
order 10  ; second order forces therefore integrate into 

first order perturbations and must be included in a first 

order theory.  There is no J  term of this form; if there 

were,a different type of solution would be required (there 

2 
is a J„   term of this form which reduces to J  on 

integration).  There is a special case for the "critical 

inclination"  I« 63.4 , where 0)  is of order 10  , so 

that a "resonance" occurs.  In this case, either a special 

solution is employed or the long period terms are not 

integrated, i.e., they are left in the form of secular rates. 

The long period perturbations for even zonal harmonics are 

factored by the eccentricity  e  and can often be ignored; 

this is not the case for the odd zonals whose values are 

usually determined by analysis of observed long period 

variations in eccentricity and inclination. 

(c) Short period terms  p ^ (n+q)/2 

These terms have a divisor containing n  so that the order 

of the perturbation remains unchanged upon integration. 

Therefore, only the  J„  terms need be included in a first 

order theory. 

10 



(d)  Tesseral harmonic terms  m ^ 0 

There are two cases of interest here.  For  p = (n+q)/2 

there are terms with frequencies near some multiple of the 

siderial rate, since to the zeroth order 

(n-2p)uii + m(fi-X) w -mX 

The integration results in an increase on the order of 

n /mX  or about  16/m for near earth satellites.  These 
o 

terms contribute perturbations on the order of 100 meters, 

and decrease in importance as  n  and  m  increase. 

For 

(n-2p+q)n + (n-2p)uu + m(fi-X) « 0 

there is a resonance analagous to that holding near the 

critical inclination.  The resonance will be in general 

larger for smaller values of  (n-2p)  and  q.  The principle 

resonances thus arise for 

in sa n n odd 
o 

where  n   is expressed in revolutions/day.  Obvious cases 

of potential near resonance are 24 and 12 hour satellites. 

High order resonances, e.g.,  (n,m)  of  (13,13), (15,13), 

and (15,14)  have been reported for certain satellites with 

magnitudes on the order of 100-150 meters and periods of 

2.5-5 days.  Obviously, by going to a sufficiently high 

11 



order harmonic, a resonance can be found for any near 

earth satellite.  Fortunately, the net effect of these 

higher order terms is considered to approach the second 

order. 

This paper does not deal with the tesseral harmonic perturbations. 

It is limited to some minor modifications of the secular terms developed 

by Brouwer   and extended by Giacaglia  , and to a non-singular 

development of the long and short period perturbations due to the zonal 

harmonics.  In the Brouwer and Giacaglia papers the perturbations of 

conventional elements are computed, which leads to singularities for 

(3) 
low eccentricity or inclination.  Lyddane   showed that the problem 

could be circumvented by either computing the perturbations to "non- 

singular" elements, e.g.,  e cos M and  e sin M,  or by computing the 

perturbations in the position and velocity vectors.  The former approach 

(4) 
is employed in most general perturbations ephemeris generators   , while 

the latter approach is employed in this paper.  Although Garfinkel   , 

Kozai   , and Merson   have computed some of the position perturbations, 

velocity perturbations have generally been neglected. 

The use of position and velocity perturbations has the advantage 

of revealing the "real" or observable effects of the perturbing forces; 

Merson   , for example, has shown that some of the apparent perturbations 

of the orbital plane affect only the velocity vector and can be ignored 

in a tracking network based on positional data.  In addition, a 

12 



position and velocity theory appears to be somewhat more efficient than 

a "non-singular" elements theory, particularly when only positional 

data is used for element correction.  The position and velocity theory 

has one disadvantage, in that the frequency of the long period terms 

becomes comparable to the short period terms, and they must be recom- 

puted for each ephemeris point.  (However, they are recomputed for 

each point in most theories, whether or not the computation is necessary.) 

13 



SECTION II 

PERTURBATIONS IN POSITION AND VELOCITY 

In developing the perturbations it is convenient to use the angular 

momentum unit vector W,  given by 

W = U x V =  sin 0 sin I 

- cos 0 sin I 

cos I 

The perturbed position and velocity may be computed as 

r = (r + 6r) (U + 6U) 

r - (r + 6f) (U + 6U) + (rv + 6rv) (V + 6V) 

or the perturbations alone may be computed as 

6r = 6r U + r 6U 

6r = 6r U + 6rv V + r 6U + rv 6V 

ignoring second order terms. 

The quantities  6U and  6V may be written as 

6U = V (6u + cop I 60) + W (sin u 61 - cos u sin I 60) 

6V =-U(6u + cos I 60) + W (cos u 61 + sin u sin I 6fi) 

and hence we have 

6r - 6r U + r (6u + cos I 60) V 

+ r (sin u 61 - cos u sin I 60) W 

6r = [6r - rv (6u + cos I 60)} U 

+6 rv + r (6u + cos I 60)1 V 

+ r (sin u 61 - cos u sin I 60) 

+ rv (cos u 61 + sin u sin I 60) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

W (27) 

14 



For Or, oiy     ancj 5U we can either use Taylor series expansions 

in the conventional elements, or the ingenious equations of Izsak   with 

the Brouwer determining function S  written in Hill's canonical 

variables  {r, G, H  I  r, u, Cl).   The equations are 

c     6 a *  L 
a sin v   ... or = r — - a cos v oe -\ e  6M 

a r\ (28) 

6f = 
1/2 2 1/2 2 

r 6a   ,M.. (1+e cos v)   . ..    >.    (1+e cos v) .„ 
- — — + (-) -* 7, *—  sin v 6e + (—)   -* <—  cos v e 5M 

2  a    P J- P v,3 

6u = 
(2+e cos v)  .   ,    (1+e cos v)  ... , .„, 
-* y  sin v oe + -1 r —    6M + 5uu 

r\ r\ 

(29) 

(30) 

or 

6r = 

6r = 

6u = 

5S 

dr 

as 
9G 

(31) 

(32) 

(33) 

The second set of equations appears much simpler, and has been 

solved for the short period terms by Izsak.  They are not so simple, 

however, when dealing with the long-period terms containing trigonometric 

functions of 'JJ. 

The perturbation in  rv  may be computed from 

;>rv = rv 1 5a , cos v (1+e cos v) - e .    sin v (1+e cos v)  ... -  — +  i—_ L  6e ^  e tM 

2 a 2 3 

(34) 

Brouwer and Giacaglia employ the Delauney canonical variables 
[L, G, Hi 1, g, h], where 

L  =   (u.a) 2 1   = M 

G  = LTl g  = iSJ 

H = G  cos   I h  =£1 

15 



or 

6rv -6(S) = rv M  - % (35) 
r        u    r 

using intermediate results for 6G. 

If the Taylor series expansions are employed, it is possible to 

rewrite Equation (27) using Equations (29), (30), and (34) as 

e sin v 6_a  (1+e cos v) sin v . 
2      a "      2 C 

* n 

2 \ 
-  (1+e ^os v) 6M . (1+e cos v) (6uu + cos i 60) U 

Tl ' 

(1+e cos v 6a  cos v+e .       .    ,. _ .ns \ .. - 1  6e + e sin v (6ut) + cos I oil) V 

+   (cos u + e cos uu) 61 + (sin u + e sin oi) sin I 60 W 

(36) 

16 



SECTION  III 

SHORT PERIOD PERTURBATIONS 

Izsak  ' has already computed 6r,  6r,  and 6u as 

9^        9 9 
6r = . <sin I cos 2u + (1-39 ) 1 + *L e cos v 

1+e cos v    1+H 

(37) 

6r = - p. h    J2ae 
5/2 

2 2 
2 sin I (1+e cos v)  sin 2u 

6u = 

i it I t-i    or>2N     .      I n (1+e COS v)     V + (1-39 ) e sin v p+ •»—j-j= L—      > 

J a 2 f 2 
' 6(l-592) (v-M) + 4(l-692 + ^9 ) e sin v 

(38) 

8 p' i+n 

+ (1-392) (1-Tl) sin 2v + 2 (592 - 2) e sin (2u-v) 

+ (792 - 1) sin 2u + 29 e sin (2u+v) 

where 

J  = coefficient of the second zonal harmonic 

a  = earth's equatorial radius 
e 

9 • cos I 

From Brouwer's theory, with 

J2a
2 

2  0    2 2 a 

17 



je have 

—— = 3  5-- sin  I < cos 2u + e cos (2u-v) + — cos (2u+v) 
4 P 

(40) 

J2ae       2 , 
cos   I 6fi  =  -  r— 0    \6   (v-M + e  sin v)   -   3   sin  2u 

4 p^ 

- 3 e sin (2u-v) - e sin (2u+v) (41) 

J2ae 61 •  — sin 10(3 cos 2u + 3 e cos (2u-v) + e cos (2u+v) 
4 p2 

Hence 

(42) 

6u + cos I 60 = 
2 e ),   .   2    . I sin 2u 

(sin  I) | — + 2 e sin (2u-v) 
4 P 

2 

- (1-39 ) 
2+n 

3 (v-M) + 2 e sin v (y^) 

1-T1  .  , H r1 sin 2v 
\ 

(43) 

Sin „ 6! - cos u Si„ I « . ^ .i, I .  X 
4 p^ 

3 sin u - 4 e sin yj 

+ 4 e cos u sin v + 6 cos u (v-M) )     (44) 

v2 
cos u 61 + sin u sin I 60 =  %-  sin I 9 / 3 cos u + 4e cos (u+v) 

4 V 

- 6 sin u (v-M) \      (45) 

it; 



rv = \i> 
h    Ve 

4 p 
|^2  (1+e cos v) V 

(sin I)  2 cos 2u + 2e cos (2u-v) + e cos 2u cos v 

(1-392) | (1+T1) + e cos v (||Jj) + ^ cos 2v (46) 

Substituting these terms in Equations (26) and (27) gives, after 

some simplification, the short period terms in Table I. 

In some tracking programs the relationship of the mean semi-major 

axis and the secularly perturbed mean motion is taken from Kozai's 

equation 14   : 

J„a _2 m S    = u, 11+3 (1-30*) TI 
4 p' 

(47) 

Since 

n = n 
J?a       2 

1 - 3    e     (1-39 )  Tl + . . 
2 P 

(48) 

this implies 

I      J?a        ? 
"a = a  1+3    |   (1-39)  TJ + 

1      4 P 
(49) 

where  a  is the mean semi-major axis of the Brouwer theory, defined by 

M- (50) 2  3 
n  a 
o 

19 
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The use of a in place of a in the computation of unperturbed _r 

and r requires that a compensating perturbation be applied to 6r 

and 6_r: 

fia . *jl . . 3 i£a- (1-392)  n (51) 
4 p 

This results in the following changes in Table I: 

(a) The term 2r\     in the  U component of 6r 

becomes  - T\ 

(b) The term -r\  e sin v  in the  U  component of  6_r 

ri 
becomes  + — e sin v 

Merson has developed a theory    in which the short period position 

perturbations are minimized.  His formulae (153-157) relate the osculating 

elements to conditions at the ascending node, to the second order in  J . 

By eliminating all first order terms whose argument is a multiple of uu, 

and terms factored by u,  a set of first order pseudo short period terms 

is obtained.  These result in the position perturbations given in 

Table II.  (The first order terms factored by  u  in Merson's theory are 

actually the sum of secular terms factored by M and short period terms 

factored by (u-M).  They can therefore be included in the secular term 

computation, and we have taken this approach.) 

Now, if we define e.  to be Brouwer's mean elements updated for 

i 

secular perturbations, and e.  to be "smoothed" mean elements updated 
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for secular  terms,   then: 

r(e,)   + 6r 
—     - —Brouwer 

rfei)+V    jg 
i—'    9G .       11 

(e ! -e .)  + 6 r Smoothed (52) 
i=l 

so   that we  have   three  simultaneous   equations: 

.Pit,   i 

i=l 

6r -  6r 
Brouwer Smoothed 

(53) 

where 

Ae . = e . - e . 
i   I   i 

Using Equations (26), (28), (30) and Tables I and II, 

Aa                        »      L a sin v r — -   a  cos  v &e + eAM 
1 a T] 

=  r ax   (1-392)X 

2 I       \ I                         2 
l+3ri+e .   2+n                       L e              _ 
 -1  + -—1    e  cos v + — cos   2v 

2 1+n                            2 

2  sin v + —  sin 2v|   A| +  (1+e  cos  v)- AM + ^ + 9A0 

•n TI 

= -   r ai(l-3G2))( 

1 /                           2               I 
2+n 1 e 

3   (v-M)   +   I-—H 2e  sin v + — sin  2v 
i+n \                2 

r   (sin  u Al  -   cos  u  sin lAfi )   =  r a     sin 10 6  cos   u   (v-M)   -   3  sin u 

(54) 
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If the Ae  are restricted to contain only constants or terms with 

(v-M)  as angular arguments these equations may be solved to yield: 

AS = 2 ax (1-39
2) X] 

Ae = - a  (1-39 ) 
2+n   2 
— \  en 

AI = - 3 a sin 19 

AM = 0 

Auu = - 3 a  (1-59 ) (v-M) 

An = - 6 a 9 (v-M) (55) 

The resulting changes in the velocity perturbations may be obtained 

from an equation similar to Equation (53); the signs of the   Ae . 

should be changed to yield: 

6r -  6r 
Smoothed Brouwer 

- V   |i    Ac. 
i=l 

(56) 

With  the aid  of  Equation  (36) 

6r -  &r 
Smoothed Brouwer 

- 
P 

a ,X 
(1-39") e  sin v I-T| vU+f^l (1+e  cos  v) + 3(l+e  cos  v)(v-M) 

+    (1-39  ) e  cos  v T1 + -rrr- - TJ«)"   3e  sin v  (v-M) 

-   3  sin  19 cos  u+e  cos uu + 2(sin u+e  sin uu) (v-M) 

U 

V 

W 

(57) 
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which, when added to 6_r  from Table I, yields the velocity perturbations 

in Table II. 

These position and velocity perturbations represent a useful 

simplification of the equations in Table I; corresponding modifications 

2 
to the  J„  and J  secular terms are derived in Section V. 
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SECTION IV 

LONG PERIOD PERTURBATIONS 

The first order long period perturbations for J ,  n> 2,  have 
n 

(2) (9) 
been developed by Giacaglia   and Garfinkel and McAllister 

Giacaglia's results have been employed since they are more readily 

truncated; the published paper unfortunately contains a number of errors: 

(a)  For the even harmonics, the upper index limit for  k  in 

S   is incorrect, since values of  i within the permitted 
kij P range do not exist for  k= ~.       Furthermore, for k = 0,  i 

can exceed  i;  in this case,  6 ,,  „,  „.  vanishes." 
p+1, 2j, 2i 

Therefore 

Similarly for the odd harmonics 

where  "  •'— was incorrectly given as the upper index 

limit of  i. 

These practical probleras reflect theoretical errors; i.e., k • * te 
arc secular terms aid also appear in the >] portion of the disturbin 
function. kj 
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(b)  In equation 21, the term 

2-
2 

2 
e 

should be 

-2.,^ 
e 

(c) Equation 22 must be multiplied by H. 

(d) In equation 28, the factor 

2i+l 

should be 

2j±l 
2i+l 

(e) In equation 30 the term 

sin I 

should have a minus sign, and the factor 

cos (2i+l)g 
2i+l 

has been omitted. 

Also, Giacaglia has the wrong signs for the third through fifth 

harmonic Brouwer coefficients  (k , v > ar>d A  .) as functions of J . 
n Tn      n.O n 

With these corrections, Giacaglia's results may be summarized as 

6e • S Ae (58) 

where  S  and Ae  for even and odd  n are summarized in Table III. 
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It is convenient to reduce these equations to a common form.  First, 

note that the summations can be written as 

n-2   n-2   n-2i 
2     2     2 

Y, >"]     Y, n even 
i=l   j=i   k=0 

n- 3   n-3  n-2i-l 
2     2     2 
E     E     Z n odd 
i=0   j=i   k=0 

Now introduce a variable \ 

\   = 2i n even 

= 2i+l n odd (59) 

so that 

\ = 2, 4, ... , (n-2)    n  even 

=1,3, ... , (n-2)    n odd 

Similarly introduce 

u, = 2j n even 

= 2j+l n odd (60) 

so that 

H = X, X+2, ... , (n-2) 

Also introduce 

v = n-2k 

with 

v = \,  1+2,   . . .   ,   n (61) 



Note that   S  is factored by  e sin I.  Moving this factor from S 

into the Ae,  and employing 

%  = n/2 - IJU (62) 

we obtain the results in Table IV. 

It is now a simple matter to obtain 

6r = -aT|  sin I S cos v cos X^  + — sin v sin \? r (63) 

c .   u. 1/2 2 ( \i 
°r = (—)   (1+e cos v) sin I S \ sin v cos X§-— cos v sin \£ 

P I A 
(64) 

6rv =  (—)       (1+e  cos  v)   sin I  S 
p 

X (1+e  cos  v)     cos  v  cos X§  + r-  sin v  sin X§     -   e  cos X,? 
\ 

(65) 

6u + cos I 6Q = sin I S -I (2 sin v+e —z—- ) cos \% 

so                     cos 2v  3e . M- sin Xg     ,-  c. sin \g \ (2 cos v+e —  + — ) * + e (2n-5) —-—»* V 

sin u 6 I - cos u sin I 6 Q  =  -e 9 S 

V ( •       -,<;                                 10 sin I \    \ sm u cos \c,   + cos u v -  x— 
L \     1-59 

cos u 6 I + sin u sin I 6 Q = -e 9 S 

sin \S 

(66) 

(67) 

X i. cos u cos \S,   + sin u 
10 sin I \ 

v 
sin \g 

1-50 

from which, with Equations (26) and (27), the results in 

Table V are obtained. 

>. 
(68) 
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It will be noted that  S vanishes for n=2.  II this were not the 

case, it would be necessary to modify the basic unperturbed solution, 

since the resulting terms would have a J /J   coefficient and could not 

be treated as a perturbation.  However, the magnitude of  J   is such 

that the long period solution for J„  must be carried to one higher 

approximation than for the other J ,  yielding perturbations with the 

coefficient J~/ J„ or J As giver: by Brouwer, these terms are: 

6a = 0 

2  2 
6e = S T)  sin I cos 2uu 

(69) 

(70) 

6l = -S~ e 0 cos 2ju 

2 -i3 

6M = S„ — sir, I sin 2au z e 

(71) 

(72) 

6uu = - S„ e sin I 
e 

109 

sin2I   (1-592) ( 
 r   sin 
1-159 )J 

2uu (73) 

60 = - S2,  e sin 19  —~- + 
10 

sin'l   (1-592) (1-1592) 
sin 2JU (74) 

where 

s2 = \r   J-^\   ^^V ^-1592> 2   16    P
2   (1-592) 

(75) 

The additional perturbations are easily obtained; 
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6r  = r JJ ——— ——~-     (1-1592) ( 
2    10   p2  (1-597) 

+ sin I  2 sin (2u-v) + 
c sin 2u 

„    .  ,  „ N   10 sin I cos u sin 2<u . e9  sin (u-2uu) - —     W 
(1-592) (1-1592) 

(76) 

~2      H  16    p2  (1-592) 

X - sin I (1+e cosv)  sin (2u-v) - 
e sin 2UJ 

4- sin I /o  \        on,   e sin v sin 2a> cos (2u-v) 4- e cos 2U) -   V 

- e9 
.  _ N        „   10 sin I (sin u+e sin uu) sin 2a> | „ I 

cos (u-2uu) + e cos U) +  * = 5—i   W > 
I (1-59 ) (1-159 )        '   J 

(77) 

In most general perturbations formulations it is customary to employ 
2 

only the  J , J_, and J   long period perturbations.  For comparative 

purposes, these are given explicitly in Table VI.  An evaluation yields 

For J- 

\   m  p. a 1   V = 1,3 

1   JT a 

S3  + 2  J0 p 
(1-592)  ^ 

>        2   v = 1 
-5 sin I  v = 3 (78) 
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6^3 

J3 ae 
r    —     /   sin  I  (1+e  cos v)   sin u    U 

2J2  P 

+ sin I   (2-i-e  cos  v)   cos  u    V 

+ e9  cos  v    W (79) 

'is-15 2J2P 
-   sir  I   (1+e  cos  v)   cos   u     U 

-   sin   I   (sin  u+e   sin iu)     V 

-   e9  sin  v    W (80) 

For    J, 

\   = |i  =  2 v  - 2,4 

c     J.   a 
„ 5_    4    e       e   sin  I 

4 16   T       2 J2 p (1-59  ) 
2.   X W   sin2  I 

v 

v 

2 

4 (81) 

^-rrf    ^f-   ^V    <l"7«2> 
"4 16     J2P

2       (1-592) 
sin  I   (1+e  cos  v)   cos   (2u-v)   U 

+ sin  1 2   sin   (2u-v)   + 
e   sin  2u| 

„     I    .      /     «,\        2   sin  I  cos   u  sin   2JO|   , -   e9       sin   (u-2iij) - 1   W 
(1-592)   (1-792) 

(82) 
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/.. \h   -       J.   a „ 
. . P       5 nee  sin I     ,,   -,~2X 

4       \P       16    J2  P2       (1-502) 

y    \ -sin I   (1+e cos v)   | sin  (2u-v)   -  -  | 

+ sin  I /o       \                     in,      e     sin v  sin  2gj cos   (2u-v)   + e  cos  2u) -     V 

e9 ,     ollls                     ,„       2  sin  I   (sin u+e   sin 0))   sin cos   (u-2^1)  + e  cos uu  +  »— —'  
(1-592) (1-79 ) 

20) 
W 

(83) 

From which the equations in Table VI are easily obtained, 
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SECTION V 

SECULAR TERMS 

The results of Brouwer   and Giacaglia   are given in Table VII, 

where 

, J a 

n-2 
n >V2 2   ,  ..k,,  ....  2j  . n-2kT (-1) (2n-2k). e J sin   I 

S - 
r (n-l)! Jnde \   y   ^-i; u«-^. e 

L 22n   >" h^2(H)^H)!(^ n*2 
n even 

k=0 j=0 |^!)2(j:)2(n-2j-l)! 

(84) 

In most practical applications it is the parameter n rather than 

a which is determined.  From the relationship 

1     1       L  2 J •j^ = 1 - a +a + ... 

where  (Ha)  represents the terms factored by n  in the equation for 

rT we obtain to the second order: 

n = n (1-a + a + ...) o 

»IH| ^ ti a-3.2)* J !£{ T, .2 
3-3082 + 3504 

T2   4 -  J0a 3   2 e „ 
128 

10-8Tl-25e2 + (-60+48ri+90e2)e2 +  (130-72n-25e2)94 

,   1-e -IT  {l - ST| (2j ±-=5 - 3) + j      term above j (85) 
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i f n  xs substituted icr  n   in the equations for UJ  and Q  in 

Table VI'.. tie JC.,,-1. ...ty of the J,     terms is reduced; they become: 

For 

For    O 

jf-a * r 

n Y§8 ~~4~ I -10-25e2 + (-36+126e2)92 + (430-45e2)94 (86) 

f.9 ^f -^-f- U-9e2 + (-40+5e2)92J 
P 

(87) 

computed from the relationship 

1/3  -2/3   1/3 _-2/3 .. ,,,, ,   , /Q  2  . 
a = |i.   7i     =4   n    (1+2/3 a - 1/9 a ...) 

o 

I   M .11 vt  cat.'.ir. 

, i/3  - a = U- n 
-2/3 J«a „ 

< 1 - 1/2 -~- n (1-30 ) 

,   J„a r 1     2  e 
0 4 4      ' 10+12r|-25e2 +  (-60-72Tl+90e2)92 

+ (130+108ri-25e2)94 

15 J4ae    _     2 
•5 —^ 

3-3092 + 3594 

-2/1 I / 2 
1+ST1 -   2 J       term above (88) 
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Note that p, which is a function of a,  enters into these equations. 

If we employ 

p - ,1/3 ^3 (1-e2) 

J„a2 

- p[i +\ —2-f— *n d-362) + ... \ 

in the equations in Table VII five  J T)  terms are added to Equations 

(86), (87), and (88).  It is therefore more efficient to compute  p 

-2 
from  n and p   from 

p"2 = ^ "2 11 + -^-j- r, (1-392) + .. . j (89) 

~ 2 for use in the J„  terms.  Either p or p may be used in the J 

terms, since the error in using p  is of the third order.  If, however, 

Equation (88) is only carried to the first order, it may be entered with 

p,  and p  computed from a,  so that Equation (89) is not required. 

If the Kozai a  is to be employed as an element, then Equation (88) 

is replaced by 

J„«2 

(l • | -If- t| U-302)) a - a (1 + T 
P 

1/3 --2/3 
u-    n 

j a 2 

1 +-2-f- r\  (1-392)| 
*   4 P 
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to the first order.  The use of n and 

p = a (1-e ) 

in the equations in Table VII would again lead to additional terms 

in    T)     in Equations  (86)  and  (87).    The preferred approach is  therefore 

to  correct    ~p    using 

-0 

P       • P 
3    J2ae 

1  + 2 
2   I 

J- X]   (1-39Z) (89a) 

A rather rr.ore complicated approach is employed in the GEPERS 

(4) 
loarii.c;   developed for use in the SPACETRACK system.  The parameters 

t::•••{•»":cyeJ include a and "p, with a mean motion parameter n defined 

t - 

2 
~2 _3 
n a  • |i : 1 + -r 

1 3 J2ae 
r\  (l-39z) 

4   _2 
P 

(90) 

\.: i_h is interpreted to mean 

n     = n I       1       2  e 2 

P 

= n l  -I   ^-,d-392) 

T2 4 

3       2  e 
J28  4~ ^   (4811-288119    + 432119") 
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(where either p or p may be used in terms of order J~0  If 

this equation is subtracted from the equation for n in Table VII 

and n is subtracted for n  in the second order terms we obtain: o 

T
2
 

4 

n = n   < ^TS-^ 10-32n-25e
2 + (-60+19Zn+90e2)92 

+ (130-288n-25e2)94 

45 J4ae    2 
T28~ZIT^ e 

P 
3-3092 + 3594 (91) 

The expressions for uj  and ft  in GEPERS employ n and ~p in 

place of rf and p; "n agrees with "n to the first order, but 

the use of 'p makes it necessary to modify Equations (86) and (87) 

The results may be obtained from Equation (86a) and are: 

For    uo 

T2     * 
3     J2ae 

128       p4 

0 0        0 0        / 
•10-48TV25e    +  (-36+384ri+126e  )9    +  (430-72OH-45e  )9 

(86a) 

For    n 

J2a  4   - 
n9 ^| -2-|-   |4-24n-9e2 +  (-40+72n+5e2)92 (87a) 
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Suppose now that we wish to use the smoothed elements "n,  a', 

e',  I', ID '  and Q1  as defined in Equation (55).  If we enter the J 

terms for w     and Q  in Table VII with 

,i _ „ i :i-e,2> 

1-1 
2 1/2 

9" = cos I1 

then  the    J       terms   in Equation   (86)   and   (87)   will   be   changed by 

2 

6uu  = n 

60  - n 0 

| i!|- (1-592> 
_ 6a       4e 6e 10  sin 19 61 

a 2 ,,   ,„2, 
r\ (1-59^) 

3  J2ae2 ' 
1     2 2 
1 P 

„ 6_a       4e 6e       sin I 61 
a      .     2 0 

1-e 

(92) 

(93) 

where   the     5e.     are  related  to   the    Ae .     of   Equation   (55)   by 

6e .  - e.   - e !  = - Ae . 
ill I 

The   results  are 

For    u) 

T2     4 

—    3.      2  e 
n  128 4 

•42-57e2 +  (-20+382e2)92 +  (190-525e2)94 
(86b) 
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For Q 

A 4 r 
nO 3I -^-|- |-25e2 + (-4+53e2)92 (87b) 

These terms differ from those given by Merson   because he employs 

u as the argument of the secular terms rather than M (in the form 

nt ), i.e., his rates apply for a nodal rather than an anomalistic 
.2 

frequency and may be obtained by subtracting — and TT    from 

Equations   (86b)   and   (87b). 

Now  since  from  Equation   (55), 

tu'   - 0)   =  - 7 -2-f-   (1-592)   (v-M) <*-^-   (v-M) 
H l n 

P 

J  a  2 

n' - fi = - I -M- e (V-M) M §-   (V-M) 
2 -i n 

if we define the increase in mean anomaly to be 

AM = n At (94) 

and we define Av  to be the related quantity 

Av = AM + (v-M) (95) 

(note that Av is not zero at the epoch, unless epoch is defined to 

be at perigee or apogee ) 
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we have 

JU 
uu     = uu    + uu At +-=•    (v-M) (96) 

= uu'   + f-   Av o       n 

and similarly 

n' -o' +•=• Av o  n (97) 

where -TT- and ——- are obtained from Table VII as modified by 
n      n J 

Equations (86b) and (87b).  It remains to determine  a' 

(and, thereby  p').  Since 

2 

a    = a 1 J2ae i +i^-j-^ u-3<n 
P 

Equation  (88)  becomes 

1/3 --2/3 • H n 
T2    4 

1     2ae    „ 
L  + 64~~^ 10-4T)-25e2 +  (-60+24n+90e2)92 

+  (130-36Tl-25e2)94 

15 J4Se      „     2 
64~T"11  e 3-3092 + 3594 

1/3 _-2/3 i I  41   1-e 
n { 1 + STl     —*   

\ e 
(n>  2) 

-   2      + J       term above (88b) 
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Thus, to the first order, a' may be computed from n using the 

Keplerian relationship and no special provisions are required for 

computing  p'. 

The non-conservative perturbations are sometimes represented 

by polynomials in time.  If, for example 

M - M + n At + ^ At + | At (98) 

"n = n + nAt+^At (99) 

then the coefficients for a' 

a' = a + a At + -  At (100) 

are easily obtained from Equation (88b) as 

1/3  -2/3 
a « p,   n (101) 

a - - |- a (102) 
3 n 

.2 
a _ . 5 ft . n |                              nn,v 
7 =i7 r -T~  a                              (103) 2  I 9 In 3 n 

A similar polynomial can be employed for e' 

= e + e At + ^  At (104) 
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The time dependent terms may be obtained empirically, or from the 

approximation that perigee height remains constant 

3t»" <»-'> = 0 

which yields 

1-e . e =   a = 
a 

2 1-e 
n (105) 

e 
2 

1-e 
a 

a 
2 

a_ 
a 

1-e 1 n_ 
n  9 n 

1 .. - 3 n (106) 

The inclination is usually assumed constant, although it may be 

represented by a similar series. Where these secular perturbations 

on n,  a1,  and e1  exist, they must be reflected in the motion 

of node and perigee.  The variations in n" are already incorporated 

in Equations (96) and (97).  It is usually adequate to carry the 

additional variations due to a1,  e',  and  I1  to the first order 

in J„:  the necessary derivatives of -=- and —  may be obtained 
2 n       n 

from Equations (92) and (93).  •  The resulting equations are 

/ > /  \ '. \ 
1 ()) 

uu 
o n 

_ + « 
n' "o 

v.   J I   J \ ) 

iv 1- 2 — + —— 
a  i  2 1-e 

Se + 

10 sinlQ' 
1-50^ 

sin I 
9 

£1 (107) 

where the 6's  represent the change from epoch, or 
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f   \    f  \ 
w 

n1 

UU 

0 

+ 

n 

n 

Av (1+a) (108) 

where (using Equations (102J and (103J) ) 

/ 

,  4 h       4e       . 
l3n+T2e + 

1-e 

\ 

\ 
10   sin  10 

i 1-502 

sin I / 
0 

/ / 

*A$ 2 n J   2e 
+ - - +  e + 

3 n       x.e2 

At 

10  sin 10 

1-502 

sin I 

\ / 

At 

(109) 

or, for constant perigee height and inclination (see Equations 

(105) and (106) ), 

3(H-e) n 
-10-6e 
9(l+e) II •IMIik 

In some cases it is desirable to express the secular terms as 

functions of time rather than as functions of Av.  It is possible 
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to  expand  Equations   (108),   (109)   and   (109a)     using Equation   (95), 

and  by   separating   like  powers  of    At     to obtain 

^ 

=3 

'•O 
+ 

'*> 

( 

vn', ft» vP/ 

At + v-M 

UU 
2 

uu 
6 

+ At2 + 
si 
2 

Q 
6 

At    +  . (110) 

where 

fa 

^ n 

(111) 

uu 
2 

Q J 

n 

'V 

Q 
Vn ; 

10  sin  10^ 

11   .    L 4e — n + —j ne + 
1-e 

1-59' 

sin  I 

V 9 
/ 

11   -   5e 
6(l+e) 

nl (112) 

(112a) 
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