
C-U U- K-OD- I/ I

ADVANCED PROGRAMMING DEVELOPMENTS : A SURVEY

FEBRUARY 1965

Best Available Copy

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

and

COMPUTER ASSOCIATES INCORPORATED

WAKEFIELD, MASSACHUSETTS

DDC

týAA• • ._LY11965
BeSt Available Copy oD,.R E

Roe vODO-I0RAE

HEADQUARTIRS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

LAUNRENCE . "ANMCO" PIELD t1DV@rOaO. MASSACHIlT5I 017S1

*SPLY TO
ATTM N , @: C 25 ,,'eiruary 1965

pjvj, Advanced Programminýn Developments

During the pas' year ýhe Die storateoT Computers has conducted a
survey of certain advanced progra=Jin• developments which have
ozen or are being implemen.ed in the United States. The results
off this survey have been gathered together into the volume
accompanying Lhis letter. Because off your demonstrated interest
in advanced programming and da'a management systems, we are
sending you a copy of the survey in hopes that you will ffind it
of some interest. Any comments you might have will certainly
'c ';clcoi.'ed.

FOR THE CO?.21-1DER

PAUL G. GALEITINE, 1 Atch
Colonal, US.'F Survey
Diractor- off Coinpu.erz
Deoii-. or 0 n. inecr ng & Technologj

1 4

i. £4 .h.

ESD-TR-65- 171

ADVANCED PROGRAMMING DEVELOPMENTS : A SURVEY

FEBRUARY 1965

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

and

COMPUTER ASSOCIATES INCORPORATED

WAKEFIELD, MASSACHUSETTS

ABSTRACT

This document constitutes a representative survey of twenty computer
software systems which have been developed within the last decade.
The surveyed systems have been grouped into six major categories:
(1)- general purpose programming and executive systems; (2) functional
systems; (3) man-machine interface systems; (4) special purpose
programming systems; (5) time-sharing systems; (6) generalized
data management systems.

Each system discussed within these categories exhibits a particular
feature or set of features which constitutes a dibtinct contribution to
the effort to produce more general, more flexible and less job depen-
dent systems which can be conveniently operated by a user.

The survey notes that to date efforts to develop these features into
integrated computer systems and sub-systems exist only on a small
scale and in only a small number of laboratories scattered across
the country. In view of the many potential applications of such
integrated, generalized computer systems, especially in military
ei.vironments, the survey concludes that the time is ripe for a tech-
nical program designed to demonstrate the feasibility of generalized
computer systems and sub-systems in the solving of traditional data
processing problems.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

PAUL 0. GALENTIN] Jr.
Col., USAF
Director, Directorate of Computers

iii

CONTENTS

Page

Introduction 1

Note 6

Part I. General Purpose Programming and 7
Executive Systems

Part II. Functional Systems 27

Part III. Man-Machine Interface Systems 52

Part IV. Special Purpose Programming Systems 69

Part V. Time-Sharing Systems 74

Part VI. Generalized Data Management Systems 83

Conclusions 91

Bibliography 94

iv

INTRODUCTION

Computer programs are detailed instructions written to adapt a completely
general purpose machine to a specific problem or application. If an
engineer has a mathematical problem to be solved, he must write a sequence
of instructions to control the arithmetic and logical circuitry of the machine,
thus formulating a specific problem solving procedure. This sequence of
instructions constitutes a program which must be executed or run on the
machine to obtain an answer. Similarly, if a manager wishes a report on
inventory contairrng extractions from several files of data in memory, he, too,
must write down a sequence of instructions to control the same arithmetic
and logical circuitry of the machine to search tapes, retrieve data, format
it and activate printout devices to obtain the desired result. Next, this
program must be executed.

There is another type of computer program, however. Designed and writ-
ten by computer specialists, this type of program, often called "software,
is intended to provide the engineer or the manager with more than just an
emipty machine. Software programs are tools in the form of programs which
the engineer or the manager can use for building, controliing and modifying
the complex sequences of problem solving procedures required in his soph-
isticated computer applications.

Clearly, then, the motivation for the development of software and, indeed,
its contributions have been:

(1) Improving the ease with which application programs can be
written or modified and userst problems solved.

(2) Reducing the cost of constructing, modifying and executing
application programs and solving userst problems.

Following is a review of a representative though by no means exhaustive
cross-section of the major software developments that have been achieved
recently. The systems discussed are sufficiently contemporary to be
regarded as exemplifying current technology and sufficiently sophisticated to

1

be regarded as advanced state-of-the art. For some readers there will be
no mention of some systems and too little mention of others. This is due
largely to time, space and available material limitations.

The twenty-plus systems under review have been grouped into five separate
categories, and a sixth special category, the significance of which is to
be seen in the light of the first five categories. These categories are:
(1) general purpose programming and executive systerri, (2) functional
systems, (3) man-machine interface systems, (4) special purpose systems,
(5) time-sharing systems, and (6) generalized data management systems.

A person familiar with these systems will notice a discrepancy in the
groupings. Thus COLINGO, listed under (9), functional systems, could
just as easily have been included under (3), man-machine interface systems.
Similarly, BASEBALL, listed under (3), man-machine interface systems,
could have been included under (2) functional systems. But these discrepancies
are more apparent than real.

To begin with, the categories identified in this docurent do not refer to
characteristics which the systems under one category possess and which
all other systems do not possess. Rather, the categories repr-,;ent various
perspectives, or points of view, which system designers chose to emphasize
in the design of their systems.

Thus, the categories which have been established are intended to indicate
a designerts preference.with respect to that which is of primary importance
in the construction of automated data processing systems. In this light,
then, CL-II, AOSP, DODDAC, NECPA, OASIS, and INTIPS, all examples
of general purpose systems, have been the products of designers who have
determined that extended and sophisticated programming, executive, and
utility systems are the key to more flexible, more powerful computer-based
systems. In particular, the design of general purpose executive systems is
accomplished without reference to a specific system or application. In fact,
taking into account the specific requirements of a particular application,
such as Hq USAF or Hq USSTRICOM, would defeat the purpose of general
purpose systems which are intended to provide an integrated programming
tool that can be easily used by and, therefore, of assistance to programmers
in the process of designing, preparing, and executing specific sets of pro-
grams required by specific applications.

In contrast to the general pi-rpose point of view which emphasizes general
programming tools quite apart from the requirements of a specific application,

2

there is tVie category of functional systems which includes the COLINGO,
NAVCOSS•.CT, TUFF-TUG, FICEUR, 473L, and ACSI-MATIC systems.
These systems have been designed from a point of view that stresses a
particular function, e. g. , information retrieval. In this case a system
must be primarily constructed around the function which it will be called
upon to exercise more often than any other function. This functional
approach, which by no means ignores the advantages of general purpose
program design, chooses to measure all its design decisions in the final
analysis, not by how much general-purpose capability each alternative might
achieve for the system, but by how much the design will contribute to the
major function for which the system is being implemented.

In contrast, then, to the general purpose and the functional point of view,
there is the perspective which stresses the development of the man/machine
interface as being of primary, but by no means exclusive, importance in
system design. This category includes SKETCHPAD, BASEBALL, DEACON,
JOSS, and Culler-Fried. Each of these systems has introduced a new
dimension along which man and machine may interact. With SKETCHPAD
the dimension is graphical; with JOSS, the dimension is easy mathematical
computation for scientific and engineering users; with Culler-Fried, the
dimension is push-button representation of operator/operand functions
characteristic of mathenmatical problem formulation. Not all of these systems
have been constructed with a specific job function in mind. But each has
emphasized the necessity for making the man/machine interface as flexible
and unconstrained as possible in the performance of some job, real or
potential.

In contrast to the three aforementioned approaches, there exists yet another
one to computer-based system design. From this point of view emphasis
is placed on the development of a particular problem-oriented language
which is tailor-made to some specific problem area; that is, the development
of a language which is easy for the computer to manipulate and which is simul-
taneously much like the specialized language normally used by the potential
user. The point of view represented by the problem-oriented language designer
is quite similar to the man-machine interface designer but with one important
exception. The latter wants to provide a tool which can be used over a large
class of problem areas. Thus, a graphical technique can be used not only
in solving engineering problems, but also in solving artistic, mechanical
drawing, mathematical and geometric problems as well. On the other hand,
the special purpose problem-oriented language is one A hich can be used in •
only one specific problem area. It cannot be generalized and for that reason,

3

it can pay a great deal of attention to providing a specific problem-oriented
language which maximizes convenience for some practitioner in a specific
area. STRESS, a language for expressing structural engineering problems
and COGO, a language for civil engineering problems, are two examples of
this approach to system design.

A fifth area approaches the problem of system design from a point of view
which is quite different from all of the above. This point of view, regard-
less of whether the computer has been endowed with general purpose systems,
functional systems, or special purpose systems, provides the computer with
the ability to be accessed simultaneously by a large number of separate
and distinct users. This perspective on computer-based system design has
been labelled the "time-sharing" perspective. Its proponents view the time-
shared computer as a kind of public utility from which any user can draw
whatever corr.iutational power he might need at any time without delay or
difficulty. In one sense this perspective differs quite radically from the
other four because it is not concerned primarily with the various ways in
which computational power can be increased or tailored to a specific
user.

It was previously mentioned that the sixth category, generalized data manage-
ment systems, could best be understood in the light of the pre'ýeding five
because this category views the design of computer-based systems as a
problem in the speedy implementation in a given system application of as
many of the features of the preceding categories as are relevant and, indeed,
possible. Thus, in this category, the designer is concerned with emphasizing
general purpose programming as well as job specific programming, and
user-on-line techniques as well as special purpose languages, and, if possible,
making the resultant design time-sharing. Two systems represent an attempt
to exploit all of these categories, viz., Advanced Data Management (ADAM)
and Language Used to Communicate Information System Design (LUCID).

Nothing has yet beeal said about the motivation behind each of the perspectives
cited above. There are, of course, several motivations, ranging from
personal biases, to the special circumstances of a specific environment, to
the exigencies of time, money, and personnel, to the special talents of a
specific designer or user. With respect to the category of generalized data
management systems, for example, one quite clear motivation has been
economics, since the use of these systems as test vehicles for complex
computer application obviates the need for constructing expensive prototype
models. This anr many other reasons no doubt inspired the various points of

4

view exemplified in the following discussions. Regardless of motivation,
however, these points of view stand as alternatives to the problem of the
economic and effective use of digital computers. Moreover, the specific
systems discussed attest to the success of each of these points of view and
strongly suggest that the current state-of-the-art in software is sufficiently
advanced to countenance further development in the exploitation of many, if
not all, of these techniques into effective operational systems and Fub-
systems.

5

NOTE

The compilers of this survey have taken the liberty of quoting extensively
from the published material referenced in the Bibliography. Where
accurate descriptions of the systems are given, credit is due the designers
themselves and their writing staffs. Where errors occur, the compilers
of this volume take full responsibility.

In the following six sections, the order in which the systems are presented
was established on heuristic grounds, and no evaluational judgment is
intended.

6

I

PART I. GENERAL PURPOSE PROGRAMMING AND EXECUTIVE SYSTEMS

In this section those systems which have been chosen to emphasize general-
ized programming techniques are reviewed. The fundamental strategy
behind this approach to computer application takes cognizance of the fact
that users of many computer systems are not only people, but also other
programs. It, therefore, addresses itself to those inter-facing problems
which occur between programs, both system and user. Hence, generalized
programming techniques attempt to provide linkages between system and
user programs, without reference to specific systems or users. Similarly,
generalized programming techniques attempt to anticipate the numerous
housekeeping functions required by complex program configurations,
regardless of lhe content of particular programs. Thus, the core of general-
ized programming techniques is the realization that computers can be
endowed with greater power, flexibility, and generality by providing them
with programs capable of manipulating other programs in the same way that
more conventional programs merely manipulate data. The six systems dis-
cussed in this section exemplify this strategy.

A. CL-.I PROGRAMMING SYSTEM

The CL-II Programming System is an integrated collection of computer
programs which provides assistance to the user of a large-scale digital
computer in preparing and executing programs. The system has been devel-
oped by Computer Associates, Inc. for the IBM-7090 (94) computer in
response to a need for:

(1) Aicomprehensive programming environment within which a
large group of programmers can efficiently attack and solve
problems involving large programming efforts.

(2) Efficient utilization of computer hardware.

(3) Minimization of the cost of modification and extensions of
extant programs.

7

(4) A system which evolves in accordance with the needs of
particular users.

Previous attempts at automatically linking and operating programs for the
convenience of the programmer had been limited to compile and load time
linkages and to programming some of the computer operator's functions
into the monitor system. This necessitated the programmer's considering
his program subject to the framework of the basic computer hardware.
Under the circumstances, each programmer must repeatedly be concerned
with various difficulties of assembling and operating programs when these
difficulties have little relation to the problems his programs are devised
to solve. Further, the operating or monitor system can do little more toward
improving overall machine efficiency than reducing job set -up time. The
CL-HI Programming System was designed to provide a more convenient and
natural framework than the basic computer for the construction and execu- -
tion of programs. The design of the CL-II System was guided by the
following considerations:

(1) The system will provide mechanisms for linking programs to
data, hardware components, or other programs. These mechan-
isms will be such that they can be employed at any time in the
process of defining, loading, or running a program.

(2) The system will have means for controlling the simultaneous
execution of a number of programs.

(3) The system will have no built-in assumptions about job
scheduling. Thus, there will be no fixed "job monitor" or
"executive"; rather, any program will bc able to perform
monitoring functions.

(4) The system will have means for creating, maintaining, and
gaining access to "files" of programs, data, and descriptions
of data.

(5) The system will have means for generating the code for acces-
sing elements of data sets or programs from the information
contained in a description of that data set or program.

In the light of these considerations, the CL-II System was endowed with the
following characteristics:

8

(1) Once defined to the system, a program is essentially an exten-
sion of the system itself in the sense that it can generally be
called by any other program in the system at any time. This
is true not only of "user" programs, but of "system" programs
as weil.

(2) A change in the structure of a data set or program requires at
most a recompilation of programs referencing that data set or
program in order that all accesses be correct; i. e., no changes
are required in source programs to reflect changes in the
structure of data or programs they use.

(3) The addition or deletion of types of input/output devices or the
addition or deletion of a number of units of a given type need
have no effect on many user programs.

(4) The "kinds" of problems amenable to the system include:
sequences of small jobs (the kind of problem acceptable to conven-
tional operating systems); large production programs involving
considerable segmentation, program and data overlay, and the
like (such as large scale simulation ,r.odels); "command and
control" type programs; and "time-shared" programs.

The CL-II System went through three stages of construction: Primary CL-Il,
Basic CL-II, and the CL-Io System or, simply, CL-II. Roughly, Primary
CL-fl consists of the basic programmatic extensions to the computer hard-
ware which form an "extended machine" with which the programmer deals.
Basic CL-fl is Primary CL-II to which has been appended a sufficient num-
ber of "system programs" (compilers, assemblers, dumps, monitors, and
the like) to make the system easy to use for implementing user programs.
The CL-fI System is then Basic CL-II plus the collection of user programs
available at any time.

Primary CL-II performs certain basic functions. At any time during the oper-
ation of CL-II, there are one or more programs in high speed memory
which may be operating in parallel. With each program is associated a
priority number. Each program has one or more paths which may be opera-
ting (i. e. , the computer is currently sequencing through the instructions
comprising that path), is ready to operate, or is waiting. There are avail-
able to the system one or more files from which programs and data can be
obtained by name.

Whenever there is an available control element of the computer which can be
assigned to a program, it is put to work on the first ready path of the high-
est priority program which contains any read paths. Thus, the scheduling
which is built into CL-II is extremely simple. It should be noted that the
scheduling of programs does not derive from the system itself but rather
from priorities determined through the interaction of the user programs
with each other and with the system.

The collection of "instructions" which can comprise the programs operating
within CL-II includes all the instructions, plus a collection of "system macros"
provided by Primary CL-Il These system macros include the following:

(1) Mount a tape.

(2) Demount a tape.

(3) Assign a peripheral device.

(4) Read, write, or position a peripheral device.

(5) Allocate a block of high speed memory.

(6) Input or output data.

(7) Start a path.

(8) End a path.

(9) Establish a program or data set.

(10) Execute a program in line or in parallel.

(11) Await an input, output, path completion, establish operation,
tape mounting, etc.

(12) Release a program or data set.

(13) Start a program.

While ceytain of these macros are related to functions provided by conven-
tional utility systems, the majority is not. The "establish" macro is the

10

heart of CL-U1. Basically, the establish macro procures a program from the
file, allocates sufficient space for it, brings it into high speed memory, and
performs all manipulations (e. g. , fixing absolute addresses, etc.) necessary
to prepare the program for execution in the memory locations to which it
is allocated.

When-a program has been established, it can be called by the program which
established it. This call can cause the program to be executed as an in-line
subroutine, or as a completely independent program (in parallel with the
program calling).

Any program which has requested that the system perform some activity
such as input, output, establish a program, execute a program, start a path,
mount a tape, etc., can at some later time "await" the completion of the
activity. If the activity indicated is not complete, then the path contairing
the "await" is placed in waiting status and it is arranged so the completion of
the activity indicated will automatically place that path in ready status.

In order for the user to effectively use CL-II, there is a collection of
"system" programs which are always available to Primary CL-II on a "system
file. " Primary CL-II, to which is attached this systern file, is called Basic
CL-fI. The system programs in Basic CL-IH include the following:

(1) Sequential Job Monitor

(2) Data Description Translator

(3) Compiler for (extensions of) Language L and JOVIAL

(4) Compiler Generator System

(5) Data Input/Output Processor Formatted Data

(6) Miscellaneous Service Programs

A very brief description of these system programs follows:

1. Sequential Job Monitor

The job monitor initial.'y available in CL-II is a reasonably standard sequen-
tial job monitor. One can, in a straight-forward way, call for the input and

11

filing of data descriptions, input and filing of instances of data sets, compila-
tion and filing of programs, output of instances of data sets, and construction
and execution of collections of programs.

2. Data Description Translator

A data description in CL-II is provided by an instance of the data set ODES
(Object DEScriptor). The object descriptor for a specific data set contains
a complete description of all of the elements of the data set, including
names, types, and mapping functions for all the various representations
of the data set which may occur (internal memory, punched cards, magne-
tic tape, and so on). In addition, it includes the specification of the compo-
sition of (collections of) data elements into large elements, resulting finally
in the complete data set.

3. Compiler

The compiler in the CL-II System is general purpose, table-driven, and has
the ability to generate efficient code. By supplying appropriate tables, con-
trol is obtained over (1) the language to be compiled, (2) the amount of con-
text searching preliminary to code generation, and (3) the specific machine
code to be generated corresponding to any input or sub-statement. Thus,
modification of the input language or accommodation of a completely new
language is handled by modification of tables rather than by rebuilding all
or part of the compiler. Similarly, "tuning" the generated code or allowing
for "quick-and-dirty" code to be generated under certain circumstances is
controlled through modifications of the tables.

Initially, the languages which are accommodated in CL-II are Lo, the alge-
braic language available in the CL-I System, and JOVIAL. Actually, the
versions of Lo and JOVIAL are somewhat extended versions in the sense
that they are able to reference elements of any type of data structures for
which ODES descriptions are available in the files.

4. Compiler Generator System

The compiler generator system is a collection of programs (several of which
are also a part of the compiler itself) and data sets which can produce the
tables required to "drive" the compiler from three sets'of specifications:
(1) the syntac;.ic structure of a programming language to be translated by the
compiler; (2) the "generation s.rategy" and context inspection of syntactically

.2

analyzed statements in the programming language; and (3) the rules for the
selection of specific fragments of machine code corresponding to state-
ments or substatements in the programming language being translated.

5. Data Input/Output

Given-the description of a data set (the ODES for that data set), the data
input processor in CL-II will input, edit, and convert an instance of the
data set resulting in an internal copy which is in correct fhrmat for filing
the data set and/or "handling" it to a user program for immediate proces-
sing. The fo mats in which data can be represented on external media
such as cards are very general. For integers floating-point numbers,
and scaled fixed-point numbers these formats include the designation of
fixed or free field, inclusion of signs, decimal points, exponents, and so on.
The data input processcor also has means for checking the adequacy of the
data being input as to format, size constraints, duplication, missing vwlues.
etc.

Similarly, given an ODES and an instance of the data set described by the
ODES the data output processor can output the data set in appropriate for-
mats. Special headings can also be supplied.

6. Miscellaneous Service Programs

There is a collection of service programs available to help the programmer
in debugging his programs in CL-IL. These include:

(1) Dump programs, which can be called to produce octal and/or
symbolic dumps of specific programs or data sets in memory,
optionally including a "road map" of all programs and data sets
which are currently occupying memory.

(2) Octal correction programs, which load corrections into programs
prior to their being run.

(3) Symbolic correction programs, which load corrections repre-
sented symbolically into programs prior to their being executed
and/or into their file copies.

As previously mentioned, tVe CL-II System is the union of Basic CL-IH and
the collection of user programs developed within the system. Thus, CL-II

13

is fundamentally intended to evolve with the construction of user programs
and will undoubtedly take on different characteristics with different collec-
tions of users.

The CL-II System contributes to generalized data management systems in
that it provides a general-purpose programming environment in which the
programmer is freed from concern with many aspects of programming not
connected with his problem.

It, of course, is not fundamentally problem-oriented in the user sense, but
facilitates the development of application solutions within its framework.

B. AUTOMATIC OPERATING AND SCHEDULING PROGRAM (AOSP)

The Automatic Operating and Scheduling Program (AOSP) for the Burroughs
D-825 Modular Data Process ng System is comparable to that portion of the
CL-I System known as Primary CL-II. Hence the AOSP does not purport
to be a complete programming system which includes compilers, monitors,
etc. Instead, it should be viewed as a general operating system, designed
for the D-825 with the aim of facilitating the use of hardware in a multi-
computer system. In fact, like Primary CL-II, the AOSP should be viewed
as an extension of the hardware itself. Specifically, the AOSP provides
the control for multi-computer, multi-processing in a multi-computer
system with shared high speed memory without requiring a master/slave
relationship among the computers. The AOSP itself may be executed by
more than one computer simultaneously.

Although the D-825 has numerous interesting system design features, many
of which do part of the job of an executive system, the most interesting pro-
perties from a programming point of view are:

(1) Several (up to 4) independent computer modules may be in opera-
tion simultaneously, with the entire memory accessible to each computer;

(2) When instructions in memory are being executed by a computer
module, all addressing is relative to base address registers. These regis-
ters are in the computer module (that is, not in merniory).

The hardware permits any program ti, be executed from any location in
memory, referencing any other locations in memory, with no change of any
part of the instructions of the program--only some changes to the data words

14

of the program need be made, and by AOSP convention, all of these data
words are grouped into a contiguous block at a standard (relative) location
within the program.

Hence, there is no need to have more than one copy of the instruction part
of a program in memory, even if two or more entirely independent jobs
call upon that program--only separate copies of the data part need be made,
and the same instruction may be executed simultaneously by two or more
separate computers.

Insofar as the AOSP imposes any restrictions on the external or internal
forms of programs or data sets, the restrictions are not onerous, and are
easily met by a human programmer writing in assembly language, or by a
compiler. Even those operations which must be performed by the AOSP
(rather than directly by the program) can be specified in as much detail as
the programmer chooses. In return for the mild restrictions, the program-
mer is permitted greater freedom.

No absolute addresses (or unit numbers, etc.) are required. The hardware
is designed so that there are no preferred addresses in the machine, and
this feature is carried up to the Extended Machine. All references to inde-
pendent programs and external data sets are by arbitrary name. All memory
allocation is handled by the system.

Facility-sharing, multi-processing, and parallel-processing occur as a
matter of course. As many separate *nbs as will fit in the memory of the
machine may be in process at once, and as many will be being actively execu-
ted as there are computer modules functioning in the system.

Indeed, a single job may spli.t itself into several parallel branches for simul-
taneous execution.

Response to external signals for initiating new jobs is handled by the system
without disturbing those already running; thus (except for manual manipula-
tion of tape reels and card decks), operator intervention in the system is
restricted to the exchange of messages on the console typewriter, which
occurs in parallel with the running programs. The machine never stops,
short of catastrophic error conditions.

Many of the necessary functions of the system are encoded in routines
whose form differs in no way from a regular user's program, and are therefore

15

subject to modification without disturbing the "Basic Machine" portion of
the system.

The AOSP reserves to itself the execution of all control mode machine
instructions (halt, I/O transmission, response to interrupts, etc.). The

users' programs, therefore,have available all of the machine's normal mode
instructions, plus a set of AOSP Macros. These are short instruction

sequences which have the effect of requesting the AOSP to perform some
function on behalf of the calling program. These functions are essentially

.he same as those listed for Primary CL-II. In addition, although they are
not considered parts of the AOSP itself, there do exist file-maintenance
routines, assemblers, compilers, and dumps which run under AOSP control.

As in Primary CL-II, the AOSP uses only a simple job sequencing rule.

Priorities can be assigned by an AOSP Macro, and any time one of the com-
puters in the system is looking for work to do, it commences (or resumes)
execution of the highest-priority task which is in ready-to-run status. When
it is needed, a more sophisticated monitoring algorithm can be written.

The only other important difference between the AOSP and Primary CL-Il
lies in the area of simultaneous execution of parts of a program. Both
systems allow, as a matter of course, the simultaneous execution of indepen-

dent programs, and both allow a single program to initiate a new parallel
path of control. However, within CL-II, this parallel path is a separate
named entity, possessing properties which can be tested by functions of the
system. The AOSP, on the other hand, was designed to be experimental in
this regard, and no mechanism for automatic coordination of parallel parts
of the same job was provided in the initial version. Thus, the programmer
must explicitly program the synchronization, and communication and protec-
tion between the parallel paths of his program structure. Basic facilities

for doing this are, of course, available in the AOSP.

The functions of the AOSP may be considered in three categories:

(1) Responding to Interrupt Signals - The AOSP has provisions for
recognizing and dealing with all of the numerous interrupt conditions provided

by the hardware; when any such condition occurs, the computer module desig-
nated to handle it temporarily suspends operation on its current program.

(2) Responding to Explicit Requests from the Programmer - A few

of these will be specifically mentioned below. An adequate set of allowable

16

requests was included in the first AOSP, and others have been added. A very

important operation in this category, for illustration, is the initiation of an
input-output operation. The completion of the I/O transmission is recognized
by a computer interrupt, and handled automatically (Category 1).

(3) Monitoring of Memory Organization and Program Control - At
any instant, the system memory is organized into numerous areas, which
are of different kinds, and have different relationships among them.

An area of memory is either available space, or is (with certain systematic
exceptions) uniquely identified by its namne and file name. The AOSP has
at its disposal a directory of the files which currently exist in the system;
a file is a collection of objects (generally records) in an external storage
device or in core memory. The objects are programs or blocks of data;
an object can be readied in memory by simple request to the AOSP, giving
the object's name and the name of the file on which it resides. In addition,
any object may contain the names and file names of other objects which are
necessary to it. These will be readied automatically when the object itself
is readied. When the object is a program, this list of necessary objects is
transformed by the AOSP into a block of allocation addresses, which the pro-
gram may use to reference the objects after they have been readied.

Monitoring of the flow of control is handled through a job table. Each entry
of the job table co. tains all the informatior. .which must be loaded into a com-
puter module's private registers in order for that computer to begin (or
resume) execution of a program; the system is quite similar to the state word
technique described in "A Multiprocessing System Design," M. E. Conway,
Vol. 24, AFIPS Conference Proceedings. Each entry in the job table repre-
sents an independent path of control, and there may be an arbitrary number
of them. Whenever a computer is released from another task, it proceeds
to execute the first available job in the table. There is a direct request
operation which allows a program to initiate a new job-table entry, i. e. , a
parallel path of computation within the same program.

All run-time operator communication with the AOSP is via the console Flexo-
writer, which can generate a peremptory interrupt. The AOSP constantly
maintains in a ready condition an instance of a Responder program which
interprets messages coming in from the Flexovriter. The moat frequent such
messages merely give the name and file name of a program wh.ch is to be

executed. The Responder causes the entire structure of objects rooted at the
named program to be readied in memory. A job-table entry for this path of

17

control is established and program execution commences. There are a few
special tasks the Responder can be asked to pertorm directly, (such as
terminating a particular job), and there is an implicit system file containing
the basic file-handling programs, which can be called without file names.

The AOSP is successful in its primary purpose of making available to the
programmer the facilities inherent in the hardware. The cost of this effec-
tiveness would be extremely hard to define, let alone to measure. The
AOSP itself occupies relatively few words of memory, even with the job
table, I/O processing, etc. If necessary this could be reduced further at
some cost in speed, by keeping parts of the AOSP on secondary storage. There
have been no attempts to measure the percentage of time spent in the AOSP
during the execution of programs; but since it would be effectively impossible
to perform most of the AOSP's functions without some sort of equivalent
program, the cost is hard to evaluate.

The AOSP does require that programs conform to certain conventions of
organization. But these restrictions do not appear unnatural. It'is not
difficult to cause a compiler to produce code in conformity with the required
structure and subjectively, new programmers working in symbolic machine
language find it harc'er to learn the machine operations than to learn the
program organization. Also, a clever programmer finds it possible, if he
wishes, to violate the spirit of the restrictions without appearing to violate
the letter, if he really needs to do something for. which the AOSP does not
provide.

The facilities for parallel processing were deliberately kept at a basic level.
It is possible to initiate a new parallel path of control. There are facilities
for awaiting the occurrence of a bit condition, by means of which one path
can report to another, and there are facilities for temporarily denying
access by all other paths to a particular block of data. The intention was
to let programmers play with these basic mechanisms in order to discover
what problems will arise, before building in a more complicated structure
of automatic protection and reporting between paths. The system is admit-
tedly not designed for efficient parallelism in the small, e. g. , for simul-
taneously evaluating two terms of a sum, since it takes a couple of milli-
seconds to initiate a path; rather, it is designed for parallel operation of
relatively large segments of a program structure.

Some comments on the machine configurption are useful. The AOSP does
not require an exact machine configuration, though it was designed to operate

18

on a general D825 Data Processor. Equipment availability, processor,
memory, I/O modules and peripheral devices are designated by tables.
In general, equipment may be freely moved in or out of the system. If a
new type or special purpose device is added to the system, proper program
controls would have to be incorporated into the operating system. This was
realized in the initial implementation and has been accomplished with rela-
tive ease for various applications.

With respect to core allocation, there are a number of versions of the AOSP
ranging from 5000 to 6800 words of resident core. The range depends on
the various peripheral devices on a given system. However, in the D825, a
three address, variable instruction machine, the 6800 words of core repre-
sents approximately 11K instructions.

The initial implementation of AOSP required ten man years. Since then, an
additional ten to fifteen man years have been spent on AOSP. The length of
time required to design the initial implementation of AOSP was six months,
to code it eight months and for checkout four months.

C. INTEGRATED INFORMATION PROCESSING SYSTEM (INTIPS)

Project INTIPS is essentially an exploratory development program being
conducted by the Rome Air Development Center, New York. The objective of
the program is the development of a multi-programming user-oriented com-
puter system. The main element of the INTIPS system is an executive routine
which is designed to integrate a control computer, numerous dissimilar opera-
tional cc",'puters,ahierarchy of storage devices, a common pool of peripheral
equipme.,, i, and numerous consoles or query stations.

A program called the Executive Control Program has been written to coordi-
nate the operation of the entire computer complex. Under this program's
control, it is expected that any of the computers may utilize any of the peri-
pheral equipments, and, more importantly, any portion of the entire equip-
ment complex can be brought to participate in the solution of the problems
of users operating from their individual consoles. The Executive Control
Program (ECP IA) for Phase I implementation became operational in
September 1964. It is functionally modularized to facilitate expansion and
revisions to accommodate the addition of new features and characteristics,
and to facilitate experimentation with alternative approaches. Among the
functionally independent modules in the ECP are an input-output controller,
priority and interrupt handler, dynamic storage allozator, program and

19

equipment scheduler, and a coordinator.

The Executive Control Program will be executed from the CDC-160A
Control computer. The language currently available for use in prograrn
preparation is Executive Control Program Interpretive Language (ECPIL).
This language is intentionally very similar to the CDC-160A basic instruction
set and is employed by the operational programmer in preparing programs
to be executed by the Executive Control Program. More sophisticated
languages are being anticipated for later INTTP'; irvple'. •ntation.

In its current state of development the Executive Control Program is expected
to handle up to five independent programs at any one time on any given com-
puter in the complex. Additional jobs will be stored in a job queue.

Part of the equipment configuration for INTIPS includes an Interim Exchange
(ID-400). This will be replaced by a Central Exchange (CX-400) in a later
version.

The Interim Exchange is a 3-by-15 electronic switch capable of a:commo-
dating up to three computing or "controlling" modules and up to 15 non-
computing or "controlled" modules. Any of the "controlling" modules can
request a connection to any of the "controlled" modules with a special
instruction recognized and executed by the Executive Control Program.

The Central Exchange which will replace the Interim Exchange is a 16-by-61
electronic switch capable of accommodating up to 16 "controlling" modules
and up to 61 "controlled" modules. It contains its own internal memory
(1024 words) and can execute seven special instructions, five of which are
given directly to the Central Exchange and may be given by any controlling
module; the remaining two instructions are given to the Master Coordinate
of the CX and may be given only by the Control Computer.

The Control Computer makes the assignments of controlled modules to the
controlling modules via the Symbolic File.

The Symbolic File resides in the 1024 word memory of the Central Exchange
and allows the Control Computer to store assignments for symbolic addres-
sing of controlled modules and of alerts and to store a history of the last
request and action taken at each controlling module.

20

With respect to storage allocation, one of the major characteristics of the
system is that all information, data as well as programs, is stored in seg-
ments/overlays of 512 words. A pro-ram may occupy fromone to seven
contiguous segments of (core) memory. Programs may be of infinite
length, but no more than the number of segments/overlays specified in the
Job Control Record (JCR) will rcaide in memory at any given time. The
term" "Segment" refers to a 512-word block of information contained in the
control computer memory, whereas the term "overlay" refers to a 512-
word information block in auxiliary storage. That is to say, segments are
numbered from one through seven with reference to their physical positions
in memory whereas overlays in auxiliary storage are numbered according to
their position in a program or data file. All input/output transfers, with the
exception of "Print" and "Display" are of an entire 512-word segment/overlay.
When ECP 1A loads a job program for execution, it places only the first over-
lay into memory. Each successive overlay must then call in others as
required through appropriate instructions which have been provided utomati-
cally by an assembly program. All addresses are assigned relative to
"zero" in operational and all overlays, data or program, are completely
relocatablc under ECP IA control.

The major contribution of the initial INTIPS, when completed, will be in the
area of executive control. The nature of that contribution will be in eluci-
dating the kinds of techniques required of an executive routine whose major
function is the efficient integration of an heterogeneous configuration of
hardware.

D. DEPARTMENT OF DEFENSE DAMAGE ASSESSMENT CENTER (DODDAC)

The current Department of Defense Damage Assessment Center (DODDAC)
activity includes data reduction, data base creation, and a number of compli-
cated damage assessment models, including Rapid Damage Assessment and
Hazard and Vulnerability models. System Development Corp., Santg
Monica, Calif. , has developed a software system for controlling these tasks
known as the Exe'utive Control System for a CDC 1604-160 computer complex
which includes tapes, discs, and CRT displays. The Executive Control
System provides the linkage between the various system elements--programs,
hardware, and operators. It is the internal mechanism through which users
and operators exert control and interact with the DODDAC program system.

The Executive Control System performs the following specific functions:
system start-up; mode/model control; equipment monitoring; interrupt

21

processing; operator -program communication; control of input/output data
flow; 1604-satellite intercommunication; initial request interpretation;
priority and queuing; task control; and program and environment sequence
control.

The system is comprised of four distinct programs:

(1) Executive Control Program (ECS)

(2) Executive Start-Up Program (ESU)

(3) Mode/Model Control Program (ECC)

(4) Non-operational Request Processing Program (ECN)

ECS, which refers to a specific program, not the entire Executive Control
System, consists of several components comprising the permanent core
portion of the Executive Control System. The individual components of
ECS perform the functions of master control, interrupt processing, on-line
card processing, request interpretation, priority and queuing, task control,
program and environment control, data collection and input/output. The
last function is performed by the Input/Output Monitor, a group of sub-
routines assembled as part of ECS.

ECS directly controls the operation of the other Executive programs and
the operational models, Rapid Damage Assessment (RDA) and Hazard and
Vulnerability (H & V). It controls the sequencing of programs and environ-
ment for RDA and H & V by interpreting tables of preset sequence parameters.
The non-operational subsystems, Utility, Data Base Load, and Data Reduc-
tion, have separate control programs which guide internal program and
environment sequencing; however, they initially obtain control from the
Executive Control System. Because the non-operational subsystems destroy
the permanent core Executive, they return control to EGS by reading in and
branching to the Start-up Program (ESU).

The non-permanent core Executive programs, ESU, ECC, and ECN, exist
in core only when their specific services are needed. ESU, which is read in
by a paper tape bootstrap, prepares for the operation of the DODDAC system
by communicating with the computer operator to obtain time and equipment
information and by establishing the initial system environment. ESU com-,
pletes its responsibilities by reading in and transferring control to ECS.

22

ECS reads in and transfers control to ECN when it is necessary to interpret
or process a non-operational request. If possible, ECN implements the
request itself and returns control to ECS. More frequently, ECN reads in
and transfers control to a non-operational program or subsystem which
performs the required functions and returns control to ECS. Because of the
extensive capability of the ECS to p.iovide linkages between very large and
very tomplicated system and user programs, as well as between system
users and system hardware, the ECS qualifies as an example of the general
purpose programming approach to computer system design. This is not to
say, however, that DODDAC is completely characterized by its ECS. Rather
the system includes an extensive set of data management functions as well.
Among these functions are: the Data Base Load Subsystem, miscellaneous
support programs, and the OASIS subsystem. A description of this latter
subsystem follows.

E. OASIS SUPPORT SYSTEM FOR DODDAC

The OASIS support system was built to provide an environment for the devel-
opment, check-out, and operation of DODDAC operational programs. OASIS
was superimposed on the conventional CDC software; this software being,
at times, degraded in the process.

OASIS includes a JOVIAL compiler and an assembly program which can oper-
ate from a COMPOOL of data. The system controlled the operation of pro-
grams which had been previously storcd on a Master Tape. All space alloca-
tion problems are handled by the programmer explicitly. Only absolute binary
programs are stored on the Master Tape. In order to operate the system,
the programmer must communicate control information to the system via the
card reader for every phase of the processing. For example, four phases
are required to compile and add a JOVIAL program to the OASIS Marker
Tape. A sample control card deck to perform this follows:

CLEAR: Command to a utility program to clear core.

LOAD: Command to perform a card-to-tape operation on the
JOVIAL source deck, moving it from the card reader
to a specified tape.

JOVIAL: Command to perform the compilation, the ouwput of
which is standard input to the CDC assembler, CODAP.

23

WAIT: Command to the operator to switch tapes; system
awaits completion.

UPP: Command to invoke a "preprocessor" which modifies
the standard CODAP input for COMPOOL data
elements.

UAA: Command to perform an assembly (with a modified
CODAP routine) the output of which is an absolute
binary routine.

UMT: Command to a utility routine to add the binary routine
to a Master Tape.

Separate programs are combined into larger operating units via a system

routine that requires that the components be listed and the order of execu-
tion specified. The programmer supplies the system with the disc address
or tape record address of each component. All programs have been pre-

viously bound to absolute memory locations and the programmer is respon-

sible for memory allocation.

F. NECPA MASTER CONTROL SYSTEM

The NECPA (National Emergency Command Post Afloat) Master Control
System (MCS) is an executive system which performs the following processes:

(1) Controls and schedules NECPA Data Processing System to work

on tasks of highest user-defined priority.

The MCS has a table of tasks in waiting ordered by priority.

This table has an associative list structure. The MCS has the
capability of changing priority of any task in the waiting task

table and can also be called upon to cancel or delete any entry
in this table. The MCS has the ability to print out upon request,

any or all of its tables.

(2) Controls I/O operations to allow a set of 'psuedo-offline'
operations to process independently of, but concurrent with, the
program being executed.

24

The MCS controls all the I/O for the system in an attempt to
optimize I/O throughput by:

(a) Maintenance and interrogation of an I/O configuration
matrix.

(b) Control of assignment of physical tape channels and units.

(c) Implementation of tasks by parallel rather than sequential
I/O data transfer.

(3) Maximizes system throughput.

The MCS allocates channels and units to give the optimum overlap
for parallel reading and writing of data.

(4) Reallocates vital system functions in the event of certain types
of system equipment degradation.

In the event of degradation of the system I/O configuration, the
MCS reallocates I/O equipment to perform the essential tasks

and also attempts to optimize the I/O within the degrading con-
figuration. The MCS can interrupt any task currently being
processed and save the results for restoration at a later time.

(5) Maintains list of jobs in job queue.

(6) Maintains tape log. The MCS maintains a log of all data tapes
required by functional programs. Some of the inform tion con-
tained in this log are (a) identification of each file, or (b) date of
last update., (c) number of physical reels comprising a file,
and (d) the security classification of each file.

(7) Checks security classification of job and tapes required for jobs.

(8) Informs operator of all significant system events. The MCS
keeps a set of system statistics. Some of the functions carried
out by this set of programs are:

(a) informs and instructs operator about all input data error t
or ambiguities.

25

(b) Informs operator whenever task is begun, completed,

interrupted, resumed, or cancelled.

(c) Upon completion of task MCS reports:

Description of task
Number of interruptions
Completed tapes saved

(d) Upon completion of system shift MCS reports:

Completed tasks
Cancelled tasks
Deleted tasks
Uncompleted tasks with restart information

(9) Checks and positions all tapes mounted for jobs. The MCS
checks that the most recent version of a file is being used
unless specifically overridden by the task request or by the
ope rato r.

Z6

PART II. FUNCTIONAL SYSTEMS

In this section those systems which have been designed to perform a large
and complicated, but nonetheless well delineated job function, are discussed.
(The systems which follow exemplify the job function of information
retrieval. There are, of course, quite different systems, such as Lincoln
Laboratory s GENDARE which is designed specifically for data reduction, but
they have been omitted to simplify the discussion.) The necessity for pro-
viding the user with a functional capability has overridden the desire to provide
powerful programming capability. Thus the systems listed here have been
designed to perform a specific function and the ultimate design criterion was
not one of system generalization, programming sophistication, system evolu-
tion or man-machine flexibility. Rather the ultimate criterion for design
decisions was whether or not a particular alternative would contribute to
the performance of the system in that function which it would exercise more
than any other. This is not to say that the systems which follow are lacking
in flexibility, evolutionary growth, or generalization. In fact, many of
them show striking advances in each of these properties. Rather, what is
characteristic of the approach embodied in these systems is that whenever
an either/or decision had to be made with respect to improving the informa-
tion retrieval capability, i. e. , the functional capability of a given system at
the expense of evolution, generalization, flexibility, etc. , the decision was
always made to enhance the function at the expense of the general capability.

A. COMPILE ON-LINE AND GO (COLINGO)

COLINGO (Compile On-LINe and GO) is a general purpose storage and
retrieval system developed for the USSTRICOM Interim Command and Con-
trol System by the MITRE Corporation, Bedford, Massachusetts.

COLINGO provides a set of modular computer programs for file generation,
file maintenance, data retrieval, and control on an IBM 1401 computer.

Mathematical and logical operations using the system's data base are
provided by both stored program and on-line programming techniques

27

through the use of the COLINGO Control Language. Control of the data,
computer programs, and equipment is achieved through on-line interpre-
tive execution of statements in this language entered by cards or from a
single console typewriter. The design includes a Basic Program Set which
provides programs for rapid and convenient data file update, data file addi-
tion, and stored program addition. Programs are constructed as closed sub-
routines which may be written in Autocoder, SPS or COBOL. This design
allows expansion of the Basic Program Set t-nd the addition of special
purpose and convenience features. On-lin, "-t generation and on-line pro-
gramming in COLINGO are an integral part o. the system design. Special
data maintenance and verification routines, as w;.ll as automated system
dictionary and vocabulary preparations, are also included in the system.
These features will permit evolutionary growth of the system and provide the
capability to produce special purpose operational programs with a minimum
of programming time.

The data ac,-rptable to the COLII•O system can vary widely in type, but will,
in general, be structured in files according to a uniform set of rules. Con-
sequently, the procedures and programs used to retrieve and process the
data can be made applicable to any data by designing the programs to process
formats and not the data. Moreover, new files can be introduced into the
system and files in the computer can be changed or deleted with no change
to the retrieval programs.

Data files consist of serial records with provisions for -unlimited trailer
records. Any number, or order, or size of unique fixed-field data
categories is permitted. Files are organized to three levels: file, Droperty
and sub-property; and are described by the COBOL data division for:nat.
The COBOL data division is preprocessed by a dictionary and index genera-
tion program to organize the data description into a fixed-format dictionary
for use by the COLINGO program. All properties and subproperties may
be retrieved.

In addition to the tape files COLINGO has 26 QUIC files on disk. These files
are packed and can be generated in a very flexible manner. Retrieval from
the QUIC files is much faster than retrieval from the tape files. Normally
several of these files are used for stored queries, lists of files in the
system, report masks, etc.

Dictionaries and vocabularies are maintained for the entire data base.
File generation, updating, regeneration and deletion all cause automatic

28

updating of the dictionary indices and vocabularies. Files generated out-
side of the COLINGO system require preprocessing.

The basic retrieval function in COLINGO is specified by the Quiry State-
ment which consists of three parts: the File Statement (which names the
file to be interrogated); the Criteria Statement (which specifies the selection
criteria); and the Output Statement (which describes the desired output infor-
matiori, the olutput device(s), and any desired manipulation of the retrieval
data).

Example of Query Statement:

(File Statement) GET AIRFIELD-FILE

(Criteria Statement) IF RUNWAY/LENGTH EQ 5000

(Output Statement) PRINT RADAR/TYPE

The parenthesized words in the example are for illustration and do no*
appear in the Query Stat.ment. The above example would print out the type
of radar found at each airfield in the AIRFIELD file that had a runway 5000
feet in length.

Apart from the basic Query Statement, the Control Lan~guage has certain
special features some of which are mentioned below:

Misspellings may be corrected by the operator at the type-
writer before the statement is entered.

Column headings, titles, security classifications, date and
time, page number, etc. , may be specified (some come automa-
tically).

Query input and hard copy output can be assigned by the operator
to a variety of devices.

The operator can interrupt any query and suspend or discontinue
it.

Provision is made to store any query statement which may then
be invoked by name.

29

Comments to the operator may be imbedded in stored queries.

On-line changing and/or sorting on selected properties is
permitted.

Arithmetic expressions involving constants and retrieval data
fields may be specified by the user and interpretively evaluated.

Direct provisions are made in the Control Language for
dictionary and file addition, insertion, replacement and removal.

Queries may call one or more other queries.

TheIF/NOT function permits conditional branching wi•hin a query
run (ex. IF RUNWAY/LENGTH LQ 5000 EXECUTE SHORT IF/
NOT EXECUTE LONG whcre SHORT and LONG are other
queries.)

Variables may be inserted in previously stored queries on-line.

The COMPUTE verb will cause the evaluation of FORTRAN-like
arithmetic expressions.

Qualifying records may be counted and property or sub-property
values may be summed.

Data output may be by one of the standard output formats
provided or through a report mask specified by the user.

Several error messages appear automatically. They essentially say "A
parameter is missing, " "What you want does not exist" or "I dontt under-
stand you."

The principal subroutines of the COLINGO system include: a disk handling
routine with bootstrap; tape handler with bootstrap; four dictionaries with
their own search routines; a dictionary updater; a disc allocator; various
output routines and routines for decoding and executing query statements.

The essential characteristic of COLINGO is its ability to map any data base
format into its own format in a very short time and then to query the resultant
formatted data with facility. As a consequence, COLINGO is a highly flexible

30

information retrieval system. It is this characteristic, rather than the

nature of its query language or the structure of its executive routine, that
was of primary importance to the system designers. However, the ability
to chain queries and store them for subsequent use permits complex
procedures involving extracted data to be constructed on-line. Thus,
COLINGO also has some desirable features of a user-on-line system. On
the otber hand, COLINGO has certain shortcomings which, from the point
of view of efficiency, make it undesirable as a universal tool in other areas
where flexibility in data retrieval may be considered unnecessary.

B. NAVCOSSACT INFORMATION PROCESSING SYSTEMS

The NAVCOSSACT Information Processing Systems have evolved through a
developmental process. The first system was developed for the David
Taylor Model Basin in 1961. This system, for the IBM 704, was further
developed into the L.urrent system operating on the CDC 1604 at CINCPAC,
the Univac USQ-20 for the National Emergency Command Post Afloat, and
the 7090 at the Navy Information Center in the Pentagon. All of the current
systems are essentially similar; differences stem mainly from the unique
characteristics of the hardware they utilize. The following writeup
describes the principal features of the NAVCOSSACT Information Proces-
sing System in terms of the CINCPAC System.

The NAVCOSSACT Information Processing System is a set of programs
which generates and maintains formatted files of information and selectively
retrieves data from the files. These programs are:

(1) File Maintenance Subsystem, which generates and updates
formatted files on magnetic tapes.

(2) The Information Retrieval Subsystem, which retrieves infor-
mation from magnetic tapes and formats printouts in a use-
ful manner.

(3) Library Maintenance Subsystem, which generates and updates
the information processing system library. The library is a
magnetic tape file of several types of tables used by the file
maintenance and retrieval programs.

The system is said to be generalized because it will process any members
of a group of files having a specified structure. Generality is achieved

31

through the format table. Every master file has a format table which
identifies the items or data fields in every record in the file and describes
the characteristics of the items. The user of the information processing
system describes the operations to be performed on a file in a language
which resembles a procedure-oriented programming language. Routines
in the information processing system programs use the data descriptions
in the format table to translate statements in the language into tables
which direct the programs in performing specific operations.

The File Maintenance System generates and maintains the data files.
The user defines the format of each file through the use of a file
format table and then manipulates the data through the use of the provided
Macro Instructions.

The File Maintenance System allows the user to define Argument-Function
Value or Code Conversion tables. These tables are used to convert coded
information to uncoded form and vice-versa. They are referenced by the
table LOOK UP Macro Instruction.

The Macro Instructions are divided into four basic categories: (1) envircn-
ment establishing instructions to step through the file, (2) data handling
instructions, (3) control instructions for branching, and (4) output instruc-
tions. They are composed of a Tag Field, an Operation Field, and a
Variable Field. Examples of data handling and environment establishing
instructions are:

TAG MOVE B TO A $

STEP AIRFIELD RETURN TO TAG $,

where TAG is a label, AIRFIELD is a file, and A and B are variables.

Macro instructions may move information from a transaction record to a
master record. Data conversion and generation of new data may be per-
formed. Source data may be checked for validity, and messages may be
written on a print tape to identify errors which occur during processing.

A transaction file may consist of source data on punched cards, punched
paper tape, etc., or it may be a master file. A source data transaction file
is a formatted file, although it does not conform to the specifications for
master files. It may, in fact, have records in two or more different formats,

32

in which case each record will have a field identifying the format of the
record. Associated with each different transaction record format is a
set of macro instructions which specifies the operations to be performed
on records having the designated format.

When a master file is generated, records are read sequentially from the
transaction file, with the designated set of macro instructions being
"executed" each time a record is read. When the file maintenance pro-
gram determines that all transaction records having the same keyfield have
been read, a record is written on the new master file. In the special case
of each transaction record having a unique keyfield, a master record will
be written for each transact~on record that is read.

When a master file is updated, records are read sequentially from both the
transaction and master files. When a match occurs between transaction
and master keyfields, a set of macro instructions is executed, causing a
master record to be updated. If the purpose of a transaction record is to
genera e a new master record, the file maintenance program will recognize
that no corresponding record exists on the master file being read and will
execute the macro instructions at the proper time.

The information retrieval program has a COLINGO-like query language
with approximately the same retrieval capabilities. It accepts as input
a master file and a set of one or more queries requesting information from
the file. Queries are written in information retrieval language, in free
form, on punched cards. There is no provision for on-line typewriter
input. A query has two major parts: an "output statement" which designates
the items requested as output and the format of the output, and a "search
statement" which specifies the conditions which items in a record must
meet for information to be retrieved from the record. The output of the
program is written on one or more tapes for printing.

The program is modular arnd operates in either three or four phases,
depending upon the type of output desired. The first phase translates a
set of queries from information retrieval language to tables which control
the operation of succeeding phases. The second phase searches the
master file for records which meet the conditions specified in the search
statements of queries. When a record is found which satisfies the condi-
tions stated, all or part of the record is written on one of two scratch tapes,
depending upon the type of output desired. Some queries do not require a
search statement; they will cause data to be taken from every record of the

33

master file and written on a scratch tape.

The third phase is a magnetic tape sort routine. Certain types of output
require that the data be sorted on one or more items. The records to be
sorted are on one of the two scratch tapes generated in phase two. The
fourth phase reads the scratch tapes, edits the data, and writes the out-
put tapes for printing.

There are several minor differences between the Information Retrieval
System (IRS) and COLINGO query languages such as:

IRS may use a function which requires computation as criteria
to qualify a record. COLINGO would require one pass of the
file to compute the function and another pass for qualification.

A pattern compare capability (IF MORALE EQ EXCELLENT
would qualify in IRS if the variable item contains the value
THE MORALE OF COMPANY B IS EXCELLENT.)

The IRS SUM verb may have several operands; COLINGO
allows only one.

IRS requires parentheses around operands, if they are values.

IRS has a more powerful COUNT verb which will give subtotals
for the count of each property value and a total count for the
property. COLINGO will only give the total count of the number
of records that qualify.

The IRS SORT routine gives an*ascending sort. COLINGO has
both ascending and descending sorts.

IRS does not have the capability for conditional branching while
executing a string of stored queries.

IRS has approximately the same output capability that COLINGO
has and both allow the user to add his own special output routine.

The Library Maintenance System provides the means for the generation and
maintenance cf the Library File, which corresponds to COLINGO's QUIC
files. The files contain a master dictionary, stored queries, format tables

34

macro-instruction lists, and code conversion tables. Updating a Library
File consists of adding, deleting, or replacing an entire file or table.

NAVCOSSACT Information Processing System has a considerably greater
number of error messages than COLINGO has; however, due to the restric-
tions on the format of the card input, it is also easier for an error to be
made.

The hardware environment, in existence in the facilities for which NAVCOS-
SACT has been responsible and IBM has provided the programming systems,
is quite dissimilar. The hardware at the various centers include the
IBM 7090, the AN/FYK-I(Y) Data Processing Set produced by CDC, and
the AN/USQ-ZO produced by Sperry Rand Corporation.

Outlined below are hardware configurations and the IP systems that have
been designed for each . (These do not represent minimum configurations
on which the systems will operate.)

NAVIC Information Processing System

IBM 7090

Hardware configuration:

1 IBM 7090 computer with 32K word memory
11 IBM 729 VI tape drives

4 IBM 729 V tape drives switchable with the IBM 1401
computer

2 IBM 1301 (4 modules) disk units
Capacity is about 108, 000, 000 characters

CINCPAC Information Processing System

AN/FYK-I(Y) Data Processing Set

The AN/FYK-I(Y) Data Processing Set is an integrated system consis-
ting of 1604A and 160A CDC computers with switchable peripheral
equipment. The AN/FYK-I(Y) is implemented at CINCPAC.

35

Hardware configuration:

4 CDC 1604A computers with 32K word memory
IBM 1402 card reader/punch

(up to) 28 IBM 729 IV tape drives
I Analex printer
1 CDC 160A for the Master Control
4 CDC 160A computers

Remington Rand USQ-20

An information processing system has been developed for the USQ-20
computer in support of NECPA.

Hardware configuration:

1 USQ-20 with 32K word memory
12 RD 1241 tape drives

I Paper tape reader/punch
2 Analex printers
1 AN/UGC-13 teletype
2 Card readers
2 Card punches

C. TUFF-TUG

The systems known as TUFF (Tape Update of Formatted Files) and TUG
(Format Table Tape Updater and Generator) were earlier generation
programs for the 704/7090 which were functionally equivalent to the
NAVCOSSACT File Mai.itenance and Library Maintenance Systems dis-
cussed above.

D. 1410 FORMATTED FILE SYSTEM (FICEUR)

The IBM 1410 Formatted File System (FFS) is a generalized system of
programs designed to build, maintain, retrieve from, and produce reports
on a wide variety of information files. The system is in operation at a
number of Air Fcrce Commands as part of the Intelligence Data Handling
System (IDHS) centers as well as in the Fleet Intelligence Center Europe
(FICEUR).

36

Files in the Formatted File System look much the same as COLINGO
files. Both systems allow for three levels of organization, and both sys-
tems maintain a dictionary or file format table describing the file struc-
ture. The one significant difference in file structure is the Formatted
File System's provision for variable length fields.

In the Formatted File System the user may, by use of conversion tables
similar to the code conversion tables in the NAVCOSSACT system, pre-
pare queries in item names familiar to him. The system, using the con-
version table, will substitute the Loded item names before executing the
query. This feature is useful if the data in the file is received in a coded

form or if the data was coded to optimize use of retrieval logic.

The files, which look much the same as COLINGO files, may consist of
any type of information which is definable to the system. The information
can range from small, fixed-length items to indexes of documents and
graphic materials containing repeating items of information and textual

information. It is a system which was designed to allow the user flexi-
bility in dealing with his data. Constraints on the user have been kept at
a minimum; he is not limited to the number of files he can define to the
system, nor is he committed to the format of an existing file in the event
that he wants to change that format. In many cases, the user is able to
accept dz.ta previously undefined to the FFS into his system without new
programming. He is permitted to create any number of output formats
from a file and can merge information from a number of files. The user
has a logical, English-like, retrieval language at his disposal with which
to seek out the answers to his interrogations, and the ability to format
those answers in a variety of ways.

The Formatted File System can be operated on any IBM 1410 (or 7010)
with the following minimum configuration:

37

*1 Central processing unit - 80K core positions
6 Magnetic tape units (729)
1 High-speed printer (1403)
1 High-speed card reader/punch (1302)

**1 1301 Disk - Mod I

The program system, which contains approximately 32, 000 instructions,
is of modular design and contains the following modules interfaced with
the IBM 1410/7010 operation system:

File generation
File maintenance
Retrieval
Output

File Structure

The FFS is capable of processing data records which can contain three
different types of fields:

1. Fixed Fields - which occur only once in a data record and
occupy a fixed position within the record relative to the
intitial character of the record.

2. Periodic Fields - which can occur more than once within a
data record. They contain a category of data which is repeti-
tive in nature. One occurrence of related but different periodic
fields is termed a periodic subset. All occurrences of a sub-
set within a data record is called a periodic set.

3. Variable Field - which is included to accept qualitative informa-
tion for which no fixed or periodic field is provided. The con-
tents of the variable field are unrestricted. The length is limi-
ted only by the data record size. Each data record is limited to
one variable field.

Original system was programmed at 40K but advanced versions re-
quire 80K. The LJSAFE system is a 100K version.

Optional for all except the DIA/IDHS Mod 1 version.

38

The fixed fields appear first in a data record, followed by the periodic
fields, and terminating with the variable field.

The general record structure is subject to the following limitations:

Maximum number of characters in a data record 5400
Maximum number of field definitions per record 299
Maximum number of periodic set definitions per record 8
Maximum number of characters in the record control

field 30
Maximum number of characters in a field or group of

contiguous fields to be referenced collectively 52
Maximum number of subsets within any periodic set 599

File Maintenance

The FFS has the capability to perform the following file maintenance
functions:

1. Create a new data record and insert it into the specified file.
2. Delete an existing data record from the file.
3. Change an existing data field (fixed or periodic) within an

existing data record.
4. Add a periodic subset to an existing data record.
5. Delete a periodic subset from an existing data recaord.
6. Add a variable field to an existing record.
7. Add additional information to the existing variable field of

a data record.
8. Delete the entire variable field from a data record.

In all the file maintenance functions, the data record to be updated is
identified by the record control field (sort key).

The FFS will accept input records on either punched cards or magnetic
tape. The input transactions to the update program can either contain
single field values along with the name of the field they represent, or
they may be packed fields described to the system by a separate des-
criptor table.

39

The input fields can be accepted in the input format, or they can be
edited and converted by use of tables or subroutines specified in the File
Format Table. Updates to several files can be processed during a given
run.

The system user can elect either of two options to record the results of a
file maintanance run:

1. All transactions are listed with the "from" and "to" values
of the field(s) affected by the transaction. Erroneous trans-
actions which have not been effected are also listed with a
diagnostic code indicating the nature of the error (e. g.,
attempt t• change a non-existent record).

2. Only the ýe(rroneous transactions are listed with their diagnostic
codes.

Retrieval

The FFS is capable of retrieving records from the data files based upon a
logical combination of co-"-,tional statements about the values contained in
the fixed and/or periodic fields in the data record. The general form of a
conditional statement is:

(Logical Connector), (Field Name), (Operator), (Data Values)

A sample query with three statements is:

IF, DAY OR YEAR, IS GREATER THAN, 192,
AND, COUNTRY NAME, IS EQUAL TO, CANADA,
OR, COUNTRY NAME, IS EQUAL TO, UNITED STATES, MEXICO.

Synonyms may be substituted for field names and operators. Subroutines
and tables may be specified for editing and converting data values to the
data file format. The logical connectors permitted are IF, AND, OR.
The standard operators are:

40

EQUAL
NO'& EQUAL
LESS THAN
LESS THAN OR EQUAL TO
GREATER THAN
GREATER THAN OR EQUAL TO

In addition to the above, the FFS allows the Overlap (OVP) operator,
which tests to determine whether a convex geometric shape (circle,
polygon, line, c'. point) defined in the query statement over 1 aps a con-
vex shape ('-i, necessarily the same type) in the data records. The FFS

Query L.w.t .:.ge allows one level of parenthesis in the combination of logi-
cal stair iz! ts. The Condensed Format feature allows the specification
of a query in skeleton form followed by a list of data values; the values are
then substituted into the query skeleton and executed by the retrieval pro-
gram.

Queries can be batched to search one or several files in a given re-
trieval run.

The user may specify that the results of his retrieval run be sorted on the
values contained within specified fields (fixed or periodic) of the records.
When queries are levied against several files, the retrieval records from
the different files may be sorted on values common to the different files
to produce a multi-file report.

The FFS includes the capability to define up to two file indexes per file.
The indexed file feature improves query response time through two re-
ductions in the number of record searches per run:

1. The Query is applied only against data records identified by
the file index(es).

2. The retrieval program passes only those tape reels (in the
case of multi-reel files) which contain data records identified
by the file index(es).

The FICEUR query language capability is similar to COLINGO's with the
following differences:

(1) No on-line typewriter input capability is provided.

41

(2) All elements of a query (operators, item names, etc.) must
be set off by commas.

(3) One level of parentheses is allowed. (COLINGO does not allow
parentheses within a query.)

(4) A period has a special function of specifying the mode of logic,
i. e., whether it is intra- or inter-record logic.

(5) Capability to merge files is provided.

(6) Capability to prepare outputs using data from several files
is provided.

(7) Circle and polygon search routines are provided. It is possible
to do the equivalent of these searches in COLINGO by using the
Great Circle Distance subroutine and stored queries, but not via
the more convenient and efficient subroutines.

(8) Capability to order data records retrieved from a single file by
employing a criteria not explicitly in the data records is pro-
vided.

Output

The FFS contains a generalized output capability. It allows the production
of reports on any combination of three output media:

(1) Printer listing.
(2) Punched cards.
(3) Fixed-length magnetic tape records.

The user can control the output format by specifying:

(1) Formatting specifications showing the position of the data.
(2) Control information specifying conditional action.
(3) Data manipulation information specifying counts, totals,

subtotals, and integer computations within a record or across
records.

42

(4) Printed report pages specifications including absolute and con-
ditional spacing, skipping, and ejection to a new page.

Printed reports consist of page headers and trailers and one or more types
of body lines. Body lines may be data fields, constants, computed values,
or combinations of the three. Fields (either data or computed values) may
be edited to remove leading zeros, insert decimal points or other charac-
ters, and other standard editing functions; fields may also be converted by
use of special purpose subroutines which have been entered into the system.

Punched card and magnetic tape reports may contain all the above options
except those unique to a printed report, such as page headers and trailers
and spacing, skipping, and ejecting. Magnetic tape reports may include
several types of records with the restriction that all records be the same
length. The record length may be specified to the program within a max-
imurn value, which will be specified at each installation based on machine
core storage size.

The Output Program also contains an extract option which allows a user
to output data from a file without defining a formal output format. The
user identifies the desired fields by name; the report contains a tabulation
of the specified field values with the approved field labels.

E. THE 473L SYSTEM

System 473L is the Headquarters, United States Air Force, Command
and Control System. It is an on-line real-time information processing
system designed to facilitate management of USAF resources, particu-
larly during emergency situations. The system is being developed in
three major incremenLs, each increment having successively greater capa-
bility relative to operational scope, equipment, and programs.

The initial increment (OTC) utilized an IBM 1401 Data Processor subse-
quently replaced by an IBM.1410 Data Processor. The peripheral equip-
ment included an IBM 1402 Card Reader Punch, IBM 1301 Disk, IBM
7330 Tape Drive, IBM 729 Tape Drives, IBM 1415 Console Inquiry Sta-
tion, IBM 1403 Printer, and a rRW Computer Communications Console.
The second increment utilizes a Librascope AN/FYQ-l1 Data Processor,
ITT AN/FYA-2 Integrated Consoles, Plotter Tape Transports, IBM 1402
Card Reader Punch, and an Analex -?rinter. The final system will in-
clude a second set of the aforementioned equipments which will provide a

43

dual system, capable of sharing the work load and of providing system
back up.

Input data is received on-line from the AUTODIN network. On-line
staff control is provided for, both in the preliminary screening of
AUTODIN messages and in the control of outputs at the individual con-
soles.

The 473L System provides support to the Air Staff in the following major
functions: situation monitoring, resource monitoring, plan evaluation,
plan generation and modification, and operations monitoring. Support is
provided to each of these functions in the form of specific operational
capabilities. An operational capability is a set of interrelated computer
programs designed to provide a console operator with information sup-
porting solutions to significant and predefined problems encountered in the
exercise of USAF responsibilities for evaluating, modifying, or monitor-
ing plans or operations.

Thus a central 473L function is inforrmation retrieval, and it is in this
area that its major contribution to system flexibility exists. Two major
methods of communication between the system operator and the data
processing subsystem have been provided in the 473L System. The first
major method of communication is the operational capability overlay --
a plastic mask which fits over the Integrated Console Logic Keyboard.
This mask delineates the set of programs related to a specific operational
capability. Operation via the overlay provides, upon activation of the
logic push buttons, an indication of which push buttons may legally be acti-
vated, presents a cue message on the display, allows alpha numeric data
to be entered, and responds to the completed cue message by displaying
a follow-on cue message or a data output.. In this manner, the operator
can exercise a choice at each decision point and is led in a step-by-step
manner through the procedures necessary to obtaining the desired infor -

mation. The console employed in the 473L system is the TRW Space
Technology Laboratories Computer Communication Console. (A des-
cription of the capability of a similar console is that of the Culler-Fried
console following).

The second major method of communication is via the Query Language.
The Query Language is a quasi-English language, very similar to the
COLINGO query language, which enables an operator to retrieve specific
data in one of several formats from any system file. It is also used

44

internally by all other programs as a means of retrieving data from the
file s.

In using the Query Language, the operator enters his query directly by
means of the typewriter portion of the Integrated Consoles. The program
interprets the statement, makes the desired retrieval, and formats• the out-
put. -In addition to direct retrieval, *he Query Language includes the follow-
ing functions:

Computatiun, e. g. , summing numerical values.

Logical operations, e. g., finding largest or smallest values.

Sorting retrieved data for output.

Manipulating files, e. g., combining parts of two files into one.

Storing and recalling frequently used query statements.

The Query Language can also be used as a tool for system programmers in
that it permits a sequence of operationally related statements to be proces-
sed as a group, has very powerful file reorganization capabilities, and has
variable output format capabilities.

Certain noteworthy characteristics of the language follow.

The language allows a file to be qualified by any number of values of
attributes. In addition, the attributes can be embedded in functions. Thus,
it is possible to ask for great circle distances within a specific distance
of some point in a single query. For example:

Retrieve airfields with country . Brazil, GCD (Braziliai"2000).
This query asks for airfields in Brazil which are within 2000 miles

of the city Brazilia by the great circle distance.

Two flexible printouts to queries such as this are provided. One has a
vertical orientation of data and one a horizontal orientation. It is also
possible to entitle these printouts, such titling being introduced through
the query language statements. Stored statement routines are also avail-
able for storing completed statements. These may be recalled at a later
time for additional use. As part of this capabiiity statements with built-in

45

blanks can be stored for later recall. At that time, the particular values
appropriate for the moment can be filled into the blanks and the resultant
statement then run. This insertion of values into blanks is accomplished
through the aforementioned Computer Communication Console. This
step serves to illustrate an additional source of 473L flexibility, namely,
the complementarity of the push-button and query language techniques,
since both are integrated and can be used in conjunction with each other.

The 473L files are, like its query language, similar to the COLINGO files.
Thus, they are both formatted and hierarchically structured. Several
types of file structures are allowed in the 473L system, mostly to make
best use of the characteristics of the storage media; for example, serial
versus random access. Examples of these structures are: packed data,
blocked data, fixed or variable length entries, and combinations of these
structures. The attributes of the items in the file are distinguished by
type; such as, fixed or variable length, single or multiple value, etc.
In addition, there are flexible provisions for checking and internally en-
coding the file data as desired. The system also maintains a data
description file which contains all information required to process the
data files. This data description file is part of a generalized file mainten-
ance program which will take a wide range of possible data values, con-
vert them and store them in the structured data base. Both the data and
the data descriptions, including a dictionary of all external versus inter-
nal names, are kept in the data base. Having available the descriptors and
the dictionary as well as the data, then, the query language can effectively
retrieve as well as store data. This generalized file maintenance
program with its data description file and file dictionary corresponds
to the COLINGO file dictionary and is yet another source of system flexibi-
lity, as it is in COLINGO.

Some capabilities which are or soon will be part of the 473L system that
COLINGO does not have are: multiple time-shared user consoles, remote
I/O, priority assessment and automatic interruption of a query for a more
important task, and distinction (and even simultaneous use) of operations
activity and training exercises. Most of these capabilities, however, are
advantages to be gained from operation on a larger computer under a more
powerful executive. Therefore, 473L and COLINGO are essentially com-
parable in terms of information system flexibility and both represent an
advanced state-of-the-art in information retrieval system design. The
major advantage that 473L has over COLINGO, is not so rnuch in terms of
system flexibility as it is in terms of efficiency, 473L being the more

46

efficient of the two. This is best exemplified by a comparison of the
two query languages. Specifically, qualification of a data record in 473L
can depend on a function derived from several property values in the
record. (This is also possible in NAVCOSSACT.) This can be done in a
single pass. COLINGO, in contrast, would require two passes of the file,
one pass to compute the function based on the appropriate property values,
and'a second pass to determine the correct qualification from the computed
values. Similarly, there is a degree of efficiency represented by the
473L (and NAVCOSSACT) SUM operator not found in COLINGO. This
operator permits simultaneous summing of several properties while making
only one pass at the file. These two examples exemplify the greater effi-
ciency, if not power, of the 473L system.

F. THE ACSI-MATIC SYSTEM

ACSI-MATIC is an acronym for a proposed information storage and
retrieval system which was to be designed and implemented y RCA for
the Department of the Army, Assistant Chief of Staff, Intelli ence. It
is primarily an information retrieval system, although it pr vides a good
measure of generality and self-sustaining control. The prototype was
implemented on a Sylvania 9400 computer.

The system was intended to provide a common repository of information
which could be used by intelligence analyst. with different area respon-
sibilities. The system was also designed to reduce the amount of effort
required of analysts to evaluate and file new information. This latter
function was to be achieved by automatically collating new and old infor-
mation on the basis of the information content. All information stored
was to be indexed as thoroughly as possible by the system to provide the
analysts with an efficient and comprehensive retrieval capability.

The unit of information storage in the ACSI-MATIC file structure was
the Information Record of which there were different types, such as
Military Organization, Personnel and Installation. Data coming into the
system might be logically filed in more than one type of Information
Record. All data filed by the system were indexed and cross referenced
by the system. Each Record type had a set of allowable information that
could be stored in it. The formation of new information records was
handled both explicitly as the result of a direct order, and implicitly, as
a result of a gradual acquisition of information.

47

To provide a means for the system to accept and manipulate information
without excessive external coding by the people preparing the data to
be input, a glossary of common terms was stored permanently within
the system. To provide information to the system about the relationships
between terms, the total number of terms was sub-divided by the users
into functional categories. A glossary was set up for each category.
In general, the alphabetic composition of a term contains no relational
information. Hence, the users established tree structures for all terms
within a glossary. The position of a term in the tree was specified by
a binary code called Flexicode, which has the property that both the verti-
cal and horizontal coordinates of a term are well specified. Further, given
any two codes, a third code can always be inserted between, in either
direction. An entry in a glossary, therefore, is a pair; namely, an
English term and an associated Flexicode. The glossaries are maintained
in alphabetic order.

The aforementioned Flexicodes are maintained in "hierarchical" order
in the Hierarchy Index List. Each entry in the list contains the Flexi-
code for the term it represents, plus a pointer to each Information
Record in the file ccntaining information about the term.

The system receives messages and orders from the analysts by way of a
paper tape reader. System responses were on a monitor typewriter and
high speed printer. All elements of information in a message or order
were tagged tc make them identifiable by the system. For example, infor-
mation about an individual would be handled as follu'..-q:

PER:: NAM:: SMITH, JOHN H.:: JOB:: CIVIL ENGR:: AGE: 42::
The tag PER identifies the type of information being dealt with -
personnel. The tag PER has a number of allowable sub-tags, including
NAM, JOB, AGE, with obvious meanings. The character "::" is a
delimiter to make scanning easier.

Each message or order also contained information about the message
(order) and the data contained therein. Examples of these are:

Name of person putting in data

Source document identification

Source document data

48

Security classification.

Orders were designed to provide the analysts with the capability to
explicitly define some types of system processing. These included:

. Establish a new Information Record

Change an Information Record

Perform Thesaurus Maintenance

Report (print any of a number of standard reports)

Query (interrogate the system files in complex manner).

Messages were designed to be the method of adding new information to the
system files on a continuous basis. It was not necessary for the person
preparing the message to know anything about the state of the system
files, but only to properly format and tag the information being entered.

An initial data base of known information was to be entered using analyst
orders. For each Information Record type there were criteria to
determine when new types were to be established as data were received.
Each element of information filed in the system was cross referenced as
thoroughly as possible. For example, data input via an analyst order
established a Record for an installation at location L. Part of the data
kept with this Record was a list of all technical personnel, which included
the name Smith, 3. H. . At the time the order was given and Record
established, a reference to the Record was made in the Hierarchy Index
List entry for Smith J. H. . At a later time some information entered
the system via a message which reported that a Smith, 3. H., a civil
engineer, had been given an award for outstanding work. In the List
entry for Engineer, Civil, a reference was then made to Smith, 3. H.
and conversely, under Smith, 3. H. a reference made to Engineer,
Civil. The system now had two pieces of information about Smith, 3. H.:
(1) he was at location L; (2) he was a civil engineer. At some point there
might be enough information on Smith to warrant the establishment of a
Record, type Personnel, for Smith. If this was done, the List entry for
Smith would point to the Record of the installati)n at L and to the Record
for Smith. The List entry for Engineer, Civil would also point to these
Records. The previous references which were only to the name Smith and

49

the name Engineer, Civil were thus replaced by references to collections
of information about each name. This example illustrates the dynamic
quality of the files which were intended to grow as a function of the data
being input without explicit orders from the analysts. The decision
making processes and the actual indexing procedures were more complex
than those illustrated.

The system was designed to handle complex Boolean expressions which
specified retrieval requirements. Basic retrieval operations involved
manipulating, when possible, the indices rather than the data during
the selection process. For example, consider the query, "List all civil
engineers at installation at location L. " The List entry for Engineer,
Civil has a pointer to the List for each man known to be a civil engineer.
Each of these entries has references to the Records which contain
information about the man named. These references are the disc loca-
tions of the Information Records. The installation at L has a Record
stored at a known disc location. Therefore, if this address appears in
a List entry for a man known to be a civil engineer, he is known to be
at installation L.

The programming system for ACSI-MATIC was composed of an input-
command package, an executive control package, an input-output package,
and a collection of utility packages.

The input-command package accepted and interpreted commands for the
execution of major system functions and for establishing the appropriate
programs to effect the execution of those functions.

The executive control package for ACSI-MATIC furnished a collection of
functions to enable the linking, loading, binding, and execution of system
tasks. In addition, functions to enable parallel processing up to sixty-four
tasks and dynamic allocation (i. e., requests for more space generated at
execution time) were available. Basic blocks for loading, linking, and
parallel processing control were kept in terms of chains of descriptions;
i. e., lists of descriptive information were organized via chain links to
reflect program relations, resource allocations, and priority for
execution.

The ACSI-MATIC programming system furnished to the user a variety f
utility packages. For example, requests for retrieval of items from the
disc file by name were accepted and handled by the Thesaurus Access

50

Package. Ini addition to retrieving data from the files by name via
indices, this package furnished all of the machinery for adding and
deleting entities of the files. Techniques for interlocking accessing during
maintenance and for preserving accessed information in core for sub-
sequent use were developed.

A second utility package was a comprehensive sort-merge package which
was available to the ziser. This program allowed sorting on the basis
of complex user-furnished ordering criteria.

A programming l:.nguage and an assembly program were also developed.
The assembly produced relocatable code and sufficient descriptive infor-
mation to satisfy the requirements of the dynamic allocation and linking
algorithms.

51

PART III. MAN-MACHINE iNTERFACE SYSTEMS

In this section systems which have concentrated on the enhancement of
man/machine communication through the development of various types of
response techniques are discussed. Each of the systems mentioned hereii
has contributed to man/machine interface techniques eithe'; by introducingi
a new dimension along which communication can occur, or else hb develop-
ing new techniques for improving the communication along familiar dirnen-
sions. Thus, SKETCHPAD has added the graphical dimension to computer
interfacing and BASEBALL has demonstrated the feasibility of using ordi-
nary English, albeit of a constrained variety, as a query language. The
Culler-Fried and JOSS Systems, in contrast, have introduced new techniques
for enhancing communication along a familiar 6-mension of man/machire
communication, namely mathematics. In each case it is important to note
that the system designers bad in mind a wide class ,f users operating with-
in a broad spectrum of problem areas. Thus, the techniques they have in-
troduced are quite general in nature and of wide potential uLse.

A. SKETCHPAD

The development of SKETCHPAD marks an advance in the exploration of the
dimensions along which an operator may communicate with the computer.
The particular dimension explored by SKETCH1PAD is graphical and the
basic aim of the system has been to make rapid interaction between man
and machine possible through graphical means. SKETCHPAD is fundamen-
tally a drawing system which has been implemented on the TX-2 computer
at the M. I. T. Lincoln Laboratory. It places at the disposal of the user
"paper" in the form of a cathode ray tube and "ink" in the form of a hand-
held photo-cell called a light-pen. In addition, it places at the user's
disposal a multitude of graphical operations which enhance his ability to
make complicated line drawings from relatively simple subparts. It pro-
vides the user with the ability to copy his light-penned drawings onto a
permanent pen ana ink plotter. Finally, the SKETCHPAD system has as-
sociated with it a tape library in which previously drawn figures may be
stored for later use.

52

A SKETCHPAD draving sequence may typic ally begin with the operator
pointing the light pen at the display system and simultaneously using a
"draw" button, "draw" being one of the primitive functions provided by
the system. The computer then constructs a straight-line exterding from
the point the light pen originally identified to whatever subsequent point
has beer, chosen by the user. The user does not employ the light pen as he
might a pencil and ruler. He simply identifies an. iritial pcint and activates
the "draw" function. The computer then constructs the line. In particular,
when the "draw'" button is pressed, the computer sets up two end points
and a line segment in storage. One of the end points remai.ns attached to
the light pen, however, and the subsequent pen motions move this second
point. This action of establishing pairs of points and a line segment in
store may be repeated several times. Thus, to construct an hcxagor.al
figure one would repeat the operation six times, once for each side of the
figure. In order to close the lines into a six sided figure, it is merely
necessary to return the light pen to a point near the end of the first line
drawn. The figure will automatically close on itself. The drawing may then
be terminated bi- a control on the light pen.

In this fashion an irregular hexagon has b-een constructed. A better view
of the range and scope of SKETCHPAD calz be gained when one attempts
to construct a regular hexagon. To constr'uct a regular hexagon, use can
be made of the irregular hexagon just constructed and other primitive func-
tions available in SKETCHPAD. To make the irregular hexagon regu'ar,
one could employ the following strategy. (rie dep. esses a 'circle certer"
button while identifying a center with the light per,. Then o:.e identifies a
subsequent :-..int to mark a radius and presses the "draw" button. SKETCH-
PAD will construct an accurate circle. I-Having established a circle, one
may point to a corner of the irregular he:cagon and then, by depressing a
"move" button, bring one corner of the hexagon irto the circle. The lines
ccnverging at that corner will follow the light pen in rubber band fashion
into the previously drawn circle. Each corner may be thus moved inside
the circle and the irregular hexagon can thus be circumscribed.

l'o make the hexagon regular, one points to one side of the. texagon, de-
presses a "copy" button and points to another side. SKET(CHPAD will
then produce a regular hexagon, if possible, z.fter five such repetitions.
A depression of a "delete" button erases the circle, and the user has con-
structed a regular hexagon.

53

Thus, several primitive functions have been identified and illustrated,
namely "draw, " "center circle," "move, " "erase, " "copy, " etc. With
these functions an irregular nexagon was constructed and from it, a
regular hexagon. Subsequent use of these and similar functions make it
possible to construct extremely large hexagonal mosaic patterns such as
one might find on hexagonal graph paper, for example. A professional
draftsman would require two days to construct a 900 hexagon -nosaic on
a 30 in. by 30 in. plotter. Including the time to decide upon the above
strategy, SKETCHPAD required only half of an hour. The example just
discussed illustrates the fundamental way in which use of SKETCHPAD
differs from normal pen and ink drawing. In the above example the user
created a rough approximation of a figure and then, by the addition of con-
straints to that figure, relied upon the computer to systemztically apply
those constraints to each pa : of the initial rugh figure. It is, in fact,
the contention of the SKETCHPAD designer that this process of a rough
approximation followed by the imposition of new conditions is essentially
the design process that any designer might go through in the creation of a
finished design from a basic idea. As new requirements are created,
SKETCHPAD supplies the mechanical means whereby those requirements
may be imposed upon that which has been done, thus relieving the de-
signer of much of the detailed work required by the imposition of the
newer constraints.

The various design activities for which SKETCHPAD may be used are,
perhaps, obvious. Thus, it is of util.ty in the production of highly repe-
tition drawings, drawings where accuracy is required. Morenwer, it has
been demonstrated in drawing mechanical systems such as linkage suspen-
sions and in manipulati-ag them to observe the resultant motions.

In addition, the use of SKETCHPAD as an input program for other compu-
tation programs is suggested. Thus, with this system, truss bridge de-
signs can be generated with designated load points specified. Subsequent
processes can compute the resultant forces based upon the truss bridge
design and the specified loads. In this fashion SKETCHPAD can be made
an engineering design tool. Similarly, the use of SKETCHPAD in circuit
design is certainly suggested, though the computation required by electro-
nic circuitry goes beyond the capacity of SKETCHPAD at the moment.

The SKETCHPAD Program, which was written over a one year period and
required approximately one and a half m-n-years of effort, comprises
IZ, 000 words of executable program, 20, 000 words of 'ring structure'

54

I, i ý t ., ti ', t), 0O0 words of input-output buffer. The TX-2
S.... • i n whicn it operates is a single-address, binary digital com-tI.tr wxth an unusually large memory. It is an experimental machine,

however, and as such contains certain distinctive features. These are:
(1) simultaneous 'ise of in-out machines through interleaved programs;
and (2) flexible, 'configured$ data processing. In addition, the TX-2 in-
cludes automatic memury and arithmetic overlap, a 'bit'-sensing in-
struction (the uperand is one bit), addressable arithmetic element regis-
ters, 64 indeA cegisters, indirect addressing and magnetic tape auxil-
iary storage.

In summary, the use of SKETCHPAD exists in: (1) making small, system-
atic changes in'existing drawings; (2) in gaining scientific and engineering
understanding of operations that can be described graphically; (3) as a
topological input device for complex patternings such as required by net-
works and circuitry; (4) for highly repetitive drawings requiring re-
cursively generated sub-pictures has been demonstrated. That the system
has been made to draw electrical, mechanical and even animated drawings
qualifies it as a general-purpose, user-on-line,man-machine communica-
tion technique.

B. BASEBALL

Whereas SKETCHPAD demonstrated the feasibility of man/machine com-
munication through the medium of graphical display, BASEBALL may be
viewed as demonstrating the feasibility of man/machine communication
through the medium of a relatively flexible query language, flexible with
respect to the typical query language available in contemporary retrieval
systems such as those discussed in Part II. The query language of the
BASEBALL system is, in fact, a small, but nonetheless varied subject cf
ordinary English. And since every potential user of a system can be sup-
posed to know this subset already, there exists with respect to the BASE-
BALL user no requirement for training in its query language. Thus any-
one who speaks English and is familiar with baseball can query the system
with a minimum of training.

BASEBALL is a computer program that answers questions posed in ordin-
ary English about data in its files. The program consists of two parts.
The linguistic part reads the question from a punched card, analyzes it
syntactically, and determines that information which is given about the
data being requested. The second part, the processor, searches through

55

the data for the appropriate information, processes the results of
the search, and prints out the answer.

The program is written in IPL-V, an information processing language
that uses lists, and hierarchies of lists, called list structures, to repre-
sent information. Bnth the data and the dictionary are list structures, it
which items of information are expressed as attribute-value pairs, e.g.
Team . Red Sox.

The program operates in the context of baseball data. At present, the
data are the month, day, place, teams and scores for each game in the
American League for one year. In this limited context, a small vocabu.
lary is sufficient, the data is simple, aid the subject-matter is familia..

Considerable flexibility is permitted in the wording and the form of input
questions. The program accepts any grammatical question that is made
up from words found in the BASEBALL dictionary, and that adheres to
the following restrictions. Questions are limited to a single clause. By
prohibiting striictures with dependent clauses the syntactic analysis is
considerably simplified. Logical connectives, such as and, or and not
are also prohibited, as are constructions implying relations like most an
highest. Finally, questions involving sequential facts, such as "Did the
Red Sox ever win six games in a row? " are prohibited. The designers
note that within these restrictions, complete freedom is allowed with
regard to word order, phraseology, verb voice, etc. , and that the user
is free to achieve considerable variety and complexity in question format
There is considerable leeway between simple questions such as "Who did
the Red Sox lose to on July 5?'" and more complex questions such as "Di
every team play at least once in each park in each month? " Some sampl.
questions that the program handles successfully are:

Did every team play all of the teams at least once in May 1959?
Had any team scored more than 8 runs by May 15?
How many games were lost by a 2 run margin to the A's?
What were Detroit's winning margins at home before June 1959?
What were the scores of the Senators losing home games?
How often did Baltimore beat New York at home in August?
How many home games did New York lose in June by one run?
When did the Red Sox win by more than 7 runs?

56

The concept of the specification list is fundamental to the operation of
the BASEBALL program. This list can be viewed as a canonical ex-
pression for the content of the question. It represents the Lnformation
contained in the question in the form of attribute-value pairs such as
Team a Red Sox. The spec list, which is generated from the question
by the linguistic part of the program, governs the operation of the
processor. For example, the question "Where did the Red Sox play on
July 7? " has the specification list:

Place ; ?

Team : Red Sox

Month = July

Day : 7

The dictionary definitions, which are expressed as attribute-value pairs,
are used by the linguistic portion of the program in generating the spec
list. A complete definition for a word or idiom indudes a part of speech,
for use in determining the phrase structure of the question; a meaning, for
use in analyzing content; an indication of whether the entry is a question-
word, e. g., who or how many; and an indication of whether a word occurs
as part of any stored idiom.

The meaning of a word can be expressed in one of several forms. It may
be a main or derived attribute with an associated value. For example, the
meaning of the word Team is Team = (blank), the meaning of Red Sox is
Team - Red Sox, and the meaning of who is Team - ?. The meaning may
designate a subroutine, together with a particular value, as in the case
of modifiers such as winning, any, six, or how mny_. Some words have
more than one meaning; the word Boston may mean either Place a Boston
or Team . Red Sox. The dictionary entry for such words contains, in
addition to each meaning, the designation of a subroutine that selects the
appropriate meaning according to the context in which the word is en-
countered. Finally, some words such as the, did play, etc. , have no
meaning.

For testing of the system, the BASEBALL data are organized in a hier-
archical structure, like an outline, with each level containing one or
more items of information. Relationships among items are expressed
by their occurrence on the same list, or on associated lists. The main

57

heading, or highest level of the structure, is the attribute Month. For
each month, the data are further subdivided by place. Below each place
under each month is a list of all games played at that place during that
month. The complete set of items for one game is found by tracing one
path through the hierarchy, i. e., one list at each level. Each path con-
tains values for each of six attributes, e. g.:

Month a July

Place z Boston

Day 7

Game Serial No. - 96

(Team . Red Sox, Score 5)

(Team = Yankees, Score 3)

The parentheses indicate that each Team must be associated with its own
score, which is done by placing them together on a sublist.

The processing routines are written to accept any organization of the
data. In fact, they will accept a non-parallel organization in which, for
example, the data might be as above for all games through July 31, and
then organized by place, with month under place, for the rest of the
season. The proct;6_:ing routines will also ac.ept a one-level structure in
which each game is a list of all attribute-value pairs for that game. The
poscibility of hierarchical organization was included for generality and
potential efficiency.

The BASEBALL program is orgaiized into several successive, essentially
independent routines, each operating on the output of its predecessor and
producing an input for the routine that follows. The linguistic routines
include question read-in, dictionary look-up, syntactic analysis, and
content analysis. The processing routine include the processor and the
responder.

In the question read-in routine, a question for the program is read into
the computer from punched cards. The question is formed into a sequencial
list of words.

58

In the dictionary look-up stage, each word on the question list is found
in the word dictionary and its definition is copied. Undefined words are
printed out. The list is then scanned for possible idioms; contiguous
words that form an idiom are replaced by a single entry on the list,
and an associated definition from the idiom d.ctionary, a separate
dictionary, is entered beside it. At this point, each entry on the list has
associated with it a definition which includes a part of speech, a meaning
and certain other indicators, such as sub-routine markers, etc.

The syntactic analysis is based on the parts of speech, which are syn-
tactic categories assigned to words for use by the syntax routine. There
are 14 parts of speech and several ambiguity markers.

First, the question is scanned for ambiguities in parts of speech, which
are resolved in some cases by examining the adjoining words, and in other
cases by inspecting the entire question.

Next, the syntactic routinc locates and brackets the noun phrases, the
prepositional phrases and the adverbial phra,,.;. The verb is left un-
bracketed.

Following the question hi i ,,Itge, a rou, -,- d.termines whether ¶he
verb is active or passive. :,is routine ir.q--, the la•st two verbal ele-
ments in the question, aid -,,ts a verh-v. i, . rk-r Z1.r use later in the

program. Next, the stbi,, ,I,,I ot hv' , ti , . t r , ocated and labelled.

This routine makes use of I;ra(.•etiiL , ... M .\. order and verb-
voice in order to determine subject ', .- , k! -i h in the question.

Finally, the syntactic analysis..c..,,. to see if any of the words is marked
as a question word. If not, a , is set to indicate that the question
requires aye.s/no answer.

The conter.' analysis stage uses the dictionary meanings and the results
of the synta-tic analysis to -et up a specification list for the processing
program. F.r .t subroutines are executed which have been inserted in the
dictionary look-up stage. Here ambiguities, such as v, hether Boston is a
team or a place, are resolved. Also attribute-value pairs are modified
in appropriate ways. Thus, what team becomes Team . ? in this portion.
Similarly Team - (blank) in the phrase each team is altered to Team = each.

59

After the subroutines have been executed the question is scanned to
consolidate those attriLute-value pairs that must be represented on the
specification list as a single entry. Next, successive scans will create
any sublists implied by the syntactic structure of the question. Finally,
the composite information for each phrase is entered onto the specifica-
tion list. Depending on its complexity, each phrase furnishes one or moi
entries for the list. The resulting specification list is printed in outline
form, to provide the questioner with some intermediate feedback.

The next stage is the processor stage. The previously prepared specific.
tion list indicates to the processor the part of the sorted data which is
relevant for answering the input question. The processor selects the
relevant subset of data, and, in stages if necessary, culls from it the
information the spec list requests. The processor produces this answer,
in the form of a list structure, for the last stage, the responder.

The core of the processor is a search routine that attempts to find a
match, on each path of a given data structure, for all the attribute-value
pairs on the specification list; when a match for the whole specification
list is found on a given path, these pairs relevant to the specification list
are entered on a found list. A particular specification list pair is con-
sidered matched when its attribute has been found on a data path and, eitl
the data value is the same as the spec value, or the spec value is ? or ea
in which case any value of the particular attribute is a match.

The found list produced by the search routin:- hie . archical list struc.
containing one main or derived attribute on each level of each path. Eaci
path on the found list represents the information extracted from one or
more paths of the data. Each path on the found list may thus represent
a condensation of the information existing-on many paths of the search da

No attempt has yet been made to respond in grammatical English sentenc
Instead, the final found list is printed, in outline form. For questions
requiring a yes/no answer, YES is printed along with the found list. If
the search routine found no matching data, NO is printed for yes/no ques
tion, and NO DATA for all other cases.

Questions which are raised by the BASEBALL program but not answered
concern the feasibility of list structures when dealing with data bases
that contain hundreds of files, and not just one file as in the BASEBALL
program. If list structures are not feasible, then the specification list

60

would have to be drastically changed. Further, no experimentation is
at present available to determine whether, given a choice between a sub-
set of ordinary English and some typical query language such as the
COLINGO language or the 473L query language, the user would choose
the English subset.

The-relevance of the BASEBALL program, therefore, from the point of
view of computer usage is that it underscores the necessity for consider-
ing ordinary English and its attendant translational difficulties along with
the more traditional kinds of query languages and their attendant trans-
lational difficulties when confronted with the problem of computer control
through some access language.

C. DIRECT ENGLISH ACCESS AND CONTROL (DEACON)

The Direct English Access and Control (DEACON) system is an experi-
mental information retrieval system designed by GE TEMPO. Its
goal has been to demonstrate the feasibility of computer control through
a system that the designers term "largely unconstrained English. "
In this sense, then, the DEACON work may be viewed as a continuation
of the aforementioned BASEBALL effort.

The DEACON "breadboard," the first designer's model to come out of
this effort, consists of a set of programs and data for the GE 225 com-

e puter. The current data base contains 3000 items which are accessed
by 400 words of vocabulary of which 100 are purely function words. This
ratio of 1:4 is expected to increase to 1:20 in a future system with a pro-
jected vocabulary of 40, 000 words.

The DEACON breadboard data base is list structured and the principle
routines and syntactic-semantic rules are programmed in LAP, a list-
processing language developed at GE.

The strategy for accessing the list structured data base is contained in
the designer's treatment of the syntactic-semantic rules. In BASEBALL
a sentence is first analyzed by the syntactic analysis routine to determine
its grammatical structure and then is analyzed by the content analysis
routine to provide that sentence with a "semantic" reading which is
meaningful with respect to the data base. This content analysis routine
is programmed in terms of the explicit format of the data base and is
dependent on this format. In DEACON, on the other hand, the syntactic

61

analysis is merged with the semantic analysis into a single stage and
each input sentence is subjected to a semantic analysis which provides
a syntactic-semantic reading, with respect to the DEACON data base.
It is noteworthy, however, that both the sequence "Is the Forrestal in
London? " and the sequence "In London Forrestal? " mean the same thing

.in the DEACON system.

Thus, whereas the BASEBALL program was syntactically too constraine(
the DEACON program is syntactically too unconstrained, at least with
respect to its professed goal of ordinary English.

The syntactic-semantic analysis routines are written in forms of
generalized types of data structures, the final identification of which is
made in terms of the specific sentence being analyzed. As a consequenc,
DEACON is less dependent upon a rigid data base format.

The similarities between BASEBALL and DEACON are striking. Both
make use of list-structures and list processing languages. Both are off-
line with sentences introduced on punched cards. Both are accessed and
controlled by ordinary English, though of varying degrees of constraint.
Both contain dictionary look-up, semantic and syntactic :3nalyses and
search routines based upon the results of the preceding routines and
finally print-out routines which present the resu't..)f the search routines
to the user. The major differences between the Lwo programs are the
collapsing in DEACON into a single stage of two separate stages in
BASEBALL, namely the syntactic and semantic stages, and the greater
dependence in the one (BASEBALL) than in the other (DEACON) on a rigi
data base format.

Problems which remain for the one syste-m, therefore, remain for the
other. These problems are (1) how to effect efficient file up-dating;
(2) how to effect efficient access in data bases storing 25, 000 files and
not just one file; and (3) how to generate new files.

D. JOHNNIAC OPEN SHOP SYSTEM (JOSS)

JOSS is an experimental on-line computational system developed by the
RAND Corporation as a problem-solving tool for its scientific/engineer-
ing personnel. The system has two separate functions, each of which
can be used together or apart. The first of these functions is that of
an elaborate printing desk calculator. Thus JOSS can add, subtract,

62

multiply and divide. It can compute exponents, square roots and trigo-
nometric functions. Further, it is possible to request the fraction,
integer, digit and/or exponent part of a number. Logarithms are to the
base e in JOSS and decimals carried to the ninth place.

Requests for all of these functions can be made simply and easily once
the user has familiarized himself with the keyboard symbols for the
various JOSS arithmetic functions. Thus by typing in '2 +2', JOSS
replies '4'. Similarly, VI1 will cause JOSS to divide, 1. ' to multiply
and an '*1 to raise to an exponent. Thus 'TYPE 3-31 will cause JOSS to
reply '3*3•: 27.' The expression I TYPE sqrt (81)' will cause JOSS to
reply 'Sqrt (8 1): 91, i. e. , the square root of 81. Bý enclosing the
number to be square rooted in parentheses, it is possible to build up
complex expressions. Thus 'TYPE sqrt (sqrt(2-2':2))' will cause JOSS to
reply Isqrt (sqrt(2*2*2)):2'.

All of these functions can be expressed in a single complex function, of
course, and in a very short time it is possible for the user to master
the 'calculator' function in JOSS.

The second function in JOSS is that it can also act as a 'stored-program'
computer. This means that it is possible to enter a statement in JOSS
and have it stored away for later use. Thus, by prefixing a statement wit1'
an identifying number, JOSS is thereby instructed to store away the se-
quence following the prefixed number and to be ready to recall that sequen(
on demand. A typical statement to be entered as a stored program state-
ment is:

1. 1 Type X, sqrt (x), log (k), exp (x).

JOSS will store this information. A subsequent command will cause JOSS
to execute the statement to whatever value of X the user requires. Thus
the statement:

Do step 1. 1 for X:1(1)100

instructs JOSS to take the values of X as being from 1 to 100. JOSS will
begin to compute the square root, log and exponent of each number from 1
to 100 as specified in the stored program statement 1. 1 above.

63

It is possible at any time to interrupt JOSS and specify a format in
which the output of some stored-program statement is to be printed.
Thus, the JOSS user can have the various values arranged in a matrix
with each number from 1 to 100 at the head of a row and each function to
be computed at the head of a column. Demands for spacing can also be
introduced. Thus, JOSS can be requested to insert a blank line every
five or ten lines, etc.

It is also possible to name formats which huave been defined by the user
and to request that the output of some stored-programs be printed in
the defined format which can thus be reviewed by name. A typical state-
ment with format specified is:

1. 1 Type X, sqrt (x), log (x), exp (x) in form 1.

It is worthwhile to note that JOSS is primarily used as a combination of
its two functions, namely as a desk calculator in combination with a stored-
program computer. This is largely because these combined functions
allow the user constantly to exercis - judgment during a session on JOSS.
This he does by initiating a program, interrupting it, changing it, altering
its format, re-specifying its values and its functions and so on. Numerous
error messages as well as techniques to avoid catastrophic errors resulting
in loss of prior work are abundantly supplied.

The JOSS system operates solely in the interpretive mode. This is to
say, with each input statement from a remote typewriter, it picks up the
statement, scans it, executes it immediately and then proceeds to the
next statement. JOSS is able to complete this cycle on the average of 15
times every second. Because JOSS is time-shared (there are eight remote
consoles), the user is occasionally require!d to wait. The maximum period
a user would have to wait, when the system is being used to full capacity,
is sixteen seconds.

The amount of space allotted to each JOSS user is quite small, about a
page per user. This is due to two factors, the first being the limitations
of the Johnniac computer, an old and rather small vacuum tube machine.
The second reason for space limitations, however, is that the JOSS
designers were simply not interested in large menory capacity. Thus
JOSS was intended for users with small problems who would take maximum
advantage of the problem-solving capability of a machine with which it
was possible to interact easily and quickly. Production computing

64

interaction of the sort attainable with larger more capacious machines
was neither desired nor sought after by the JOSS designers. Now that
the interaction capability has been demonstrated, however, attempts to
increase computation space per user as well as the number of possible
simultaneous users are in process.

The goal of JOSS to develop a tool for problem solving, rather than
production computing, has been oriented toward the design of hardware

and software for a specific application, namely scientific and engineering
computation. In the design of this hardware/software package speed and
power have been sacrificed for smooth operation and a relatively trans-
parent algebraic user's language. In this sense, then, JOSS is like
STRESS and COGO discussed in Part IV. However, JOSS differs in
that the applications class that it addresses itself to, viz. , general
scientific and engineering computation, is less restrictive than the
applications class encompassed by STRESS and COGO. Secondly, JOSS
represents an integrated software/hardware design oriented toward a
specific application whereas STRESS and COGO are strictly software
systems executed on a conventional machine, the IBM 7090.

A major limitation of JOSS is that at the end of a session on the machine
the program vanishes. Subsequent operation at a later date on the same
program requires complete re-entry of the entire program.

E. TRW TWO-STATION, ON-LINE SCIENTIFIC COMPUTER (OLSC)
(ALSO "CULLER-FRIED SYSTEM")

The Culler-Fried System is a computer program developed by TRW Space
Technology Laboratories for the RW 400 Computer and Display Analysis
Console to provide a tool for the on-line investigation of scientific/
engineering problems which can be stated in terms of classical mathe-
matics.

Three principal features, independent but interacting, characterize the
system:

Functional Orientation

The programming structure is such that in the computer, as it
appears to the user, functions (sets of 101 points) rather
than individual numbers constitute the data elements while the

65

repertoire of "commands" consists of operations on functions
(e. g., arithmetic, differential, and integral operations).

Control and Display Capability

Central to the operation of the system is a control console
having a number of push buttons or keyb, ,which a.Llow for user
control of the computer, and two 17-inch CRT oscilloscopes
(with line"-drawing capability) which provide direct graphical
representation of computational results. An 8-inch CRT with
alphanumeric capability and a Flexowriter provide numerical
output when required.

Console Programming

A simple procedure allows the us,. r to construct, directly at
the console, new subroutines, using as building blocks an
initial set of hand programmed su'nroutines, plus any sub-
routines previously created by this console programming
procedure.

The system incorporates two standard keyboards, one associated with
operators, the other with operands plus a keyboard for digit entries.
Each operation is carried out by pushing a single key of the operator
keyboard. These operations may be at any of a variety of logical levels,
for example:

(1) Basic machine lwaguage commands;

(2) Elementary arithmetic;

(3) Functional mathematics;

(4) Basic display opera.ions;

(5) System management and data transfer operations.

Since a complete system includes all of these levels, it was convenient
to associate all keys with operations for any one level, with a simple
means for changing "levels," i. e. , changing en masse the significance of
all the operator keys. A small subset of operator keys designated as

66

"level indicators," analogous to case shift on a typewriter is used to
effect level changes. Corresponding to the variety of operator levels,
there is a similar diversity in the nature of the "operands. " Tn the
context of level 2, for example, they are treated as ordinary numbers,
while in the context of level 3 they are, as explained above, functions
(represented by their values at 101 points). Each key on the operand key-
boa'rd corresponds to a storage allocation in some mass storage device,
such as magnetic drum or disc, and data transfers between th:i: -nd
the computer are effected with the operator keys LOAD and STORE.

If A is the label on a particular operand key, then pushing, in sequence,
the operator key LOAD and the operand key A brings the data "in" A --
be it a number, a vector, or any other list -- into the computer's
magnetic core memory, while pushing the keys STORE A accomplishes the
converse.

Experience with this system has shown the on-line approach to be of
most help in so-called "fixed point" problems, i. e. , those which have
the form

f- Tf

where f is an unknown function to be determined (or, equally well, sever-
al functions) and T is an operator sufficiently complicated in structure
(non-linear, singular, etc.) to cause difficulties in both analytic and
numerical approaches. The designation "fixed point" is associated with
the concept of f as a "point" in "function space, " and T as a mapping of
that space onto itself.

If, by any means, one can find an f such that the operation T f repro-
duces f, one has clearly a solution of the above equation. The on-line
system with its graphical display facility and light pen in essence makes
it convenient to explore the function space in search of a fixed point.
Because of its unusual flexibility, the system facilitates an experimental
approach in which the strategy of the search in the function space is varied
by the user on the basis oi the information he obtains.

67

Certain shortcomings of the Culler-Fried system have been noted.
For example, there is no way for a user to examine the sequence of sub-
routine steps which constitute the operations performed by a button.
The user must therefore document his subroutines with pencil and paper.
Future efforts are being initiated to remedy such difficulties.

68

PART IV. SPECIAL PURPOSE PROGRAMMING SYSTEMS

In this section two special purpose problem-oriented language systems
are discussed. Each of these languages and associated computer
programs illustratos an aDDroach to problem solving which gains in
flexibility and ease of use precisely because the problem areas addres-
sed are extremely narrow and highly specific. Thus STRESS is a
problem-oriented language that can be used by structural engineers as
an aid in describing the kinds of calculations which must be performed in
almost every structural problem. Heretofore, these calculations had
to be performed manually, or else described with difficulty in FORTRAN-
like languages. The fact that the problem area is highly constrained
coupled with the willingness on the part of the designer to sacrifice
generality for the sake of ease of use by the engineer enables designers
of problem-oriented language systems to provide extremely satisfactory
tools for specific classes of users. It is not surprising that, in the
light of the extreme specificity of each problem-oriented language, there
is little or no carry over from one problem class to another.

A. STRUCTURAL ENGINEERING SYSTEMS SOLVER (STRESS)

STRESS is a special purpose programming system designed as a machine
aid to engineers in the solution of structural engineering problems on
a digital computer. The STRESS system consists of a special purpose
language in which a structural problem can be easily and naturally
described. Further, STRESS cortains an associated processor, or
compiler, which accepts well-formed problem statements in the STRESS
language and ultimately produces appropriate solutions.

The STRESS programming system, according to its designers, should not
be viewed either as a general-purpose program nor a compiler in the
conventional sense. Instead, they note that it combines features of
both. Thus, they explain that from the point of view of the user, STRESS
resembles a compiler in that it consists of a source language unintelligible
to the computer and a processor which translates the source language
into machine-coded operations. However,unlike most compilers,

69

STRESS makes no provision for the compilation of an "object
program."

A typical STRESS problem is one in which the nature and size of a
particular structure, say, the frame of some building, is specified,
along with the loads that the structure is to be subjected to, a statement of
the procedure to be followed in the solution, and a statement of the
resuilts desired. Modification of any of this information may also be
requested in order to obtain additional results for slightly altered pro-
blems.

A STRESS input consists of problem-oriented statements using common
engineering terminology. In the STRESS language the difference between
data statements and procedural statements has been obliterated and the
majority of statements contain both data and process directives.

The STRESS input involves a specification of a particular problem. The
full specification contains: (1) a header statement which initiates the
routine and provides a title; (2) a series of size descriptors which state
the size of the problem to be handled in terms of numbers of joint, sup-
ports,members and loadings: (3) a statement of the procedure to be used
in solving the problem; (4) a set of structural data descriptors within
which it is possible to specify necessary information about the geometry,
topology, mechanical properties and the presence of local releases
(hinges, roller, etc.) of the structure; (5) a set of statements which per-
mit rapid evaluation of alternate designs; and (6) a set of termination
statements.

Within the framework of these statements the designers of STRESS have
tried to maintain communication in the engineer's language while providin
a concise form of input. The result is a relatively easy-to-use special
purpose programming language and problem solving system tailor-made
to the needs of the structural engineer.

The internal system of STRESS performs four basic functions: (1) input,
(2) compilation, (3) execution, and (4) modification. The input phase is
initiated by the header statement mentioned above and is terminated by th
termination statement, a phrase such as SOLVE, or SOLVE THIS PART.
These and all statements in between are presented to the computer (an IB
709/7090/7094 data processing system with 32, 768 storage locations)
through punched card inputs. The initial phase includes scanning of the

70

punched cards for the identification of the various parts of the program;
that is, the labels and the data in the form of numerical values. This
information, once identified, is stored and the pararrcters specified by
the labels are set and other appropriate preliminary steps undertaken.
At this point if any portion of the statement is unacceptable, an identi-
fying error message is printed out. The designers have tried to provide
as much diagnostic information as possible.

In the second, or compiling phase, all editing, checking and compilation
functions are performed. Additional error checks are performed, and if
the problem is found to be executable, the remaining compilations are
performed.

In the execution phase, a control program essentially calls in and
executes the appropriate sub-routines, checks again for errors, and ter-
minates if an error occurs. After execution the system returns again
to input phase.

In the modification phase, the inpuit phase is resumed, such resumption
being triggered by a key phrase in the initial input statements. In this
phase the modification statement is examined to determine the appropriate
actions to be performed and these actions are executed with the modified
information being superimposed on or merged with the previous data.
An unlimited number of modifications are allowed.

From this brief description of STRESS it should be apparent that the
STRESS system amounts to an extremely useful anei flexible programming
language for use in a highly structured problem environment, namely
that of structural engineering. The strategy behind the creation of
STRESS has been the development of a special purpose language tailored
to the needs of a specific user and so constructed as to be easily trans-
lated into machine control. The purpose of STRESS is not the enhancing
of computer i -age through greater generality of programs and program
structures howev,-r. Rather it is to facilitate the use of digital computers
for the solution of structural engineering problems.

B. COGO-90

COGO-90 is the name of a civil engineering problem oriented language
and programming system. The basic difference between COGO-90 and
STRESS, is essentially in the prublem environment to which each addresses

71

itself. Hence, COGO-90 is used in the solution of geometric problems
arising out of rand surveying, highway design and bridge geometry,
whereas STRESS deals with structural engineering problems. Thus
COGO-90, like STRESS, is a useful and fexiblc programming languag.
for use in a highly specific problem environment. And its purpose has
been, like STRESS, solely to facilitate the use of digital computers in
highly specific problem area.

The COGO program currently runs on the IBM 1620 computer, and
executes simple macro calls on functions in coordinate geometry. It
accepts as input sequences of macro calls with specified parameters.
These macros are functions normally used by civil engineers to calcul
areas, point coordinates, line lengths, etc. , in support of field sur-
veying and similar problems. Any logical sequence of macros may be
used. All calculations may be printed out. Some typical COGO functi,
are illustrated below.

STORE 51 2000.0 5000.0

(Record the point known as "51" as having coordinates x=2000,
y.5000).

LOCATE/AZIMUTH 22 51 2236.07 116 34 00

(Record point "22" as being 2236. 07 feet from point 51 at an
azimuth of 11603410011. Record and output the coordinates of
point 22).

Similarly, angles, areas and other information can be declared or
derived from existing data. COGO is designed to be used primarily b,
engineers working from a plot plan who desire quick answers to one-s
surveying problems. COGO is not cLpable of extensions except by di
coding new macro functions. While relatively unsophisticated, COGO
a useful and inexpensive engineering tool.

COGO-90 was developed for the IBM 709, 7090 and 709A computers.
is based on the original COGO system developed by C. L. Miller for I
IBM 1620. In addition COGO versions have been or are being develop
for the IBM 7040, 7070 and 705, the CDC 1600 and 3600, the Burroug]
5000 and the PDP 6.

72

COGO-90 occupies approximately 20K of core; it contains several hun-
dred FAP instructions and several thousand FORTRAN instructions.
The program required approximately 1 man year to develop. However,
a large number of the COGO-90 programs were identical to those of the
1620 version. Indeed, it is estimated that, were COGO-90 written with-
out the benefit of 1620 COGO, it would have taken from three to five years
to develop.

7tly

73

PART V. TIME-SHARING SYSTEMS

The ability of a system to time-share (i. e. , to make a computing
facility available to a multiplicity of users simultaneously) is a mode,
or aspect, of operation of a system; it is essentially independent of the
area of application, or other features of the system and can be achieved
in several ways. It is similar, in this respect, to the user-on-line
mode of operation and, in fact, most time-sharing systems are also
(at least partly) user-on-line systems, though the converse is not gener
ally true. Time-sharing systems have been built with widely different
properties and features, and the determination of the most suitable set
of features for a system must be made without regard to whether or not
the system will be made to timne-share. By way of indicating the range
of computing facilities that have been time-shared, consider the JOSS
system discussed in Part III. The facility made available to the user
is essentially that of an elaborate, responsive desk calcuiator. In con-
trast to this is the MAC system which gives the user access to a comple
IBM 7094 which he may use, wisely or poorly.

The main question concerning time-sharing is whether or not it should
be done, and if so, how. The matter of the relative efficiency of time-
sharing versus batch processing, for example, is still an open issue.
However, many types of computing centers, particularly university
environments, have found time-sharing to be the best way to make a cor
puter available to a large number of users. Time-sharing seems justi-
fied, even desirable, where many short, one-shot programs are involve
where nearly equal computer timne is to be given to each user; and whert
no real-time requirements on tae system might be compromised. In
other cases, it may be preferable to use a more elaborate multi-progra
ming scheme with user priorities, or, alternatively, a simple batch
processor.

Certain extra hardware (and therefore extra expense) is required in a
time-sharing system. For user-on-line operation, users' stations suct
as typewriters, display consoles, etc., must be provided; and in genera

74

sufficient buffering, control, and I/0 channel capacity must be available.
A prime requirement for time-sharing is fool-proof memory protection,
whether it be done by software -- i. e. , interpretive execution, as in

JOSS -- or hardware, as it must be for an efficient large-scale system.
Given this required hardware, almost any computer system can be made
to time-share. In fact, simple forms of time-sharing occur as a matter
of course "n some of the general purpose systems examined in Part VI.

Among the major concerns of the time-sharing designer are the develop-
ment of proper algorithms for scheduling, the development of routines
capable of restoring programs interrupted at some prior stage to their
proper place in the computer upon being recalled by the user, the develop-
ment of sufficiently sophisticated executive routines to minimize the delay
time experienced by the user between his input and the system's response.
Thus, the time-sharing designer is concerned with generalization of his
computer in the sense in which it is available to a large number of users
simultaneously. Other considerations of generality, however, such as
increasing the dimensions along which man/machine communication is
possible, or enhancing the flexibility of program-linkage techniques, or
extending the range of problem areas the computer is capable of handling,
may also be objectives of time-shared projects. Indeed, many time-
sharing system designers believe that the use of time-sharing system
techniques is the only way in which tools such as JOSS, SKETCHPAD, and
Culler-Fried will ever be economically feasible. Two such projects are
described below.

A. PROJECT MAC

The system goal of Project MAC is regarded, by its designers, as the
development and operation of a community utility capable of supplying
computer power to several users simultaneously with the least number of
constraints. Thus, the MAC system is viewed as a public utility which
provides each of its users with the equivalent of a private computer whose
capacity is adjustable to individual needs.

The primary terminals of the MAC system are 40 model 35 Teletypes and
28 IBM 1050 teletypewriters.

Each can dial, through the M. I. T. private branch exchange, either the
IBM 7094 installation of Proi-ct MA C, or the similar installation of the

75

M. I. T. Computation Center. The supervisory program of the two
computer installations accepts or rejects the call. Each installation car
provide service to as many aL 24 simultaneous users.

To provide long distance access, the MAC system is connected to the
TELEX network operated by the Western Union Company and will be
connected shortly to the TWX network operated by the American Telepht
and Telegraph Corporation. The TWX terminal can reach approximatell
65,000 Teletypes, and the TELEX network provides access from termi-
nals in Europe as well as in the United States.

The heart of the MAC system is the Compatible Time Sharing System
(CTSS), a programming and executive system which allows for multiple
user access while also permitting conventional batch-processing loads
to be run. This is one of the principal design features of the CTSS.
The CTSS includes executive, scheduling, debugging, asseinbler-compil
and input-output facilities. The programming languages presently avail,
able in the system for the use of individuals are FAP, FORTRAN, MAD;
COMIT, LISP, SLIP, a limited version of ALGOL or two problem-orien
languages for Civil Engineering, COGO or STRESS.

The system will continue to add new language facilities and other utility
programs and programming aids.

The users of the MAC system include faculty and students of a dozen
academic departments, and research staffs of five major research
laboratories. The disciplines represented range from engineering to
psychology, from physics to management, from metallurgy to political
sciences.

In a typical programming session at a terminal, the user first logs in,
giving his identification. He can then type in a subroutine, perhaps usin
the MAD language, and then call for a printout of his input, edit it to
correct errors, and call for a MAD conpilation. The resulting binary
program, possibly with other programs previously compiled, can then b
loaded and executed. if the run is unsuccessful the user can request
post-mortem data to assist in locating the fault. If necessary he may
request the source program and recompile it, perhaps repeating this
several times. To terminate the session the user logs out, at which tirr
he receives from the supervisory program accounting data indicating hol
much actual computer time he has used. Users: programs and data are

76

stored in the disc files of the system, together with compilers and
other public programs. Thus, a user can interrupt his work when he
wishes, and start again where he left off at his next session at a system
terminal, hours or weeks later.

The equipment configuration of the MAC computer installation is illus-
trated in Fig. 1. The IBM 7094 central processor has been modified to
operate with two banks of core memory, each consisting of 32K words,
and to provide facilities for memory protection and relocation. These
features, together with an interrupt clock and a special operating mode
(in which input-output operations and certain other instructions result
in traps) were necessary to assure successful operation o independent
programs coexisting in core memory. One of the memorý ban!-q is avail-
able to the users: programs; the other is reserved for the supervisory
program of the time-sharing system. The second bank was added to avoid
imposing severe memory restrictions on users because of the large super-
visory program, and to permit use of existing utility programs (compilers,
etc.) many of which require all or most of a memory bank.

The basic point with respect to the MAC system in particular, and time-
sharing in general is that as a strategy for imparting to a computer a pro-
gram configuration with a high degree of generality it leaves much to be
desired. The construction of its highly efficient and comprehensive super-
visory programs merely make it possible for more than one user to have
available a large scale conventional computer at the same time. But
these programs do not contribute at all in making that computer anything
more than conventional. Nor does the time-sharing strategy make avail-
able to the user highly sophisticated problem solving techniques. But it
was never intended as such. Rather it is a responsive design strategy
oriented toward providing a large number of users with simultaneous
access to a large scale conventional computer. The development of more
sophisticated user-on-line techniques, of general purpose programming
and executive routines, of problem-oriented languages, and of information
processing techniques remain as problems to be solved within a multiple
access, time-shared system.

B. THE SDC TIME-SHARING PROGRAM

The SDC time-sharing program is similar in scope to Project MAC and is
designed to make available a tape-oriented AN/FSQ 32v computer to 10-15
users simultaneously, each of whom operates independently under control

77

4-04

06 0

44)

.4 P-4 04..

J~~~.- iwv 4
4

5 5 5 5 5

A A A A be

Ila 4.a

78U

of an executive system.

The executive system permanently occupies 16, 384 words of core
memory. It also utilizes around 6, 000 words of drum and about 9, 000
words of disc permanently for storage of additional programs and data.
Input memory is used by the system for buffering between the PDP-1
and the Q-32. A maintenance program (called FIX) occupies an additional
2,000 words of core, 16, 000 words of drum, and one tape drive perman-
ently. Also, the remainder of the drum storage is utilized for storage of
active object programs, and thus is not available for data use by object
programs. The remainder of the computer (core, disc, tapes) is essen-
tially available for the object program's use.

The scheduling algorithm maintains two queues, one for short compute,
highly interactive users (determined empirically). These users operate
in an essentially round-robin fashion, getting 400 ms. maximum per turn.
Since the probability of more than one of these users requiring compu-
tation at the same time is quite small, these users generally get almost
instantaneous response. The second queue is composed of users who
have long compute requirements. They operate with a much longer basic
turn, each one being interrupted only by the occasional requirements of
the other queue of users, thus making the amount of swap time required
fairly minimal. Of the 11,000 executive instructions, the scheduler
requires only 500 of these. (The remainder of the executive programts
space is occupied by data.)

The programming languages available are JOVIAL, IPL-V, LISP, SLIP,
and machine language. The RAND Tz-blet is now part of the hardware
complex.

The difficulties involved in the development of the time-sharing system
have been primarily due to the constantly changing hardware and software
requirements. Both the program and hardware have maintained a steady
rate of change since the beginning of the system, so that although in general,
schedules have been met, and use of the system has been quite productive,
numerous problems have required a fairly constant work force a.,d level
of activity. Since this has been an experimental as well as productive
environment, this situation is not unexpected.

79

The system design represents two major and relatively distinct efforts.
First, the basic executive, described above, required six people
(generally quite experienced) ever since the early design phase in 1962.
The system was operational eighteen months later and has evolved ever
since, requiring roughly the same level of six people. In addition to
this basic executive, a large number of "service" routines have been
programmed and made available to both programmer and non-programmn
users. These include compilers, editing routines, interpreters, aids
to calculation, and other useful routines. In general, each one of these
routines requirel one or two people. The time-sharing project has

averaged around six or seven people on this kind of work for two years.

80

Figure 2. CILARAC TE RIS TICS OF EQUIPMENT IN THE SYSTEM

DEVELOPMENT CORPORATION COMM-AND RESEARCH

LABORATORY

0 0 0

4:ý

o cc

LA
0

-4

P4 .

0 0 0 0 w)

00 co %0IV0m N -4 U U v -

Is4:N a a
a

.-4.~' -4 en~ No.onL
-4 N - N - 4 -4 -.

0
$0

00

U)U

.4
(A

-4

'0-4

4:
-4

-4 N

U. >

X414U
U) t

144 §A 1 w
0 E -41.

4j -4-j

U) U)j 1.. 4.
U) 4b

4.)

U
1 4

4) U

o o U4

m 1 [-41
81

Figure 2. (CONTINUED)

0 0

00
U0

0. C) 0 0 U .

P4 0 O e0 00 cc4 0 0n-

o~~c r'-----4 N ~-

H

0 U-1

N ~0-
z -

0 >

U 0 9

0: U)

E 4.- 0 0 -
g 0

0 H$4 ~ (0) (d

0 4j $(.4 w4jP

(Uz. W0 0 >
00-

0

0 S.4 -

2 Swithabl fro Q-3 XSh e oprton26

4 Cpait inraedt 3 y16

$4 -14.0 ý* 0 U82

PART VI. GENERALIZED DATA MANAGEMENT SYSTEMS

In this section two systems are discussed which represent an approach
to software development that can best be described as generalizations
of the preceding points of view. These two systems, ADAM and LUCID,
have attempted to construct within the confines of one computer system
environment programs which incorporate the sophistication and power of
general purpose executive routines, the job specific concentration
exhibited by the functional systems, the flexibility and power of user-on-
line systems, the narrow band specificity of problem oriented languages
and, to a lesser extent, the special sense of generality implied by time-
sharing. The motivation behind this undertaking is the necessity for
devising a computer based system which exhibits the kind of flex'bility
required of an engineering tool. In this case the goal of the engineer
is the design of large scale computer-based systems. Hitherto, he has
been without the requisite tool to facilitate his design task. ADAM and
LUCID are attempts to fill this gap.

A. ADAM (ADVANCED DATA MANAGEMENT)

ADAM (Advanced Data Management) is a current effort by the MITRE
Corporation to develop a system of generalized programs which antici-
pate most of the features of an on-line, real time multi-access informa-
tion processing system. The purpose of ADAM is to facilitate the rapid
and economic conversion of an IBM 7030 computer and its peripheral
typewriters and displays from one alternative system configuration to
another. This capability permits alternative design decisions to be
tested and verified, e. g. , utility of graphical inplit capability or
adequacy of a query language, by the experimenter without incurring the
usual reprogramming costs associated with making modifications to
conventional computer programs.

'he essential feature of ADAM is its generalized implementation of data
management functions which are considered to be common housekeeping
functions in most systems, i. e.:

83

(1) Data Base Creation

(2) Data Base Alteration

(3) Data Base Augmentation and Reduction

(4) Data Base Regrouping

(5) Data Base Searching

(6) Data Base Analysis

(7) Input Message Analyses

(8) Output Message Creation

(9) Information Forrnating

(10) Report Generation

(11) Display Generation

(12) Information Routing

(13) Event Sequencing

(14) Process Implementation

In ADAM, generalized programs for implementing these functions are
written without explicit reference to data- attributes, message format,
display makeup, query language, etc. , which are considered the
"specifics" of the application. Variation in data base organization, q1
language syntax, sequence parameter representation, etc., can be
controlled by the experimenter.

The operating ADAM system accepts messages from and sends output
on-line input-output devices, such as typewriters, display consoles,
printers and magnetic tapes. Messages may query the data contained
ADAM; add, change, or delete data; add or delete programs; or caus(
operation of programs which have been previously added. Data or pr,
grams added to the system become part of the system, to be writtenc

84

the next system tape and remain part of the system until replaced or
deleted.

Data in ADAM are contained in ADAM files, and c;,e creation, mainten-
ance, processing, and querying of the files ate the major purposes of the
system. In addition to files of problem data, the system contains a
file- of routines (both system routines and problem-specific routines),
a file of languages in which messages may be stated, a file of formats
for outputs, and other special purpose files.

Operations basic to the use of ADAM may be broadly classed into:

File Generation Creation of new files.

File Processing Queries, modifications to existing files,
computations on file data.

Problem-Specific Operation of 7030 programs (for file
Processes manipulation or calculation) which are

specific to a problem as opposed to
general-purpose constituents of ADAM.

Program Preparation Compilation or assembly of 7030 programs
for use within ADAM and their insertion
into the system.

File Generation, Processing, and Problem-Specific operations all result
from message inputs through on-line inp'it devices or the MCP.input tape.
Program Preparation requires compilation of programs off-line by the
pre-processors or post-processors followed by on-line additions to the
routine file.

New input languages or modifications to languages may be made through
off-lKne assembly by the Language Assembly Program followed by on-line
additions to the language file.

1. File Generation

e The heart of ADAM data management is the ADAM file and the rolls corres
ponding to each file. All data objects, language specifications, routines,
formats, etc. , are carried in files. A file is a named collection of like

*ADAM operates in conjunction with the Master Control Program (MCP)

for the IBM 7030.
85

things. For example the "airfield" file would contain information about
several specific airfields. Each airfield, e. g. , Logan, Hanscom, etc.,
would be an object in the airfield file. The various data about each
object are called properties. Typical properties for the airfield file
would be Location, Number of Runways, Elevation, etc. The actual
data in a file are the values of these properties, e.g., Boston, 6, 2,0
feet, etc. The set of properties for an object in a file must be the same
set as for all other objects in that file. Of course, the values of these
properties may change from object to object. The set of all property
values for one object in a file is called an entry in that file. ADAM
files are structured serially by entry, the first entry being the values
of the properties that occur once per file, e. g. , file name, file size,
date updated, etc.

A roll is a type of dictionary or directory that associates external name
with their more concise internal representations, usually some small
integer. This integer is called the principal value of the name. Synony
for external names are effected by a many to one mapping of names to
integers, i. e. , all synonymous external names have the same principal
value. Additionally, a roll will have subsidiary values which give addi,
tional information about the things named in the roll. Within a roll,
principal values are unique.

Each file has associated with it, but physically separate, an object roll
and a property roll. The object roll contains the names and principal
values of each object in the file and subvalues which give the object's
location in that file. The property roll has the names and principal val-
of the properties in the file, and for each property, several subvalues
giving type, size, unit of measure, location, legal range of values, etc
Files may also use rolls to hold the alphanumeric values of some of the
file properties (e. g. , red, green, up, north, or some other non-nume!
value) and carry only the principal values of these values in the file its4
Many files may share such a roll. Rolls are not used only by files; the
system keeps several rolls for its own internal use.

Property types are fixed-length (integer, floating, small-range or low
precision floating, or alphanumeric) and variable-length. Examples of
the latter are query-valued (some processing is invoked to produce the
value), raw (arbitrary string of bits such as an actual alphanumeric
string as opposed to a principal value standing for such a string), and
repeating-group. A property of the repeating-group type is simply a

86

collection of sub-properties, which may themselves be of repeating-group
type nested to arbitrary depth.

Any data amenable to structuring may be introduced into ADAM. New files
may be generated from external data, existing ADAM files, or both.

2. Queries and File Processing

The principal feature of ADAM which it shares with no other generalized
data management system is its translator.

The translator translates a message in accordance with a language, selecte.
from a number of languages contained in the language file. The selection
is based on a language specification determined by the recognition rules.
Translation involves transforming the syntax of the message into a
specification of operations to be performed and transforming the names
of files, etc., in the message from their external form to a condensed
internal representation. Translation of the syntax occurs with reference
to the specified language. Translation of names requires directories of
names or rolls and are used as required by the translator. The trans-
lated message becomes a process table, which is a set of pseudo instruc-
tions which specify various subroutines that effect the processing specified
by the message. The process table may call for combinations of file
processing and problem programs in essentially any order. The processor
interprets the process table by examining each pseudo instruction in
order and calling upon the appropriate subroutines to perform the action.

This function of the ADAM system permits several potential users to
specify the syntax of a query language relevant to their own problem area.
The sentences generated by each of their respective grammars, however,
will be acceptable to the ADAM translator without the necessity for its
being reprogrammed. In different words, the ADAM translator is a syntax
driven compiler which provides the same translation capability to any
number of different users without reprogramming. Thus, the ADAM
translator may also be viewed as a query-language modelling facility whici,
allows for the study of query languages without building software prototypet
Such facilities as these exemplify what is general in generalized data
management systems.

87

!I

3. Routines

"An ADAM routine is a piece of code which obeys ADAM rules for commi
cating between routines and data. Routines are prepared in DAMSEL
(a procedural language available in ADAM) or FORTRAN. In either
case, some off-line processing is required to produce a binary form of t
routine with its communication information included. This binary routin
is what is then inserted into the ADAM system. Theoretically, routines
and their communication links may be directly prepared also via the
SMAC and STRAP assemblers. Routines are all relocatable and are
size limited only by the amount of available core when they are to run.
All ADAM routines are kept in a special file called the "routine file. "

4. System Control

The system control philosophy of ADAM is to accept input messages as
they arrive, recognize them, and place them according to some priority
scheme in a job queue. An ADAM message is any string of characters
from an input device that ADAM can recognize. ADAM will recognize a.
input language whose recognition rules are given to the system. When
a running job is completed, the top of the job queue is examined and
the appropriate routine is called (problem program, translator, query
analyzer, etc.) and enjoined. When the job is started, it runs to comple
tion, being interrupted only for recognition and stacking of input messag
This implies that only one program (other than utility routines) can have
the machine at one time. The amount of multi-programmii g of user
programs is minimal. Requests for output are handled immediately if
the channel and peripheral gear are available; otherwise, they are queut
up and sent out when possible. All system routines (input/output hand-
ling, job scheduling, memory allocation, etc.) are subroutines and may
call each other as needed.

Streams are an artifice whereby any ADAM data structure can be con-
sidered of arbitrary size, existing over more than one storage media
(e. g., part in core, overflowing onto disk). Two routines are provided
for the handling of streams. Other control routines available auto-
matically to the system are a disk and tape allocator, core allocator,
routine loader, and roll controller.

Thus, ADAM is a system which performs data management functions by
general techniques independent of the form of data or calculations requij

88

in any specific application. ADAM treats as data the specifications of

a specific system design. Through its operator language, designers
are able to dynamically modify system specifications resulting in a
convenient evolution in design. Furthermore, because the designer has
access to current system specifications in ADAM, ADAM itself can be
used to prepare reports on the design and can generate on-line displays
for assisting users to both use and modify the system.

B. LANGUAGE USED TO COMMUNICATE INFORMATION SYSTEM
DESIGN (LUCID)

LUCID is a user-oriented language -and macro system for the design and
evaluation of data retrieval and manipulation systems in a laboratory
environment. The system is being written for the AN/FSQ-32 computer
at the System Development Corporation, Santa Monica, Califorria. The
objectives of this system are to provide the information system designer
with an integrated set of closed JOVIAL procedures and a convenient
means for arranging them in appropriate complex hierarchies under a
control program to provide data base maintenance and on-line data-base
query capabilities.

The LUCID system is designed to operate from a Marter Tape. In the
Phase I version of the system there are four system files on the Master
Tape. These files, (1) System Control, (2) LUCID Translator, (3) On-
Line Query System, and (4) Interpreter, contain not only the appropriate
LUCID system routines for performing designated functions, but in
addition, they contain tables which are a complete parametric description
of the user t s system under investigation. Because LUCID programs are
highly generalized, they must be supplied with certain parameters by the
computer center staff even before the system can be employed as a
design tool. Thus, the System Control program provides an initial
parameter load capability which specifies input media, output media,
available tapes, symbolic representations of LUCID operations, comments
to be communicated to the designer, etc. Once the system is initialized,
experimental file structures, input data, temporary files and processes
for the manipulation of the data can be easily described in the LUCID
language by the experimenter. These descriptions are translated by the
LUCID translator into binary tabular form called OPAQUE. The OPAQUE
tables are then examined by the Interpreter which calls in the necessary
macro routines for building and processing files, thus implementing a
specific system design.

89

The most salient characteristic of the internal structure and design
philosophy of the LUCID system is the number of tables used. In addi-
tion to the OPAQUE tables, others such as communication tables, con-
trol tables, temporary storage tables, and a table of operators are
generated automatically by the system.

LUCID admits six levels of data structure: data base, file, table
entry, item, and bead. Four structures of data tables (linked, serial,
parallel, and mixed) can also be accepted by the system. A linked
table, not accessible to the user in the present system, is a table in
which each entry provides the index for the next entry. Serial tables
are serial by row and parallel tables are serial by column. The mixed
table consist of two parts, a fixed-entry-length part and a variable-
entry-length part. Each fixed-entry component contains a cross refer-
ence to the variable-entry part.

LUCID also has provisions for the generation and maintenance of a con-
cordance of the data base which is, in effect, a copy of the data base
with the contents listed in a different way. Some but not necessarily
all of the property values are used in a normal manner. The size of
the conco-dance varies from slightly smaller than to three or four
times the size of the data base. This type of organization facilitates
certain retrieval operations, but can be very inefficient.

Current capabilities include off-line file generation and system de-
scription with card-to-tape, tape-to-card being the conventional input/
output mode of operation.

90

CONCLUSIONS

From this survey on important perspectives in advanced software
development, it is apparent that several new and powerful entries have
been made in the roster of software innovations. Thus, the general
purpose programming and executive systems cited in this survey have
contributed significantly to the notion of the "extensible" machine where
storage allocation, program linkage, program segmentation, sequence
control, error detection and correction and I/O control capabilities
are provided as tools for building, controlling and modifying programs.
Functional systems such as COLINGO, NAVCOSSACT, FICEUR and
473L have incorporated new techniques for retrieving data from large
numbers of formatted files and for manipulating these files in an effi-
cient manner. In the area of man-machine interface techniques,
SKETCHPAD, CULLER-FRIED, JOSS, and BASEBALL have each
contributed new ways for non-programmers to interact with computers
through the development of graphical manipulation, calculation and
natural English accessing capabilities, respectively. Similarly, COGO
and STRESS have shown where languages tailored to specific problem
classes promise an order of magnitude improvement in the problem
solving ability of non-computer specialists. Finally, generalized pro-
gramming techniques in the form of data management systems promise
significant improvement in the flexibility of multi-user, on-line, com-
puter-based systems.

The desirable features found in all of these systems are summarized
below:

(1) Addressing the computer in a specific problem area (COGO,
Sketchpad, etc.)

(2) On-line users controlling their computational processes.

(3) Referencing data objects by name.

(4) Description of data objects independently of the program

91

(5) Use of programming and retrieval languages.

(6) File maintenance procedures.

(7) Scheduling and monitoring functions.

(8) Creation, modification and evaluation (running) of programs
and data.

(9) Time and facility sharing.

(10) Automatic allocation of machine resources.

(11) Specification of parallel paths of processing.

(12) Extensibility into various problem areas.

All of these features contribute to more effective use of computers and
may certainly all be present within a given system. Indeed, many of
these features exist at varying levels of use and sophistication in many
of the systems that have been examined. For example, both COGO and
ADAM have an executive control; one is primitive and special-purpose,
other quite 5ophisticated and general. It is also true that the various
features are achieved at different costs in different systems, e. g. , it
would be cheaper to include an ALGOL translator under the CL-Il systei
than it would be under COLINGO

Given that the features in the above list have proved to be valuable,
individually and in various combinations, the approach of the designer
of "next generation" systems might profi'tably be the following: rather
than concentrating on a specific application, and building up from scratc
a computer system to meet those requirements, he should start by
designing a hardware-software sub-system which provides, or facili-
tates the provision of all (or a large subset) of these desirable modes of
operation, programming environments, etc. If this can be done in a
very ge-ieral, and reasonably efficient, fashion, the designer will have
at hand the beginnings of any number of different systems, each of whic]
will be relatively easy to modify and expand, as requirements dictate.

In the light of Lhis observation, it is important to note that to date effort
to develop generalized systems and sub-systems exist only on a very

92

small scale and in only a small number of laboratories scattered
across the country. As a consequence, there does not now exist a
single system in which all or many of the techniques mentioned above
are being integrated into one efficient configuration. And this is in
spite of the fact that computer systems so designed would be opera-
tional tools of inestimable value to the military in general, and to the
Air Force specifically.

And this brings us to the final observation of this survey: namely, the
time is now ripe for a technical program designed to demonstrate the
feasibility of generalized computer systems and sub-systems in the
solving of traditional data processing problems.

93

BIBLIOGRAPHY

GENERAL PURPOSE PROGRAMMING AND EXECUTIVE SYSTEMS

AOSP (Automatic Operating and Scheduling Program)

Anderson, Hoffman, Shifman and Williams, "The D-825 - A
Multi-computer System for Command and Control,"
Burroughs D&S Group, Proceedings FJCC, 1962.

Thompson and Wilkinson, "D825 Automatic Operating and
Scheduling Program, " Burroughs, Proceedings SJCC, 1963.

CL-fl.

T. E. Cheatham, Jr., G. F. Leonard, "An Introduction to the
CL-Il Programming System, " Computer Associates, Inc.

DODDAC (Departmeit of Defense Damage Assessment Center)

Defense Atomic Support Agency, Department of Defense Damage
Assessment Center, Initial System, Executive System Program
Description, Technical Memorandum No. TM-WD-16/001/00,
System Development Corporation, Santa Monica, California,
1 October 1964.

Defense Atomic Support Agency, Department of Defense Damage
Assessment Center, Initial System, Glossary and Program Index,
Technical Memorandum No. TM-WD-14/002/00, System Develop-
ment Corporation, Santa Monica, California, 1 December 1962.

Defense Atomic Support Agency, Department of Defense Damage
Assessment Center, Initial System, System Data Definitions,
Technical Memorandum No. TM-WD-16/005/00, System Develop-
ment Corporation, Santa Monica, California, I December 1962.

Defense Atomic Support Agency, Department of Defense Damage
Assessment Center, Initial System, Data Base System User's
Manual, Technical Memorandum No. TM-WD-16/007/00, System
Development Corporation, Santa Monica, California, 31 Dec 1962

94

INTIPS (Integrated Information Processing System)

ECP 1A Userts Reference Manual, Informatics, Inc., Sherman
Oaks, California, 30 August 1964.

Programming Manual (RW-400) AN/FSQ-27, 2nd ed., prepared
by Bert Helfinstein, Ramo-Wooldridgc Division, Thompson-Ramoo-
Wooldridge, Inc., Canoga Park, California, I February 1961.

OASIS

"Support System - 1604 OASIS Program Descriptions," System
Development Corporation, TM-WD-17/001/00, 1 August 1962.

UI. FUNCTIONAL SYSTEMS

ACSI-MATIC

Colilla and Samns, "Information Structure for Processing and
Retrieving, " RCA, Comm. ACM, January 1962.

Holt, A. W., "Program Organization and Record Keeping for
Dynamic Storage Allocation, " ADR, Comm. ACM, October 1961.

Gurk and Minker, "The Design and Simulation of an Information
Processing System, " RCA, Journal ACM, April 1961.

Miller, Minker, Reed, and Shindle, "A Multi-Level File
Structure for Information Processing, " RCA, Proceedings WJCC,
1960.

COLINGO (Compile On-Line and Go)

"COLINGO 1Dt a control language for U. S. STRIKE COMMAND,"
MITRE Wnrking Paper W-06890, 4 March 1964.

"USSTRICOM COLINGO t Dt SYSTEM DESCRIPTION, " MITRE
Working Paper W-06821, 22 January 1964.

95

FICEUR (Fleet Intelligence Center Europe)

"Intelligence Data Processing System, Formatted File Systerm
Volume 4, Information System Design and Utilization, " Prepa'
by U. S. Navy Fleet Intelligence Center, Europe, and Internat
Business Machines, Rockville, Maryland, May 1963.

"Intelligence Data Processing System, Formatted File System
Volume 5, Information Retrieval, " Prepared by U. S. Navy
Fleet Intelligence Center, Europe and International Business
Machines Corporation, Rockville, Maryland, May 1963.

NAV COSSACT (Naval Command Support System Activity)

"User's Manual for NAVCOSSACT Information Processing Sys
Phase I, " NAVCOSSACT Report No. 51, Naval Command Sys
Support Activity, Prepared by IBM, 12 July 1963.

"Supplement 1 to Userts Manual for NAVCOSSACT Informatior
Processing System - Phase I," Supplement 1 to NAVCOSSAC'
Report No. 51, Naval Command Systems Support Activity,
Prepared by IBM, 22 January 1964.

"User's Manual for NAVCOSSACT Information Processing Sye
Phase I, Library Maintenance System," NAVCOSSACT Repor!
52, Naval Command Systems Support Activity, Prepared by Ii
national Business Machines Corporation, 23 August 1963.

"User's Manual for Information Processing System for the
AN/FYK-1(V) Data Processing Set - Phase II, " NAVCOSSACI
Rep)rt No. 123, Naval Command Systems Support Activity,
Prepared by IBM, 15 June 1964.

"User's Manual for the 704/7090 Information Retrieval,"
NAVCOSSACT Report No. 76, Naval Command Systems Suppc
Activity, Prepared by Suzanne J. Berard.

96

TUFF - TUG (Tape Updater for Formatted Files - Format Table
Tape Updater and Generator)

"User's Manual for 704/7090 TUFF MOD III, Tape Updater for
Formatted Files,"'NAVCOSSACT Report No. 74, Naval Command
Systems Activity, Prepared by Marie P. Wilk, 1 November 1963.

"704/7090 TUFF (Tape Updater for Formatted Files), On-Line
Messages and Error Stops," NAVCOSSACT Rcport No. 75, Nava?
Command Systrms Support Activity, November 1963.

"User's Manual for TUG - Format Table Tape Updater and
Generator, " Naval Comrma&nd Systems Support Activity, Prepared
by International Business Machines Corporation, Rockville,

m Maryland, 30 October 1962.

473L (US Air Force Command and Control System)

Technical Memorandum for IOC Optimization 473L IOC Phase,
Technical Memorandum No. TMV-225, Prepared for 473L Syster
Program Office by International Business Machines Corporation,
Rockville, Maryland, 29 March 1963.

Operational Specification for Query Language - 473L, Operational
Specification No. 473L-OS-10, Prepared for 473L System Progra
Office by International Business Machines Corporation, Rockville
Maryland, 25 May 1964.

In. MAN-MACHINE INTERFACE SYSTEM

BASE BALL

Green, B V., Wolf, A. K., Chomsky, C., and Laughery, Jr.,
"Baseball: An Automatic Question-Answerer, " Proc. WESCON
Vol. 19, 1961.

Wolf, A.K., Chomsky, C., and Green, Jr., B. F. , "The Baseb;
Program: An Automatic Question-Answerer, Volume I," Techni
Report No. 306, Lincoln Laboratory, Massachusetts Institute of
Technology, Lexington, Mass., 11 April 1963.

97

CULLER-FRIED

Culler, Glen, and Fried, Burton D., "The TRW Two-Station
On-Line Scientific Computer, " TRW 8587-600Z, RU-000, TRW
Space Technology Laboratories, Redondo Beach, California,
July 1964.

Culler, Glen, and Fried, Burton D.., "An On-Line Computer
Center for Scientific Problems," M19-3V3, Thompson-Ramo-
Wooldridge, Inc., Canoga Park, California, June 1963.

DEACON (Direct English Access and Control)

Thompson, Frederick B., J. A. Craig, Gregory D. Gibbons,
John W. Gwynn and Jacque S. Pruett, "DEACON Breadboard
Summary, " RM64TMP-9, TEMPO, General Electric Company
Santa Barbara, California, March 1964.

Shaw, J. C. , "The JOSS System, Time-Sharing at Rand,"
Datamation, November 1964.

SKE TCHPAD

Sutherland, I. E., "Sketchpad: A Man-Machine Communicatioi
System, " Technical Report No. 296, Lincoln Laboratory ,
Massachusetts Institute of Technology, Lexington, Massachuse
30 January 1963.

IV. SPECIAL PURPOSE SYSTEMS

COGO

Miller, C. L. "COGO - A Computer Programming System for
Civil Engineering Problems, " M. I. T. , 15 August 1961.

Roos, Daniel and C. L. Miller, "COGO-90: Engineering Useri
Manual, " Department of Civil Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts, April 1964

Roos, Daniel, and C. L. Miller, "COGO-90 Time-Sharing Ver
Department of Civil Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts, May 1964.

98

STRESS

"Stress: A Userts Manual, " Dept. of Civil Engineering,
Massachusetts Institute of Technology, M. I. T. Press, 1964.

V. TIME SHARING SYSTEMS

MAC (Multi-Access Computer)

"The Compatible Time-Sharing System, " M. I. T. Computation
Center, Massachusetts Institute of Technology, 1963.

SDC Time-Sharing Program (System Development Corporation)

Schwartz, Jules, "Introduction to the SDC Time-Sharing System,"
SP-1722, System Development Corporation, Santa Monica,
California, August 1964.

VI. GENERAL DATA MANAGEMENT SYSTEMS

ADAM (Automated Data Management)

Burrows, 3. H. , "MITRE Presentation on Automated Data
Management, " MITRE Corp., TM-03905, 15 February 1964.

Connors, T. L., "A Brief View of ADAM, " MITRE Corp.
Working Paper, 1 April 1964.

Hodgins, D. D., "General Description of: 1. Structures of Data
and Programs in the ADAM System; 2. Functions of Individual
Programs in the System, " MITRE Working Paper, 28 August 1963

LUCID (Language Used to Communicate Information System Desig

"The LUCID Systemr. of Automatic Programming Directly from Dat
Processing System Design Specifications, " Working Paper No.
FN-6797/000/00, System Development Corporation, Santa Monica
California, 4 August 1962.

on, it

99

oI

System Design Specifications for LUCID Phase I," Tech Memo
No. TM-1749/000/00, System Development Corporation, Santa
Monica, California, 27 January 1964.

"Volume I. LUCID Control System Design, Part 1. The Master
Tape," Tech Memo No. TM-1749/101/00, System Development
Corporation, Santa Monica, California, 27 January 1964.

"Volume I. LUCID System Control Design, Part 2. Parameter
Load," Tech Memo No. TM-1749/102/00, System Development
Corporation, Santa Monica, California,27 January, 1964.

"Volume 1, LUCID Control System Design, Part 3 Operational
Control," Tech Memo No. TM-1749/103/00, System Developmo
Corporation, Santa Monica, California, 27 January 1964.

"Volume I. LUCID System Control Design, Part 4. Test Set-U
Tech Memo No. TM-1749/104/00, System Development Corpora
Santa Monica, California, 27 January 1964.

"Volume II. GENDARME Data Processing Facilities," Tech Me
No. TM- 1749/201/00, System Development Corporation, Santa
Monica, California, 27 January 1964.

"Volume III. LUCID Program Design: The Grammar of OPAQI
Tech Memo No. TM-1749/301/00, System Development Corpora
Santa Monica, California, 27 January 1964.

"Volume IV. LUCID Translator Design," Tech Memo No. TM-
1749/401/00, System Development Corporation, Santa Monica,

California, 27 January 1964.

"Volume V: LUCID Utility," Tech Memo No. TM-1749/501/00.
System Development Corport.tion, Santa Monica, California,
27 January 1964.

For general remarks on system design, see:

"A Multiprocessor System Design," M. E. Conway, Vol. 24,
AFIPS Conference Proceedings.

100

"An Environment for an Operating System, " G. F. Leonard,
J. R. Goodroe, ACM, Proceedings of the 19th National
Conference.

"Hardware/Software Interaction, " E. L. Glaser, Burroughs
Corporation, TR62-45.

"Design Concepts for a Programming System to Support a Large
Scale Operations Center," T. E. Cheatham, Jr. , G. 0. Collins,
Jr., Computer Associates, Inc., CA-61-1.

"Exercise and Evaluation of Command and Control Systems,"
T. E. Cheatham, Jr., G. F. Leonard, Computer Associates, Inc.,
CA-61-z.

"Evaluation of Generalized Data Systems for Use in Com-nand and
Control," W. R. Slack, Computer Associates, Inc. , Final Report,

n, Contract No. AF19(628)-4160, Electronic Systems Division,
Bedford, Mass.

Information concerning all systems not included in the Bibliography was
obtained by letter or personal communication.

101

