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INTRODUCT ION

One of the more importaﬁt properties of a junction transistor
'is its ability to act as a high-speed switch, A simple circuit in which
a junction transistor is used as a switch is 3h0wn-inkFig° 1 together
with the input (base) and output {ecellector) current waveforms. The opera-
tion of this eireuit can be described as followss For zero base current,
the impedance between collector and emitter is in the order of 106 ohms,
Under this ®off® condition, essentially no currént flows through the load
resistorngLo However, if a current, Ibg is applied to the base input of
the transistor, then the impedance between the emitter and collector is
reduced to a level in the o?der of an ohm, Under this 1atter‘§6n@‘con=
ditiong a current of approximately Véc/hi flows through the load resistor,
Rﬁ° Thus, by changing the base current from zero to some value,lbg the
~ impedance between collector and emitter can be altered from essentially
that of an open circuit to that of a short circuit, In this type of
operation, the action of the transistor is similar in many respeetsbto
that of an ordinary relay. The transistor, howéversican be turned on and
off several orders of magnitude faster than the fasteet'relayso ‘It is
this property of high switching speed which makes the transistor superior
to the relay for many applications, such as, in high-speed, digital
cOmputér circuity where the transistor may be asked to switch on or off
iﬁ'less than 1077 sec. - Accordipgly, the transient response of the trane
sis@or'to a turn-on or turn-off step of base current is of considerable
intérest‘inythé design of high-speed, switching circuits since it is the
ptimary'faetor involved in determining the tiﬁe required to switch the

transistor on or off,
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The transient behavior of the transistor switching cireuit in

Fig. 1(a) is shown in terms of the collector current transient response
in Figs, 1(b) and 1(c)., When a turn-on step of base current is applied
to the circuit, the collector current (Fig. 1(b)) begins to rise slowly
at first, then more rapidly, and finallys slowly again as it approaches
“its steady-state value, In this type of switching circuit, the steadyw
state value to which the collecﬁor current is headed is designed to be
larger than the load current to‘bg.switched_(V;c/Bi)o As a regu;tg when
the collector current'becomes gqggl‘to the load currentg'the voltage
from collector to emitter becomeé'éerog and the collector currentino
longer increases. In this.conditiong the transistor is said to be saturated
and it behaves as though the collector is shorted to the emitter, The time
required for the collector current to reach its saturation value is called
the turn-on time, When a tarn-off step of base current is applied tb this
saturated transistor, the collector current (Fig. 1(c))does not stop flow=-
iﬁg immediately, Instead, the transistor remains in its saturated state
for a while and the collector current remains at its saturation valueoﬁlr
After a time called the storage-time, the transistor comes out of satura-
tion and the collector current begins to decayvtoward zerc in the same
marmer that it increased. Theoretically, the collector éurrent reéches '
zero at a time, t = oo, Consequently, the turn-eff time, to be finite,
is defined as the time required for the collector current to reach a
value which is 10 per cent of its éaturation value,

The use of a linear electrical equivalent circuit in analyzing
the transient response of a junctidn transistor is,in general limited to
the transistor’s linear region of operation, Even for this type of opera-

_/ -
tion,; the exact shape of the transients cannot be obtained from the
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equivalent circuit, This limitation comes about because the equivalent

.circuit, to be useful at all in linear circuit analysis, must be as
simple as possible and must be composed of ideal linear, or ideal piece=-
wise linear, elements., Consequently, in deriving such an equivalent
circuit, the actual electrophysical behavior of the transistor is approxie-
mated to a considerable degree. The use of a transistor as a switching
devibeg however, involves operating the transistor in regions where its
‘ behavior is nonlinear and can only be approximated by a lineér equivalent
cireuit, Thus, the linear equivalent circuits appearing in the litera-
ture are not of much use in analyzing the transient behévior of Jjunction
transistors in switching circuits, |
The purpose of this paper is to present and demonstrate a

different method of analyzing switching transients of junction transistors.
This method involves analyzing the behavior of an electrophysical model

of the transistor under transient conditions. The method, as presented
here, is essentially qualitative in that it gives the shape of the switche
ing transients but not, in general, quantitative results, e.g., switch-
ing times, rise times, etc., The method can bé used to obtain quantitative
results butg-with the exception of a few special cases, the application

of this method to obtain numerical results is cumbersome, 'Howeverg the
abi;ityvof the design engineer to obtain a qualitative picture of the
tréﬁsient response of a junction transistor in a given switching cireuit
is of considerable value in that it enables him to accomplish the follow-
ing things:

{1} analyze the transient behavior of a given transistor
switching ecircuit,

(2) quickly gain a ®feel® for the transient performance
of the transistor in the switching circuit,
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{3) predict the effect of a parameter change on the
transient response of the circuit,

In addition; by reducing the particular problem to a limiting case for
which analytic solutions can be found, some idea of the values of the
switching times involved and their dependence on the variocus transistor

and circuit parameters can be obtained,

BASIC CONSIDERATIONS OF TRANSISTOR ACTION'

Fig, 2 shows a cross-section of a;p=n§pbjunction transistor
connected as a common=base dc amplifier, F@r‘the purposes of this paper,
the emitter and collector junctions are consid@fed to be ideal and their
only function is to inject or remove min@ritj‘@arriersg i.e., holes in
the case of the p=n=p trahsistors from the base region, Under normal
biasing conditions as shown in Figo 2, it is the function of the emitter
Janction to_inject holes into the base region and the collector junction
to remove them, Quite simply, the operation of the transistor as an
amplifying device is as followss When a small positive voltage, Véeg is
applied between the emitter and base of the transistor, holes are injected
from the emitter into the base at the emitter junction, -If ihe small
ohmic voltage drops that occur in a practical transistor are neglected, then
the entire voltage applied between the emitter and base, Véeg and between
the collector and base, Véc is dropped across the emitter and collector
Jonetions, respectively., Consequently, the base region of a junction
transistor is for all practical purposes field free, This being the case,
the holes caﬁ only move éway from the region of the emitter junction by
diffusing awéy'from the region of maximm con@entration»(emitter Junction)
in the direction of the negative concentration gradient at a rate which

is proportional to the magnitude of this gradient., The desired result
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of this diffusion process, in the case of the transistor; is that all the
holes injected at the emitter junction will diffuse through the base
region to the collector junction where they are immediately absorbed or
ficollected" from the base by this junction. The ability of the collector
junction to remove holes from the base is due to the fact that the electric

\2

field which exists at this back=biased junction® causes the collector io
appear as a sink for holes.

In order to accomplish the desired effect of having all the holes
injected into the base at the emitter diffuse to the collector, the two
junctions are placed very close to each other so that the base region
separating them is very narrow. Now, since the collector is a sink for
holes and the emitter a source, the concentration gradient in the base
region between the emitter and collector will be very large and all the
holes will diffuse to the collector.

Under steady-state conditions, the ¢bllector absorbs holes at the
same rate at which they are injected at the emitter, Thus, the cufrent
due to hole flow at the coliecﬁor is equal to and controlled by the current
due to hole flow at the emitter., Essentially, ﬁhen the action of the
transistor can be described as a transferring of current in a low
impédance circuit (since the emitter junction is forward-biased, the
effective impedance of the emitter-base circuit is very low) to a high
impedance circuit (since the collector junction is back-biased; the effect—
ive impedance of the collector-base circuit is very high). As a result
of this current transfer, a power gain is obserwed to take place through

the transistor.

¥ The collector Jjunction is said to be back-biased so long as the
applied voltage from collector to base, Vcb9 is negative, i.e.,

V" iR <0
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Up to this point in the description of transistor operation, the

base current has turned out to be zeroc since all the emitter current has
been assumed to be transferred fo the collector circuit. In order to
account for the non-gero base current which ocecurs in any practical
transistor, some of the current flowing in the emitter circuit must not
be tranéferred to the collector. The mechanism which is responsible for
preventing this total transfer of current is called recombination, Some
of the holes in diffusing through the base recombine with an electron
and are lost, As a result, not all of the hole current injected at the
enitter reaches the collector., The non-gzerc base current arises because
the electrons lost in the recombination process must be replaced by a
flow of electrons into the base through the base lead in order to maintain
the base region at a constanmt potemtial with respeet to the emitter,

The rate at which holes and electrons recémbine»per unit volume
at any point in the base region depends on the ratio of the excess hole
density, p, at that point,to the average life time of a hole in the base
region, Qbo The base current due to recombination can, thus, be expressed
by the equation

Ib =q p dv (1)
- ¥

. The diffusion equation

The behavior of injected holes in the base region of a tran-

sistor is governed by a diffusion equation of the form,

b, v B (2)

p t, %
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where

p'g p(xvy z)° the excess hole density at any time and
9 542

point in the base region,
gp-is the diffusion constant for holes in the base,

and Tp'is the average lifetime of a hole in the base.

Essentially, (2) relates the space rate-of-change of the hole flow
{actually, the space rate-of-change of the hole density gradient) and the
hole rate-of~decay due to recombination,at any point in the~base‘region,
to the time rate-of-change in the hole densify at that point; In theory,
it is possible to solve (2) for any base geometry and any appfopriate

set of boundary aﬁd initial conditions, Thus, the hole density and its
gradient in the base region of the transistor can be obtained as analytic
functions of time and position,

In a practical switching transistor, the width of the base
region between the emitter and collector is made extremely small compared
to the other dimensions of the base region. £}onsequ'en'!:l;gr‘9 almost all of
the holes injected into base at the emitter diffuse in a direction
perpendicular to the planes of the emitter and collector, In view of this,
the one-dimension form of the diffusion equation can be used to describe
the behavior of injected hoies in the base region of a switching tran-
sistor, For the purposes of this paperg then, the diffusion equation
will be considered to be of the form,

g _p . Q’B -
prs-;;g ~Tp 5% {3)
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It will be shown that the boundary and initial conditions for

(3) are determined by the voltages and currents at the emitter and collece-
tor junctions, Thus, for any given input driving function of voltage or
current the transient re sponse of the collector current can be obtained
by solving (3) for the hole density gradient at the collector since the
collector current is proportional to the hole density gradient at this

boundary,.

Boundary_conditions

For the purposes of this paper the analytical solﬁtibﬁs of the
diffusion equation will be restricted to two types of boundary conditions,
The first type is ome in which the function itself, p, is prescribed at
the boundary, In the second type, the gradient of the function, dp/?x,
is-‘prescribed é.t the boundary. In general, the boundary conditions will
bs known only in terms of voltages and currents., In order to express
thés‘e electrical quantities in terms of the hole density and its gradient.
at the junctions, it is necessary to establish the relationships that
exist between these electrical and physical parameters at a junction,

i 4
These relationships, as obtained by Shockley, are given by the equations

('f) (efzz7}%#: - /) for %

ho

o> ©

® for %< O

2

F hockley, W., et al, #ihe P-N Junction Transistors,® Physical Review,
- Vol, 83, pp 151-162; July, 1951 =t

¢
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and

(5)

where

p sp, == are the hole densities in the base region aﬁfQ»
the emitter and collector junctions, respedﬁi?elyo

V ,V == are the voltage drops across the emitter and

: collector junctions, respectively, as measured
from emitter to base and from collector to bade
{see Figs 2).

i ,i == are the hole cnrrents at the emitter and collector
Jjunctions, respectivelyo

—b == are the hole gradients in the base region at the
e, x c emitter and collector junctions, respectively.

xi*ﬁ

P == - is the normal equilibrium hole density in the base
region,

k == is Boltsman”s'constanto
q == is the electronic charge, and

T == is the temperature in degrees! Kelvin,

An idealized model of the junction transistor

Fig. 3 shows a one=dimensional model of a p=n-p junction tran-
sistor based upon the above discussion. The abscissa or x-dimension in the
figure represents distance through the base region in ardirection perpen=
diculér to the planes of the emitter and collector junctionsgthe.pésitive
direction of x being from right to left, The emitter and cbllector June=
tions are represented by the boundaries x = w and x = 0, respectivelyg and
are assumed to be ideal step junctions, The ordinate or p=direction
represents the excess hole density at any point in the base, In general,
p is a function of time; t, and distance, x, which is determined by the

diffusion equation as given by
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(3) and the boundary conditions at the emitter and collector junctions

as determined from (L) and (5), The hole density at the boundaries of
the emitter and collector junctions are defined to be P and P.s
respectively, The currents i, ibg and ic are the emitter, base, and
collector currents, respectively, and because of the one-dimensionality
of the model, they have the dimensions of current density., The voltages
Vé and ve are the voltage drops across the emitter and collector Junction,
respectively, and are considered to be positive when the drop occurs in

going from the emitter or collector to the base,

ANALYTIC METHODS OF SOLVING THE TIME DEPENDENT DIFFUSION EQUATION

The most common anslytic method of solving the particular form
of the diffusion equation given by {3) is the method of separation of
variables, This method is restricted in the sense that, in general,
solutiong can be obtained only if the boundary condition can be reduced
to a homogeneous set, Fortunately, many of the problems encountered in
practice have boundary conditions which satisfy this restriction,

For boundary conditions of the form

oP
(a-’ or 5—; = }fa = a constan? (6)
&
and
o
, or > =){c = a constant,
c (7)

the general procedure for solving the time dependent diffusion equation

as given by (3) is to put it in the form
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(3)

where Lés 1/Db¢b , the diffusion length for holes in the

base region,

and let the solution be of the form

FPix ¢y = @W ‘ﬁ.(zt)

(8

Pss{x) is the steady-state solution of the hole density distribution in

the base after the transient effects have become negligible and is

- ¢ .
obtained by solving the steady=state form of {3 ) for the boundary condi=-

tions {6) and (7). P%(xgt) represents the transient portion of the sclu=

tion which, in this case, must approach zero as t increases indefinitely.,

0 ,
This transient solution is obtained by solving (3 ) for the modified (as

a result of writing the solution in the form of {(8)) and, now,

homogeneous boundary conditions

42 or lifi = 0
' oX £
e ok—%——P— = 0O

with the initial and final conditions

E_(%O) = @S(?() = Px0)

and

F7>‘ (x'oo) = O

respectivelyo

(6)

(7)

(9)

(10)
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The case for which one of the boundary conditions given by

{6) and (7) is not a constant, but some function of time, £(t), can be

solved by use of the superposition integral of the form,

. ¢ -
45 |
P2y = @) F,’(?f,z‘) +//;’ (x, 2-7) :(72‘— d7 (11)
(o]

where p3(x,;t) is the solution of the time dependent
diffu # ion equation when the boundary condition
described by f(t) is set to unity, ‘

If £f(t) is not differentisble, the superposition integral of the form;

)R (%, 2-7)

.i.:
fwy = 0 Fma + | fer) L

o

T (12)

can be used.

Once the solution for the hole density distribution, P(x,t),
is obtained, the desired transient response of thelemitter‘and collector
currents can be found by .f’orming the gradient of: *\l';he hole density, op/d X,
and substituting this expression into {5), Awtypiéal example in which
the transient response of the emitter and collector currents is obtained
by an analytical solution of the time dependent diffusion equation is
given‘in Appendix I, The detailed procedures involved in gplving the
time dependent diffusion equation for various types of boundary condition
can be found in many texts which treat the partial differential equations

bf mathematical physicsB or; in pérticularg the equation of heat conduc~

L

tion.

A QUALITATIVE APPROACH T0 THE SOLUTION CF THE

DIFFUSION EQUATION

" By making use of the characteristic behavior of a quantity

governed by the diffusion equation, the solution of this equation can



‘ 6M‘ﬁ)4870 16~a
usually be sketched in considerable detail, The transient response of

the transistor can then be obtained from the behavior of the hole density

and its gradient (slope) at the junction boundaries,

Qualitative solutions for ‘rp infinite

When the diffusion equation is written in the form,
de PP
Pax® wp ~ 3T
it states that the rate-of-change of hole density at any point in the
base is proportional to the sum of the curvature of‘ the hole density
distribution, QQQp/ p) x2 and the negative rate-of-decay of the hole density
at that point, P/Tpo In a region where the curvature is large, i.e.;

Dp( 0 Qp/ 0 x2)>> ;%, the diffusion equation reduces to the form
P .

D Ef_.P. ._._f)__E
P ox® T ot | (13)

Essentially, this equation shows that the rate-of-change of hole density
at a point , in a region where the curvature of the hole density distribu-
tion is large, is related to the curvature at that point in such a manner
that the hole density increases with time if the curvature is positive.

" and decreases with time if the curvature is negative, Furthermore, the
speed at which this increase or decrease in hole density takes place,
i\;,eo s 3 p/ot is proportional to the vmagnitude of the curvature, Some
examples of this behavior of the hole density distribution are shown in
Figui'e i for zero curvature and two different values each, of positive
and negative curvature, The time interval between tl and t2 is the same.
in each case and is assumed to be much less than "E,‘p so that the loss of

i holes due to ,recombina‘b@bh,during this interval, is negligible, One

characteristic property of the diffusion equation which can be seen from

# Here the term “eurvature® is loosely used to mean the
second derivative, The actual radius of curvature is the inverse of the

quantitys _fa” (i + .Pl 2.) ~Ja
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Fig. L4 is that the change in hole density at any given point is in such

a direction as to tend to reduce the curvature 6f the hole density dise=
tribution in the region about that‘point as time%%ncreasesoi;

In view of (13), it is apparent that if

d%p ,
EE
then
or o
EYa B

Therefore, the function, p(xgt);idqes not‘tend to overshoot its
equilibrium value at any point iﬁﬁthe base region, but approaches it
monotonically as t increases witﬁout limit, Thus we can conclude théﬁ
the solution of the diffusion equation as given by (13) is nét oscilla~
tory in nature. ‘

In many cases, the lifétiﬁebof the'holes in the basé'fegion;;
Tys WAY have a value Sufficiently ;arge thaﬁkp(xst)/%ifﬁsO for any tiﬁé
t. The diffusion equation is then of the form given by (13), and the
behavior ofvP(xgt) is as described above., (The equilibrium distributién
of the<hole density P§s<x) is'given by thé steady-state form of the

diffusion equation which in this case may}be written as

3% Pex,e) _ ARy

d x?

= O (1k)

,
£ = o0 ax
By integrating (1L) twice with respect to x, the solution forfpss(x) is
obtained in the form
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where the constants of integration, C‘l and 02 » are evaluated from the
boundary conditions {6) and (7). Thus, for cases where the hole rate-of-
decay due to recombination is negligible (p(xgt)/wpﬁ 0), the equilibrium
solution of {13) yields a straight line hole 'densit.y distribution as
given by {15). A case in which the hole density distribution is governed

by (13) is treated in the following example .

Example No, 1,7, infinite

Fig, Sa shows a modified form of the simple switching circuit
of’Figq l¢ In this cifcuitg a voltage step is applied to the base at
t = 0 (by closing the switch) instead of a current step, At the instant
the switch is closed, a vo‘ltage,‘vj_ »appears across the emitter ‘Junction,

Thus, from {l) the boundary condition at the emitter is given by

2 =r

no

BT | ,
(e &7 1 — /> = q constant (16)

where V = Vy >0,
In obtaining the boundary condition at the collector Jjunction, the magni-
.tude of the voltage step applied to the base, Vl., , is assumed to be
less than Vc@o This implies that the collector junction is back=biased

at least for t near zero, From (L) then, the collector boundary condi-

tions is found to be

R = O | (17)

where ch V,l# chL“svc@(O; L for t near zerq

The initial condition,p (x,0)° °an be seen from {16) and (17) to be a
32

step Zunction of the form
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(a) Common Emitter Switching Circuit
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Px,o) = R [2(, (w—x)j (18)

The curvature of D for t>0 is positive as shown in Figs, 5(a) and

x;t)
5(e) and, consequ:ntlgg Qist)increases with time everywhere in the base
except at the junction boundaries where it is clamped by the boundary
conditions.

Aé the current in the collector circuit begins to build up in
direcv‘t proportion to the gradient (slope) of the hole density at the

collector boundary, the solution ofj%x can proceed in two different
9

t)
ways depending upon the external parameters of the collector circuit., At
some value of collector current defined as Ié sat? the voltage across the

back=biased collector junction becomes zero, i.e,.,

=K V. tL R =o (19)

when .
ic = Ic sat

Now in the sketch of the solution for f(bx £) shown in Fig, 5(b), it has
9
been assumed that

Iim Zc(t) < I, ,éa.z‘
t = o0 . (20)

which implies that according to (19)

Lim Y <O | (21

7t —> oo

Consequently, the collector boundary condition given by (17) holds as t
increases indefinitely, and the solution of p(x £)? as sketched in
]

Figo. 5(b), proceeds to a straight line equilibrium distribution whose
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end points are given by {16) and (17), By combining (15), (16}, and (17),
the equilibrium solution is found to be of the form

,. — X
Fs)s (x) T /83 w o (22)

If, however, as in the sketch of the solution for ]Zx £) shown in Fig. 5(c),
3
it has been assumed that at some time t = 'bl

22 = Zc(é) = e saz <23>

then the collector boundary condition given by (17) no longer holdso For

as t becomes greater than t.lg i (t) tends to become greater than I sat

and V becomes greater than zero., Accordingly, for solutions of {’ t)
3

where t> t another boundary condition must be specified at the. collector
Junction. It can be shown that, for Vc?’ 0, the current in thg col;ector
circuit remains nearly constant and is approximately equal to Ié s;ba".
‘The new boundary condition at the collector junction for t> tl is ‘then

according to (5), of the form

- ,
i_g::‘_) ~ ..—_Z:f.ﬂé = q constanZ (24)
o X ¢ 7 5

In order to see that (24) does hold for t> t,s consider, the
equation for the current in the collector circuit when V 20, This
equation can be written from Fig. 5{a) in the form

g %c +())é‘. —)'g )
c 2
R (25)

An expression for (Vew'Vc)s where Vs ch 0, can be obtained from (L)

in terms of p, and P, in the form
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AT P+ha
%‘% = 7 k(= ) (26)

For the circuit of Fig, 5, it can be seen that P, can vary only within

the range o<p P,o When these limiting values of p_ are substituted
into (26), it is found that V =V, can only have values in the range

V2 (V- V,)20. The normal operating value of V, in junction switching |
transistors is in the order of a .1 volt, while ‘ch is at least an order
of magnitude'greater than this, Thus, from (19) and (25), the approxi=-

mate relation

Zc - P = Ic satz (%%O) (27)
2>z, £
where

Vcc > Ve ~ ol VOlt,

can be written which establishes the veracity of (24) as the collector
boundar‘y' condition for t> tlo

As t increases indefinitely, the solution ofp( Ry as sketched
in Figo 5{c) for t> tys proceeds to a straight line equilibrium distribue
tion for the boundary condition given by (16) and (24}, This equilibrium

solution for P is found from (15), (16) and (2l4) to be of the form

(x,t)
L. a 8
G = - Tty @)

The transient response of the emitter and colleector currents
can be sketched from the behavior of the gradient of the hole density at
the emitter and collector junction boundaries, respectively, Fig. 5(d)

shows the transient responsef@r’ ie(t) s ib(t) and ic(t) corresponding
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to the solution of P (x,) shown in Fig, 5(b) for the case, ic( o0) & Ic °
9

sat
Fig. 5(e) shows the transient response for the same currents corresponding
to the solution Ofﬁﬁ{xgt) shown in Fig., 5(c) for the case, ic(tl)s‘lc sat®
In each case, the base current, ib(t)g is obtained by taking the difference
between the emitter and collector currents in accordance with Kirchoff!s
current law, Since the hole rate-of-decay due to recombinatien has been
assumed to be zero in this example, the equilibrium baseaﬁﬁrrent is zero
and the equilibrium emitter and collector current are equ;i; Af time
t = 6*9 the slope of the collector current sketched in Figs, 5(d) and
5(e) is not zero,as might be expected,because the diffusion process is a
statistical one and there isya finite probability that a few 6: the holes
injected at the emitter will reach the collector at time ¢ é cfe

The circuit shown in Fig, 6 is one possible way by which the

transistor in the circuit of Fig. 5(a) can be switched off, If V, is
assumed to be sufficiently large that both the emiﬁter and collector
junctions will be back-biased the instant the switch is thrownl, then the
problem is identical to the one treated analytically in the Appendix l;
The solution for p as a function of x and t and the resulting transient
responses for the emitter and collector current as obtained in the
Appendix assumes that the hole density distribution in each case,
BT, g 208 $(8y) = 1

sat s has reached the egquilibrium distribue

tions as given by (22) and (28), respectively,

¢ sat

4 In practice,the emitter and collector junction cannot be back-biased
instantaneocusly for in order to do so infinite currents must occur in
the emitter and collector circuits at the first instant and this would
require V, to be infinite, However, a short time after V, is applied
to the bage,the Junctions will become back-biased and the“sclutions
for the currents obtained in the Appendix will become wvalid,
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A Simple Scheme for Turning-Off a Transistor
Switching Circuit
Figo 6

Qualitative solu’c;ion for 'vp finite

In many cases, it is necessary to take into account the hole
ra‘b‘e-of-decay due to recombination in obtaining the solution to the
transienﬁ response of a switching transistor from the diffusion equation,
One reason why this is necessary may be that the hole lifetime in the
base, 'tp, is low and the term, p/t 0? is no longer negligible in comparie
son with the term involving the curvature of p. This is especially true
as the solution for p approaches equilibrium., An even more important
reason for taking recombination into account in the diffusion equation
exists for practical.cases where cthe base current - s wequired - to filow. in,
the ttraxsistor cduring eqwilibriym; eegs s the i¢ircuit shown iniEigels. When re«

combination is neglected as in the case of the problem of Fig. 5, the
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equilibrium base current is zero, However, when recombination is taken

into account, an equilibrium base current must necessarily exist in order
t0 replace the electrons lost in the base region, For the cases Jjust
sited and similar ones where recombination cannot be neglected, the
transient response of the transistor is governed by the form of the
diffusion equation given in (3)e

The effect of the recombination term, p/%bs in the diffusion

equation, on the behavior of.p(x is shown in Fig, 7 for several

st)
different distributions of the hole density, In addition, a comparison
is made for each type of distribution in the figure between the case in
which % is infinite (left-hand columm in Fig. 7) and a case in which
T has some finite value (right-hand columm in Fig. 7).

& straight linevdistribution of p is shown in Fig, 7(a) for

which {3) reduces to

P )P -
7, )t )

. Thus, for the case in which Tp is infinite, the distribution remains
constant in time sincedp/)t is zero, according to {29), For the case
in which Tb is finite, however, thg rate of change of the hole density
‘is negative everywhere in ¥, according to {29), and the hole density
distribution is seen to decay with time, It is apparent from (29) that,
in ﬁhis latter case, the hole density will decay more rapidly at a point
where p is large than at a point where it is small as shown in Fig, 7(2).
As a result of this, it can be seen that the recombination term, p/%;,

in the diffusion equation tends to cause the hole density distribution

to flatten out as well as decay with time. In addition, as the hole

density distribution decays with time, the over-all rate of decay,
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Combined Effects of Curvature and Recombination on the Hole Density
‘ Distribution

Figs 7
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according to {29), also decreases., Consequently, the over-all change in

the hole density at any point is greater during the interval of time,

t than it is during a later but-equal interval of time, t,~ t..

2 1
In Fig. 7(b) the curvature of the hole density distribution

17 to’

is negative and the hole density decays with time., The rate-of=decay
for the case in which Tp is finite is greater than for the case in which
Tb is infinite because the curvature and the recombination process
simultaneously‘act to cause the hole density to decay in the former case
whereas only the‘curvéture'causes the hole density to decay in the latter
case,

The behavior of the hole density distribution with a positive
curvature in a region where Tp is finite is somewhat ambiguous,
According to {3), the two effects, positive curvature and recombination,
oppose each other, Therefore, the direction in which the hole density
will go at any given time and position depends on whether the curvature
or the recombination term dominate the left-hand side of (3) at the time
and position specified, Fig, 7(c) shows a hole density distribution
whose curvature at time, to, varies with ‘distance:from. -
essentially zero curvature ﬁo some relatively large positive valueo In
the region of zero curvature, the recombination effect predominates and
the hole density decays with time., In the region of large positive
curvature, it has been assumed that, initially, effect of positive curva-
ture predominates and, in the time interval, tl" t@; the hole density
builds up in this region, However, by the end of this initial interval
of time, the curvature is assumed to have decreased to such an extent
that it no longer dominates the recombination effect. As a result,

during the next interval of time, t2~ tlg the hole density decays, The
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over-all change in the hole density distribution as a consequence of the

above assumptions is shown at the times, tl and t2 in Fig. 7(a). In
contrast, if'Z,'p is infinite, then the hole density will increase with
time wherever its curvathre is positive and will remain cdngtgﬁt wherever
its curvature is zero. - | >:X\ 

The genei-al form of the equilibrium diffusion equation,when

7¢p is finite, is obtained by setting the right hand side of (3) to zero.

Thus,
a0 e
2 T T2 = :
o x g (30)

The equilibrium hole density distribution is,then,the solution of (30)

which can be written in the general form

| 7 - %
@S(x)=c, e' P-;- c, € »'P -~ (31)

‘and
vhere Ol C2

For non-zero solutions of pSS (x), the equilibrium hole density distribu-

are determined by the equilibrium boundary:conditicns.

tion is seen,from (30) and (31),to be a transcendental function whose
curvature is always positive.

The positive curvature of an equilibrium hole density distribu-
tion is indicative of an equilibrium base cﬁrrento Ordinarily, the hole
rate-of-decay due to recombination, p/zb, which gives rise to the base
current, would cause the hole density everyﬁhere in the basé to decay
toward zero. However, undér equilibrium conditions, this tgndency of the
hole density to decay is exactly counterbalanced &'t each point in the

base by a tendency of the hole density to increase due to the positive
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curvature of the distribution at each of these points. Because of this

equality between the curvature and the hole rate-of-decay, the equilibrium
base current can be expressed in terms of the curvature of the hole
density, rather that the hole rate-of-decay as given in (1), by eliminating

P%,i from (1) end (30). Thus,

: w
: A% Box)
?b = ippf 7;—- A x (32)
o )
By carrying out the intergration, it is found that
s _op 469 AR (33)
b =77 x|, P .

and the equilibrium base current is seen to be directly proportional to
the difference in thejeqﬁiliﬁrium hole densiﬁy gradients at the emlitter
and collector boundaries. If the hole density gradients in (33) are re-
placed by their respective currents at the junctions in accordance with

(5), then (33) reduces to the form,

Zb = ZF_ - Zc (3k)

which is Kirchoff's current law for the transistor.

Example #2,1;9 finite
An exsmple of a case in which the effects of recombination on

the hole demsity distribution must be taken into account in the diffusion
equation is shown in Fig. 8. The switching circuit shown in Fig. 8(a) is
similar in operation to the circult of Fig. 1 with the exception that the
emittér current is used to switch thevtransistorbon and off instead of

the base current. The turn-on phase of the transistofs transient response
is, thﬁs, initiated by applyiné a positive step of emitter current at some

time, £ = 0.
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(a) A Common Base Switching Circuit
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The boundry condition at the collector junction behaves in the

same manner as described in the previous example. For 0 £ t < ,tl,

*
,a.nd

the collector current is less than the saturation current I c sa.t

the"t}qundry condition is given by (17), i.e.,
£ =o (og ¢ < ¢)

For t > tl-

saturation current and the boundry condition is then given by (24), i.e.,

» the collector current is approximately equal to the

b} F(:?C_, t) —_— I, sat

d X c ip"’

The emitter boundry condition is determined by the applied

= a 606stant (> z‘;)

step of emitter current, I, , since the hole density gradient is related

to I e by (5)- This boundry condition is, therefore, seen to be of the

gorm
> Pix,e) | I, ‘
S = = a constant (35)
X L 1 DP .
¥ For the Qefinition of I_ . see (/7).

¢ sat,

*¥ In this example it has been assumed *bhat the emitter current, I )
1s of sufficient magnitude (I, > I, sat,) that the collector
current, 2. , reaches the va.lue I sat in a finite amount of

time, t = tlo



6M=L870 33«
In order to determine the initial condition of the hole

density'distribution,Lr(x,o), it has been assumed that, prior to the time,
t = 0, the hole density disﬁribution is zero everywhere in the base
region. In view of this and the boundznyucoﬁditioﬁs(lj) and (35),

p(x,0) is zero for all values of x. However, its gradiént is a étep
function of the form,. ‘

dPxo [

4 x " 2D,

The left-hand drawing in Fig. 8(b) shows a qualitative sketch

U, (v *)] (36)
of the behavior of the hole demsity distribution in the base as determined
from the diffusion equation, (3), and the boundary and iﬁgtiﬁl conditions,
(17), (24%), (35) and. (36) described above. At the instant the positive.
step of emitter current is appiied, t = 0, a positive hole density gra-
dient appears in the_base‘at the emitterkboundaryo The curvature of the
hole density becomes 1nfinitély positive at this point and the hole density
begins to increase very i&pidly in the base region near the emitter boundary.
During this phase of the transient reéponse, the actual smount of the
hole density in the bage is very small and the effect of the Hole rate-
of-decay due to recombination is negligible.

As the hole density incireases and spreads throughout the base
region, the curvature begins to decrease and the hole rata-bffdegay
begins to increase. This causes the rate at which the hoie density ét any
point in the‘bgse,is building up to decrease. Aé a result, the hole
density distribution tends to approach,mpnotonically, an equilibrium

solution of the form of (31) for the boundarycconditions, (17) and (32).
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At sare time, t = ¢, the collector 'current reaches its satura-

1

tion value, Ic The collector boundarycondition changes, at this time,

sat’
to that given by (24) in which the hole density gradient is specified at

the collector rather than the hole déésity itself. The hole dénsity dis-
tribution now continues to ihcréage_at a slower and slower rate'iq-ghe‘
seme manner as before but toward & new equilibrium distribution deter-
mined (31), (32) and (24). | |

It should. be pointeé out that the magnitude pf the new equili-
brium hoie density, everywhere in ﬁhe base region, is greater thén the
magnitude of the original, equilibrium hole density toward which |

1
is realized that, in clamping the collector current, ic , to some value,

p(x,t) was headed prior to the time, t = t.. This can be seen when it

Ic sat’ the resulting equilibrium base current is larger than the - \
original equilibrium base current which would exist if é;, were allowed
to reach its normal equilibrium value for the 6rigin§l boundarycondition,
Pc = 0, Fop,according to the relation Between the eqnilibrium‘basé
current and hole density as given by (1), this lafgerlvalue of base
current can only be obtained if the magnitudé of the equilibrium hole den-
sity is, in general, increased everywhere in the base region.

The transient response of the emitter and collector currents‘
shown in the left hand drawing of Fig. 8(c) are obtained from the behavior
of the hole density gradient at the emitter and collector boundaries as
sketched in the left hand drauing of Fig. 8(b). The transient response
of the collector current,in this case,is seen to behave in & manner
similar to the collector current response in the switching circuit of
Fig. 1. The response of the emitter current is,»oficourse, a sﬁep

function. The transient behavior of the base current is found by taking
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the difference between the emitter and collector currents in accordance
with Kirchoff's current law (see equations (33) and (34).
| The transistor switch of Fig. 8(a) is turned_étﬁ!by reducing
the emitter current to zero. At some time t = Of, then, the emitter is
essentially open-circuited and holes can neither flow in nor out of
the base through the emitter junction, i.e., Z = 0. The emitter
boundary conditon for t > 0 is, then, according to (5) of the form
3 P (x,2)
3 X &
The initial condition of the hole density distribution,

= 0 - (37)

p(x,0), for this turn-off phase of the transistor's transient response,
is given by the equilibrium distribution obtained for the turn-on phase
described abofb; In view of the fact that p(x,0) > 0 at the collector
boundary, the voltage across the collector junction, »L s 1s greater
than zero at the time, t = O. The positive collector voltage cannot
change instantaneously, since the collector current mﬁsb remain finite
at all times in view of the circuit conditions. Therefore, it can be
said tﬁat »é remsins positive for some finite amount of time bs after

t 5 0. Because of this and (27),the collector boundary:-condition, during

the time 0 < t < t_, is given by (24), i.e.

5 F(?(, t) . IC sat

= a constant (0<2<%)
2x e 52

- % At this time, the hole density distribution is assumed to have reached
- 1its "on" equilibrium state as shown in the left hand drawing of
Fig. 8(b). '
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The behavior of the hole density distribution during this time

is governed by the diffusion equation, '(3) » and the boundarycconditions;
(24) and (37),and is sketched in the right hand drawing of Fig. 8(b).

It can be argued from purely pﬁysica.l réasoning why the hole density must
: decay to zero for the‘e#isting circuilt conditions by noting that‘ the
emitter is no longer a source for holes while the collector junction and
the recombination mechanism still act as qﬁasi—sinks for the holes which
still exist in the base region. However, the actusl manner in which the
hole density 'distributionv deca.ys with time can only be obtaineti from the
diffusion equation and the houndary and initial conditions.

At '-bimeb, t = 0* , the distrﬁ‘buﬁion of the hole density in the:
base region, w > x > 0, is an equilibrium one, i.e., the positive curva-
ture of p(x,0) prevents the hole density anywhere in this region from
decaying by recombination. Initially, then, the hole density distribution
tends to remain constant in this region.

This situation is not true at the emitter boundarycof .the base
region (x = w), however. According to the initial form of the hole
density distribution, p(x,0), the gradient of p(x,0) near the emitter

. .
approaches the emitter boundarycondition given by (35), i.e., at t = 0

im 3 P(?é) t)
L - =z 50
xww 9% 72

However, at this same time, the gradient at the emitter boundary (x = w)

- must be zero as required by the emitter boundary condition given by (3750
This abrupt change in the initial hole "densi‘ty gradiént; in going fromia.
point in the base region near the emitter boundary,where the gradient is
positive, to the emitter boundary,where the gradient is zero, requires

that the initial hole density at x = w have an infinitely large negative
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curvature° Consequently the hole density at the emitter boundary begins

to decay at ¢ = 04° - ‘ } N

At first, the hole rate-of-decay at the emitter boundary pro-
ceeds at a very rapid rate because of the lgrge negative cﬁrvature in
that region of the base. Meanwhile, thé,decrease in the hole density
near the emitter causes the‘positive'curvature of the hole density
farther out in the base regioﬁ to decrease. As a result the hole denéity
there begins‘fo'decay due to recombination. Eventuslly, all of the pos-
itive cufvature.disappears from the hole density‘distxihutien_and‘is
replaced by a negative curvature that is required if the gradient is to
-be ,positivé at the célleétor boundry, as given by (24), and zero at the
emitter boundary és given by (37). In this latter form; the hole density
distribution decays throughout the base régidnbunder the influence of
* both negative curvature and recombination. |
During the time, 0 £ t < ts, the behavior of the hole
\density in the region 6f the collector boundary is seen, initially, to
remain constant because its positive curvature in that region is in
equilibrium with the recombination process. For + > 0, the positive
curvature begins to decrease and the hole density starts to decay slowly,
at first, épéeding up as the curvature becomes less positivé and more
negative. All during this phase of the turn-off transient response, the
collector current and, consequently, the ﬁple density gradient at the
collector boundary?remain;constanto\ThiS-is;knqwn,as the storage phase
of the turn-off time during which the holes "stored" in the base

‘region are drawn out through the collector at a constant fate,
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At the end' of the storage time, t = ts’ the hole density. at

the collector will have decayed to zero. Because the hole density in the
base cannot go negative, the positive gradient at collector as giﬁen by

(24) can no longer be maintained et this high level. The gradient and,
therefore, the coliector current must decrease as a result, causing the
"voltage across the collector junction to go negative. The collector
boundary condition is, then, that of a back biasea Junetion (V. < 0 )

as given by (17), ioeo,
02 = 0 ( 2> ?;)

As a result of this change in the collector bogndry condition,
the negative curvature 1s no longér necessary sincelfhe hole density
gradient at the collector is ho longer fixed. Conseguently, during the
time, t > t‘, the negative‘curvature decreases and the hole density
distribution tends to aégroach a straight line which becomes flatter and
flatter as the distribution approaches its zero equilibrium condition
(see Fig. T(a) &nd'?(b)o' The hole density rate-of-decay continually
slows down during this phase since the negative curvature and hole rate-
of-decay due to recomﬁination are both approaching zero as time, t,
inereases indefinitely. The equilibrium, zero hole demsity distribution
is reached, therefore, only as t approaches infinity.

The transient behavior of the emitter and collector currepts
are shown in the right hand drawing of Fig. 8(c) as sketch from the
behavior of the hole density gradients at the Jui;ction boundries. The
transient response of the collector current is seen to be the same és\
that described for the switching circuit of Fig. 1. The emitter curregt
transient is, of course, a step function; and is zero for time, t > O.

The base current transient is seen to be identical to the colléctor
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current transient as required by Kirchoff's current law (see (33) and

(3L) ).

CONCIUSION

. Through the use of the qualitative technique of solving the
diffusion equation that has been deseribed in this paper, one can
determine the large signal transient response of a junction transistor
quite accurately in a fairly simple and rapid manner. At first, this
method would appear to giVe'only the shape of the'transient response
without reference to time. This statement, however, is not quite true.
A relative time secale can be obtained by this meihod from the rate at
which the hole density distribution increases or decreases, as the case
may be., This rate-of=change of the hole density distribution is prine
ciply dependent upon thé_magnitude and sign of the curvature of the
distribution which usuallj can be obtained quite accurately from a
sketch of the solution.

Unfortunately, an absolute time scale is lacking in this
technique, However, the absolute values of the switching times in-
volved in ‘the various phases of the transient response can be obtained,
for a particular circuit under consideration, by observing the butput
response of the transistor withan oscilloscope.n addition to this,
the absolute values of the switching times can usually be obtained from
an analytic solution of the transient response of the transistor for
either the actual boundary condition involved, or for a limiting case of
the class to which the particulsr problem belongs. When this analytic
method is used, not only, can the switching times be determined‘by
evaluating the analytic solution neumerically, but also, their relation
to the various transistor papameters involved is established. "

CTK/md
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APPENDIX A

An Exsmple of an Analytic Solution to the

Transient Response of a Transistor Switching Circuit

The transistor switching circuit for which an analytic solu-
tion of its transient response is to be found is shown in Fig. 6.. With
the switch, Sw’ in position 1, the switching circuit is assumed to be

"on" and a current, I = VQQ/RL, exists in the collector circuit,

c sat
The trensistor is assumed to have been in this "on" state long enough,
prior to some time, t = O, for the hole density distribution to have
reached equiiibrim as shown in Fig. Al. _EZ (©) and _Ei (0) , in the
figure, are the initial equilibrium velues of the hole density, in the
base,. at thé emitter and collector junction boundaries; respectively, when
Sw is In position 1. The hole lifetime in the base, T D’ is assumed to
have & value sufficiently large that P (%) / 7, 7 O for any time, t.
The diffusion equation (3), can therefore be written in the form
aaf(%z‘) N F(?(‘t)
S f

3x% T D T o7

and the initlal equilibrium hole density distribution is a straight line

(A1)

of the form
L@ = Ro+[Ro-po] @)

where according to (5)

20 - L) (A3)

'I;saz" = fDF

- A<L
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Fig. Al
Irl_itial Equilibrium Hole Density Distribution in the Base
At time, 1; = Q, the switch, S ny is thrown, instantaneously,
to 'pogitio’h_ 2. The positive voltag‘é, Va‘,"f is, thus, appliéd to the base
end 1s assumed to be sufficiently large (V, >> V_ ) that both the

‘ *
emitter and collector .junpt,ion are back biased at time t = 04,‘ i.e.,
Yy, Y < o (¢>0) (A4)

From (A4) and (k4), the: boundary conditions at the emitter and collector

are, therefore, seen to be given by

fpf, =R =o0 (¢>0) (85)

*  Bee footnote on pa_.ge a5 y
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Th‘e’invitbia.l condition of the hole d,ensity ) d@stributigq,

p(xl o) is the same as the equilibrium distribution at t < O, given by
.(A2) , since the hole.density in the base can not changg instantaneously

éxcép‘b at the emitter and collector junction boundaries. Thus,
Fex,0) = £+ [.Pa(o) "-Pc(")] — ({\6)

For convenience in plotting the soluti,c:in‘i;'of. the hblg density-
distribution in the base, the diffusion equation is é‘olved" in'its

normalized form,

2 F(X,-T) ) F(X,T)

> x 2 3T

(A7)

where X =

x
w
+

T = —
, W/Dp

The complete solution for p(x,t), obtained by solving (A7) for the
boundary and initisl conditions (A5) and (A6) respectively, using the

method of sgpa.ration of variables, is found to be of the form

("(x,r)=;—i—fz(0’z [P::; ~ (=) [sm(nrrx]

- (A8)

A=3
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Equation (A8) can be plotted in a more convenient manner

if it is expressed: in tfa,e form

f = _a. = | ° n -Y\aTraT
norm T z T’l-[‘s sl J[an ("?TTX)] e
n=/ _

where ﬁw‘rm — F(X:T) (A9)
' o)
£
$° = £ (0
£ ©
P represents the hole density in the bese as a Rfﬁnction of time and

norm
position normalized with respect to . the‘ initial hole density at the

emitter junction, P, (0). Since O, < Px,m< B © , P opm 21WBYS has

a value which lies in the range, 0 < Pnom & 1. s° is the ratia of

the initial hole density at the colléctbr' to the initial hole d,er;sitj at
the emitter. When the tramsistor is not saﬁuratea P _(0) - 0 and §° = o.
 The maximm‘-satgzration of the tra.nsisf,;jr occurs when P, '(O)‘ = P, (0) and
So :A 1. Thus, s° can be considered as yrepresen"bing the degree of satura-
tion of the tramsistor. Fig. A2 and A3 each show a plot of Pno rm VS X,
with time as a parameter, for £wo different degrees of saturation,

So = 0 and 8° :'005, respectively.

; The analytic expféssions for the anittgr and collector
currents are obtained by sufbstifagting the g?x'a.diex;t of p (x,t) evaluated
at the emitter and collector junction boundaries, »resper;tiveiy, into (59
In this é#se, where the. hole density is expressed in terms of xgnormalized

with respect to w, & normalized form of (5) must be used. Thus,

Aly



6M-1870

Z' — gDP bF(XJT)
e T W 3x (A10)

1,0
The gi'adient of the hole density as obtained from (A8) can be written as
3 Prx,7) it - 2_2
—_— ° -n"mT- T (All)
> X —Q'PE(O)Z [S G /)][60_5("77')()]8
Nns=/)

It follows from (AlO) that the hole current at any point in the base,

?,, 1s of ; the form

o0 2_2
. P (o) ° n -nmeT
i, = 220552 ) [ J[emora] e )

*

Again for convenience in plotting, the expression for the hole current,

4 x can be normalized by defining a normalized current, 7 X norm’
such that
. o Zx
(A13)

Zx norm i[%(‘Pé(%>
It cen be seen from (A3) that the term in the denominator:of (A13).
represen'bs the maximum smount of equilibr;l.m hole currgnt that can flow
anywhere_ in the base for a given value of P (0).
From (A10), (Al12) and (Al3), the normalized expression for

the emitter and collector current‘s are seen 't;o be of the forms

. OO 2 2
. o -n"TTT
=2, porm = 2Z [/ -(—))"5_7 e (A1k)
o . SO
et 2__2
. A___ e , =n “nme T .
L =2) -] e (23)

N=/

A-g
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-where the current is defined to be positive when it "flows" in the

positive direction of X. Fig. Al and A5 show 'i)lots 6f --ie norm vs T

i

and ic norm vs T, respectiv,ely,. for various values of the parameter s°,

A6,
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