
Secondary Structure Prediction of All-Helical Proteins

Using Hidden Markov Support Vector Machines

B. Gassend, C. W. O’Donnell, W. Thies, A. Lee, M. van Dijk and S. Devadas
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology
Cambridge, MA 02139

Contact email: gassend@mit.edu

Abstract

Our goal is to develop a state-of-the-art predictor with an intuitive and biophysically-motivated
energy model through the use of Hidden Markov Support Vector Machines (HM-SVMs), a recent
innovation in the field of machine learning. We focus on the prediction of alpha helices in proteins
and show that using HM-SVMs, a simple 7-state HMM with 302 parameters can achieve a Qα value
of 77.6% and a SOVα value of 73.4%. We briefly describe how our method can be generalized to
predicting beta strands and sheets.

1

1 Introduction

It remains an important and relevant problem to accurately predict the secondary structure of proteins
based on their amino acid sequence. The identification of basic secondary structure elements–alpha
helices, beta strands, and coils–is a critical prerequisite for many tertiary structure predictors, which
consider the complete three-dimensional protein structure [6, 17, 22]. To date, there has been a broad
array of approaches to secondary structure prediction, including statistical techniques [10, 11, 16], neural
networks [2, 15, 20, 25, 27, 28, 29, 32], Hidden Markov Models [3, 7, 18, 21, 23, 35, 36, 37, 40, 41], Support
Vector Machines [4, 5, 13, 12, 24, 39], nearest neighbor methods [34] and energy minimization [17]. In
terms of prediction accuracy, neural networks are among the most popular methods in use today [9, 31],
delivering a pointwise prediction accuracy (Q3) of about 77% and a segment overlap measure (SOV) of
about 74% [15].

However, to improve the long-term performance of secondary structure prediction, it likely will be
necessary to develop a cost model that mirrors the underlying biological constraints. While neural
networks offer good performance today, their operation is largely opaque. Often containing upwards of
10,000 parameters and relying on complex layers of non-linear perceptrons, neural networks offer little
insight into the patterns learned. Moreover, they mask the shortcomings of the underlying models,
rendering it a tedious and ad-hoc process to improve them. In fact, over the past 15 years, the largest
improvements in neural network prediction accuracy have been due to the integration of homologous
sequence alignments [32, 15] rather than specific changes to the underlying cost model.

Of the approaches developed to date, Hidden Markov Models (HMMs) offer perhaps the most natural
representation of protein secondary structure. An HMM consists of a finite set of states with learned
transition probabilities between states. In biological terms, each transition corresponds to a local folding
event, with the most likely sequence of states corresponding to the lowest-energy protein structure. HMMs
generally contain hundreds of parameters, two orders of magnitude less than that of neural networks. In
addition to providing a tractable model that can be reasoned about, the reduction in parameters lessens
the risk of overlearning. However, the leading HMM methods to date [3, 40] have not exceeded a Q3

value of 75%, and SOV scores are often unreported.
In this paper, we focus on improving the prediction accuracy of HMM-based methods, thereby ad-

vancing the goal of achieving a state-of-the-art predictor while maintaining an intuitive and biophysically-
motivated cost model. Our technique relies on Hidden Markov SVMs (HM-SVMs), a recent innovation
in the field of machine learning [1]. While HM-SVMs share the prediction structure of HMMs, the learn-
ing algorithm is more powerful. Unlike the expectation-maximization algorithms typically used to train
HMMs, training with an SVM allows for a discriminative learning function, a soft margin criterion, and
bi-directional influence of features on parameters [1].

Using the HM-SVM approach, we develop a simple 7-state HMM for predicting alpha helices and
coils. The HMM contains 302 parameters, representing the energetic benefit for each residue being in
the middle of a helix or being in a specific position relative to the N- or C-cap. Our technique does
not depend on any homologous sequence alignments. Applied to a database of all-alpha proteins, our
predictor achieves a Qα value of 77.6% and an SOVα score of 73.4%. Among other HMMs that do not
utilize alignment information, it appears that our Qα represents a 3.5% improvement over the previous
best [23], while our SOVα is comparable (0.2% better). However, due to differences in the data set, we
emphasize the novelty of the approach rather than the exact magnitude of the improvements. We are
extending our technique to beta strands (and associated data sets) as ongoing work.

2

2 Related Work

King and Sternberg share our goal of identifying a small and intuitive set of parameters in the design
of the DSC predictor [16]. DSC is largely based on the classic GOR technique [11], which tabulates
(during training) the frequency with which each residue appears at a given offset (-8 to +8) from a
given structure element (helix, strand, coil). During prediction, each residue is assigned the structure
that is most likely given the recorded frequencies for the surrounding residues. King and Sternberg
augment the GOR algorithm with several parameters, including the distance to the end of the chain
and local patterns of hydrophobicity. They use linear discrimination to derive a statistically favorable
weighting of the parameters, resulting in a simple linear cost function; they also perform homologous
sequence alignment and minor smoothing and filtering. Using about 1,000 parameters, they estimate an
accuracy of Qα = 73.5% for DSC. The primary difference between our predictor and DSC is that we
achieve comparable accuracy (our Qα = 77.6%) without providing alignment information. Incorporating
an alignment profile is often responsible for 5-7% improvement in accuracy [19, 32, 30]. In addition, we
learn the position-specific residue affinities rather than using the GOR frequency count. We also consider
multiple predictions simultaneously and maintain a global context rather than predicting each residue
independently.

Many researchers have developed Hidden Markov Models (HMMs) for secondary structure prediction.
Once it has been trained, our predictor could be converted to an HMM without losing any predictive
power, as our dynamic programming procedure parallels the Viterbi algorithm for reconstructing the most
likely hidden states. However, for the training phase, our system represents a soft-margin Hidden Markov
SVM [1] rather than a traditional HMM. Unlike an HMM, a Hidden Markov SVM has a discriminative
learning procedure based on a maximum margin criterion and can incorporate “overlapping features”,
driving the learning based on the overall predicted structure rather than via local propagation.

Tsochantaridis, Altun and Hofmann apply an integrated HMM and SVM framework for secondary
structure prediction [37]. The technique may be similar to ours, as we are reusing their SVM imple-
mentation; unfortunately, there are few details published. Nguyen and Rajapakse also present a hybrid
scheme in which the output of a Bayesian predictor is further refined by an SVM classifier [23]. The Qα

score is 74.1% for the Bayesian predictor alone and 77.0% for the Bayesian/SVM hybrid; the SOVα score
is 73.2% for the Bayesian predictor and a comparable 73.0% for the Bayesian/SVM hybrid. To the best
of our knowledge, these are the highest Qα and SOVα scores to date (as tested on Rost and Sander’s
data set [32]) for a method that does not utilize alignment information.

Bystroff, Thorsson, and Baker design an HMM to recognize specific structural motifs and assemble
them into protein secondary structure predictions [3]. Using alignment profiles, they report an overall
Q3 value of 74.3%. Our approach may use fewer parameters, as they manually encode each target
motif into a separate set of states. Martin, Gibrat, and Rodolphe develop a 21-state HMM model
with 471 parameters that achieves an overall Q3 value of 65.3% (without alignment profiles) and 72%
(with alignment profiles) [21]. Alpha helices are identified based on an amphiphilic motif: a succession
of two polar residues and two non-polar residues. Won, Hamelryck, Prügel-Bennet and Krogh give a
genetic algorithm that automatically evolves an HMM for secondary structure prediction [40, 41]. Using
alignment profiles, they report an overall Q3 value of 75% (only 69.4% for helices). They claim that
the resulting 41-state HMM is better than any previous hand-designed HMM. While they restrict their
HMM building blocks to “biologically meaningful primitives”, it is unclear if there is a natural energetic
interpretation of the final HMM.

Schmidler, Liu, and Brutlag develop a segmental semi-Markov Model (a generalization of the HMM),
allowing each hidden state to produce a variable-length sequence of the observations [35, 36]. They report
a Q3 value of 68.8% without using alignment profiles. Chu and Ghahramani push further in the same
direction, merging with the structure of a neural network and demonstrating modest (∼1%) improvements

3

Category Predictor Number of Parameters
Neural Net PHD [32] ≥ 10,000
Neural Net SSPro [2] 1400-2900
Neural Net Riis & Krogh [30] 311-600

GOR + Linear Discrimination DSC [16] 1000
HMM Martin et al. [21] 471

HM-SVM this paper (alpha only) 302

over Schmidler et al. [7].
While our technique is currently limited to an alpha helix predictor, for this task it performs better

(Qα = 77.6%) than any of the HMM-based methods described above; furthermore, it does so without
any alignment information. Our technique is fundamentally different in its use of Hidden Markov SVMs
for the learning stage. Lastly, some groups have applied HMM-based predictors to the specific case of
transmembrane proteins, where much higher accuracy can be obtained at the expense of generality [18].

There has been a rich and highly successful body of work applying neural networks to secondary struc-
ture prediction. The efforts date back to Quian and Sejnowski, who design a simple feed-forward network
for the problem [29]. Rost and Sander pioneered the automatic use of multiple sequence alignments
to improve the accuracy as part of their PHD predictor [32], which was the top performer at CASP2.
More recently, Jones employed the PSI-BLAST tool to efficiently perform the alignments, boosting his
PSIPred predictor [15] to the top of CASP3. Baldi and colleagues employ bidirectional recurrent networks
in SSPro [2], a system that provided the foundation for Pollastri and McLysaght’s Porter server [28]. Pe-
tersen describes a ballotting system containing as many as 800 neural networks; while an ensemble of
predictors is commonly used to gather more information, this effort is distinguished by its size [27]. A
neural network has been followed by an HMM, resulting in a simple and fast system [20]; neural networks
have also been used as a post-processing step for GOR predictors [25].

The PSIPred predictor [15] is among the highest scoring neural network techniques. While it achieves
an overall Q3 of about 77% and an SOV of 74%, its performance for alpha helices is even higher: for
recent targets on EVA, an open and automatic testing platform [9], PSIPred offers an SOVα of 78.6%
(EVA does not publish a Qα value comparable to ours).

Though state-of-the-art neural network predictors such as PSIPred currently out-perform our method
by about 5%, they incorporate multiple sequence alignments and are often impervious to analysis and
understanding. In particular, the number of parameters in a neural network can be an order of magnitude
higher than that of an HMM-based approach (see Table 2). A notable exception is the network of Riis
and Krogh, which is structured by hand to reduce the parameter count to as low as 311 (prediction
accuracy is reported at Q3 = 71.3% with alignment profiles, a good number for its time).

Recently, Support Vector Machines (SVMs) have also been used as a standalone tool for secondary
structure prediction [24, 39, 5, 4, 13, 12]. In contrast to our technique, which uses an SVM only for
learning the parameters of an HMM, these methods apply an SVM directly to a window of residues
and classify the central residue into a given secondary structure class. The number of parameters in
these techniques depends on the number of support vectors; in one instance, the support vectors occupy
680MB of memory [39]. Regardless of the number of parameters, it can be difficult to obtain a biological
intuition for an SVM, given the non-linear kernel functions and numerous support vectors. Nonetheless,
these techniques appear to have significant promise, as Nguyen and Rajapakse report an overall Q3 of
79.5% and an SOV of 76.3% on the PSIPred database [24].

4

3 Algorithm

3.1 Formulation as an Optimization Problem

According to thermodynamics, a folded protein is in a state of minimum free-energy (except when kinetic
reasons get the protein stuck in a local minimum). We therefore approach the protein structure problem
as an optimization problem. We want to find a free-energy function G(x,y), which is a function of x, the
protein’s amino-acid sequence and y, the protein’s secondary structure. To predict a protein’s structure
ŷ, we perform the following minimization:

ŷ = argmin
y∈Y

G(x,y) (1)

To go from this general statement to a working algorithm, we need to find free-energy function G and
a set of structures Y for which the minimization shown in equation (1) is easy to compute. In choosing
G and Y, we tradeoff the ability to efficiently minimize G with the ability to accurately capture the
richness and detailed physics of protein structure. Atomistic models are able to capture the whole range
of structures, and incorporate all the physical interactions between atoms. However, they can only be
optimized using heuristic methods. We therefore prefer to consider a simplified set of structures Y, and
a cost function G with lumped parameters that try to approach the physical reality.

These lumped parameters are difficult to determine experimentally. We will therefore define a class G
of candidate free-energy functions that are easy to optimize over some set of structures Y. Then we will
use machine learning techniques to pick a good G from all the candidates in G. The machine learning
will use structure information from the Protein Data Bank [26] to determine which G to pick. Given a
set of training examples {(xi,yi) : i = 1, . . . , k}, the learning algorithm needs to find a G ∈ G such that:

∀i : yi = argmin
y∈Y

G(xi,y) (2)

In practice, this G may not exist or may not be unique so the machine learning algorithm may have to
pick a good approximation, or select a G that is more likely to generalize well to proteins not in the
training set. We will now look more closely at how a good G is selected, and later, in Section 3.5 we will
be more specific about what G and Y are.

3.2 Iterative Constraint Based Approach

First, we notice that equation (2) can be rewritten as the problem of finding a function G that satisfies
the large set of inequality constraints

∀i,∀y ∈ Y \ {yi} : G(xi,yi) < G(xi,y). (3)

Unfortunately, the set of all secondary structures Y is exponentially large, so finding a G ∈ G that
satisfies all these inequalities directly is computationally intractable. Our approach reduces the problem
by ignoring as many constraints as possible, only considering the constraints it is “forced” to consider.

In our method the reduced problem is defined as the problem of finding a function G′ that satisfies
the set of constraints

∀i,∀y ∈ Si : G′(xi,yi) < G′(xi,y), (4)

for some Si ⊆ Y \ {yi}.
Initially, we begin with no constraints at all, that is, Si = ∅ for all i and we choose some function

G′ ∈ G. Notice that, we start with no constraints, therefore, any function G′ ∈ G satisfies equation (4).
We need to check whether G′ approximates the solution G to the set of (2). In particular, we verify
whether G′ can be used to approximate y1 as the solution ŷ1 of the optimization problem

ŷ1 = argmin
y∈Y

G′(x1,y).

5

If G′(x1,y1) < G′(x1, ŷ1) + ε, we say that ŷ1 is “close” to y1 in the sense that ŷ1 is a close enough
approximation of y1. If ŷ1 is close to y1, we go on to the next optimization problem,

ŷ2 = argmin
y∈Y

G′(x2,y).

If ŷ1 is not close to y1, this means the constraint G′(x1,y1) < G′(x1, ŷ1) in equation (3) has been violated.
Therefore we must add this constraint to our reduced problem; we replace S1 by S1 ∪ {ŷ1}. In order to
solve the new reduced problem we need to find a new G′ that satisfies the old and new constraints. At all
times the number of constraints in the reduced problem is relatively small such that it is computationally
feasible to find its solution.

Whenever a prediction ŷi is not satisfactorily close to yi, we add more constraints. For instance,
Figure 1 shows our problem reduction for the training example (x1,y1). Note that the reduced problems
lead to the constraints G′(x1,y1) < G′(x1,y1), G′(x1,y1) < G′(x1,y7), G′(x1,y1) < G′(x1,y245), etc.,
where Y = {y1,y2, . . . ,ym} (in other words, S1 = {y1,y7,y245}).

The algorithm terminates if no constraints need to be added. That is, each prediction is a good
approximation,

∀i : G′(xi,yi) < G′(xi, ŷi) + ε where ŷi = argmin
y∈Y

G′(xi,y). (5)

This is equivalent to
∀i,∀y ∈ Y \ {yi} : G′(xi,yi) < G′(xi,y) + ε. (6)

This shows into what extend the function G′ satisfies the full set of constraints in equation (3).

Full−problem Reduced problems

Constraint selection
Add slack variables

Margin maximization
Linearization

SVM problems

Solve

Find G′ ∈ G such that:
G′(x1,y1) < G′(x1,y0)
G′(x1,y1) < G′(x1,y1)
G′(x1,y1) < G′(x1,y2)
· · ·
G′(x1,y1) < G′(x1,ym)

Find G′ ∈ G such that:

G′(x1,y1) < G′(x1,y1)
G′(x1,y1) < G′(x1,y7)
G′(x1,y1) < G′(x1,y245)

Find ŵ that minimizes
ŵ = 1

2‖w‖2 + C
n

∑n
i=1 ξi

under the constraints
〈w,ΔΨi(y)〉 ≥ Δ(y1,y1)− ξ1
〈w,ΔΨi(y)〉 ≥ Δ(y1,y7)− ξ1
〈w,ΔΨi(y)〉 ≥ Δ(y1,y245)− ξ1

wG′

Figure 1: Summary of the learning method. In this figure each large frame represents a problem that
needs to be solved. On the left, we start with an intractably large problem. At each iteration, we pick a
subset of the large problem to work on, solve it approximately using an SVM formulation, and use the
resulting solution to expand the subset of constraints we are working with.

3.3 Linear Cost Function

One important assumption we make is that the family of free energy functions G is linear. That is, the
total free energy of the protein is a sum of elementary interactions. This simplification agrees with many
mathematical models of the energy force fields that control protein folding. For example, electrostatic,
Van der Waals, stretch, bend, and torsion forces all are described by the sum of energy terms for each
pair of molecular elements. Given this, we can formally define the family of functions G to be

G = {Gw : (x,y) −→ 〈w,Ψ(x,y)〉 : for some w}. (7)

Here the feature function Ψ is fixed and known, representing some specific energy characteristic that
we are interested in. By definition of a linear function the dot product of the vector w (notated by

6

〈, 〉) can then be taken to appropriately weight the importance of individual terms within Ψ. With this
assumption, the reduced problem’s constraints given by equation (4) can be rewritten as

∀i,∀y ∈ Si : Gw(xi,yi) < Gw(xi,y). (8)

In order to solve the reduced problem, we need to find the unknown weight vector w such that these
constraints are satisfied. Again, since Gw is a linear function, this set of constraints can translate into

∀i,∀y ∈ Si : 〈w,ΔΨi(y)〉 > 0, (9)

where ΔΨi(y) = Ψ(xi,y) − Ψ(xi,yi). This reformulation of the constraints allows this problem to
be solved in a much more elegant and computationally efficient manner. In our method we use the
powerful technique of support vector machines to quickly determine the function Gw, although many
other techniques are possible.

3.4 Iteratively Constraining Support Vector Machines

Support Vector Machines (SVMs) are a fast and effective tool for generating functions from a set of
labeled input training data. SVMs are able to determine a set of weights w for the function Gw that will
allow Gw to accurately map all of the training example inputs xi to outputs yi. They do this by solving
the dual of the minimization problem

ŵ = argmin
w

min
ξi

1
2
‖w‖2 +

C

n

n∑
i=1

ξi (10a)

under the constraints
∀i,∀y ∈ Si : 〈w,ΔΨi(y)〉 ≥ 1− ξi with ∀i : ξi ≥ 0. (10b)

We can therefore use SVMs to determine our function Gw, however this only solves half of our
problem. Given a candidate Gw we must then determine if equation (3) has been violated and add more
constraints to it if necessary. To accomplish this task, we build off of work done by Tsochantaridis et al.
[38] which tightly couples this constraint verification problem with the SVM w minimization problem.

First a loss function Δ(yi,y) is defined that weighs the goodness of the structures ŷi. Adding this to
the SVM constraints in equation (10b) gives

∀i,∀y ∈ Si : ξi ≥ Δ(yi,y) − 〈w,ΔΨi(y)〉 (11)

Using this we can decide when to add constraints to our reduced problem and which constraints to
add. Since at every iteration of the algorithm we determine some w for the current Si, we can then find
the smallest possible SVM “slack variable” values for ξi in equation (10a). This minimum ξ̂i will be

ξ̂i = max(0,max
y∈Si

Δ(yi,y)− 〈w,ΔΨi(y)〉) (12)

This minimum ξ̂i, which was determined using Si can be compared to a similar ξ̂′i that is obtained
by instead maximizing over Y \ {yi} in equation (12). This will tell us how much the constraints we are
ignoring from Y \ {yi} will change the solution. The constraint that is most likely to change the solution
is that which would have caused the greatest change to the slack variables. Therefore we would add the
constraint to Si that corresponds to

ŷ′ = argmax
y∈Y

Δ(yi,y)− 〈w,ΔΨi(y)〉. (13)

Tsochantaridis et al. [38] show that by only adding constraints when ŷ′ would change ξi by more than
ε, one can attain a provable termination condition for the problem. The summary of this overall process
can be seen in Algorithm 1.

7

1 Input: (x1,y1), . . . , (xn,yn), C, ε
2 Si ← ∅ for all 1 ≤ i ≤ n
3 repeat (
4 for i = 1, . . . , n do (
5 Set up the cost function H(y) = Δ(yi,y)− 〈w,ΔΨi(y)〉
6 Compute ŷ = argmaxy∈Y H(y)
7 Compute ξi = max{0, maxy∈Si H(y)}
8 if H(ŷ) > ξi + ε then (
9 Si ← si ∪ {ŷ}
10 w← optimize over S = ∪iSi

11))) until no Si has changed during iteration

Algorithm 1: Algorithm for iterative constraint based optimization.

3.5 Defining the Set of Valid Structures

One final issue remains to be solved to complete our algorithm. We need to specify what Y is, and how
to optimize G(x,y) over Y. Indeed, in general Y can be exponentially large with respect to the sequence
length, making brute-force optimization impractical. Our general approach will be to structure Y and
G(x,y) in a way that will allow optimization through dynamic programming.

Most secondary-structure prediction tools use local features to predict which regions of a protein
will be helical [31]. Individual residues can have propensities for being in a helix, they can act as helix
nucleation sites, or they can interact with other nearby residues. This type of information can be well
captured by Hidden Markov Models (HMMs). Equivalently, we choose to capture them using Finite State
Machines (FSMs). The only difference between the FSMs we use and a non-stationary HMM is that the
HMM deals with probabilities, which are multiplicative, while our FSMs deal with pseudo-energies, which
are additive. To a logarithm, they are the same.

We define Y to be the language that is recognized by some FSM. Thus a structure y ∈ Y will be a
string over the input alphabet of the FSM. For example that alphabet could be {h, c}, where h indicates
that the residue at that position in the string is in a helix, and c indicates that it is in a coil region. A
string y is read by an FSM one character at a time, inducing a specific set of transitions between internal
states. Note, the FSMs we are considering do not need to be deterministic. However, they do need to
satisfy the property that, for a given input string, there is at most one set of transitions leading from the
initial state to a final state. We denote this sequence of transitions by σ(y) and note that σ(y) need not
be defined for all y.

To define G(x,y), we create the cost function ψ(x, t, i) which assigns a vector of feature values
whenever a transition t is taken at position i in the sequence x. These feature values determine the total
cost G(x,y) by

G(x,y) =
{

+∞ if |x| �= |y| or σ(y) is undefined
〈w,∑i ψ(x, σ(y)i, i)〉 otherwise

(14)

This cost is easy to optimize over Y by using the Viterbi algorithm [33]. This algorithm proceeds in
|x| rounds. In round i, the best path of length s starting from an initial state is calculated for each FSM
state. These paths are computed by extending the best paths from the previous round by one transition,
and picking the best resulting path for each FSM state. The complexity of the algorithm is O(|FSM| · |x|),
where |FSM| is the number of states and transitions in the FSM.

8

4 Results

We now present results from our implementation of our algorithm. It was written in Objective Caml,
and uses SVMstruct/SVMlight [14] by Thorsten Joachims.

4.1 Finite State Machine Definition

In our experimentation, we have used an extremely simple finite state machine that is presented in
Figure 2. Each state corresponds to being in a helix or coil region, and indicates how far into the region
we are. States H4 and C3 correspond to helices and coils more than 4 and 3 residues long, respectively.
Short coils are permitted, but helices shorter than 4 residues are not allowed, as the dataset we used did
not contain any helices less than 4 residues long.

The features that were used in our experiments are presented in Table 1. The exact way in which
they are associated with transitions in the FSM is indicated in Table 2.

H, #3
C, #1

C, #0C, #0

H, #2 H, #3 H, #3

H, #3

C, #0 H, #4

H, #5

H1 H2 H3 H4

C1C2C3

Figure 2: The finite state machine we used. Double circles represent accept states. The arrow leading
into state C3 indicates that it is an initial state. Each transition is labeled with the type of structure it
corresponds to: helix (H) or coil (C), and a feature label (#i) indicating which features correspond to this
transition in Table 2.

Name Number of features Comment
A 1 Penalty for very short coil
B 1 Penalty for short coil
HR 20 Energy of residue R in a helix
Ci

R 140 Energy of residue R at position i relative to C-cap
N i

R 140 Energy of residue R at position i relative to N-cap
Total 302

Table 1: Summary of features that are considered.

Label Features Comment
#0 0 Coil defined as zero-energy
#1

∑+3
i=−3 C

i−1
Rn+i−1

End of helix processing (C-cap)
#2 HRn +

∑+3
i=−3N

i−1
Rn+i−1

Start of helix processing (N-cap)
#3 HRn Normal helix residue
#4 HRn +A Helix after very short coil
#5 HRn +B Helix after short coil

Table 2: Features that arise from each transition in the FSM. Ri denotes the residue at position i in the
protein, and n is the position at which we are in the protein.

9

We have experimented with various loss functions Δ (see Section 3.4). We have tried a 0-1 loss
functions (0 unless both structures are identical), hamming distance (number of incorrectly predicted
residues), and a modified hamming distance (residues are given more weight when they are farther from
the helix-coil tranitions). Each one gives results slightly better than the previous one.

None of the features we have used involve more than one residue in the sequence. We have done some
experimentation with more complicated cost functions in which pairwise interactions betweens nearby
residues in a helix, namely between n and n+3 or n and n+4. So far we have not managed to improve our
prediction accuracy using these interactions, possibly because each pairwise interaction adds 400 features
to the cost function, leaving much room for over-learning. Indeed, with the expanded cost functions we
observed improved predictions on the training proteins, but decreased performance on the test proteins.

4.2 Results

We have been working with a set of 300 non-homologous all-alpha proteins taken from EVA’s largest
sequence-unique subset of the PDB [8] at the end of July 2005. The sequences and structures have been
extracted from PDB data processed by DSSP. Only alpha helices have been considered (H residues in
DSSP files); everything else has been lumped as coil regions.

In our experimentation, we have been splitting our 300 proteins into two 150 protein subsets. The
first set is used to train the cost function; the second set is used to evaluate the cost function once it has
been learned. Since the results vary a bit depending on how the proteins are split in two sets, we have
trained the cost function on 20 random partitions into training and test sets, and taken averages.

We present results using both the Qα and SOVα metrics. The Qα metric is simply the number of
incorrectly predicted residues divided by sequence length. SOVα is a more elaborate metric that has been
designed to ignore small errors in helix-coil transition position, but heavily penalize more fundamental
errors such as gaps appearing in a helix [42].

Description SOVα (%) SOVα (%) Qα (%) Qα (%) Training
(train) (test) (train) (test) time (s)

Best run for SOVα 76.4 75.1 79.6 78.6 123
Average of 20 runs 75.1 73.4 79.1 77.6 162

Stardard deviation of 20 runs 1.0 1.4 0.6 0.9 30

Table 3: Results of our predictor. We have provided an average case.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

P
ro

te
in

s
(%

)

Average of 20 runs
Best SOV

(a) SOVα

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

P
ro

te
in

s
(%

)

Average of 20 runs
Best SOV

(b) Qα

Figure 3: Histograms showing the distribution of Qα and SOVα across proteins in the test set. We have
shown the average case, and the best case which has the highest SOVα.

10

Our results have been obtained for a slack variable weighting factor C = 0.08 in equation (10a). The
algorithm termination criterion was for ε = 0.1. Both of these parameters have a big impact on prediction
accuracy and training time.

5 Conclusion

In this paper we have present a method to predict alpha helices in all-alpha proteins. The HMM is
trained using a support vector machine method which iteratively picks a cost function based on a set of
constraints, and uses the predictions resulting from this cost function to generate new constraints for the
next iteration.

On average, our method is able to predict all-alpha helices with an accuracy of 73.4% (SOVα) or
77.6% (Qα). Unfortunately, these results are difficult to compare with existing prediction methods which
usually do predictions on both alpha helices and beta strands. Rost and Sanders caution that restricting
the test set to all-alpha proteins can result in up to a 3% gain in accuracy [32]. In addition, recent
techniques such as PSIPred [15] consider 3-10 helices (the DSSP state ‘G’) to be part of a helix rather
than loop, and report gains of about 2% in overall Q3 if helices are restricted to 4-helices (as in most
HMM techniques, including ours).

The real power of the machine learning method we use is its applicability beyond HMM models.
Indeed, instead of describing a protein structure as a sequence of HMM states, we could equally describe
it as a parse tree of a context-free grammar or multi-tape grammar. With these enriched descriptions, we
should be able to include in the cost function interactions between adjacent strands of a beta-sheet. This
should allow us to incorporate beta-sheet prediction into our algorithm. Unlike most secondary structure
methods, we would then be able to predict not only which residues participate in a beta-sheet, but also
which residues they are forming hydrogen bonds with in adjacent sheets.

11

A Example learned weight vector

Tables 4 and 5 show the w vector that led to the best test SOV.

A -86
B -43

Table 4: Residue independent pseudo-energies.

HR N−3
R N−2

R N−1
R N0

R N1
R N2

R N3
R C−3

R C−2
R C−1

R C0
R C1

R C2
R C3

R

G -1731 443 26 -73 250 150 -179 -319 -277 1 123 369 -833 215 187

A 764 534 484 800 -745 -628 -471 -528 -357 -386 -452 -499 41 580 336

V 997 512 603 727 -824 -794 -583 -311 -340 -588 -667 -879 -68 706 501

I 1683 611 540 858 -1364 -1202 -1001 -425 -388 -591 -815 -990 380 822 381

L 1440 756 879 989 -1143 -1057 -743 -394 -392 -447 -614 -826 450 948 669

F 734 653 559 686 -750 -592 -551 -332 -283 -478 -718 -601 30 581 433

P -4024 376 -110 -232 2325 1479 601 -178 -132 169 283 0 -2343 -607 -327

M 645 623 554 736 -930 -750 -300 -309 -349 -340 -450 -511 141 778 615

W 769 550 558 864 -551 -435 -356 -184 -255 -488 -647 -762 -265 -29 236

C -1507 56 -253 -262 50 -204 -276 -292 21 308 296 482 -844 113 -195

S -769 575 383 547 85 55 -125 -314 -451 -281 -167 35 -573 448 304

T -14 706 689 968 -235 -56 -23 -205 -522 -679 -489 -434 -592 425 248

N -917 498 235 463 -140 -194 -461 -454 -242 -114 65 231 -438 308 153

Q 556 656 445 849 -512 -533 -378 -372 -373 -399 -464 -706 -50 742 450

Y 495 435 335 457 -771 -581 -579 -448 -249 -462 -385 -433 -94 569 517

H -664 322 106 324 -26 -68 -158 -324 -291 14 146 327 -269 473 270

D -559 886 614 890 299 230 207 16 -499 -510 -498 -214 -725 183 208

E 296 637 522 747 -352 -186 -183 -292 -416 -379 -261 -344 -88 487 414

K 11 567 373 476 -522 -446 -414 -327 -226 -203 -164 -165 -91 548 441

R 329 323 367 642 -429 -476 -317 -297 -269 -435 -412 -369 -58 583 374

Table 5: Residue dependent pseudo-energies

References

[1] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov Support Vector Machines. In ICML
’03: Proceedings of the 20th International Conference on Machine Learning, 2004.

[2] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri. Exploiting the past and the future in
protein secondary structure prediction. Bioinformatics, 15:937–946, 1999.

[3] C. Bystroff, V. Thorsson, and D. Baker. HMMSTR: a hidden markov model for local sequence-
structure correlations in proteins. Journal of Molecular Biology, 301:173–190, 2000.

[4] J. Casborn. Protein Secondary Structure Class Prediction with Support Vector Machines. MSc
Dissertation, University of Sussex, 2002.

[5] A. Ceroni, P. Frasconi, A. Passerini, and A. Vullo. A Combination of Support Vector Machines
and Bidirectional Recurrent Neural Networks for Protein Secondary Structure Predict. In Advances
in Artificial Intelligence, 8th Congress of the Italian Association for Artificial Intelligence, volume
2829, pages 142–153, 2003.

12

[6] C. C. Chen, J. P. Singh, and R. B. Altman. Using imperfect secondary structure predictions to
improve molecular structure computations. Bioinformatics, 15(1):53–65, 1999.

[7] W. Chu and Z. Ghahramani. Protein Secondary Structure Prediction Using Sigmoid Belief Networks
to Parameterize Segmental Semi-Markov Models. In European Symposium on Artificial Neural Net-
works Bruges (Belgium), pages 81–86, 2004.

[8] EVA Largest sequence of unique subset of PDB. http://salilab.org/ eva/res/weeks.html#uniquej.

[9] V. Eyrich, M. Marti-Renom, D. Przybylski, M. Madhusudhan, A. Fiser, F. Pazos, A. Valencia,
A. Sali, and B. Rost. EVA: continuous automatic evaluation of protein structure prediction servers.
Bioinformatics, 17(12):1242–1243, 2001.

[10] G. Fasman and P. Chou. Prediction of the secondary structure of proteins from their amino acid
sequence. Adv. Enzymol., 47:45–148, 1978.

[11] J. Garnier, D. Osguthorpe, and B. Robson. Analysis of the accuracy and implications of simple
methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology,
120(1):97–120, 1978.

[12] H.-J. Hu, Y. Pan, R. Harrison, and P. C. Tai. Improved Protein Secondary Structure Prediction
Using Support Vector Machine With a New Encoding Scheme and an Advanced Tertiary Classifier.
IEEE Transactions on Nanobioscience, 3(4):265–, 2004.

[13] S. Hua and Z. Sun. A Novel Method of Protein Secondary Structure Prediction with High Segment
Overlap Measure: Support Vector Machine Approach. Journal of Molecular Biology, 308:397–407,
2001.

[14] T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel Methods – Support
Vector Learning, pages 169–185. MIT Press, 1998.

[15] D. T. Jones. Protein Secondary Structure Prediction Based on Position-specific Scoring Matrices.
Journal of Molecular Biology, 292:195–202, 1999.

[16] R. D. King and M. J. Sternberg. Identification and application of the concepts important for accurate
and reliable protein secondary structure prediction. Protein science, 5:2298–2310, 1996.

[17] J. L. Klepeis and C. A. Floudas. ASTRO-FOLD: A Combinatorial and Global Optimization Frame-
work for Ab Initio Prediction of Three-Dimensional Structures of Proteins from the Amino Acid
Sequence. Biophysical Journal, 85:2119–2146, 2003.

[18] A. Krogh, B. Larsson, G. von Heijne, and E. Sonnhammer. Predicting transmembrane protein
topology with a hidden markov model: application to complete genomes. Journal of Molecular
Biology, 305:567–580, 2001.

[19] J. Levin, S. Pascarella, P. Argos, and J. Garnier. Quantification of secondary structure prediction
improvement using multiple alignments. Protein Engineering, 6:849–854, 1993.

[20] K. Lin, V. A. Simossis, W. R. Taylor, and J. Heringa. A simple and fast secondary structure
prediction method using hidden neural networks. Bioinformatics, 21(2):152–159, 2005.

[21] J. Martin, J.-F. Gibrat, and F. Rodolphe. Hidden Markov Model for protein secondary structure.
In International Symposium on Applied Stochastic Models and Data Analysis, 2005.

13

[22] L. J. McGuffin and D. T. Jones. Benchmarking secondary structure prediction for fold recognition.
Proteins: Structure, Function, and Genetics, 52(2):166–175, 2003.

[23] M. N. Nguyen and J. C. Rajapakse. Prediction of protein secondary structure using bayesian method
and support vector machines. In 9th International Conference on Neural Information Processing,
volume 2, pages 616–620, 2002.

[24] M. N. Nguyen and J. C. Rajapakse. Multi-Class Support Vector Machines for Protein Secondary
Structure Prediction. Genome Informatics, 14:218–227, 2003.

[25] M. Ouali and R. D. King. Cascaded multiple classifiers for secondary structure prediction. Protein
Science, 9:1162–1176, 2000.

[26] The Research Collaboratory for Structural Bioinformatics PDB. http://www.rcsb.org/pdb/.

[27] T. N. Petersen, C. Lundegaard, M. Nielsen, H. Bohr, J. Bohr, S. Brunak, G. P. Gippert, and O. Lund.
Prediction of Protein Secondary Structure at 80% Accuracy. PROTEINS: Structure, Function, and
Genetics, 14:17–20, 2000.

[28] G. Pollastri and A. McLysaght. Porter: a new, accurate server for protein secondary structure
prediction. Bioinformatics, 21(8):1719–1720, 2005.

[29] N. Qian and T. Sejnowski. Predicting the secondary structure of globular proteins using neural
network models. Journal of Molecular Biology, 202(4):865–884, 1988.

[30] S. Riis and A. Krogh. Improving prediction of protein secondary structure using structured neural
networks and multiple sequence alignments. Journal of Computational Biology, 3:163–183, 1996.

[31] B. Rost. Review: Protein Secondary Structure Prediction Continues to Rise. Journal of Structural
Biology, 134(2):204–218, 2001.

[32] B. Rost and C. Sander. Prediction of protein secondary structure at better than 70% accuracy.
Journal of Molecular Biology, 232:584–599, 1993.

[33] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood
Cliffs, NJ, 2nd edition edition, 2003.

[34] A. A. Salamov and V. V. Solovyev. Prediction of protein secondary structure by combining nearest-
neighbor algorithms and multiple sequence alignments. Journal of Molecular Biology, 247:11–15,
1995.

[35] S. C. Schmidler, J. S. Liu, and D. L. Brutlag. Bayesian Segmentation of Protein Secondary Structure.
Journal of Computational Biology, 7(1/2):233–248, 2000.

[36] S. C. Schmidler, J. S. Liu, and D. L. Brutlag. Bayesian Protein Structure Prediction. Case Studies
in Bayesian Statistics, 5:363–378, 2001.

[37] I. Tsochantaridis, Y. Altun, and T. Hoffman. A crossover between SVMs and HMMs for protein
structure prediction. In NIPS Workshop on Machine Learning Techniques for Bioinformatics, 2002.

[38] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vector Machine Learning for
Interdependent and Structured Output Spaces. In ICML ’04: Proceedings of the 21st International
Conference on Machine Learning, 2004.

14

[39] J. Ward, L. McGuffin, B. Buxton, and D. Jones. Secondary structure prediction with support vector
machines. Bioinformatics, 19(13):1650–1655, 2003.

[40] K. Won, T. Hamelryck, A. Prügel-Bennett, and A. Krogh. Evolving Hidden Markov Models for
Protein Secondary Structure Prediction. In Proceedings of IEEE Congress on Evolutionary Compu-
tation, pages 33–40, 2005.

[41] K.-J. Won, A. Prügel-Bennett, and A. Krogh. Training HMM Structure with Genetic Algorithm for
Biological Sequence Analysis. Bioinformatics, 20(18):3613–3627, 2004.

[42] A. Zemla, Česlovas Venclovas, K. Fidelis, and B. Rost. A Modified Definition of Sov, a Segment-
Based Measure for Protein Secondary Structure Prediction Assessment. Proteins, 34(2):220–223,
1999.

15

	Introduction
	Related Work
	Algorithm
	Formulation as an Optimization Problem
	Iterative Constraint Based Approach
	Linear Cost Function
	Iteratively Constraining Support Vector Machines
	Defining the Set of Valid Structures

	Results
	Finite State Machine Definition
	Results

	Conclusion
	Example learned weight vector

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

