
Combining diagrammatic and symbolic reasoning

Konstantine Arkoudas

October 4, 2005

Abstract
We introduce a domain-independent framework for heterogeneous natural deduction that combines diagrammatic and sen-
tential reasoning. The framework is presented in the form of a family of denotational proof languages (DPLs). Diagrams
are represented as possibly partial descriptions of finite system states. This allows us to deal with incomplete information,
which we formalize by admitting sets as attribute values. We introduce a notion of attribute interpretations that enables
us to interpret first-order signatures into such system states, and develop a formal semantic framework based on Kleene’s
strong three-valued logic. We extend the assumption-base semantics of DPLs to accodomodate diagrammatic reasoning by
introducing general inference mechanisms for the valid extraction of information from diagrams and for the incorporation
of sentential information into diagrams. A rigorous big-step operational semantics is given, on the basis of which we prove
that our framework is sound. In addition, we specify detailed algorithms for implementing proof checkers for the resulting
languages, and discuss associated efficiency issues.

1.1 Introduction

Diagrams have been recognized as valuable representational and reasoning tools at least since the days of
Euclid. Their utility is often thought to stem from the fact that diagrams have structural correspondences with
the objects or situations they represent—they areanalogical representationsin the celebrated terminology
of Sloman (Sloman 1971), orhomomorphic representationsin the terminology of Barwise and Etchemendy
(Barwise and Etchemendy 1995a). In more plain terms, a diagramresembleswhat the diagram depicts, in
contrast to sentential—or “Fregean” (Sloman 1971)—descriptions. This was noticed at least as far back as the
19th century, when Charles Peirce observed that a diagram is “naturally analogous to the thing represented”
(Peirce 1960).

Consider, for instance, the task of descibing some human face. We could perhaps describe the face with
a collection of English sentences, or with a set of sentences in some formal language. But such a description
is likely to be excessively long and complicated, and hence not particularly illuminating.1 A drawing or a
picture of the face, on the other hand, will be much more perspicuous, as well as significantly more compact
than any sentential representation. Of course, some diagrams are better than others. A talented artist will
produce a drawing that is a much more accurate depiction than the scrawlings of a 5-year-old. A digital picture
will be even more accurate.2 So, as Hammer observes (Hammer 1995), being an analogical or homomorphic
representation is not a distinguishing feature of diagrams in general, but rather a distinguishing feature ofgood
diagrams.

This ability of (good) diagrams is in turn often thought to derive from the fact that diagrams are two-
dimensional objects, and therefore spatial relationships in the diagram can directly reflect analogous relation-
ships in the underlying domain, an observation made a while back by Russell (Russell 1923). A classic example
are maps. We can represent the streets of a city graphically, with a map, or sententially, e.g., by a collection
of assertions expressing the various intersections and so forth. The graphical representation is without doubt a
more intuitive and effective description because its spatial structure is similar to the actual layout of the city;
this analogical correspondence is lost in the sentential representation. As another example, consider a map of
a lake and try to imagine a sentential description of it. Stenning and Lemon (Stenning and Lemon 2001) trace
this discrepancy to the fact that sentential languages derive from acoustic signals, which are one-dimensional
and must therefore rely on a complex syntax for representation, something that is not necessary in the case of
diagrams.

1Fractals (Manbelbrot 1982) might be able to yield compact representations for some complex shapes such as coastlines, etc., but the
equations generating the fractals would be no more homomorphic to the corresponding shapes than other sentential descriptions.

2In the limiting case, of course, the ultimate representation of an object is the object itself; in that case we have a perfect isomorphism
between the representation and the object represented.

1

Nevertheless, it is important to keep in mind that two-dimensionality by itself is neither a necessary nor a
sufficient condition for being a diagram. For instance, as Hammer (Hammer 1995) points out, a representation
of a picture by a two-dimensional array of numbers encoded under some encryption scheme does not classify as
a diagram; there is no structural similarity between the representation and that which is being represented. And
by making sufficiently clever conventions, one can very well construct intuitive one-dimensional diagrams.
E.g., the following string expresses the fact that the stretch of road between Park Avenue/35th Street and
Park Avenue/36th is two-way, whereas that between Park Avenue/36th and Park Avenue/37th is one-way and
proceeds from right to left:

Park/35th <==> Park/36th <== Park/37th

Owing to their representational power, diagrams are extensively used in a very wide range of fields. To note
just a few examples, witness free-body, energy-level and Feynman diagrams in physics (Veltman 1995), arrow
diagrams in algebra and category theory (Pierce 1991), Euler and Venn diagrams in set theory, function graphs
in calculus and analysis, planar figures in geometry, bar-, chart- and pie-graphs in economics, circuit, state and
timing diagrams in hardware design (Johnson, Barwise and Allwein 1996), UML diagrams in software design
(Rumbaugh, Jacobson and Booch 1999), higraphs in specification (Harel 1988), visual programming languages
(Chang 1990) and visual logic and specification languages (Agusti, Puigsegur and Robertson 1998, Hirakawa,
Tanaka and Ichikawa 1990, Ogawa and Tanaka 2000), transition graphs in model checking (Bérard, Bidoit,
Finkel, Laroussinie, Petit, Petrucci and Schnoebelen 2001), ER-diagrams and hypergraphs in databases (Fagin,
Mendeizon and Ullman 1982), semantic networks in AI, graphical user interfaces (GUIs) such as Xerox Parc’s
“Magic Lenses” (Bier, Stone, Pier, Buxton and DeRose 1993), and so on. As the capability of computers to
store and manipulate diagrams improves, their use is likely to increase.

Diagrams are not without drawbacks. While they often excel in depicting particular, concrete objects or
situations, they are usually not as good for describing general, abstract structures and relationships. Roughly,
the smaller and more concrete the class of models captured by a diagram, the more successful the diagram
is likely to be. Spatial constraints tend to pull diagrams toward over-specificity, and end up limiting their
generality and expressiveness as a result. To take an extreme example, diagrams cannot express tautological or
contradictory information.3

Expressive limitations can lead to incorrect inferences. It is known that Euler circles (Euler 1768), for
instance, are unsound. This follows from Helly’s theorem in convex topology (Eggleston 1969). A simple
illustration of the problem, due to Lemon and Pratt (Lemon and Pratt 1997), is the following: consider four
setsA,B,C, andD, any three of which have non-empty intersections:

A ∩B ∩ C 6= ∅;
B ∩ C ∩D 6= ∅;
A ∩ C ∩D 6= ∅.

These are three perfectly consistent premises. But any Euler diagram that tried to depict them graphically would
lead to the incorrect conclusion that all four sets have a non-empty intersection (i.e. thatA ∩ B ∩ C ∩ D 6=
∅), which does not follow from the premises. This is a consequence of a special case of Helly’s theorem,
which states that if any three out of four convex regions have a non-empty intersection then all four must have
a non-empty intersection. Similar negative results hold for other diagrammatic ways of depicting sets and
relationships between them, such as Englebretsen’s linear diagrams (Englebretsen 1992); see Lemon’s article
(Lemon 2002) for a thorough discussion.

3Pierce diagrams can be viewed as a counterexample, but those rely on so many ad hoc conventions that they cannot be said to be
analogical representations.

2

The complexity of diagrammatic reasoning is another issue. Roughly, there are two types of diagrammatic
inference. In one of them, exemplified by Euler circles and Venn diagrams, inference is carried out by drawing
appropriate diagrams and then reading off the appropriate bits of information from the constructed picture.
This type of diagrammatic inference is summarized by the slogan “If you can draw it, it holds.”4 In the second
type of diagrammatic inference, exemplified in systems such as Hyperproof and in our own VIVID , inference is
carried out in a more traditional sense, by deriving new diagrams from diagrams that are given as “premises,”
or by extracting sentential information from given diagrams. Computational complexity issues have been
rigorously investigated for the former, but not for the latter. E.g., for the former, it has been realized that results
obtained in studying the complexity of topological inference (Grigni, Papadias and Papadimitriou 1995) have
a direct bearing on the complexity of drawing diagrams such as Euler circles, and hence on the first type of
diagrammatic reasoning. For instance, it has been shown that propositional reasoning with Euler sets is NP-
hard, even though reasoning about the same domain can be done polynomially using other representations
(Lemon 2002). In the present work, it will be seen that even thoughNDL proofs (Arkoudas n.d.a) can be
checked for soundness inO(n log n) time in the worst case (wheren is the size of the proof), checking VIVID

proofs can take exponential time, although it should be noted that in our case most of the complexity derives
from dealing with unknown (incomplete) information. It would appear, therefore, that visual inference, at least
in some cases, can be significantly more expensive than corresponding sentential reasoning.5

For these and other reasons, researchers have concluded that logical reasoning frameworks must behet-
erogenerousor hybrid (Barwise and Etchemendy 1995a, Myers 1994): they must support both diagrammatic
and sentential modes of representation and reasoning, allowing users to freely combine the two. In the attempt
to formulate a generic framework for heterogeneous reasoning, one naturally confronts the question of what
type of diagrams to use. As Barwise and Etchemendy correctly observe (Barwise and Etchemendy 1995a), it
would be impossible to construct a domain-independent framework for diagrammatic reasoning that relied on a
specific type of diagrams. What makes a class of diagrams appropriate—i.e., good analogical representations—
for certain problems might make them inappropriate for others. In the example of Barwise and Etchemendy,
at different times electrical engineers use state diagrams, circuit diagrams, and timing diagrams to represent
and reason about hardware as needed by the appropriate viewpoint at hand (control, logic gates, or timing,
respectively). There is no single type of diagram that is uniformly appropriate.

Nevertheless, we observe that much of what we do when we reason with or about diagrams does not depend
on how diagrams are drawn or even on what they mean. In this paper we identify what is common in a great
variety of instances of diagrammatic reasoning, and proceed to factor it out and extrapolate it into general
principles. In the resulting framework, the type of diagrams used may vary from application to application,
but the principles by which we reason with and about diagrams remain the same. This is not unlike other
separations that are familiar from traditional, sentential logic: our vocabulary might vary from application to
application (we have different constant, relation, and function symbols as dictated by the problem domain), and
the interpetation of the atomic formulas that we can build from that vocabulary will also vary, but the general
principles by which we reason with such formulas do not change.

4For instance, to check the validity of a syllogism with a Venn diagram, all we have to do is draw a figure that represents the premises
of the syllogism. When done, the picture itself will tell us whether or not the conclusion follows; nothing further needs to be done. Hence,
inference in such cases stops with the representation of the premises. In customary reasoning, by contrast, inference only beginsafter the
premises have been represented. This is related to the notion offree rides(Shimojima 1996) in diagrammatic reasoning.

5There are alternative viewpoints, however. AI researchers have put forth the notion ofvivid knowledge bases(Etherington, Borgida,
Brachman and Kautz 1989, Levesque 1989), in which deductive retrieval can be performed particularly efficiently. Such knowledge bases
consist only of ground sentences, ground inequalities, and universal quantifications. Etherington et al. (Etherington et al. 1989) claim that
“the notion of vivid representations ... corresponds well to the kind of information expressed in pictures” and that “much of the information
we gain (i.e., perceptually) occurs naturally in vivid form.” Likewise, Levesque (Levesque 1989) states that “perhaps the main source of
vividly represented knowledge is pictorial information.” If that is indeed the case, one would expect pictorial reasoning to be efficient.
Lemon (Lemon 2002), however, argues that such claims fail to take into account the type of spatial constraints that limit the expressiveness
of diagrammatic representations.

3

1.2 Notation

For any setsA andB,A \B denotes the set-theoretic difference ofA andB:

A \B = {x ∈ A | x 6∈ B}.

We write (a; b) for the ordered pair that hasa andb as its first and second component, respectively. For any
n ≥ 0 objectsx1, . . . , xn, [x1 · · ·xn] is the list that hasxi as itsith element. Given a listL = [x1 · · ·xn] and
i ∈ {1, . . . , n}, we writeL(i) to denotexi. Further, for any suchL and objectx, we define

Pos(x, L) = {i ∈ {1, . . . , n} | x = xi}.

Accordingly, ifx does not occur inL thenPos(x, L) = ∅. If A is a set, thenA∗ is the set of all lists of elements
of A.

The empty list[] is a sublist of every list; no non-empty list is a sublist of[]; while a list of the form
L = [x1 x2 · · ·xn] is a sublist of a list of the formL′ = [y1 y2 · · · ym] iff (1) x1 = y1 and [x2 · · ·xn] is a
sublist of[y2 · · · ym]; or (2)x1 6= y1 andL is a sublist of[y2 · · · ym].

For any setA, we writeP∞(A) for the set of all finite subsets ofA. Whenn is a positive integer,An

denotes the cartesian product
n︷ ︸︸ ︷

A× · · · ×A,

i.e., the set of all lists of lengthn with elements drawn fromA.6 Given a (partial) functionf : A→B and
elementsx ∈ A, y ∈ B, f [x 7→ y] denotes that function fromA toB which mapsx to y and agrees withf on
every otherx′ ∈ A. More precisely:

f [x 7→ y] =
{

(f \ {(x; f(x))}) ∪ {(x; y)} if f is defined forx;
f ∪ {(x; y)} otherwise.

ForA′ ⊂ A, f �A′ denotes the restriction ofF onA′, i.e.,

f �A′ = {(x; y) | f(x) = y and x ∈ A′}.

Finally, for an arbitrary relationR ⊆ A1 × · · · ×An,D(R) denotes the set{A1, . . . , An}.

1.3 Attribute structures and systems

Definition 1: An attribute structure is a pairA = ({A1, . . . , Ak};R) consisting of a finite collection of
setsA1, . . . , Ak called attributes; and a countable collectionR of computable relations, withD(R) ⊆
{A1, . . . , Ak} for eachR ∈ R.

An attribute structure is thus a type of regular heterogeneous algebraic structure (Meinke and Tucker 1992,
Wechler 1992) (without any operators) whose carriers are called “attributes” for reasons that will become clear
soon. We will tacitly assume thatR includes the identity relation on each attributeAi: {(a; a) | a ∈ Ai}.

We assume that there is a uniquelabel li attached to each attributeAi of a structureA. A label will serve
as an alias for the corresponding attribute. Further, when the relations ofA are immaterial, we identifyA with
its attributes. We can then writeA simply asl1 : A1, . . . , lk : Ak, whereli is the label ofAi. The number of
attributesk is thecardinalityof A, denoted by|A|. We say thatA is finite iff every attribute ofA is finite.

6With A1 = A.

4

Definition 2: LetA be any attribute structure. Anattribute system based onA, orA-system for short, is a
pair

S = ({s1, . . . , sn};A)

consisting of a finite numbern > 0 of objectss1, . . . , sn andA. An attribute ofA may include some (or all)
of the objectss1, . . . , sn. If that is the case,S is calledautomorphic. We refer to the productn · |A| as the
system’spower.

WhenA is obvious from the context or immaterial, we drop references to it and speak simply of “systems”
rather than “A-systems.”

Example 1: Consider a system consisting of a clockc, with two attributes, hours and minutes:

({c}; hours: {0, . . . , 23},minutes: {0, . . . , 59}).

Another system based on the same attribute structure might consist of two clocksc1 andc2, perhaps indicating
New York and Tokyo times, respectively:

({c1, c2}; hours: {0, . . . , 23},minutes: {0, . . . , 59}).

Example 2: Consider a system comprising the nodes of a three-element linked list, each with two attributes,
adatafield consisting of a Boolean value (t or f) and anextfield consisting of another node or the null value:

({n1, n2, n3}; data : Bool,next: {n1, n2, n3,null}),

whereBool = {t, f} andnull is a special token distinct from{n1, n2, n3}. This is an automorphic system.

Example 3: Consider a blocks-world system consisting of three blocksA,B, andC, and a single “position”
attribute, where a position is either a block or the floor:

({A,B,C}; pos: {A,B,C, floor});

andfloor is distinct fromA,B, andC. This system is also automorphic.

Example 4: Consider a Hyperproof (Barwise and Etchemendy 1995b) system consisting of four blocks and
three attributes: a pair of integers(i, j) with 0 < i, j < 9 indicating a grid location; a size (small, medium, or
large); and a shape (cube, tetrahedron, or dodecahedron):

({b1, b2, b3, b4}; loc : {1, . . . , 8}2, size: {small,medium, large}, shape: {cube, tet,dodec})

Definition 3: A stateof a systemS = ({s1, . . . , sn}, {A1, . . . , Ak}) is a set of functionsσ = {δ1, . . . , δk},
where eachδi is a function from{s1, . . . , sn} to the set of all non-empty finite subsets ofAi, i.e.,

δi : {s1, . . . , sn}→ P∞(Ai) \ ∅.

We refer to eachδi as the state’sascription intoAi. An ascriptionδi is avaluation if it maps every object to
a singleton, i.e., if|δi(sj)| = 1 for everyj = 1, . . . , n. We may thus view a valuation as mapping every object
to a unique attribute value. Aworld w is a state in which every ascription is a valuation.

5

t

n1

r - f

n2

r - t

n3

r

Figure 1.1: A linked list world.

A system that is based on a finite attribute structure has

k∏
i=1

2(|Ai|−1)n

= 2(
∑k

i=1(|Ai|−1)n)

states, wheren is the number of objects andk the number of attributes.7 To simplify notation, whenδ is a
valuation that maps an objects to a singleton{a}, we write δ(s) = a instead ofδ(s) = {a}. Further, we
will often use the labelli of an attributeAi to denote the corresponding ascription intoAi. That is, we are
overloading the label symbols: sometimesli will stand for the attributeAi and sometimes, in the context of
a given state, it will stand forδi, the state’s (unique) ascription intoAi; the context will always make our
intentions clear. As an additional convention, given a stateσ of the form described in Definition 3, an attribute
(label)li and an objectsj , we writeσ(li, sj) for δi(sj), i.e., the value of the ascriptionδi for the objectsj .

Our notion of systems and states is similar to the corresponding notions in the model checking field (Clarke,
Grumberg and Peled 1999, Bérard et al. 2001), where a system is represented by a collection of variables and a
state of a system is modeled by an assignment of a value (drawn from an appropriate domain) to each variable.

Example 5: Consider the single-clock system of Example 1:

({c}; hours: {0, . . . , 23},minutes: {0, . . . , 59}).

A stateσ1 of this system is given by the following two valuations:

σ1 : hours(c) = 15,minutes(c) = 47,

indicating a time of 3:47 p.m. This is a particular world of the clock system. Using the aforementioned
convention, we can also write:

σ1(hours, c) = 15, σ1(minutes, c) = 47.

Suppose we know that it is between 2:30 and 3 past midnight, but do not know exactly how many minutes
past 2:30 it is. This state of knowledge can be captured by the following state:

σ2 : hours(c) = 2,minutes(c) = {31, . . . , 59}.

This state can also be expressed by writing

σ2(hours, c) = 2, σ2(minutes, c) = {31, . . . , 59}.

Complete lack of information about the time is represented by the state:

hours= {0, . . . , 23},minutes(c) = {0, . . . , 59}.
7Our term “system state” corresponds roughly to what Barwise et al. (Barwise and Etchemendy 1995b) refer to as “situation.” Our

notion is much more general, as will be seen.

6

Example 6: Consider the linked-list system of Example 2. The state

data(n1) = t,data(n2) = f,data(n3) = t,next(n1) = n2,next(n2) = n3,next(n3) = null

depicts the world shown in Figure 1.1. The state

data(n1) = {t, f},data(n2) = {t, f},data(n3) = f,next(n1) = n2,next(n2) = {n1, n3},next(n3) = null

depicts a system in which we do not know the data fields of the first and second nodes, we know that the next
field of the second node is eithern1 or n3, and we have fixed values for the remaining nodes and attributes.

Example 7: Consider the blocks world system of Example 3. The state

pos(A) = B,pos(B) = floor,pos(C) = floor

depicts the blocks world shown in Figure 1.2. The state

pos(A) = {A,B,C, floor},pos(B) = {A,B,C, floor},pos(C) = {A,B,C, floor}

signifies complete lack of information about the positions of the blocks.

Example 8: Consider the Hyperproof system of Example 4. The state

loc(b1) = (1, 1)
loc(b2) = (5, 3)
loc(b3) = (2, 6)
loc(b4) = {(7, 1), (7, 2), . . . , (7, 8)}

size(b1) = {small, medium}
size(b2) = small
size(b3) = large
size(b4) = medium

shape(b1) = cube
shape(b2) = tet
shape(b3) = {tet, dodec}
shape(b4) = dodec

should be self-explanatory at this point.

We might think of system states as mental models of situations, representing various states of knowledge
ranging from completely specific to completely general.

Definition 4: Consider a systemS = ({s1, . . . , sn}; l1 : A1, . . . , lk : Ak). We say that a stateσ′ of S is
an extensionof another such stateσ, written σ′ v σ, iff σ′(li, sj) ⊆ σ(li, sj) for every i = 1, . . . , k and
j = 1, . . . , n. 8 We callσ′ aproper extensionof σ, denotedσ′ @ σ, iff σ′ v σ andσ 6v σ′.

Hence,σ′ is a proper extension ofσ iff σ′ v σ and there is at least one attributel and objects such that
σ′(l, s) ⊂ σ(l, s). Worlds do not have any proper extensions.

Consider, for instance, the system of Example 1:

({c1, c2}; hours: {0, . . . , 23},minutes: {0, . . . , 59}).

The state

hours′(c1) = {13, 14},
minutes′(c1) = {55}, (1.1)

hours′(c2) = {6, 7},
minutes′(c2) = {9, 10},

8The terminology sounds somewhat paradoxical, since an extension of a state is one that assignsfewerattribute values to each system
object, thereby making our knowledge of the system more specific. This is similar to the terminology of object-oriented class hierarchies,
where we say that “human” is an extension of “mammal” to mean that the former is in fact a subset of the latter.

7

B

A

C

Figure 1.2: A blocks world.

is an extension of the state

hours(c1) = {13, 14, 15},
minutes(c1) = {55}, (1.2)

hours(c2) = {6, 7},
minutes(c2) = {9, 10, 11}.

The set of all states ofS is arranged into a rich partial order corresponding to the join (union) semi-lattice

(P∞(A1) \ ∅)× · · · × (P∞(Ak) \ ∅).

We do not have a lattice because the meet of two states might not exist. This is related to the proviso of
Definition 3 that ascriptions must map system objects tonon-emptysets of attribute values, and ultimately
stems from the expressive limitations of pictures. Given that diagrammatic ambiguity is part and parcel of our
system, a join operatort on diagrams is fairly natural: for any attributel and objects, we set

(σ1 t σ2)(l, s) = σ1(l, s) ∪ σ2(l, s).

This is precisely the least upper bound of the two states w.r.t. the orderingv. But a meet operatoru would
indicate conjunction, and conjoining diagrams with contradictory information is not pictorially meaningful.
For instance, if an objects has a round shape in diagramσ1 and a square shape inσ2:

σ1(shape, s) = round

σ2(shape, s) = square

then what is the shape ofs is σ1 u σ2? If we were to define meets as

(σ1 u σ2)(l, s) = σ1(l, s) ∩ σ2(l, s)

then we would haveσ1 u σ2(shape, s) = ∅, an impossible state of affairs. This is why some researchers
have argued that diagrams are essentially an impoverished form of sentential representations (Sober 1976).
Sententially, we can very well construct a formula that asserts

shape(s) = round∧ shape(s) = square

but, diagrammatically, we cannotdraw a square circle. This, in turn, is due to the fact that negation is not
diagrammatically meaningful. If we had a negation operator− on diagrams then conjunction could be defined
simply asσ1uσ2 = −(σ1tσ2). But negating a diagram could of course take us to the empty set if the starting
value comprised the entire attribute space.

8

If we admitted a special “null diagram” indicating an inconsistent state, then we could define complemen-
tation and indeed joins and meets on diagrams, and we would obtain not just a lattice but a Boolean algebra
isomorphic to sentential logic. Indeed, a mappingM from states to first-order sentences can be defined in
a straightforward way, assuming we have chosen some binary predicate symbolAl for each attributel and
appropriate constant symbols for the attribute values and system objects. We set:

M(σ) =
n∧

i=1

∧
l∈L

∨
α∈l(si)

Al(si, α)

wheres1, . . . , sn are the system objects andL the set of all labels. E.g., the conjunction of the four senteces

[hours(c1, 13) ∨ hours(c1, 14)] ∧minutes(c1, 55)

[hours(c2, 6) ∨ hours(c2, 7))] ∧ [minutes(c2, 9) ∨minutes(c2, 10))

would correspond to the state (1.1). The mappingM would then be a homomorphism:

M(−σ) = ¬M(σ)

M(σ1 t σ2) = M(σ1) ∨M(σ2)

M(σ1 u σ2) = M(σ1) ∧M(σ2)

1.4 Interpreting first-order languages into system states

Consider a first-order vocabularyΣ = (C,R,V) consisting of a set of constant symbolsC; a set of relation sym-
bolsR, with eachR ∈ R having a unique positive arity; and a set of variablesV. An attribute intepretation
of Σ into an attribute structureA = ({l1 : A1, . . . , lk : Ak};R) is a mappingI that assigns, to each relation
symbolR ∈ R of arity n:

1. a relationRI ∈ R of some aritym, called therealization of R:

RI ⊂ Ai1 × · · · ×Aim

(where we might havem 6= n); and

2. a list of m pairs
[(li1 , j1), . . . , (lim

, jm)]

called theprofile of R and denoted byProf(R), with 1 ≤ jx ≤ n for eachx = 1, . . . ,m.

As will become apparent soon, an attribute interpretation differs from a normal interpretation in that atomic
formulas over system objects are “compiled” via profiles into atomic formulas over selected attribute values of
(some of) those objects. Accordingly, an atomic statement concerning system objects must be understood as
an atomic statement concerning certain attribute values of those objects.

In what follows, fix a signatureΣ = (C,R,V), an attribute structure

A = ({l1 : A1, . . . , lk : Ak};R)

and an attribute intepretationI of Σ intoA.

9

Suppose now that we are given anA-systemS = ({s1, . . . , sn};A). We define aconstant assignment
as a partial functionρ from C to {s1, . . . , sn}; while a variable assignmentis a total functionχ from V to
{s1, . . . , sn}. We writeDom(ρ) for the domain of a constant assignmentρ, i.e., the set of all and only those
constant symbols for whichρ is defined. A total constant assignment will usually be written asρ̂, with the hat
indicating that the mapping is total. We will say that two constant assignmentsρ1 andρ2 have aconflict iff
there is somec ∈ Dom(ρ1) ∩ Dom(ρ2) such thatρ1(c) 6= ρ2(c). Therefore, ifDom(ρ1) ⊇ Dom(ρ2) thenρ1

andρ2 have a conflict iffρ1 6⊇ ρ2.
FormulasF overΣ are defined as usual, with a termt being either a variable or a constant symbol. We

omit definitions of standard notions such as free variable occurrences, alphabetic equivalence, etc. The set of
variables that occur free in a formulaF is denoted byFV(F). We regard alphabetically equivalent formulas as
identical. A sentence is a formula without any free variable occurrences. For any termt, we definetρ,χ asρ(c)
if t is a constant symbolc and asχ(v) if t is a variablev. Sinceρ is a partial function,tρ,χ may be undefined.

By a named statewe will mean a pair(σ; ρ) consisting of a stateσ and a constant assignmentρ. We
say that a named state(σ′; ρ′) is anextensionof a named state(σ; ρ), written (σ′; ρ′) v (σ; ρ), iff σ′ is an
extension ofσ (i.e.,σ′ v σ) andρ′ ⊇ ρ (viewing the partial functionsρ andρ′ as sets of ordered pairs). Note
thatv is covariant on the state components but contravariant on the constant assignments. We say that(σ′; ρ′)
is a proper extensionof (σ; ρ), written (σ′; ρ′) @ (σ; ρ), iff (σ′; ρ′) v (σ; ρ) and eitherσ′ @ σ or ρ′ ⊃ ρ.
Further,(σ′; ρ′) is afinite extensionof (σ; ρ) iff (σ′; ρ′) v (σ; ρ) and the differenceρ′ \ ρ is finite. We write

(σ′; ρ′)
∞
v (σ; ρ) (or (σ′; ρ′)

∞
@ (σ; ρ)) to indicate that(σ′; ρ′) is a finite extension (respectively, a finite proper

extension) of(σ; ρ). A named state(σ; ρ) will be called aworld iff σ is a world (every ascription ofσ is a
valuation) andρ is total. 9 As before, worlds do not have any extensions. If(σ′; ρ′) v (σ; ρ) we might say
that (σ′; ρ′) is obtainable from(σ; ρ) by thinning , or conversely, that(σ; ρ) is obtainable from(σ′; ρ′) by
widening. By anassumption baseβ we will mean a finite set of formulas. Acontext is a pairγ = (β; (σ; ρ))
consisting of an assumption baseβ and a named state(σ; ρ). Note that since the identity relation on each
attribute is required to be decidable (by the computability proviso of Definition 1), the relationv is decidable
as well.

Lemma 1: The relation v is a quasi-order on named states, i.e., it is reflexive and transitive.

We will now show how to assign a truth value—or an “unknown” token—to any formulaF , given a named
state(σ; ρ) (of anA-systemS = ({s1, . . . , sn};A)) along with a variable assignmentχ. This is done by
formally definining a mappingI(σ; ρ)/χ from the set of all formulas to the three-element set

{true, false,unknown}

as follows.
First consider an atomic formulaR(t1, . . . , tn), whereR is a relation symbol of arityn and profile

[(li1 , j1), . . . , (lim
, jm)]. We set

I(σ; ρ)/χ(R(t1, . . . , tn)) =

true if ∀ α1 ∈ li1(t

ρ,χ
j1

) · · · ∀ αm ∈ lim(tρ,χ
jm

) . RI(α1, . . . , αm);

false if ∀ α1 ∈ li1(t
ρ,χ
j1

) · · · ∀ αm ∈ lim(tρ,χ
jm

) . ¬RI(α1, . . . , αm);

unknown otherwise.

(1.3)

In the first two cases above we tacitly assume—in the interest of readability—thattρ,χ
jx

is defined for every
x = 1, . . . ,m. If not, then the value ofI(σ; ρ)/χ(R(t1, . . . , tn)) is unknown.

Note that the occurrences of the symbol∀ on the right-hand side of (1.3) occur as part of our metalanguage
and should not be confused with object-level occurrences of∀ in VIVID formulas. We will continue to use

9This also overloads the term “world”: sometimes it refers to a state and sometimes to a named state. Again, the context will always
disambiguate the use.

10

object-level symbols in different capacities without explicitly calling attention to the distinction; the context
will always clarify the use.

Sentential combinations of formulas are interpreted according to the strong three-valued Kleene scheme
(Kleene 1952). For instance:

I(σ; ρ)/χ(F1 ∧ F2) =

true if I(σ; ρ)/χ(F1) = true andI(σ; ρ)/χ(F2) = true;

false if I(σ; ρ)/χ(F1) = falseor I(σ; ρ)/χ(F2) = false;
unknown otherwise.

(1.4)

Finally, quantified formulas are evaluated as follows:

I(σ; ρ)/χ(∀ v . F) =

true if I(σ; ρ)/χ[v 7→si]

(F) = true for everyi ∈ {1, . . . , n};
false if I(σ; ρ)/χ[v 7→si]

(F) = falsefor somei ∈ {1, . . . , n};
unknown otherwise.

(1.5)

and

I(σ; ρ)/χ(∃ v . F) =

true if I(σ; ρ)/χ[v 7→si]

(F) = true for somei ∈ {1, . . . , n};
false if I(σ; ρ)/χ[v 7→si]

(F) = falsefor everyi ∈ {1, . . . , n};
unknown otherwise.

(1.6)

The following result is proved by a straightforward induction on the structure ofF . It is the three-valued-
logic version of the standard coincidence theorem of universal algebra and logic, which states that two variable
assignments that agree on the free variables of a formulaF are indistinguishable for the purposes of determin-
ing the truth value ofF .

Lemma 2: If χ1(v) = χ2(v) for every variable v that has a free occurrence in F , then

I(σ; ρ)/χ1
(F) = I(σ; ρ)/χ2

(F).

Lemma 3 (No unknowns in worlds): For every world (w; ρ̂), variable assignment χ, and formula F ,

I(w; ρ̂)/χ(F) 6= unknown.

I.e., in a world every formula is either true of false.

PROOF: A straightforward induction on the structure ofF .

Lemma 4 (Thinning preserves truth values): If (σ′; ρ′) v (σ; ρ) and

I(σ; ρ)/χ(F) 6= unknown

then I(σ′; ρ′)/χ(F) = I(σ; ρ)/χ(F).

PROOF: By structural induction onF . For the basis case, suppose thatF is an atomic formulaR(t1, . . . , tn),
whereR has a profile[(li1 , j1), . . . , (lim

, jm)]. From (1.3), the assumption

I(σ; ρ)/χ(F) 6= unknown

entails that the termstρ,χ
j1
, . . . , tρ,χ

jm
are all defined, and further, that either

∀ α1 ∈ li1(t
ρ,χ
j1

) · · · ∀ αm ∈ lim(tρ,χ
jm

) . RI(α1, . . . , αm) (1.7)

11

or
∀ α1 ∈ li1(t

ρ,χ
j1

) · · · ∀ αm ∈ lim
(tρ,χ

jm
) . ¬RI(α1, . . . , αm). (1.8)

Sincetρ,χ
j1
, . . . , tρ,χ

jm
are all defined andρ′ is a superset ofρ, the termstρ

′,χ
j1

, . . . , tρ
′,χ

jm
are also defined. Further,

sinceσ′ v σ, we have
l′i1(t

ρ′,χ
j1

) ⊆ li1(t
ρ′,χ
j1

), . . . , l′im
(tρ

′,χ
jm

) ⊆ lim(tρ
′,χ

jm
),

and since
tρ

′,χ
j1

= tρ,χ
j1
, . . . , tρ

′,χ
jm

= tρ,χ
jm

we have
l′i1(t

ρ′,χ
j1

) ⊆ li1(t
ρ,χ
j1

), . . . , l′im
(tρ

′,χ
jm

) ⊆ lim
(tρ,χ

jm
).

Hence it follows that if (1.7) is the case then

∀ α1 ∈ l′i1(t
ρ′,χ
j1

) · · · ∀ αm ∈ l′im
(tρ

′,χ
jm

) . RI(α1, . . . , αm), (1.9)

and thereforeI(σ′; ρ′)/χ(F) = I(σ; ρ)/χ(F) = true; while, if (1.8) is the case, we have

∀ α1 ∈ l′i1(t
ρ′,χ
j1

) · · · ∀ αm ∈ l′im
(tρ

′,χ
jm

) . ¬RI(α1, . . . , αm), (1.10)

and thereforeI(σ′; ρ′)/χ(F) = I(σ; ρ)/χ(F) = false. The inductive cases are straightforward.

Example 9: Consider the signatureΣ1 = (Cclock,Rclock,Vclock) where the set of constant symbols is

Cclock = {c1, c2, . . .}

the set of variables isVclock = {x1, x2, . . .}, and the set of relation symbols is

Rclock = {PM,AM,Ahead ,Behind },

with PM, AMunary andAhead , Behind binary.
Consider now the attribute structure

Clock= (hours: {0, . . . , 23},minutes: {0, . . . , 59}; {R1, R2, R3, R4}),

whereR1 ⊆ hours,R2 ⊆ hours,

R3 ⊆ hours×minutes× hours×minutes,

R4 ⊆ hours×minutes× hours×minutes,

defined as follows:R1(h)⇔h > 11,R2(h)⇔h ≤ 11,

R3(h1,m1, h2,m2)⇔h1 > h2 ∨ (h1 = h2 ∧m1 > m2),

and
R4(h1,m1, h2,m2)⇔h1 ≤ h2 ∨ (h1 = h2 ∧m1 ≤ m2).

We define an interpretationI of Σ1 into this attribute structure by specifying a unique relation (in the struc-
ture) and a unique profile for each symbol inRclock. In particular, we setPMI = R1,AMI = R2,Ahead I =
R3,Behind I = R4 and:

Prof(PM) = [(hours, 1)];
Prof(AM) = [(hours, 1)];

Prof(Ahead) = [(hours, 1), (minutes, 1), (hours, 2), (minutes, 2)];
Prof(Behind) = [(hours, 1), (minutes, 1), (hours, 2), (minutes, 2)].

12

Example 10: Consider the system({c1, c2}; Clock), whereClock is the attribute structure of Example 9. Let
σ be the following state of this system:

hours(c1) = {9, 13},
minutes(c1) = 12,

hours(c2) = 8,
minutes(c2) = 27,

and letρ be the partial constant assignment that mapsc1 to c1 and c2 to c2. We claim that the sentence
Ahead(c1, c2) is true in(σ; ρ) for any variable assignmentχ. Indeed, consider an arbitraryχ. Recalling the
profile ofAhead , definition (1.3) tells us that in order to have

I(σ; ρ)/χ(Ahead(c1, c2)) = true

we must haveR(a1, a2, a3, a4) for all

a1 ∈ hours(cρ,χ
1 = c1) = {9, 13},

a2 ∈ minutes(cρ,χ
1 = c1) = {12},

a3 ∈ hours(cρ,χ
2 = c2) = {8},

a4 ∈ minutes(cρ,χ
2 = c2) = {27},

i.e., we must haveR3(9, 12, 8, 27) andR3(13, 12, 8, 27). Both of these hold according to the definition ofR3,
since9 > 8 and13 > 8.

As another example, the sentencePM(c1) ∧ ¬PM(c1) evaluates tounknown in (σ; ρ), despite being patently
inconsistent, because, intuitively, in(σ; ρ)we do not know whetherc1 is prior to midnight or after it (one pos-
sibility is 9, which is a.m., and the other is 13, which is p.m.). Therefore,PM(c1) evaluates tounknown, hence
¬PM(c1) also evaluates tounknown, and therefore their conjunction evaluates tounknown as well. It is in-
structive to see why, precisely,PM(c1) evaluates tounknown. Recall that the interpretation ofPMis the unary
relationR1, which holds of a given hourh iff h > 11; and that the profile ofPMis [(hours, 1)]. Accordingly,
for PM(c1) to be true in(σ; ρ) (and arbitraryχ), we must haveR1(a1) for all

a1 ∈ hours(cρ,χ
1 = c1) = {9, 13},

i.e., we must have9 > 11 and13 > 11, which is clearly false. Likewise, forPM(c1) to come outfalsein (σ; ρ)
andχ, we must have¬R1(9) and¬R1(13), which is also false. Accordingly,

I(σ; ρ)/χ(PM(c1)) = unknown

by (1.3).

The following is a direct consequence of the finite size of the ascription values, the finite number of system
objects, and Lemma 2.

Lemma 5: I(σ; ρ)/χ is computable for any named state (σ; ρ) and variable assignment χ.

Definition 5: A world (w; ρ̂) satisfies a formulaF w.r.t. a variable assignmentχ iff

I(w; ρ̂)/χ(F) = true.

13

We denote this by writing(w; ρ̂) |=χ F . Likewise, we say that a world(w; ρ̂) satisfies a named state(σ; ρ)
iff (w; ρ̂) v (σ; ρ). This is denoted by(w; ρ̂) |= (σ; ρ). We say that(w; ρ̂) satisfies a contextγ = (β; (σ; ρ))
w.r.t. a givenχ, written(w; ρ̂) |=χ γ, iff (w; ρ̂) |=χ F for everyF ∈ β and(w; ρ̂) |= (σ; ρ). Finally, we say that
a contextγ entails a formula F , written γ |= F , iff (w; ρ̂) |=χ γ implies (w; ρ̂) |=χ F for all worlds (w; ρ̂)
and variable assignmentsχ. Likewise,γ entails a named state(σ′; ρ′), writtenγ |= (σ′; ρ′), iff, for all worlds
(w; ρ̂) and variable assignmentsχ, we have(w; ρ̂) |= (σ′; ρ′) whenever(w; ρ̂) |=χ γ.

Lemma 6 (Weakening): If (β; (σ; ρ)) |= F then (β ∪ β′; (σ; ρ)) |= F ; and if (β; (σ; ρ)) |= (σ′; ρ′) then
(β ∪ β′; (σ; ρ)) |= (σ′; ρ′).

Lemma 7: If (β; (σ; ρ)) |= (σ′; ρ′) and (β; (σ′; ρ′)) |= F then (β; (σ; ρ)) |= F .

PROOF: Pick any world(w; ρ̂) and variable assignmentχ and suppose that

(w; ρ̂) |=χ (β; (σ; ρ)). (1.11)

Then, by the assumption(β; (σ; ρ)) |= (σ′; ρ′), we conclude

(w; ρ̂) |= (σ′; ρ′). (1.12)

From (1.11) and (1.12) we infer
(w; ρ̂) |=χ (β; (σ′; ρ′)). (1.13)

Finally, (1.13) and the assumption(β; (σ′; ρ′)) |= F imply (w; ρ̂) |=χ F .

Lemma 8: (β; (σ; ρ)) |= (σ; ρ).

Lemma 9: (β ∪ {false}; (σ; ρ)) |= (σ′; ρ′).

PROOF: Pick any world(w; ρ̂) and variable assignmentχ, and assume

(w; ρ̂) |=χ (β ∪ {false}; (σ; ρ)),

so that(w; ρ̂) |=χ false. But, by definition,

I(w; ρ̂)/χ(false) = false,

and the contradiction entitles us to infer(w; ρ̂) |= (σ′; ρ′).

Lemma 10: If (β; (σ; ρ)) |= (σ′; ρ′) and (σ′; ρ′) v (σ′′; ρ′′) then (β; (σ; ρ)) |= (σ′′; ρ′′).

PROOF: Pick any world(w; ρ̂) and variable assignmentχ and suppose that

(w; ρ̂) |=χ (β; (σ; ρ)), (1.14)

so that
(w; ρ̂) v (σ; ρ) (1.15)

and
I(w; ρ̂)/χ(F) = true (1.16)

for all F ∈ β. From the assumption(β; (σ; ρ)) |= (σ′; ρ′) and (1.14) we obtain(w; ρ̂) |= (σ′; ρ′), which
is to say(w; ρ̂) v (σ′; ρ′). Finally, (w; ρ̂) v (σ′; ρ′), the assumption(σ′; ρ′) v (σ′′; ρ′′) and Lemma 1 yield
(w; ρ̂) v (σ′′; ρ′′), i.e.,(w; ρ̂) |= (σ′′; ρ′′).

14

Corollary 11 (Widening is sound): If (σ; ρ) v (σ′; ρ′) then (β; (σ; ρ)) |= (σ′; ρ′).

PROOF: By Lemma 8,(β; (σ; ρ)) |= (σ; ρ), hence, by Lemma 10,(β; (σ; ρ)) |= (σ′; ρ′).

Next we formalize the important notion of alternative extensions.

Definition 6: Let σ1, σ2 be proper extensions of a stateσ. We say thatσ2 is analternative extensionof σ
with respect toσ1, writtenAlt(σ, σ1, σ2), iff there is an attributel and an objects such that:

1. σ1(l, s) ⊂ σ(l, s);

2. σ2(l, s) = σ(l, s) \ σ1(l, s); and

3. for all attributesl′ and objectss′, if l′ 6= l or s′ 6= s thenσ2(l′, s′) = σ(l′, s′).

It follows immediately that if such an atribute and object exist, they must be unique.
As a simple example, consider a system consisting of one objects with two attributes, color and size, and

suppose thatσ stipulatesred, green, andblue as the possible color values ofs andlarge, medium andsmall
as its possible size values; and suppose thatσ1 extendsσ by limiting the color values ofs to greenandblue
and its size tosmall:

...................
.................
...............
.............
.............
.............
.............
...............

.................
.................

.................
..

..................
....

...................
.......

......................
..

..
................

..................
....................

..........................

........................

......................

....................

..................

................
................
...............
...............
...............

..................
....................

.......................
..........................

..............
...............
..

................
...

................
.....

.................
......

.................
........

.................
..........

..................
..............

...................
..........

.....................
.......

........................
...

...
.......................

........................
.........................

..........................

.............................

green

blue

redQ
Q

QQs

color(s)

.............................

..........................

........................

.....................

..................

...............

.............
............
..........

..................
.................

.
...............
...
...............
....

..............

.....

...............
......

...............
........

...............
..........

................
.....

................
..

...
................

.................
....................

.......................

..........................

.............................

small..
...........

...........

large

medium

�
�

�
�+

size(s)

Q
Q

Q
Q

Qk

size′(s)
�

�
�

�
��3

color′(s)

What counts as an alternative extension ofσ w.r.t.σ1? Considering thatσ1 essentially states that the color ofs
is either green or blue and that its size is small, we could differ from it in one of the following respects:

Color of s Sizeof s

{red} {large,medium}
{red} {small}

{green,blue} {large,medium}
{red} {large,medium}

That is, we could either choose to (1) disagree with the color, and either disagree or agree with the size (the
latter choice is immaterial in light of the first disagreement), resulting in the top two rows of the table above, or
(2) disagree with the size and either agree or disagree with the color (again, this being immaterial), which leads
to the third and fourth rows. Given that set memberhip represents disjunctive information, we can collapse the
first two and last two possibilities, obtaining:

Color of s Sizeof s

{red} {small, large,medium}
{red,green,blue} {large,medium}

15

These are the only two alternative extensions ofσ w.r.t. σ1. In general, given an arbitrary extensionσ1 @ σ,
we can effectively construct all alternative extensions ofσ w.r.t. σ1. There arem such extensions, wherem is
the number of attribute-object pairs (or a.o. pairs for short)(l; s) such thatσ1(l, s) 6= σ(l, s), or equivalently,
such thatσ1(l, s) ⊂ σ(l, s); i.e., the number of pairs of attributes and objects whose corresponding ascription
values changed in going fromσ to σ1. We can generate the alternative states by taking the complement of the
ascription value of each such pair inσ1

10 (clause 2 of Definition 6) while reverting the otherm − 1 pairs to
theirσ values (clause 3 of Definition 6).

We stress that in determining the alternative extensions ofσ w.r.t. σ1 we only consider those objects and
attributes that are changed byσ1. We ignore those ascription assignments that remain the same in going from
σ to σ1. As another example, there are two states that are alternative extensions of (1.2) w.r.t. (1.1). In one of
them we keep the originalhoursvalues ofc1 ({13, 14, 15}) but complement theminutesvalue ofc2 to obtain
{11}; while in the other alternative we keep the originalminutesvalue ofc2 ({9, 10, 11}) but complement the
hoursvalue ofc1 to obtain{15}. In both cases theminutesof c1 andhoursof c2 remain the same as in the
original state (1.2), as neither of them was modified by (1.1).

Lemma 12: If w, σ′ @ σ and w 6v σ′ then there is some σ′′ @ σ such that Alt(σ, σ′, σ′′) and w v σ′′. In
words: if a world w and a state σ′ both extend σ and w does not extend σ′, then there is an alternative
extension σ′′ of σ w.r.t. σ′ such that w extends σ′′.

PROOF: Since bothσ′ andw are extensions ofσ, we have

σ′(l, s) ⊆ σ(l, s) (1.17)

and
w(l, s) ⊆ σ(l, s) (1.18)

for every attributel and system objects. Further, sincew 6v σ′, there exist an attributeli and an objectsj such
thatw(li, sj) 6⊆ σ′(li, sj), i.e., there is some attribute valueα such that

α ∈ w(li, sj) (1.19)

and
α 6∈ σ′(li, sj). (1.20)

Moreover, sincew is a world we havew(li, sj) = {α}. From (1.19) and (1.18) we infer

α ∈ σ(li, sj). (1.21)

From (1.21), (1.20), and (1.17) we obtain

σ′(li, sj) ⊂ σ(li, sj). (1.22)

Now defineσ′′ @ σ as follows:
σ′′(li, sj) = σ(li, sj) \ σ′(li, sj) (1.23)

while for every attributel and objects such thatl 6= li or s 6= sj , set

σ′′(l, s) = σ(l, s). (1.24)

It follows by construction (specifically, from (1.22), (1.23), and (1.24)) thatAlt(σ, σ′, σ′′). Further,w v σ′′.
To see this, consider any attributel and objects. Eitherl = li ands = sj , or not. In the former case we have
w(l, s) = {α}, so from (1.23), (1.21), and (1.20) we concludeα ∈ σ′′(l, s), hencew(l, s) ⊆ σ′′(l, s). In the
latter case,w(l, s) ⊆ σ′′(l, s) follows from (1.24) and (1.18).

10The complement with respect to the corresponding ascription value inσ.

16

We now generalize the foregoing notion of alternative extensions so that it obtains w.r.t. to several states instead
of just one. We will see that the new definition (Definition 9 below) subsumes the one given above.

Definition 7: A list of m ≥ 1 a.o. pairs[(l1; s1) · · · (lm; sm)] is homogeneousiff l1 = · · · = lm ands1 =
· · · = sm, i.e., iff all m pairs are identical.

Definition 8: Let σ1, . . . , σm @ σ, m ≥ 1. A list of m a.o. pairsL = [(l1; s1) · · · (lm; sm)] spansthe states
σ1, . . . , σm with respect toσ iff

σi(li, si) ⊂ σ(li, si)

for everyi = 1, . . . ,m. In addition, we say thatL properly spansσ1, . . . , σm w.r.t. σ iff for every sublist
[i1 · · · im′] of [1 · · · m] such that[L(i1) · · · L(im′)] is homogeneous we have m′⋃

j=1

σij
(lij

, sij
)

 ⊂ σ(li1 , si1).

Equivalently,L does not properly spanσ1, . . . , σm with respect toσ iff for some such sublist we have

σi1(li1 , si1) ∪ · · · ∪ σim′ (lim′ , sim′) = σ(li1 , si1).

Note that every list of length one that spansσ1 w.r.t.σ (for σ1 @ σ) does so properly. That is why the definition
below is a proper generalization of Definition 6.

Definition 9: Let σ1, . . . , σm, σ
′ @ σ, m ≥ 1. We say thatσ′ is an alternative extension ofσ w.r.t.

σ1, . . . , σm, written Alt(σ, {σ1, . . . , σm}, σ′), iff there is a listL = [(l1; s1) · · · (lm; sm)] properly spanning
σ1, . . . , σm w.r.t. σ such that for every attributel and objects we have

σ′(l, s) = σ(l, s) \
⋃

i∈Pos((l; s), L)
σi(l, s).

We writeA({σ1, . . . , σm}, σ) for the set of all alternative extensions ofσ w.r.t.σ1, . . . , σm.

Therefore, to compute all alternative extensions ofσ w.r.t.σ1, . . . , σm we need to compute all lists of a.o. pairs
that properly spanσ1, . . . , σm w.r.t. σ. We will present algorithms for both tasks shortly, but we first turn to an
example that will help to clarify these definitions.

Example 11: Suppose we have two objectss1 ands2, and two attributes, color and size, with color having
three possible values: red, green and blue (abbreviated R, G, and B); and where size has three possible values:
small, medium, and large (ab. S, M, and L). Suppose further that the starting stateσ is as follows:

σ

Color(s1) = {R,B}

Size(s1) = {S,M,L}

Color(s2) = {R,B,G}

Size(s2) = {M,L}

Now consider the following three proper extensions ofσ:

17

σ1 σ2 σ3

Color(s1) = {B} A Color(s1) = {R,B} Color(s1) = {R} F

Size(s1) = {S,M} B Size(s1) = {L} D Size(s1) = {S,M,L}

Color(s2) = {B,G} C Color(s2) = {R,B,G} Color(s2) = {R,B,G}

Size(s2) = {M,L} Size(s2) = {L} E Size(s2) = {M,L}

We have used the labelsA—F to mark those a.o. pairs(l; s) for which stateσi properly extendsσ, i.e., such
thatσi(l, s) ⊂ σ(l, s). The following lists of a.o. pairs spanσ1, σ2, andσ3 w.r.t.σ:

L1 = [(Color; s1) (Size; s1) (Color; s1)] (corresponding toA-D-F)

L2 = [(Color; s1) (Size; s2) (Color; s1)] (A-E-F)

L3 = [(Size; s1) (Size; s1) (Color; s1)] (B-D-F)

L4 = [(Size; s1) (Size; s2) (Color; s1)] (B-E-F)

L5 = [(Color; s2) (Size; s1) (Color; s1)] (C-D-F)

L6 = [(Color; s2) (Size; s2) (Color; s1)] (C-E-F)

These are the only lists that spanσ1, σ2, andσ3 w.r.t. σ. From these, onlyL4, L5, andL6 do so properly.L1

does not spanσ1, σ2, andσ3 properly (w.r.t.σ) because[1 3] is a sublist of[1 2 3] such that[L1(1) L1(3)],
namely[(Color; s1) (Color; s1)], is homogeneous and yet

σ1(Color, s1) ∪ σ3(Color, s1) = {R,B} 6⊂ σ(Color, s1) = {R,B}.

L2 fails for the same reason. ForL3, [1 2] is a sublist of[1 2 3] such that

[L3(1) L3(2)] = [(Size; s1) (Size; s1)]

is homogeneous but

σ1(Size, s1) ∪ σ2(Size, s1) = {S,M,L} 6⊂ σ(Size, s1) = {S,M,L}.

Accordingly, we have a total of three alternative extensions ofσ w.r.t.σ1, σ2, andσ3, corresponding toL4, L5,
andL6:

σ4 (B-E-F) σ5 (C-D-F) σ6 (C-E-F)

Color(s1) = {B,G} Color(s1) = {B,G} Color(s1) = {B,G}

Size(s1) = {L} Size(s1) = {S,M} Size(s1) = {S,M,L}

Color(s2) = {R,B,G} Color(s2) = {R} Color(s2) = {R}

Size(s2) = {M} Size(s2) = {M,L} Size(s2) = {M}

so that
A({σ1, σ2, σ3}, σ) = {σ4, σ5, σ6}.

Thus each alternative state is uniquely determined by the corresponding list that properly spansσ1, σ2, andσ3

w.r.t.σ. Specifically, the ascription values of each alternative state are obtained by “flipping” (complementing)

18

the corresponding ascription values ofσ on the relevant coordinates of the respective spanning list. For coor-
dinates (a.o. pairs)(l; s) that are not in the spanning listL, the original values ofσ are retained, since in those
cases we havePos((l; s), L) = ∅ and hence

σ(l, s) \
⋃

i∈Pos((l; s), L)
σi(l, s) = σ(l, s).

Intuitively, this ensures that every alternative state has a maximal disagreement with each extension ofσ.

The following algorithm computes the set of lists that properly span statesσ1, . . . , σm w.r.t.σ:

1. Let Φ be the set of all a.o. pairs for the system at hand. The size of this set will equal the power of the
system.

2. Let Ψ be the set obtained fromΦm by filtering out all those lists[(l1; s1) · · · (lm; sm)] for which

∃ i ∈ {1, . . . ,m} . σi(li, si) = σ(li, si).

That is,
Ψ = {[(l1; s1) · · · (lm; sm)] ∈ Φm | σi(li, si) ⊂ σ(li, si) for i = 1, . . . ,m}.

ThusΨ is the set of all and only those lists that spanσ1, . . . , σm w.r.t.σ.

3. FromΨ, filter out all those lists that do not properly spanσ1, . . . , σm w.r.t. σ, and return the result. To
determine whether a list[(l1; s1) · · · (lm; sm)] in Ψ properly spansσ1, . . . , σm w.r.t.σ, do the following:

• Let f be a function that maps a.o. pairs to sets of positive integers. Initially, setf← λ p . ∅ for any
a.o. pairp.

• Let P ← ∅.
• For i = 1, . . . ,m:

f← f [(li; si) 7→ f(li, si) ∪ {i}];
P ← P ∪ {(li; si)}.

• For each pair(l; s) ∈ P : if ⋃
i∈f((l; s))

σi(l, s) = σ

returnfalse, else continue.

• Returntrue.

With this algorithm, we can easily computeA({σ1, . . . , σm}, σ) as follows:

1. Let Ψ be the set of all and only those lists of a.o. pairs that properly spanσ1, . . . , σm w.r.t.σ.

2. Let Σ← ∅.

3. For each listL ∈ Ψ:

• Let σ′ be the unique state such that for anyl ands,

σ′(l, s) = σ(l, s) \
⋃

i∈Pos((l; s), L)
σi(l, s).

19

• Σ← Σ ∪ {σ′}.

4. ReturnΣ.

The reader will verify that the more general definition of alternative state extensions subsumes the former
notion in the following sense:

Lemma 13: Alt(σ, σ′, σ′′) iff Alt(σ, {σ′}, σ′′).

The following result generalizes Lemma 12.

Lemma 14: If σ1, . . . , σm, w @ σ and w 6v σi for every i = 1, . . . ,m, then there is some σ′ @ σ such that
Alt(σ, {σ1, . . . , σm}, σ′) and w v σ′.

PROOF: By assumption, we have

∀ l, s . w(l, s) ⊆ σ(l, s); (1.25)

∀ i ∈ {1, . . . ,m} . ∀ l, s . σi(l, s) ⊆ σ(l, s). (1.26)

Further, for eachi = 1, . . . ,m there is some a.o. pair(li; si) such that

w(li, si) 6⊆ σi(li, si),

meaning that there is some attribute valueαi such that

w(li, si) = {αi} (1.27)

and
αi 6∈ σi(li, si). (1.28)

From (1.27) and (1.25) we infer
∀ i ∈ {1, . . . ,m} . αi ∈ σ(li, si). (1.29)

Hence, from (1.28) and (1.26) we conclude

∀ i ∈ {1, . . . ,m} . σi(li, si) ⊂ σ(li, si). (1.30)

Therefore, the list
L = [(l1; s1) · · · (lm; sm)]

spansσ1, . . . , σm w.r.t. σ. Moreover, it does so properly. To see this, consider any sublist[i1 · · · im′] of
[1 · · ·m] such that[L(i1) · · ·L(im′)] is homogeneous, so that

(li1 ; si1) = · · · = (lim′ ; sim′)

and hence
w(li1 , si1) = · · · = w(lim′ , sim′),

which is to say
αi1 = · · · = αim′ . (1.31)

Now suppose, by way of contradiction, that

m′⋃
j=1

σij (lij , sij) = σ(li1 , si1). (1.32)

20

From (1.27) and (1.25) we conclude

w(li1 , si1) = {αi1} ⊆ σ(li1 , si1),

so that
αi1 ∈ σ(li1 , si1). (1.33)

Hence, by (1.32),

αi1 ∈
m′⋃
j=1

σij
(lij

, sij
),

which means that there is somej ∈ {1, . . . ,m′} such that

αi1 ∈ σij (lij , sij). (1.34)

From (1.28) we getαij
6∈ σij

(lij
, sij

). But, by (1.31),αi1 = αij
, henceαi1 6∈ σij

(lij
, sij

), contradict-
ing (1.34). Therefore,L spansσ1, . . . , σm w.r.t.σ properly.

Now defineσ′ @ σ as follows: for anyl ands,

σ′(l, s) = σ(l, s) \
⋃

i∈Pos((l; s), L)
σi(l, s). (1.35)

By construction,Alt(σ, {σ1, . . . , σm}, σ′). Further, we havew v σ′. To prove this, we need to show that
w(l, s) ⊆ σ′(l, s) for all l ands. To that end, consider arbitraryl ands. Either(l; s) occurs inL or not. If not,
thenPos((l; s), L) = ∅ and hence, from (1.35),σ′(l, s) = σ(l, s), sow(l, s) ⊆ σ′(l, s) follows from (1.25).
Suppose, by contrast, that(l; s) occurs inL, so that

Pos((l; s), L) = {i1, . . . , im′}

for somem′ such that1 ≤ m′ ≤ m. From (1.28),

∀ j ∈ {1, . . . ,m′} . αij 6∈ σij (lij , sij). (1.36)

But
αi1 = w(li1 , si1), . . . , αim′ = w(lim′ , sim′),

and since
(li1 ; si1) = · · · = (lim′ ; sim′) = (l; s), (1.37)

we getαi1 = · · · = αim′ . Accordingly, (1.36) yields

∀ j ∈ {1, . . . ,m′} . αi1 6∈ σij
(lij

, sij
),

which, by virtue of (1.37), becomes

∀ j ∈ {1, . . . ,m′} . αi1 6∈ σij
(l, s). (1.38)

It follows from (1.38) that

αi1 6∈
m′⋃
j=1

σij (l, s),

21

or, equivalently,
αi1 6∈

⋃
i∈Pos((l; s), L)

σi(l, s). (1.39)

However,
αi1 ∈ σ(li1 , si1) = σ(l, s), (1.40)

and hence we infer from (1.39), (1.40), and (1.35) that

αi1 ∈ σ′(l, s). (1.41)

But, from (1.37),w(li1 , si1) = w(l, s), which is to sayw(l, s) = {αi1}. We have thus shown that, in this case
too,w(l, s) ⊆ σ′(l, s).

We now extend the notion of alternative extensions to named states.

Definition 10: Let (σ1; ρ1), . . . , (σm; ρm), (σ′; ρ′)
∞
@ (σ; ρ), m ≥ 1. We say that(σ′; ρ′) is analternative

extensionof (σ; ρ) w.r.t. (σ1; ρ1), . . . , (σm; ρm), written

Alt((σ; ρ), {(σ1; ρ1), . . . , (σm; ρm)}, (σ′; ρ′)),

iff Dom(ρ′) = Dom(ρ1) ∪ · · · ∪ Dom(ρm) and there is a subsetS ⊆ {1, . . . ,m} such that:

1. ρ′ conflicts withρi iff i ∈ S; and

2. if S 6= {1, . . . ,m} thenAlt(σ, {σi | i ∈ {1, . . . ,m} \ S}, σ′).

Owing to the first condition, if such a subsetS ⊆ {1, . . . ,m} exists then it is unique. Whenm = 1 we might
write Alt((σ; ρ), (σ1; ρ1), (σ′; ρ′)) instead ofAlt((σ; ρ), {(σ1; ρ1)}, (σ′; ρ′)).

The following algorithm computes all alternative extensions of(σ; ρ) w.r.t. (σ1; ρ1), . . . , (σm; ρm):

1. Let ρ′1, . . . , ρ
′
k, k ≥ 1, be all and only the constant assignments onDom(ρ1) ∪ · · · ∪ Dom(ρm) that are

supersets ofρ. Note that there arek = nd such assignments, wheren is the number of system objects
and

d = |[Dom(ρ1) ∪ · · · ∪ Dom(ρm)] \ Dom(ρ)|.

2. LetR = ∅.

3. For eachρ′i, i = 1, . . . , k, do the following:

• Let Σi ⊆ {σ1, . . . , σm} consist of all and only those statesσj , j ∈ {1, . . . ,m} such thatρ′i does
not have a conflict withρj , meaning thatρ′i ⊇ ρj .

• Let Φi = A(Σi, σ).
• SetR← R ∪ {(σ′; ρ′i) | σ′ ∈ Φi}.

4. ReturnR.

The algorithm is rather naive in that it may duplicate some work in the process of computingA(Σi, σ) for the
variousi. Memorizing intermediate results and buildingA(Σi, σ) incrementally could improve its efficiency.

Lemma 15: If (σ1; ρ1), . . . , (σm; ρm)
∞
@ (σ; ρ), m ≥ 1, (w; ρ̂) v (σ; ρ), and

∀ i ∈ {1, . . . ,m} . (w; ρ̂) 6v (σi; ρi)

then there is (σ′; ρ′)
∞
@ (σ; ρ) such that Alt((σ; ρ), {(σ1; ρ1), . . . , (σm; ρm)}, (σ′; ρ′)) and (w; ρ̂) v (σ′; ρ′).

22

PROOF: The following holds by assumption:

∀ i ∈ {1, . . . ,m} . w 6v σi ∨ ρ̂ 6⊇ ρi. (1.42)

Define
S = {i ∈ {1, . . . ,m} | ρ̂ 6⊇ ρi} (1.43)

and let
ρ′ = ρ̂ � [Dom(ρ1) ∪ · · · ∪ Dom(ρm)], (1.44)

so that
ρ̂ ⊇ ρ′ ⊇ ρ. (1.45)

It follows by construction that

Dom(ρ′) = Dom(ρ1) ∪ · · · ∪ Dom(ρm)

and
∀ i ∈ {1, . . . ,m} . ρ′ 6⊇ ρi⇔ i ∈ S,

which is to say thatρ′ has a conflict withρi iff i ∈ S. At this point there are two cases:S = {1, . . . ,m} or
S ⊂ {1, . . . ,m}. In the first case, we must have

ρ′ ⊃ ρ, (1.46)

for if ρ′ = ρ then, from (1.44),ρ1 = · · · = ρm = ρ and hencêρ ⊇ ρi for all i = 1, . . . ,m, sinceρ ⊆ ρ̂ by
assumption. But, from (1.43),∀i ∈ {1, . . . ,m} . ρ̂ ⊇ ρi would entailS = ∅, contradicting the suppositionS =
{1, . . . ,m} (recall thatm ≥ 1). Defineσ′ = w. Then(σ′; ρ′) v (σ; ρ) by (1.45), and indeed(σ′; ρ′)

∞
@ (σ; ρ)

by (1.46) and (1.44). In addition,(w; ρ̂) v (σ′; ρ′) follows fromw v w and (1.45).
By contrast, suppose thatS ⊂ {1, . . . ,m}, so that

{1, . . . ,m} \ S 6= ∅. (1.47)

From the definition ofS and (1.42) we infer

∀ i ∈ {1, . . . ,m} \ S . w 6v σi. (1.48)

From (1.48) we can infer that
∀ i ∈ {1, . . . ,m} \ S . σi @ σ, (1.49)

for otherwise there would be somej ∈ {1, . . . ,m} \ S such thatσj 6@ σ andσj v σ, and henceσj = σ. But
w v σ = σj contradicts the assumptionw 6v σj . Further, we can inferw @ σ, for, in light of (1.47),w = σ
would contradict (1.49), given that worlds do not have any proper extensions. Therefore, by Lemma 14, there
exists a state

σ′ @ σ (1.50)

such thatAlt(σ, {σi | i ∈ {1, . . . ,m} \ S}, σ′) and

w v σ′. (1.51)

From (1.50) and (1.45) we conclude(σ′; ρ′)
∞
@ (σ; ρ). Further, by construction,

Alt((σ; ρ), {(σ1; ρ1), . . . , (σm; ρm)}, (σ′; ρ′)),

while (w; ρ̂) v (σ′; ρ′) follows from (1.51) and (1.45). This concludes the case analysis.

23

Corollary 16: If (σ′; ρ′)
∞
@ (σ; ρ), (w; ρ̂) v (σ; ρ), and (w; ρ̂) 6v (σ′; ρ′) then there is some

(σ′′; ρ′′)
∞
@ (σ; ρ)

such that Alt((σ; ρ), (σ′; ρ′), (σ′′; ρ′′)) and (w; ρ̂) v (σ′′; ρ′′).

We end this section by introducing the following notion of state entailment:

Definition 11: Suppose that(σ1; ρ1), . . . , (σm; ρm) @ (σ; ρ) and letβ be any assumption base. We say that
(σ; ρ) entails(σ1; ρ1), . . . , (σm; ρm) w.r.t. β, written(σ; ρ) �β {(σ1; ρ1), . . . , (σm; ρm)}, iff for every(σ′; ρ′)
such that

Alt((σ; ρ), {(σ1; ρ1), . . . , (σm; ρm)}, (σ′; ρ′))

there is someF ∈ β such that, for allχ,

I(σ′; ρ′)/χ(F) = false.

Whenn = 1 we drop the braces and write(σ; ρ) �β (σ1; ρ1) instead of(σ; ρ) �β {(σ1; ρ1)}.
This definition captures the intuition that any world which extends the state(σ; ρ) and satisfies the formulas

in β must also extend one of the states(σi; ρi), in the sense that any alternative way of extending(σ; ρ) will
end up falsifying some element ofβ. (Of course if there are no alternative ways of extending(σ; ρ) then the
entailment holds vacuously, even ifβ = ∅.) This is formally demonstrated by the proof of Lemma 17 below.

Determining whether or not(σ; ρ) �β {(σ1; ρ1), . . . , (σm; ρm)} is decidable; we present an algorithm for
it which makes use of an auxiliary functiong that takes a formulaF and a named state(σ; ρ) and returnstrue
or false. To computeg(F, (σ; ρ)):

1. Let ψ1, . . . , ψk be all distinct functions fromFV(F) to the set of system objects{s1, . . . , sn}. (There

arek = n|FV(F)| such functions.)

2. Let χ1, . . . , χk be arbitrary variable assignments such that

∀ i ∈ {1, . . . , k} . χi � FV(F) = ψi.

3. If I(σ; ρ)/χi
= falsefor everyi = 1, . . . , k then returntrue, else returnfalse.

The algorithm for determining(σ; ρ) �β {(σ1; ρ1), . . . , (σm; ρm)} can now be stated thus:

1. For each(σ′; ρ′) such thatAlt((σ; ρ), {(σ1; ρ1), . . . , (σm; ρm)}, (σ′; ρ′)):

• If ∃ F ∈ β . g(F, (σ′; ρ′)) then continue, else returnfalse.

2. Returntrue.

The algorithm clearly hinges ong, whose correctness in this context depends on Lemma 2.

Lemma 17: If (σ; ρ) �β {(σ1; ρ1), . . . , (σm; ρm)} then for all worlds (w; ρ̂) and variable assignments χ, if

(w; ρ̂) |=χ (β; (σ; ρ))

there is some i ∈ {1, . . . ,m} such that (w; ρ̂) |= (σi; ρi).

24

PROOF: Assuming
(σ; ρ) �β {(σ1; ρ1), . . . , (σm; ρm)} (1.52)

pick any world(w; ρ̂) and variable assignmentχ and suppose that(w; ρ̂) |=χ (β; (σ; ρ)) so that

(w; ρ̂) v (σ; ρ) (1.53)

and
∀ F ∈ β . I(w; ρ̂)/χ(F) = true. (1.54)

By way of contradiction, suppose that there is noi ∈ {1, . . . ,m} such that(w; ρ̂) |= (σi; ρi), i.e.,

∀ i ∈ {1, . . . ,m} . (w; ρ̂) 6v (σi; ρi).

By Lemma 15, there is some

(σ′; ρ′)
∞
@ (σ; ρ)

such that
Alt((σ; ρ), {(σ1; ρ1), . . . , (σm; ρm)}, (σ′; ρ′)) (1.55)

and
(w; ρ̂) v (σ′; ρ′). (1.56)

But then, by Definition 11 and (1.55) it follows that there is some

G ∈ β (1.57)

such that
I(σ′; ρ′)/χ(G) = false, (1.58)

and hence, from the Thinning Lemma (Lemma 4) in tandem with (1.56) and (1.58), we obtain

I(w; ρ̂)/χ(G) = false,

which contradicts (1.54) in view of (1.57).

Corollary 18: If (σ; ρ) �β (σ′; ρ′) then (β; (σ; ρ)) |= (σ′; ρ′).

1.5 A family of diagrammatic natural deduction languages

We now introduce VIVID , a family of natural deduction languages in the DPL tradition (Arkoudas 2000) that
combine sentential and diagrammatic reasoning. A concrete instance of VIVID is obtained by specifying a
vocabularyΣ = (C,R,V), an attribute structureA = ({l1 : A1, . . . , lk : Ak};R), and an interpretationI of R
intoA. We assume in what follows thatΣ,A, andI have been fixed. The terms and formulas of the language
are defined as described in Section 1.4. We writeF [t/v] to denote the formula obtained fromF by replacing
every free occurrence ofv by the termt (taking care to renameF if necessary to avoid variable capture). The
following result is readily proved by induction on the structure ofF .

Lemma 19: If b ∈ {true, false},
I(σ; ρ)/χ[v 7→ s](F) = b

and v′ does not occur in F then
I(σ; ρ)/χ[v′ 7→ s](F [v′/v]) = b.

25

1.5.1 Abstract syntax

There are two syntactic categories of proofs, sentential and diagrammatic. Sentential deductions are used to
derive formulas, while diagrammatic deductions are used to derive diagrams. We will see that the two can be
freely mixed, and indeed that their structures are mutually recursive. We use the lettersD and∆ to range over
sentential and diagrammatic deductions, respectively. The symbolD will range over the union of the two. The
abstract syntax (Reynolds 1998) of both proof types is defined by the grammars below:

D ::= RuleApp
| assumeF D
| F by D
| D;D
| pick-any x D
| pick-witnessw for ∃x . F D
| specialize∀x1 · · ·xn . F with t1, . . . , tn
| ex-generalize∃x . F from t
| cases fromF1, . . . , Fk: (σ1; ρ1) → D1 | · · · | (σn; ρn) → Dn

| observe F

∆ ::= D;∆
| claim (σ; ρ)
| (σ; ρ) by thinning with F1, . . . , Fn

| (σ; ρ) by widening
| (σ; ρ) by absurdity
| cases fromF1, . . . , Fk: (σ1; ρ1) → ∆1 | · · · | (σn; ρn) → ∆n

| casesF1 ∨ F2: F1 → ∆1 | F2 → ∆2

| pick-witnessw for ∃x . F ∆

D ::= D | ∆

where the syntax of inferencerule applicationsis as follows:

RuleApp ::= claim F
| true-intro
| modus-ponensF ⇒ G, F
| modus-tollensF ⇒ G,¬G
| double-negation¬¬F
| absurd F,¬F
| left-and F ∧ G
| right-and F ∧ G
| both F, G
| left-either F, G
| right-either F, G
| casesF1 ∨ F2, F1 ⇒ G, F2 ⇒ G
| left-iff F ⇔ G
| right-iff F ⇔ G
| equiv F ⇒ G, G ⇒ F

26

The composition operator “;” associates to the right by default, soD1;D2;D3 stands for

D1; (D2;D3)

rather than(D1;D2);D3. Parentheses orbegin-endpairs can be used to change the default grouping.
We defineD [t/x] as the deduction obtained fromD by replacing every free occurrence of the variablex

by the termt, taking care to performα-conversion as necessary to avoid variable capture. The definition is
given by structural recursion:

(D1; D2) [t/x] = D1 [t/x]; D2 [t/x]

((σ; ρ) by thinning with F1, . . . , Fn) [t/x] = (σ; ρ) by thinning with F1 [t/x], . . . , Fn [t/x]

(cases fromF1, . . . , Fk:
(σ1; ρ1) → ∆1 | · · · | (σn; ρn) → ∆n) [t/x]

=
cases fromF1 [t/x], . . . , Fk [t/x]:

(σ1; ρ1) → ∆1 [t/x] | · · · | (σn; ρn) → ∆n [t/x]

(casesF1 ∨ F2:
F1 → ∆1 | F2 → ∆2)[t/x]

=
casesF1 [t/x] ∨ F2 [t/x]:

F1 [t/x] → ∆1 [t/x] | F2 [t/x] → ∆2 [t/x]

(pick-witnessx for ∃ y . F ∆)[t/x] = pick-witnessx for (∃ y . F) [t/x] ∆

(pick-witnessw for ∃ y . F ∆)[t/x]
(whenx 6= w)

= pick-witnessw for (∃ y . F) [t/x] ∆ [t/x]

(pick-any x D) [t/x] = pick-any x D

(pick-any y D) [t/x]
(whenx 6= y)

= pick-any y D [t/x]

We omit the defining equations for the sententialpick-witness, which is handled like the diagrammatic
pick-witness; and for the remainingcases from, which is treated like the one above. The definition for the
other forms is straightforward and can be found elsewhere (Arkoudas 2000). In all cases we assume that the
deduction has beenα-renamed away from the given termt.

1.5.2 Evaluation semantics

Our formal semantics is given by axioms and rules that establish judgments of the form

γ `D ; F

and
γ `∆ ; (σ; ρ)

which are read as:

“In the contextγ, deductionD (∆) derivesF (respectively,(σ; ρ)).”

The semantics of most sentential deductions are straightforward generalizations of the standardNDL
semantics (Arkoudas n.d.a). We illustrate here with the axiom forleft-and and the rule forassume, omitting
the rest:

(β ∪ {F ∧G}; (σ; ρ)) ` left-and F ∧G; F

27

[Thinning]
(β ∪ {F1, . . . , Fn}; (σ; ρ)) ` (σ′; ρ′) by thinning with F1, . . . , Fn ; (σ′; ρ′)

provided(σ; ρ) �{F1,...,Fn} (σ′; ρ′)

[Widening]
(β; (σ; ρ)) ` (σ′; ρ′) by widening ; (σ′; ρ′)

provided(σ; ρ) v (σ′; ρ′)

[Absurdity]
(β ∪ {false}; (σ; ρ)) ` (σ′; ρ′) by absurdity ; (σ′; ρ′)

[Diagram-Reitaration]
(β; (σ; ρ)) ` claim (σ; ρ) ; (σ; ρ)

(β ∪ {F1, . . . , Fk}; (σ1; ρ1)) `∆1 ; (σ′; ρ′)

...
(β ∪ {F1, . . . , Fk}; (σn; ρn)) `∆n ; (σ′; ρ′)

[C1]
(β ∪ {F1, . . . , Fk}; (σ; ρ)) ` cases fromF1, . . . , Fk: (σ1; ρ1) → ∆1 | · · · | (σn; ρn) → ∆n ; (σ′; ρ′)

provided(σ; ρ) �{F1,...,Fk} {(σ1; ρ1), . . . , (σn; ρn)}

(β ∪ {F1 ∨ F2, F1}; (σ; ρ)) `∆1 ; (σ′; ρ′) (β ∪ {F1 ∨ F2, F2}; (σ; ρ)) `∆2 ; (σ′; ρ′) [C2]
(β ∪ {F1 ∨ F2; (σ; ρ)) ` casesF1 ∨ F2 F1 →∆1 | F2 →∆2 ; (σ′; ρ′)

(β; (σ; ρ)) `D ; F (β ∪ {F}; (σ; ρ)) `∆ ; (σ′; ρ′) [D; ∆]
(β; (σ; ρ)) `D; ∆ ; (σ′; ρ′)

(β; (σ; ρ)) `∆ ; (σ′; ρ′) (β; (σ′; ρ′)) `D ; F [∆; D]
(β; (σ; ρ)) `∆; D ; F

(β; (σ; ρ)) `∆1 ; (σ1; ρ1) (β; (σ1; ρ1)) `∆2 ; (σ2; ρ2) [∆; ∆]
(β; (σ; ρ)) `∆1; ∆2 ; (σ2; ρ2)

(β; (σ; ρ)) `D1 ; F1 (β ∪ {F1}; (σ; ρ)) `D2 ; F2 [D; D]
(β; (σ; ρ)) `D1; D2 ; F2

(β ∪ {∃ x . F, F [z/x]}; (σ; ρ)) `∆ [z/w] ; (σ′; ρ′) [EI/∆]
(β ∪ {∃ x . F}; (σ; ρ)) ` pick-witnessw for ∃ x . F ∆ ; (σ′; ρ′)

providedz is fresh

Figure 1.3: Formal semantics of diagrammatic deductions

28

(β ∪ {F}; (σ; ρ)) `D ; G

(β; (σ; ρ)) ` assumeF D ; F ⇒G

The only new sentential forms areobserve, cases from, and∆;D. We will discuss the last two later; the
semantics ofobserveare as follows:

[Observe]
(β; (σ; ρ)) ` observeF ; F

provided thatI(σ; ρ)/χ(F) = true for all χ

The side condition is computable because of Lemma 5 and because, by Lemma 2, we need only be concerned
with the free variables ofF . In fact usuallyF is a sentence (it has no free variables) and hence we only need
to consider one (arbitrary) variable assignment.

We now turn to the semantics of the various VIVID constructs for case analysis. There are four types of
case reasoning in VIVID :

Sentential-to-sentential: In this type of reasoning we note that a disjunctionF1 ∨ F2 holds and that a formula
G is entailed in either case. That entitles us to concludeG. This is captured syntactically as a rule
application:

casesF1 ∨ F2, F1⇒G,F2⇒G.

The semantics of such rule applications carry over fromNDL unchanged, since there is no diagram
manipulation involved:

(β ∪ {F1 ∨ F2, F1⇒G,F2⇒G}; (σ; ρ)) ` casesF1 ∨ F2, F1⇒G,F2⇒G; G

Sentential-to-diagrammatic: Here we note that a disjunctionF1 ∨ F2 holds and proceed to show that a cer-
tain diagram(σ; ρ) follows in either case. This is captured by the syntax form

casesF1 ∨ F2: F1 → ∆1 | F2 → ∆2,

which is classified as a diagrammatic deduction (“a∆”) since the end result is a diagram. The semantics
of this form are given by rule [C2], shown in Figure 1.3.

Diagrammatic-to-sentential: We note that on the basis of the present diagram and some formulasF1, . . . , Fk

in the assumption base, one ofn > 0 other system states(σ1; ρ1), . . . , (σn; ρn) must obtain, and proceed
to show that a formulaF can be derived in every one of thesen cases. This entitles us to inferF , provided
of course that then diagrammatic cases are indeed exhaustive. This form of reasoning is captured by the
form

cases fromF1, . . . , Fk: (σ1; ρ1) → D1 | · · · | (σn; ρn) → Dn.

This is classified as a sentential deduction, since the end result is a formulaF . Its semantics are shown
in Figure 1.4. The caveat that the diagrams(σ1; ρ1), . . . , (σn; ρn) form an exhaustive set of possibilities
on the basis ofF1, . . . , Fk and the current diagram is formally captured by the proviso

(σ; ρ) �{F1,...,Fk} {(σ1; ρ1), . . . , (σn; ρn)}.

Diagrammatic-to-diagrammatic: This is similar to the above mode of reasoning, with the exception that
instead of deriving a formulaF in each of then cases, we derive a diagram. Therefore, syntactically,
following each of then cases we have diagrammatic deductions∆1, . . . ,∆n (rather than sentential

29

(β ∪ {F1, . . . , Fk}; (σ1; ρ1)) `D1 ; F
...

(β ∪ {F1, . . . , Fk}; (σn; ρn)) `Dn ; F
[C3]

(β ∪ {F1, . . . , Fk}; (σ; ρ)) ` cases fromF1, . . . , Fk: (σ1; ρ1) →D1 |
· · ·

(σn; ρn)→Dn ; F

provided(σ; ρ) �{F1,...,Fk} {(σ1; ρ1), . . . , (σn; ρn)}

Figure 1.4: Semantics of diagrammatic-to-sentential case reasoning.

deductionsD1, . . . , Dn as we did above), and the entire form is classified as a diagrammatic deduction,
since the final conclusion is a diagram. The following syntax form is used for such deductions:

cases fromF1, . . . , Fk: (σ1; ρ1) → ∆1 | · · · | (σn; ρn) → ∆n.

The corresponding semantics are given by rule [C1], shown in Figure 1.3.

Likewise, there are four types of deduction sequencing:

1. D1;D2, where a sentential deductionD1 is composed with another sentential deductionD2. This form is
classified as a sentential deduction, since the end result is a formula (the conclusion ofD2). Its semantics
are given by rule [D;D] of Figure 1.3. They are isomorphic to the regular composition semantics of
NDL, since there is no diagram manipulation involved.

2. D;∆, where a sentential deductionD is composed with a diagrammatic deduction. This form is classi-
fied as a diagrammatic deduction since the end result is a diagram—the conlusion of∆. Its semantics are
prescribed by rule [D;∆]. Observe that the conclusion ofD becomes available to∆ (e.g., the conclusion
of D could be a disjunction and∆ might be a diagrammatic case analysis of that disjunction).

3. ∆;D, where a diagrammatic deduction∆ is composed with a sentential deduction. This form is clas-
sified as a sentential deduction since the end result is a formula (the conlusion ofD). Its semantics are
given by rule [∆;D]. Conclusion threading here is also intuitive:D will be evaluated in the system state
resulting from the evaluation of∆. E.g.,D might be anobservededuction that points out something
that can be seen in the diagram derived by∆.

4. ∆1;∆2, where a diagrammatic deduction∆1 is composed with another diagrammatic deduction∆2.
This form is of course classified as a diagrammatic deduction, since the end result is a diagram (the
conlusion of∆2). Its semantics are given by rule [∆; ∆]. The same principle of conclusion threading
applies here:∆2 is evaluated in the system state resulting from the evaluation of∆1; the assumption
base is threaded through unchanged.

Theorem 20 (Soundness):If γ `D ; F then γ |= F ; and if γ `∆ ; (σ; ρ) then γ |= (σ; ρ).

PROOF: We proceed by induction on derivation length.11 We will omit most sentential forms, as those have
been proved sound elsewhere (Arkoudas 2000).

11To be perfectly precise, we are proving the statement: “For all positive integersn and for allγ, D, ∆, F , and(σ; ρ), if there exists
a derivation of lengthn of the judgmentγ `D ; F thenγ |= F ; and if there exists a derivation of lengthn of γ `D ; F then
γ |= (σ; ρ). It is readily seen that this statement implies Theorem 20.

30

The basis cases correspond to the axioms of our semantics. In what follows we will treat the diagrammatic
axioms [Observe], [Absurdity], [Diagram-Reitaration], [Widening], and [Thinning].

• [Observe]: In this caseD is of the formobserveF and we need to show that

(β; (σ; ρ)) |= F

whenever(β; (σ; ρ)) `D ; F . To that end, consider an arbitrary world(w; ρ̂) and variable assignment
χ and suppose that(w; ρ̂) |=χ (β; (σ; ρ)), so that

(w; ρ̂) v (σ; ρ). (1.59)

By the side condition of [Observe], it must be that

I(σ; ρ)/χ(F) = true,

and hence, from (1.59) and Lemma 4,

I(w; ρ̂)/χ(F) = true,

which is to say(w; ρ̂) |=χ F . We have thus shown that(w; ρ̂) |=χ (β; (σ; ρ)) implies (w; ρ̂) |=χ F for
any(w; ρ̂) andχ, which establishes(β; (σ; ρ)) |= F .

• [Thinning]: Here∆ is of the form

(σ′; ρ′) by thinning with F1, . . . , Fn

and we need to show that if

(β ∪ {F1, . . . , Fn}; (σ; ρ)) `∆ ; (σ′; ρ′) (1.60)

then
(β ∪ {F1, . . . , Fn}; (σ; ρ)) |= (σ′; ρ′). (1.61)

From (1.60) and the side condition of [Thinning] we obtain

(σ; ρ) �{F1,...,Fn} (σ′; ρ′),

and hence, by Corollary 18,({F1, . . . , Fn}; (σ; ρ)) |= (σ′; ρ′). Now (1.61) follows from weakening
(Lemma 6).

• [Widening]: Here∆ is of the form
(σ′; ρ′) by widening

and we must show that(β; (σ; ρ)) |= (σ′; ρ′) whenever(β; (σ; ρ)) `∆ ; (σ′; ρ′). From the side con-
dition of [Widening] we infer (σ; ρ) v (σ′; ρ′), and now the desired(β; (σ; ρ)) |= (σ′; ρ′) follows from
Corollary 11.

• [Diagram-Reitaration]: Here the result follows directly from Lemma 8.

• [Absurdity]: Here∆ is of the form
(σ′; ρ′) by absurdity

and we need to show
(β ∪ {false}; (σ; ρ)) |= (σ′; ρ′)

whenever(β ∪ {false}; (σ; ρ)) `∆ ; (σ′; ρ′). This follows from Lemma 9.

31

• [C1]: Here∆ is of the form

cases fromF1, . . . , Fk: (σ1; ρ1) → ∆1 | · · · | (σn; ρn) → ∆n.

Consider any assumption baseβ and named states(σ; ρ), (σ′; ρ′), and assume that

(β ∪ {F1, . . . , Fk}; (σ; ρ)) `∆ ; (σ′; ρ′). (1.62)

We need to show
(β ∪ {F1, . . . , Fk}; (σ; ρ)) |= (σ′; ρ′). (1.63)

From (1.62) and [C1] we infer

∀ i ∈ {1, . . . , n} . (β ∪ {F1, . . . , Fk}; (σi; ρi)) `∆i ; (σ′; ρ′) (1.64)

and
(σ; ρ) �{F1,...,Fk} {(σ1; ρ1), . . . , (σn; ρn)}. (1.65)

Pick any world(w; ρ̂) and variable assignmentχ and suppose that

(w; ρ̂) |=χ (β ∪ {F1, . . . , Fk}; (σ; ρ)) (1.66)

so that
(w; ρ̂) |=χ ({F1, . . . , Fk}; (σ; ρ)). (1.67)

From (1.65), Lemma 17, and (1.67) we conclude that(w; ρ̂) |= (σj ; ρj) for somej ∈ {1, . . . , n}. By
the inductive hypothesis, (1.64) yields

(β ∪ {F1, . . . , Fk}; (σj ; ρj)) |= (σ′; ρ′), (1.68)

and since
(w; ρ̂) |=χ (β ∪ {F1, . . . , Fk}; (σj ; ρj)),

it follows from (1.68) that(w; ρ̂) |= (σ′; ρ′).

• [C2]: Here∆ is of the form
casesF1 ∨ F2 F1→∆1 | F2→∆2

and, assuming
(β ∪ {F1 ∨ F2}; (σ; ρ)) `∆ ; (σ′; ρ′), (1.69)

we need to show
(β ∪ {F1 ∨ F2}; (σ; ρ)) |= (σ′; ρ′). (1.70)

To that end, consider an arbitrary world(w; ρ̂) and variable assignmentχ such that

(w; ρ̂) |=χ (β ∪ {F1 ∨ F2}; (σ; ρ)) (1.71)

so that
I(w; ρ̂)/χ(F1) = true (1.72)

or
I(w; ρ̂)/χ(F2) = true (1.73)

32

(note that this inference would not be sanctioned in a weak three-valued Kleene logic). Now from (1.69)
and [C2] we get

(β ∪ {F1 ∨ F2, F1}; (σ; ρ)) `∆1 ; (σ′; ρ′) (1.74)

and
(β ∪ {F1 ∨ F2, F2}; (σ; ρ)) `∆2 ; (σ′; ρ′). (1.75)

Inductively, (1.74) and (1.75) respectively yield

(β ∪ {F1 ∨ F2, F1}; (σ; ρ)) |= (σ′; ρ′) (1.76)

and
(β ∪ {F1 ∨ F2, F2}; (σ; ρ)) |= (σ′; ρ′). (1.77)

Now if (1.72) holds then, from (1.71), we have

(w; ρ̂) |=χ (β ∪ {F1 ∨ F2, F1}; (σ; ρ)),

and hence(w; ρ̂) |= (σ′; ρ′) follows from (1.76); while if (1.73) holds then

(w; ρ̂) |=χ (β ∪ {F1 ∨ F2, F2}; (σ; ρ)),

and hence(w; ρ̂) |= (σ′; ρ′) follows from (1.77). Therefore,(w; ρ̂) |= (σ′; ρ′) holds in either case.

• [C3]: Here∆ is of the form

cases fromF1, . . . , Fk: (σ1; ρ1) → D1 | · · · | (σn; ρn) → Dn.

Pick anyβ, F , and(σ; ρ), and suppose that

(β ∪ {F1, . . . , Fk}; (σ; ρ)) `∆ ; F, (1.78)

so that
∀ i ∈ {1, . . . , n} . (β ∪ {F1, . . . , Fk}; (σi; ρi)) `Di ; F (1.79)

and
(σ; ρ) �{F1,...,Fk} {(σ1; ρ1), . . . , (σn; ρn)}. (1.80)

We need to show(β ∪ {F1, . . . , Fk}; (σ; ρ)) |= F . To that end, pick any(w; ρ̂) andχ and assume that

(w; ρ̂) |=χ (β ∪ {F1, . . . , Fk}; (σ; ρ)). (1.81)

It follows that
(w; ρ̂) |=χ ({F1, . . . , Fk}; (σ; ρ)),

and hence by Lemma 17 and (1.80) we conclude that(w; ρ̂) v (σj ; ρj) for somej ∈ {1, . . . , n}. Induc-
tively, from (1.79), we infer

(β ∪ {F1, . . . , Fk}; (σj ; ρj)) |= F. (1.82)

But from (w; ρ̂) v (σj ; ρj) and (1.81) we get

(w; ρ̂) |=χ (β ∪ {F1, . . . , Fk}; (σi; ρi)),

and therefore (1.82) yields(w; ρ̂) |=χ F .

33

• [EI/∆]: In that case the deduction is of the form

pick-witnessw for ∃ x . F ∆

and assuming that

(β ∪ {∃ x . F}; (σ; ρ)) ` pick-witnessw for ∃ x . F ∆ ; (σ′; ρ′), (1.83)

we need to show
(β ∪ {∃ x . F}; (σ; ρ)) |= (σ′; ρ′). (1.84)

To that end, consider any(w; ρ̂) andχ such that

(w; ρ̂) |=χ (β ∪ {∃ x . F}; (σ; ρ)). (1.85)

From (1.83) and the [EI/∆] rule we infer that, for some fresh variablez,

(β ∪ {∃ x . F, F [z/x]}; (σ; ρ)) `∆ [z/w] ; (σ′; ρ′). (1.86)

From (1.86) and the inductive hypothesis we obtain

(β ∪ {∃ x . F, F [z/x]}; (σ; ρ)) |= (σ′; ρ′). (1.87)

From (1.85) and (1.6) we conclude that there is some system objects such that

I(w; ρ̂)/χ[x 7→ s](F) = true.

Therefore, from Lemma 19,
I(w; ρ̂)/χ[z 7→ s](F [z/x]) = true,

and sincez does not occur inβ ∪ {∃ x . F}, we also have (by (1.85) and Lemma 2):

∀ G ∈ β ∪ {∃ x . F} . I(w; ρ̂)/χ[z 7→ s](G) = true.

Hence,
(w; ρ̂) |=χ[z 7→ s] β ∪ {∃ x . F, F [z/x]}, (1.88)

and since(w; ρ̂) v (σ; ρ) (from (1.85)), we conclude that

(w; ρ̂) |=χ[z 7→ s] (β ∪ {∃ x . F, F [z/x]}; (σ; ρ)). (1.89)

Finally, from (1.89) and (1.87) we obtain(w; ρ̂) |= (σ′; ρ′).

• [D;∆]: Here the deduction is of the formD;∆, and assuming that

(β; (σ; ρ)) `D;∆ ; (σ′; ρ′), (1.90)

we need to show
(β; (σ; ρ)) |= (σ′; ρ′). (1.91)

Pick any(w; ρ̂) andχ and suppose that

(w; ρ̂) |=χ (β; (σ; ρ)). (1.92)

34

From (1.90) and the [D;∆] rule we infer that, for someF ,

(β; (σ; ρ)) `D ; F, (1.93)

(β ∪ {F}; (σ; ρ)) `∆ ; (σ′; ρ′). (1.94)

From (1.93) and the inductive hypothesis we obtain(β; (σ; ρ)) |= F , which, in tandem with (1.92),
yields

(w; ρ̂) |=χ F.

Therefore,
(w; ρ̂) |=χ (β ∪ {F}; (σ; ρ)). (1.95)

Now (1.94) and the inductive hypothesis give

(β ∪ {F}; (σ; ρ)) |= (σ′; ρ′), (1.96)

and finally (1.95) and (1.96) produce the desired(w; ρ̂) |=χ (σ′; ρ′).

• [∆;D]: Here the proof is of the form∆;D and assuming that

(β; (σ; ρ)) `∆;D ; F, (1.97)

we need to show(β; (σ; ρ)) |= F . Accordingly, consider any world(w; ρ̂) and variable assignmentχ
such that

(w; ρ̂) |=χ (β; (σ; ρ)). (1.98)

From (1.97) and the [∆;D] rule we conclude that, for some(σ′; ρ′),

(β; (σ; ρ)) `∆ ; (σ′; ρ′) (1.99)

and
(β; (σ′; ρ′)) `D ; F. (1.100)

From (1.99) and the inductive hypothesis we get(β; (σ; ρ)) |= (σ′; ρ′), so (1.98) yields

(w; ρ̂) |= (σ′; ρ′)

and hence
(w; ρ̂) |=χ (β; (σ′; ρ′)). (1.101)

But from (1.100) and the inductive hypothesis we get(β; (σ′; ρ′)) |= F , which, along with (1.101),
entails(w; ρ̂) |=χ F .

• [∆; ∆]: Here the deduction is of the form∆1;∆2. Assuming

(β; (σ; ρ)) `∆1;∆2 ; (σ2; ρ2), (1.102)

we must show(β; (σ; ρ)) |= (σ2; ρ2). Pick any(w; ρ̂) andχ such that

(w; ρ̂) |=χ (β; (σ; ρ)). (1.103)

From (1.102) and rule [∆; ∆] we infer that, for some(σ1; ρ1),

(β; (σ; ρ)) `∆1 ; (σ1; ρ1); (1.104)

(β; (σ1; ρ1)) `∆2 ; (σ2; ρ2). (1.105)

35

From (1.104), (1.105), and the inductive hypotheses we get

(β; (σ; ρ)) |= (σ1; ρ1); (1.106)

(β; (σ1; ρ1)) |= (σ2; ρ2). (1.107)

From (1.103) and (1.106) we infer(w; ρ̂) |= (σ1; ρ1), so that

(w; ρ̂) |=χ (β; (σ1; ρ1)),

which in tandem with (1.107) yields the desired(w; ρ̂) |= (σ2; ρ2).

This completes the case analysis and the induction.

Example 12: Consider the VIVID language obtained by fixing the clock signature, attribute structure and in-
terpretation of Example 9. Now consider a system of two clocksc1 andc2, to which we will give the namesc1

andc2 (recall thatc1 andc2 are constant symbols of the signature, so this is a constant assignmentρ, which
need only be partial). Now letσ be the state depicted by the following picture:

{4, 5, 6}:28

c1

5:45

c2

Intuitively, this state signifies that we know the precise time displayed byc2 (5:45 am). We are also sure of the
minute value ofc1 (28), but not of its hour value, which could be either 4, 5, or 6. Now suppose that we are
further given the premiseAhead(c1, c2), indicating that the time displayed byc1 is ahead of that displayed
by c2.

From these two pieces of information, one diagrammatic and the other sentential, we should be able to
infer the following diagram, call itσ′:

6:28

c1

5:45

c2

That is, we should be able to conclude the exact time ofc1, since, given thatc1 is ahead ofc2, the hour displayed
by it cannot possibly be 4 or 5; it must, therefore, be 6. We can do this in VIVID with the following one-line
proof:

(σ′; ρ) by thinning with Ahead(c1, c2).

This deduction, when evaluated in the context({Ahead(c1, c2)}; (σ; ρ)), will result in the state (diagram)
(σ′; ρ). More formally, we have the following judgment:

({Ahead(c1, c2)}; (σ; ρ)) ` (σ′; ρ) by thinning with Ahead(c1, c2) ; (σ′; ρ)

by virtue of
(σ; ρ) �{Ahead (c1,c2)} (σ′; ρ). (1.108)

Note thatρ does not change in the resulting state.
To establish (1.108) rigorously, we must show that for all named states(σ′′; ρ′′) such that

Alt((σ; ρ), (σ′; ρ), (σ′′; ρ′′))

36

we have
I(σ′′; ρ′′)/χ(Ahead(c1, c2)) = false

for all variable assignmentsχ, according to Definition 11. Given that the assignmentρ does not change,
it follows from Definition 10 that we must haveρ′′ = ρ and henceAlt(σ, σ′, σ′′). Now there is only one
alternative extensionσ′′ of σ w.r.t. σ′, obtained fromσ by complementing thehoursvalue ofc1 in σ′ with
respect to the corresponding value inσ:

σ′′ : hours(c1) = {4, 5}.

It is straightforward to verify that

I(σ′′; ρ)/χ(Ahead(c1, c2)) = false

for all χ.

1.6 Representing arbitrary graphs

Graphs (including trees, lists, etc.) are very widely used as diagrammatic depictions of structured data. In this
section we present a way of modeling arbitrary graphs in our framework as system states. These ideas will be
put to use in the example of Section 1.7.

Consider an arbitrary finite graphG = (N ;E), whereN is a set of nodes andE ⊆ N × N a set of
directed edges. Typically we wish to attach a value to each noden ∈ N , so we assume we have a function
data : N→ V that maps each node to some element of a set of valuesV . For the purposes of drawing the
graph, we also assume that the children of every node are ordered from left to right, i.e., we assume there is
a functionchildren : N→N∗ (arbitrary lists can be chosen if the ordering is immaterial for displaying the
graph). Consider, for instance, the graph: n5n1

�
�

�+

Q
Q

Qsnn2 3 nn33

HereN = {n1, n2, n3} andE = {(n1, n2), (n1, n3)}. The values attached to the nodes are natural numbers.
So we can represent the graph by the functionsdataandchildrenas mentioned above, where

data(n1) = 5,data(n2) = 3,data(n3) = 3

and
children(n1) = [n2, n3], children(n2) = [], children(n3) = [].

This is similar to the “adjacency list” representation of graphs (Cormen, Leiserson and Rivest 1990).
Any graphG = (N ;E) where the nodes take values from a setV gives rise to systems of the form

SN = (N ;AN), whereAN is an automorphic attribute structure of the form

AN = (id : N, children : N∗,data : V ;R).

Here the attributeschildren anddata are as discussed above,id is the identity function onN , andD(R) ⊆
{N,N∗, V } for each relationR ∈ R (the precise contents ofR will vary). The graphG itself can be repre-
sented as a world of the systemSN . “Incomplete” graphs where the values and/or children of some nodes are
not precisely known can be represented by partial states of such systems.

37

[5 8 3 2]
�

�
�+

Q
Q

Qs
[5 8] [3 2]

�

J
J

JĴ

J
J

JĴ

�
[5] [8]

J
J

JĴ

�
[5 8]

[3] [2]

J
J

JĴ

�
[2 3]

Q
Q

Qs

�
�

�+
[2 3 5 8]

Figure 1.5: The call graph resulting from the application of MergeSort to the list [5 8 3 2].

1.7 Another example: the Mergesort puzzle

In this section we present a more involved VIVID language by way of a puzzle. In its general form, the puzzle
can be described as follows. The output of an algorithm is displayed at the bottom of a diagram depicting a call
graph for a particular run of the algorithm. Some sentential information might also be given in addition to the
diagram. The objective is to infer what input(s) could possibly have resulted in the given call graph, or, more
precisely, what inputs are consistent with the given information (the call graph and the sentences). Inference
is mostly performed diagrammatically, by deriving a sequence of successive call graphs, by performing case
analyses involving such graphs, etc. It will be seen that such graphical proofs are considerably more compact
and intuitive than sentential analogues. In the next section we illustrate the puzzle informally with Mergesort,
while in Section 1.7.2 we formalize it rigorously as an instance of VIVID .

1.7.1 Guessing the input of Mergesort

Mergesort is a popularO(n log n) sorting algorithm. The algorithm works according to the divide-and-conquer
paradigm (Cormen et al. 1990): it successively halves the given list until the original input has been broken into
one-element pieces, which are trivially sorted; this is the dividing phase. The small lists are then repeatedly
combined into larger and larger sorted lists, until we finally obtain the correct sorted permutation of the original
input. This is the conquering phase, which turns on the fact that once we have two sorted lists, say [2 8] and [1
3 5], we can efficientlymergethem to get another sorted list, in this case [1 2 3 5 8].

For example, Figure 1.5 depicts the call graph obtained by applying Mergesort to the input list [5 8 3 2].
Note that the graph is a DAG (directed acyclic graph). Diverging edges on the top half represent recursive
applications of Mergesort to the left and right halves of the input (dividing phase); while converging edges on
the lower half represent calls to the merging procedure (conquering phase). We make the convention that when
the input list is of an odd length2n + 1, we take the firstn elements as the left half and the remainingn + 1
elements as the right half.

The call graph for an application of Mergesort is completely and unambiguously determined once the input
list is given. However, things are more interesting in the reverse direction. Clearly, there is no way of retrieving
the input list from the output alone, since the inverse of a sorting function is a relation, not a function—any
one ofn! initial permutations could result in the same sortedn-element list. But if, in addition to specifying

38

the output, we also constrain the call graph of the algorithm by sprinkling some tidbits of information on it or
by specifying some sentential information along with it, then we may be able to infer the original input, or at
least narrow it down to relatively few possibilities.

As a simple example, suppose you are told that the output of Mergesort is [1 2 5 8]. At this point there
is not much of interest you can conclude—there are4! = 24 possible inputs that could produce this output.
But suppose you are further told that the corresponding call graph is as shown in Figure 1.6, where we have
attached labelsNi to each node of the graph for easy reference. We writeNi = ? to indicate that we do
not know anything about the list that should appear at nodeNi; we writeNi ⊇ {x1, . . . , xk} to indicate
that the numbersx1, . . . , xk occur in the said list (though in unknown order, and possibly in tandem with
other numbers); andNi = [x1 · · · xk] to indicate that we know the exact value of the list in question to be
[x1 · · · xk]. From the diagram of Figure 1.6 along with what we know about Mergesort, we can conclude that
the original input was either [2 5 8 1] or [5 2 8 1].

The proof consists of two parts: first we derive a sequence of six increasingly detailed diagrams from the
initial diagram of Figure 1.6, each extending the previous one, culminating with a diagram in which we know
the exact values of all the lists except those forN1, N2,N4 andN5; this part of the proof appears in Figure 1.7.
We then perform an exhaustive case analysis by observing that there are only two possibilities at this point: the
lists ofN4 andN5 are (a) [2] and [5], respectively; or else they are (b) [5] and [2], respectively. In the first case
we can deduce that the input list was [2 5 8 1], while in the second case we can deduce that it was [5 2 8 1].
Therefore, we can infer that the input list was either [2 5 8 1] or [5 2 8 1].

Let us analyze the proof in more detail, beginning with the first part shown in Figure 1.7. That part consists
of six steps, labeled (1) through (6). The new information extracted by each step appears in red for enhanced
clarity. We discuss each step below:

• Step (1) infers thatN6 must contain the number 8. This follows because we know that 8 occurs inN9

but not inN7; and that, sinceN6 andN7 converge inN9, a number can occur inN9 iff it occurs either
in N6 or inN7 (this holds because converging edges indicate list merging).

• Step (2) infers that the list appearing in nodeN6 must be precisely[8]. We already know from the
previous step that 8 occurs in the said list. Now if the list had any additional elements, its length would
be greater than one, and hence it would be longer than theN7 list, which we know to have only one
element. But this cannot be the case becauseN6 andN7 are the left and right halves of theN3 list, and

N1 = ?

�
�

�+

Q
Q

Qs
N2 = ? N3 = ?

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 = ? N7 = [1]

N8 = ? N9 ⊇ {8}

J
J

JĴ

�

Q
Q

Qs

�
�

�+
N10 = [1 2 5 8]

Figure 1.6: A partially unknown MergeSort call graph resulting in the output [1 2 5 8].

39

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = ?

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 = ? N7 = [1]

N8 = ? N9 ⊇ {8}

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(1)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = ?

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 ⊇ {8} N7 = [1]

N8 = ? N9 ⊇ {8}

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(2)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = ?

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = ? N9 ⊇ {8}

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(3)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = ?

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = ? N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(4)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = ? N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(5)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 ⊇ {2, 5} N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

Figure 1.7: First part of a graphical proof solving an instance of the Mergesort puzzle.

40

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = [2 5] N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(7)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = [2] N5 = [5]

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = [2 5] N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(8)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = [2 5] N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = [2] N5 = [5]

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = [2 5] N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(9)
=⇒

N1 = [2 5 8 1]

�
�+

Q
Qs

N2 = [2 5] N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = [2] N5 = [5]

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = [2 5] N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

Figure 1.8: Case 1 (out of 2) following the derivation of Figure 1.7.

every time a listL is split into two halves, the left half is always either of the same length as the right
half (if L has even length) or else it is shorter by one (ifL has odd length); it cannot possibly be longer.
Hence, theN6 list must be the one-element list [8].

• Step (3) infers that theN9 list must be [1 8]. This follows because theN9 list represents the result of
mergingN6 andN7, whose precise values are both known at this point.

• Step (4) infers that theN3 list must be [8 1]. This follows because we already know the left and right
halves ofN3 to be [8] and [1], respectively.

• Step (5) infers that theN8 list must contain 2 and 5. This holds by virtue of the principle mentioned
above in connection with step (1): whenL andL′ converge inL′′, any number occurs inL′′ iff it occurs
either inL or inL′. Therefore, since we know that 2 and 5 occur inN10 but not inN9, they must occur
in N8.

41

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = ? N5 = ?

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = [2 5] N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(11)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = ? N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = [5] N5 = [2]

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = [2 5] N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(12)
=⇒

N1 = ?

�
�+

Q
Qs

N2 = [5 2] N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = [5] N5 = [2]

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = [2 5] N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

(13)
=⇒

N1 = [5 2 8 1]

�
�+

Q
Qs

N2 = [5 2] N3 = [8 1]

�

J
J

JĴ

J
J

JĴ

�
N4 = [5] N5 = [2]

J
J

JĴ

�

N6 = [8] N7 = [1]

N8 = [2 5] N9 = [1 8]

J
J

JĴ

�

Q
Qs

�
�+

N10 = [1 2 5 8]

Figure 1.9: Case 2 (out of 2) following the derivation of Figure 1.7.

• Step (6) infers that theN8 list must be precisely [2 5].12 We already know that it must have at least these
two elements. If it had more than two elements, thenN10 would have to have at least five elements,
given that (a)N10 is the result of mergingN8 andN9, and that (b)N9 has two elements. ButN10 has
four elements, therefore 2 and 5 must be the only two elements ofN8, leaving [2 5] and [5 2] as the only
two possibilites. But the second possibility cannot hold, sinceN8 must be sorted (recall that only sorted
lists get merged). Hence, theN8 list must be [2 5].

At this point we do not have sufficient information to determine unique values for theN4 andN5 lists.
However, we can narrow things down to two possibilities: eitherN4 andN5 are [2] and [5], respectively; or
else they are [5] and [2]. These are the only two alternatives that are concistent withN8 = [2 5], given thatN8

represents the result of mergingN4 andN5. The reasoning in each case is as follows:

12The result of this step does not appear in Figure 1.7 for space reasons, but it is shown as the common starting point of the subsequent
case analysis in Figure 1.8 and Figure 1.9.

42

Case 1 : In that case (Figure 1.8), we proceed to infer that the value ofN2 must be [2 5], sinceN4 andN5 are
the left and right halves ofN2. And then, since we know bothN2 andN3 we can determine the value of
the inputN1 to be [2 5 8 1].

Case 2 : In that case (Figure 1.9), we deduce that the value ofN2 must be [5 2], for the same reason we cited
in the preceding case. Similarly, we can then conclude that the input list must be [5 2 8 1].

We are now entitled to infer that the original input list must be either [2 5 8 1] or [5 2 8 1].

1.7.2 Formalizing the puzzle as an instance of VIVID

There are three steps to obtaining a particular instance of VIVID :

1. Specify an attribute structureA.

2. Specify a vocabularyΣ.

3. Specify an interpretation of the relation symbols ofΣ intoA as discussed in Section 1.4.

In the following three sections we carry out these steps in detail for the Mergesort puzzle.

Specifying the attribute structure

Let Nodebe the universe of nodes and letZ∗ be the set of all finite sequences (lists) of integers. An appropriate
attribute structure for the Mergesort puzzle is the following:

AM = (id : Node, children : Node∗,data : Z∗; {R1, R2, R3, R4, R5, R6, R7} ∪ {RL | L ∈ Z∗})

where the relationsR1, . . . , R7, RL are as follows:

• R1 ⊆ Node∗ × Node× Node, with

R1([n1 . . . nk], n, n′)⇔{n, n′} ⊆ {n1, . . . , nk}.

• R2 ⊆ Node× Node∗ × Node∗, with

R2(n, [n1 . . . nk], [n′1 . . . n′m])⇔n ∈ {n1, . . . , nk} ∩ {n′1, . . . , n′m}.

• R3 ⊆ Z∗ × Z∗ × Z∗, with

R3([x1 . . . xk], [y1 . . . yn], [z1 . . . zm])⇔ [x1 . . . xk] = [y1 . . . yn z1 . . . zm],

i.e., iff [x1 . . . xk] is the concatenation of[y1 . . . yn] and[z1 . . . zm].

• R4 ⊆ Z∗ × Z∗, with
R4([x1 . . . xk], [y1 . . . yn])⇔n ∈ {k, k + 1}.

• R5 ⊆ Z∗, with
R5([x1 . . . xk])⇔xi ≤ xi+1 for i = 1, . . . , k − 1,

i.e., iff [x1 . . . xk] is sorted.

43

• R6 ⊆ Z∗ × Z∗ × Z∗, with

R6([x1 . . . xk], [y1 . . . yn], [z1 . . . zm])⇔{x1, . . . , xk} = {y1, . . . , yn} ∪ {z1, . . . , zm}.

• R7 ⊆ Z∗ × Z∗ × Z∗, with

R7([x1 . . . xk], [y1 . . . yn], [z1 . . . zm])⇔ k = n+m.

• RL ⊆ Z∗, with
R[x1 ... xk]([y1 . . . yn])⇔ [x1 . . . xk] = [y1 . . . yn].

Note that we have infinitely many unary relationsRL, parameterized byL. Each such relation takes an arbitrary
list of integersL′ and tests for the equalityL′ = L.

To make things concrete, Figure 1.11 presents an implementation of this attribute structure in SML.

Specifying the vocabulary

We have seven relations symbols:peak , valley , append , union , andsumare ternary;halves is binary;
andsorted is unary. In addition, for each list of integersL we have a unary relation symbolval L. We use
N1, N2, . . . as constant symbols andv1, v2, . . . as variables.

Specifying the interpretation

The interpretation of the relation symbols is shown in Figure 1.10.
More intuitive explanations follow:

• peak (v1, v2, v3) holds iff nodesv2 andv3 are both children ofv1:

v1
�

�
�+

Q
Q

Qs
v2 v3

· · ·

• valley (v1, v2, v3) holds iff v2 andv3 are both parents ofv1:

Symbol Arity Realization Profile
peak 3 R1 [(children, 1), (id, 2), (id, 3)]

valley 3 R2 [(id, 1), (children, 2), (children, 3)]
append 3 R3 [(data, 1), (data, 2), (data, 3)]
halves 2 R4 [(data, 1), (data, 2)]
sorted 1 R5 [(data, 1)]
union 3 R6 [(data, 1), (data, 2), (data, 3)]

sum 3 R7 [(data, 1), (data, 2), (data, 3)]
val L 1 RL [(data, 1)]

Figure 1.10: The interpretation of the Mergesort puzzle vocabulary.

44

v1 v2
Q

Q
Qs

�
�

�+
v

• append (v1, v2, v3) holds iff the list attached to nodev1 (i.e., thedata field of v1) is identical to the
concatenation of the lists attached to nodesv2 andv3, respectively.

• halves (v1, v2) holds iff the lengths of the lists attached to nodesv1 andv2 are approximately equal;
more precisely, iff the length of thev2 list is either equal to or one more than the length of thev1 list.

• sorted (v1) holds iff the list attached to nodev1 is sorted.

• union (v1, v2, v3) holds iff the list attached to nodev1 contains all and only those elements that occur
either inv2 or in v3 (or in both).

• sum(v1, v2, v3) holds iff the length of thev1 list is equal to the sum of the lengths of thev2 andv3 lists.

• val L(v1) holds iff the list attached to nodev1 is identical toL. We writeval (v1, L) as an abbreviation
for val L(v1).

datatype Nat = zero | succ of Nat;

datatype Node = node of Nat;

fun member(x,L) = List.exists (fn y => x = y) L;

fun subset(L1,L2) = List.all (fn x => member(x,L2)) L1;

fun R1(L,n1,n2) = member(n1,L) andalso member(n2,L);

fun R2(n,L1,L2) = member(n,L1) andalso member(n,L2);

fun R3(L1,L2,L3) = L1 = L2@L3;

fun R4(L1,L2) = let val len1 = length L1
val len2 = length L2

in
len2 = len1 orelse len2 = len1 + 1

end;

fun R5([]) = true
| R5(x::L) = R5(L) andalso List.all (fn y => x <= y) L;

fun R6(L1,L2,L3) = let val L = L2@L3
in

subset(L1,L) andalso subset(L,L1)
end;

fun R7(L1,L2,L3) = length(L1) = length(L2) + length(L3);

Figure 1.11: SML code implementing the attribute structure of the MergeSort puzzle.

45

1.7.3 The formal proof

The following Horn clauses are all the axioms we need for solving Mergesort puzzles. Their meaning should
be clear in light of the foregoing interpretation.

∀ v1, v2, v3 . peak (v1, v2, v3)⇒halves (v2, v3) halves-axiom

∀ v1, v2, v3 . valley (v1, v2, v3)⇒ sorted (v1) ∧ sorted (v2) ∧ sorted (v3) sorted-axiom

∀ v1, v2, v3 . valley (v1, v2, v3) ∨ peak (v1, v2, v3)⇒union (v1, v2, v3) union-axiom

∀ v1, v2, v3 . peak (v1, v2, v3)⇒append (v1, v2, v3) append-axiom

∀ v1, v2, v3 . valley (v1, v2, v3)⇒ sum(v1, v2, v3) sum-axiom

Now let node1, . . . ,node10 be ten nodes from the universe of all nodes,Node. In combination with the
attribute structureAM , these ten nodes constitute a system. The diagrams shown in Figure 1.7, Figure 1.8 and
Figure 1.9 depict specific named states of this system. Consider, for instance, the starting diagram, at the upper
left corner of Figure 1.7. This represents a named state(σ; ρ), where the partial constant assignmentρ is

N1 7→ node1, N2 7→ node2, . . . , N10 7→ node10 (1.109)

(with ρ(Ni) undefined fori > 10); while the two ascriptionschildrenanddataare as follows (theid ascription
is defined in the obvious way):

children(node1) = [node2 node3]
...

children(node5) = [node8]
...

children(node10) = []

and

data(node1) = {[], [1], [2], [5], [8], [1 2], [1 5], . . . , [8 5 1], . . . , [1 2 5 8]}
...

data(node9) = {[8], [1 8], [8 1], [2 8], . . . , [5 8 1], [2 5 1 8], . . .}
...

data(node10) = {[1 2 5 8]}.

Observe the equation fordata(node1). At this point we do not know anything about what list appears at
node1 (a complete lack of knowledge signified by the inscriptionN1 = ?), so the data field ofnode1 is entirely
unconstrained: it contains all possible lists of length four obtained by permutations of four objects taken four at
a time (P (4, 4) = 4! = 24 total); plus all possible lists of length three obtained by permutations of four objects
taken three at a time (P (4, 3) = 24 total); plus all possible lists of length two obtained by permutations of four
objects taken two at a time (P (4, 2) = 12), plus all possible lists of length one (4), plus the empty list, for a
sum total of 24 + 24 + 12 + 4 + 1 = 65 different lists. Thedataascription maps every “questionmark node”
(e.g., the nodes labeled byN6 orN8) to the same set of 65 lists. Hereafter we will denote this set of 65 lists by
L. By contrast, thedataascription fornode9 (the node labeled byN9) is subject to the constraint that all list
values must contain 8, so this narrows down the possibilities to a total of 24 + 18 + 6 + 1 = 49. Further down,

46

τ2 by thinning with union-axiom;
τ3 by thinning with halves-axiom;
τ4 by thinning with union-axiom, sorted-axiom;
τ5 by thinning with append-axiom;
τ6 by thinning with union-axiom;
τ7 by thinning with sum-axiom, sorted-axiom;
cases fromunion-axiom, halves-axiom:

τ8 → τ9 by thinning with append-axiom;
τ10 by thinning with append-axiom;
observeval (N1, [2 5 8 1]) ∨ val (N1, [5 2 8 1])

τ12 → τ13 by thinning with append-axiom;
τ14 by thinning with append-axiom;
observeval (N1, [2 5 8 1]) ∨ val (N1, [5 2 8 1])

Figure 1.12: Formal VIVID proof solving the Mergesort puzzle of Section 1.7.1.

the value ofdata for node10 is completely determined—the singleton{[1 2 5 8]}. 13 The named system state
corresponding to any of the diagrams shown in connection with the Mergesort puzzle is likewise defined. The
childrenascription and the constant assignment remain the same in every case; while thedatavalue is specified
in accordance with the preceding conventions.

Extracting the appropriate system state from a given diagram can be viewed as the task of computing a
parsing functionφ that takes a concrete two-dimensional representation and produces an abstract syntax tree
for it. Conversely, reconstructing a diagram from the underlying system state can be seen as computing an
“unparsing” functionψ that proceeds in the reverse direction, rendering system states graphically. As with
customary parsing and unparsing, we have

ψ(φ(d)) = d and φ(ψ(σ)) = σ (1.110)

for all diagramsd and system statesσ, where the first identity is understood to obtain up to topological equiva-
lence.14 From a practical standpoint, most of the effort required to build a VIVID language would be alloted to
the implementation of these two functions. In the case of the Mergesort puzzle, bothφ andψ can be computed
efficiently—in low polynomial time—using standard graph-theoretic algorithms.

Finally, Figure 1.12 shows the formal VIVID proof that solves the Mergesort puzzle discussed in Sec-
tion 1.7.1. We conclude with a detailed analysis of this proof.

First, we need a simple lemma:

∀ v1, v2, v3 . valley (v1, v2, v3)⇒union (v1, v2, v3) ∧ sum(v1, v2, v3) [lemma]
13These are unnecessarily coarse approximations. We could leverage our knowledge of the domain to further cut down the possibililities

drastically. For instance, we know that at the top node only lists of length four could appear—or, in general, only lists of the exact same
length as the unique list that appears at the bottom node representing the output. Further, we know that if any node has only lists ofn items
as possible values, then the left and right children can respectively only have lists of lengthbn/2c anddn/2e as possible values, and so
on. In this manner cardinality constraints would propagate down the graph and significantly curtail the values of thedataascription. This
would be important for an efficient implementation of the Mergesort puzzle, but it is not necessary for our present purposes.

14Diagrammatic identity in general can be a vague notion (e.g., when exactly can we say that two drawings depict the same mountain
range?) and this is part of the reason why logicians and mathematicians have had a skeptical attitude towards diagrams (Quine’s dictum
“No entity without identity” (Quine 1969) comes to mind). Nevertheless, there are many cases where we can formulate rigorous necessary
and sufficient conditions for two diagrams to be considered identical, using topological or other extensional notions.

47

This can be derived from our five axioms in a few lines of VIVID , by some elementary sentential reasoning; we
leave the derivation to the reader.

Next, letσ1, . . . , σ6 be the system states corresponding to the six diagrams that appear in Figure 1.9 starting
from the top left corner and proceeding clockwise, so thatσi represents the graph to the left of the arrow
indicating theith step. Likewise, letσ7, . . . , σ10 andσ11, . . . , σ14 be the states corresponding to the diagrams
of Figure 1.8 and Figure 1.9, respectively. For anyi = 1, . . . , 14, we writeτi to denote the named state(σi; ρ),
whereρ is the constant assignment (1.109).

Recalling that composition is right-associative, we see that the proof in Figure 1.12 is a sentential proofD,
as it is of the form

D = ∆1; · · · ;∆6;D′,

i.e., a composition of six diagrammatic steps∆1, . . . ,∆6 followed by a sentential deductionD′ of the form

cases fromF1, . . . , Fk: (σ1; ρ1) → D1 | · · · | (σn; ρn) → Dn,

a diagrammatic-to-sentential case analysis. The starting point for the proof is the context

γ1 = (β1; τ1), (1.111)

whereβ1 contains the five universally quantified clauses of our axiomatization and the aforementioned lemma.
This is the context in which the entire proofD will be evaluated.

Let us why the first step∆1, the diagrammatic inference

τ2 by thinning with union-axiom

succeeds. According to the semantics of thinning (Figure 1.3), this step will be valid provided that

τ1 �{union-axiom} τ2,

i.e., provided thatτ1 entailsτ2 with respect tounion-axiom. This means that every alternative way of extending
τ1 w.r.t. τ2 must falsifyunion-axiom(for an arbitrary variable assignment). More precisely, it must be the case
that for every named stateτ = (σ; ρ) such thatAlt(τ1, τ2, τ) we have

I(σ; ρ)/χ(union-axiom) = false (1.112)

for all χ. Pick any suchτ . Sinceτ1 andτ2 share the same constant assignmentρ, the only wayτ can be an
alternative extension ofτ1 w.r.t. τ2 is if we haveAlt(σ1, σ2, σ) (Definition 10). The only stateσ that qualifies
as such an alternative is the one that is identical toσ1 except that thedataascription mapsnode6 to the set of
all lists inL that donot contain 8. It is easy to see that (1.112) holds in that state. Indeed, consider an arbitrary
χ. By (1.5),union-axiomwill be false in(σ; ρ) andχ if there are some nodesnodei1 , nodei2 , andnodei3 such
that

I(σ; ρ)/χ[v1 7→nodei1 ,v2 7→nodei2 ,v3 7→nodei3]
(valley (v1, v2, v3) ∨ peak (v1, v2, v3)⇒ union (v1, v2, v3)) = false.

Let these three nodes benode9, node6, andnode7, respectively (i.e., the nodes labeled byN9, N6 andN7).
For these nodes we clearly have:

I(σ; ρ)/χ[v1 7→node9,v2 7→node6,v3 7→node7](valley (v1, v2, v3) ∨ peak (v1, v2, v3)) = true

(since the nodes form a valley) and yet

I(σ; ρ)/χ[v1 7→node9,v2 7→node6,v3 7→node7](union (v1, v2, v3)) = false. (1.113)

48

(1.113) holds because foreverylist L in thedatafield of node9 in σ and for every listL′ in thedatafield of
node6 in σ and every listL′′ in thedatafield of node7 in σ, we have

¬R6(L,L′, L′′),

the reason being that every suchL contains 8 but no suchL′′ contains 8 (becausedata(node7) in σ contains
only one list value, [1]) and no suchL′ contains 8 (by virtue ofσ being an alternative extension ofσ1 w.r.t.
σ2).

It is important to note that in practice these three nodes would be discovered automatically by exhaustive
search. Specifically, the system would evaluate the formulaunion-axiomin the named state(σ; ρ)and an
arbitrary variable assignmentχ 15 to determine if it comes outfalse. Now a universally quantified formula
such asunion-axiomis evaluated in a givenχ by binding the universally quantified variable to successive
system objects and recursively evaluating the body in the updatedχ. If the body comes outfalse for some
system object, the whole formula is deemedfalse. If the body itself is another universally quantified formula
then we have more choice points and possible backtracking. In the worst case for the puzzle example, the
evaluation ofunion-axiomwill need to examine103 = 1000 difference possible assignments of variables to
objects, since the system comprises 10 nodes and the formula has three universally quantified variables. In
such a worst-case scenario, the body ofunion-axiomwould be evaluated for each of the 1000 node triples.
For most of these triples,union-axiomwould come outunknown because there is not enough information to
enable a definitive judgment. Consider, for instance, the evaluation of the body ofunion-axiomin the triple

χ[v1 7→ node1, v2 7→ node2, v3 7→ node3].

While it is true thatnode1,node2, andnode3 form a peak, we have

I(σ; ρ)/χ[v1 7→node1,v2 7→node2,v2 7→node3](union (v1, v2, v3)) = unknown

because, inσ, the realization ofunion , R6, holds for some list values in the correspondingdata fields of
node1,node2 andnode3 and does not hold for others (see (1.3)).

In this particular example we have 10 system objects and the most populous attribute value has 65 elements,
so a formula such asunion (v1, v2, v3) could, in theory, take up to653 = 274, 625 evaluations to settle. Com-
bined with the 1,000 triple possibilities dictated by three universal quantifiers, we could look at the non-trivial
number of274, 625, 000 evaluations. However, in practice atomic formulas such asunion (v1, v2, v3) would
be settled speedily because for most node assignments we would get sometrue and somefalsevalues, quickly
leading to anunknown result. So even the worst case of 1000 different evaluations is not computationally
formidable.

Nevertheless, we observe that the user can always improve the efficiency of the proof checking by providing
more information in the proof—information that guides the searh in the right direction. For example, we could
replace the first step

τ2 by thinning with union-axiom

by the following sequence of steps:

specializeunion-axiomwith N9, N6, N7;
observevalley (N9, N6, N7);
right-either peak (N9, N6, N7) ∨ valley (N9, N6, N7);
modus-ponenspeak (N9, N6, N7) ∨ valley (N9, N6, N7)⇒union (N9, N6, N7),

peak (N9, N6, N7) ∨ valley (N9, N6, N7);
τ2 by thinning with union (N9, N6, N7)

15This is legitimate by virtue of Lemma 2.

49

Here we focus directly on the three nodes of interest by citingunion (N9, N6, N7) as the justification of
the thinning step, instead of citing the universally quantifiedunion-axiom. By eliminating the three universal
quantifiers, we avert the need to evaluate the body ofunion-axiomover all possible triples of nodes. The
tradeoff is a typical manifestation of the usual tension between brevity and efficiency: a very brief proof takes
large steps whose verification can be difficult because it requires search; whereas a detailed proof takes small
steps that are easy to check because they involve little or no search. We can always buy efficiency at the expense
of consiceness.

Returning to the proof, let us examine the second step:

τ3 by thinning with halves-axiom.

As with the previous application of thinning, this step is valid only if

τ2 �{halves-axiom} τ3,

meaning that any named stateτ = (σ; ρ) that is an alternative extension ofτ2 w.r.t.τ3 must falsifyhalves-axiom.
As before, because the constant assignment does not change, the only way we can haveAlt(τ2, τ3, τ) is if we
haveAlt(σ2, σ3, σ). And given that inσ2 thedatafield of node6 contains all and only those lists that contain
8,σ is an alternative extension ofσ2 w.r.t.σ3 iff it is a list in L that contains 8 and has length greater than one,
e.g., [2 5 8]. But in that statehalves-axiomis falsified (withnode3,node6, andnode7 providing the counterex-
ample peak), hence the thinning step is sanctioned. Similar rationales justify the next four thinning steps. We
encourage the reader to work through them rigorously.

We come finally to the case analysis, which turns on the claim that from the stateσ7 and on the basis of the
lemma, there are only two possible states,σ8 andσ12. Symbolically,

(σ7; ρ) �{lemma} {(σ8; ρ), (σ12; ρ)}. (1.114)

Consulting Definition 11, we see that (1.114) holds iff for every(σ′; ρ′) such that

Alt((σ7; ρ), {(σ8; ρ), (σ12; ρ)}, (σ′; ρ′)) (1.115)

we haveI(σ′; ρ′)/χ(lemma) = falsefor all χ. Again, because the constant assignment does not change, (1.115)
holds iff

Alt(σ7, {σ8, σ12}, σ′) (1.116)

(by Definition 10).
Now there are two alternative extensions ofσ7 w.r.t. {σ8, σ12}: one, call itσA, in which we keep the

{[2], [5]} value ofnode4 steady but complement it fornode5; while the other, call itσB , is one in which we
complement thedatavalue ofnode4 in σ7 and retain thedatavalue ofnode5. The relevant parts of both states
can be depicted graphically as follows:

σA: N2 = ?
�

��+
Q

QQs
N4 = {[2], [5]} N5 = L \ {[2], [5]}

Q
QQs

�
��+

N8 = [2 5]

σB : N2 = ?
�

��+
Q

QQs
N4 = L \ {[2], [5]} N5 = {[2], [5]}

Q
QQs

�
��+

N8 = [2 5]

A routine calculation will confirm that both possibilities falsify the cited lemma.

50

1.8 Related Work

We have derived much inspiration from the seminal work of Barwise, Etchemendy, and others on Hyperproof
(Barwise and Etchemendy 1995b). One of the chief contributions of Hyperproof was its emphasis on incom-
plete information and its ability to reason about ambiguous (partially determined) situations. These choices are
not only pedagogically sound, since there are many types of reasoning problems16 in which students are given
an incomplete sketch and are asked to fill in the gaps by way of inference; but they are also apt design choices
for visual reasoning systems in general, since oftentimes the information that agents extract from a perceived
image is incomplete, either because parts of the image are visually unclear or because they are not sure how to
interpret them.17

Important differences between VIVID and Hyperproof include the following:

1. Hyperproof is specifically built for reasoning about simple blocks worlds. VIVID , by contrast, is a
domain-independent framework.

2. Hyperproof’s treatment of incomplete information is limited and ad hoc. For instance, although a dia-
gram can signify that the size of a block is unknown, it has no way of indicating that it is, say, large or
medium but not small. By contrast, VIVID ’s mechanism for handling incomplete diagrammatic informa-
tion via arbitrary sets of values is completely general.

3. VIVID is based on the key DPL ideas of representing assumption scope with context-free block structure
and formalizing the denotation of a proof as a function over assumption bases. These two ideas have
several advantages for formalizing Fitch-style natural deduction (Arkoudas 2000, Arkoudas n.d.a). The
standard Fitch practice—adopted by Hyperproof—of capturing assumption scope by drawing nested
vertical lines might be viable for pedagogical purposes but would not scale to realistic proofs any more
than using vertical lines to represent lexical scope in programming languages (instead of the usual begin-
end pairs or curly braces) would scale to realistic programs.

4. VIVID has a formal big-step evaluation semantics in the style of Kahn and Plotkin (Kahn 1987, Plotkin
1981). This is not to say that Hyperproof does not have precise semantics or that its semantics cannot
be formally defined; only that it does not draw on the same techniques from the field of programming
language theory. We stress that this is not an issue of mere stylistic differences in presentation. Casting a
formal semantics in a style such as we have used carries significant advantages, especially in metatheo-
retic investigations, where many arguments take the form of neat induction proofs on derivations (witness
our soundness proof). In general, such a semantics is an invaluable tool for reasoningaboutproofs in
the system, and for evaluating the correctness of algorithms that manipulate such proofs.18

5. Because it is based on DPLs, VIVID could be extended from its present form as a proof-checking frame-
work into a Turing-complete programmable system allowing the user to formulate arbitrary tactics (meth-
ods) combining diagrammatic and sentential inference steps, in such a way that the soundness of the
methods would be guaranteed by the formal semantics of the language (see (Arkoudas n.d.c) for an ex-
ample of how such extensions are actually performed). It is not at all clear how Hyperproof could be
made programmable, let alone in a way that would guarantee soundness.

16E.g., in logical and analytical reasoning problems of standardized tests such as GRE or LSAT.
17As Konolige and Meyers (Myers and Konolige 1995) put it:

When generating maps from perceptual input, noise or faulty sensors may both cause objects of interest to go undetected
and leave analogical relations only partially determined.

18For instance, very efficient proof-simplification algorithms that were developed forNDL (Arkoudas n.d.b) were made possible—and
proven sound—owing to the formal operational semantics of the language. The same ideas could be incorporated into VIVID, resulting in
general principles and procedures for eliminating redundant reasoning from diagrammatic proofs.

51

6. Hyperproof is proprietary; VIVID is in the public domain. The difference is not without practical ramifi-
cations. The open design of VIVID enables highly modular implementations because it exposes a sharp
separation between the purely graphical tasks of diagram parsing and unparsing on one hand and the
system’s syntax, semantics, and underlying diagrammatic inference procedures on the other. The latter
are fixed once and for all and proven sound. All one needs to do in order to implement a specific instance
of VIVID is fix a class of diagrams and provide a diagram parser (compiling diagrams into system states)
and unparser (rendering system states graphically). Hyperproof is much more of a monolithic black box,
and any attempt by third parties to build Hyperproof-like systems for other domains would have to resort
to reverse engineering.

The work of Konolige and Myers on “reasoning with analogical representations” (Myers and Konolige
1995) is somewhat similar in spirit to our research, in that it seeks to formulate domain-independent principles
of diagrammatic reasoning. However, they do not provide any linguistic abstractions for performing such
reasoning. Rather, they outline a set of data structure operations (which they call “the integration calculus”) that
can be used to integrate diagrammatic inference into existing reasoning systems, and which can be described
as a programming interface. By contrast, we have introduced a specific, precisely defined family of languages
for heterogeneous natural deduction, with novel syntax forms and formal semantics. Further, our method
for dealing with what they call “structural uncertainty” (incomplete diagrammatic information) is much more
general. Finally, our system is strictly more powerful in that it can perform diagrammatic case reasoning; their
integration calculus does not have that capability.

DIAMOND (Jamnik 2001) is a system for checking diagrammating proofs of certain types of arithmetic
theorems. The system is designed to reason exclusively aboyt natural numbers, and specifically with universally
quantified identities of the form∀ · · · . s = t, wheres and t are terms built from the numerals0, 1, 2, . . .,
variables, and operators such as addition, multiplication, etc. A typical example is the identity asserting that
the sum of the firstn odd natural numbers isn2, symbolically written as

n∑
i=1

2i− 1 = n2 (1.117)

Diagrammatic proofs are only given for particularinstancesof the theorem, e.g., for (1.117) one might give a
diagrammatic proof forn = 4, establishing that1 + 3 + 5 + 7 = 42 = 16. A diagrammatic proof of such a
concrete identity is given by representing both terms (1 + 3 + 5 + 7 and42) as diagrams, and then rewriting
both diagrams to a common form. This clearly depends on the system’s ability to represent concrete numeric
terms by suitable diagrams. This is possible and indeed intuitive for certain types of terms. E.g.,42 can be
represented as a4× 4 square matrix of dots:

u u u uu u u uu u u uu u u u
and likewise for anyn2. It is not so easy for other terms, however, and indeed DIAMOND currently cannot even
express some arithmetic theorems.

After the user has successfully carried out several diagrammatic proofs of such concrete instances of the
identity in question, the system uses inductive learning techniques in an attempt to automatically extrapolate a
schematic proof algorithm capable of taking any numbern and proving the identity for that particular number.
If successful, the schematic proof algorithm then needs to be proved correct in a metatheoretic framework. This
is probably the most problematic step of the process, as the problem is undecidable in general. We are thus

52

faced with the somewhat odd consequence that even though DIAMOND is only a proof checker and not a proof
finder, it might nevertheless still fail to yield a verdict. Therefore, it might make more sense to incorporate
abstraction devices into the diagrams in a disciplined way, and attempt from the outset to give diagrammatic
proofs of the general form of the theorem, instead of insisting on dealing with concrete diagrams only.

GROVER (Barker-Plummer and Bailin 1992) is a theorem-proving system that uses diagrams to guide
the proof search. The system consists of a conventional (sentential) automated theorem prover (ATP), &,
augmented with a diagram processor. The diagram processor examines the given diagrams and, based on
the extracted information, it constructs an appropriate proof strategy for &. Its authors report having used the
system to obtain automatic proofs for the diamond lemma, as well as for the Schröder-Bernstein theorem of ZF.
Both are non-trivial results; the Schröder-Bernstein theorem, in particular, has a quite sophisticated sentential
proof that is far from even the current state-of-the-art in ATP technology. In their view, a diagram represents a
trail of the objects that are involved in the proof, along with key properties of and relation among such objects.
This is an interesting view of diagrams, but it differs from the (more rigorous) sense in which diagrams are used
in systems such as Hyperproof or VIVID , where diagrams are essentially used as visual premises and inference
rules are applied to them in the usual step-by-step fashion.

Anderson and McCartney (Anderson and McCartney 2003) present IDR, a system for representing and
computing with arbitrary diagrams. A diagram is viewed as a tesselation of a finite two-dimensional planar
area, with each tile having a unique triple of numbersi, j, k associated with it, indicating a value in the CMY
(Cyan, Magenta, Yellow) color scale. Apart from the spatial relationships between the tiles, the meaning of
a diagram is captured mainly via tile coloring, with different colors (or shades of gray) representing different
types of information. They introduce a set of operations on diagrams, each of which takes a number of input
diagrams of the same dimension and tessellation and produces a new diagram in which the color value of a tile is
some function of the color values of the corresponding tiles of the input diagrams. Among other applications,
IDR has been used to solve then-queens problem diagrammatically, to induce correct fingerings for guitar
chords, and to answer queries concerning cartograms of the USA. The system is more concerned with diagram
computation rather than with inference; there are no general notions of entailment, soundness, etc. IDR is also
not heterogeneous. It is exclusively diagrammatic, in that all the available operations are applied to diagrams,
not to combinations of diagrams and symbolic information.

1.9 Conclusions

A cursory reading of this paper might leave one asking: “So where are the diagrams? All I see are sets and
lists and functions and so on—the usual sentential stuff.” Indeed, as Greaves (Greaves 2002) correctly states:

Diagrammatic representations can be recognized by the extent to which the geometric properties
of the components of the representation are relevant to their interpretation, and the ways in which
these properties impact the reasoning methods which are licenced by the overall theory.

But our theory revolves around attribute structures, system states, etc., and has ostensibly little to do with
“geometric properties” of any kind.

There is nothing odd about that. Our theory is a logical analysis of the computational and information-
theoretic aspects of certain types of diagrammatic reasoning. It is not itself a piece of diagrammatic reasoning,
nor does it need to be. A mathematical analysis of visual inference does not itself need to be visual any more
than a mathematical analysis of acoustics needs to be musical, or any more than a mathematical analysis of
heat needs to be hot.

Still, one might wonder whether any representation of diagrams by set-theoretic structures is not bound
to lose something of the essentially pictorial nature of diagrams. Perhaps, but the issue is rather orthogonal

53

to our concerns. Our analysis is mostly motivated by engineering concerns and is therefore given with a
view to building robust, efficient, usable systems that permit perspicuous heterogeneous proofs combining
diagrammatic and sentential reasoning.

In summary, we have introduced VIVID , a family of denotational proof languages (DPLs) that combine
sentential and diagrammatic reasoning in a Fitch-style natural deduction framework. VIVID is based on the no-
tion of attribute systems, and on the use of Kleene’s strong three-valued logic to interpret first-order signatures
into attribute structures. To obtain a particular instance of VIVID , we need only specify an attribute structure, a
signature, and an interpretation of the signature into the structure.

We have not discussed how diagrams would be concretely represented within the proof text. That is an
interface issue, not an issue of abstract syntax or semantics. One possibility would be to give names to diagrams
and then have those names appear in the proof text, but with hyperlinks. If a user clicks on such a link, a picture
depicting the corresponding diagram would pop up, and the user could view or edit the diagram as necessary,
save it as another diagram, etc. Of course, as we have already stressed, how diagrams are drawn depends on
the specific application domain at hand; it is completely separate from all other aspects of the language. This
modularity could be put to good use, e.g., an implementation of VIVID could be designed as an SML functor
(Paulson 1996) that will take an attribute strucureA; the interpretation of a signatureΣ intoA; and a drawing
module that can draw an arbitraryA-system; and will output a parser and an interpreter, i.e., a proof checker
for the instantiated language.

Introducing names brings up another possibility. As it stands, an implementation of VIVID would be a
type-α DPL, i.e., a proof checker: it would accept a proof combining sentential and diagrammatic steps and
would either pronounce it sound or else point out a reasoning error. If we introduce unrestricted naming and
computation, we can make these into type-ω DPLs (Arkoudas n.d.c, Arvizo n.d.), capable not only of proof
checking but of arbitrary proof search as well. It would be very interesting to see what types of methods can
be written in such a setting for the purpose of automating diagrammatic inference, and exactly what type of
formal soundness guarantee we might be able to provide.

Another important issue is efficiency. Depending on the system we are working with, we may need ex-
ponential time in the size of the attributes to check whether an application of a rule such as thinning is valid.
This is due solely to the size of the attributes and is orthogonal to how “large” are the steps taken by the user.
Even if the user takes a very small step, say to exclude one possible value from a set thereof, we may still
need to explore exponentially many subsets. Two possibilities for ameliorating this issue are: (a) representing
sets of attribute values by binary decision diagrams (BDDs) (Bryant 1992), and (b) symbolic evaluation. For
(a), it is hoped that a compact representation of the relevant subsets might speed up rule checking. There are
standard techniques for representing an arbitrary subsetS′ of any finite setS by a BDD, basically by encoding
the characteristic function ofS′ as a Boolean function (Huth and Ryan 2000). With symbolic evaluation, we
may be able to prune very large parts of the search tree if we incorporate a modest degree of domain knowl-
edge into the search process. For instance, if we determine that a time(h1,m1) of a clockc1 is not ahead of
some clockc2, there is no point in trying other possible times(h′1,m

′
1) of c1 if h′1 < h1 or if h′1 = h1 and

m′
1 < m1. Sophisticated techniques for performing symbolic predicate evaluation (similar to the symbolic

evaluation methods in model checking (Clarke et al. 1999)) could have a significant payoff.

54

Bibliography

Agusti, J., Puigsegur, J. and Robertson, D. S.: 1998, A visual syntax for logic and logic programming,Journal
of Visual Languages and Computing9(4), 399–427.

Anderson, M. and McCartney, R.: 2003, Diagram processing: Computing with diagrams,Artificial Intelligence
145(1–2), 181–226.

Arkoudas, K.: 2000,Denotational Proof Languages, PhD thesis, MIT, Department of Computer Science,
Cambridge, USA.

Arkoudas, K.: n.d.a, Type-α DPLs. MIT AI Memo 2001-25.

Arkoudas, K.: n.d.b, Simplifying proofs in Fitch-style natural deduction systems. Accepted for publication in
the Journal of Automated Reasoning, December 2004.

Arkoudas, K.: n.d.c, Type-ω DPLs. MIT AI Memo 2001-27.

Arvizo, T.: n.d., A virtual machine for a type-ω denotational proof language. Masters thesis, MIT, June 2002.

Barker-Plummer, D. and Bailin, S. C.: 1992, Proofs and pictures: Proving the diamond lemma with the
GROVER theorem proving system,Working notes of the AAAI Spring Symposium on Reasoning with
Diagrammatic Representations, American Association for Artificial Intelligence, Cambridge, MA.

Barwise, J. and Etchemendy, J.: 1995a, Heterogeneous logic,in J. Glasgow, N. Narayanan and N. H. Chan-
drasekaran (eds),Diagrammatic Reasoning, MIT Press, Cambidge, USA, pp. 211–234.

Barwise, J. and Etchemendy, J.: 1995b,Hyperproof: for Macintosh, CSLI Publications.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L. and Schnoebelen, Ph.: 2001,Systems
and Software Verification. Model-Checking Techniques and Tools, Springer.

Bier, E. A., Stone, M. C., Pier, K., Buxton, W. and DeRose, T. D.: 1993, Toolglass and magic lenses: The
see-through interface,Computer Graphics27(Annual Conference Series), 73–80.

Bryant, R. E.: 1992, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,ACM Comput-
ing Surveys24(3), 293–318.

Chang, S.-K. (ed.): 1990,Principles of Visual Programming Systems, Prentice Hall, New York.

Clarke, E. M., Grumberg, O. and Peled, D. A.: 1999,Model checking, MIT Press.

Cormen, T., Leiserson, C. and Rivest, R.: 1990,Introduction to Algorithms, MIT Press.

55

Eggleston, H. G.: 1969,Convexity, Cambridge University Press.

Englebretsen, G.: 1992, Linear diagrams for syllogisms (with relationals),Notre Dame Journal of Formal
Logic33(1), 37–69.

Etherington, D. W., Borgida, A., Brachman, R. J. and Kautz, H. A.: 1989, Vivid knowledge and tractable
reasoning: preliminary report,Proceedings of IJCAI-89, 10th International Joint Conference on Artificial
Intelligence, Detroit, US, pp. 1146–1152.

Euler, L.: 1768, Lettres̀a une Princesse d’Allemagne,l’Academie Imperiale des Sciences.

Fagin, R., Mendeizon, A. and Ullman, J.: 1982, A simplified universal relation assumption and its properties,
ACM Transactions on Database Systems7(3), 343–360.

Greaves, M.: 2002,The Philosophical Status of Diagrams, CSLI Publications, Stanford, California.

Grigni, M., Papadias, D. and Papadimitriou, C. H.: 1995, Topological inference,Proceedings of the 14th
International Joint Conference on Artificial Intelligence, Montreal, pp. 901–905.

Hammer, E. M.: 1995,Logic and Visual Information, CSLI Publications, Stanford, California.

Harel, D.: 1988, On visual formalisms.,Commun. ACM31(5), 514–530.

Hirakawa, M., Tanaka, M. and Ichikawa, T.: 1990, An iconic programming system, HI–VISUAL,IEEE Trans-
actions on Software Engineering16(10), 1178–1184.

Huth, M. R. A. and Ryan, M. D.: 2000,Logic in Computer Science: Modelling and Reasoning about Systems,
Cambridge University Press, Cambridge, England.

Jamnik, M.: 2001,Mathematical Reasoning With Diagrams, CSLI Publications, Stanford, California.

Johnson, S. D., Barwise, J. and Allwein, G.: 1996, Towards the rigorous use of diagrams in reasoning about
hardware,in G. Allwein and J. Barwise (eds),Logical Reasoning with Diagrams, Oxford University
Press, pp. 201–223.

Kahn, G.: 1987, Natural semantics,Proceedings of Theoretical Aspects of Computer Science, Passau, Ger-
many.

Kleene, S.: 1952,Introduction to metamathematics, North-Holland, Amsterdam.

Lemon, O.: 2002, Comparing the Efficacy of Visual Languages,in D. Barker-Plummer, D. I. Beaver, J. van
Benthem and P. S. di Luzio (eds),Words, Proofs, and Diagrams, CSLI Publications, Stanford, California,
pp. 47–69.

Lemon, O. and Pratt, I.: 1997, Spatial Logic and the Complexity of Diagrammatic Reasoning,Machine Graph-
ics and Vision6(1), 89–109.

Levesque, H. J.: 1989, Making believers out of computers,in J. Mylopoulos and M. L. Brodie (eds),Artificial
Intelligence & Databases, Kaufmann Publishers, INC., San Mateo, CA, pp. 69–82.

Manbelbrot, B.: 1982,The Fractal Geometry of Nature, W. H. FFreeman and Company.

Meinke, K. and Tucker, J. V.: 1992, Universal algebra,in S. Abramsky, D. M. Gabbay and T. S. E. Maibaum
(eds),Handbook of Logic in Computer Science: Background - Mathematical Structures (Volume 1),
Clarendon Press, Oxford, pp. 189–411.

56

Myers, K. and Konolige, K.: 1995, Reasoning with analogical representations,in J. Glasgow, N. Narayanan
and N. H. Chandrasekaran (eds),Diagrammatic Reasoning, MIT Press, Cambidge, USA, pp. 273–301.

Myers, K. L.: 1994, Hybrid Reasoning Using Universal Attachment,Artificial Intelligence67, 329–375.

Ogawa, T. and Tanaka, J.: 2000, CafePie: A Visual Programming System for CafeOBJ,Cafe: An Approach to
Industrial Strength Algebraic Formal Methods, Elsevier Science, pp. 145–160.

Paulson, L. C.: 1996,ML for the working programmer, 2nd edn, Cambridge University Press, Cambridge,
England.

Peirce, C.: 1960,The collected papers of C. S. Peirce, Harvard University Press.

Pierce, B. C.: 1991,Basic Category Theory for Computer Scientists, Foundations of Computing, MIT Press,
Cambridge, Massachusetts.

Plotkin, G. D.: 1981, A structural approach to operational semantics,Research Report DAIMI FN-19, Com-
puter Science Department, Aarhus University, Aarhus, Denmark.

Quine, W. V. O.: 1969, Speaking of objects,Ontological Relativity and Other Essays, Columbia University
Press, New York.

Reynolds, J. C.: 1998,Theories of Programming Languages, Cambridge University Press.

Rumbaugh, J., Jacobson, I. and Booch, G.: 1999,The Unified Modeling Language Reference Manual, Addison-
Wesley.

Russell, B.: 1923, Vagueness,Australasian Journal of Philosophy and Psychology1, 84–92.

Shimojima, A.: 1996, Operational constraints in diagrammatic reasoning,in G. Allwein and J. Barwise (eds),
Logical Reasoning with Diagrams, Oxford University Press, pp. 27–48.

Sloman, A.: 1971, Interactions between philosophy and AI: The role of intuition and non-logical reasoning in
intelligence,Proceedings of the Second International Joint Conference on Artificial Intelligence.

Sober, E.: 1976, Mental representations,Synthese33, 101–148.

Stenning, K. and Lemon, O.: 2001, Aligning logical and psychological perspectives on diagrammatic reason-
ing, Thinking with Diagrams, Kluwer.

Veltman, M.: 1995, Diagrammatica: the Path to Feynman Rules, Vol. 4 ofCambridge Lecture Notes in Physics,
Cambridge University Press.

Wechler, W.: 1992,Universal Algebra for Computer Scientists, Springer-Verlag.

57

	Introduction
	Notation
	Attribute structures and systems
	Interpreting first-order languages into system states
	A family of diagrammatic natural deduction languages
	Abstract syntax
	Evaluation semantics

	Representing arbitrary graphs
	Another example: the Mergesort puzzle
	Guessing the input of Mergesort
	Formalizing the puzzle as an instance of VIVID
	Specifying the attribute structure
	Specifying the vocabulary
	Specifying the interpretation

	The formal proof

	Related Work
	Conclusions

