
Slicing the Onion: Anonymous Routing Without PKI

Sachin Katti Dina Katabi Katarzyna Puchala
skatti@mit.edu dk@mit.edu kpuchala@mit.edu

Abstract– Recent years have witnessed many proposals for anony-
mous routing in overlay peer-to-peer networks. The proposed protocols
either expose the receiver and the message content, or require the overlay
nodes to have public-private key pairs with the public keys known to ev-
eryone. In practice, however, key distribution and management are well-
known difficult problems and have crippled any widespread deployment
of anonymous routing. This paper uses a combination of information
slicing and source routing to provide anonymous communication in a
way similar to Onion Routing but without a public key infrastructure
(PKI).

1 INTRODUCTION

Anonymous routing plays a central role in private communi-
cation. Its applications range form file sharing to military com-
munication, and include anonymous email, private web brows-
ing and online voting. Traditionally, anonymous routing has re-
quired the help of a trusted third party, which either acts as a
centralized proxy [1, 3], or provides the sender with the public
keys of a list of willing relays [2, 9]. However, the recent suc-
cess of peer-to-peer systems has evoked interest in using them
as anonymizing networks. Indeed, the large number of nodes (a
few millions [16]) and the heterogeneity of their location, com-
munication patterns, political background and local jurisdiction
make these networks ideal environments for hiding anonymous
traffic. Many systems have been designed to exploit peer-to-peer
overlays in anonymous communication, including Tarzan [11],
AP3 [17], MorphMix [19] and Cashmere [22]. However, these
systems either expose the receiver and message content (Crowds
[18]), or require a trusted public key infrastructure (PKI) to dis-
tribute the public keys of each node in the peer-to-peer network.

But why is PKI problematic for peer-to-peer anonymizing
networks? The first issue is key distribution [4]. Prior work as-
sumes the sender knows a priori the public keys of all relay nodes,
but does not elaborate on how they are obtained [11, 17, 22].
Limiting an anonymous routing overlay to nodes that know each
others’ public keys via an out-of-band channel results in very
small overlays that cannot hide the identity of the communi-
cators. One may assume that a trusted third party generates all
keys and distributes them to the nodes, a constraint hard to sat-
isfy in a large peer-to-peer network, where the trust model may
differ from one node to another. Also, it opens up the system
to attacks on the key distribution procedure and compulsion at-
tacks1 that force the key originator to disclose the keys under
the threat of force or if required by a court order [13, 14]. Indeed,
some countries have provisions that allow them to legally request
the decryption of material or the handing over of cryptographic
keys [5, 10]. Additionally with time, an increasing fraction of the

1On the day of the paper submission deadline, August 1, a New York Times arti-
cle detailed compulsion attacks on various anonymous filesharing services [14]!

Figure 1—Node S sends a confidential message to X by splitting the infor-
mation content into multiple pieces, each follows a disjoint path to X. Only
X receives enough information bits to decode the original message.

keys can get stolen off the hard disk of compromised machines.
This necessitates the existence of key management and update
protocols, complicating the problem further. Finally, PKI makes
anonymousmulticast difficult as all recipients of a multicast mes-
sage have to share the same public private key pair.

This paper shows how to perform Onion Routing without
public key cryptography. Onion Routing [12] is at the heart of
most prior work on peer-to-peer anonymizing networks [9, 11,
17, 22]. It uses a form of source routing, in which the IP address
of each node along the path is encrypted with the public key of
its previous hop. This creates layers of encryption–layers of an
onion. To send a message, each node decrypts one layer, discov-
ers its next hop, and forwards the message. Thus each relay node
knows only its previous and next hops; it cannot tell the sender,
the receiver, the path, or the content of the message. Our scheme
provides similar anonymity but without PKI.

Our approach is based on the simple but powerful idea of In-
formation Slicing. To provide anonymous communication, each
node along the path, the destination included, needs a particular
piece of information,which should be hidden from other nodes in
the network. For example, the destination needs to learn the con-
tent of the message without revealing that content to other nodes,
while each intermediate relay needs to learn its next hop without
other nodes in the network knowing that information. We divide
the information needed by a particular node into many small ran-
dom pieces. These information pieces are then delivered along
disjoint paths that meet only at the intended node. Thus, only the
intended node has enough bits to decode the information content.
We call this approach information slicing because it splits the in-
formation traditionally contained in an onion peel (i.e., the ID of
the next hop) into multiple pieces/slices.

Anonymity via slicing is not as straightforward as it sounds.
To send a particular node the identity of its next hop along differ-
ent anonymous paths, one needs to anonymously tell each node
along these paths about its own next hop. Without careful design,
this may need an exponential number of paths. Our keyless onion
routing algorithm provides efficient information slicing using a
small constant number of paths.

Apart from being keyless, our approach has the following ad-
ditional advantages. It provides high degree of anonymity close
to Chaum [7] mixes. It is also computationally efficient and can

1

address network churn and node failures.

2 GOALS & MODEL

The objective of this work is to enable large and fully dis-
tributed peer-to-peer anonymizing networks. We focus on prag-
matic anonymity for non-military applications, such as file shar-
ing, private email and the communication of medical records.
These applications strive for privacy but can deal with low prob-
ability of information leakage.

We assume an adversary who can observe some fraction of
network traffic, operate relay nodes of his own, and can com-
promise some fraction of the relays. We do not protect against a
global attacker who can snoop on all links. Though such an ad-
versary is usually assumedwhen analyzing theoretical anonymity
designs, all practical low-latency anonymizing systems, ours in-
cluded, do not protect against such an adversary [9, 11, 17, 19,
22]. Also, similar to prior work [9, 11, 17, 22], we generate
enough cover traffic to prevent simple traffic analysis attacks.

We also assume the sender can send from multiple IP ad-
dresses, and a secure channel like ssh is available between them.
Many people have Internet access both at home and at work/school,
and thus, can send from different IP addresses. Alternatively, the
sender may have both DSL and cable connectivity. Or, he may
belong to a multi-homed organization. For example, each of the
authors has Internet access at home, as well as at school and
on Planetlab machines. We believe that a large number of Inter-
net users can send from multiple accounts with different IP ad-
dresses. An attacker may try to correlate IP addresses belonging
to the same sender. However, in all of the examples above the IP
addresses used belong to different domains. Additionally, most
broadband providers and companies utilize NAT, preventing the
association of an IP address with a particular user.

Last, we assume either the sender knows the receiver’s key,
or the attacker cannot snoop on all links leading to the receiver.

3 EXAMPLE OF ANONYMOUS ROUTING WITH IN-
FORMATION SLICING

We start with an example, while leaving the details of our
routing protocol to §4. In onion routing, a node learns its next hop
from its parent. Though the parent delivers this information to its
child, it cannot access it because the information is encrypted
with the child’s public key. In the absence of keys, the path can-
not be included in the message as that allows any intermediate
node to learn the whole path from itself to the receiver. We need
an alternative method to tell a node about its next hop without
revealing it to other nodes, particularly the parent node.

How to preserve anonymity without a PKI? Fig. 2 shows an
example keyless anonymous routing graph. Assume the sender
has access to two IP addresses S and S′. To send an anonymous
message to node R, the sender, in Fig. 2, has picked a few relay
nodes at random. It has arranged them, with the receiver, into 3
stages (path length L = 3), each containing 2 nodes (split factor
d = 2). The 0’th stage is the source stage itself. Each node in this
graph is connected to every node in its successive stage. Also,
note that the receiver node (the solid node labeled R) is randomly
assigned to one of the stages in the graph.

The sender in Fig. 2 wants to send each relay the IP address of

Figure 2—An example of anonymous routing with information slicing.
Nodes S and S′ are controlled by the sender. A message like {Zl, Rl} refers to
the low-order words of the IDs of nodes Z and R, rand refers to random bits.

its next hop by splitting this information over 2 paths. The sender
could have split each IP address to its most significant and least
significant words. This however is undesirable as most significant
word may indicate the owner of the IP prefix. Instead the sender
transforms the IP addresses of the relay nodes by multiplying
each address by an invertible matrix A of size d×d. For example,
assumeVl and Vh are the the low and high words of the IP address
of node V; the sender splits the IP address as follows:(

VL
VH

)
= A

(
Vl
Vh

)
(1)

and sends VL and VH to V’s parents along two different paths.
Fig. 2 shows how messages are forwarded such that each

node knows no more than its direct parents and children. Con-
sider an intermediate node in the graph, say V . It receives the
message {ZH ,RH}{XH, YH}{randH} from its first parent S. It re-
ceives {ZL,RL} from its second parent S′. After receiving both
messages, V can discover its children’s IP addresses as follows:(

Zl Rl
Zh Rh

)
= A−1

(
ZL RL
ZH RH

)
(2)

But V cannot tell the children of its children (i.e., the children of
nodes Z and R) because it misses half the bits in these addresses,
nor does it know the rest of the graph. The same argument applies
to other nodes in the graph.

You might be wondering how the graph in Fig. 2 will be used
to send the actual message to node R. Indeed, as it is, R does not
even know it is the intended receiver. But this is easy to fix. In ad-
dition to sending each node its next hop IPs, we send it: (1) a key
and (2) a flag indicating whether it is the receiver. Similar to the
next hop, the key and the flag are also split along disjoint paths,
and thus inaccessible to other nodes. All keys are useless/invalid
except for the receiver’s key (the key at node R). Now every node
along the path knows its next hops. Further, the receiver shares a
secret key with the sender. The sender encrypts its message with
the receiver’s key, splits the message as before and sends it on the
forwarding graph. All relay nodes can see the encrypted message
but only the receiver will be able to decrypt it.

4 AN INFORMATION SLICING PROTOCOL

We use the intuition from the previous section to construct an
anonymous routing protocol based on information slicing.

(a) Per-Node Information: Let x be one of the nodes in the for-
warding graph. Ix is the information the sender needs to anony-
mously deliver to node x. Ix consists of the following fields:

• Nexthop IPs. The IP addresses of the d children of node x.

2

IP Header Slice 1 Slice i Slice L

(Cleartext)

 (Cleartext)
Transformation Vector

Flow ID

Ai Ai.�I′xEncoded block I∗xi =

Figure 3—Packet Format. Each packet contains L information slices.

(I∗Z1, I
∗
Y1)

(I∗R1, I
∗
Y2)

(I ∗
R2 , I ∗

X2)

(I
∗
Z2
, I
∗
X1

)

(I ∗
Y1)

(I
∗
X2

)

(I∗X1)

(I∗Y2)

(I∗Y1, I
∗
Y2)

W

V

Y

Z

R

X

(I∗V1, I
∗
V2, I

∗
Z1, I

∗
R2, I

∗
X2, I

∗
Y1)

(I∗W1, I
∗
W2, I

∗
Z2, I

∗
R1, I

∗
X1, I

∗
Y2)

(I∗Z1, I
∗
Z2, I

∗
X1, I

∗
Y1) (I∗X1, I

∗
X2)

(I∗R1, I
∗
R2, I

∗
X2, I

∗
Y2)

(I∗V1, I
∗
Z1, I

∗
X2)

S

S
′

(I ∗
W

1 , I ∗
Z2 , I ∗

Y2)

(I
∗
V2

, I
∗
R2

, I
∗
Y1

)

(I∗W2, I
∗
R1, I

∗
X1)

(I∗V1, I
∗
Z1, I

∗
X2, I

∗
W1, I

∗
Z2, I

∗
Y2)

(I∗W2, I
∗
R1, I

∗
X1, I

∗
V2, I

∗
R2, I

∗
Y1)

Figure 4—An example showing how to split information slices along disjoint
paths. R is the receiver, S and S’ are the senders.

• Nexthop flow-ids. These are d 64-bit ids whose values are
picked randomly by the sender and are to be put in the clear
in the packets going to the corresponding d next-hops. The
sender ensures that different nodes sending to the same next
hop put the same flow-id in the clear. This allows the next-
hop to determine which packets belong to the same flow. The
flow-id changes from one relay to another to prevent the at-
tacker from detecting the path by matching flow-ids.

• Receiver Flag. This flag indicates whether the node is the in-
tended receiver.

• Secret Key. The sender sends each node along the path a se-
cret key which can be used to encrypt any further messages
intended to this node. If the receiver flag is set, the source will
encrypt the data intended for the receiver using this key.

(b) Creating Information slices: The node information Ix is
chopped into d blocks of |Ix|

d bits each and a d length vector �I′x
is constructed. Further, �I′x is transformed into coded information
slices using a full rank d × d random matrix A as follows2

�I∗x =

⎛
⎜⎝

AT1
...
ATd

⎞
⎟⎠ �I′x = A�I′x (3)

We call the elements in �I∗x information slices. We also add to
information slice I∗xi the row of the matrix A which created it i.e.
Ai. The sender delivers the d slices to node x along disjoint paths.

(c) Packet Format Fig. 3 shows the format of a packet used in
our system. In addition to the IP header, a packet has a flow id,
which allows the node to identify packets from the same flow and
decode them together. The packet also contains L slices. The first
slice is always for this node (i.e., the receiver of the slice). The
other slices are for nodes downstream on the forwarding graph.

(d) Constructing the Forwarding Graph: The sender constructs
a forwarding graph which routes the information slices to the re-
spective nodes along vertex disjoint paths, as explained in Al-
gorithm 1. We demonstrate the algorithm by constructing such
a graph in Fig. 4, where L = 3 and d = 2. We start with the
2Elements of �I′x and A belong to a finite field Fpq where p is a prime number and
q is a positive integer. All operations are therefore defined in this field and differ
from conventional arithmetic.

Algorithm 1 Information Slicing Algorithm
Pick Ld nodes randomly including the destination
Randomly organize the Ld nodes into L stages of d nodes each
for Stage l = L to l = 0 do

for Node x in stage l do
Assign to node x its own slices I∗xk , k ∈ (1, . . . , d).
for Stages m = l− 1 to m = 1 do
Distribute slices I∗xk, k ∈ (1, . . . , d) uniformly among the d nodes in
stage m, assigning one slice per node

end for
end for
Connect every node in stage l−1 to every node in stage l by a directed edge
going towards l
for every edge e do
Assign the slices which are present at both the nodes at the endpoints of
the edge e to the packet to be transmitted on e.

end for
end for

2 nodes in the last stage, X and Y. The sender assigns both the
slices, I∗X1, I

∗
X2 to X. Then it goes through the preceding stages,

one by one, and distributes (I∗X1, I
∗
X2) among the 2 nodes at each

stage; each node receives one of the slices. The path taken by
slice I∗X1 to reach X can be constructed by tracing it through the
graph. Slice I∗X1 traverses (S

′,W, Z,X), which is disjoint from the
path taken by I∗X2, i.e., (S,V ,R,X). The source repeats the process
for the slices of Y and every other node in every stage.

Slices are delivered in packets transmitted between nodes in
successive stages. The slices a node sends to its downstream
neighbor are the intersection of the sets of slices assigned to both
nodes by Algorithm 1. E.g., for edge (V ,R), the slices (I∗R2, I

∗
X2)

are present at both nodes V and R. These slices are contained in
the packet transmitted from node V to node R. The source de-
termines the packet contents for every edge in the graph. The
algorithm thus ensures that slices belonging to a node take vertex
disjoint paths to the node.

(e) Decoding the Information slices: A node can decode its in-
formation from the d slices it receives from its parents. The first
slice in every packet x receives is for itself. It consists of one of
d-slices of x’s information, I∗xi, and the row of the transform ma-
trix that helped create it, Ai. Node x constructs the d × 1 vector
�I∗x from the d slices it receives, and assembles a d × d matrix
A = [A1 . . .Ad]

T from the d transform rows in the slices. It then
computes �I′x by inverting the matrix A i.e. �I′x = A−1�I∗x . The node
can recover its information from �I′x by concatenating the elements
of the vector.

(e) Data Transmission: After the forwarding graph has been
setup, the source first encrypts the data it wants to send to the
receiver with the secret key it has assigned to it. Then it splits
the message into d fragments, which it sends down the forward-
ing graph, as before. Since no other node knows the key used to
encrypt the message, only the receiver can decrypt the data.3

5 ROBUSTNESS TO CHURN AND TRAFFIC ANALYSIS

(a) Resilience to Bitwise Linkability: Bitwise unlinkability en-
sures that input and output messages ’look’ different. Thus, an
attacker cannot identify a connection by matching the bits of the
3Alternatively, once the forwarding graph has been set up and every node has its
key, the source could use plain onion routing to transmit its messages.

3

Var Definition

d Split factor, i.e., the number of fragments a message is split to.
L Path length, i.e., the number of relays stages along a path.
N Number of nodes in the peer-to-peer network excluding the

source stage.
f Fraction of subverted nodes in the anonymizing network.
s the maximum number of successive stages in the forwarding

graph, whose nodes are known to the attacker.
S The set of nodes in the s stages.

Table 1—Variables used in the paper.

incoming and outgoing packets at a node. We achieve this by
making each relay node x multiply each information slice it re-
ceives with a random number px of its choice. In [15] we prove4

that:

LEMMA 5.1. Though each relay multiplies the information
slices it receives with a random number of its choice, a node
along the path can still recover its information without knowing
the random multipliers used by its upstream parents.

(b) Maintaining Constant Packet Size: Fig. 4 shows a clear
deficiency: The number of slices in a packet decreases along suc-
cessive relays, allowing the attacker to analyze the position of
a relay on the graph by observing the packet size. To prevent
this attack, we fix the number of slices in a packet to L. Unused
slice slots are padded with random bits. Furthermore, except for
the first slice in the packet, which contains information intended
for the relay node itself, the source node is free to shuffle the ar-
rangement of slices in the packets transmitted to the next hops. To
do so, the source anonymously tells each relay how to place the
slices in the outgoing packet and where to add random padding.
The source includes a bitmap, the splitting vector for every out-
going packet. The vector specifies which incoming information
slice should be placed in which slot of the outgoing packet. One
slot in each outgoing packet is kept free for random padding. The
splitting vectors are part of the per-node information and can only
be recovered by the relay node itself. The source picks a shuffling
which ensures that the first slice contains information for the re-
cipient of the packet but is free in rearranging other slices.

(c) Resilience to Churn and Failures: Instead of slicing the per-
node information into d independent pieces which are all neces-
sary for decoding, we use d′ > d dependent slices. Replace Eq. 3
with:

�I∗x = A′�I′x (4)

where A′ is a d′ × d matrix with the property that any d rows of
A

′
are linearly independent. The source picks d′ disjoint paths to

send the message. The intended node can recover its information
from any d out of d′ slices that it successfully receives. Hence we
can tolerate d

′ − d node failures at each stage.

6 SECURITY ANALYSIS

Instead of standard key-based encryption, our scheme uses
information slicing. To understand the security obtainedwith such
encryption, we estimate the amount of information a malicious
node can glean from the messages it receives. We borrow the fol-
lowing definition from [6, 21].
4Due to space constraints the proofs of Lemmas 5.1 and 6.1 can be found in our
technical report [15] at http://nms.lcs.mit.edu/∼sachin/slicing.html

Definition A function f is packet independent (pi)-secure if for
all v and a uniformly distributedmessage block�x = [x1, x2, . . . , xn]
Pr(xi = v) = Pr(xi = v|f (�x)).
LEMMA 6.1. Our information slicing algorithm is pi-secure.

The proof4 is in [15]. In our case f (�x) represents any set of atmost
(d−1) coded information slices. A pi-secure information slicing
algorithm implies that to decrypt a message, an attacker needs to
obtain all d information slices; partial information is equivalent
to no information at all.

7 ANONYMITY ANALYSIS

We would like to understand the degree of source and des-
tination anonymity provided by our scheme and its dependence
on parameters like L, d, and fraction of subverted nodes in the
network, f . To simplify the analysis, we assume that L is con-
stant and known to the attacker. We also assume the source picks
the relays randomly from the set of all nodes in the network, and
every node appears only once in the anonymity graph. These as-
sumptions degrade anonymity, making the results lower bounds.
We evaluate the anonymity using a combination of analysis and
simulation. We use 1000 different random assignments of mali-
cious nodes to estimate s = g(L, d,N, f), the maximum number
of consecutive relay stages known to the attacker (the attacker
knows the IPs of the nodes in these stages). Given a value of s,
we have closed-form solutions for the anonymity of the source
and destination, as explained in §7.2 and §7.3.
7.1 Anonymity Metric

We define the anonymity of a system as the amount of infor-
mation the attacker is missing to uniquely identify an actor’s link
to an action—e.g., uniquely identify the sender or the destination
of a message. The anonymity of a system is typically measured
by its entropy [20, 8],5 and is usually expressed in comparison
with the maximum anonymity possible by such a system, i.e.:

Anonymity =
H(x)
Hmax

=
∑

x−P(x)log(P(x))
log(N)

, (5)

where N is the total number of nodes in the network and P(x)
is the probability of a node being the source/destination, and
Hmax = log(N) is the maximum entropy which occurs when the
attacker has no information. For example, the source is perfectly
anonymous when it is equally likely to be any node in the net-
work, in which case P(x) = 1

N and the Anonymity = H(x)
Hmax

= 1.

7.2 Source Anonymity

Source anonymity depends on the probability of attackers
identifying the nodes in stage 0 (i.e. the sender stage) since they
know it is controlled by the source. We distinguish two cases:
Case 1: All nodes in stage 1 are malicious. In this case, the at-
tacker can decode the entire graph, discover she controls the first
stage, and thus the previous stage has to be the source stage. The
probability of Case 1 occurring is very low, P(Case1) = f d, but
the anonymity of the source is 0.
5The entropy of a random variable x is H(x) = −P

x P(x)log(P(x), where P(x)
is the probability function.

4

Case 2: Some nodes in stage 1 are not malicious. Although the
attacker cannot decode the entire graph, she still knows about
many nodes in the graph. Since flow-ids change every hop, mali-
cious nodes can collude only when they are in successive stages
in the graph; otherwise they would not knowwhether they belong
to the same forwarding graph. Assume s is the largest number of
successive stages known to the attacker. The attacker’s best guess
is to consider the nodes in the first stage in the chain s to be the
source stage. The first stage necessarily has no malicious nodes,
since if it did the previous stage would be known to the attackers
and s would not be the longest chain. Let Γ be the set of nodes
in the first stage in the chain s. The probability the first stage the
attacker knows about is stage 0 is 1

L−s .
6 Thus, if x ∈ Γ, then

P(x = src) = 1
L−s . The rest of the probability is divided equally

between non-malicious nodes /∈ Γ. The number of such nodes is
N(1 − f) − |Γ|. Thus, the probability a node x is the source:

P(x = src) =

{
1

(L−s) x ∈ Γ
(1− 1

L−s)
1

N(1−f)−|Γ| otherwise
(6)

The length of the chain s is estimated via simulation. Anonymity
can then be easily computed using Eq. 5.

7.3 Destination Anonymity

Destination anonymity depends on the probability the attacker
assigns to each node being the destination. In contrast to the
source, the destination can be at any stage i > 0. Again, we dis-
tinguish two cases:
Case 1: All the nodes in some stage i upstream of the destination
are attackers. The attacker can decode the downstream graph and
discover the intended destination. Assume the destination is in
stage j+ 1. Then the probability that an entire stage before stage
j + 1 consists of attacker nodes is given by

(j
1

)
f d. Since the des-

tination could be in any stage with equal probability 1/L, the
overall probability is given by

P(Case1) =
1
L

∑
1≤j≤(L−1)

(
j
1

)
f d = (

L− 1
2

)f d. (7)

The probability of Case 1 occurring is low, but when it occurs,
the anonymity is 0.
Case 2: When the attacker cannot decode the part of the graph
containing the destination, she can still try to infer the destina-
tion from among the nodes it knows to be on the graph. Let
s be the largest number of consecutive stages whose nodes are
known to the attacker. Call the set of nodes in these s stages S.
There are sd nodes in S, among which sd(1 − f) nodes are non-
malicious. Since the destination can be in any stage in the graph,
the probability it is in S is s

L . Each non-malicious node x ∈ S is
equally likely to be the destination, P(x = dst) = s

L
1

sd(1−f) =
1

Ld(1−f) . The remaining probability is divided equally among the
(N − sd)(1 − f) non-malicious nodes outside S. Thus:

P(x = dst) =

{
1

Ld(1−f) x ∈ S

(1− s
L)

1
(N−sd)(1−f) x /∈ S

(8)

GivenP(x = dst), destination anonymity is computed using Eq. 5.
6Note that the total number of stages including the source stage is L+1. The
attacker knows s stages, out of which the last s− 1 cannot be the source stage.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1

A
no

ny
m

ity

Fraction of attackers

Source Anonymity
Dest. Anonymity

Source Anonymity (Chaum)
Dest. Anonymity (Chaum)

Figure 5—Source and destination anonymity as functions of the fraction of
malicious nodes in the network (N = 10000, L = 8, d = 3).

7.4 Simulations

We complement the analysis in §7.2 and §7.3 with simulation.
The analysis is for a particular s, but s will change depending on
the assignment of malicious nodes and the parameters of the sys-
tem. We use a large number of simulations to discover the dis-
tribution of s. In each simulation, we randomly pick Nf nodes to
be controlled by the attacker. Then we pick Ld nodes randomly
and arrange them into L stages of d nodes each. We randomly
pick the destination out of the nodes on the graph. We then iden-
tify the malicious nodes in the graph and analyze the part of the
graph known to attacker, as follows. First, we check if we are in
Case 1, which results in zero anonymity. If we are not in Case
1, we compute the probabilities of each node being the source
or the destination according to Eqs. 6 and 8.7 Given, this proba-
bility we compute the anonymity using Eq. 5. The procedure is
repeated 1000 times and the average anonymity is plotted. We
explore how anonymity changes with the various parameters.

(a) Fraction of Malicious Nodes: Fig. 5 plots the anonymity
of the source and destination as functions of the fraction of at-
tackers in the graph, for the case of N = 10000, L = 8, d = 3.
The anonymity is very high when less than 20% of the nodes in
the network are malicious. As the fraction of malicious nodes in-
creases beyond 50%, the anonymity falls. Destination anonymity
drops faster with increased f because discovering the destina-
tion requires the attacker to control any stage upstream of the
destinations, while discovering the source requires the attacker
to control stage 1, in particular. The figure also compares the
anonymity in the information slicing scheme with that in Chaum
Mixes [7], showing that despite the lack of PKI, the anonymity in
our scheme is close to that in Chaum Mixes and similar to other
practical peer to peer anonymizing systems [22].

(b) Splitting Factor:Fig. 6 plots source and destination anonymity
as functions of the splitting factor. When f is low information
leakage is primarily due to the malicious nodes knowing their
neighbors on the graph, i.e., Case 2. In this case, increasing d in-
creases the exposure of non-malicious nodes to attackers which
results in a slight loss of anonymity. When f is high, information
leakage is mainly due to attackers being able to compromise en-
tire stages, i.e., Case 1. Hence, increasing d increases anonymity.
Note that anonymity of 0.5 implies that attackers are missing half
the information needed to decode the graph. Given that the size
of the message used to describe the graph is large, attackers will
7Equations 6 and 8 assume the number of malicious nodes in S is equal to its
expectation. In this section, we compute Anonymity by using the actual num-
ber of malicious nodes in S, in each simulation, and then averaging over 1000
simulations.

5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12

A
no

ny
m

ity

Split components

Src Anon f=0.1
Dst Anon f=0.1
Src Anon f=0.4
Dst Anon f=0.4

Figure 6—Source and destination anonymity as functions of the splitting fac-
tor (N = 10000, L = 8). For small f , increasing d decreases anonymity be-
cause it exposes more nodes to the attacker. For large f , the probability that
attackers control an entire stage dominates (i.e., Case 1), hence increasing d
increases anonymity. Anonymity of 0.5 is still quite high since the attackers
are missing half the information necessary to decode the graph.

 0.84
 0.85
 0.86
 0.87
 0.88
 0.89

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95

 2 4 6 8 10 12 14 16 18 20

A
no

ny
m

ity

No. of stages

Source Anonymity
Dest. Anonymity

Figure 7—The anonymity of the source and destination increases with the
path length (N = 10000, d = 3, f = 0.1).

Route Length
& Split factor

Setup Latency (ms) Standard Deviation (ms)

L=1, D=2 11.59 1.88
L=2, D=2 39.05 4.20
L=3, D=2 61.14 9.33
L=4, D=2 89.86 7.56
L=5, D=2 109.12 11.09

Table 2—Setup latency in milliseconds and its variance for the construction
of multi-hop routes through pre-defined relays.

not have enough information when anonymity is 0.5.

(c) Path Length: Fig. 7 plots source and destination anonymity
as functions of the path length L. Both source and destination
anonymities increase with L. The attacker knows the source and
destination have to be on the graph; putting more nodes on the
graph allows the communicators to hide among a larger crowd.

8 PERFORMANCE

We have implemented our scheme in Python, and performed
preliminary tests on a 100Mbps switched networkwith the tested
relay daemons running on 2.8 GHz Pentium boxes with 1 GB of
RAM and a Linux 2.6.11 kernel. Table 2 shows route setup la-
tency for different path lengths and split factor of 2. Setup latency
is measured end-to-end from when the sender initiates route es-
tablishment, connects to the stage-1 relay processes, which pro-
cess the next hop computation, store the forwarding information,
and connect to their next hop relays, which repeat the procedure
until all routing messages reach the receiver. On average, we in-
cur a setup cost of 19 ms per hop. This figure suggests that the la-
tency of the underlying network will dominate even during route
setup. The table shows that the route setup latency incurred by
our scheme is comparable to other anonymous routing protocols
such as Tarzan [11], and is low enough to make it practical.

9 CONCLUSION

We have shown it is possible to design anonymizing peer-to-
peer overlays that do not need a public key infrastructure (PKI).
Our information slicing protocol can hide the source, the desti-
nation, the path, and the content of the message, even when the
sender does not have the public keys of the nodes in the overlay.
We believe this is an important step towards truly peer-to-peer
anonymous communications; it obviates the need for a universal
trusted PKI and avoids the difficulties of large scale key distribu-
tion in a global peer-to-peer network.

REFERENCES

[1] Anonymizer- Anonymous Web Surfing.
http://www.anonymizer.com.

[2] MixMinion- Anonymous Remailer. http://www.mixminion.net.
[3] Safeweb- Anonymous Web Surfing. http://www.safeweb.com.
[4] M. Bellare and P. Rogaway. Entity authentication and key

distribution. In CRYPTO ’93.
[5] Bob Sullivan. FBI software cracks encryption wall.

www.msnbc.com/news/660096.asp?cp1=1.
[6] J. Byers, M. C. Cheng, J. Considine, G. Itkis, and A. Yeung.

Securing Bulk Content Almost for Free. Journal of Computer
Communications, Special Issue on Network Security.

[7] D. L. Chaum. Untraceable Electronic Mail, Return Addresses and
Digital Pseudonyms. Commun. ACM 21, 2(1981).

[8] C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards measuring
anonymity. In Proceedings of PET 2002.

[9] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In USENIX Security 2004.

[10] Foundation for Information Policy Research. Regulation of
Investigatory Powers Information Centre. www.fipr.org/rip/.

[11] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of ACM CCS 2002.

[12] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding
Routing Information. In Proceedings of Information Hiding: First
International Workshop, 1996.

[13] Johan Helsingius. anon.penet.fi is closed! www.penet.fi.
[14] John Markoff. New File-Sharing Techniques Are Likely to Test

Court Decision. The New York Times, Aug 1.
[15] S. Katti, D. Katabi, and K. Puchala. Slicing the Onion:

Anonymous Routing Without PKI. MIT CSAIL Technical
Report, http://nms.lcs.mit.edu/ sachin/slicing.html.

[16] Kazaa. http://www.kazaa.com/.
[17] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and

D. Wallach. Ap3: A cooperative, decentralized service providing
anonymous communication. In Proceedings of the 11th ACM
SIGOPS European Workshop, September 2004.

[18] M. Reiter and A. Rubin. Crowds: Anonymity for web
transactions. ACM Transactions on Information and System
Security, 1(1), June 1998.

[19] M. Rennhard and B. Plattner. Introducing MorphMix:
Peer-to-Peer based Anonymous Internet Usage with Collusion
Detection. In WPES 2002, Washington, DC, USA.

[20] A. Serjantov and G. Danezis. Towards an information theoretic
metric for anonymity. In PET 2002.

[21] D. Stinson. Something About All Or Nothing Transforms. In
Designs, Codes and Cryptography, 2001.

[22] L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron. Cashmere:
Resilient anonymous routing. In NSDI 2005.

6

APPENDIX
Proof of Lemma 5.1: Let the transformed information slices received at
x be (p1I∗x1, . . . , pdI

∗
xd)where pi represents the cumulative product of ran-

dom numbers with which I∗xi was multiplied along the path. The corre-
sponding transformation code vector Ai is also multiplied with the same
number pi. Hence node x receives the following slices

0
B@

p1I∗x1
...

pdI∗xd

1
CA =

0
B@

p1A1
...

pdAd

1
CA �I′x (9)

Multiplying both sides of the original equation with the same invertible
diagonal matrix

0
BBBB@

p1 0 0 . . .

0
. . . 0 . . .

0 0
. . . 0

0 . . . 0 pd

1
CCCCA

0
B@

I∗x1
...
I∗xd

1
CA =

0
BBBB@

p1 0 0 . . .

0
. . . 0 . . .

0 0
. . . 0

0 . . . 0 pd

1
CCCCA

0
B@

A1
...
Ad

1
CA �I′x

(10)
reduces the original transformation to Eq. 9. Thus both the transforma-
tions are equivalent and have the same solution. Since the original trans-
formation A is invertible and �I′x can be recovered from that, the new
transformed slices are equivalent which means that �I′x can be recovered
by x from the received slices.

A PROOF OF LEMMA 6.1
Proof: Let�x = [x1, x2, . . . , xn] be the original message. The m mes-

sages received at node i can be written as A�x = �b where A is a m × n
matrix, �b is a m length vector and m < n. Pick (m − n) components of
�x and set them to arbitrary values �v and set the rest of the components

of �x to 0. Let this vector be �x′ . Compute �b′ = �b − A�x′ . Eliminate the
columns in A corresponding to the components of �x which were set to
arbitrary values. Let the resulting matrix be A

′
. A

′
is a m × m matrix

of full rank since the messages received at the node are all independent
of each other. Hence the matrix A

′
is invertible and therefore a unique

solution to the equation A
′ �x′ = �b′ exists. Hence for any arbitrary values

�v of the (m − n) components picked out from �x we can find a solution
satisfying the constraints at each node. Since the components and their
values were picked arbitrarily, knowledge of A doesnt add any informa-
tion to the likely values of �x. Therefore Pr(xi = v) = Pr(xi = v|f (�x))
which proves that our information slicing algorithm is pi-secure.

7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

