
Self-Stabilizing Mobile Node Location Management

and Message Routing

Shlomi Dolev∗ Limor Lahiani∗ Nancy Lynch† Tina Nolte†

August 11, 2005

Abstract

We present simple algorithms for achieving self-stabilizing location management and routing in mobile
ad-hoc networks. While mobile clients may be susceptible to corruption and stopping failures, mobile
networks are often deployed with a reliable GPS oracle, supplying frequent updates of accurate real time
and location information to mobile nodes. Information from a GPS oracle provides an external, shared
source of consistency for mobile nodes, allowing them to label and timestamp messages, and hence aiding
in identification of, and eventual recovery from, corruption and failures. Our algorithms use a GPS oracle.

Our algorithms also take advantage of the Virtual Stationary Automata programming abstraction,
consisting of mobile clients, virtual timed machines called virtual stationary automata (VSAs), and a
local broadcast service connecting VSAs and mobile clients. VSAs are distributed at known locations
over the plane, and emulated in a self-stabilizing manner by the mobile nodes in the system. They serve
as fault-tolerant building blocks that can interact with mobile clients and each other, and can simplify
implementations of services in mobile networks.

We implement three self-stabilizing, fault-tolerant services, each built on the prior services: (1) VSA-
to-VSA geographic routing, (2) mobile client location management, and (3) mobile client end-to-end
routing. We use a greedy version of the classical depth-first search algorithm to route messages between
VSAs in different regions. The mobile client location management service is based on home locations:
Each client identifier hashes to a set of home locations, regions whose VSAs are periodically updated with
the client’s location. VSAs maintain this information and answer queries for client locations. Finally, the
VSA-to-VSA routing and location management services are used to implement mobile client end-to-end
routing.

Keywords: virtual infrastructure, location management, home locations, end-to-end routing, hash func-
tions, self-stabilization, GPS oracle

∗Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. Partially supported by
IBM faculty award, NSF grant and the Israeli ministry of defense. Email: {dolev, lahiani}@cs.bgu.ac.il.

†MIT Computer Science and Artificial Intelligence Laboratory, The Stata Center 32-G670, Cambridge, MA 02139, USA.
Supported by DARPA contract F33615-01-C-1896, NSF ITR contract CCR-0121277, and USAF, AFRL contract FA9550-04-1-
0121. Email: {lynch, tnolte}@theory.csail.mit.edu.

1 Introduction

A system with no fixed infrastructure in which mobile clients may wander in the plane and assist each
other in forwarding messages is called an ad-hoc network. The task of designing algorithms for constantly
changing networks is difficult. Highly dynamic networks, however, are becoming increasingly prevalent,
especially in the context of pervasive and ubiquitous computing, and it is therefore important to develop
and use techniques that simplify this task. In addition, mobile nodes in these networks may suffer from
crash failures or corruption faults, which cause arbitrary changes to their program states. Self-stabilization
[4, 5] is the ability to recover from an arbitrarily corrupt state. This property is important in long-lived,
chaotic systems where certain events can result in unpredictable faults. For example, transient interference
may disrupt wireless communication, violating our assumptions about the broadcast medium.

Mobile networks are often deployed in conjunction with “reliable” GPS services, supplying frequent
updates of real time and region information to mobile nodes. While the mobile clients may be susceptible to
corruption and stopping failures, the GPS service may not be. Each of our algorithms utilizes such a reliable
GPS oracle. Information from this oracle provides an external, shared source of consistency for mobile nodes,
allowing them to label and timestamp their messages, and hence, aiding in identification of, and recovery
from, corruption and stopping failures.

In this paper we describe self-stabilizing algorithms that use a reliable GPS oracle to provide geographic
routing, a mobile client location management service, and a mobile client end-to-end routing service. Each
service is built on the prior services such that the composition of the services remains self-stabilizing [11].
In order to route location information between geographic regions, we use a greedy version of the classical
depth-first search algorithm. This service is then used to help implement the location management service;
each mobile client identifier hashes to a set of home locations, geographical regions that are periodically
updated with the location of the client, and that are responsible for then answering queries about the
client’s location. Both of these services are then used to implement point-to-point routing between mobile
clients in the network.

In order to simplify the implementations of the location management and routing services, we mask the
unpredictable behavior of mobile nodes by using a self-stabilizing virtual infrastructure, consisting of mobile
client automata, timing-aware and location-aware machines at fixed locations, called Virtual Stationary
Automata (VSAs) [8, 9], that mobile clients can interact with and use to coordinate their actions, and a local
broadcast service connecting VSAs and mobile clients.
Self-stabilization and GPS oracles. Traditionally, studies of self-stabilizing systems are concerned with
those systems that can be started from arbitrary configurations and eventually regain consistency without
external help. However, mobile clients often have access to some reliable external information from a service
such as GPS. Each of our algorithms in this paper uses an external GPS service (or an equivalent service)
as a reliable GPS oracle, providing periodic real time clock and location updates, to base stabilization upon;
our algorithms use timestamps and location information to tag events. In an arbitrary state, recorded
events may have corrupted timestamps. Corrupted timestamps indicating future times can be identified
and reset to predefined values; new events receive newer timestamps than any in the arbitrary initial state.
This eventually allows nodes in the system to totally order events. We use the eventual total order to
provide consistency of information and distinguish between incarnations of activity (such as retransmissions
of messages).
Virtual Stationary Automata programming layer. In prior work [8, 7, 6], we developed a notion of
“virtual nodes” for mobile ad hoc networks. A virtual node is an abstract, relatively well-behaved active node
that is implemented using less well-behaved real physical nodes. The GeoQuorums algorithm [7] proposes
storing data at fixed locations; however it only supports atomic objects, rather than general automata.
A more general virtual mobile automaton is suggested in [6]. Finally, the virtual automata presented in
[8, 9] (and used here) are more powerful than those of [6], providing timing capabilities needed for many
applications. These automata are stationary and arranged in a connected pattern similar to that of a
traditional wired network.

The static infrastructure we use in this paper includes fixed, timed virtual machines with an explicit notion
of real time, called Virtual Stationary Automata (VSAs), distributed at known locations over the plane [8, 9].
Each VSA represents a predetermined geographic area and has broadcast capabilities similar to those of the

2

mobile physical nodes, allowing nearby VSAs and mobile nodes to communicate with one another. Many
algorithms depend significantly on timing, and it is reasonable to assume that many mobile nodes have access
to reasonably synchronized clocks. In the VSA layer, VSAs also have access to virtual clocks, guaranteed
to not drift too far from real time. The layer provides mobile nodes with a fixed virtual infrastructure,
reminiscent of more traditional and better understood wired networks, with which to coordinate their actions.

Our clock-enabled VSA layer is emulated by physical mobile nodes in the network. Each physical node is
periodically informed its region by the GPS. A VSA for a particular region is then emulated by a subset of
the mobile nodes in its region: the VSA state is maintained in the memory of the physical nodes emulating
it, and the physical nodes perform VSA actions on behalf of the VSA. If no physical nodes are in the region,
the VSA fails; if physical nodes later arrive, the VSA restarts.

An important property of the VSA layer implementation described in [8, 9] is that it is self-stabilizing.
Corruption failures at physical nodes can result in inconsistency in the emulation of a VSA. Our implemen-
tation, however, can recover after corruptions to correctly emulate a VSA. To algorithms run on the VSA
layer, the VSA simply appears to suffer from a corruption.
Geographic/ VSA-to-VSA routing. A basic service running on the VSA layer that we describe and
use repeatedly is that of VSA-to-VSA (region-to-region) routing (VtoVComm), providing a form of geocast.
GeoCast algorithms [24, 3], GOAFR [19], and algorithms for “routing on a curve” [23] route messages
based on the location of the source and destination, using geography to delivery messages efficiently. GPSR
[17], AFR [20], GOAFR+ [19], polygonal broadcast [10], and the asymptotically optimal algorithm [20]
are algorithms based on greedy geographic routing algorithms, forwarding messages to the neighbor that is
geographically closest to the destination. The algorithms also address “local minimum situations”, where the
greedy decision cannot be made. GPSR, GOAFR+, and AFR achieve, under reasonable network behavior, a
linear order expected cost in the distance between the sender and the receiver. We implement VSA-to-VSA
routing using a persistent greedy depth-first search (DFS) routing algorithm that runs on top of the VSA
layer’s fixed infrastructure. Our scheme is an application of the classical DFS algorithm in a new setting.
Location management. Finding the location of a moving client in an ad-hoc network is difficult, much
more so than in cellular mobile networks where a fixed infrastructure of wired support stations exist (as in
[16]), or in sensor networks where some approximation of a fixed infrastructure may exist [2]. A location
service in ad-hoc networks is a service that allows any client to discover the location of any other client
using only its identifier. The basic paradigm for location services that we use here is that of a home location
service: Hosts called home location servers are responsible for storing and maintaining the location of other
hosts in the network [1, 14, 21]. Several ways to determine the sets of home location servers, both in the
cellular and entirely ad-hoc settings, have been suggested.

The locality aware location service (LLS) in [1] for ad-hoc networks is based on a hierarchy of lattice
points for destination nodes, published with locations of associated nodes. Lattice points can be queried
for the desired location, with a query traversing a spiral path of lattice nodes increasingly distant from the
source until it reaches the destination. Another way of choosing location servers is based on quorums. A set
of hosts is chosen to be a write quorum for a mobile client and is updated with the client’s location. Another
set is chosen to be a read quorum and queried for the desired client location. Each write and read quorum
has a nonempty intersection, guaranteeing that if a read quorum is queried, the results will include the latest
location of the client written to a write quorum. In [14], a uniform quorum system is suggested, based on a
virtual backbone of quorum representatives. Geographic quorums based on the focal points abstraction are
suggested in [7].

Location servers can also be chosen using a hash table. Some papers [21, 15, 25] use geographic locations
as a repository for data. These use a hash to associate each piece of data with a region of the network and
store the data at certain nodes in the region. This data can then be used for routing or other applications.
The Grid location service (GLS) [21] maps client ids to geographic coordinates. A client Cp’s location is
saved by clients closest to the coordinates p hashes to.

The location managment scheme we present here is based on the hash table concept and built on top of
the VSA layer and VSA-to-VSA routing service. VSAs and mobile clients are programmed to form a self-
stabilizing, fault-tolerant distributed data structure for location management, where VSAs serve as home
locations for mobile clients. Each client’s id hashes to a VSA region, the client’s home location, whose VSA
is responsible for maintaining the location of the client. Whenever a client node Cp would like to locate

3

System constants:
R, a fixed closed connected region of the 2-D plane.
U , a finite set of ids for subregions of R.
m, the size of U .
region, a mapping from U to connected subsets of R.
nbrs, a symmetric relation between ids in U .
rvirt, the supremum distance between points in u

and v for any regions u, v where u ∈ nbrs(v).
P , a finite set of client node ids where P ∩ U = ∅.
vmax, the maximum client node speed.

εsample, the GPS sample period.
d, the broadcast message delay.
e, the delay factor for VSA outputs.
ttlV toV > d, the VtoVComm message delay.
tV SAcor, the VSA stabilization time.

System variables:
now ∈ R, a clock variable, representing real time.
loc, a continuously updated array of locations in R

of mobile nodes, indexed by node id.

Figure 1: System constants and variables.

another client node Cq, Cp would compute the home location of Cq by applying a predefined global hash
function to Cq’s id, and query the region represented by the result of that hash for Cq’s location. In order
for our scheme to tolerate crash failures of a limited number of VSAs, each mobile client id actually maps
to a set of VSA home locations; the hash function returns a sequence of region ids as the home locations.
We can use any hash function that provides a sequence of region identifiers; one possibility is a permutation
hash function, where permutations of region ids are lexicographically ordered and indexed by client id.
End-to-end routing. Another basic, but difficult to provide, service in mobile networks is end-to-end
routing. Our self-stabilizing implementation of a mobile client end-to-end communication service is simple,
given VSA-to-VSA routing and the home location service. A client sends a message to another client by
using the home location service to discover the destination client’s region and then has a local VSA forward
the message to the region using the VSA-to-VSA service.

Paper organization. The rest of the paper is organized as follows: The system model and the virtual
automata layer are described in the next section. In Section 3 we describe the problem specifications we
are interested in. Section 4 describes the VSA-to-VSA communication implementation. In Section 5 we
descibe the implementation of the home location service. In Section 6 we present the implementation of the
end-to-end routing service. Concluding remarks appear in Section 7.

2 Datatypes and system model

The system consists of a 2-D bounded region plane, where broadcast-enabled, GPS-updated mobile client
nodes are deployed. We assume the Virtual Stationary Automata programming abstraction [8], which in-
cludes both the mobile client nodes and virtual stationary automata (VSAs) the real nodes emulate, as well
as a local broadcast service, V-bcast, between them (see Figure 2). In this section we formally describe the
system, including: (1) the network tiling, (2) the model for the GPS-augmented mobile clients deployed in
the network, (3) the model for the virtual nodes deployed in the network, and (4) the specification for the
local broadcast service in the network. A summary table of datatypes, constants, and variables is in Figure
1.

2.1 Network tiling
The deployment space of the network is assumed to be a fixed, closed, and bounded connected region of
the 2-D plane called R. R is partitioned into known connected subregions called regions, with unique ids
drawn from the set of region identifiers U . In practice it may be convenient to restrict regions to be regular
polygons such as squares or hexagons. We define a neighbor relation nbrs on ids from U . This relation holds
for any two region identifiers u and v where the supremum distance between points in u and v is bounded
by a constant rvirt.

2.2 Client nodes
For each p in the set of physical node identifiers P , we assume a mobile timed I/O automaton client Cp,
whose location in R at any time is referred to as loc(p). Mobile client speed is bounded by a constant vmax.
Clients receive region and time information from the GPS oracle. A GPSupdate(u, now)p happens every
εsample time at each client Cp, indicating to the client the region u where it is currently located and the

4

current time now. Clients accept this now real-time clock variable as the value of their own local clock. For
simplicity, this local variable progresses at the rate of real time. This implies that, outside of failures, the
local value of now will equal real time.

Each client Cp is equipped with a local broadcast service V-bcast (see Section 2.4), allowing it to com-
municate with its and neighboring regions’ VSAs and clients with bcast(m)p and brcv(m)p.

Clients are susceptible to stopping and corruption failures. After a stopping failure, a client performs no
additional local steps until restarted. If restarted, it starts again from an initial state. If a node suffers from
a corruption, it experiences a nondeterministic change to its program state.

Additional arbitrary external interface actions and local state used by algorithms running at the client
are allowed. For simplicity local steps are assumed to take no time.

2.3 Virtual Stationary Automata (VSAs)
Here we describe VSAs; a self-stabilizing implementation of such machines using a GPS oracle and the
physical mobile nodes in the system can be found in [8, 9]. An abstract VSA is a timing-enabled virtual
machine that may be emulated by the physical mobile nodes in its region in the network. We formally
describe a timed machine for region u, Vu, as a TIOA whose program is a tuple of its action signature, sigu,
valid states, statesu, a start state function mapping clock values to start states, startu, a discrete transition
function, δu, and a set of valid trajectories, τu. Trajectories [18] describe state evolution over intervals of
time. The state of Vu is referred to collectively as vstate and is assumed to include a variable corresponding
to real time, vstate.now.

To guarantee that we can emulate a VSA using physical mobile nodes, its interface must be emulatable
by the nodes. Hence, a VSA Vu’s external interface is restricted to be similar, including only stopping failure,
corruption, and restart inputs, and the ability to broadcast and receive messages. Corruption failures result
in a nondeterministic change to vstate.

.

.

.

.

.

.

V-bcast

Dout[e]u

Dout[e]v

Cp

Cq

GPSupdate(u, now)p

GPS

GPSupdate(v, now)q

Vu

Vv

bcast(m)p

brcv(m)p

bcast(m)q

brcv(m)q

bcast(m)u

brcv(m)u

bcast(m)v

brcv(m)v

Figure 2: Virtual Stationary Automata layer. VSAs
and clients communicate locally using V-bcast. VSA
outputs may be delayed in Dout.

Since a VSA is emulated by physical nodes (cor-
responding to clients) in its region, its failures are
defined in terms of client failures in its region: (1) If
no clients are in the region, the VSA is crashed, (2) If
no failures of clients (corruption or stopping) occurs
in an alive VSA’s region over some interval, the VSA
does not suffer a failure during that interval, and (3)
A VSA may suffer a corruption only if a mobile client
in its region suffers a corruption; the self-stabilizing
implementation of a VSA in [8, 9] guarantees that
within tV SAcor of an arbitrary configuration of the
emulation, the emulation’s external trace will look
like that of the abstract VSA, starting from a cor-
rupted abstract state.

While an emulation of Vu would ideally be iden-
tical to a legitimate execution of Vu, an abstraction
must reflect that, due to message delays or node fail-
ure, the emulation might be behind real time, ap-
pearing to be delayed in performing outputs by up
to some time e. The emulation is then a delay-
augmented TIOA, an augmentation of Vu with tim-
ing perturbations, represented with buffers Dout[e]u,
composed with Vu’s outputs. The buffer delays mes-
sages by a nondeterministic time [0, e], where e is
more than V-bcast’s broadcast delay, d (see Section 2.4). Programs must take into account e, as they do d.

2.4 Local broadcast service (V-bcast)
Communication is in the form of local broadcast service V-bcast, with broadcast radius rvirt and message
delay d. It allows communication between VSAs and clients in the same or neighboring regions. The service
allows the broadcasting and receiving of message m at each port i ∈ P ∪U through bcast(m)i and brcv(m)i.

5

We assume that V-bcast guarantees two properties between VSAs and between VSAs and clients: in-
tegrity and reliable local delivery. Integrity guarantees that for any brcv(m)i that occurs, a bcast(m)j , j ∈
P ∪U previously occurred. Reliable local delivery roughly guarantees that a transmission will be received by
nearby ports: If port i, where i is a client or VSA port in any region u, transmits a message, then every port
j, whether a client or VSA port, in region u or neighboring regions during the entire time interval starting
at transmission and ending d later receives the message by the end of the interval. (For this definition, due
to GPSupdate lag, a client is still said to be “in” region u even if it has just left region u but has not yet
received a GPSupdate with the change.)

In practice, a broadcast service has bounded buffers. We assume buffers are large enough that overflows
do not occur in normal operation. In the event of overflow, overflow messages are lost.

3 Problem specifications

We describe the services we will build over the VSA layer: VSA-to-VSA routing, a location service, and
client-to-client routing, and describe our requirement that implementations be self-stabilizing.

The following constants (explained/used shortly) are globally known: (1) f < m, a limit on “home
location” VSA failures for a client, (2) h, a function mapping each client id to a sequence of f + 1 distinct
region ids, (3) ttlV toV > d, delivery time for the VtoVComm service, (4) ttlHLS ≥ εsample+2d+3e+2ttlV toV ,
response time of the location management service, and (5) ttlhb, a refresh period. We assume the following
client mobility and VSA crash failure conditions:
(1) Each client spends at least εsample time in a region before moving to another region,
(2) At any time, each alive client’s current region or a neighboring region has a non-crashed VSA that
remains alive for an additional ttlHLS time,
(3) For any interval of length ttlV toV + e, two VSAs alive over the interval are connected via at least one
path of non-crashed VSAs over the entire interval, and
(4) For any interval of length ttlhb + 2ttlV toV + 2e + d, and any alive client q, at least one VSA from h(q)
does not crash during the interval.

3.1 VSA-to-VSA communication service (VtoVComm) specification
The first service is an inter-VSA routing service, where a VSA from some region u can send a message m
through VtoVsend(v, m)u to a VSA in another (potentially non-neighboring) region v. Region v’s VSA later
receives m through VtoVrcv(m)v. The service guarantees two properties:
(1) If a VSA at region u performs a VtoVsend(v, m), and both region u and v VSAs are alive over the
time interval beginning with the send and ending ttlV toV time later, then the VSA at region v performs a
VtoVrcv(m) before the end of the interval, and
(2) If a message is received at some VSA, it was previously sent to that VSA.

3.2 Location service specification
A location service answers queries from clients for the locations of other clients. A client node p can submit
a query for a recent region of client node q via a HLquery(q)p action. If few home location failures occur and
q has been in the system for a sufficient amount of time, the service responds within bounded time with a
recent region location of q, qreg, through a HLreply(q, qreg)i action.

To be more exact, the location service guarantees that if a client p performs a HLquery to find an alive
client q that has been in the system longer than εsample + d + ttlV toV + e + ttlHLS time, and client p does
not crash or move to a different region for ttlHLS time, then:
(1) Within ttlHLS time, client p will perform a HLreply with a region for q, and
(2) If p performs a HLreply(q, qreg), then p had requested q’s location and q was either: (a) alive in region
qreg within the last ttlHLS time, or (b) failed for at most ttlhb + ttlHLS − εsample time.

3.3 Client end-to-end routing (EtoEComm) specification
End-to-end routing is an important application for ad-hoc networks. The V-bcast service provides a local
broadcast service where VSAs and clients can communicate with VSAs and clients in neighboring regions.
VtoVComm allows arbitrary VSAs to communicate. End-to-end routing (EtoEComm) allows arbitrary

6

clients to communicate: a client p sends message m to client q using send(q, m)p, which is received by q in
bounded time via receive(m)q.

If clients p and q do not crash for ttlHLS time, clients do not change regions for ttlHLS time after a send,
and q has been in the system at least ttlHLS + εsample + d + ttlV toV + e time, then:
(1) If client p sends message m to q, q will receive m within ttlHLS + 2d + 2e + ttlV toV time, and
(2) Any message received by a client was previously sent to the client.

3.4 Self-stabilizing implementations
We require implementations of the above services to be self-stabilizing. A system configuration is safe with
respect to a specification and implementation if any admissible execution fragment of the implementation
starting from the configuration is an admissible execution fragment of the specification. An implemen-
tation is self-stabilizing if starting from any configuration, an admissible execution of the implementation
eventually reaches a safe configuration. Notice that in the presence of corruptions, if an implementation is
self-stabilizing, then any long enough execution fragment of the implementation will eventually have a suffix
that looks like the suffix of some correct execution of the specification, until a corruption occurs.

Each of the above services’ self-stabilizing implementations will be built on top of self-stabilizing im-
plementations of other services: VtoVComm over the VSA layer, the location service over the VSA layer
and VtoVComm service, and EtoEComm over the VSA layer, VtoVComm, and location services. Each self-
stabilizing implementation uses lower level services without feedback, so lower level service executions are not
influenced by the upper level services. This allows us to guarantee that higher level service implementations
are still self-stabilizing through fair composition [11].

Our service implementations, starting from an arbitrary system configuration, stabilize within the fol-
lowing times: VtoVComm: ttlV toV + d time after the VSA layer stabilizes (tV SAcor time), the loca-
tion service: max(ttlHLS , 2e + 3ttlV toV + ttlhb + 2d) time after VtoVComm stabilizes, and EtoEComm:
ttlpb + 2d + 2e + ttlV toV time after the location service has stabilized.

4 VSA to VSA communication (VtoVComm) implementation

.

.

.

.

.

.

.

.

.

V-bcast

Dout[e]u

Dout[e]v

Vu

Vv

bcast(m)p

brcv(m)p

bcast(m)q

brcv(m)q

bcast(m)u

brcv(m)u

bcast(m)v

brcv(m)v

VtoVComm

VtoVsend(v, m)u

VtoVrcv(m)u

VtoVsend(u, m)v

VtoVrcv(m)v

V V toV
u

V V toV
v

Figure 3: VSA-to-VSA communication (VtoVComm).
A VSA at region u sends a message m to region v’s
VSA with a VtoVsend(v, m)u. The message is eventu-
ally received at region v by VtoVrcv(m)v.

The VtoVComm service allows communication of
messages between any two VSAs through VtoVsend
and VtoVrcv actions, as long as there is a path of
non-failed VSAs between them. The VtoVComm
service is built on top of the V-bcast service [8],
which supports communication between two neigh-
boring VSAs (see Figure 3).

VSA-to-VSA communication is based on a
greedy DFS procedure. When a VSA receives
a message for which it is not the destination, it
chooses a neighboring VSA that is on a shortest
path to the destination VSA and forwards the mes-
sage in a forward message to that neighbor. If the
VSA does not receive an indication through a found
message that the message has been delivered to the
destination within some bounded amount of time, it
then forwards the message to the neighboring VSA
on the next shortest path to the destination VSA,
and so on. This choice of neighbors is greedy in the
sense that the next neighbor chosen to receive the
forwarded message is the one on a shortest path to
the destination VSA, excluding the neighbors as-
sociated with previous tries. The greedy DFS can
turn into a flood in pathological situations in which
the destination is that last VSA reached.

7

Signature:
2 Input VtoVsend(d, m)u, d ∈ U, m arbitrary

Input brcv(m)u, m ∈ ({forward}× Msg× U× {u})
4 ∪ ({found} × Msg)

Output bcast(m)u, m arbitrary
6 Output VtoVrcv(m)u, m arbitrary

Internal DFStimeout(msg)u, msg ∈Msg
8 Internal DFSclean(msg)u, msg ∈ Msg

Msg = M× U× U× R, of the form 〈m, v2vs, v2vd, ts〉
10

State:
12 analog now ∈ R, the current real time

bcastq, VtoVrcvq, queues of messages, initially ∅
14 DFStable, a table indexed on message tuples in

Msg with entries in (nbrs(u)× 2nbrs(u) × R),
16 of the form 〈isrc, NbrSet, nbrTO〉, initially ∅

curNbr ∈ U, initially ⊥
18

Trajectories:
20 satisfies

d(now) = 1
22 constant bcastq, VtoVrcvq, DFStable, curNbr

stops when
24 Any precondition is satisfied.

26 Actions:
Output bcast(m)u

28 Precondition:
m ∈ bcastq

30 Effect:
bcastq ← bcastq \ {m}

32

Input VtoVsend(d, m)u

34 Effect:
if u = d then

36 VtoVrcvq ← VtoVrcvq ∪ {m}
else DFStable(〈m, u, d, now〉) ← 〈u, nbrs(u), now〉

Internal DFStimeout(msg)u

40Precondition:
DFStable(msg).nbrTO ≤ now

42∨DFStable(msg).nbrTO > now + δ(u, msg.v2vd)
Effect:

44if DFStable(msg).NbrSet = ∅ then
curNbr ← NxtNbr(DFStable(msg).NbrSet,

46DFStable(msg).isrc, u, msg.v2vd)
DFStable(msg).NbrSet ← DFStable(msg).NbrSet \{curNbr}

48bcastq ← bcastq ∪ {〈forward, msg, u, curNbr〉}
DFStable(msg).nbrTO ← now +δ(u, msg.v2vd)

50else DFStable(msg) ← null

52Input brcv(〈forward, msg, isrc, u〉)u

Effect:
54if msg.ts ∈ [now -ttlV toV , now] then

if u = msg.v2vd then
56bcastq ← bcastq ∪ {〈found, msg〉}

VtoVrcvq ← VtoVrcvq ∪ {msg.m}
58else if DFStable(msg) = null then

DFStable(msg) ← 〈isrc, nbrs(u)\{isrc}, now〉
60

Input brcv(〈found, msg〉)u

62Effect:
if DFStable(msg) = null then

64DFStable(msg) ← null
if u = msg.v2vs then

66bcastq ← bcastq ∪ {〈found, msg〉}

68Output VtoVrcv(m)u

Precondition:
70m ∈ VtoVrcvq

Effect:
72VtoVrcvq ← VtoVRcvq \ {m}

74Internal DFSclean(msg)u

Precondition:
76DFStable(msg) = null ∧msg.ts /∈ [now -ttlV toV , now]

Effect:
78DFStable(msg) ← null

Figure 4: Greedy DFS algorithm at V V toV
u for region u.

Self-stabilization of the algorithm is ensured by the use of a real-time timestamp to identify the version
of the DFS. Too old versions are eliminated from the system and new versions are handled as completely
new attempts to complete a greedy DFS towards the destination.

We first present a simple greedy DFS algorithm that gradually expands the search until all paths are
checked. This algorithm will find a path to the destination if such a path exists throughout the DFS
execution. We also present a modification of the algorithm to produce a persistent version of the greedy
DFS algorithm in which each VSA repeatedly tries to forward messages along previously unsuccessful VSA
paths to take advantage of (possibly temporary) recoveries of VSAs that may result in a viable path [13].
Again, the persistent greedy DFS can turn into a persistent flood in pathological situations in which the
destination is the last VSA reached.

4.1 Detailed code description
The following code description refers to the code for VSA V V toV

u in Figure 4. The main state variable
DFStable keeps track of information for messages that are still waiting to be delivered. For each such
unique message, the table stores the intermediate source isrc of the message, the set of VSA neighbors
NbrSet of neighbors that have yet to have the message forwarded to them, and a timeout nbrTO for the
neighbor currently being tried for forwarding the message.

A source VSA V V toV
u sends a message m to a destination VSA in region d using VtoVsend(d, m)u (line

8

Internal DFStimeout(msg)u

2 Precondition:
DFStable(msg).nbrTO ≤ now ∨DFStable(msg).nbrTO > now + δ(u, msg.v2vd)

4 Effect:
if DFStable(msg).NbrSet = ∅ then

6 curNbr ← NxtNbr(DFStable(msg).NbrSet, DFStable(msg).isrc, u, msg.v2vd)
DFStable(msg).NbrSet ← DFStable(msg).NbrSet \ {curNbr}

8 for each n ∈ nbr(u) \ DFStable(msg).NbrSet
bcastq ← bcastq ∪ {〈forward, msg, u, n〉}

10 DFStable(msg).nbrTO ← now +δ(u, msg.v2vd)
else DFStable(msg) ← null

Figure 5: The Persistent Greedy DFS algorithm at V V toV
u for region u is the same as the Greedy DFS

algorithm, except that the broadcast of a DFS message to curNbr in the DFStimeout action is replaced
with a broadcast to curNbr and all previously attempted neighbors.

33). If u = d then V V toV
u received m through VtoVrcv(m)u (lines 35-36). Otherwise the destination VSA is

another VSA and V V toV
u sets the DFStable mapping of an augmented version of the message, 〈m, u, d, now〉,

to 〈u, nbrs(u), now〉. This enables the start of a new DFS execution to forward the message to its destination
(line 37).

Whenever the nbrTO of a message in DFStable times out, it triggers the forwarding of the message to the
next neighbor in the DFS, if possible. If the message hasn’t yet been forwarded to all of the relevant neighbors
(DFStable(msg).NbrSet is not empty), then the next neighbor closest to the destination VSA that has not
yet had a message forwarded to it, curNbr, is selected and the message tuple msg is then forwarded in a
forward message to it using the V-bcast service (lines 45-48). The timeout variable DFStable(msg).nbrTO
for this attempt at forwarding is set to now + δ(curNbr, msg.v2vd) (line 49). If the message has already
been forwarded to all the relevant neighbors, then DFStable(msg) is set to null, indicating that nothing
more can be done.

If a message tuple msg whose destination is V V toV
u is received in a forward message from isrc, then

VSA V V toV
u broadcasts a 〈found, msg〉 message via the V-bcast service and VtoVrcv’s the message msg.m.

The found message notifies neighbors still participating in the DFS for msg that it has reached its final
destination VSA. No forwarding is required (lines 55-57). Otherwise, if msg is not destined for V V toV

u and
V V toV

u does not already have an entry in DFStable for msg, then the message must be forwarded to its
destination. DFStable(msg) is set to 〈isrc, nbrs(u)\{isrc}, now〉 (line 59), storing the intermediate source,
initializing the set of neighbors that have yet to have the message forwarded to them, and setting nbrTO to
now. Setting nbrTO to now immediately enables the DFStimeout action for msg, triggering the forwarding
of msg to one of V V toV

u ’s neighbors.
When a found message is received for a message tuple msg that is mapped by DFStable, the entry in

DFStable is erased, preventing additional forwarding (line 64). If u �= msg.v2vs then VSA V V toV
u broadcasts

a found message via the V-bcast service (lines 65-66), notifying neighbors that are still participating for msg
that it has been delivered. Clearly, if u = msg.v2vs, then no found message is required and no further action
needs to be taken.

4.2 Correctness
We now prove the correctness of the algorithm. Let the source VSA be V V toV

s , the destination VSA be
V V toV

d , the message sent be m, and a DFS execution exe from V V toV
s to V V toV

d be as defined above. We
assume a given function δ : {U} × {U} → N , where δ(x, y) is a bound on the time required for a message
to arrive from x to y. This bound is based both on the distance between x and y, and the quality of the
communication links in the network. Since the DFS and the δ function are just employed to cut down on
unneeded retransmission of messages, any non-negative wait time is sufficient for correctness. However, a
wait time dependent on hop count between regions will be the most message-efficient. We argue that if no
corruption failures occur and the status (failed or non-failed) of every VSA in U doesn’t change during exe,
then the following holds:
Lemma 4.1 If V V toV

s is a non-failed VSA that performs a VtoVsend(d, m) at time t, and there exists a
path of non-failed VSAs between V V toV

s and V V toV
d from time t to time t + ttlV toV , then V V toV

d performs a

9

VtoVrcv(m) in the interval [t, t + ttlV toV], for ttlV toV ≥ [e + d + (maxu,v∈Uδ(u, v) · maxu∈U |nbrs(u)| − 1)] ·
(|U | − 1).

Proof sketch: The proof is by induction on the distance n between s and V V toV
d on the shortest non-deserted

path, where the distance is the number of VSAs along the path, including V V toV
d . In the case n = 0, the

message m is destined for the same VSA. According to line 35, the message is VtoVrcv’ed at the VSA.
Let’s assume that the lemma holds for every n′ < n.
Let n be the VSA-distance between V V toV

s and V V toV
d . There exists a path of non-failed VSAs between

V V toV
s and V V toV

d . Therefore, there exists a VSA V V toV
u , which is a neighbor of V V toV

s , such that there
exists a path of non-failed VSAs between V V toV

u and V V toV
d . The distance between V V toV

u and V V toV
d is

n − 1, hence the induction assumption holds for V V toV
u and V V toV

d . Therefore, a message sent from V V toV
u

to V V toV
d eventually reaches V V toV

d . The same assumption holds for V V toV
s and V V toV

u , therefore, V V toV
d

receives the message m sent from region s.

Lemma 4.2 The number of times that a message tuple msg is re-broadcast is bounded.

Proof sketch: The broadcast of a message tuple stops in either of the following cases:

• A found message was received for msg. According to line 62, if the value of DFStable(msg) was not
already null, it gets set to null, preventing V V toV

u from doing anything with subsequent found messages.
If V V toV

u was not the original source of msg, it retransmits found for msg exactly one time. If a found
for msg is received again, it will be ignored. A forward message for msg would need to be received
again in order to result in any additional found mesages for msg at this VSA. This, however, cannot
happen since each VSA participating in the DFS waits before triggering new forward messages until
found messages would have been returned.

• For each VSA neighbor, if VSA V V toV
u does not receive a found message for msg it will time out via

nbrTO. Once the set of neighbors to be queried is exhausted, the VSA erases the entry for msg in
DFStable, preventing any additional forwarding by itself.

Lemma 4.3 Once corruptions stop and the VSA layer has stabilized, it takes up to d + ttlV toV time for
VtoVComm to stabilize.

Proof sketch: Any message in the system that is being forwarded by VtoVComm will be cleaned out of
the system if they are older than ttlV toV or newer than the current time. As a result, the longest a “bad”
message can be in the system is this time, plus up to an additional d time where it could have been in
transmission before being received by a VSA.

5 Home Location Service (HLS) implementation

The location service, as described in the last section, allows a client to determine a recent region of another
alive client. In our implementation, called the Home Location Service (HLS), we accomplish this using home
locations. Recall that the home locations of a client node p are f + 1 regions whose VSAs are occasionally
updated with p’s region. The home locations are calculated with a hash function h, mapping a client’s id to
a list of VSA regions, and is known to all VSAs. These home location VSAs can then be queried by other
VSAs to determine a recent region of p.

Figure 6 depicts how the VSA abstraction and VtoVComm are used in HLS. The HLS implementation
consists of two parts: a client-side portion and a VSA-side portion. CHL

p is a subautomaton of client p
that interacts with VSAs to provide HLS. It is responsible for notifying VSAs in its current and neighboring
regions which region it is in. Also, CHL

p handles each request submitted by input HLquery(q)p for q’s region,
by broadcasting the query via V-bcast to VSAs V HL

u in its current and neighboring regions. It translates
responses from the VSAs into HLreply outputs.

10

.

.

.

.

.

.

V-bcast

Dout[e]u

Dout[e]v

GPSupdate(u, now)p

GPS

GPSupdate(v, now)q

V HL
u

V HL
v

bcast(m)p

brcv(m)p

bcast(m)q

brcv(m)q

bcast(m)u

brcv(m)u

bcast(m)v

brcv(m)v

VtoVComm

VtoVsend(v, m)u

VtoVrcv(m)u

VtoVsend(u, m)v

VtoVrcv(m)v

CHL
p

CHL
q

HLquery(q)p

HLreply(q, qreq)p

HLS

Figure 6: Home Location Service. A client p can query local VSAs for client q’s region. The VSAs then
query home locations of q, using VtoVComm, for a recent region of q, and return it to p.

For the VSA-side, V HL
u and V HL

v in Figure 6 are home location VSAs corresponding to regions u and v
of the network; they are subautomata of VSAs Vu and Vv. V HL

u takes a request from a local client for client
node q’s region, calculates q’s home locations using the hash function, and then sends location queries to the
home locations using VtoVComm. Those virtual automata respond with the region information they have
for q, which is then provided by V HL

u to the requesting client. V HL
u also is responsible both for informing

the home locations of each client p located in its region or neighboring regions of p’s region, and maintaining
and answering queries for the regions of clients for which it is a home location.

Time and region information from the GPS oracle is used throughout the HLS algorithm, by clients and
VSAs, to timestamp and label information and messages. This information is used to guarantee timeliness
of replies from the HLS service, and to stabilize the service after faults. Timestamps are used to determine
if information is too old or too new, while region information allows clients and VSAs to know which other
clients and VSAs to interact with.

5.1 HLS client actions
The code executed by client p’s CHL

p is in Figure 7.
Clients receive GPSupdates every εsample time from the GPS automaton (lines 28-33), making them aware

of their current region and the time. If a client’s region has changed, the client immediately sends a heartbeat
message with its id, current time and region information. The client periodically reminds its current and
neighboring region VSAs of its region by broadcasting additional heartbeat messages every ttlhb time, where
ttlhb is a known constant (lines 35-39).

CHL
p also handles the HLquery(q) inputs it receives (line 41). This request for q’s location is stored in

a queryq table and, once the client knows its own region, translated into a 〈clocQuery, q〉 message that is
broadcast, together with the VSA region, to local regions’ VSAs (lines 45-49). If CHL

p eventually receives a
〈clocReply, q, qreg〉 message from its current or neighboring region’s VSA for a client q in queryq, indicating
that node q was in region qreg (lines 51-55), it clears the entry for q in queryq, and outputs a HLreply(q, qreg)
of the information (lines 57-61). If the request for q’s location goes unanswered for more than ttlHLS−εsample

time, then the request has failed and is removed (lines 63-67).

5.2 HLS VSA actions
The code for automaton V HL

u appears in Figure 8.
First, the VSA knows which clients are in its or neighboring regions through heartbeat messages. If a

VSA hears a heartbeat message from a client p claiming to be in its region or a neighboring region, the

11

Constants:
2 ttlhb

ttlHLS

4

Signature:
6 Input GPSupdate(v, t)p, v ∈ U, t ∈ R

Input HLquery(q)p, q ∈ P
8 Input brcv(〈m, u〉)p, m ∈ ({clocReply} × P × U × U), u ∈ U

Output bcast(〈m,reg〉)p,m∈〈heartbeat,now,p〉∪{clocQuery}×P
10 Output HLreply(q,v)p, q ∈ P, v ∈ U

Internal queryfail(q)p, q ∈ P
12

State:
14 analog now ∈ R, current real time, initially ⊥

hbTO ≤ now + ttlhb, ∈ R, the next heartbeat time
16 reg ∈ U, the current region, initially ⊥

queryq, a table from P to R, initially ∅
18 queryrcv, a queue of P × U pairs, initially ∅

20 Trajectories:
satisfies

22 d(now) = 1
constant hbTO, reg, queryq, queryrcv

24 stops when
Any precondition is satisfied.

26

Actions:
28 Input GPSupdate(v, t)p

Effect:
30 now ← t

if reg = v then
32 reg ← v

hbTO ← now

Output bcast〈〈heartbeat, now, p〉, reg〉p
36Precondition:

hbTO ≤ now ∧ reg = ⊥
38Effect:

hbTO ← now + ttlhb

40

Input HLquery(q)p

42Effect:
queryq(q) ← ∞

44

Output bcast(〈〈clocQuery, q〉, reg〉)p

46Precondition:
reg = ⊥∧ queryq(q) > now + ttlHLS -εsample

48Effect:
queryq(q) ← now + ttlHLS -εsample

50

Input brcv(〈〈clocReply, q, qreg〉, u〉)p

52Effect:
if (u∈ nbrs(reg)∪ {reg}∧ queryq(q) =null) then

54queryrcv ← queryrcv ∪ {〈q, qreg〉}
queryq(q) ← null

56

Output HLreply(q, qreg)p

58Precondition:
〈q, qreg〉 ∈ queryrcv

60Effect:
queryrcv ← queryrcv \ {〈q, qreg〉}

62

Internal queryfail(q)p

64Precondition:
queryq(q) < now

66Effect:
queryq(q) ← null

Figure 7: HLS’s CHL
p automaton. This client subautomaton serves as a bridge between the client’s

requests and the VSA layer.

VSA sends a locUpdate message for p, with p’s heartbeat timestamp and region, through VtoVComm to the
VSAs at home locations of client p (lines 42-46), where home locations are computed using the known hash
function h from P × {1, · · · , f + 1} to U .

When a VSA receives one of these locUpdate messages for a client p, it stores both the region indicated
in the message as p’s current region and the attached heartbeat timestamp in its loc table (lines 48-51).
This location information for p is refreshed each time the VSA receives a locUpdate for client p with a newer
heartbeat timestamp. Since a client sends a heartbeat message every ttlhb time, which can take up to d + e
time to arrive at and trigger a VSA to send a locUpdate message through VtoVComm, which can take
ttlV toV time to be delivered at a home location, an entry for client p is erased if its timestamp is older than
ttlhb + d + e + ttlV toV (lines 53-57).

The other responsibility of the VSA is to receive and respond to local client requests for location infor-
mation on other clients. A client p in a VSA’s region or a neighboring region v can send a query for q’s
current location to the VSA. This is done via a mobile node’s broadcast of a 〈〈clocQuery, q〉, v〉 message.
When the VSA at region u receives this query, if no outstanding query for q exists, it notes the request for q
in lquery(q), and sends a vlocQuery message to q’s f + 1 home locations, querying about q’s location (lines
59-65). Any home location that receives such a message and has an entry for q’s region responds with a
vlocReply to the querying VSA with the region (lines 67-70).

If the querying VSA at u receives a vlocReply in response to an outstanding location request for a client
q, it stores the attached region information in lquery(q) (lines 72-75), broadcasts a clocReply message with
q and its region to local clients, and erases the entry for lquery(q) (lines 77-81). If, however, 2ttlV toV + 2e
time passes since a request for q’s region was received by a local client and there is no entry for q’s region,
lquery(q) is just erased (lines 83-87).

12

Constants:
2 ttlV toV

ttlhb

4 h, a hash function from P × {1, · · · , f + 1} to U
such that for p ∈ P , x, y ∈ {1, · · · , f + 1},

6 if x = y, then h(p, x) = h(p, y)

8 Signature:
Input brcv(〈m, v〉)u, m ∈ ({heartbeat}× R × P)

10 ∪ ({clocQuery} × P), v ∈ U
Input VtoVrcv(〈v, m〉)u, v ∈ U, m ∈ ({locUpdate} × P×

12 R)∪ ({vlocQuery}× P)∪ ({vlocReply}× P× U)
Output bcast(〈〈clocReply, q, qreg〉, u〉)u,q∈ P, qreg∈ U

14 Output VtoVsend(v, m)u, v ∈ U
Internal updateHL(q)u, q ∈ P

16 Internal cleanLoc(q)u, q ∈ P
Internal cleanLquery(q)u, q ∈ P

18

State:
20 loc, a table indexed on process ids with entries

from U × R
≥0, of the form 〈reg, ts〉

22 lquery, a table indexed on process ids with entries

from R
≥0 × U , of the form 〈to, qreg〉

24 vtovq, a queue of tuples from U ×msg
(Above all initially empty)

26 analog now ∈ R
≥0, the current real time

28 Trajectories:
satisfies

30 d(now) = 1
constant loc, lquery, vtovq

32 stops when
Any precondition is satisfied.

34

Actions:
36 Output VtoVsend(v, m)u

Precondition:
38 〈v, m〉 ∈ vtovq

Effect:
40 vtovq ← vtovq \ {〈v, m〉}

42 Input brcv(〈〈heartbeat, t, p〉, v〉)u

Effect:
44 if (v ∈ nbrs(u)∪ {u}∧ now -d ≤ t ≤ now) then

for i = 1 to f+1
46 vtovq ← vtovq ∪ {〈h(q, i), 〈v, 〈locUpdate, q, t〉〉〉}

48Input VtoVrcv(〈v, 〈locUpdate, q, t〉〉)u

Effect:
50if loc(q).ts < t ≤ now then

loc(q) ← 〈v, t〉
52

Internal cleanLoc(q)u

54Precondition:
loc(q).ts /∈ [now -ttlhb -d -e -ttlV toV , now]

56Effect:
loc(q) ← null

58

Input brcv(〈〈clocQuery, q〉, v〉)u

60Effect:
if ([lquery(q) = null ∨ lquery(q).to < now]

62∧ v ∈ nbrs(u)∪ {u}) then
lquery(q) ← 〈now + 2ttlV toV + 2e, ⊥〉

64for i = 1 to f+1
vtovq ← vtovq ∪ {〈h(q,i), 〈u, 〈vlocQuery, q〉〉〉}

66

Input VtoVrcv(〈v, 〈vlocQuery, q〉〉)u

68Effect:
if loc(q) = null then

70vtovq ← vtovq ∪ {〈v, 〈u, 〈vlocReply, q, loc(q).reg〉〉〉}

72Input VtoVrcv(〈v, 〈vlocReply, q, qreg〉〉)u

Effect:
74if lquery(q) = null then

lquery(q).qreg ← qreg
76

Output bcast(〈〈clocReply, q, lquery(q).qreg〉, u〉)u

78Precondition:
lquery(q).qreg = ⊥

80Effect:
lquery(q) ← null

82

Internal cleanLquery(q)u

84Precondition:
lquery(q).to /∈ [now, now + 2ttlV toV + 2e]

86Effect:
lquery(q) ← null

Figure 8: HLS’s V HL
u automaton.

13

5.3 Correctness
We make the system assumptions described in Section 3. Call CG the first global configuration where the
system is consistent. For the following two lemmas and theorem, assume we are in a configuration after CG,
and that no corruption failures occur.
Lemma 5.1 For any VSA u, if there is a request for q’s region in lquery, it was submitted through a
HLquery(q) at a client within the last εsample + d + 2ttlV toV + 2e time.
Proof sketch: Once a request is submitted by a client to CHL

p , if the client has not ever received a GPSupdate,
it can take up to εsample time for the client to receive one. After the client has received one, it then broadcasts
the request to local VSAs, which takes up to d time to be delivered. VSAs then hold these queries until they
expire 2ttlV toV + 2e later.

Lemma 5.2 Starting εsample + d + e + ttlV toV time after client p enters the system and until p fails, for
each interval of length ttlV toV + e, all but f of p’s home locations will have a non-null loc(p) entry for the
entire interval. If client p is alive and there is some VSA u such that loc(p) is not null, p was alive and
located in loc(p).reg within the last εsample + d + e + ttlV toV time.
Proof sketch: Within εsample time of a client entering the system, a GPSupdate occurs and the client trans-
mits a heartbeat message. This message can take up to d time to be received by a nearby VSA, after which
it can take e + ttlV toV time for the VSA to transmit the associated locUpdate message to the client’s home
locations and have the message be received, updating any alive home locations’ loc(p) entries. Since for any
interval of length ttlhb + d + 2e + ttlV toV , at most f of the client’s home locations can be failed at any point
in the interval, all but f of the client’s home locations will receive a locUpdate message and have a non-null
loc(p) entry, and will remain alive with a non-null loc(p) entry for at least ttlV toV +e after the next locUpdate
message is received (within ttlhb + d + e + ttlV toV time after the first was sent). Since this is true for each
locUpdate message, there can only be f home locations that either do not have a non-null loc(p) entry or
that will not be alive for an additional ttlV toV + e time.

For the second statement, note that an alive client p will send a heartbeat message within εsample time of
arriving in a region, prompting updates to loc(p) at alive home locations within d+ e+ ttlV toV time. Hence,
if a client is alive, any non-null entry for loc(p).reg can only be as old as εsample + d + e + ttlV toV .

Theorem 5.3 Every client p searching for a non-failed client q that has been in the system longer than
ttlHLS + εsample + d + ttlV toV + e time will perform a HLreply(q, qreg) within time ttlHLS , such that q was
located in region qreg no more than ttlHLS time ago. No reply will occur if q has been failed for more than
ttlhb + ttlHLS − εsample time. Any reply is in response to a query.
Proof sketch: For the first statement, by the previous lemma, we know that once client q has been in the
system for εsample + d + e + ttlV toV time, any queries of its home locations will succeed in producing a
result. However, a new HLquery request “piggybacks” on any prior unexpired HLquery requests. Since one
of these requests could have been initiated just before the client q’s home locations are updated, we can only
guarantee a response will be received for a new request if any outstanding requests will be answered. If the
client has been in the system for this total ttlHLS + d + e + ttlV toV time after receiving its first GPSupdate,
then any response to a query can take as much as ttlHLS time: εsample time for the querying client to receive
its first GPSupdate, d time for the query to be transmitted and received by a local VSA, e + ttlV toV for the
local VSA to query a home location, e+ ttlV toV for the response to arrive at a local VSA, e time for the local
VSA to transmit the response to its requesting clients, and d time for the transmission to be received and
translated into HLreplys at clients. This total is ttlHLS . As for the age of the response, by the prior lemma,
we know that information can only be out of date by εsample + ttlV toV + e + d time when a home location
responds to a query by another VSA. The response can take e + ttlV toV time to arrive at the querying VSA,
followed by e + d time for the querying VSA to get the information to the clients that prompted the query.
The oldest the information could be is the total.

For the second statement, note that a failed client will not send a heartbeat message. Since loc(p) entries
are cleared once ttlhb + d + e + ttlV toV time has passed since the heartbeat message upon which it was based
was broadcast, and the information from the entry can only take as much as e + ttlV toV time to reach a
querying VSA and e + d time to reach any querying clients, the total is the maximum time a HLreply can
occur after the client fails.

For the third statement, note that a query expires after ttlHLS time. Hence, any response generated
must be for a query that occurred no more than that time before.

14

Theorem 5.4 Starting from an arbitrary configuration, after VtoVComm has stabilized, it takes max(ttlHLS , 2e+
3ttlV toV + ttlhb + 2d) time for HLS to stabilize.

Proof sketch: Once lower levels have stabilized, most client state is made locally consistent within εsample

time, the time for the client to get a GPSupdate. This action resets most variables if the region is updated.
The remaining portions of client state are made consistent instantaneously with local correction actions, with
the exception of the heartbeat timer and queryq variables. The heartbeat timer can only affect operations
for at most ttlhb time. The queryq variable can only affect operations for ttlHLS time, when it would be
deleted.

For VSAs, there are two variables that are not instantaneously corrected: loc and lquery.
The loc variable will be consistent within time e+2ttlV toV +ttlhb+d. At worst, there could be a corrupted

message that arrives at a VSA after ttlV toV time, adding a bad entry that takes e+ ttlV toV + ttlhb +d time to
expire. If the client referred to is in the system, it might not be until the next update after the timestamp of
the corrupted message (which could have been delivered as late as ttlV toV after corruptions stopped) arrives
for the information to be cleaned up. This time is exactly what the offset term for loc timeouts describes.
Hence, the variable might not be cleaned until ttlV toV plus that offset term.

However, there may be responses based on this bad loc table information that were sent right at e +
2ttlV toV + ttlhb + d, and that take e + ttlV toV to arrive at the VSA. The resulting transmission (taking d
time to complete) to local clients is then incorrect. However, those incorrect transmissions cease after the
total time 2e + 3ttlV toV + ttlhb + 2d elapses.

The lquery variable is cleaned up within ttlHLS time. An entry in lquery only has a total of 2ttlV toV +2e
time in the data structure. It could be the case that a spurious request was transmitted in the beginning,
which adds d time. If a region response is received it results in immediate correction of the state through
erasure. Hence, the time required to be consistent is the time that it takes for a query to be accounted for.

The maximum of ttlHLS and 2e + 3ttlV toV + ttlhb + 2d is the maximum stabilization time.

5.4 Extensions
Here we briefly describe some possible extensions to our HLS algorithm:
Home location voting mechanisms: In systems where corruption failures are limited in number at the
VSA level, our implementation could be extended to use a voting mechanism, allowing the “weed-out” of
information from corrupted home locations. Rather than querying VSAs waiting for a single region response
from a home location VSA, they could wait until the same region is returned from a majority of home
locations VSAs. If corruption is limited to some small number of VSAs at a time, but can happen often,
then this voting mechanism can be used to provide a stronger location service, immune to these limited
number of faults.
Randomized asymmetric quorums: It is possible to have asymmetric updates and queries, such as with
local updates to close-by VSAs and uniformly selected VSAs or vice versa (the expected number of VSAs
that are required to be updated and queried is small, as proved in [22]). Instead of using a predefined set
to query, one might use a randomized scheme based on [22], where a random set of regions is chosen for
updating and inquiring about the location of a client node. Moreover, we could enhance the scheme in [22]
by using a predefined set for location updates (such as the close-by regions) and random set for location
queries (or vice versa).
Attribute queries: There are scenarios in which one would like to query for client nodes with certain
attributes in a geographic area (e.g., a search for a medical doctor that is currently near by). Our scheme
supports such queries in a natural way: Attributes can hash to home locations that store tables of clients
with the attribute, and their locations. Clients searching for another nearby client with some attribute could
then have a local VSA query home locations for the attribute, and select a nearby client from the list that
is returned.

6 Client end-to-end routing (EtoEComm) implementation

Our implementation of the end-to-end routing service, EtoEComm, uses the location service to discover a
recent region location of a destination client node and then uses this location in conjunction with VtoVComm

15

.

.

.

.

.

.

V-bcast

Dout[e]u

Dout[e]v

GP
Su
pd
at
e(

u,
no

w) p

GPS

GPSupdate(v, now)
q

V EtoE
u

V EtoE
v

bcast(m)p

brcv(m)p

bcast(m)u

brcv(m)u

bcast(m)v

brcv(m)v

VtoVComm

VtoVsend(v, m)u

VtoVrcv(m)u

VtoVsend(u, m)v

VtoVrcv(m)v

CEtoE
p

CEtoE
q

HLquery(q)
p

HLreply(q, v)
p

HLS

EtoEComm

send(q, m)p

receive(m)p

Figure 9: End-to-end routing. A client CE2E
p can send a message to another client CE2E

q by querying HLS
for q’s region, and then having local VSAs forward the message to q’s local regions through VtoVComm.
The message is received by those VSAs and broadcast for delivery by CE2E

q .

to deliver messages (see Figure 9). As in the implementation of the Home Location Service, there are two
parts to the end-to-end routing implementation: the client-side portion and the VSA-side portion. Also as in
HLS, time and region information from the GPS oracle is used throughout this implementation to timestamp
and label information.

The client-side portion CE2E
p takes a request to send a message to another client q, queries the HLS

for q’s location, and submits the message to have it sent by a VSA in its current or neighboring regions
to q’s location. It also takes messages originating at other clients and transmitted to it by its current or
neighboring regions’ VSAs, and delivers them.

The VSA V E2E
u portion is very simple. A client may send it information to be transmitted to other

VSAs, which it forwards through VtoVComm, or another VSA may send it information to be delivered at a
client in its own or a neighboring region, which it forwards through V-bcast.

6.1 EtoEComm client actions
The signature, state, and actions of CE2E

p are in Figure 10. The main variable phbook is a table, indexed
on destination pid, with entries of the form 〈reg, ttl, msg〉. For a client q, phbook(q).reg stores the current
region of q (unless it is unknown, in which case it is ⊥). The field ttl stores a timeout for phbook(q).reg if
the region of q is known and stores a timeout for querying for the region if not. The set msg stores messages
being sent to q.

The GPSupdate(v, t) action (line 36) results in an update of the client’s reg variable to the region v
indicated in the action and a reset of the local clock.

A message m is sent to another client q via send(q, m)p. This input to CE2E
p results in the forwarding

of the message to p’s current region u’s VSA through bcast(〈〈sdata, m, q, phbook(q).reg〉, p, u〉) if a region
phbook(q).reg for q is known (line 44-45), or the saving of the message in phbook(q).msg, if the client does
not have the location of q (lines 46-48).

If a recent region for q is not known, CE2E
p attempts to discover one. It queries HLS to determine where q

was through the HLquery(q)p action (line 50). A timeout for response to the location request, phbook(q).ttl,
is set for ttlHLS later. If the timeout expires but no messages are waiting to be sent, cleanPhbook(q) erases
the entry, preventing unnecessary HLquerying (line 63).

Once a response to an HLquery(q) is received from HLS in the form of HLreply(q, qreg)p (line 57), indicating
q was in region qreg, entry phbook(q).reg is updated to qreg and phbook(q).ttl is updated to now + ttlpb,

16

Constants:
2 ttlHLS

ttlpb

4

Signature:
6 Input HLreply(q, v)p, q ∈ P, v ∈ U

Input send(q, m)p, q ∈ P
8 Input GPSupdate(v, t)p, v ∈ U, t ∈ R

Input brcv(〈〈rdata, m〉, p, u〉)p, u ∈ U
10 Output bcast(m)p

Output HLquery(q)p, q ∈ P
12 Output receive(m)p

Internal cleanPhbook(q)p, q ∈ P
14

State:
16 analog now ∈ R, current real time, initially ⊥

reg ∈ U, the current region, initially ⊥
18 phbook, a table indexed on process id with entries from

U × R× 2msg , of the form 〈reg, ttl, msg〉, initially ∅
20 sdataq, deliverq, queues of messages, initially ∅

22 Trajectories:
satisfies

24 d(now) = 1
constant reg, phbook, sdataq, deliverq

26 stops when
Any precondition is satisfied.

28

Actions:
30 Output bcast(〈〈sdata, m, q, qreg〉, p, reg〉)p

Precondition:
32 〈m, q, qreg〉 ∈ sdataq ∧ reg = ⊥

Effect:
34 sdataq ← sdataq \ {〈m, q, qreg〉}

36 Input GPSupdate(v, t)p

Effect:
38 now ← t

if reg = v then
40 reg ← v

42Input send(q,m)p

Effect:
44if (phbook(q).reg = ⊥∧ phbook(q).ttl ≥ now) then

sdataq ← sdataq ∪ {〈m, q, phbook(q).reg〉}
46else if (phbook(q)= null∨ phbook(q).ttl< now) then

phbook(q) ← 〈⊥, ⊥, {m}〉
48else phbook(q).msg ← phbook(q).msg ∪ {m}

50Output HLquery(q)p

Precondition:
52phbook(q) = 〈⊥, ttl, m = ∅〉

∧ (ttl = ⊥∨ ttl > now + ttlHLS)
54Effect:

phbook(q).ttl ← now + ttlHLS

56

Input HLreply(q, qreg)p

58Effect:
for each m ∈ phbook(q).msg

60sdataq ← sdataq ∪ {〈m, q, qreg〉}
phbook(q) ← 〈qreg, now + ttlpb, ∅〉

62

Internal cleanPhbook(q)p

64Precondition:
phbook(q)= 〈qreg, ttl, msg〉∧ [(qreg = ⊥∧msg = ∅)

66∨ (qreg = ⊥∧ [ttl> now+ttlpb∨msg = ∅])∨ ttl< now]
Effect:

68phbook(q) ← null

70Input brcv(〈〈rdata, m〉, p, u〉)p

Effect:
72if u ∈ {reg} ∪ nbrs(reg)

deliverq ← deliverq ∪ {m}
74

Output receive(m)p

76Precondition:
m ∈ deliverq

78Effect:
deliverq ← deliverq \ {m}

Figure 10: EtoEComm’s CE2E
p automaton.

storing the location of q and setting a timeout for use of the location information. For each message waiting
to be sent to q in queue phbook(q).msg, the message, with the location information for the destination,
is forwarded to p’s current and neighboring regions’ VSAs through a bcast(〈〈sdata, m, q, qreg〉, p, u〉) (lines
59-60, 30-34).

Messages for client p from other clients are received from p’s current region or a neighboring region v’s
VSA through brcv(〈〈rdata, m〉, p, v〉)p (line 70). The message m is subsequently delivered through the output
receive(m)p (line 75).

6.2 EtoEComm VSA actions
The signature, state, and actions of V E2E

u are in Figure 11.
The receipt of a message m to be sent from a client p to q at qreg through brcv(〈〈sdata, m, q, qreg〉, p, v〉),

v either u or a neighbor (line 33) results in the subsequent forwarding of the message to the virtual automata
at regions in calcregs(qreg) and their neighboring regions, via the virtual automata communication action
VtoVsend(qreg, 〈data, m, q〉)u (line 33-38). The set calcregs(qreg) contains the regions that q could occupy
by the time the message is delivered to it (since we do not require the client to be stationary during execution
of the algorithm). As will be seen shortly, the definition of calcregs is dependent on assumptions about client
mobility.

Likewise, the receipt, via VtoVrcv(〈data, m, p〉)u (line 40), of message m intended for client p results in

17

Signature:
2 Input VtoVrcv(〈data, m, p〉)u, p ∈ P

Input brcv(〈〈sdata, m, q, qreg〉, p, v〉)u , p,q∈ P, qreg,v∈ U
4 Output bcast(m)u

Output VtoVsend(v, m)u, v ∈ U
6

State:
8 vtovq, a queue of tuples from U ×msg, initially ∅

bcastq, a queue of messages, initially ∅
10

Trajectories:
12 satisfies

constant vtovq, bcastq
14 stops when

Any precondition is satisfied.
16

function calcregs(v: U): 2U =
18 return nbrs(v) ∪ {v}

20Actions:
Output bcast(m)u

22Precondition:
m ∈ bcastq

24Effect:
bcastq ← bcastq \ {m}

26

Output VtoVsend(v, m)u

28Precondition:
〈v, m〉 ∈ vtovq

30Effect:
vtovq ← vtovq \ {〈qreg, m〉}

32

Input brcv(〈〈sdata, m, q, qreg〉, p, v〉)u

34Effect:
if v ∈ nbrs(u) ∪ {u} then

36let qregions = calcregs(qreg) in
for each v ∈ qregions ∪ nbrs(qregions)

38vtovq ← vtovq ∪ {〈qreg, 〈data, m, q〉〉}

40Input VtoVrcv(〈data, m, p〉)u

Effect:
42bcastq ← bcastq ∪ {〈〈rdata, m〉, p, u〉}

Figure 11: EtoEComm’s V E2E
u automaton.

the forwarding of the message to p via bcast(〈〈rdata, m〉, p, u〉)u (line 42).

6.3 Correctness
We make the system assumptions described in Section 3. Correctness of the EtoEComm implementation
is dependent on assumptions about client mobility and the definition of the function calcregs, used in the
EtoEComm VSA algorithm. We can prove correctness under either of the following two conditions:
(1) calcregs(qreg) returns the set containing qreg and its neighbors, and each client remains in a region at
least εsample + 3ttlV toV + 5e + 4d + ttlpb time before moving to a neighboring region, or
(2) calcregs(qreg) returns the set containing qreg and each region v such that the supremum distance between
any two points in v and qreg is at most vmax · (εsample + 3ttlV toV + 5e + 4d + ttlpb).

We then outline correctness for EtoEComm under these assumptions. For the first lemma and theorem,
assume we start in a safe configuration and no corruption failures occur.
Lemma 6.1 Consider an alive client q such that some other client p has a non-null, non-⊥ entry for
phbook(q).reg. If q does not fail for an additional 2d + 2e + ttlV toV time, then at any point in that interval,
q will be located in a region in calcregs(phbook(q).reg).
Proof sketch: First, we note that a non-null, non-⊥ entry phbook(q).reg has information that is at most
εsample + 2ttlV toV + 3e + 2d out-of-date (from HLS) when it is first installed, after which it is saved for an
additional ttlpb time.

If we are assuming condition 1, client q must be in the region indicated, or a neighboring region, and
will remain in those regions for an additional 2d + 2e + ttlV toV time. If we are assuming condition 2, at
any point up to 2d + 2e + ttlV toV later, client q can be in any region reachable from qreg in the total
εsample + 3ttlV toV + 5e + 4d + ttlpb time, when traveling at speed vmax.

Theorem 6.2 Consider a client p that performs a send(q, m), and does not change regions for ttlHLS time.
If client q has been in the system for ttlHLS + εsample + d + ttlV toV + e time and does not fail, then q will
perform a receive(m) within ttlHLS +2d+2e+ ttlV toV time. If a client receives a message, it must previously
have been sent to it.

Theorem 6.3 Starting from an arbitrary configuration, after HLS has stabilized, it takes ttlpb + 2d + 2e +
ttlV toV time for EtoEComm to stabilize.
Proof sketch: Bad region information can be in phbook for up to ttlpb time, and messages sent using this
information are not delivered and cleared until up to d+e+ttlV toV +e+d later. At the same time, while HLS
has been stabilizing, phbook’s message collection can take up to ttlHLS time to be cleared. The maximum
of these quantities is the time for EtoEComm to stabilize.

18

6.4 Extensions
Here we briefly describe some possible extensions to our EtoEComm algorithm:
Routing optimizations: Once the location of a client is known, communication with the client can be
continued directly, and movements during the conversation may be piggy-backed on the information trans-
ferred in order to update the destination according to the move (as suggested [12]). We also note that we
can use an embedded tree location scheme such as the one in [12], implemented by virtual automata, where
intermediate tree nodes are also mapped to regions.
Sleeping client messaging service: Mobile clients might be able to shut down to conserve power. We
could guarantee that a sleeping client eventually receives messages intended for it by having local VSAs save
the messages. The VSAs then, at predefined times, broadcast the messages. Sleeping clients awake for these
broadcasts, receive their messages, and can go to sleep again afterwards.

7 Concluding remarks

We described how both the GPS oracle and the VSA programming layer could help implement self-stabilizing
geocast routing, location management, and end-to-end routing services. The self-stabilizing VSA layer
provides a virtual fixed infrastructure useful for solving a variety of problems. It acts as a fault-tolerant,
self-stabilizing building block for services, allowing applications to be built for mobile networks as though
base stations existed for mobile clients to interact with.

The GPS oracle’s frequently refreshed and reliable timing and location information made providing self-
stabilization easier. We believe the paradigm of an external service providing reliable information that can
be used in a self-stabilizing service implementation is an especially important and relevant one in mobile
networks. Mobile networks demonstrate many properties that naturally require self-stabilizing implemen-
tations, such as a need for self-configuration, or the possibility of unpredictable kinds of failures, but also
often have access to reliable external knowledge that can act as a source of shared consistency in the net-
work; here, accurate region knowledge allowed nodes to determine who they should be communicating with
(current region and neighboring region nodes), and time information allowed them to order messages and
assess timeliness of information.

References
[1] Abraham, I., Dolev, D., and Malkhi, D., “LLS: A Locality Aware Location Service for Mobile Ad Hoc Networks”, Proceedings of

the DIALM-POMC Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 75-84, 2004.

[2] Arora, A., Demirbas, M., Lynch, N., and Nolte, T., “A Hierarchy-based Fault-local Stabilizing Algorithm for Tracking in Sensor
Networks”, 8th International Conference on Principles of Distributed Systems (OPODIS), 2004.

[3] Camp, T., Liu, Y., “An adaptive mesh-based protocol for geocast routing”, Journal of Parallel and Distributed Computing:
Special Issue on Mobile Ad-hoc Networking and Computing, pp. 196–213, 2002.

[4] Dijkstra, E.W., “Self stabilizing systems in spite of distributed control”, Communications of the ACM, pp. 643-644, 1974.

[5] Dolev, S., Self-Stabilization, MIT Press, 2000.

[6] Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., and Welch, J., “Virtual Mobile Nodes for Mobile Ad Hoc Networks”,
International Conference on Principles of Distributed Computing (DISC), pp. 230-244, 2004.

[7] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J., “GeoQuorums: Implementing Atomic Memory in Ad Hoc Networks”,
17th International Conference on Principles of Distributed Computing (DISC), Springer-Verlag LNCS:2848, pp. 306-320, 2003.
Also to appear in Distributed Computing.

[8] Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., “Timed Virtual Stationary Automata for Mobile Networks”, Technical
Report MIT-LCS-TR-979a, MIT CSAIL, Cambridge, MA 02139, 2005.

[9] Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., “Brief Announcement: Virtual Stationary Automata for Mobile
Networks”, Proceedings of the 24th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 323, 2005.

[10] Dolev, S., Herman, T., and Lahiani, L., “Polygonal Broadcast, Secret Maturity and the Firing Sensors”, Third International
Conference on Fun with Algorithms (FUN), pp. 41-52, May 2004. Also to appear in Ad Hoc Networks Journal, Elseiver.

[11] Dolev, S., Israeli, A., and Moran, S., “Self-Stabilization of Dynamic Systems Assuming only Read/Write Atomicity”, Proceeding
of the ACM Symposium on the Principles of Distributed Computing (PODC 90), pp. 103-117. Also in Distributed Computing
7(1): 3-16 (1993).

19

[12] Dolev, S., Pradhan, D.K., and Welch, J.L., “Modified Tree Structure for Location Management in Mobile Environments”, Com-
puter Communications, Special issue on mobile computing, Vol. 19, No. 4, pp. 335-345, April 1996. Also INFOCOM 1995, Vol. 2,
pp. 530-537, 1995.

[13] Dolev, S. and Welch, J.L.,“Crash Resilient Communication in Dynamic Networks”, IEEE Transactions on Computers, Vol. 46,
No. 1, pp.14-26, January 1997.

[14] Haas, Z.J. and Liang, B., “Ad Hoc Mobility Management With Uniform Quorum Systems”, IEEE/ACM Trans. on Networking,
Vol. 7, No. 2, pp. 228-240, April 1999.

[15] Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Hamdi, M., “The Terminodes Project: Towards Mobile Ad-Hoc WAN”, Pro-
ceedings of MOMUC, pp. 124-128, 1999.

[16] Imielinski, T., and Badrinath, B.R., “Mobile wireless computing: challenges in data management”, Communications of the ACM,
Vol. 37, Issue 10, pp. 18-28, 1994.

[17] Karp, B. and Kung, H. T., “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks”, Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking, pp. 243-254, SCM Press, 2000.

[18] Kaynar, D., Lynch, N., Segala, R., and Vaandrager, F., “The Theory of Timed I/O Automata”, Technical Report MIT-LCS-TR-
917a, MIT LCS, 2004.

[19] Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A., “Geometric Ad-Hoc Routing: Of Theory and Practice”, Proceedings of the
22nd Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 63-72, 2003.

[20] Kuhn, F., Wattenhofer, R., and Zollinger, A., “Asymptotically Optimal Geometric Mobile Ad-Hoc routing”, Proceedings of the
6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (Dial-M), pp.
24-33, ACM Press, 2002.

[21] Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., and Morris, R., “A Scalable Location Service for Geographic Ad Hoc Routing”,
Proceedings of Mobicom, pp. 120-130, 2000.

[22] Malkhi, D., Reiter, M., and Wright, R., “Probabilistic Quorum Systems”, Proceeding of the 16th Annual ACM Symposium on
the Principles of Distributed Computing (PODC 97), pp. 267-273, Santa Barbara, CA, August 1997.

[23] Nath, B., Niculescu, D., “Routing on a curve”, ACM SIGCOMM Computer Communication Review, pp. 155-160, 2003.

[24] Navas, J.C., Imielinski, T., “Geocast- geographic addressing and routing”, Proceedings of the 3rd MobiCom, pp. 66-76, 1997.

[25] Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., and Shenker, S., “GHT: A Geographic Hash Table for
Data-Centric Storage”, First ACM International Workshop on Wireless Sensor Networks and Applications, pp. 78-87, 2002.

20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

