
Proving Atomicity: An Assertional Approach

Gregory Chockler1, Nancy Lynch1, Sayan Mitra1, and Joshua Tauber1

MIT CSAIL, The Stata Center, Bldg.32, 32 Vassar Street, Cambridge MA 02139,
USA

{grishac,lynch,mitras,josh}@csail.mit.edu

Abstract. Atomicity (or linearizability) is a commonly used consistency
criterion for distributed services and objects. Although atomic object im-
plementations are abundant, proving that algorithms achieve atomicity
has turned out to be a challenging problem. In this paper, we initiate
the study of systematic ways of verifying distributed implementations
of atomic objects, beginning with read/write objects (registers). Our
general approach is to replace the existing operational reasoning about
events and partial orders with assertional reasoning about invariants and
simulation relations. To this end, we define an abstract state machine
that captures the atomicity property and prove correctness of the object
implementations by establishing a simulation mapping between the im-
plementation and the specification automata. We demonstrate the gen-
erality of our specification by showing that it is implemented by three
different read/write register constructions: the message-passing register
emulation of Attiya, Bar-Noy and Dolev, its optimized version based on
real time, and the shared memory register construction of Vitanyi and
Awerbuch. In addition, we show that a simplified version of our specifi-
cation is implemented by a general atomic object construction based on
the Lamport’s replicated state machine algorithm.

1 Introduction

Many distributed and network-based services can be modeled as shared objects
accessible to (possibly remote) clients through well-defined interfaces. Atomicity
[16, 21] (also known as linearizability [10]) is a desirable property for such objects
as it allows clients using the objects to perceive the operations that occur in each
run as occurring atomically, in some sequential order. This perception makes it
easier to understand the behavior of a system using distributed services, and so,
simplifies the task of system design.

Atomic services could be implemented simply on single server machines. How-
ever, to achieve high availability in a distributed system and to tolerate failures,
atomic services are typically implemented by distributed algorithms. Many dis-
tributed algorithms have been proposed for implementing atomic objects; see,
? This work is supported by MURI–AFOSR SA2796PO 1-0000243658, USAF–AFRL

#FA9550-04-1-0121, NSF Grant CCR-0121277, NSF-Texas Engineering Experiment
Station Grant 64961-CS, and DARPA F33615-01-C-1896.



for example, [17, 15, 36, 27, 33, 32, 10, 35, 14, 19, 18, 22, 23, 8]. These use a range
of techniques to achieve the appearance of total ordering, for example, assign-
ing timestamps and processing operations in timestamp order, or using quorum
configurations.

Although atomic object implementations are abundant, proving that algo-
rithms achieve atomicity has turned out to be a challenging problem. Most exist-
ing proofs for such algorithms are long, subtle, and difficult to understand and
check. As evidence of the difficulty, we note that several published proofs for
implementations of atomic shared read/write memory objects have later been
shown to be incorrect. We believe that a fundamental reason for the difficulty of
these proofs is their style: they are based on detailed, not-very-systematic, rea-
soning about events and their ordering. Useful structure in such proofs is often
provided by lemmas about partial orders of operations on objects, for example,
Proposition 3 of [16] (for single-writer read/write objects) and Lemma 13.16 of
[21] (for multi-writer read/write objects). These lemmas provide sufficient con-
ditions for correctness of atomic read/write object implementations, based on
a list of properties that a partial ordering of operations must satisfy. However,
showing that these properties hold still requires detailed, ad hoc reasoning about
events (see, e.g., [22, 23]).

In this paper, we study systematic ways of verifying distributed implemen-
tations of atomic objects, beginning with read/write objects (registers). Our
general approach is to replace operational reasoning about events and partial
orders with assertional reasoning about invariants and simulation relations. The
assertional methods differ from the traditional operational arguments in two
important ways. First, the system properties are stated precisely in terms of
predicates over the system state components. Second, assertional proofs can be
checked by examining individual state transitions of the algorithm without rea-
soning about entire executions. As such they lend themselves to mechanization,
i.e., the process of checking a proof can be carried out using interactive tools,
such as theorem provers.

Our approach to carrying out assertional atomicity proofs is first to define
an abstract state machine that captures the atomicity property and then, prove
correctness of the object implementations by establishing a simulation mapping
between the implementation and the specification automata. The challenge is
to find a specification automaton that is general enough to apply to many ex-
isting implementations, and at the same time sufficiently close to the actual
implementations to simplify the task of finding the mapping. One example of
an atomicity specification that turned out to be too abstract for carrying out
simulation proofs is the canonical atomic object automaton of Section 13.1.2
of [21]. The canonical object automaton maintains a buffer used to store incom-
ing client requests. Buffered requests can later be applied to the object state,
and the generated responses are returned to their originators. Unfortunately,
this specification, though simple, does not provide sufficient detail to allow for
easy match with concrete implementations.



We therefore, give more detailed specifications. Namely, we define an ab-
stract state machine, which we call the Partial-Order Machine (PO-Machine),
which records information about operations and their orders in its state. The
PO-Machine expresses the common behavior of many existing atomic register
implementations, in which client operation requests are gradually ordered rela-
tive to other operation requests until all the necessary ordering constraints are
achieved. The ordering constructed is, in the limit, guaranteed to be a partial
order of the requested operations that satisfies sufficient conditions for showing
atomicity.

We use the PO-Machine as a formal specification for distributed algorithms
that implement atomic memory. We show that it is implemented by three dif-
ferent read/write register constructions: the message-passing emulation of At-
tiya, Bar-Noy, and Dolev (ABD) [3] (extended to handle multiple writers as in
[23]), an optimized version of ABD that takes advantage of synchronized clocks
at writers [8], and the unbounded version of the shared memory construction
of a multi-writer/multi-reader register from single-writer/single-reader registers
of [36]. We also show that a slight modification of the PO-Machine, called the
TO-Machine, can be used to prove atomicity of a general (i.e., not necessarily
read/write) object implementation based on the replicated state machine proto-
col of Lamport [15].

We specify the PO-Machine and the algorithms formally using the I/O Au-
tomata (IOA)[20] and Timed IOA [12, 11] models, in fact, using formal spec-
ification languages that have been defined for these models. The IOA/TIOA
specification languages lead to very stylized assertional proofs for invariants and
simulation relations that can be partially automated using theorem provers.
Moreover, the same IOA specifications can be used by the IOA compiler [31, 30]
to produce executable Java code.

Other related work: Our use of a partial order automaton as an abstract spec-
ification was inspired by prior work of Fekete et al. on specifying the behavior
of an Eventually Serializable Data Service [9]. Their specification used a (dif-
ferent) partial-order machine, which expresses weaker consistency requirements
than atomicity. The algorithm studied in [9], based on an earlier algorithm of
Liskov et al. [13], was shown to achieve this weaker form of consistency.

The only other published simulation-based atomicity proofs we are aware of
are those of Bogdanov [5] (replicated state machine), and Doherty et al. (lock-
free queue) [7]. The proofs in both these papers are complicated: They involve
multiple levels of asbtraction as well as both forward and backward simulations.
In contrast, every construction considered in this paper is shown to be atomic
by exhibiting a single forward simulation directly from the implementation au-
tomaton to a specification automaton.

Another example of using assertional reasoning for proving atomicity is the
work by Wang and Stoller [37], which uses static analysis combined with model
checking to verify atomicity of code blocks involving lock-free synchronization
primitives. A more general discussion of assertional proof techniques can be
found in [28].



The rest of the paper is organized as follows: In Section 2, we introduce
preliminary definitions and notation used throughout the paper. The sufficient
condition for proving atomicity is specified in Section 3. The PO-Machine is
described in Section 4. The ABD algorithm is presented and proved correct in
Section 5. A time-based version of ABD is discussed in Section 6. Section 7
briefly discusses the proofs of the Vitanyi-Awerbuch’s register construction, and
of the Lamport’s replicated state machine. Section 8 discusses future directions.
For lack of space, we only outline intuition and highlight basic ideas underlying
the correctness proofs. The detailed proofs can be found in the full version of
the paper [6].

2 Preliminary Definitions

We use the I/O Automata (IOA)[20] model to formally specify services, describe
algorithms and carry out proofs. An I/O automaton is a non-determenistic state
machine whose state can change atomically through a discrete transition labeled
by a discrete action. The set of the automaton’s actions is called the action
signature of the automaton. The actions can be either external or internal. The
external actions, which can be either input or output , model interaction with
the automaton’s environment; and the internal actions model local computation
steps. In Section 6, we also use the Timed I/O Automata (TIOA) model [12,
11], which, in addition to discrete transitions, also allows the automata state to
evolve by trajectories, which describe evolution of the state over time.

We use forward simulations to carry out atomicity proofs. Informally, a for-
ward simulation is a relationship between the states of two automata requiring
that the transitions of one system can in some sense be mimicked by the other.
A precise definition of the simulation formalism can be found in [21].

The read/write service A read/write object (a register) type consists of the
following components: (1) an arbitrary set of values V with an initial value v0,
(2) the set of operations of the form write(v), v ∈ V , and read, (3) the set of
responses are ack and v ∈ V , and (4) the sequential specification f such that
f(w,write(v)) = (v, ack) and f(w, read) = (w,w).

A read/write service implements a shared read/write register. To access the
service, a client issues an operation descriptor consisting of a location identifier
loc, and an operation identifier id. In addition, the write operation descriptor
also contains a value val. We often refer to an operations descriptor x simply
as operation x, and denote its various components by x.loc, x.id, and x.val. We
denote by Ow and Or the sets of the write and the read operations respectively,
and by O = Ow ∪ Or the set of all operations. For a set X ⊆ O, we denote by
X.id = {x.id : x ∈ X} the set of identifiers of operations in X.

Clients use the actions of the form request(x), x ∈ O, and response(x, v), x ∈
O, v ∈ V ∪{ack}, to issue operation requests and receive responses respectively.
Given a sequence β of the request and response actions, an requested operation
x is said to be complete in β if β contains response(x, v) for some v ∈ V ∪ {ack}
which we call the return value of x.



We say that β is well-formed if there exists a function cause mapping each
response event to a preceding request event in β so that the following is satisfied:
(1) For each response event e = response(x, ∗), cause(e) = request(x) (i.e., re-
sponses are not spuriously generated); and (2) cause is one-to-one (i.e., responses
are not duplicated)1.

The following definition will be used throughout the paper: Let Π be a set of
read and write operations, and R be a binary relation over Π. For an operation
π ∈ Π we define last-prec-writes(π,R) = {ω ∈ Ow : (ω, π) ∈ R ∧ 6 ∃ω′ ∈ Ow :
(ω, ω′) ∈ R ∧ (ω′, π) ∈ R}.

3 Atomicity

Atomicity (or linearizability) is specified as a property satisfied by the object
implementation traces. It is typically defined in terms of the existence of serial-
ization points for operations so that shrinking the operations to occur at their
serialization points results in a valid sequential execution of the read/write reg-
ister (see, e.g., Chapter 13 of [21], Chapter 9 of [4], or [10]). For our purposes in
this paper, it is enough to give a sufficient condition for proving atomicity; this
condition is equivalent to the one in Lemma 13.16 of [21].

Let β be a well-formed sequence of the actions of the read/write service
interface that contains no incomplete operations, and Π be the set of opera-
tions requested in β. We say that β satisfies Partial Order property (henceforth,
referred to as PO) if there exists an irreflexive partial ordering ≺ of all the
operations in Π, satisfying the following:

Property 1 (PO Constraints)

1. If the response event for π precedes the request event for φ in β, then φ 6≺ π.
2. For any two write operations π and φ in Π, either π ≺ φ or φ ≺ π.
3. If π is a write operation in Π and φ is a read operation in Π whose request

event follows the response event for π, then π ≺ φ.
4. If π is a read operation in Π and φ is a read operation whose request event

follows the response event for π, then for each ω ∈ last-prec-writes(π,≺),
ω ≺ φ.

5. Let π be a read operation in Π, and v be the value returned by π. If
last-prec-writes(π,≺) 6= ∅, then v = ω.val for some
ω ∈ last-prec-writes(π,≺). Otherwise, v = v0.

The following lemma is proved in [6]:

Lemma 1. β satisfies PO iff there exists an irreflexive partial ordering of all
the operations in Π, satisfying the (more restrictive) constraints of Lemma 13.16
of [21].

From the above result and Lemma 13.16 of [21], we obtain:

Lemma 2. If β is well-formed and satisfies PO, then β satisfies atomicity.
1 Note that our notion of well formedness is weaker than that usually found in the

literature as it allows requests from the same location to be issued concurrently.



4 The PO-Machine

In this section we define the Partial-Order Machine. First, we formally specify
the environment assumptions of the read/write service. This environment is
represented by a single automaton, called Users, whose code could be found
in [6]. The Users automaton contains a single variable requested to keep track
of the ids of requested operations, in order to avoid repeats. An implementation
of the environment would not have such a variable, but would use some other
mechanism to ensure unique operation ids (e.g., client id and a counter).

Lemma 3. For x, y ∈ requested, x = y ⇔ x.id = y.id.

The PO-Machine signature and state variables appear in Figure 1, and its
transitions appear in Figure 2. This automaton maintains a partial order in
its state, represented by variables vertices and edges. Vertices correspond to
requested operations, and edges to ordering relationships that have been deter-
mined for these operations. When a request arrives, it is put into vertices; later,
it becomes classified as ordered, then completed, and finally, responded. Edges
may be added at any time from ordered write operations to unordered ones (see
action add-edge).

An unordered operation π may become ordered at any time after it has
acquired incoming edges from all write operations that completed before π began
(i.e., all writes in prec(π)). This ensures that constraints 1 and 3 of Property 1
hold among all writes, and between writes and reads. Constraint 1 is also trivially
preserved among reads as edges originating at read requests are disallowed by
the PO signature (see Figure 1). When a write operation π becomes ordered,
new edges are inserted to ensure that π is ordered with respect to all previously-
ordered write operations (see action order) so that constraint 2 of Property 1 is
satisfied.

An ordered operation may become completed at any time; when a read oper-
ation φ completes, it also forces each write operation π immediately preceding φ
in the partial order to complete. This ensures that every read operation invoked
after φ completes will find π in its prec set, and will therefore, become ordered
only after it has an incoming edge from π. This guarantees that constraint 4 of
Property 1 is satisfied, and also captures the essence of the “helping” mechanism
found in many atomic register implementations.

A completed operation is allowed to return a response. The response returned
by a read operation is the value written by the last preceding (in the partial
order) write operation, or the initial value if no such write exists (see action
response). Thus, constraint 5 of Property 1 is satisfied.

In [6], we prove that the limit of the transitive closure of (vertices, edges),
maintained in the derived variable dag, satisfies Property 1. Since every trace
of PO-Machine is obviously well-formed, by Lemma 2, PO-Machine implements
an atomic register:

Theorem 1. Each trace of the PO-Machine satisfies atomicity.



Signature:

Input:
request(x), x ∈ O

Output:
response(x, v), x ∈ O,

v ∈ V ∪ {ack}

Internal:
add-edge(x, y), x ∈ Ow , y ∈ Ow ∪ Or
order(x), x ∈ O
complete(x), x ∈ O

State:

vertices ⊆ O, initially empty
ordered ⊆ O, initially empty
completed ⊆ O, initially empty

responded ⊆ O, initially empty
edges ⊆ O × O, initially empty
prec is a partial function from O to subsets of O,

initially empty

Derived vars:

dag, the transitive closure of (vertices, edges)

For x ∈ Or , last-writes(x) = last-prec-writes(x, dag)

Fig. 1. PO-Machine signature and states

Input request(x)
Effect:

vertices := vertices ∪ {x}
prec(x) := completed ∩ Ow

Internal add-edge(x, y)
Precondition:

y ∈ vertices − ordered
x ∈ ordered

Effect:
edges := edges ∪ {(x, y)}

Internal order(x), x ∈ Ow
Precondition:

x ∈ vertices − ordered
∀y ∈ prec(x) : (y, x) ∈ dag

Effect:
edges := edges ∪ {(x, y) : y ∈ ordered ∩ Ow ∧

(y, x) 6∈ dag}
ordered := ordered ∪ {x}

Internal order(x), x ∈ Or
Precondition:

x ∈ vertices − ordered
∀y ∈ prec(x) : (y, x) ∈ dag

Effect:
ordered := ordered ∪ {x}

Internal complete(x)
Precondition:

x ∈ ordered − completed
Effect:

completed := completed ∪ {x}
if x ∈ Or then
∀y ∈ last-writes(x) do

completed := completed ∪ {y}

Output response(x, ack), x ∈ Ow
Precondition:

x ∈ completed − responded
Effect:

responded := responded ∪ {x}

Output response(x, v0), x ∈ Or
Precondition:

x ∈ completed − responded
last-writes(x) = ∅

Effect:
responded := responded ∪ {x}

Output response(x, v), x ∈ Or
Precondition:

x ∈ completed − responded
last-writes(x) 6= ∅
v = w.val : w ∈ last-writes(x)

Effect:
responded := responded ∪ {x}

Fig. 2. PO-Machine transitions

5 The Attiya, Bar-Noy, and Dolev Algorithm

In this section, we present a distributed wait-free implementation of an atomic
multi-writer/multi-reader register based on the well-known message-passing al-
gorithm of Attiya, Bar-Noy, and Dolev [3] (which we call ABD). We prove cor-
rectness of ABD by showing that ABD implements PO-Machine, which by The-
orem 1, implies that ABD implements an atomic register.

The original ABD protocol implements a wait-free atomic read/write regis-
ter using a collection of n processes communicating among themselves through
reliable point-to-point channels. The implementation is resilient to up to n/2 pro-
cess crashes. Each process in ABD is responsible for both: handling the client
operation requests, and storing and updating the local copy of the register value.



Here, we present a generalized version of ABD where we let the two roles in
the ABD protocol be performed by two classes of agents: clients and replicas.
This design allows for flexibility in assigning roles to actual network locations
thus simplifying the algorithm deployment in real systems. We also use a sepa-
rate client to handle each user request so that the actual clients can handle any
number of requests and in whatever order (for example, requests can be par-
titioned among several threads, or executed sequentially). Our implementation
also supports multiple writers using the technique of [23].

We now describe the ABD implementation (the ABD automaton) in more
detail. Let P be a finite set of replicas. We define a quorum system Q on P to
be the union of a set of write quorums Qw and the set of read quorums Qr.
Qw and Qr are sets of subsets of P such that for each Qw ∈ Qw and Qr ∈ Qr,
Qw ∩Qr 6= ∅. The ABD automaton is the composition of the Users automaton
of Section 4, the client automata Cx, x ∈ O, the replica automata Rp, p ∈ P ,
and the reliable point-to-point channel automata connecting each client Cx with
replica Rp and vice versa. The client’s interface and state variables appear in
Figure 3. The code of the reader client, the writer client and the replica appear
in Figures 4, 5, and 6 respectively. We do not present the specification for the
channel automata as their functionality is obvious.

The value stored at each replica is associated with a tag. Tags are two-field
records consisting of a sequence number sn, which is a non-negative integer, and
a request identifier id. Tags are ordered lexicographically with the precendence
to the sequence number field.

Clients access read (resp. write) quorums by first sending a message to all
the replicas, and then awaiting responses from a write (resp. a read) quorum.
The request handling at clients involves two rounds of quorum accesses, called
the read phase and the write phase respectively, such that a read quorum is
contacted during the read phase, and a write quorum is contacted during the
write phase. A client keeps track of the request progress through the phases
using the variable status. The operation’s status is initially idle. It is changed
to pending (p) at the beginning of the read phase. It becomes sending (s) at the
beginning of the write phase. It is changed to committed (c) upon completion of
the write phase, and finally to responded (r) after a response is returned.

Specifically, to handle a write request x, the client Cx (see Figure 5) performs
a read phase to determine the highest tag t associated with the values stored at
some read quorum. It then performs a write phase to store the value v associated
with tag (t.sn, x.id) at a write quorum. It then responds with ack. To handle a
read request y, client Cy (see Figure 4) first performs a read phase to determine
the value v associated with the highest tag t among those associated with the
values stored at some read quorum. It then performs a write phase to guarantee
that the pair (t, v) is stored at a write quorum. It then responds with v.

The replica’s algorithm (see Figure 6) is simple: In response to a read phase
message, a replica p either responds with its current tag (for write requests), or
the current tag and the value (for read requests). In response to a write phase
message carrying a tag which is bigger than p’s current tag, p overwrites its



current tag and the value with those in the message. Otherwise, the p’s state is
left unchanged. In both cases, p responds with ack.

Types:

T ag = N≥0 × O.id, with selectors sn and id, ordered lexicographically

P hase = {idle, p, s, c, r}, ordered so that idle < p < s < c < r

Signature:
Input:

request(x)
receive(m)p,x, p ∈ P , m ∈ {ack} ∪

N≥0 ∪ (T ag × V )

Output:
response(x, v), v ∈ V ∪ {ack}
send(m)x,p, p ∈ P , m ∈ {r, w} ∪

(T ag × V )

Internal:

rq-collected(q)x, q ∈ Qr

wq-collected(q)x, q ∈ Qw

State:
status ∈ P hase, initially idle
val ∈ V , initially undefined
tag ∈ T ag, initially (0, i0)

read-resp ∈ P , initially empty
write-resp ∈ P , initilly empty
for each p ∈ P : req-bufferp ∈ seqof({r, w} ∪

(T ag × V )), initially λ

Fig. 3. The state and signature of client automata Cx, x ∈ O for ABD.

Input request(x)
Effect:

status := p
for each p ∈ P :

append 〈r〉 to req-bufferp

Input receive(v, t)p,x
Effect:

read-resp := read-resp ∪ {p}
if status = p ∧ t > tag then

val := v
tag := t

Internal rq-collected(q)x
Precondition:

status = p
read-resp ⊇ q

Effect:
status := s
for each p ∈ P :

append 〈tag, val〉 to req-bufferp

Input receive(ack)p,x
Effect:

write-resp := write-resp ∪ {p}

Internal wq-collected(q)x
Precondition:

status = s
write-resp ⊇ q

Effect:
status := c

Output response(x, v)
Precondition:

status = c
val = v

Effect:
status := r

Output send(m)x,p
Precondition:

req-bufferp 6= λ

m = head(req-bufferp)
Effect:

delete head of req-bufferp

Fig. 4. Transitions of reader Cx, x ∈ Or for ABD.

Correctness of ABD: We now prove that ABD implements an atomic register.
Our strategy will be to show that ABD implements PO-Machine by exhibiting a
forward simulation from ABD to PO-Machine. In the following, for each x ∈ O,
we will use subscript x to refer to the state variables of Cx. It is convenient
for the ABD correctness proof to define several derived variables for the ABD
automaton. These are summarized in Figure 7.



Input request(x)
Effect:

status := p
for each p ∈ P :

append 〈w〉 to req-bufferp

Input receive(sn)p,x, sn ∈ N≥0

Effect:
read-resp := read-resp ∪ {p}
if status = p ∧ sn > tag.sn then

tag.sn := sn

Internal rq-collected(q)x
Precondition:

status = p
read-resp ⊇ q

Effect:
status := s
tag.sn := tag.sn + 1
for each p ∈ P :

append 〈tag, x.val〉 to req-bufferp

Input receive(ack)p,x
Effect:

write-resp := write-resp ∪ {p}

Internal wq-collected(q)x
Precondition:

status = s
write-resp ⊇ q

Effect:
status := c

Output response(x, ack)
Precondition:

status = c

Effect:
status := r

Output send(m)x,p
Precondition:

m = head(req-bufferp)
Effect:

delete head of req-bufferp

Fig. 5. Transitions of writer Cx, x ∈ Ow for ABD.

Signature:

Input:
receive(m)x,p, x ∈ O, m ∈ {r, w} ∪ (T ag × V )

Output:
send(m)p,x, x ∈ O, p ∈ R, m ∈ {ack} ∪ (T ag × V )

State:

val ∈ V , initially v0

tag ∈ T ag, initially (0, i0)

For each x ∈ O: resp-bufferx ∈ seqof({ack} ∪ N≥0 ∪ (T ag × V )), initially λ

Transitions:

Input receive(r)x,p
Effect:

append 〈val, tag〉 to resp-bufferx

Input receive(w)x,p
Effect:

append 〈tag.sn〉 to resp-bufferi

Input receive(t, v)x,p
Effect:

if t > tag then
tag := t
val := v

append 〈ack〉 to resp-bufferx

Output send(m)p,x
Precondition:

resp-bufferx 6= λ
m = head(resp-bufferx)

Effect:
delete head of resp-bufferx

Fig. 6. Replica automaton Rp, p ∈ P for ABD

Among these variables, the most interesting one is min-tag which is used to
keep track of the lowest possible tag that could ever be determined by a client at
the end of the read phase. At the beginning and before any replica has responded,
min-tag is the smallest tag among the maximum tags carried by replicas in every
read quorum. As the client is progressing through the read phase it might get a
response from a replica whose tag is bigger than the current value of min-tag .
In this case, the definition of min-tag ensures that min-tag is assigned to that
higher value. Finally, upon completion of the read phase, the value of min-tag
is fixed to be the maximum tag received during the phase. The simulation proof
relies on the following key property of min-tag :

Lemma 4. For each x ∈ O, min-tag(x) is non-decreasing.

The simulation mapping from the states of ABD to the states of the PO-
Machine appears in Figure 8. The first four components of the mapping are



– pending = {x ∈ O : statusx ≥ p}
– ordered = {x ∈ O : statusx ≥ s}
– completed = {x ∈ O : statusx ≥ c}
– responded = {x ∈ O : statusx ≥ r}
– For r ∈ Or : last-writes(r) = {w ∈ Ow ∩ ordered : s.tagw = s.tagr}
– For x ∈ O, p ∈ P :

new-tag(x, p) =

{
t, if ∃v ∈ V : 〈v, t〉 ∈ resp-bufferp,x ∪ channelp,x
(sn, x.id), if 〈sn〉 ∈ resp-bufferp,x ∪ channelp,x
tagp, otherwise

– For x ∈ O:

min-tag(x) =

{
max[tagx, minQ∈Qr

max{new-tag(x, p) : p ∈ Q \ read-respx}],
if ∀Q ∈ Qr , read-resp 6⊇ Q

tagx, otherwise

Fig. 7. Derived variables for the ABD automaton

straightforward: All the operations that have ever been requested (indicated by
status > idle) are mapped to vertices; the operations that have completed the
read phase and acquired final tags (indicated by status > p) are mapped to
ordered; and the operations that have responded (indicated by status > c) are
mapped to responded.

The set of edges consists only of edges among operations that have completed
their read phases (8.7). The edges among these operations are determined by
their tag order and type. Specifically, any two writes x and y, such that tagx <
tagy, are connected by edge (x, y) (8.8); and each read x and write y such
that tagx = tagy, are connected through edge (y, x) (8.9). To maintain the
mapping for edges, each rq-collected(x) for x ∈ Ow is simulated by a sequence of
add-edge(y, x) for each ordered write operation y such that tagy ≤ tagx, followed
by order(x); and each rq-collected(x) for x ∈ Ow is simulated by a sequence of
add-edge(y, x) for each ordered operation y such that tagy = tagx. No actions
involving unordered operations (i.e., the operations with status < s) result in
adding new edges.

f is the relation over states(P O − Machine) × states(ABD) such that each (s, u) ∈ f iff:

1. u.requested = s.requested
2. u.vertices = s.pending
3. u.ordered = s.ordered

4. u.completed = s.completed ∪
⋃

r∈Or∩s.completed
s.last-writes(r)

5. u.responded = s.responded
6. For all x ∈ u.vertices, if y ∈ u.prec(x), then s.tagy ≤ s.min-tag(x)
7. u.dag ⊆ s.ordered × s.ordered
8. For all x, y ∈ Ow ∩ u.ordered, if (x, y) ∈ u.dag, then s.tagx < s.tagy
9. For all x ∈ Ow ∩ u.ordered and y ∈ Or ∩ u.ordered, (x, y) ∈ u.edges iff s.tagx = s.tagy

Fig. 8. Forward simulation from ABD to PO-Machine

The most interesting part of the proof is to show that order(x) becomes
enabled once all the (y, x) edges have been added. For that we need to show
that the tag acquired by x at the end of the read phase is at least as big as
the tag of every operation that had completed before x began. Since at the



end of the read phase, tagx = min-tag(x), the necessary enabling condition is
provided by part 8.6 of the mapping that requires that for each y ∈ prec(x),
tagy ≤ min-tag(x).

To show that 8.6 is maintained throughout the read phase of x, request(x)
is simulated by the request(x) action of the PO-Machine; and each receive is
simulated by the empty sequence. Since at the time x is invoked, the tag of every
y ∈ prec(x) has been stored at a write quorum of replicas, and because every pair
of write and read quorums intersects, minQ∈Qr

maxp∈Q{tagp} ≥ tagy. Hence, 8.6
is preserved by request(x). Finally, since min-tag(x) is non-decreasing (Lemma 4)
and prec(x) is not affected by any action except request, 8.6 is preserved by
receive. Hence, by the end of the read phase of x, for each y ∈ prec(x), tagy ≤
min-tag(x) as required.

We argued informally that the mapping in Figure 8 is a forward simulation
from ABD to the PO-Machine. A detailed proof appears in [6].

Lemma 5. The mapping in Figure 8 is a forward simulation from ABD to the
PO-Machine.

Since by Theorem 1, each trace of the PO-Machine satisfies atomicity, the
same is true for every trace of ABD:

Theorem 2. Each trace of ABD satisfies atomicity.

Automated Tools Support: We have used the TIOA to PVS translator and TAME
library [2] to generate descriptions of the PO-Machine and the ABD algorithm
in the language of the Prototype Verification System (PVS) [26]. We used PVS
to substantially increase the level of detail and assurance of some of our previous
hand proofs. In fact, we discovered several gaps and bugs in our hand proofs.
Automatic translation enabled us to easily tweak the simulation relations and
rerun the proof scripts. We also used the IOA code generator tool [31, 30] to
compile the verified ABD automaton into an executable Java code. This way,
a single formal representation of the ABD algorithm was used for specification,
verification, and execution.

6 Timed ABD

In this section, we present an optimized version of the ABD protocol, called
Timed-ABD, that takes advantage of perfectly synchronized clocks at the writers
to eliminate the read phase of the write implementation (see [8]).

The Timed-ABD is the composition of the following timed automata: the
replica and reader client automata in Figures 6 and 4 respectively augmented
with arbitrary trajectories that keep their state unchanged; and the writer client
automata whose code appears in Figure 9. To model synchronized clocks, each
writer maintains a local variable clock whose trajectory is d(clock) = 1 (i.e., the
clock value grows continuously, at the same rate as the real time).

The writer algorithm is as follows: To write a value, the writer first takes its
current clock reading, and then delays its execution until its clock exceeds the



Signature:

Input:
request(x)i

receive(m)p,x, p ∈ P , m ∈ {ack} ∪ N≥0

Internal:
orderx
wq-collected(q)x, q ∈ Qw

Output:
response(x, v), v ∈ {ack}
send(m)x,p, m ∈ {w} ∪ (T ag × V )

State:
clock ∈ R, initially 0
Discrete req-time ∈ R, initially 0
status ∈ P hase, initially idle

tag ∈ T ag, initially (0, x.id)
write-resp ⊆ P , initilly empty
for each p ∈ P : req-bufferp ∈ seqof({w} ∪ (T ag × V )),
initially λ

Transitions:

Input request(x)
Effect:

status := p
req-time := clock

Internal orderx
Precondition:

clock > req-time
status = p

Effect:
tag.sn := clock
status := s
for each p ∈ P :

append 〈tag, x.val〉 to req-bufferp

Trajectories:

evolve

d(clock) = 1

All the other state variables are kept unchanged

Input receive(ack)p,x
Effect:

write-resp := write-resp ∪ {p}

Internal wq-collected(q)x
Precondition:

status = s
write-resp ⊇ q

Effect:
status := c

Output response(x, ack)
Precondition:

status = c
Effect:

status := r

Output send(m)x,p
Precondition:

m = head(req-bufferp)
Effect:

delete head of req-bufferp

Fig. 9. Writer client Cx, x ∈ Ow for Timed-ABD

initial reading. The second clock reading is used as the tag with which the client
performs the write phase.

The simulation mapping from the states of Timed-ABD to the states of
Timed-PO (i.e., the PO-Machine augmented with arbitrary trajectories that do
not change its state) appears in Figure 10. To see that the mapping is preserved,
we observe that a write operation becomes ordered once it is verified that a
non-zero amount of time has elapsed since it was requested. We therefore, simu-
late each Timed-ABD trajectory corresponding to a non-zero time interval by a
trajectory of Timed-PO of the same length, followed by a sequence of add-edge
actions, followed by order. The rest of the simulation proof is straightforward
(see [6] for details).

f is the relation over states(Timed-ABD) × states(Timed-PO) such that (s, u) ∈ f iff:

1-5: Identical to 1-5 in Figure 8
6: For all x ∈ u.vertices ∩ Or , if y ∈ u.prec(x), then s.tagy ≤ s.min-tag(x)

7-8: Identical to 7-8 in Figure 8
9: For all x ∈ u.vertices ∩ Ow , if y ∈ u.prec(x), then s.tagy.sn ≤ s.req-timex

10: For all x ∈ (u.vertices − u.ordered) ∩ Ow , y ∈ u.ordered ∩ Ow , if s.tagy.sn < s.clockx, then (y, x) ∈
u.edges.

Fig. 10. Forward simulation from Timed-ABD to Timed-PO



7 Other Algorithms

We discuss briefly how to prove atomicity of the unbounded multi-writer/multi-
reader register construction of Vitanyi and Awerbuch [36] (referred to henceforth
as VA), and of a general atomic object implementation based on the replicated
state machine algorithm of Lamport [15] (referred to henceforth as RSM).

First, we observe that VA can be recast as a special case of ABD with the
write quorums being the rows and the read quorums being the collumns of the
matrix. Therefore, the simulation proof of VA is almost identical to that of ABD.
In particular, it is easy to see that the simulation from ABD to PO-Machine in
Figure 8 is also a forward simulation from VA to PO-Machine.

To prove atomicity of RSM, we use a simplified version of the PO-Machine,
called TO-Machine. The TO-Machine constructs a single total order of all the
requested operations. In particular, every operation becomes ordered only after
it is ordered relative to all the other ordered operations. The TO-Machine is
parameterized by the emulated object sequential specification and initial state
which are used to compute responses. The simulation proof is based on the ob-
servation that in RSM, an operation x becomes ordered once the local timestamp
at each replica becomes greater than that of x. The full proof appears in [6].

8 Conclusions and Future Work

Our work with four algorithms so far suggests to us that our PO-Machine (or
small variants) may be general enough to capture many of the existing atomic
register algorithms. We plan to use these methods to study a wider variety of al-
gorithms, such as bounded-timestamp-based constructions (see e.g., [34]), whose
proofs have been notoriously difficult and bug-prone. An interesting challenge
will be to extend our framework to capture implementations that are not ex-
plicitly based on timestamps, for example, the construction that creates atomic
bits from safe bits [32]. Another interesting direction deals with adapting the
PO-Machine to capture weaker register semantics, such as safe registers, reg-
ular registers (including the multi-writer regular registers of Welch [29]), and
sequentially consistent registers. There is an increased recent interest in these
semantics as they capture the guarantees provided by many Byzantine-resilient
storage systems [24, 25, 1] based on Byzantine quorums [24].

Yet another interesting application domain for our techniques is the verifi-
cation of multi-threaded programs based on lock-free synchronization primitives
(such as CAS, LL/SC, etc.). This area has recently been receiving an increased
attention due to the growing popularity of multi-processor computing platforms,
and the introduction of lock-free synchronization primitives into the Java con-
currency package.

Finally, we are interested in identifying common patterns behind many di-
verse implementations of atomic objects. This will make it easier to understand
and compare different algorithms. We expect that such patterns should be ex-
pressible in terms of common specification automata (e.g., a unified version of
the PO- and TO-Machines).



References

1. Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos: Optimal resilience
with byzantine shared memory. In Proceedings of the 23st ACM Symposium on Principles of Distributed Computing
(PODC’04), pages 226–235, St John’s Newfoundland, Canada, July 2004.

2. Myla Archer. TAME: PVS Strategies for special purpose theorem proving. Annals of Mathematics and Artificial
Intelligence, 29(1/4), February 2001.

3. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems. Journal
of the ACM, 42(1):124–142, January 1995.

4. Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and Advanced Topics. McGraw-Hill
Publishing Company, UK, 1998.

5. Andrej Bogdanov. Formal verification of simulations between i/o automata. Master’s thesis, Massachusetts
Institute of Technology, July 2001.

6. G. Chockler, N. Lynch, S. Mitra, and J. Tauber. Proving atomicity: An assertional approach. Technical Report
MIT/LCS/TR-XXX, MIT Laboratory for Computer Science, 2005.

7. Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal verification of a practical lock-free
queue algorithm. In FORTE, pages 97–114, 2004.

8. Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Alex A. Shvartsman, and Jennifer L. Welch. GeoQuorums:
Implementing atomic memory in ad hoc networks.

9. Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman. Eventually-serializable data
services. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing, pages 300–309,
Philadelphia, PA, May 1996.

10. Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

11. D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The theory of timed I/O automata.
Technical Report MIT/LCS/TR-917a, MIT Laboratory for Computer Science, 2004. Available at
http://theory.lcs.mit.edu/tds/reflist.html.

12. Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed I/O automata: A mathematical
framework for modeling and analyzing real-time system. In RTSS 2003: The 24th IEEE International Real-Time
Systems Symposium, Cancun,Mexico, December 2003.

13. Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high availability using lazy
replication. ACM Transactions on Computer Science, 10(4):360–391, 1992.

14. L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169, May 1998. Ear-
lier version in Research Report 49, Digital Equipment Corporation Systems Research Center, Palo Alto, CA,
September 1989.

15. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

16. Leslie Lamport. On interprocess communication: Part I and II. Dist. Comput., 1:77–101, 1986.
17. Leslie Lamport. On interprocess communication, Part II: Algorithms. Distributed Computing, 1(2):86–101, April

1986.
18. Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column), 32(4):18–25, December

2001.
19. Butler Lampson. The ABCD’s of paxos. In Proceedings of the Twentieth Annual ACM symposium on Principles of

Distributed Computing, Newport, RI, August 2001.
20. N. A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata. CWI Quarterly, 2(3):219–246, 1989.
21. Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo, CA, March 1996.
22. Nancy Lynch and Alex Shvartsman. Robust emulation of shared memory using dynamic quorum-acknowledged

broadcasts. In Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing (FTCS’97), pages 272–281,
Seattle, Washington, USA, June 1997. IEEE.

23. Nancy Lynch and Alex Shvartsman. RAMBO: A reconfigurable atomic memory service for dynamic networks.
In D. Malkhi, editor, Distributed Computing (Proceedings of the 16th International Symposium on DIStributed Computing
(DISC), Toulouse, France, October 2002), volume 2508 of Lecture Notes in Computer Science, pages 173–190. Springer-
Verlag, 2002. Also, Technical Report MIT-LCS-TR-856.

24. Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Journal of Distributed Computing, 11(4):203–213,
1998.

25. J. P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In 16th International Symposium on Distributed
Computing (DISC’02), Toulouse, France, Lecture Notes in Computer Science, pages 311–325. Springer-Verlag, 2002.

26. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining specification, proof checking,
and model checking. In Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided Verification, CAV ’96,
number 1102 in Lecture Notes in Computer Science, pages 411–414, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

27. Gary L. Peterson and James E. Burns. Concurrent reading while writing II: The multi-writer case. In 28th
Annual Symposium on Foundations of Computer Science, pages 383–392, Los Angeles, California, October 1987. IEEE.

28. A. Udaya Shankar. An introduction to assertional reasoning for concurrent systems. ACM Comput. Surv.,
25(3):225–262, 1993.

29. Cheng Shao, Evelyn Pierce, and Jennifer L. Welch. Multi-writer consistency conditions for shared memory
objects. In Proceedings of the 17th International Conference on Distributed Computing (DISC), pages 106–120, October
2003.

30. Joshua A. Tauber. Verifiable Compilation of I/O Automata without Global Synchronization. PhD thesis, Massachusetts
Institute of Technology, Cambridge,MA, September 2004.

31. Joshua A. Tauber, Nancy A. Lynch, and Michael J. Tsai. Compiling IOA without global synchronization. In
Proceedings of the The 3rd IEEE International Symposium on Network Computing and Applications, (IEEE NCA04), pages
121–130, September 2004.

32. John Tromp. How to construct an atomic variable. In LNCS 392, Proc. 3rd International Workshop On Distributed
Algorithms, pages 292–302. Springer-Verlag, 1989.

33. K. Vidyasankar. Concurrent reading while writing revisited. Distributed Computing, 4:81–85, 1990.
34. Paul Vitanyi. Simple wait-free multireader registers. In Proceedings of the 16th International Symposium on Distributed

Computing (DISC’02), volume 2508 of Lecture Notes in Computer Science, pages 118–132. Springer-Verlag, Berlin,
2002.

35. Paul M. B. Vitányi. Distributed elections in an Archimedean ring of processors. In Proceedings of the Sixteenth
Annual ACM Symposium on Theory of Computing, pages 542–547, Washington, D.C., April/May 1984.

36. P.M.B. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hardware. In 27th IEEE Annual
Symposium on Foundations of Computer Science, pages 233–243, 1986.

37. Liqiang Wang and Scott D. Stoller. Static analysis for programs with non-blocking synchronization. In Proc.
ACM SIGPLAN 2005 Symposium on Principles and Practice of Parallel Programming (PPoPP). ACM Press, June 2005.




