
Etna: a Fault-tolerant Algorithm for Atomic Mutable DHT Data

Athicha Muthitacharoen Seth Gilbert Robert Morris
athicha@lcs.mit.edu sethg@mit.edu rtm@lcs.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory
The Stata Center, 32 Vassar St, Cambridge, MA 02139

Phone: (617) 253-0004 Fax: (617) 258-8607

Abstract

This paper presents Etna, an algorithm for atomic reads
and writes of replicated data stored in a distributed hash
table. Etna correctly handles dynamically changing sets
of replica hosts, and is optimized for reads, writes, and
reconfiguration, in that order.

Etna maintains a series of replica configurations as
nodes in the system change, using new sets of repli-
cas from the pool supplied by the distributed hash table
system. It uses the Paxos protocol to ensure consensus
on the members of each new configuration. For simplic-
ity and performance, Etna serializes all reads and writes
through a primary during the lifetime of each configu-
ration. As a result, Etna completes read and write oper-
ations in only a single round from the primary.

Experiments in an environment with high network de-
lays show that Etna’s read latency is determined by
round-trip delay in the underlying network, while write
and reconfiguration latency is determined by the trans-
mission time required to send data to each replica.
Etna’s write latency is about the same as that of a
non-atomic replicating DHT, and Etna’s read latency is
about twice that of a non-atomic DHT due to Etna as-
sembling a quorum for every read.

1 Introduction

Distributed hash tables (DHTs) [23, 19] provides a scal-
able way to store and retrieve data among a large and
dynamic set of participating host nodes. Most existing
DHTs provide good support for immutable data. How-
ever, DHTs that provide fault-tolerant mutable data typ-
ically provide no consistency guarantees. There are an
increasing number of applications built on top of DHTs
that require stronger consistency. These include sys-
tems for messaging [7], sharing read/write files [16], re-
solving names of web objects [26], maintaining bulletin
boards [21], and searching large text databases [24]. All

of the cited examples depend on a DHT to store and
replicate their data, and all of them either assume mu-
table DHT storage or could be simplified if consistent
mutable data were supported.

Existing work on reconfigurable atomic memory ser-
vice, RAMBO [13, 8], is suitable for a dynamic set of
participants, and could be used to provide consistent
mutable data in a DHT. However, RAMBO allows mul-
tiple active configurations of replicas at any time. As a
result, reads and writes in RAMBO can be costly, since
RAMBO has to assemble a quorum in every active con-
figuration.

Forseeing the need for efficient and consistent muta-
ble DHT data, we present Etna, a new algorithm for
atomic read/write replicated DHT objects. Etna guar-
antees atomicity regardless of network behavior; for ex-
ample, it will not return stale data during network parti-
tions. It maintains one consistent configuration per ob-
ject. Hence, different objects are replicated on different
set of nodes, which makes Etna scalable. Etna uses a
succession of configurations to ensure that only the sin-
gle most up-to-date quorum of replicas can execute op-
erations. Etna handles configuration changes using the
Paxos distributed consensus algorithm [11]. Etna is de-
signed for low message complexity in the common case
in which reads and writes are more frequent than recon-
figurations: both reads and writes involve only a single
round of communication.

We have implemented Etna on top of the Chord DHT.
Experiments in an environment with high network de-
lays show that Etna’s read latency is determined by
round-trip delay in the underlying network, while write
and reconfiguration latency is determined by the trans-
mission time required to send data to each replica.
Etna’s write latency is about the same as that of a
non-atomic replicating DHT, and Etna’s read latency is
about twice that of a non-atomic DHT due to Etna as-
sembling a quorum for every read.

1

This paper contains two primary contributions. First,
we introduce the first complete design and imple-
mentation of an atomic update algorithm in a com-
plete DHT 1. Second, we provide experimental results
demonstrating the performance of the working imple-
mentation.

The rest of this paper includes an overview of related
work in Section 2, a description of our system model in
Section 3, a summary of existing ideas and their inter-
actions with Etna in Section 4, a description of the Etna
algorithm in Section 5, a proof of atomicity in Section 6,
a performance analysis in Section 7, and a preliminary
evaluation of an implementation in Section ??.

2 Related Work

A few DHT proposals address the issue of atomic data
consistency in the face of dynamic membership. Ro-
drigues et al. [20] use a small configuration service
to maintain and distribute a list of all the non-failed
nodes. Since every participant is aware of the complete
list of active nodes, it is easy to transfer and replicate
data while ensuring consistency. However, maintaining
global knowledge may limit the approach to small or
relatively static systems. Etna uses the Chord DHT [22]
to manage the dynamic environment, and augments the
basic service to guarantee robust, mutable data.

There have been many quorum-based atomic read/write
algorithms developed for static sets of replica hosts (for
example [25, 2]). These algorithms assume that the par-
ticipants are known in advance, and that the number of
failures is bounded by a constant.

Group communication services [9] and other virtually
synchronous services [3] support the construction of ro-
bust and dynamic systems. These algorithms provide
stronger guarantees than are required for mutable data
storage, implementing totally-ordered broadcast, which
effectively requires consensus to be performed for ev-
ery operation. As a result, the GCS algorithms work
best in a low-latency LAN environment. Also, in most
GCS systems, whenever a node joins or leaves, a new
“view” (i.e., configuration) is created, leading to a po-
tentially slow reconfiguration. Etna uses some of the
reconfiguration techniques developed in the GCS pro-
tocols. However the read and write operations in Etna
require less communication than the multi-phase proto-
col required to perform totally-ordered broadcast. Also,
the rate of reconfiguration can be significantly reduced:
a new configuration need only be created when a num-
ber of replicas has failed (and no reconfiguration is nec-

1Source available at http://pdos.lcs.mit.edu/chord.

essary as a result of join operations).

Prior approaches for reconfigurable read/write mem-
ory [10, 5, 18] require that new quorums include pro-
cessors from the old quorums, restricting the choice of
a new configuration. Some earlier algorithms [15, 6]
rely on a single process to initiate all reconfigurations.
The RAMBO algorithms [13, 8], on the other hand, al-
low completely flexible reconfiguration, and Etna takes
a similar approach. However, RAMBO focuses on al-
lowing reads and writes to proceed concurrently with
reconfiguration, resulting in multiple active configura-
tions. Etna, instead, optimizes read and write perfor-
mance assuming that reconfigurations are rare, by only
allowing one active configuration at any time. Hence,
Etna needs to contact only a quorum in the active con-
figuration during reads and writes, while RAMBO may
have to assemble quorums from multiple active config-
urations. As a result, read and write operations in Etna
are much more efficient than those in RAMBO.

Recent work have applied quorum-based techniques to
dynamic systems. Abraham and Malkhi[1] apply prob-
abilistic quorum techniques to a dynamic de Bruijn net-
work. Naor and Wieder [17] suggest a way to apply
a quorum system to a dynamic two-dimensional DHT.
Etna could make use of either of these techniques to
choose consistent quorums. However, since our pri-
mary goal is to provide a complete design and imple-
mentation of atomic memory on a DHT, we choose
to apply the quorum technique to Chord, which is a
widely-deployed DHT that has the dynamic ring topol-
ogy.

3 System Model

We assume a dynamic, cooperating set of nodes in
a partially synchronous environment. Communication
links may be arbitrarily slow. However, when making
progress guarantees and theoretical performance anal-
ysis, we assume that messages are delivered within a
bounded time, d. Nodes have access to local clocks
(which they use for timeouts), but the clocks are not
necessarily synchronized. Nodes can crash (fail-stop),
join or leave the system at any time.

4 Background

This section describes two components that Etna uses
to implement atomic memory, see Figure 1 for an illus-
tration.

2

http://pdos.lcs.mit.edu/chord

succ(key)

Etna

Paxos

Chord/DHash

 ...

nodeID1
nodeID2

nodeIDk

k_successors(key)nodeID

decide(next_config)_c

write_ack

propose(new_config)_c

client
write(key,new_object)

read(key)

object

Figure 1: Interaction between Etna and other compo-
nents.

4.1 Chord

Chord [23, 4] is an efficient, load-balanced DHT. It per-
forms a lookup of an object, given a key, in O(log(n))
time, where n is the total number of nodes in the sys-
tem. Chord arranges that each node knows its current
successor, the node with the next highest ID; the ID
space wraps around at zero. Etna uses Chord to provide
it with the node whose ID immediately follows an ob-
ject key. Etna also uses Chord to provide it with a set of
nodes whose IDs are the closest successors of an object
key. Etna does not rely on Chord to consistently iden-
tify the successor node(s) for an object, since the set of
nodes in Chord can rapidly change. Etna maintains a
consistent series of replicas for an object regardless of
Chord’s inconsistency.

4.2 Paxos

Etna uses the Paxos [11, 12] distributed consensus pro-
tocol to determine a total-ordering of the replica con-
figurations. We execute a single instance of the Paxos
protocol for each configuration; Paxos then outputs
the next configuration. All Paxos procedures are sub-
scripted by c, the configuration that is associated with
that instance of Paxos.

Paxos is a three-phase commit protocol that implements
consensus. As originally described, Paxos consists of
two components: an eventual leader election service,
and an agreement protocol. The eventual leader election
service ensures that eventually only one node thinks that
it is the leader (if the communication network is even-
tually well-behaved). The agreement protocol allows a
node that thinks it is the leader to propose a value. It

guarantees that only one value is chosen at most, and
that if eventually there is only one leader, then some
value is chosen. In the first phase of the protocol, the
leader queries for previously proposed decision values;
the second phase chooses a decision value.

Etna only makes use of the agreement protocol. When-
ever Etna notices that the Chord successor for an object
is not the same as the Etna primary, Etna uses Paxos to
get a consensus on a new configuration in which they
are the same. One or more Etna nodes create proposed
configurations and pass them to Paxos:

Paxos.propose(proposal value)c

When consensus is reached, Paxos calls the Etna

decide(decision value)c

procedure. At this point, Etna notifies the new config-
uration of the decision, and the configuration’s primary
proceeds to locate the object’s latest version and serve
client requests. Paxos guarantees the following:

Theorem 1 (derived from [11, 12]). For each in-
stance, c, of the Paxos protocol, if one or more
decide(decision value)c events occur, then all the val-
ues of decision value are the same.

If, eventually, a Paxos.proposec occurs at some node
i at time t, and no later Paxos.proposec occurs at
any other node j, and node i does not fail, then a
Paxos.decide(...)c occurs by time t + 2d, where d is the
time it takes for a message to be delivered.

Since Chord nodes form a dynamic network, its view
of the current successor of a object can become incon-
sistent. It is possible that two nodes think that they are
a object’s current successor and simultaneously initiate
the agreement protocol. This scenario does not violate
Etna’s correctness, since Paxos guarantees that, given
a configuration of replicas, it will always decide on at
most one value.

5 The Etna Algorithm

In this section we present Etna, an algorithm that pro-
vides fault-tolerant, atomic mutable data in a DHT. For
each mutable object, Etna uses Paxos to maintain a con-
sistent series of replica configurations in the face of dy-
namic membership. Given a configuration of replicas,
Etna designates a node as the primary and serializes all
reads and writes through it.

3

Per Node State
status Flag variable, with values idle, active

or recon inprog, initially idle
tag A pair 〈version, primaryID〉, initially 〈0, 0〉
value Latest object value, initially vo

new-tag A pair 〈version, primaryID〉, initially 〈0, 0〉,
containing the largest tag of any ongoing
write operation

config Current configuration, with sub-fields
seqnum ∈ ℵ, initially 0, and nodes ≡
〈node1, node2, · · ·〉, initially φ

Per Operation State
responses Set of responses for the current operation,

initially ∅

Figure 2: Fields in an Etna object

5.1 Object State

Etna provides atomicity for each mutable object, which
extends to the entire DHT. By the composability of
atomic objects [14], all mutable objects in the DHT
form an atomic memory. Therefore, we describe our
protocol in terms of a single object.

To provide fault-tolerance, Etna replicates a mutable
object at k different nodes, where k is the system-wide
replication factor. We call this replica set a configura-
tion of nodes responsible for an object. Etna initiates re-
configurations in order to arrange that an object’s repli-
cas are the nodes that immediately succeed the object’s
key in the Chord ID space, and the object’s immedi-
ate successor node is the primary in the configuration.
For each object, a replica keeps a tag, which is a pair
〈version, primaryID〉; a status flag, which designates
the phase of operation to the object; a new-tag, which
is used during write operations; and a config variable,
which contains the configuration sequence number and
the IDs for the nodes in the object’s configuration. Etna
increments the sequence number for each new config-
uration. Figure 2 summarizes the fields in a mutable
object. We refer to a mutable object as simply an object
throughout the rest of the paper.

5.2 Inserting a New Object

To insert a new object, the writer passes the object’s data
to the Etna client on the local machine. Etna extends the
object with the fields in Figure 2. Because the object is
new, Etna can directly insert it at the initial replicas, set
to be the k immediate successors to the object’s ID.

5.3 Read Protocol

To read an object with key bID, the reader sends a read
RPC to the node i which is the immediate successor of
bID. i checks if it believes it is the current primary of

Network functions
sendi,j(· · ·) Sends a message from i to j
recvi,j(· · ·) Receives a message from i to j

Chord functions
succ() Returns the immediate successor

of the object’s identifier on the
Chord ring.

k successors() Returns the k immediate succes-
sors of the object’s identifier on
the Chord ring.

Etna function
primary(c) Returns the primary for a given

configuration c
Paxos functions

propose(· · ·) Proposes a new configuration.

Figure 3: Auxiliary functions, provided by Chord, Etna,
Paxos, and the network.

bID and if bID is not going through a reconfiguration
(status = active). If both conditions are true, it sends
a GET RPC to each node in config. If not, the replicas
may be going through membership reconfiguration, so
i returns an error. The reader will retry periodically.

When a node j receives a GET RPC for bID, it looks in
config to see if the sender is the current primary of bID
and if status = active. If both conditions are true, j
returns with a positive ack. If not, it returns an error.

If i collects more than k/2 positive acks, it returns its
own stored copy of the object value to the reader. If i
fails to assemble a majority after a certain time, it re-
turns an error. Figure 4 shows the pseudocode for the
read protocol.

5.4 Write Protocol

To write object bID, the writer sends a write RPC to
the successor of bID, node i. i consults its local state
to verify that it believes it is the current primary of bID
and that status is active. If both conditions are true,
i starts the write protocol:

1. Node i assigns a new version number to this write,
giving it tag 〈new-tag.version + 1, i〉.

2. Node i sends a put RPC to each replica node in
config.nodes, including the write’s tag and value.

3. When a node j receives a put RPC for bID, it
ignores the RPC if status is not active or if the
sender isn’t the primary. If the write’s tag is higher
than the stored tag, j updates its stored object. This
ensures that a replica is not confused if concurrent
writes arrive from the primary out of order. Node
j then returns an ack to the sender.

4. When node i receives positive acks from a major-
ity of the replicas, it updates its own copy of the

4

Read protocol for the primary:

Procedure recv(read)c,i

2 if i = primary(config) then
if status = active then

4 responses← ∅
∀j ∈ config.nodes do

6 send(get, c, config.seqnum)i,j

8 Procedure recv(get-ack, c, seqnum)j,i

if seqnum = config.seqnum then
10 responses← responses ∪ {j}

if | responses | > � k/2 � then
12 if status = active then

send(tag, value)i,c

Read protocol for the replicas (including the primary):

13 Procedure recv(get, c, seqnum)j,i

if status = active then
15 if (seqnum = config.seqnum) then

send(get-ack, c)j,i

Figure 4: Pseudo-code for the read protocol.

Write protocol for the primary:

Procedure recv(write, c, new-val)c,i

2 if i = primary(config) then
if status = active then

4 new-tag← 〈new-tag.version + 1, i〉
op-object← 〈new-tag, new-val〉

6 responses← ∅
∀j ∈ config.nodes do

8 send(put, c, config.seqnum, op-object)i,j

10 Procedure recv(put-ack, c, op-object, seqnum)j,i

if seqnum = config.seqnum then
12 responses← responses ∪ {j}

if | responses | > � k/2 � then
14 if status = active then

if op-object.tag > tag then
16 tag← op-object.tag

value← op-object.value
18 send(put-ack)i,c

Write protocol for the replicas (including the primary):

Procedure recv(put, c, seqnum, op-object)j,i

19 if status = active and i = j then
if (seqnum = config.seqnum) then

21 if op-object.tag > tag then
tag← op-object.tag

23 value← op-object.value
send(put-ack, c, op-object, config.seqnum)j,i

Figure 5: Pseudo-code for the write protocol.

object, though only if it has completed no subse-
quent concurrent write. Node i then replies to the
client. If i fails to assemble a majority after a cer-
tain time, it returns an error.

Figure 5 illustrates the write protocol. The primary as-
signs increasing version numbers to writes in the order
that they arrive at the primary, but issues the writes to
the replicas in parallel.

5.5 Reconfiguration Protocol

Etna must change the configuration of nodes respon-
sible for an object when a replica leaves (to maintain
the k replication factor) and when a new node joins
that would be the object’s successor (so that the pri-
mary is the Chord successor and is thus easy to find).
Etna maintains only one configuration at a time, rather
than multiple configurations as in Rambo [13]; this al-
lows Etna to be simpler and have higher performance
in all but the highest-churn environments. Etna uses the
Paxos [11] distributed consensus protocol to decide on
the next configuration.

If an Etna node i notices that the set of Chord successors
for a object bID does not match the set of replicas in the
object’s config, it tries to initiate a reconfiguration:

Case I If i notices that it is the immediate successor of
bID, it collects some information that will serve
as a configuration proposal for a Paxos execution.
The proposal has the form
proposal value ≡ 〈new config, object copy〉.
i sets new config to be the k immediate successors
of bID. i sends a recon-get RPC to each node
in config asking for its current object value and
tag, waits for a majority of replicas to respond,
and uses the most up-to-date response as the
object copy in the proposal.

When a replica receives a recon-get RPC, it
sets status to recon inprog and stops process-
ing all reads and writes.

When i has assembled a majority of recon-get
responses, it uses Paxos to propose its pro-
posal value to the nodes in the old configuration.
Paxos calls the decide function at each node that
proposed a new configuration, with the consensus
configuration information; the proposer(s) send
the new configuration and most up to date object
to the replicas in the new configuration.

Case II If i is not immediate successor of bID, i sends

5

Reconfiguration protocol for the primary:

Procedure recon()i

2if config.nodes = k_successors() then
if i = succ() then

4new-config← k_successors()
status← recon_inprog

6proposed← false
responses← ∅

8∀j ∈ config.nodes
send(recon-get)i,j

10

Procedure recv(recon-ack, new-tag, new-value, seqnum)i,j

12if seqnum = config.seqnum then
if new-tag > tag then

14tag← new-tag
value← new-value

16responses← responses ∪ {j}
if | responses | > � k/2 � and proposed = true then

18proposed← true
object-copy← 〈tag, value〉

20Paxos.propose(new-config, object-copy)config

22Procedure decide(new-config, object-copy)c

∀j ∈ new-config.nodes
24send(update, new-config, object-copy)i,j

Reconfiguration protocol for the replicas:

Procedure recv(recon-get, seqnum)j,i

25if (seqnum = config.seqnum) then
status← recon_inprog

27send(recon-ack, tag, value, config.seqnum)

29Procedure recv(update, new-config, object-copy)j,i

if i ∈ new-config.nodes then
31if new-config.seqnum > config.seqnum then

status← active
33config← new-config

if object-copy.tag > tag then
35tag← object-copy.tag

value← object-copy.value

Figure 6: Pseudo-code for reconfiguration.

the tag, value, and config information to the im-
mediate successor of bID, asking the successor to
initiate a reconfiguration.

Figure 6 shows the pseudo-code for the reconfiguration
protocol. During reconfiguration, nodes in the current
configuration become inactive (stops serving write and
read requests). If reconfiguration fails, there will be no
active configuration. Section 7 discusses liveness.

6 Atomicity

In this section, we show that Etna correctly implements
an atomic read/write object. Throughout this section,

we consider only a single object, b. Since atomic mem-
ory is composable, this is sufficient to show that Etna
guarantees atomic consisteny. We omit references to b
for the rest of this section.

We use the partial-ordering technique, described in
Lynch [14]. We rely on the following lemma:

Lemma 1 (Lemmas 13.16 and 13.10 in [14]). Let α be
any well-formed, finite execution of algorithm X (im-
plementing a read/write atomic object) in which every
operation completes. Let Π be the set of all operations
in α.

Suppose that ≺ is an irreflexive partial ordering of all
the operations in Π, satisfying the following properties:

1. For any operation A ∈ Π, there are only finitely
many operations B ∈ Π such that B ≺ A.

2. If A finishes before B starts, then it cannot be the
case that B ≺ A.

3. If A is a write operation in Π and B is any opera-
tion in Π, then either A ≺ B or B ≺ A.

4. The value returned by each read operation is the
value written by the last preceding write operation
according to ≺ (or vo, if there is no such write).

Then every well-formed execution of algorithm X sat-
isfies the atomicity property.

We consider an arbitrary well-formed execution, α, of
the Etna algorithm in which every read and write oper-
ation completes. (Lemma 13.10 in Lynch [14] indicates
that it is sufficient to consider only such executions.)
We first define a partial order on the read and write op-
erations in α, and then show that this partial order has
the properties required by Lemma 1. Finally, we con-
clude that Etna guarantees atomic consistency.

Partial Order. We first order the read and write oper-
ations in α based on their tags. For a read or write oper-
ation A ∈ α, initiated at node i, we define tag(A) =
tagi immediately before the operation returns to the
reader or writer; that is, tag(A) is the value of the ob-
ject’s tag when i sends the result back to the client (Fig-
ure 5, Line 18 and Figure 4, Line 13).

For a reconfiguration operation, π, we define
tag(π) = object-copy.tagi immediately before the call
to Paxos.propose (Figure 6, Line 20). We then define
the partial order ≺: (i) For any two operations A and B
in α: if tag(A) < tag(B), then A ≺ B. (ii) For any
write operation A in α, and any read operation B in α:
if tag(A) = tag(B) then A ≺ B. We show in Theo-
rem 2 that it is straightforward to see that this partial-

6

order satisfies Properties 1, 3, and 4 of Lemma 1. The
primary goal of the rest of this section is to show that
this ordering satisfies Property 2.

Atomicity Proof. Our first goal is to show that when
a new configuration is installed, no information is lost.
Let configuration c0 be the initial configuration, and
configuration c�+1 be the unique configuration decided
on by Paxos�,c�

. (Theorem 1 ensures that this is, in fact,
unique.) If Paxos�,c�

does not terminate, then c� is un-
defined.

Recall that when Paxos is initiated, the process perform-
ing the reconfiguration includes object-copy, the latest
copy of the object, in the proposal. That is, Paxos�,c�

is
initiated with at least one call to:
Paxos.propose(new config, object copy)�,c�

.
Define tag(c0) to be 〈0, 0〉 and tag(c�+1) to be
object copy.tag of the successful proposal to Paxos�,c�

.
We sometimes refer to tag(c�+1) as the initial tag of
configuration c�+1. We want to show that the initial tags
of the configurations are nondecreasing:

Lemma 2. Let c� and c�+1 be configurations installed
in α. Then tag(c�) ≤ tag(c�+1).

Proof. No replica in configuration c� can send any re-
sponse until it has received an update message (Fig-
ure 6, Lines 29– 36), which causes the replica to set
its status to active. Therefore every response to the
recon-get message (Figure 6, Lines 24– 27) during the
recon that proposes configuration c�+1 must include
a tag no smaller than tag(c�). Therefore tag(c�) ≤
object-copy.tag in the proposal from c�+1, from which
the result follows.

It then follows immediately by induction:

Corollary 1. If c� and ck are two configurations in α,
and � < k, then tag(c�) ≤ tag(ck).

We next consider a read or write operation that occurs
in configuration c� (for some � ≥ 0). We want to show
that if A is an operation that completes in c�, then the
value A returns has a tag no smaller than tag(c�).

For read or write operation A, let conf(A) =
config.seqnum when i sends the result back to the client
(Figure 5, Line 18 and Figure 4, Line 13).

Lemma 3. LetB be a read or write operation in α, and
assume that conf(B) = �. Then tag(c�) ≤ tag(B), and
if B is a write operation then the inequality is strict.

Proof. The reconfiguration to install configuration c�

concludes when a primary, i, wins a Paxos decision
(Figure 6, Lines 22– 24) and sends messages to the
new replicas. Notice that the decision includes the
object-copy determined when the reconfiguration be-
gan. Therefore, by the time the configuration is in-
stalled, tag(c�) ≤ tagi. As a result, every operation ini-
tiated at node i has a tag greater than or equal to tag(c�)
and with write operations the inequality is strict, since
write increments the tag.

Next, we relate the tag of a read or write operation to
the tag of the next configuration. We want to show that
if a read or write operation completes, the information
is transferred to the next configuration.

Lemma 4. Let A be a read or write operation in α,
and assume that conf(A) = �. If configuration c�+1 is
installed in α, then tag(A) ≤ tag(c�+1).

Proof. First, notice that the value of the primary always
reflects a write operation that has updated a majority of
the replicas. Therefore if A is a read operation, there
is a write operation, A′, that wrote the tag and value
returned by A to a majority of the replicas. If A is a
write operation, define A′ = A.

Since operation A′ completes in configuration c�, there
exists a set of at least 	k/2
 nodes in configuration c�

that a send a response for A′ to the primary. Call this
set of nodes W (for “writers”).

Since configuration c�+1 is installed in α, there exists a
set of at least 	k/2
 nodes in configuration c� that send
a response to the recon-get message during the recon-
figuration. Call this set of nodes R (for “readers”).

Notice that since there are k nodes in configuration c�,
and both R and W contain at least k/2 nodes, there is
at least one node, j, in both R and W . Node j sends
a response both for operation A′ and for the successful
reconfiguration resulting in c�+1.

We claim that node j sends the response for operation
A′ before the response for recon-get. As soon as node
j sends a response for a recon-get, it sets its statusj to
recon-in-progress, at which point it ceases responding
to requests. Since we know that j sends a response to
operation A′, it must send this response prior to the first
time it receives a recon-get request.

We conclude, then, that the primary sends its put re-
quest forA′ to replica j prior to j sending its response to
the recon-get request. Therefore, tag(A) = tag(A′) ≤
tag(c�+1).

7

In the final preliminary lemma, we show that the config-
urations used by operations are non-decreasing. That is,
if operation A occurs in one configuration, then a later
operation B cannot occur in an earlier configuration.

Lemma 5 (sketch). Let A and B be two read or write
operations in α. Assume that operation A completes
before operation B begins. Then conf(A) ≤ conf(B).

Proof. If A completes in configuration c�, then some
reconfiguration completes prior to A for c�. During that
reconfiguration, a majority of replicas in configuration
c�−1 were sent a recon-get message notifying them to
cease processing read and write requests. By induction,
a majority of replicas from all earlier configurations re-
ceived such messages. Therefore operation B can not
complete after A using an earlier configuration.

Finally, we relate read and write operations.

Lemma 6. Let A and B be two read and write oper-
ations in α where A completes before B begins. Then
tag(A) ≤ tag(B), and ifB is a write operation then the
inequality is strict.

Proof. We break the proof down into two cases: (i) A
and B complete in the same configuration, and (ii) A
completes in an earlier configuration than B. Lemma 5
shows that A cannot complete in a later configuration
than B.

First, assume that k = conf(A) = conf(B). Let node
i be the primary of configuration ck. Both operations
originate at node i. Therefore, when operation B be-
gins, the tag of i is at least as large as tag(A). If B
is a write operation, then i increments the tag, and the
inequality is strict.

Next, consider the case where conf(A) < conf(B). No-
tice that tag(A) ≤ tag(conf(A)), by Lemma 4. Next,
notice that tag(conf(A)) ≤ tag(conf(B)), by Corol-
lary 1. Third, notice that tag(conf(B)) ≤ tag(B), and
if B is a write operation, the inequality is strict, by
Lemma 3. Combining the inequalities implies the de-
sired result.

Finally, we prove the main theorem:

Theorem 2. The Etna algorithm correctly implements
an atomic read/write object.

Proof. We show that the protocol satisfies the four con-
ditions of Lemma 1. For an arbitrary execution α in
which every read and write operation completes, we

demonstrate that the partial-ordering, ≺, satisfies Prop-
erties 1–4 of Lemma 1.

1. Immediate.
2. It follows from Lemma 6 that if A completes be-
fore B begins, then tag(A) ≤ tag(B). Therefore
B ⊀ A.

3. If A and B are write operations, then it follows
immediately that tag(A) �= tag(B), since the tags
are unique (as they consist of a sequence number
and a node identifier to break ties).
If A is a write operation and B is a read operation
and tag(A) = tag(B) then A ≺ B. Otherwise, if
tag(A) �= tag(B), then either A ≺ B or B ≺ A,
depending on whether A or B has a larger tag.

4. This follows by the definition of the partial order.
If B is a read operation, then tag(B) is the tag of
the write operation, A, whose value B returns, or
the initial tag. Therefore, either A is the last pre-
ceding write operation (since tag(A) = tag(B) or
B returns v0.

7 Theoretical Performance

As in all quorum based algorithm, the performance of
the algorithm depends on enough replicas remaining
alive. We assume that if a node crashes, the remain-
ing live nodes in the relevant configurations notice the
crash and reconfigure quickly enough to maintain a live
majority. If a majority of the nodes in a configuration
fail, then operations can no longer complete. A recov-
ery protocol could attempt to collect the values from the
remaining replicas, at the expense of atomicity; we do
not address recovery from failed configurations in this
paper.

During intervals in which the primary does not fail, the
algorithm is efficient. A write operation requires a sin-
gle round of communication to propagate the new value
to a quorum. A read operation also requires only a sin-
gle round of communication, involving only small con-
trol messages, since the primary supplies the data. For
the purpose of this section, we assume that each mes-
sage is delivered in time d:

Lemma 7. If a read or write operation begins at time
t, and the primary does not fail by time t + 2d, then the
operation completes by time t + 2d.

A reconfiguration is somewhat more expensive, requir-
ing three and a half rounds of communication. As soon
as a new primary is established, it queries the old repli-
cas for the latest value of the block. It then begins

8

Paxos, which requires two rounds of communication to
arrive at a decision. Finally, it updates the new con-
figuration. In our implementation, we piggy-back the
recon-get RPC with the first RPC of Paxos, reduc-
ing the communication to two and a half rounds. The
following lemma reflects this optimization.

Lemma 8. If node i is designated the primary at time
t, and i does not fail by time t + 5d, then the new con-
figuration is installed by time t + 5d.

Recall that when a reconfiguration takes place, ongoing
read and write operations may fail to complete. We as-
sume that, in this case, the client retries the operation
at the new primary. Combining the two previous lem-
mas, we see that even if a primary fails, a read or write
operation completes within 7d after a new primary is
designated.

8 Experimental Evaluation

We are in the process of conducting more extensive ex-
periments.

9 Conclusion

This paper describes Etna, an algorithm for atomic mu-
table blocks in a distributed hash table. Etna correctly
handles a dynamically changing set of replica hosts, us-
ing protocols optimized for situations in which reads
are more common than writes or replica set changes.
Etna uses Paxos to agree on a sequence of replica con-
figurations, and only allows operations when a majority
of replicas from the active configuration are available.
Etna’s write latency is comparable to that of non-atomic
replicated DHTs, and its read latency is approximately
twice that of a DHT.

References

[1] Ittai Abraham and Dahlia Malkhi. Probabilistic quo-
rums for dynamic systems. In Proceedings of the 17th
Annual Conference on Distributed Computing, 2003.

[2] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev.
Sharing memory robustly in message-passing systems.
Journal of the ACM, 42(1):124–142, 1995.

[3] Ken Birman and Thomas Joseph. Exploiting virtual
synchrony in distributed systems. In Proceedings of
the 11th ACM Symposium on Operating Systems Prin-
ciples, December 1987.

[4] F. Dabek, M. Frans Kaashoek, D. Karger, R. Morris,
and I. Stoica. Wide-area cooperative storage with CFS.
In Proc. of the ACM Symposium on Operating System
Principles, October 2001.

[5] Danny Dolev, Idit Keidar, and Esti Yeger Lotem. Dy-
namic voting for consistent primary components. In
Proc. of the Sixteenth Annual ACM Symp. on Principles
of Distributed Computing, pages 63–71. ACM Press,
1997.

[6] B. Englert and Alex A. Shvartsman. Graceful quorum
reconfiguration in a robust emulation of shared mem-
ory. In Proceedings of the International Conference on
Distributed Computer Systems, pages 454–463, 2000.

[7] Alan Mislove et. al. POST: A secure, resilient, cooper-
ative messaging system. In 9th Workshop on Hot Topics
in Operating Systems (HotOS IX), Lihue, Hawaii, May
2003.

[8] Seth Gilbert, Nancy A. Lynch, and Alex A. Shvarts-
man. RAMBO II:: Rapidly reconfigurable atomic
memory for dynamic networks. In Proc. of the Intl.
Conference on Dependable Systems and Networks,
pages 259–269, June 2003.

[9] Communications of the ACM, Special section on Group
Communication Systems, volume 39(4), 1996.

[10] S. Jajodia and David Mutchler. Dynamic voting algo-
rithms for maintaining the consistency of a replicated
database. Trans. on Database Systems, 15(2):230–280,
1990.

[11] Leslie Lamport. The Part-Time Parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
1998.

[12] Leslie Lamport. Paxos Made Simple. 2001.

[13] Nancy Lynch and Alex Shvartsman. RAMBO: A re-
configurable atomic memory service. In Proceedings of
the 16th International Symposium on DIStributed Com-
puting (DISC ’02), Toulouse, France, October 2002.

[14] Nancy A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1996.

[15] Nancy A. Lynch and Alexander A. Shvartsman. Robust
emulation of shared memory using dynamic quorum-
acknowledged broadcasts. In Twenty-Seventh Annual
Intl. Symposium on Fault-Tolerant Computing, pages
272–281, June 1997.

[16] Athicha Muthitacharoen, Robert Morris, Thomer Gil,
and Benjie Chen. Ivy: A read/write peer-to-peer file
system. In Proceedings of the 5th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’02), Boston, Massachusetts, December 2002.

[17] Moni Naor and UdiWieder. Scalable and dynamic quo-
rum systems. In Proceedings of the 22nd Symposium on
Principles of Distributed Computing, 2003.

[18] Roberto De Prisco, Alan Fekete, Nancy A. Lynch, and
Alexander A. Shvartsman. A dynamic primary configu-
ration group communication service. In Proceedings of
the 13th International Symposium on Distributed Com-
puting, pages 64–78, September 1999.

9

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. ACM SIGCOMM, pages 161–172, August 2001.

[20] Rodrigo Rodrigues, Barbara Liskov, and Liuba Shrira.
The design of a robust peer-to-peer system. In Proceed-
ings of the Tenth ACM SIGOPS European Workshop,
September 2002.

[21] E. Sit, F. Dabek, and J. Robertson. UsenetDHT: A low
overhead Usenet server. In Proc. of the Third Inter-
national Workshop on Peer-to-Peer Systems, February
2004.

[22] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek,
and H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In Proc.
ACM SIGCOMM, August 2001.

[23] I. Stoica, R. Morris, David Liben-Nowell, D. Karger,
M. Frans Kaashoek, Frank Dabek, and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup protocol
for internet applications. In IEEE/ACM Transactions
on Networking.

[24] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer infor-
mation retrieval using self-organizing semantic overlay
networks. In Proc. ACM SIGCOMM Conference, Au-
gust 2003.

[25] Eli Upfal and Avi Wigderson. How to share memory in
a distributed system. Journal of the ACM, 34(1):116–
127, 1987.

[26] M. Walfish, H. Balakrishnan, and S. Shenker. Untan-
gling the web from DNS. In Proc. of the 1st Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI), March 2004.

10

	Introduction
	Related Work
	System Model
	Background
	Chord
	Paxos

	The Etna Algorithm
	Object State
	Inserting a New Object
	Read Protocol
	Write Protocol
	Reconfiguration Protocol

	Atomicity
	Theoretical Performance
	Experimental Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

