
Autonomous Virtual Mobile Nodes

(Extended Abstract)

Shlomi Dolev
�

Seth Gilbert
�

Elad Schiller
��

Alex Shvartsman
��

Jennifer Welch
�

June 3, 2005

Abstract

This paper presents a new abstraction for virtual infrastructure in mobile ad hoc networks. An Au-
tonomous Virtual Mobile Node (AVMN) is a robust and reliableentity that is designed to cope with the
inherent difficulties caused by processors arriving, leaving, and moving according to their own agendas,
as well as with failures and energy limitations. There are many types of applications that may make use
of the AVMN infrastructure: tracking, supporting mobile users, or searching for energy sources.

The AVMN extends the focal point abstraction in [9] and the virtual mobile node abstraction in [10].
The new abstraction is that of a virtual general-purpose computing entity, an automaton that can make
autonomous on-line decisions concerning its own movement.We describe a self-stabilizing implementa-
tion of this new abstraction that is resilient to the chaoticbehavior of the physical processors and provides
automatic recovery from any corrupted state of the system.

1 Introduction
Ad hoc infrastructure for mobile ad hoc networks is desperately needed to make these systems usable by ap-
plications, allowing developers to overcome the numerous inherent difficulties, such as processors arriving,
leaving and moving according to their own agendas, as well asby failures and energy limitations.

This paper introduces a new abstraction that extends the focal point abstraction in [9] and the virtual
mobile node abstraction in [10]. The new abstraction is thatof a virtual general-purpose computing entity,
an automaton that can make autonomous on-line decisions concerning its own movement. We call this
abstraction an Autonomous Virtual Mobile Node (AVMN). We describe an implementation of this new
abstraction that is resilient to the chaotic behavior of theunderlying network. Moreover, it guarantees
automatic recovery from any corrupted system state.

�
Ben-Gurion University,�dolev,schiller�@cs.bgu.ac.il�
MIT CSAIL, �sethg, alex�@theory.lcs.mit.edu	
Research Academic Computer Technology Institute,schiller@cti.gr

Department of Computer Science and Engineering, University of Connecticut,aas@cse.uconn.edu�
Texas A&M University,welch@cs.tamu.edu

1This work is supported in part by NSF grant CCR-0098305 and NSF ITR Grant 0121277. The first author and third authors are partially
supported by an IBM faculty award, the Israeli ministry of defense, NSF, and the Rita Altura trust chair in computer sciences. The second author is
partially supported by AFOSR Contract #F49620-00-1-0097,DARPA Contract #F33615-01-C-1896, NSF Grant 64961-CS, NTTGrant MIT9904-
12. The fourth author is partially supported by the NSF Grant9988304, 0311368 and by the NSF CAREER Award 9984774. The fifth author is
partially supported by NSF Grant 0098305.

1

At any given point in time, the AVMN resides at a distinct location. The AVMN is implemented by the
processors that happen to be near the AVMN’s current location, thus enhancing the robustness as processors
fail and move out of range. The set of processors implementing the AVMN changes over time as the
AVMN moves and as the implementing processors move (not necessarily in the same direction). Despite the
continually changing set of participants, from a client’s perspective, the AVMN acts like a single, monolithic
entity.

One of the primary differences between an AVMN, introduced in this paper, and a virtual mobile node
(see [10]) is that an AVMN can move autonomously, choosing tomove based on its current state and sensor
inputs from the physical environment. For instance, if the area to the west of the AVMN appears deserted,
then it may decide not to move west. On the other hand, the AVMNmay decide to “hitch a ride” with a
subset of the processors currently emulating it. In contrast, the virtual mobile node was required to fix a
predetermined path in advance, when the algorithm was deployed, thus significantly limiting the flexibility
of the virtual node.

Allowing the AVMN to move autonomously introduces several challenges. First, the algorithm must
ensure that a consistent set of processors is used to implement the AVMN. When an AVMN decides to
move, however, the set of processors participating in the emulation may change; in transitioning from the
old set of processors to the new set of processors, the emulator must ensure an orderly transition while
maintaining consistency and liveness. The second problem introduced by autonomy is the lack ofa priori
location at which the AVMN can be found. Therefore, when the AVMN fails (e.g., due to entering an empty
region of the network where there are no processors to participate in the emulation), it can be quite difficult
to detect this failure and restore the AVMN.

Our AVMN implementation is also self-stabilizing, in that it can tolerate the processors’ starting from
an arbitrary configuration. If a state corruption causes twodifferent sets of processors to begin emulating
the same AVMN, the emulation algorithm detects this situation and corrects it. Moreover, if the emulating
processors become inconsistent (for example, due to network abnormalities), the emulator can recover from
the state corruption, and continue to operate correctly.

Roadmap. In the rest of this section, we discuss prior work, in particular focusing on virtual infrastructures
in wireless ad hoc networks. In Section 2, we present the underlying model for wireless ad hoc networks.
In Section 3, we define the required properties of an AVMN in more detail. We then proceed to present a
self-stabilizing algorithm to emulate an AVMN. Our implementation consists of two parts. The first part,
a basic emulator that operates correctly once the set of participants is consistent, is presented in Section 4.
The second part ensures that the set of participants eventually stabilizes to a consistent set, and is presented
in Section 5. We present some discussion and optimizations in Section 6.

Previous work. In [9], we presented a new approach, called GeoQuorums, for implementing atomic read-
/write shared registers in mobilead hocnetworks. This approach is based on associating abstract atomic
objects with certain geographic locations called “focal points”. These geographic locations are assumed to
be normally populated by mobile processors. In [10], we generalized our approach from [9] from stationary
atomic objects to mobile virtual nodes. We assumed that the virtual node moves on a fixed trajectory that is
globally known in advance. We presented a new replicated state machine algorithm to implement the virtual
node using a constantly changing set of processors in the vicinity of the virtual node’s current location.

In contrast with [10], our current work relaxes the assumption that the trajectory of each virtual entity is
fixed and known in advance. Furthermore, the new abstractionis self-stabilizing and automatically regener-

2

ating. Fixed-location self-stabilizing virtual stationary automata for different settings appear in [11, 8]. As
discussed above, the introduction of autonomy introduces several new difficulties.

The idea of executing algorithms on virtual mobile entitieswas inspired by compulsory protocols [15, 6,
19], which assume that some subset of the processors can control their own motion. They showed that this
assumption significantly simplifies the design of protocols, compared to an environment in which processors
move in an unpredictable or adversarial manner. The work in [10] on virtual mobile nodes generalizes Beal’s
Persistent Node abstraction [1, 2], in which nodes travel ina static network carrying limited state. The work
of Nath and Niculescu [22], in which messages are routed along a particular trajectory, and Geocast (e.g.,
[23, 5, 17]), in which data is routed geographically, are connected to this work in that they can be seen as
attempts to simulate a traveling processor with limited functionality.

2 Basic System Model
The system consists of a set of communicating mobile entities, which we callprocessors. We denote the
set of processors by� , where �� � � � � � and� is an upper bound on the number of processors that is
known to the processors. In addition we assume that every processor has a unique identifier.

The processors communicate among themselves using a local broadcast primitive, with radius� ��. The
local broadcast is assumed to be reliable, meaning that every processor that stays within distance� �� of the
sending processor is guaranteed to receive the message exactly once, and to ensure delivery within	 time.
This is an abstraction of some Ethernet-like service. The operations are denoted LBcast and LBrecv.

There is a Geocast service, by which a processor can send a message to all processors in some specified
geographic area. We also assume the Geocast is reliable and that there is an upper bound
 � 	 on the
latency of Geocast messages. A number of Geocast routing protocols have been proposed for mobile ad hoc
networks (see [25] for a survey and comparison). The operations are denoted Geocast and Georecv.

Finally, we assume that there is a reliable time and locationservice available to each processor, such as
would be provided by GPS. The existence of a reliable time andlocation service makes it easy to implement
the local broadcast and Geocast communication services in aself-stabilizing way, by differentiating current
messages from previous (possibly corrupted) messages.

Severalprocessescan run in a single processor. The inputs to a process includethe receipt of a message
destined for itself, either from another processor or from the same processor. For instance, there could be a
process associated with a sensor on the processor that sendsdata to another process on the same processor.
Every processor� executes a program that is a sequence ofsteps. For ease of description, we assume the
interleaving model where steps are executed atomically, a single step at any given time. Each step of� is
triggered by an input, which is either the receipt of a message or a timer going off. Thestate� of a processor
� consists of the value of all the variables of the processor including the value of its program counter. The
execution of a step in the algorithm can change the state of a processor.

We let the undirected graph� �� � � �
denote the current communication graph of the system, where

�
is the set of processors, together with their coordinates inthe plane, and there is an edge in

�
between

processors� and� � if and only if the two processors can communicate with each other. (This depends on
whether the two processors are within��� of each other). Notice that� changes over time.

The termsystem configurationis used for a tuple of the form�� � � �� � � � � � �� � � �� � � ��
, where each�

is the state of processor� (including messages in transit for�)and� �� � � �
is the current communication

topology. Therefore the vector of individual processor states and the current communication graph fully
describes the system state.

3

We define anexecution� � �� � ��� � � � � �� � � � � � as an alternating sequence of system configurations�
and steps��, such that each configuration�� � (except the initial configuration��) is obtained from the
preceding configuration� by the execution of the step��. In addition, �� may reflect a change in the
communication graph. Thus, the only components that can be changed due to the execution of�� are the
state of� , the state of a neighbor of� and the communication graph� �� � � �

. An execution isfair if every
processor executes a step infinitely often.

In some of our algorithms, random walks are used for broadcasting information. We consider the subset
of fair executions in which a message sent in a random walk fashion succeeds in arriving at all processors
in the system in a timely fashion. Anice executionis defined [12] to be an execution in which a message
sent in a random walk fashion arrives at every processor in atmost every� consecutive message send
operations, where� is a constant that depends on�. The probability of having a nice execution in several
common cases is computed in [12] using techniques from random walks. (See, for example, [20] for standard
calculations of cover times in various graphs). The probability is calculated assuming an arbitrary initial
configuration and relies on known results about the cover time of random walks in graphs. For our algorithms
that use random walks, we prove that every nice execution satisfies the desired conditions (defined as the
requirements below).

3 Autonomous Virtual Mobile Nodes
An Autonomous Virtual Mobile Node (AVMN) is an arbitrary automaton that resides, at any given time,
at a specific location in the network; it can communicate withnearby processors, using the local broadcast
service, and send and receive Geocast messages in the same way as a real processor residing at its location.
The AVMN is specified in terms of (1) a set of states,� , (2) an initial statue,�� , (3) a set of inputs,	
�� �,
(4) a set of outputs,���� �, and (5) a transition function,�, mapping from states and inputs to states and
outputs. An algorithm implementing an AVMN must satisfy thefollowing property:

Property 1 (Correct emulation of the AVMN) The execution of the AVMN implementation produces an
external trace that is consistent with a state change sequence that is correct according to the transition
function,�, of the AVMN.

Unlike a processor, an AVMN controls its own motion: an AVMN moves in discrete steps from one
location to another. An AVMN specification, then, also includes a movement function,��������� � �� ������,
which determines a new location for the AVMN as a function of its current location and current state.

Finally, AVMNs are robust. As long as there are real processors near the AVMN, it remains alive.
There are two ways an AVMN can fail: either it enters an empty region of the network, or it suffers a state
corruption, potentially causing multiple copies of the AVMN to appear in the network. In either case, it can
recover.

Property 2 (Exactly one AVMN location) Eventually there is exactly one copy of an AVMN in the network.

An AVMN is self-stabilizing, in that in every fair/nice execution that starts in an arbitrary configuration
there is a suffix in which Properties 1 and 2 are satisfied.

The program (including the AVMN code) of the processors is assumed to be (hardwired and) correct,
namely, we do not assume Byzantine behavior of the processors. Note that an AVMN-simulation process
needs to be running all the time, even if just listening to messages to see if it should start participating.

4

We also assume that the program consists of information concerning� , the upper bound on the number of
processors and the identifier of the processor.

We remark that the application that uses the AVMN as a computing platform should be self-stabilizing
as well, since the AVMN may start correct execution of the application from an arbitrary state.

4 Self-Stabilizing Implementation of an AVMN
In this section we describe the basic algorithm to emulate anAVMN, assuming all the participants in the
emulation are near, within some fixed� ��� � � � �� of, the unique location of the AVMN, that is, if the
AVMN has aconsistent setof participants. In Section 5, we show how to ensure that there is a consistent
set of participants. The pseudocode for the basic AVMN emulator appears in Figure 1 (and all line numbers
refer to this figure).
Replication. Each participating processor keeps a replica of the AVMN’s current state and a buffer of input
events waiting to be applied to the state. It is sufficient to keep only the events that have occurred within the
last �	 time units, where	 is an upper bound on the latency of the local broadcast service.

The emulation protocol must ensure that state transitions of the AVMN are atomic and identical in all
replicas. A state transition can be triggered by inputs, such as the messages arriving (via Geocast) at a
participating processor, sensor inputs, or the clock reaching a certain value. When a processor receives a
Geocast message or detects a sensor input, it broadcasts a message using the LBcast service indicating that
an event occurred (lines 27 and 30). On receiving a message (lines 19–24), an additional delay of	, the
maximum broadcast delay, is imposed (via a timer—line 24) toensure that all processors process the events
in the same order. This ensures that the state is updated consistently.

To ensure that the replica states remain identical among allthe processors that emulate the AVMN, in
spite of faults, each processor, at a fixed interval, sends its replica state (or a hash function thereof) to all the
other emulating processors (lines 32–35). Upon receiving all the messages, at least	 time after the time at
which the checkpoints were sent, a processor checks if thereare any conflicts, that is, the states received are
not identical (line 64). In this case, a predetermined recovery function is applied (line 65), and the buffers
are flushed (lines 67–72).
Joining. When a processor enters the “sphere of influence” of an AVMN, that is, within� ���� , it should
start participating in the simulation of the AVMN (lines 77–84). The joining processor sets is status to� ������, and waits for a state refresh. During this time, it listens,saving the events in its buffer. After	
time passes, it has the same buffer as all other actively participating processors. Therefore, the first time the
processor receives a state refresh that was initiated at least 	 time after it began listening, it can complete the
join protocol by adopting the new state (lines 73–75). (Notethat in an optimized version where only a hash
is sent, the joining processor will have to request the stateexplicitly.)

Suppose, as in Figure 2, the joiner starts the join procedureat time� (setting its own��� � 	
�	
��
to �). The joiner takes the first replica state that it receives with timestamp (i.e.,�) at least� 	. Call this
timestamp� �. It collects all the replica states with timestamp� �, checking for consistency. The joiner then
adopts this state and replays all messages that it has received with timestamp greater than�� � 	 using the
usual delivery algorithm, processing the messages in orderof their timestamp, ignoring message sent in the
last	 time and breaking ties in some consistent way.
Navigation. A key feature of the AVMN is that it can decide autonomously where to move. The deci-
sion is a function of the current state of the AVMN, which may encode information concerning the current

5

Figure 1: AVMN Emulator

Variables:
1 status, in ��� �� � � � �� ��� � 	
�����
2 state, state of the replica
3 location, current VMN location
4 buffer, buffer for incoming messages
5 lastrefresh, last time a state refresh occurred
6 clock, real time clock

Externally specified functions/constants:
87 v� , the initial state of the AVMN
88 � , the AVMN transition function
89 calculatelocation�� � ��, calculates the next location of the AVMN
90 recover�� � ��, deterministically chooses a new state from a set of old states
91 ����� , frequency of movement
92 ���� � ��� , a state refresh intervale
93 �� ������ , speed at which AVMN takes spontaneous steps

9 init�� �
10 location� �
11 state� v�
12 buffer�
13 lastrefresh� clock
14 status� active
15 settimer�nextmultiple�t��� ���� �,Refresh�
16 settimer�nextmultiple�t������� �,Process�
17 settimer�nextmultiple�t���� �,Move�
18

19 LBrecv�m�
20 if �m! "newloc,

� #� and �status! idle� then
21 location� �
22 else
23 buffer� buffer$ "m,clock

#
24 settimer�clock+d,NewMessage�
25

26 Georecv�m�
27 LBcast�"sim,Georecv�m�#�
28

29 onSensor�m�
30 LBcast�"sim,Sensor�m�#�
31

32 onTimer�RefreshState�
33 LBcast�"state,state,clock

#�
34 lastrefresh� clock
35 settimer�nextmultiple�t��� ���� �,RefreshState�
36

37 onTimer�Process�
38 if % x : � �state,Geocast�x�� &! 'then
39 lbcast�geo,x�
40 if ("m,t

)
buffer: t * clock2d then

41 buffer� buffer+ "m,t
#

42 settimer�nextmultiple�t� ,-./00�,Process�
43

44 onTimer�Move�
45 LBcast�move,location,clock�
46 settimer�nextmultiple�t���� �,Move�

48 onTimer�NewMessage�
49 let m ! min�m : "m,t

)
buffer, t ! clockd�

50 if �m! "newloc,
� #� then

51 location� �
52 if �status! active� then
53 if m ! "sim,x

#
then

54 states� � �state, m�
55 else if m ! "geo,x

#
then

56 states� � �state, m�
57 Geocast�x�
58 else if m ! "move,loc,movetime

#
then

59 if �loc ! location� then
60 location� calculatelocation�location, state�
61 LBcast�newloc,

� �
62 else if m ! "state,x,lr

#
then

63 let S! �m : m! "state,y,lr
#�

64 if �1S1 2 1� or �status! joining� then
65 state� recover�S�
66 let J ! � "m,t

)
buffer : lr d 3 t 3 clockd�

67 while J &!
68 let m4 ! min�J�
69 if m4 ! "sim,y

#
then

70 states� � �state,y�
71 J � J + m4
72 buffer� buffer+ m4
73 if �status! joining� and �lastrefresh+d 3 lr � then
74 status� active
75 settimer�nextmultiple����� � ��� �,RefreshState�
76

77 onNewLocaction�� �
78 if �1� location1� * R then
79 if �status! idle� then
80 status� joining
81 lastrefresh� clock
82 cleartimers��
83 else
84 status� idle

6

� ��

����

� ��� �� � ��� � �

�	�
�� � �� active

joiner

time �� � � � �
Figure 2: The joiner adopts state received at time�� � �, quickly replays the� � ��� messages, and then is caught up.
Note that in the figure, the� � �� � messages aresentin the interval�� � � � � ��� and delivered in�� � � � � � ��.

environment. With a fixed frequency,�� �� � , a processor participating in the emulation initiates a move
(lines 44–46). Notice that this broadcast message does not actually specify the location, as might be ex-
pected. In fact, each processor independently calculates the new location, based on the old location, the
time of the move, and the current state (line 60). The primarypurpose of this broadcast message is to or-
der the movement with respect to the other messages and events being processed, in order to ensure that the
move occurs consistently at all processors. As a result, when the new location is calculated all the processors
have the same replicated state, and therefore choose the same new location.

After the new location is calculated, a broadcast message issent notifying all the processors of the new
AVMN location (line 61). Only participating processors cancalculate the new location themselves; other
processors that are not participating receive the��� � �� � message, updating them on the current location.
Without this additional message, no new nodes would be awareof the new location and would be unable to
join the emulation.

In order that enough old nodes remain participants, and thatenough nodes near the new location can
receive the notification, we impose an additional limitation on the speed of motion. Let� be the maximum
distance moved by the AVMN in a single transition. Then we assume that� �� � � � � ��� � �.
Theorem 3 If at some point in the execution there is a consistent set of participants, then from that point
on the trace is consistent with a state change sequence that is correct according to the input and transition
functions.

Proof. (sketch) First, notice that every participating processor that is with � ��� � of the AVMN location
processes messages in the same order. That is, there exists atotal ordering of all messages, based on the time
they were sent; every processor removes them from the bufferin that order: before processing a message,� , a processor delays	 time, therefore by the time� is removed from the buffer, every message sent prior
to� has been received.

X
p

 !"#$

 %&a

q

X’X
p

 %&b

q

 !"#$

Figure 3: a) Processor' participates in a AVMN at location(and informs processor) about relocation to(� using
an*+, broadcast. b) Processor) participates in a AVMN at new location(� that is- distance units away.

7

The proof then follows by induction on the sequence of messages processed. The following two invari-
ants are maintained: (1) all processors have the same replica state after processing message� � , (2) the set
of participating processors is consistent. This follows bya case analysis of the messages processed. If� �

is a � �� message or a��� message, then the state is consistently updated at all processors by applying�
to the current state, which by induction and consistent message ordering is the same at all nodes. If� � is
a ����� message, then either the states are already consistent, or recovery begins. In the latter case, each
processor has the same set of state messages in its buffer, and the same set of other old messages, and so
chooses the same new state. (Note this also shows that joining is successful.) If� � is a� ��� message,
then each processor that receives the message is either still near the new center, in which case it remains a
participant, or it is far from the new center, in which case itleaves. If� � is a��� � ��� message and� is
not active, it simply adopts the new location; since it was previously not a participant, the set of participants
is still consistent.

At this point, it is easy to show that the trace is consistent with an AVMN execution, based on the states
after each message is received. Hence, any externally visible action, such as a Geocast, is consistent.

5 Ensuring Existence of Exactly One AVMN
Recall that Theorem 3 guarantee a consistent execution fromthat point at which there is a consistent set of
participants. In this section, we describe how to stabilizeon a consistent set of processors to emulate the
AVMN, presenting three schemes for ensuring the existence of exactly one instance of an AVMN.
Virtual Stationary Automata Scheme. The first scheme uses a virtual stationary automaton (VSA) tokeep
track of the AVMN. A VSA is another type of virtual infrastructure component, introduced in [11]. Unlike
an AVMN, it is stationary, fixed in a single predetermined location. Much like an AVMN, it is emulated
by a set of continually changing participants. Since it is stationary, however, the issues of autonomy do not
arise. In particular, for a VSA it is trivial to ensure a consistent set of participants: they are exactly the
set of participants that are near the VSA’s fixed location. One could therefore implement a VSA using the
algorithm in Section 3, instead of the algorithm in [11].

A VSA, if available, can be used to simplify the problem of maintaining a consistent set of participants
in an AVMN. The AVMN uses a Geocast service to send “I am alive”messages to the region containing
the VSA. If the VSA does not receive an “I am alive” message fortoo long a period, the VSA creates a
new AVMN. The VSA is also responsible for the elimination of undesired copies of an AVMN. Each “I am
alive” message carries the location of the AVMN and the timestamp at which the message was sent. The
VSA can easily detect that more than one copy of the AVMN exists and send an elimination message to
all but one of them. The scheme can be naturally extended to a more fault tolerant, distributed version in
which several VSAs are responsible for the existence of the AVMN, each having a different time-out period
to avoid simultaneous creation of multiple copies.

Lemma 4 Starting from an arbitrary initial state, the VSA Scheme ensures a consistent set of participants.

Proof. (sketch) If there is no AVMN in the network, then eventually the VSA stops receiving “I am alive”
messages and creates a unique new one. If there is more than one AVMN in the network, then eventually
the VSA eliminates all but one.

We note that, in the VSA Scheme, starting from an arbitrary configuration, we reach a consistent set of
participants within: (1) the time it take the VSA to stabilize, plus (2) the Geocast time.

8

Token Random Walk Scheme. In the second scheme, the mobile processors themselves verify the existence
of the AVMN, without relying on an auxiliary VSA. The AVMN repeatedly sends out a token containing the
message “I am alive.” The token travels on a random walk through the ad hoc network, until its time-to-live
expires. If a processor does not receive an “I am alive” tokenfor, say twice, the expected random walk cover
time (see [20, 12], for example, for cover time bounds), thenit generates a token containing a “formation”
message and the processor’s identifier and a time-to-live that bounds the token’s lifetime. The formation
token itself travels on a random walk. When two formation tokens collide, they merge, maintaining a
collection of processor identifiers. When a formation tokencontains

��� ����� processor identifiers, the
(single) processor that holds the token creates a new AVMN.

To ensure that there is eventually only one copy of the AVMN, each AVMN monitors the “I am alive”
messages in the network, each of which includes a timestamp and a location. The AVMN, which maintains a
bounded location history, can thus determine if a token belongs to a duplicate AVMN, and determine using a
deterministic function whether to eliminate itself. Only abounded history is needed since there exist bounds
on how long it takes a token to cover the network in nice executions.

Lemma 5 Starting from an arbitrary initial state, the Token Random Walk Scheme ensures a consistent set
of participants.

Proof. (sketch) If there is no AVMN in the system, eventually each processor produces a formation token.
Eventually, the formation tokens collide, forming a uniqueAVMN. If there is more than one AVMN, even-
tually each AVMN receives “I am alive” tokens from the other AVMNs. All but one AVMN will then be
eliminated.

We note that, in the Token Random Walk Scheme, starting from an arbitrary configuration, we reach a
consistent set of participants within order� time, where� is the time it takes for a random walk to visit
every node (see [12]).
Stay Alive Scheme. The third scheme is different in the sense that the AVMN itself does not send messages.
Instead, processors at predefined times (say every hour on the hour) send tokens containing a “stay alive”
message on a random walk of the network. Eventually the AVMN should receive the tokens. In every time
period the AVMN must collect at least

��� ����� stay alive tokens in order to survive the next time period.
Notice that if there is more than one copy of the AVMN, at most one is able to collect a majority of stay alive
tokens in a time period. If a stay alive token survives for toolong without finding an AVMN, it begins to act
like a formation token in the Token Random Walk scheme: when two stay alive formation tokens collide,
they merge, and when a majority of stay alive formation tokens have merged, they form a new AVMN.

Lemma 6 Starting from an arbitrary initial state, the Stay Alive Scheme ensures a consistent set of partici-
pants.

Proof. (sketch) If there is no AVMN in the system, eventually the tokens all become formation tokens, and
eventually all merge and form a new AVMN. If there is more thanon AVMN in the system, at most one is
able to collect a majority of the tokens, and therefore at most one AVMN survives.

As in the Token Random Walk Scheme, in the Stay Alive Scheme, when starting from an arbitrary
configuration, we reach a consistent set of participants within order� time, where� is the time for a
random walk to visit every processor.

9

Trade-Offs. The VSA scheme is the most efficient, in terms of messages required. Unlike the other two
schemes, messages can be sent directly to a known location, rather than performing a random walk of the
network. For the same reason, the VSA scheme is able to respond most rapidly to abnormalities in the
system. In fact, the simplicity of this scheme is yet anotherexample of the utility of having virtual, reliable
infrastructure in a mobile ad hoc network.

On the other hand, the VSA scheme requires maintaining a stationary virtual automaton. The Token
Random Walk scheme is also relatively message efficient, in that in the stable state when there exists one
AVMN, there only needs to be a small number of tokens performing random walks in the network. It is only
in the case of formation that all the processors need to create tokens.

The Stay Alive scheme is the least efficient, in terms of messages. All the processors need to create
tokens at all times. However, it is simpler than the Token Random Walk scheme, in that only one type of
token is needed. Moreover, the AVMN does not have to send any heartbeat messages.

Using any of the three schemes, we can conclude our main theorem:

Theorem 7 The AVMN emulator, using any of the three schemes, is a self-stabilizing implementation of an
arbitrary automaton.

6 Discussion
We have discussed how to implement a single AVMN; one could instead have multiple AVMNs, possibly
dynamically created by AVMN cloning, performing differenttasks, and collaborating among themselves.
Moreover, AVMNs can be organized into a hierarchy, and be used as robust entities for tracking, updat-
ing, communicating and more, in the scope UAVs, sensor networks, ad-hoc networks, and RFID tags (for
instance, the AVMN may follow the energy source/beam of light).

There are a number of ways to optimize the movement of the AVMNso as to minimize the energy
needed during a broadcast. First, the processor can examineits current location and only use the minimum
amount of power necessary to reach everyone at the new AVMN location. Second, we can use the mobile
processors that are closer to the new AVMN location to perform the broadcast. Hence, only these need to use
more broadcast power. Third, if the AVMN motion can be dependent on the mobile processor’s motion (for
example, in the case of tracking), then we can take advantageof the movement of the mobile processors to
minimize the energy needed. In some application domains, the AVMN is allowed decide to start controlling
the movement of the mobile nodes that implement it (e.g., [7,13, 14, 16]).

The algorithm presented can be optimized in many ways, for example, the communication overhead can
be significantly reduced by using checksums (instead of sending the entire state) and/or using randomization
to limit the number of processors broadcasting consistency-check messages. When an inconsistency is
detected, we can use an ethernet-like algorithm to choose randomly which replica will survive (it will be the
first that succeeds in performing local broadcast).

We also note that there are ways to change the AVMN program that is assumed to be hardwired in each
processor. One way to do so is by using a super-user message that is sent to all the processors (say, with the
assistance of VSAs) to replace their code.

Our approach can also be generalized to work in three dimensions, rather than two — instead of a disc
around the AVMNs location, we may consider a ball.

10

References
[1] J. Beal, “Persistent nodes for reliable memory in geographically local networks,” TR AIM-2003-11, MIT, 2003.

[2] J. Beal, “A robust amorphous hierarchy from persistent nodes,”Proc. of Communication Systems and Networks, 2003.

[3] O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Roadmap-Based Flocking for Complex Environments,”Proc. 10th Pacific
Conference on Computer Graphics and Applications (PG’02), 2002.

[4] J. Bohn and F. Mattern, “Super-Distributed RFID Tag Infrastructers,” TR, Institute of Pervasive Computing, ETH, 2004.

[5] T. Camp and Y. Liu, “An adaptive mesh-based protocol for geocast routing,”Journal of Parallel and Distributed Computing:
Special Issue on Mobile Ad-hoc Networking and Computing, pp. 196–213, 2002.

[6] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis, “An efficient communication strategy for ad-hoc mobile networks,” Proc.
15th International Symposium on Distributed Computing, 2001.

[7] P. Chandler and M. Pachter, “Hierarchical Control for Autonomous Teams”,AIAA Guidance, Navigation, and Control Con-
ference and Exhibit, 2001.

[8] S. Dolev and O. Gersten, “Robust Active Super Tier Systems”, Proc. of the IEEE International Conference on Software-
Science, Technology and & Engineering, 2005.

[9] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. L. Welch, “GeoQuorums: Implementing Atomic Memory in Ad
Hoc Networks”,Proc. 17th International Symposium on Distributed Computing (DISC), pp. 306–320, 2003. To appear in
Distributed Computing.

[10] S. Dolev, S. Gilbert, N. Lynch, E. Schiller, A. Shvartsman, and J. L. Welch, “Virtual Mobile Nodes for Mobile Ad Hoc
Networks,”Proc. 18th International Symposium on Distributed Computing (DISC), pp. 230–244, 2004.

[11] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte,“Virtual Stationary Automata for Mobile Networks”, TR MIT-LCS-
TR-979, MIT CSAIL, Cambridge, MA 02139, January 2005.

[12] S. Dolev, E. Schiller, and J. L. Welch, “Random Walk for Self-Stabilizing Group Communication in Ad-Hoc Networks,”Proc.
21st Symp. on Reliable Distributed Systems,pp. 70–79, 2002. To appear inIEEE Transactions on Mobile Computing.

[13] D. Gillen and D. Jaques, “Cooperative Behavior Schemesfor Improving the Effectiveness of Autonomous Wide Area Search
Munitions”, Proceedings of the Cooperative Control Workshop, 2000.

[14] J. Hebert, “Cooperative Control of UAVs”,AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001.

[15] K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T. Tampakas, and R. B. Tan, “Fundamental control algorithms in mobile
networks,”Proc. of the 11th ACM Symposium on Parallel Algorithms and Architectures archive, Saint Malo, France, 1999.

[16] E. Kivelevich and P. Gurfil “UAV Flock Taxonomy and Mission Execution Performance”,Proc. of the 45th Israeli Conference
on Aerospace Sciences, 2005.

[17] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger., “Geometric Ad-Hoc Routing: Of Theory and Practice”,Proc. of the
22nd Symp. on the Principles of Distributed Computing, July 2003.

[18] L. Lamport, “Time, clocks, and the ordering of events ina distributed system,”Communications of the ACM, 21(7):558–565,
1978.

[19] Q. Li and D. Rus, “Sending messages to mobile users in disconnected ad-hoc wireless networks,”Proc. 6th MobiCom, 2000.

[20] R. Motwani and P.Raghavan, “Randomized Algorithms.” Cambridge University Press, 1995.

[21] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a global coordinate system from local information on an ad hoc sensor
network,”2nd Workshop on Information Processing in Sensor Networks, 2003.

[22] B. Nath and D. Niculescu, “Routing on a curve,”ACM SIGCOMM Computer Communication Review, 33(1):150 – 160, 2003.

[23] J. C. Navas and T. Imielinski. “Geocast – geographic addressing and routing,”Proc. of the 3rd MobiCom, 1997.

[24] N. B. Priyantha, A. Chakraborty, H. Balakrishnan. “Thecricket location-support system,”Proc. 6th ACM MOBICOM, 2000.

[25] P. Yao, E. Krohne, and T. Camp, “Performance Comparisonof Geocast Routing Protocols for a MANET,”Proc. of the 13th
IEEE International Conference on Computer Communicationsand Networks (IC3N),pp. 213–220, 2004.

11

