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Abstract

We introduce a formal model for geographic social networks, and introduce the notion of
rank-based friendship, in which the probability that a person v is a friend of a person u is
inversely proportional to the number of people w who live closer to u than v does. We then
prove our main theorem, showing that rank-based friendship is a sufficient explanation of the
navigability of any geographic social network that adheres to it.

1 A Model of Population Networks

There are two key features that we wish to incorporate into our social-network model: geography
and population density. We will first describe a very general abstract model; in later sections we
examine a concrete grid-based instantiation of it.

Definition 1.1 (Population network) A population network is a 5-tuple 〈L, d, P, loc, E〉 where

• L is a finite set of locations (�, s, t, x, y, z, . . .);

• d : L × L −→ R
+ is an arbitrary distance function on the locations;

• P is a finite ordered set of people (u, v, w, . . .);

• loc : P −→ L is the location function, which maps people to the location in which they live;
and

• E ⊆ P × P is the set of friendships between people in the network.

The ordering on people is required only to break ties when comparing distances between two people.
Let P(L) denote the power set of L.

Let pop : L −→ Z
+ denote the population of each point on L, where pop(�) := |{u ∈ P :

loc(u) = �}|. We overload notation, and let pop : P(L) −→ Z
+ denote the population of a subset

of the locations, so that pop(L′) :=
∑

�∈L′ pop(�). We will write n := pop(L) = |P | to denote the
total population, and m := |L| to denote the total number of locations in the network.
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Let density : L −→ [0, 1] be a probability distribution denoting the population density of each
location � ∈ L, so that density(�) := pop(�)/n. We similarly extend density : P(L) −→ [0, 1] so
that density(L′) =

∑
�∈L′ density(�). Thus density(L) = 1.

We extend the distance function to accept both locations and people in its arguments, so that we
have the function d : (P ∪L)× (P ∪L) −→ R

+ where d(u, ·) := d(loc(u), ·) and d(·, v) := d(·, loc(v))
for all people u, v ∈ P .

When comparing the distances between people, we will use the ordering on people to break ties.
For people u, v, v′ ∈ P , we will write d(u, v) < d(u, v′) as shorthand for 〈d(u, v), v〉 ≺lex 〈d(u, v′), v′〉.
This tie-breaking role is the only purpose of the ordering on people.

2 Rank-Based Friendship

Following the navigable-small-world model of Kleinberg [1, 2], each person in the network will be
endowed with one long-range link. We diverge from the model of Kleinberg in the definition of our
long-range links. Instead of distance, the fundamental quantity upon which we base our model of
long-range links is rank :

Definition 2.1 (Rank) For two people u, v ∈ P , the rank of v with respect to u is defined as

ranku(v) := |{w ∈ P : d(u, w) < d(u, v)}| .

Note that by breaking ties in distance consistently according to the ordering on P , for any i ∈
{1, . . . , n} and any person u ∈ P , there is exactly one person v such that ranku(v) = i. We now
define a model for generating a rank-based social network using this notion:

Definition 2.2 (Rank-based friendship) For each person u in the network, we generate one
long-range link from u, where

Pr[u links to v] ∝ 1
ranku(v)

.

Intuitively, one justification for rank-based friendship is the following: person v will have to compete
with all of the more “convenient” candidate friends for person u, i.e., all people w who live closer
to u than v does. Note that, for any person u, we have

∑
v 1/ranku(v) =

∑n
i=1 1/i = Hn, the nth

harmonic number. Therefore, by normalizing, we have that

Pr[u links to v] =
1

Hn · ranku(v)
. (1)

Under rank-based friendship, the probability of a link from u to v depends only on the number
of people within distance d(u, v) of u, and not on the geographic distance itself.

One important feature of this model is that it is independent of the dimensionality of the space
in which people live. For example, in the k-dimensional grid with uniform population density and
the L1 distance on locations, we have that |{w : d(u, w) ≤ δ}| ∝ δk, so the probability that person
u links to person v is proportional to d(u, v)−k. That is, the rank of a person v with respect to a
person u satisfies ranku(v) ≈ d(u, v)k. Thus, although this model has been defined without explicitly
embedding the locations in a metric space, our rank-based formulation gives essentially the same
long-distance link probabilities as Kleinberg’s model for a uniform-population k-dimensional mesh.
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3 Rank-Based Friendship on Meshes

In the following, our interest will lie in population networks that are formed from meshes with
arbitrary population densities. Let L := {1, . . . , q}k denote the points on the k-dimensional mesh,
with length q on each side. We write x = 〈x1, . . . , xk〉 for a location x ∈ L. We will consider
Manhattan distance (L1 distance) on the mesh, so that d(〈x1, . . . , xk〉, 〈y1, . . . , yk〉) :=

∑k
i=1 |xi−yi|.

The only restriction that we impose on the people in the network is that pop(�) > 0 for every � ∈ L—
that is, there are no ghost towns with zero population. This assumption will allow us to avoid the
issue of disconnected sets in what follows.

Thus a mesh population network is fully specified by the dimensionality k, the side length q,
the population P (with an ordering to break ties in interpersonal distances), the friendship set E,
and the location function loc : P −→ {1, . . . , q}k, where for every location � ∈ {1, . . . , q}k, there
exists a person u� ∈ P such that loc(u�) = �.

Following the Kleinberg’s model of navigable small worlds, we include local links in E for each
person in the network. For now, we assume that each person u at location �(u) = loc(u) in the
network has a local link to some person at the mesh point in each cardinal direction from �(u), i.e.,
to some person at each of the 2k points 〈�(u)

1 , . . . , �
(u)
i−1, �

(u)
i ± 1, �

(u)
i+1, . . . , �

(u)
k 〉, for any coordinate

i ∈ {1, . . . , k}. Thus, for any two people u and v, there exists a path of length at most qk between
them, and, more specifically, the geographically greedy algorithm will find a path of length no
longer than qk.

In a rank-based mesh population network, we add one long-range link to E per person in P ,
where that link is chosen probabilistically by rank, according to (1).

4 The Two-Dimensional Grid

For concreteness, we focus on the two-dimensional grid, where we have L := {1, . . . , q}×{1, . . . , q},
and thus m = |L| = q2. We may think of the two-dimensional grid as representing the intersection
of integral lines of longitude and latitude, for example.

In this section, we will show that the geographically greedy algorithm on the two-dimensional
grid produces paths that are on average very short—more precisely, that the expected length of
the path found by the geographically greedy algorithm is bounded by O(log3 n) when the target is
chosen randomly from the population P . Formally, the geographically greedy algorithm GeoGreedy
proceeds as follows: given a target t and a current message-holder u, person u examines her set of
friends, and forwards the message to the friend v of u who is geographically closest to the target t.
First, we need a few definitions:

Definition 4.1 (L1-Ball) For any location x ∈ L and for any radius r ≥ 0, let

Br(x) = {y ∈ L : d(x, y) ≤ r} = {y ∈ L : |x1 − y1| + |x2 − y2| ≤ r}
denote the L1-ball of radius r centered at location x.

We consider an exponentially growing set R := {2i : i ∈ {1, 2, 4, . . . , 128log q�}} of ball radii, and
we place a series of increasingly fine-grained collections of balls that cover the grid:

Definition 4.2 (Covering Radius-r Ball Centers) For any radius r ∈ R, let the set

Cr := {z ∈ L : 2z1 mod r = 2z2 mod r = 0}
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be the set of locations z such that zi/r is half-integral for i ∈ {1, 2}.
For each radius r ∈ R, we will consider the set of radius-r balls centered at each of the locations
in Cr. We begin with a few simple facts about these L1-balls:

Fact 4.3 (Only a small number of balls in Cr overlap) For each each radius r ∈ R:

1. For each location x ∈ L, we have that |{z ∈ Cr : d(z, x) ≤ r}| ≤ 25.

2. For each location z ∈ Cr, we have that |{z′ ∈ Cr/2 : Br/2(z′) ∩ Br(z) �= ∅}| ≤ 169.

Proof. For the first claim, note that if |z1 − x1| > r or if |z2 − x2| > r, then d(z, x) > r, and z is
not an element of the set of relevance. Thus every z ∈ Cr such that d(z, x) ≤ r must fall into the
range 〈x1 ± r, x2 ± r〉. There are at most five half-integral values of z/r that can fall into the range
[b, b + 2r] for any b, so there are at most twenty-five total points z ∈ Cr that satisfy d(x, z) ≤ r.

For the second claim, notice that any ball of radius r/2 that has a nonempty intersection with
Br(z) must have its center at a point z′ such that d(z, z′) ≤ 3r/2. Thus the only z′ ∈ Cr/2 that
could be in the set of relevance must have z′i ∈ [zi−3r/2, zi +3r/2] for i ∈ {1, 2} and have 2z′i/(r/2)
be half-integral. As in the first claim, the number of half-integral values of 2z′/r that can fall into
the range [b, b + 3r] is at most thirteen for any b. Thus there can be at most 169 total points
z′ ∈ Cr/2 so that Br/2(z′) ∩ Br(z) �= ∅. �

Fact 4.4 (Relation between balls centered in L and in Cr) For each location x ∈ L and for
each radius r ∈ R:

1. There exists a location z ∈ Cr such that Br/2(x) ⊆ Br(z).

2. There exists a location z′ ∈ Cr/2 such that Br/2(z′) ⊆ Br(x) and x ∈ Br/2(z′).

Proof. For the first claim, let z ∈ Cr be the closest point to x in Cr. Note that x1 ∈ [z1−r/4, z1+r/4];
otherwise x would be strictly closer to either 〈z1 − r/2, z2〉 ∈ Cr or 〈z1 + r/2, z2〉 ∈ Cr. Similarly we
have x2 ∈ [z2 − r/4, z2 + r/4]. Therefore we have d(x, z) =

∑
i∈{1,2} |xi − zi| ≤ r/2. Let y ∈ Br/2(x)

be arbitrary. Then by the triangle inequality we have d(z, y) ≤ d(z, x) + d(x, y) ≤ r/2 + r/2 = r.
Thus we have y ∈ Br(z), which proves the claim.

For the second claim, let z′ ∈ Cr/2 be the closest point to x in Cr/2. By the same argument as
above, we have d(x, z′) ≤ r/4. Immediately we have x ∈ Br/2(z′). Let y ∈ Br/2(z′) be arbitrary.
Then d(x, y) ≤ d(x, z′) + d(z′, y) ≤ r/4 + r/2 < r, and y ∈ Br(x), which proves the claim. �

Let x and y be two arbitrary locations in L. In what follows, we will use the size of the smallest
ball in

⋃
r∈R{Br(z) : z ∈ Cr} that includes both x and y as a ceiling-like proxy for d(x, y), and as

the measure of progress towards the target. We will also need a large ball from {Br(z) : z ∈ Cr}
that includes both x and y and also includes a large ball centered at y.

Definition 4.5 (Minimum enclosing-ball radius) For any two locations x, y ∈ L, let mebr(x, y)
(“minimum enclosing-ball radius”) denote the minimum r ∈ R such that, for some z ∈ Cr, we have
x, y ∈ Br(z).

Fact 4.6 (Relating distance and minimum enclosing-ball radius) For any x, y ∈ L, let r :=
mebr(x, y). Then we have 2r ≥ d(x, y) ≥ r/4.
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Proof. Let z ∈ Cr be such that x, y ∈ Br(z), and note that, by definition, there is no z′ ∈ Cr/2

such that x, y ∈ Br(z′). The first direction is easy: by the triangle inequality, we have that
d(x, y) ≤ d(x, z) + d(z, y) ≤ r + r = 2r. For the other direction, suppose for a contradiction that
d(x, y) ≤ r/4. Let z∗ ∈ Cr/2 be such that Br/4(x) ⊆ Br/2(z∗), as guaranteed by Fact 1. But then
we have x, y ∈ Br/4(x) because d(x, y) ≤ r/4, which implies that x, y ∈ Br/2(z∗), which in turn
contradicts the minimality of r. �

Thus, in the path from any source s ∈ L to any target t ∈ L found by GeoGreedy, the path will
always remain inside the ball Bd(s,t)(t) ⊆ B2·mebr(s,t)(t).

Definition 4.7 (Sixteenfold enclosing ball) Let x, y ∈ L be an arbitrary pair of locations, and
let r = mebr(x, y). Let sebc(y, r) (“sixteenfold enclosing ball center”) denote the location z∗y,r ∈ C16r

such that B8r(y) ⊆ B16r(z∗y,r) whose existence is guaranteed by Fact 1.

Lemma 4.8 (Relationship between ball population and rank) Let s, t ∈ L be an arbitrary
source/target pair of locations. Let r = mebr(s, t), and let z∗ = sebc(t, r). Let x, y ∈ L be arbitrary
locations such that x ∈ B2r(t) and y ∈ Br/8(t), and let u, v ∈ P be arbitrary people such that
loc(u) = x and loc(v) = y. Then ranku(v) ≤ pop(B16r(z∗)).

Proof. First, we note

d(x, y) ≤ d(x, t) + d(t, y) triangle inequality
≤ 2r + r/8 assumptions that x ∈ B2r(t) and y ∈ Br/8(t)
= 17r/8. (2)

We now claim the following:

for any location � ∈ L, if d(x, �) ≤ d(x, y), then d(z∗, �) ≤ 16r. (3)

To prove (3), let � be an arbitrary location so that d(x, �) ≤ d(x, y). Then we have

d(t, �) ≤ d(t, y) + d(y, x) + d(x, �) triangle inequality
≤ d(t, y) + d(y, x) + d(x, y) assumption that d(x, �) ≤ d(x, y)
≤ r/8 + d(y, x) + d(x, y) assumption that y ∈ Br/8(t)
≤ r/8 + 17r/8 + 17r/8 (2)
= 35r/8.

Then, we have that � ∈ B35r/8(t) ⊆ B8r(t) ⊆ B16r(z∗) by the definition of z∗ = sebc(t, r), which
proves (3). Now, by definition of rank, we have that

ranku(v) ≤ |{w ∈ P : d(u, w) ≤ d(u, v)}|
=

∑
�∈L:d(x,�)≤d(x,y)

pop(�)

= pop({� ∈ L : d(x, �) ≤ d(x, y)})
≤ pop({� ∈ L : d(�, z∗) ≤ 16r})
= pop(B16r(z∗))

where the second inequality follows from (3). �
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We are now ready to prove the main technical result of this section, namely that the geographically
greedy algorithm will halve the distance from the source to the target in a polylogarithmic expected
number of steps, for a randomly chosen target person.

Lemma 4.9 (GeoGreedy halves distance in expected polylogarithmic steps) Let s ∈ L be
an arbitrary source location, and let t ∈ L be a randomly chosen target location, according to the
distribution density(·). Then the expected number of steps before the geographically greedy algorithm
started from location s reaches a point in Bd(s,t)/2(t) is O(log n log m) = O(log2 n), where the
expectation is taken over the random choice of t.

Proof. Let rt := mebr(s, t), and let zt := sebc(t, rt) so that

zt ∈ C16rt and B8rt(t) ⊆ B16rt(zt). (4)

Let z′t be the location whose existence is guaranteed by Fact 2 such that

z′t ∈ Crt/16 and Brt/16(z
′
t) ⊆ Brt/8(t) and t ∈ Brt/16(z

′
t). (5)

Putting together (4) and (5), we have the following two facts:

Brt/16(z′t) ⊆ Brt/8(t) ⊆ B8rt(t) ⊆ B16rt(zt) (6)
t ∈ Brt/16(z′t). (7)

By Fact 4.6, we know that d(s, t)/2 ≥ rt/8. Thus it will suffice to show that the expected number
of steps before GeoGreedy started from location s lands in Brt/8(t) ⊆ Bd(s,t)/2(t) is O(log n log m).

Suppose that we start GeoGreedy at the source s, and the current point on the path found by
the algorithm is some person u ∈ P , at location xu = loc(u). By definition, every step of GeoGreedy
decreases the distance from the current location to the target t, so we have that

d(xu, t) ≤ d(s, t) ≤ 2rt. (8)

We refer to a person u as good if there exists a long-range link from that person to any person
living in the ball Brt/8(t). Let αu,t denote the probability that a person u ∈ P living at location
xu = loc(u) ∈ L is good. Then

αu,t =
∑

v:loc(v)∈Brt/8(t)

1
ranku(v) · Hn

≥
∑

v:loc(v)∈Brt/8(t)

1
pop(B16rt(zt)) · Hn

=
pop(Brt/8(t))

pop(B16rt(zt)) · Hn

by the definition of good, by Lemma 4.8 (which applies by (8)), and by the definition of pop(·).
Noting that the lower bound on αu,t is independent of u, we write

αt :=
pop(Brt/8(t))

pop(B16rt(zt)) · Hn
≤ αu,t.

Thus the probability that u is good is at least αt for every person u along the GeoGreedy path.
Furthermore, each step of the algorithm brings us to a new node never seen before by the algorithm
because the distance to t is strictly decreasing until we reach node t. Thus the probability of finding
a good long-range link is independent at each step of the algorithm until it terminates. Therefore,
the expected number of steps before we reach a good person (or t itself) is at most 1/αt.
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We now examine the expected value of 1/αt for a target location t ∈ L chosen according to the
distibution density(·):

Et∈L∼density(·)[1/αt] =
∑

t

density(t) · 1
αt

=
∑

t

density(t) · pop(B16rt(zt)) · Hn

pop(Brt/8(t))

= Hn ·
∑

t

density(t) · density(B16rt(zt))
density(Brt/8(t))

≤ Hn ·
∑

t

density(t) · density(B16rt(zt))
density(Brt/16(z′t))

.

The equalities follow the definition of expectation, the definition of αt, and from the fact that
density(·) = pop(·)/n. The inequality follows from the definition of z′t in (5), using the fact that
Brt/16(z′t) ⊆ Brt/8(t) and the monotonicity of density(·).

We now reindex the summation to be over radii and ball centers rather than over targets t.
Recall that zt ∈ C16rt and z′t ∈ Crt/16, and that Brt/16(z′t) ⊆ B16rt(zt) by (6), and therefore that
z′t ∈ B16rt(zt). Thus, we have that

Et∈L∼density(·)[1/αt] ≤ Hn ·
∑

t

density(t) · density(B16rt(zt))
density(Brt/16(z′t))

≤ Hn ·
∑

r∈R

∑

z∈C16r

∑

z′∈Cr/16:z′∈B16r(z)

density(B16r(z))
density(Br/16(z′))

∑

t:z′t=z′
density(t)

≤ Hn ·
∑

r∈R

∑

z∈C16r

∑

z′∈Cr/16:z′∈B16r(z)

density(B16r(z))
density(Br/16(z′))

∑

t∈Br/16(z′)

density(t)

where the last inequality follows from (7). But then

Et∈L∼density(·)[1/αt] ≤ Hn ·
∑

r∈R

∑

z∈C16r

∑

z′∈Cr/16:z′∈B16r(z)

density(B16r(z))
density(Br/16(z′))

∑

t∈Br/16(z′)

density(t)

= Hn ·
∑

r∈R

∑

z∈C16r

∑

z′∈Cr/16:z′∈B16r(z)

density(B16r(z))
density(Br/16(z′))

· density(Br/16(z
′))

= Hn ·
∑

r∈R

∑

z∈C16r

∑

z′∈Cr/16:z′∈B16r(z)

density(B16r(z))

= Hn ·
∑

r∈R

∑

z∈C16r

density(B16r(z)) · |{z′ ∈ Cr/16 : z′ ∈ B16r(z)}|.

Now we are almost done: by applying Fact 2 a constant number of times, we have that

|{z′ ∈ Cr/16 : z′ ∈ B16r(z)}| = O(1). (9)

Furthermore, we have
∑

z∈C16r
density(B16r(z)) ≤ 25: by Fact 1, there are at most twenty-five balls

in Cr that include any particular location, so we are simply summing a probability distribution
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with some “double counting,” but counting each point at most twenty-five times. Thus we have

Et∈L∼density(·)[1/αt] ≤ Hn ·
∑

r∈R

∑

z∈C16r

density(B16r(z)) · |{z′ ∈ Cr/16 : z′ ∈ B16r(z)}|

≤ Hn · O(1) ·
∑

r∈R

∑

z∈C16r

density(B16r(z))

≤ Hn · O(1) ·
∑

r∈R

25

= Hn · O(1) · 25 · |R| = Hn · O(log q) = O(log n log m).

because |R| = Θ(log q) = Θ(log m). �

In the case of uniform population density, the value of αu,t = Ω(1/ log n) is independent of s and t,
and the greedy algorithm finds an s-t path of length O(log2 n) with high probability [1, 2].

Theorem 4.10 (GeoGreedy finds short paths in all 2-D meshes) For any 2-dimensional mesh
population network with n people and m locations, the expected length of the search path found
by GeoGreedy from an arbitrarily chosen source location s and a uniformly chosen target t is
O(log n log2 m) = O(log3 n).

Proof. Immediate by inductive application of Lemma 4.8: the expected number of hops required
before moving to a node s′ with d(s′, t) ≤ d(s, t)/2 or t itself is O(log n log m); by repeating this
process O(log(maxs,t d(s, t))) = O(log qk) = O(log qk) = O(log m) times, we must arrive at the
target node t itself. �
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