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Abstract—This paper addresses the problem of managing
the tradeoff between energy consumption and performance
in wireless devices implementing the IEEE 802.11 standard
[1]. To save energy, the 802.11 specification proposes a
power-saving mode (PSM), where a device can sleep to save
energy, periodically waking up to receive packets from a
neighbor (e.g., an access point) that may have buffered pack-
ets for the sleeping device. Previous work has shown that a
fixed polling time for waking up degrades the performance
of Web transfers [2], because network activity is bursty and
time-varying. We apply a new online machine learning algo-
rithm to this problem and show, using ns-2 simulation and
trace analysis, that it is able to adapt well to network activity.
The learning process makes no assumptions about the un-
derlying network activity being stationary or even Markov.
Our learning power-saving algorithm, LPSM, guides the
learning using a “loss function” that combines the increased
latency from potentially sleeping too long and the wasted use
of energy in waking up too soon. In our ns-2 simulations,
LPSM saved 7%-20% more energy than 802.11 in power-
saving mode, with an associated increase in average latency
by a factor of 1.02, and not more than 1.2. LPSM is straight-
forward to implement within the 802.11 PSM framework.

I. INTRODUCTION

Energy is an important resource in mobile computing
systems. Because processing, storage, display activity,
and communication all consume energy, energy-saving
techniques targeted at improving these subsystems have
received significant attention in recent years. Impressive
advances in hardware design and operating systems have
greatly reduced the energy consumed by the processing
and storage subsystems, and have led to the wireless net-
work becoming a significant consumer of energy in many
mobile devices. This trend is especially true for handheld
mobile devices and nodes in wireless ad hoc and sensor
networks.

Most wireless network interfaces consume energy not
only while transmitting or receiving data, but also when
they are simply awake. Therefore, to save energy, most
modern wireless interfaces support a power saving mode

(PSM). In abstract terms, the PSM primitive allows an in-
terface to be in one of two states, SLEEP or AWAKE.
SLEEP is a low-power state, but the interface cannot
send or receive data in this state. In contrast, AWAKE
allows data flow, but is a higher-power state. Depending
on the actual device, these two states may differ in power
consumption by between a factor of 10 and 50. For in-
stance, in some current 802.11 cards, the ratio is about a
factor of 20 (1 W v. 50 mW) [3], [4].

With the PSM primitive, power-saving algorithms can
save energy by keeping the wireless interface in the
SLEEP state for as long as possible. A SLEEPing de-
vice periodically wakes up and polls its neighbors (either
an access point in “infrastructure” mode, or a neighboring
node in “ad hoc” mode) for packets.1 To avoid excessive
packet loss, the neighbor must therefore buffer packets for
each SLEEPing receiver. Then, the neighbor sends these
buffered packets when it receives a poll from a waking
receiver.

Power-saving algorithms built on top of the PSM prim-
itive introduce a tradeoff between the amount of energy
saved and the degree of performance degradation. If a
device awakens and finds no data buffered for it, then it
could have slept for longer and saved some more energy.
On the other hand, if any packets are buffered when the
interface awakens, then the latency to obtain those pack-
ets would be larger than if the network interface had been
awake instead of asleep. This increased latency degrades
not just the latency of the on-going data transfers, but of-
ten the throughput as well.

This paper addresses the problem designing an algo-
rithm by which a device can decide when to SLEEP and
when to be AWAKE. Our goal is to devise an algorithm
that manages the tradeoff between energy consumption
and data transfer latency in a principled, well-specified
way, such that users or application designers can specify

1This is an abstract model: some implementations first have the neigh-
bor advertise information before the polls occur.
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their desired operating point. Our motivation for a prin-
cipled trade-off is motivated by Krashinsky and Balakr-
ishnan’s work on the Bounded SlowDown (BSD) algo-
rithm [2], where they demonstrate that the IEEE 802.11’s
non-adaptive polling time strategy [1] degrades both the
latency and the throughput of TCP transfers. As in their
work, we focus our algorithm on Web-like workloads,
mainly because it is the dominant workload today for
many mobile devices.

We develop a PSM algorithm called LPSM (Learn-
ing PSM) to determine a device’s sleep/awake schedule.
LPSM adapts the schedule to network activity by main-
taining a bank of “experts”. Each expert is a determin-
istic setting of the polling time, with an associated time-
varying weight that gets updated by the algorithm in re-
sponse to observations of current network activity. The
weights form a probability distribution, and at each time,
the polling time chosen is the weighted sum of the ex-
perts’ times. LPSM is based on a recently developed ma-
chine learning algorithm called Learn-α [5], [6], which
has the attractive property that it makes no assumptions
on the statistical distribution of the activity being learned.
In our context, LPSM’s use of Learn-α makes no assump-
tions on the distribution of packet arrivals and network
activity.

The first contribution of this paper is to show how on-
line machine learning can be used to solve the wireless
power-saving problem. The key to this solution is to de-
fine a loss function that the Learn-α algorithm uses in de-
termining how to update the weights of the experts every
time the mobile device awakens. If the device awakens
and there is no data present, then the weights of the ex-
perts are carefully adjusted such that the next sleep time
is longer. Conversely, if any packets were present, the
opposite adjustment is made.

The second contribution of this paper is a performance
evaluation of LPSM using trace-driven simulations. We
compare the performance of both the non-adaptive 802.11
PSM and the BSD algorithm to LPSM. Our experimen-
tal results to date have shown that for a Web-like re-
quest/response workload, LPSM saves 7%-20% more en-
ergy than 802.11 in power-saving mode, with an associ-
ated increase in average slowdown of 2%, and not more
than 20%. LPSM is straightforward to implement within
the 802.11 PSM framework.

The rest of this paper is organized as follows. In Sec-
tion II, we survey related work in power saving and ma-
chine learning. Section III gives a formal definition of
the problem and an overview of our approach. Section IV
gives the LPSM algorithm. Section V presents several
results from trace-driven ns-2 simulations and trace-
based analysis of LPSM, and Section VI concludes the
paper with a discussion of our results.

II. RELATED WORK

Using trace-driven simulations, Krashinsky and Bal-
akrishnan [2] show that the 802.11 PSM algorithm, which
uses a fixed polling interval (typically 100 ms) to wake
up and check for data, causes response latency for Web-
like transfers to be as bad as 2.2× longer than in the ab-
sence of any power-saving algorithm. To better manage
the tradeoff in question, they proposed BSD, an algorithm
that uses an adaptive control loop to change polling time
based on network conditions. The algorithm uses a pa-
rameter, p, and guarantees that the response latency does
not ever exceed (1 + p) times the response latency with-
out power-saving. Within that constraint and assuming
adversarial traffic arrivals, BSD guarantees that the en-
ergy consumption is minimized. In contrast, LPSM does
not attempt to guarantee bounded latency under adversar-
ial traffic arrivals; instead, our approach is to explicitly
encode a tradeoff between energy and latency and give an
online learning algorithm that manages this tradeoff.

Simunic et al. formulate the wireless power-saving
problem as policy learning in a Markov Decision Process
(MDP) [7]. Their algorithm is not an online algorithm
since the linear programming algorithm used to resolve
the policy over any given time period requires access to
data over that entire period. They also assume that net-
work activity is stationary. In the MDP there is fixed dis-
tribution governing the selection of next states, given the
current state and action. For any fixed policy such as the
optimal policy in this framework, the network activity is
modeled as a Markov process. This model is not an ideal
one for a mobile node, since the network activity need not
conform to a Markov process of any finite order k.

Simunic et al. refer to Chung et al. [8] for the solu-
tion in non-stationary environments. That work proposes
“policy interpolation”; however, it still assumes that the
underlying process is Markovian, even though it may ini-
tially appear non-stationary due to a lack of observations.
They then propose to learn the associated MDP parame-
ters sequentially [8]. Another machine learning approach
to this problem was proposed Steinbach, using Reinforce-
ment Learning [9]. This approach also imposes the as-
sumption that network activity has the Markov property
which, as discussed above, is unrealistic.

These previous learning approaches differ from ours in
that LPSM does not make any Markovian or stationarity
assumptions, nor require any a priori knowledge of the
statistical process being learned. LPSM is also simpler
to implement in the 802.11 framework compared to these
previous learning approaches.

Our learning algorithm is from the field of online learn-
ing algorithms. Littlestone and Warmuth [10] designed
online learning algorithms that have access to a fixed set
of experts, for which they were able to bound the cumula-
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tive error (regret) of the algorithm over any fixed period,
relative to the error that would have been incurred by us-
ing just the best expert over that period. Herbster and
Warmuth [11] extended this work to algorithms whose
cumulative error they upper bounded relative to the er-
ror of the hindsight-optimal (cumulative error minimiz-
ing) k-partition of the time period; i.e., the best partition
of the time period into k (variable length) segments and
selection of the best expert for each segment. Similar al-
gorithms have been applied to such problems as paging
[12], gambling [13] and portfolio management [14].

We will consider algorithms that treat network ac-
tivity as non-stationary, although possibly composed
of variable-length periods that exhibit stationarity in
some sense. These algorithms are parameterized by the
switching-rate of the non-stationary process. In the con-
text of wireless networks, this value cannot be known by
a mobile node a priori. Thus we will use a new algorithm
to learn the switching-rate parameter online, simultane-
ous to learning the target concept: the polling time in this
context [5], [6].

III. OVERVIEW AND METHODS

The intuition behind LPSM is as follows. The IEEE
802.11 PSM standard is a deterministic algorithm polling
at fixed polling time, T = 100 ms. We treat that as one
“expert,” who always claims that 100 ms is the polling
time that should be used. Clearly the ability to consult
a set of experts, in which each expert is a deterministic
algorithm using a different T value as its polling time,
would enable a more flexible algorithm compared to op-
erating with just one polling time. LPSM uses an adaptive
randomized online algorithm that maintains a probability
distribution over a set of such deterministic experts. The
algorithm will compute its polling time as a function all
the experts, subject to this distribution. It will adaptively
update its distribution over experts, based on current net-
work activity.

Not only is this approach more flexible than that of the
802.11 PSM standard, it also seems to be a promising
alternative to approaches like BSD that are based on an
adaptive control framework. While BSD adaptively up-
dates its polling time, T , based on network conditions, it
does so with only one starting T value. The algorithm we
propose would instead maintain updates on a set of n T
values, instead of just one. Although the form of updates
are different than those used by BSD, the essential intu-
ition is that this allows the learning algorithm to explore
across a range of T ’s simultaneously, and should thus al-
low it to choose a good instantaneous T value to manage
the tradeoff. Since exploration for the sake of learning
incurrs loss, this algorithm should be better than previ-
ous approaches at adapting to whatever traffic pattern is
presented.

Additionally, since our proposed algorithm allows
rapid switching between experts, it is able to handle sud-
den changes in the observed process, which might happen
when there is a sudden burst of network activity. More-
over, the model we propose for a node using this algo-
rithm, is similar to 802.11 PSM in mainly sleeping except
for polls, although the sleep times would be of variable
length. After retrieving any packets that may have arrived
from the neighbor’s buffer, it will only stay awake if the
link continues to be active.

To update the distribution maintained over experts, the
intuition is that different experts should gain or lose fa-
vor based on current network activity. Upon awakening,
if many packets had been buffered, then the algorithm
should adjust and sleep for less time. On the other hand if
only a few packets were received, the algorithm can sleep
for longer in order to save energy. Thus after each obser-
vation, each expert gets scored according to how effective
its proposed sleep time would be in the current network
conditions. The score is based on the loss function that
we will define in the next section, but encodes how well
the polling time that the expert proposes would handle
the current network conditions, with the goal of simulta-
neously minimizing energy and slowdown.

A. Machine Learning Background

The algorithms of the type discussed above have per-
formance guarantees with respect to the best expert in
the expert set given. These guarantees make no assump-
tions on the set of experts, as they are worst case guar-
antees computed as if the expert set is just a black box,
and could even contain algorithms that are adversarial.
Thus when applying such learning algorithms to a spe-
cific problem, we can achieve additional gains from the
performance guarantees, by choosing experts that are ac-
tually helpful for the problem domain in question. In the
wireless energy management problem, we use n experts,
each corresponding to a different but fixed polling time:
Ti : i ∈ {1 . . . n}. The experts form a discretization over
the range of possible polling times.

Unlike many previous problems where online learn-
ing has been applied, our problem imposes the constraint
that the learning algorithm can only receive observations,
and perform learning updates, when the mobile device
is awake. Thus our subscript t here signifies only wake
times, not every time epoch during which bytes might ar-
rive.

To apply this type of online learning algorithm to this
problem, we instantiate the prediction function using the
weighted mean. Thus the algorithm’s polling time Tt, i.e.
its prediction of the current amount of time it ought to
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sleep for is:

Tt =
n

∑

i=1

pt(i)Ti (1)

where pt(i) is its current distribution over experts that fa-
vors those who have recently predicted accurately.

To build intuition for the algorithm we use, we will de-
scribe the use of the Fixed-share algorithm, due to
[11], in this problem. The algorithm we will use employs
a collection of Fixed-share algorithms in a hierar-
chy. The collection is managed by a simple Static-
expert algorithm [10]. Since a direct application of the
Static-expert algorithm is also used in our compar-
isons we will commence with the description of this algo-
rithm, followed by the Fixed-share .

In the Static-expert algorithm, which does not
model switches between experts, the distribution over ex-
perts is updated at each training iteration as follows:

pt(i) =
1

Zt

pt−1(i) e−L(i,t−1) (2)

where L(i, t) denotes the loss of expert i at time t, and
Zt normalizes the distribution. The loss captures how
the prediction (polling time) relates to the observations
and we will describe it in detail in the next section. All
the algorithms here are modular in terms of the loss func-
tion in the sense that they can accomodate any loss func-
tion given as an input to the algorithm. The definition of
the loss function can be tailored separately to each ap-
plication based on its specific objectives. In probabilistic
terms, we can relate the loss function also to predictive
probabilities.

As illustrated in Figure 1, if we define the probability
of predicting observation yt with expert Ti as P (yt|Ti) =
e−L(i,t), then the update equation above is consistent with
Bayesian estimation, with the identity of the current best
polling time (or expert, i) as the unknown variable.

t

p  (i) = P(i|y ,...,y )

t+1 1

t+1 1

t

t

p(y  |i,y ,...,y ) = e

t+1t

p(i  |i )t

-L(i,t+1)

t+1

y

i i

y
t+1

Fig. 1. A generalized Hidden Markov Model (HMM) of probability
of the next observation, given past observations, and the current best
expert.

The Fixed-share algorithm involves modeling the
probability that the current best expert switches from one

time-step to the next, and updates are thus:

pt;α(i) =
1

Zt

n
∑

j=1

pt−1(j) e−L(j,t−1) P (i|j; α)

(3)

where Zt normalizes the distribution. We initialize the
weighting to uniform p1(i) = 1/n, since the learner has
no a priori knowledge about the experts, so introducing
an arbitrary preference for a given expert could hurt per-
formance if that expert turns out to be a poor predictor.
After each update, we renormalize the weights to sum to
one, and thus a probability distribution over the experts is
maintained.

The probability of switching between experts is defined
as:

P (i|j; α) =

{

(1− α) i = j
α

n−1 i 6= j
(4)

0 ≤ α ≤ 1 is a parameter that indicates how likely it
is that switches will occur in the model’s estimate of the
current best expert. That is, it is the model’s estimate of
how often the deterministic polling time corresponding to
the current best choice changes, in light of the current rate
of packet arrivals, or level of traffic burstiness. Using this
model in the weight updates, each expert shares a fraction
of its weight with the pool of weights. This ensures that
no expert will accrue a weight exponentially close to zero,
which allows for quick weight-recovery in the event of a
switch in the current observations, i.e., network activity.

The α parameter determines how rapidly the algorithm
adapts to changes: high values correspond to assuming
the observation process changes rapidly, whereas values
close to zero assume the process is nearly stationary. In
the ideal case, the Fixed-share algorithm should use
the setting of α that matches the true switching-rate of the
non-stationary distribution being observed. Without prior
knowledge of the process however, it is hard to set this
parameter beforehand. Thus in the algorithm we describe
next, this quantity is learned online.

B. Learn-α Algorithm

We will now describe the Learn- α algorithm [5], [6].
The additional benefit of using Learn- α is that it does
not require any prior knowledge or assumptions about the
level of non-stationarity. The Fixed-share algorithm
uses the parameter α to indicate how likely the model be-
lieves switching is to occur between which expert is cur-
rently predicting best. The Learn- α algorithm learns
this quantity online, simultaneously to learning and adapt-
ing its polling time.

Before stating the details, we give a conceptual view
of the Learn- α algorithm in Figure 2. The algorithm
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updates a distribution over α-experts, and each α-expert
maintains a distribution over polling times.

...

...

Algorithm

p (j)

p  (i)

Alpha experts j=1...m

Polling time experts i=1...n

t

t,j

Fig. 2. The hierarchy maintained by the Learn- α algorithm, to si-
multaneously learn the current best polling time, and the degree of non-
stationarity in network activity.

In the Learn- α algorithm, we maintain m α-experts.
The α-experts are Fixed-share sub-algorithms that
each maintain a distribution over the experts, pt,j(i) =
pt;αj

(i), initialized to the uniform distribution. Here αj

is the jth sub-algorithm’s definition of the probability
that the optimal polling time changes from one discrete
Ti to another, and thus pt,j(i) is updated according to
Equation 3. The Learn- α algorithm chooses its current
polling time Tt, i.e., its prediction of the current amount
of time it ought to sleep, using the weighted mean of the
α-expert predictions:

Tt =

m
∑

j=1

ptop
t (j) Tt,j (5)

where ptop
t (j) is the distribution the algorithm maintains

over α-experts, and Tt,j is the prediction of the jth sub-
algorithm of how long to sleep for, computed as the
weighted mean over the experts:

Tt,j =

n
∑

i=1

pt,j(i) Ti (6)

The sub-algorithms do not actually sleep for this amount
of time though, as the polling time is chosen by the top-
level. The algorithm’s polling time is thus

Tt =

m
∑

j=1

n
∑

i=1

ptop
t (j) pt,j(i) Ti (7)

We define the loss L(αj , t) of the jth sub-algorithm, or
α-expert, as:

L(αj , t) = − log

n
∑

i=1

pt,j(i) e−L(i,t) (8)

This form has the Bayesian interpretation that the “regret”
of the jth sub-algorithm is the negative log-likelihood of
the weighted sum over experts of the current observation
given the prediction of that expert, where the weighting is
given by the jth sub-algorithm’s current distribution over
experts.

Using the per expert loss function L(i, t) that we will
define below, we update ptop

t (j), the distribution over α-
experts, according to:

ptop
t (j) =

1

Zt

ptop
t−1(j)e

−L(αj ,t−1) (9)

where ptop
1 (j) = 1/m, p1,j(i) = 1/n, and pt,j(i) is up-

dated according to (3), using α = αj .

C. Optimal Discretization

The number, m, of αj values to use in the algorithm
need not be a parameter, as we can use a discretization al-
gorithm for computing the optimal set of values, based on
recent work on regret-optimal discretization [6]. Based
on this work, only a finite number of α values need to
be used in order come close enough to the optimal set-
ting, while minimizing the regret from using too many
settings. The discretization is based on uniformly min-
imizing the regret incurred by the Learn- α algorithm.
To use the regret-optimal discretization with respect to
any fixed number of learning iterations T , let α∗ be the
unknown optimal switching rate, i.e. the setting of the pa-
rameter α that (in hindsight) best describes the sequence
of observations to be predicted. Then for any threshold
δ > 0, we find a minimal set of discrete switching rate
parameters {αj} such that the additional regret due to dis-
cretization (shown in [6]), T minj D(α∗‖αj), does not
exceed δ for any α∗ ∈ [0, 1]. Here D(·‖·) is the relative
entropy between Bernoulli distributions. The value of δ
controls the number of discrete levels m and is chosen to
balance the ability of the Learn- α algorithm to identify
the best discrete choice of the switching rate and the ad-
ditional loss due to discretization. The optimal a priori
choice of δ∗ in this sense is 1/2T , and the detailed com-
putation of m(δ∗) is given in [6].

IV. LPSM: LEARNING PSM ALGORITHM

A. Objective Function

The algorithm as stated is complete except for the
choice of loss function, L(i, t). Note however that the
performance bounds on the algorithm hold regardless of
the choice of loss function. In this application to the wire-
less power-saving problem, we instantiate the loss func-
tion as follows. The objective at each learning iteration
is to choose the polling time Tt that minimizes both the
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energy usage of the node, and the network latency it in-
troduces by sleeping. We define the loss function so as
to reflect the tradeoff inherent in these conflicting goals.
Specifically, we will design a loss function that is directly
proportional to appropriate estimates of these two quan-
tities. It is important to note that the algorithm is mod-
ular with respect to this function, so while we suggest
several loss functions that are proportional to the energy
versus slowdown tradeoff, there are many possible func-
tions. If one wishes to model the tradeoff differently, one
need only specify an objective function, and the algorithm
stated above will learn to optimize that objective.

The BSD [2] approach to managing this tradeoff uses
an objective of:

min E : L ≤ (1 + p)Lopt : p > 0 (10)

for a scalar threshold Lopt. Our approach diverges from
this in not applying a threshold on either of the quantities,
but instead proposing a function that encodes the tradeoff
between latency and energy.

The observation that the learning algorithm receives
upon awakening is the number of bytes that arrived while
it slept during the previous interval. We denote this quan-
tity as It, and the length of time that the node slept upon
awakening at time t, as Tt. We modeled energy usage pro-
portional to 1

Tt
. This is based on the design that the node

wakes only after an interval Tt to poll for buffered bytes,
and the fact that it consumes less energy when asleep than
awake. Additionally there is a constant spike of energy
needed to change from sleeping to awake state, so the
more times a node polls during a given time horizon, the
higher the energy consumption. An alternative model for
the energy consumption would be to use the term 1

log Tt
.

This is a larger penalty, in order to account for additional
energy used, such as while staying awake when the link
is active, which is not reflected in how long we choose to
sleep for at each learning iteration. For clarity, we will
just show the first energy model in our equations below,
but we will report on the evaluation of both models.

We modeled the latency introduced into the network
due to sleeping for Tt ms as proportional to It. In other
words, there is increased latency for each byte that was
buffered during sleep, by the amount of its wait-time in
the buffer. Since our learning algorithm does not per-
form measurement or learning while asleep, and only ob-
serves the aggregated number of bytes that arrived while it
slept, we have to approximate the amount of total latency
its chosen sleep time introduced, based on the individual
buffer wait-times of each of the It bytes. To estimate the
average latency that each of the It buffered bytes would
have experienced, without knowledge of the byte arrival
times, we can use the maximal entropy assumption. This
models all the bytes as arriving at a uniform rate during

the sleep interval, Tt, under which assumption the aver-
age wait-time per byte would be Tt

2 . Thus the total la-
tency introduced by sleeping for Tt is approximated by
the number of bytes that arrived in that time, times the
average wait-time per byte, yielding Tt

2 It.

Algorithm LPSM
Initialization:
∀j, p1(j)←

1
m

∀i, j, p1,j(i)←
1
n

Upon tth wakeup:
Tt ← number of ms just slept
It ← # bytes stored at neighbor
Retrieve buffered data
For each i ∈ {1 . . . n}:

Loss[i]← γ
ItT 2

i

2Tt
+ 1

Ti

For each j ∈ {1 . . .m}:
AlphaLoss[j]← − log

∑n

i=1 pt,j(i) e−Loss[i]

pt+1(j)← pt(j)e
−AlphaLoss[j]

For each i ∈ {1 . . . n}:
pt+1,j(i)←

∑n

k=1 pt,j(k) e−Loss[k] P (i|k; αj)
Normalize Pt+1,j

PollTime[j]←
∑n

i=1 pt+1,j(i) Ti

Normalize Pt+1

Tt+1 ←
∑m

j=1 pt+1(j) PollTime[j]

Goto sleep for Tt+1 ms.

Fig. 3. Conceptual view of Algorithm LPSM.

The form of our proposed loss function is thus

L(t) = γ
TtIt

2
+

1

Tt

: γ > 0 (11)

In our weight updates however, we apply this loss func-
tion to each expert i, indicating the loss that would have
accrued had the algorithm used Ti instead of Tt as its
polling time. So the equivalent loss per expert i is:

L(i, t) = γ
ItT

2
i

2Tt

+
1

Ti

(12)

where the first term scales It to the number of bytes that
would have arrived had the node slept for time Ti instead
of Tt, under the assumption discussed above that the bytes
arrived at a uniform rate. Note that the objective func-
tion is a sum of convex functions and therefore admits a
unique minimum.

The parameter γ > 0 allows for scaling between the
units of information and time, as well as the ability to en-
code a preference for the ratio between energy and latency
that the particular node, protocol or host network favors.
This can be seen as follows. The two optimizations we are
trying to perform are minimizing energy usage, and min-
imizing additional latency caused by buffering. These are
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Fig. 4. Evolution of sleep times with LPSM (1/T ).

conflicting goals. This can be formulated as an energy
minimization problem, subject to the constraint that la-
tency be upper bounded by a threshold. Then γ is the
Lagrange multiplier enforcing that constraint. To clarify
the relation between using latency as a constraint and in-
cluding it as a term in the loss, note that increasing γ will
monotonically increase the effect of latency on the loss,
which the algorithm seeks to minimize.

Note that this is one of many possible loss functions
that are proportional to the tradeoff that must be opti-
mized for this application.

To summarize, the LPSM algorithm proceeds as shown
in Figure 3.2

V. PERFORMANCE EVALUATION

In Section V-A, we study the performance of LPSM
with respect to the tradeoff between energy savings and
performance degradation using trace-driven simulations.
We also compare the performance of LPSM to previously
proposed power-saving algorithms [2]. In Section V-B,
we use loss function units to study the behavior of LPSM
and other online learning algorithms on traces of real-time
Web activity.

A. LPSM Performance: Energy/Latency Tradeoff

In this section, we study the performance of LPSM
with respect to the energy/latency tradeoff. After de-
scribing the setup of our ns-2 simulation, we compare
the performance of LPSM with 802.11 static PSM and
BSD [2].

1) Evaluation Framework: The simulation framework
that we used to evaluate LPSM is the same as that which
has been used to used to evaluate previous 802.11 power-
saving algorithms such as BSD [2], [15]. We briefly sum-
marize that framework here. We use a simple 3-node

2Implementation is optimized to be more compact.
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Fig. 5. Evolution of sleep times with LPSM (1/ log T ).

topology: a mobile client accesses a Web server via an
802.11 access point. The bandwidth between the mobile
host and the basestation is 5 Mbps and the latency is 0.1
ms; the bandwidth between the basestation and the Web
server is 10 Mbps and the latency is 20 ms. As in previous
work [2], we do not model the details of the 802.11 MAC
protocol. Rather, we model sleep times with some sim-
ple modifications to ns-2 [15]. A sleeping device does
not forward any packets, but buffers them until the device
wakes up again. A device wakes up whenever it has data
to forward to the access point and sleeps for the inter-
val determined by LPSM. It remains awake after polling,
only if the link remains active. Since the 802.11 PSM
framework assumes that nodes wakeup and poll only on
100 ms boundaries, for the sake of synchronization is-
sues between sleeping and awake nodes, we rounded the
sleep interval determined by LPSM to the nearest 100
ms. We modeled energy consumption using previous es-
timates [2]: 750 mW when the interface is awake, 50 mW
when the interface is asleep, and 1.5 mJ for each beacon.

We report results from an experiment that involved
simulating 100 Web transfers from the client to the Web
server over approximately 1.5 hours of simulation time.
To verify the robustness of our results, we also ran 4 inde-
pendent experiments of 500 Web transfers, each over ap-
proximately 8.5 hours of simulation time. As in previous
work [2], we modeled Web browsing behavior using the
ns-2 HTTP-based traffic generator, using FullTcp
connections. In this model, a Web transfer consists of
several steps: (1) a client opens a TCP connection and
sends a request; (2) after some delay, the server sends a
response and several embedded images; the client may
open up to 4 parallel TCP connections to retrieve these
images; (3) the client waits for some amount of “think
time” before making the next request. Also as in previous
work [2], we randomly selected the parameters for each
request based on an empirical distribution [16], and we
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limited client think time to 1000 seconds.

In these experiments, we configured LPSM with 12 ex-
perts spanning the range from 100 ms to 1.2 seconds, at
regularly spaced intervals of 100 ms. Thus, the lowest
expert, 100 ms, matched the polling time of the current
802.11 PSM standard, and the highest expert was 1.2 sec-
onds. Since a convex combination is upper bounded by
its maximum value and lower bounded by its minimum
value, we were assured of only using polling times within
this range.

As discussed in Section IV, the learning function is
modular with respect to the loss functon, as it will seek
to minimize whichever loss function one uses to encode
the energy/slowdown tradeoff. We experimented with the
effects of two different loss functions: (1) the loss func-
tion defined in Figure 3, with the second term as 1/T ; and
(2) a loss function that uses 1/ logT as its second term,
to penalize energy usage more severely. For the first loss
function, we used γ = 1/(1.2 · 105); for the latter, we
used γ = 1/(1.2 · 103).
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2) Algorithm Behavior: Figures 4 and 5 show the evo-
lution of sleep times over a portion of the simulation trace.
When LPSM discovers that packets are queued at the ac-
cess point, it quickly reduces the sleep interval to 100 ms.
During periods of inactivity, LPSM continually increases
the sleep time each time the device wakes up and discov-
ers that no packets are queued for it. These two figures
also illustrate how the choice of loss function affects the
behavior of the learning algorithm. When the learning
algorithm has a loss function that has 1/T as its energy
term, it backs off much more slowly than when it uses a
loss function with 1/ logT as its energy term. This makes
sense: the latter loss function places relatively more im-
portance on the energy term, the penalty incurred for wak-
ing up when no packets are queued for the device.

3) Performance: Energy vs. Latency: Figures 6 and 7
characterize the energy savings and slowdown of LPSM
relative to static PSM, which we ran under the same sim-
ulation, using the implementation by [15]. As in previous
work, the slowdown is the ratio of the latency incurred
by the PSM algorithm to the latency incurred by using
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no PSM whatsoever. Our first result is that LPSM con-
sistently decreased per-page energy consumption. For a
slight increase, 2%, in slowdown over static PSM, LPSM,
with 1/T as the energy model, reduces overall energy
consumption by about 7% (from 3.62 J to 3.38 J), and
energy due to beaconing by almost 30% (from 0.83 J to
0.59 J). On the other hand, LPSM with 1/ logT as its en-
ergy term, reduces overall energy consumption by nearly
20% (from 3.62 J to 2.95 J) and energy consumption due
to beaconing by more than 80% (from 0.83 J to 0.16 J),
while increasing slowdown over static PSM by only a fac-
tor of 1.19.

To verify the robustness of our results, we also ran
longer simulations for LPSM with 1/ logT as the energy
term. Figures 8 and 9 show results averaged over 4 in-
dependent 500-page experiments, each one starting the
traffic simulator with a different random seed. We also
ran static PSM in each of these four simulations, and av-
eraged its results, for a fair comparison. This experiment
shows similar results: energy savings of over 18% (from
4.12 J to 3.36 J) and an 82% reduction in energy con-
sumption due to beaconing (from 0.94 J to 0.17 J), while
increasing slowdown over static PSM by a factor of only
1.2.

Figures 6-9 also compare the performace of LPSM
with BSD. We ran BSD in the same simulation for both
scenarios described above, using the original BSD imple-
mentation [15], including averaging over the four runs
with the same set of random seeds for traffic genera-
tion as used on LPSM. LPSM shows an energy reduction
versus most settings of BSD, though higher slowdowns.
Notably, the LPSM using 1/ logT to model energy, had
deeper energy savings than all the previous BSD settings,
though it increased slowdown more. It is important to
note that LPSM can work well even if the distribution
generating the observations of network activity changes

with time. Since in simulation, traffic was generated us-
ing a stationary distribution, we would expect only bet-
ter results against BSD in practice. Additionally, in both
settings, we ran with m optimized for a timescale of 45
minutes. We could expect better results, especially in the
longer trials, had it been optimized for the length of the
trial. Yet these results lend validity to using LPSM even
under resource limitations.

Moreover, LPSM offers several unique advantages over
existing approaches. First, because LPSM’s determina-
tion of appropriate sleep times is based on a loss function,
rather than a single parameter, LPSM provides designers
sufficiently more flexibility than BSD in exploring the en-
ergy/performance tradeoff. It should be possible to sim-
ulataneously reduce both energy and slowdown from that
of previous approaches, by appropriate choice and cali-
bration of the loss function. Second, because LPSM uses
a learning algorithm designed to react well under non-
stationarity, we would expect LPSM to perform better
than BSD when the distribution generating traffic changes
over time, a situation not modeled in this simulation, but
which is realistic in practice. These hypotheses deserve
further attention and present interesting possibilities for
future work.

Figure 10 shows the slowdown behavior of various
power-saving algorithms for individual Web page down-
loads. LPSM imposes only a moderate increase in slow-
down over static PSM for various Web pages: only a 2%
increase on average, but never more than 20%. Chang-
ing the loss function in LPSM to favor energy reduction
more will obviously increase the slowdown, as shown in
Figure 10(c), but even using this loss function never in-
curs a slowdown of more than a factor of 2 for any given
Web page. For longer Web transfers, both LPSM algo-
rithms introduce only negligible slowdown. Some shorter
Web transfers impose longer slowdown times than static
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PSM, but these download times are short anyway, so the
additional slowdown that LPSM imposes is not drastic.

Varying the latency constraint in the Lagrange opti-
mization (i.e., varying γ) and varying the functional form
of the loss function give LPSM flexibility with respect to
the tradeoff between energy and latency. For example,
Figure 11 shows the performance of LPSM for various
settings of γ and the loss function; each point in this fig-
ure represents a 100-page simulation experiment. Clearly,
calibrating the correct γ value is important for achieving
good slowdown performance for a given level of energy
consumption. Additionally, varying the functional form
has significant effects on the behavior of the learning al-
gorithm: using 1/T as the energy term in the loss func-
tion achieves better slowdown performance than using
1/ logT , at the cost of more energy consumption. Again,
note that LPSM using either loss function allows signifi-
cant energy savings over static PSM with only moderate
additional slowdown.

B. Trace-based Analysis of LPSM and Online Learning
Algorithms

We also ran LPSM on traces of real network activity
[16]. This is different than the trace-driven simulation be-
cause the distribution for traffic generation was created by
averaging over the traces [15]. So running the LPSM al-
gorithm on the traces themselves, outside of a simulation,
would allow it to observe real network activity, with po-
tentially less stationarity of traffic than from the fixed dis-
tribution used in the simulation environment. We present
these results to further illustrate the behavior of LPSM
versus 802.11 PSM as well as other online learning algo-
rithms in this problem domain. We first illustrate the be-
havior of Fixed-share . Learn- α then runs with the
current best linear combination of the existing Fixed-
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Fig. 12. These figures show the loss of each expert as a function of
time. The circled path is the loss of the algorithm. The bottom figure
zooms in on the earlier iterations.

share sub-algorithms’ distributions over experts at any
given time. The Fixed-share algorithm we illustrate
below is running with α = 0.01.

We used publicly available traces of network activity
from a UC Berkeley home dial-up server that monitored
users accessing HTTP files from home [16] (the same
trace we used to synthetically generate Web traffic for the
ns-2 simulations). Because the traces only provided the
start and end times, and number of bytes transferred for
each connection, per connection we smoothed the total
number of bytes uniformly over 10 ms intervals span-
ning its duration. In the network trace experiment re-
sults below, we ran with 10 experts spanning the range
of 1000 ms at regularly spaced intervals of 100 ms, and
γ = 1.0× 10−7, calibrated to attain polling times within
the range of the existing protocol.
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1) Behavior of Online Learning Algorithms: Fig-
ure 12 shows the loss, on one trace, of each of the ex-
perts as a function of time, measured at the algorithm’s
current polling times, where the circled path is the loss of
the algorithm. Since the algorithm allows for switching
between the experts, it is able to maintain loss close to or
better than the loss of the best current expert, even though
our results show that the identity of the best current expert
changes with time. The bottom graph, which zooms in on
the early phases of the run, shows that it takes some time
before the algorithm is doing as well as the best current
expert. Note however that since the weights start as uni-
form, the initial polling time is actually the mean of the
polling times of each of the experts, so even in the early
iterations the algorithm already beats the worse half of the
experts, and still tracks the average expert.

Figure 13 shows the evolution of the distribution that
the algorithm maintains over experts.As expected, the al-
gorithm allows for switching its weights on the experts,
based on which experts would currently be performing
best in the observed network activity. Changes in the
burstiness level of the arriving bytes are reflected in shifts
in which expert currently has the highest weight, starting
even in the early learning iterations. The bottom figure,
which zooms in on the earlier phases of learning, shows
that the algorithm’s preference for a given expert can eas-
ily decrease and increase in light of network activity. For
example after several periods of being the worst expert,
after iteration 1600, an expert is able to regain weight as
the best expert, as its weight never went exponentially to
zero.

These results also confirm that for real network traffic,
no single deterministic setting of the polling time works
well all the time. The algorithm can do better than any
single expert, as it is a convex combination of all the ex-
perts, and the updates of the weighting allow the algo-
rithm to track the expert that is currently best. Note that
these online adjustments of which expert the algorithm
currently favors are closely reflected in the evolution of
sleep times graphed in Section V-A, Figures 4 and 5.

2) Competitive Analysis: To perform competitive
analysis of the learning algorithm, we compare it to the
hindsight best expert, as well as the current best expert
at each time. Figure 14 illustrates how the learning al-
gorithm does in relation to the best fixed expert com-
puted in hindsight, and to the current best expert at each
time epoch at which the algorithm does a learning up-
date. The algorithm learns to track and actually do better
than the best fixed expert, in the first figure. In the sec-
ond figure, this scenario is an approximation to the best
k-partition,(i.e. the best partition of the trace into k parts
and choice of expert for each part) where k is equal to
the length of the full time horizon of the trace. Note that
as k increases, the optimal k-partition is harder to track,
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Fig. 13. These figures show the weights that the algorithm maintains
on each expert, per training iteration. The bottom figure zooms in on the
earlier iterations.

since it is the limit of non-stationarity of the process, so
the above is close to the hardest partitioning. Here the
algorithm does not beat the loss of the sequence of best
experts, but is at least able to “track” it, as per the bounds
[10], [11]. We see that the algorithm’s performance is
never too far away from that of the current best expert.

Even in the first figure, while it is unsurprising that the
algorithm that allows switching between the experts can
beat the single best expert, the intuition of why it performs
better than the performance bound is as follows. The per-
formance bound is a worst-case upper bound on the regret
of the algorithm, which need not be met in practice. In
the worst-case framework, an adversary gives the learn-
ing algorithm a bank of experts as a black box. The algo-
rithm does not know anything about the true mechanism
by which the experts make predictions. In our case how-
ever, in applying the algorithm, we were able to choose
the set of experts to best apply to this problem domain.
Thus by choosing experts that actually have a semantic:
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Fig. 14. Competitive Analysis. Loss of the algorithm versus time,
circled. Solid is loss of the best fixed expert (top), and loss of the current
best expert per training epoch (bottom).

a discretization of the range of values we would like to
consider for polling time, the algorithm can actually per-
form better than any of the individual experts, as it strives
to be the best (cumulative loss minimizing) linear com-
bination of the experts at any given timestep. Thus it is
able to adaptively smooth over the discrete values that
the experts represent, and perform with the current best
smoothed value in the desired polling time range.

3) LPSM advantages: Now we focus on Learn- α,
the algorithm used for LPSM, which maintains a bank of
sub-algorithms of the type analyzed above. The strength
of this algorithm is that it learns α online while perform-
ing the learning task, and the empirical gains of this are
shown by the next figures. Figure 15 compares the cu-
mulative losses of the various algorithms on a 4 hour
trace, with observation epochs every 10 ms. This cor-
responds to approximately 26,100 training iterations for
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Fig. 15. Cumulative loss comparison. The curve indicates the cu-
mulative loss of Fixed-share( α) along the range of α values. We
compare to the cumulative loss on the same trace of the 802.11 PSM
protocol, Static-expert , and Learn- α. The bottom figure zooms
in on the first 0.002 of the range for α.

the learning algorithms. Note that in the typical online
learning scenario, T , the number of learning iterations,
or time horizon, for which one would like to benchmark
the performance of the algorithm, is just the number of
observation epochs. In this application, the number of
training epochs need not match the number of observa-
tion epochs, since the application involves sleeping dur-
ing many observation epochs, and learning is only done
upon awakening. Since in these experiments the per-
formance of the learning algorithms (Static-expert ,
Fixed-share , and Learn- α) are compared by each
algorithm using n experts spanning the range of 1000 ms
at regularly spaced intervals of 100 ms, in order to get an
a priori estimate of T , we assume a mean sleep interval
of 550 ms, i.e. the mean of the experts. It is important
to note however that the polling times of each of the runs
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graphed are set by the algorithm being run, and so for the
learning algorithms, the polling times change online.

Since we calibrated our objective function (by choice
of γ) by calibration with the existing protocol, it is no
surprise that the deterministic setting of 100 ms, used by
the existing IEEE 802.11 PSM protocol, was the best ex-
pert. Static-expert , the online learning algorithm
with relative loss bounds against the best fixed expert,
achieved lower cumulative loss however, since it can pre-
dict with the best linear combination of the experts, as
opposed to any one of their values, i.e., at each time-step
it can choose the optimal smoothed value over the desired
range, as opposed to being limited by the discretization
imposed by the experts.

On this particular trace, the optimal α for Fixed-
share turns out to be extremely low, and so for most
settings of α, one would be better off using a Static-
expert model. Yet as the second graph shows, there is
a value for α below which it is beneficial to use Fixed-
share , which highlights the strength of the Learn- α
algorithm, since without prior knowledge of the stochas-
tic process to be observed, there is no optimal way by
which to set α.

VI. DISCUSSION AND CONCLUSION

We proposed the use of online machine learning to
manage the well-known energy/performance tradeoff in
wireless networks, and applied a recently developed ma-
chine learning algorithm, Learn-α, to the 802.11 wireless
LAN PSM. The idea behind LPSM is to set up n “ex-
perts,” each corresponding to a particular deterministic
value of the sleep cycle, with a device sleeping for a dura-
tion equal to a weighted sum of these deterministic times.
The weights of these n independent experts are updated
according to a loss function, which for 802.11 combines
the energy and latency losses incurred by waking up at
any time.

The method of updating the weighting depends upon
the algorithm’s model of the level of non-stationarity of
the observed process, e.g. current network activity. Un-
like previous online learning algorithms, Learn-α does
not take this quantity as a parameter that must be set
beforehand. Instead it learns this quantity online: the
“switching-rate” of current network activity, simultane-
ous to learning the best current polling time.

Our experimental results, based on trace-driven simu-
lation and trace-based analysis of Web client traces, show
that for a Web-like request/response workload, LPSM
(using the particular loss function we chose) can save
7%-20% more energy than 802.11 in power-saving mode,
with an associated increase in average slowdown by a fac-
tor of at most 1.2.

The performance of our algorithm tracks the perfor-
mance of the best of its input candidate time values, or

best sequence of such fixed candidate polling times, cho-
sen for different segments of time. Based on the nature of
these guarantees, in future work we propose to run sim-
ulations in which traffic is generated by a non-stationary
stochastic process, as opposed to a stationary distribution,
and compare the results with previous approaches.

Since the LPSM implementation we suggest is the
same as 802.11 PSM, other than a polling time that
changes adaptively, and remaining awake while the link
is active, integration into 802.11 PSM would be relatively
straightforward. In order to help synchronize between
sleeping and awake nodes LPSM chooses sleep durations
that are rounded to the nearest 100 ms multiple of the time
computed by Learn- α.

The complexity of the algorithm, can be O(mn), or
O(m + n) if parallel computation is supported, since the
α-expert updates can be run in parallel. In comparison to
related work, this is slightly more complex, but note that
n, the number of candidate polling times, can be chosen
as a small constant, without degrading performance, as it
just defines the level of discretization for a fixed range of
possible sleep times. To obtain tight performance guaran-
tees, the optimal number of α-experts, m∗, is computed
based on the timescale along which one would like to
benchmark performance. However m, can also be held
constant, when computation is an issue, and our empiri-
cal results verified that this did not significantly degrade
performance.

We note that the loss function we use in LPSM may
be improved in the future, to obtain a different tradeoff
between energy and latency. In our idealized model, we
assume that bytes arrive uniformly during the sleep in-
terval. If the protocol for delivering packets to a node
maintained the times at which the packets originally ar-
rived, the loss function can be made more accurate. The
fact that LPSM did rather well despite this simplifying
assumption, augurs well for its performance when finer-
grained information on arrivals is available.

Another extension to LPSM would be to estimate the
energy that would be consumed in retrieving the buffered
bytes, and factor that into the loss function as well. Note
that the algorithm is modular, in that any objective func-
tion that is proportional to the energy/performance trade-
off may be used. The implementation methods mentioned
above, which would not add too much complexity, should
further improve the performance of LPSM over 802.11
PSM. We note that previous approaches to this problem
did not save significant energy compared to 802.11 PSM,
yet even our initial application of this algorithm was able
to save substantial energy.
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