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ABSTRACT
Model-based data structure repair is a promising technique
for enabling programs to continue to execute successfully
in the face of otherwise fatal data structure corruption er-
rors. Previous research in this field relied on the developer
to write a specification to explicitly translate model repairs
into concrete data structure repairs, raising the possibility
of 1) incorrect translations causing the supposedly repaired
concrete data structures to be inconsistent, and 2) repaired
models with no corresponding concrete data structure rep-
resentation.

We present a new repair algorithm that uses goal-directed
reasoning to automatically translate model repairs into con-
crete data structure repairs. This new repair algorithm elim-
inates the possibility of incorrect translations and repaired
models with no corresponding representation as concrete
data structures. Unlike our old algorithm, our new algo-
rithm can also repair linked data structures such as a list or
a tree.

1. INTRODUCTION
Programs usually make assumptions about the states of

the data structures that they manipulate. A software error
or some other event may cause the data structures to violate
consistency assumptions that the software relies on. Data
structure repair is a useful technique for restoring consis-
tency properties, enabling the program to continue to exe-
cute successfully. Our previous work [9, 10, 8] introduced a
model-based approach in which the developer uses a specifi-
cation language to identify the required data structure con-
sistency properties and provided an experimental evaluation
of this approach in which the repair algorithm was used to
improve the reliability of four different benchmarks.

This model-based approach involves two views: a concrete
view of the data structures as they are represented in the
memory and an abstract view that models the data struc-
tures as sets of objects and relations between objects. A set
of model definition rules translates the concrete data struc-
tures to the sets and relations in the abstract model. The
key consistency constraints are expressed using the sets and
relations in this model. There are three challenges in making
this approach effective: 1) maintaining a correspondence be-
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tween the abstract model and the concrete data structures,
2) generating a set of repairs that is sufficient to repair any
error, and 3) ensuring that all repairs terminate.

Our previous work [9, 10, 8] performed repairs on the
abstract model and relied on a set of user-defined external
consistency constraints to faithfully translate these model
repairs to the actual data structures. While this approach
automates much of the repair process, the presence of the ex-
ternal consistency constraints has several undesirable prop-
erties:

• An error in the external consistency constraints may
cause the repair algorithm to fail to correctly trans-
late the model repair into data structure updates. In
this case the data structures would remain inconsistent
even after the repair.

• The repair algorithm may generate abstract models
that can not be represented as concrete data struc-
tures. To avoid this possibility, the developer may need
to add additional model constraints that prevent the
repair process from constructing such a model.

Our new algorithm replaces the external consistency con-
straints with a goal-directed reasoning algorithm on the model
definition rules. The new approach has several advantages
over the previous approach:

• It eliminates the possibility of errors in the external
consistency constraints and guarantees that repairs are
correctly translated from the model to the concrete
data structures.

• It eliminates the possibility that the repair algorithm
may produce a model with no corresponding concrete
data structure representation.

• It provides enhanced support for linked data struc-
tures, enabling the new repair algorithm to add or re-
move objects from the data structures as required to
satisfy the consistency constraints.

1.1 Repair Algorithm Generator
A set of model definition rules defines a translation from

the concrete data structures to an abstract representation.
Each rule consists of a quantifier, a guard, and an inclusion
constraint that specifies an object (or a tuple) to include in
a specific set (or relation). These rules place objects into
sets based on criteria such as the values of the fields in the
object and the reachability of the object from other objects.
The key consistency constraints are expressed using the sets



and relations in the abstract model. Our specification lan-
guage supports constraints between the values of variables
and object fields, on the referencing relationships between
objects, and on the absence or presence of certain objects.

When invoked, our repair algorithm constructs the model
and examines it to find any inconsistencies. Whenever the
repair algorithm discovers an inconsistency, it selects an ap-
propriate model repair action to repair the inconsistency
in the model. Our repair algorithm generator uses goal-
directed reasoning to map model repair actions to concrete
data structure updates. To implement a model repair action
that removes an object from a given set, for example, the al-
gorithm generator analyzes the model definition rules to find
all rules whose inclusion constraint may cause the object to
be inserted into the set. It then analyzes the guards and
the quantifiers of the rules to extract a set of data structure
properties whose satisfaction ensures that no rule specifies
that the object should be a member of that set. Finally, it
computes and applies (as necessary) a set of data structure
updates that force all of these properties to hold. The ef-
fect is to remove the object from the set. Note that there
may also be potentially undesirable side effects which cause
additional inconsistencies. The algorithm must then apply
additional repairs to correct these inconsistencies.

At each step in the repair process, the repair algorithm
may be forced to choose between several alternatives — in
general, there may be several distinct sets of model repair
actions that cause a given violated constraint to become
satisfied, several distinct sets of data structure updates that
implement a given model repair action, and several different
ways to eliminate any undesirable side effects of the data
structure updates. A naive repair strategy can easily fail to
terminate — it can get into a loop in which it repeatedly
repairs a violated constraint, only to have the constraint
repeatedly invalidated as a side effect of a subsequent action
taken to repair another constraint violated as a side effect
of the first repair action.

Our algorithm uses a repair dependence graph to reason
about the termination of the repair process. The nodes in
this graph represent constraints and repair actions. The
edges represent dependences between the constraints, repair
actions, and choices in the repair process. The absence of
certain cycles in the graph ensures that all repairs will termi-
nate. In addition to analyzing the graph to determine termi-
nation, our algorithm may also (when possible and subject
to certain graph consistency conditions) remove nodes or
edges to eliminate undesirable cycles. These removals con-
strain the actions of the repair algorithm and ensure that it
will never choose a repair strategy that leads to an infinite
repair loop.

1.2 Contributions
This paper makes the following contributions:

• Basic Repair Approach: It presents an approach
that allows the developer to use an abstract model
to express important data structure consistency prop-
erties. Violations of these properties are repaired by
automatically translating model repairs back through
the model definition rules to automatically derive a set
of data structure updates that implement the repair.

• Repair Translation: It presents an algorithm that
uses goal-directed reasoning to translate repairs in the

abstract model back through the model definition rules
to derive a set of data structure updates that imple-
ment the repair.

• Repair Dependence Graph: It introduces the re-
pair dependence graph, which captures dependences
between consistency constraints, repair actions, and
choices in the repair process. This graph supports for-
mal reasoning about the effect of repairs to both the
model and the data structures.

It also presents a set of conditions on the repair depen-
dence graph. These conditions identify a class of cycles
whose absence guarantees that all repairs will success-
fully terminate. It also presents an algorithm that,
when possible, removes nodes and edges in the graph
to eliminate problematic cycles. These removals pre-
vent the repair algorithm from choosing repair strate-
gies that may not terminate.

• Linked Data Structures: It presents support for
adding and removing objects from linked data struc-
tures. This support enables the developer to express
constraints on membership in a linked data structure,
and enables the repair algorithm to regenerate dam-
aged backpointers in linked data structures.

2. EXAMPLE
We next present an example that illustrates the operation

of our repair algorithm. We start with the concrete data
structure in our example. Figure 1 presents the structure
definitions for the example data structure; these definitions
give the physical layout of the objects comprising the con-
crete data structures. The process object participates in
both a tree and a list structure. It contains a left pointer,
which references its left child in the tree; a right pointer,
which references its right child in the tree; a next pointer,
which references the next process object in a list; and the
active flag, which indicates whether the process is active. 1

Figure 2 graphically presents a concrete instance of an (in-
consistent) process list and tree.

struct process {
process *left;
process *right;
process *next;
bool active;
...

}
process *tree;
process *list;

Figure 1: Structure Definitions

2.1 Set and Relation Definitions
Figure 3 contains the definitions for the sets and relations

in the model. Our model consists of the set ActiveProcesses,
which contains the process objects in the list, and the set
Processes, which contains the process objects in the tree.
The Next, Left, Right, and Active relations model the
values of the next, left, right, and active fields in the

1Our algorithm also supports mode conventional implemen-
tations of the data structure.
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Figure 2: Inconsistent Process Structure

set ActiveProcesses of process
set Processes of process
relation Next: process -> process
relation Left: process -> process
relation Right: process -> process
relation Active: process -> bool

Figure 3: Set and Relation Definitions

process object. In this example, the relations closely paral-
lel the contents of the data structure fields. In general, the
relations tend to be more abstract and capture conceptual
properties further removed from the concrete data struc-
tures.

2.2 Model Definition Rules
The model definition rules specify a translation from the

concrete data structures to an abstract model. Conceptu-
ally, these rules specify how to traverse the data structures
to build the sets and relations in the model. Furthermore,
they provide the developer with a means to separate objects
into different sets and to apply different model constraints
to these different sets. Each rule specifies a quantifier that
identifies the scope of the variables in the body. The body
contains a guard and an inclusion condition. The inclusion
condition specifies an object (or a pair) that must be in a
specific set (or relation) if the guard is true. The least fixed
point of the model definition rules applied to the concrete
data structure generates the abstract model. The model def-
inition rules for the example are given in Figure 4. The first
rule specifies that the process object referenced by the tree
pointer is in the Processes set. The second rule specifies
that the process object referenced by the list pointer is in
the ActiveProcesses set. The next two rules specify that
the left and right children of any object in the Processes

set are also in the Processes set. The next three rules con-
struct the Left, Right, and Active relations to model the
left, right, and active fields of objects in the Processes

set. The eighth rule specifies that an object referenced by
the next field of an object in the ActiveProcesses set is

1. tree != null => tree in Processes
2. list != null => list in ActiveProcesses
3. for p in Processes, p.left != null =>

p.left in Processes
4. for p in Processes, p.right != null =>

p.right in Processes
5. for p in Processes, p.left != null =>

<p,p.left> in Left
6. for p in Processes, p.right != null =>

<p,p.right> in Right
7. for p in Processes, true => <p,p.active> in Active
8. for p in ActiveProcesses, p.next !=null =>

p.next in ActiveProcesses
9. for p in ActiveProcesses, p.next !=null =>

<p,p.next> in Next

Figure 4: Model Definition Rules
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Figure 5: Inconsistent Abstract Model

also in the ActiveProcesses set. The final rule constructs
the Next relation to model the next field of objects in the
ActiveProcesses set. The least fixed point of the model
definition rules is evaluated on the concrete data structure
shown in Figure 2 to construct the abstract model in Fig-
ure 5. The bold circles in the Venn diagram represent ob-
jects in the data structure, the edges represent the relations,
and the large circles represent the sets.

2.3 Model Constraints
The model constraints identify the consistency properties

that must hold in the model. Many of these rules use the
size predicate, which is used both to relate the number
of objects in a set to a value in a relation and to con-
strain the number of objects in a set. For example, the
first constraint in Figure 6 ensures that each process ob-
ject in the ActiveProcesses set has an in-degree of at most
one. 2 The second constraint ensures that each process in
the Processes set has an in-degree of at most one. The final
constraint ensures that each process in the Processes set

2Note that we use the notation Next.p to indicate the image
of p under the inverse of the Next relation; i.e., the set of all
m such that 〈m, p〉 in Next.



either has its active flag set to false, or is in the
ActiveProcesses set. Note that the process object la-
beled p2 in Figure 5 is in the Processes set, has the active

flag set, and is not in the ActiveProcesses set. This vio-
lates the final consistency constraint, for p in Processes,

!p.Active or p in ActiveProcesses.

for p in ActiveProcesses, size(Next.p)<=1
for p in Processes,

(size(Left.p)<=1 and size(Right.p)=0) or
(size(Left.p)=0 and size(Right.p)<=1)

for p in Processes, !p.Active or p in ActiveProcesses

Figure 6: Model Constraints

2.4 Previous Repair Algorithm
Our previous repair algorithm [9, 10, 8] constructs an ab-

stract representation of the data structures to be repaired,
performs repairs on this abstract representation, and then
uses a set of external consistency constraints to translate the
abstract repairs to the concrete data structure.

Figure 7 presents a set of external consistency constraints
for the process example. 3 The constraints shown ensure
that the Left, Right, Next, and Active relations are written
to the left, right, next, and active fields of the process

objects.

for <p1,p2> in Left, true => p1.left=p2
for <p1,p2> in Right, true => p1.right=p2
for <p1,p2> in Next, true => p1.next=p2
for <p,a> in Active, true => p.active=a

Figure 7: External Consistency Constraints for Pre-
vious Repair Algorithm

The model construction phase of our previous repair al-
gorithm generates an identical abstract model to the model
that appears in Figure 5. Our previous repair algorithm
would detect that since object p2 is in the Processes set, has
the active flag set, and is not in the ActiveProcesses set,
it violates the consistency constraint for p in Processes,

!p.Active or p in ActiveProcesses. As a result, our pre-
vious repair algorithm would add the object p2 to the
ActiveProcesses set, generating the abstract model shown
in Figure 8.

Since this model is consistent with all of the consistency
constraints, the repair algorithm would then perform the up-
dates specified by the external consistency constraints. Un-
fortunately, this fails to generate a consistent concrete data
structure. The problem is that although the instance of the
abstract model shown in Figure 8 satisfies the model con-
straints, it does not correspond to any concrete data struc-
ture. As a result, this instance of the abstract model cannot
be faithfully translated to a concrete data structure by any
set of external consistency constraints.

As this example shows, the correctness of the previous
repair algorithm relies on the developer ensuring that the
repair process generates a consistent model that corresponds
to a concrete data structure (i.e., that the abstract model
corresponds to the least fixed point of the model definition

3Note that the external constraints are not used by the re-
pair algorithm presented in this paper.
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Figure 8: Incorrectly Repaired Abstract Model

rules evaluated on some concrete data structure) and that
the external consistency constraints faithfully translate the
consistent abstract model to a consistent data structure.

Our new repair algorithm eliminates all of these problems.
It guarantees the correspondence of the abstract model to
the least fixed point of the application of the model defi-
nition rules to the concrete data structures. This enables
the repair algorithm to handle cases such as this example.
Furthermore, the new algorithm requires less work on the
part of the developer and eliminates the possibility of er-
rors in the external consistency constraints. The result is
an algorithm that can handle linked data structures, is eas-
ier to use, and eliminates the possibility of bad repairs due
to errors in the external consistency constraints.

2.5 Repair Algorithm
Our new repair algorithm constructs an abstract repre-

sentation of the data structures to repair, identifies model
repairs to perform on the abstract representation, and then
translates the model repairs into data structure updates. It
then performs the data structure update on the concrete
data structure, and recomputes the model to ensure that
the model corresponds to the least fixed point of the model
definition rules applied to the concrete data structures.

Notice that in Figure 5, the object p2 is in the Processes

set, has its active flag set, and is not in the ActiveProcesses
set. This violates the final constraint shown in Figure 6. To
repair this violation, the algorithm must either remove p2
from the Processes set, set p2’s active flag to false, or
add p2 to the ActiveProcesses set. 4 Assume that the algo-
rithm chooses to add the object p2 to the ActiveProcesses

set. An examination of the model definition rules reveals
that the model definition rule, for p in ActiveProcesses,

p.next !=null => p.next in ActiveProcesses, inserts ob-
jects into the ActiveProcesses set. Examination of this rule
reveals that its guard is p.next != null and its inclusion
condition is p.next in ActiveProcesses. Goal-directed rea-
soning makes it clear that the repair algorithm must set the

4Note that the repairs correspond to satisfying one of the
conjunctions in the disjunctive normal form (DNF) of the
constraint or to removing an object (or tuple) from the set
(or relation) that the model constraint is quantified over.



next field of p1 to p2 and the next field of p2 to null (since
the previous value of p2.Next was {}). After the next fields
are updated, the algorithm recomputes the abstract model
using a fixed point calculation.

Note that this data structure update has additional ef-
fects. Specifically, the tuple 〈p1, p2〉 is added to the Next

relation. At this point, the model is consistent and the re-
pair process terminates. Figure 9 shows the abstract model
after the repair algorithm has finished, and Figure 10 shows
the concrete data structures after the repair algorithm has
finished. Note that the model in Figure 9 contains a refer-
ence in the Next relation from the object p1 to the p2 that
is absent in Figure 8.

p1

p2 p3

Left Right

true false

Active
Active

Active

Processes

ActiveProcesses

Next

Figure 9: Correctly Repaired Abstract Model
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Figure 10: Consistent Process Structure

2.6 Repair Algorithm Generation
As illustrated in the preceding section, a successful repair

algorithm must perform several steps: 1) traverse the model
to find an inconsistency, 2) analyze the model definition rules

to find updates to the concrete data structures that will elim-
inate the inconsistency, 3) perform the updates, 4) repeat
to eliminate any remaining or newly introduced inconsisten-
cies, and 5) terminate. The key challenges are finding the
data structure updates and reasoning about termination. As
described above, the algorithm uses goal-directed reasoning
to extract conditions from the model definition rules; the
execution of data structure updates that satisfy these con-
ditions implements the model repair.

The algorithm uses the repair dependence graph to rea-
son about termination. The nodes in this graph model
constraints and repair actions; the edges represent depen-
dences. In our example the graph contains (in addition to
other edges as described below in Section 7) nodes for each
model definition rule, nodes for repair actions, and nodes for
the conjunctions in the disjunctive normal form (DNF) of
the model constraints such as for p in ActiveProcesses,

size(Next.p)<= 1. The conjunction nodes correspond to
the different options for satisfying a given model constraint.
The graph contains an edge from the node representing the
conjunction size(Next.p)<=1 to the node representing the
action of removing a tuple from the Next relation. This edge
captures the fact that the repair algorithm may choose to re-
pair a violation of this constraint by removing a tuple from
the Next relation. In general, the graph edges model the
propagation of the effects of repair actions. The absence of
certain kinds of cycles ensures that the effect of every repair
action will propagate only a finite distance, ensuring that
repairs terminate.

3. SPECIFICATION LANGUAGE
Our specification language consists of the structure defi-

nition language, model definition language, and model con-
straint language. The structure definition language is sim-
ilar to that of C, but supports a wider range of primitive
data types.

3.1 Model Definition Language
The model definition language allows the developer to de-

clare the sets and relations in the model and to specify the
rules that define the model. The model definition rules de-
fine a translation from the concrete data structures into the
abstract model. Figure 11 presents the grammar for the
set and relation declarations and the model definition rules.
The model constructed by the repair algorithm is the least
fixed point generated by the application of this set of model
definition rules.

3.2 Model Constraint Language
Figure 12 presents the grammar for the model constraint

language. Each constraint consists of an optional quantifier
Q followed by a body B. The body uses logical connectives
(and, or, not) to combine basic propositions P. We treat
undefined values in this semantics by appropriately extend-
ing arithmetic operations to work with undefined values and
logical operations to work with maybe according to the laws
of three-valued logic.

In many cases, relations are used as functions. To en-
sure that these uses are well formed, the repair algorithm
requires the specification to include additional constraints
that constrain the relations to be functions. For example,
our system requires that specifications containing expres-
sions of the form E.R also contain another constraint either



D := set S of T | S partition (S, )∗ | S subset (S, )∗ |
relation R:S->S | relation R:T->T

M := (Q, )∗ G=>I

Q := for V in S | for 〈V, V〉 in R
G := G and G | G or G | !G | (G) | P
P := FE=E | FE<E | FE<=E | FE>=E | FE>E |

true | E in S | 〈E,E〉 in R
I := FE in S | 〈FE,FE〉 in R
E := FE | number | string | E+E | E-E | E*E | E/E

FE := V | V.field

Figure 11: Model Definition Language

C := Q,C | B
Q := for V in S | for 〈V, V〉 in R
B := B and B | B or B | !B | (B) | P
P := V E=E | V E<E | V E<=E | V E>E |

V E>=E | V in SE | size(SE)=c |
size(SE)>=c | size(SE)<=c

V E := V.R | V E.R
E := V | number | string | E+E | E-E | E*E | E/E |

E.R | size(SE) | (E)

SE := S | V E | R.V

Figure 12: Model Constraint Language

of the form size(V.R) = 1 or V.R = E′ where V quantifies
over a set containing all the possible sets of values for E.

3.3 Desugaring Partition and Subset Constraints
The repair algorithm enforces the partition constraints

and subset constraints by desugaring these constraints into
model constraints and model definition rules. The repair
algorithm first analyzes the partition and subset constraints
to find cyclic dependencies. If the repair algorithm discovers
a cyclic dependency, the repair algorithm simply collapses
all sets in the cyclic dependency to a single set. Then the
repair algorithm removes any constraints that are discovered
to be extraneous as a result of collapsing sets in a cyclic
dependency to a single set.

As a result, we can safely assume that the partition and
subset constraints do not include any cycles. We then desugar
the partition constraint S partition S1, ..., Sn into the
model constraint: for V in S, (V in S1 and !V in S2... and
!V in Sn) or (!V in S1 and V in S2... and !V in Sn) or ...
or (!V in S1 and !V in S2... and V in Sn).

Furthermore, if the subset or partition constraints imply
∀s, s ∈ S1 => s ∈ S2, then a new model definition rule
will be created for any model definition rule that adds an
element to S1; this new rule will be the original rule modified
to add the same element to S2.

We optionally allow relation declarations to declare do-
main and range sets. We desugar relation declarations of
the form relation R : S1->S2 into model constraints of
the form: for 〈V1, V2〉 in R, (V1 in S1) and (V2 in S2).

In some cases, this model constraint is not necessary. For
example, our algorithm does not generate the model con-
straint for Si if for each model definition rule of the form
(Q, )∗ G ⇒ 〈FE1, FE2〉 in R there is a model definition
rule of the form (Q, )∗ G ⇒ FE1 in Si.

4. MODEL CONSTRUCTION
The model definition rules define a translation from the

concrete data structures to the abstract model. The model
construction phase constructs the abstract model by com-
puting the least fixed point of the model definition rules
applied to the concrete data structure. Finally, the model
construction algorithm keeps track of the memory layout to
ensure that the concrete data structures are physically well
formed (that they reside in allocated memory and that they
don’t illegally overlap).

4.1 Denotational Semantics
Figure 21 in Appendix C gives the denotational semantics
R[M] h l m of a single rule C. A model m is a mapping from
set names and relation names to the corresponding sets of
objects or relations between objects. This mapping is rep-
resented using a set of tuples. We define m(s) to be the
set {〈v, s〉 | 〈v, s〉 ∈ m}. The set h models the heap in the
running program using a set of tuples representing the refer-
ences in the heap. The set h contains tuples that represent a
mapping of each legal pairing of object and field; or object,
field, and integer index to exactly one HeapV alue. Given
a set of concrete data structures h, a naming environment l
that maps variables to data structures or values, and a cur-
rent model m, R[M] h l m is the new model after applying
the rule to m in the context of h and l. Note that l provides
the values of both the program variables that the rules use
to reference the concrete data structures and the variables
bound in the quantifiers.

Each model definition contains a set of model definition
rules M1, ...,Mn. Given a model containing these rules, a set
of concrete data structures h, and a naming environment l
for the program variables , the model is the least fixed point
of the functional λm.(R[M1] h l) . . . (R[Mn] h l m).

4.2 Negation and the Rule Dependence Graph
The presence of negation in the model definition language

complicates the computation of the least fixed point. For ex-
ample, negation makes it possible for a rule to specify that
an object is in a given set only if another object is not in an-
other set. We address this complication by requiring the set
of model definition rules to have no cycles that go through
rules with negated inclusion constraints in their guards.

We formalize this constraint using the concept of a rule
dependence graph. There is one node in this graph for each
rule in the set of model definition rules. There is a directed
edge between two rules if the inclusion constraint from the
first rule has a set or relation used in the quantifiers or guard
of the second rule. If the graph contains a cycle involving
a rule with a negated inclusion constraint, the set of model
definition rules is not well founded and we reject it. Given
a well-founded set of constraints, our model construction
algorithm performs one fixed point computation for each
strongly connected component in the rule dependence graph,
with the computations executed in an order compatible with
the dependences between the corresponding groups of rules.



4.3 Pointers
Depending on the declared type in the corresponding struc-

ture declaration, an expression of the form E.f in a model
definition rule may be a primitive value (in which case E.f
denotes the value), a nested struct contained within E (in
which case E.f denotes a reference to the nested struct),
or a pointer (in which case E.f denotes a reference to the
struct to which the pointer refers). It is of course possible
for the data structures to contain invalid pointers. We next
describe how we extend the model construction algorithm
to deal with invalid pointers.

First, we instrument the memory management system
to produce a trace of operations that allocate and deallo-
cate memory (examples include malloc, free, mmap, and
munmap). We augment this trace with information about
the call stack and segments containing statically allocated
data, then construct a map that identifies valid and invalid
regions of the address space.

We next extend the model construction algorithm to check
that each struct accessed via a pointer is valid before it
inserts the struct into a set or a relation. All valid structs
reside completely in allocated memory. In addition, if two
structs overlap, one must be completely contained within
the other and the declarations of both structs must agree
on the format of the overlapping memory. This approach
ensures that only valid structs appear in the model. If
two data structures illegally overlap, the repair algorithm
nullifies the reference to one of the data structures. This
guarantees that write operations to one data structure will
not corrupt the other data structure, and that the model
construction algorithm will generate the same fixed-point in
the future.

Our model construction algorithm is coded with explicit
pointer checks so that it can traverse arbitrarily corrupted
data structures without generating any illegal accesses. It
also uses a standard fixed point approach to avoid becoming
involved in an infinite data structure traversal loop.

5. INCONSISTENCY REPAIR
The inconsistency detection algorithm iterates over all val-

ues of the quantified variables in the model constraints, eval-
uating the body of the constraint for each possible combi-
nation of the values. 5 If the body evaluates to false, the
algorithm has detected a violation and has computed a set
of bindings for the quantified variables that make the con-
straint false. We assume the violated constraint is in dis-
junctive normal form (disjunctions of conjunctions of basic
propositions). Conceptually, a successful repair performs
the following steps:

• Conjunction Selection: Satisfying all of the basic
propositions in any of the constraint’s conjunctions
will ensure that the constraint is satisfied. The first
step is therefore to select a conjunction to satisfy.

• Model Repair: Each basic proposition has a set of
model repair actions that, when performed, ensure
that the basic proposition is satisfied. The next step
is therefore to perform these repair actions.

• Data Structure Updates: Each model repair action
is implemented by a set of data structure updates; the

5The algorithm uses the denotational semantics given in Fig-
ure 22 in Appendix C to evaluate the model constraints.

specific set of updates is determined by the model def-
inition rules. The next step analyzes these rules to
perform the translation, then executes the updates.

• Compensation: The updates may have side effects
that cause the model to change in undesirable ways,
specifically by adding objects to sets or tuples to rela-
tions. It is sometimes possible to prevent these changes
by performing additional compensation updates that
falsify the guards in the model definition rules that
caused the additions to take place.

• Model Update: The next step is to update the model
to reflect the effect of the concrete data structure up-
dates.

At this point the algorithm has repaired the violated con-
straint. However, the updates may have caused other con-
straints to become violated. The algorithm therefore reeval-
uates the constraints and repairs any remaining violations.
The key issue is whether this process terminates.

We formulate the termination analysis as a graph prob-
lem. We build a graph that captures the dependences be-
tween the model constraints, the model definition rules, the
repair actions, and the choices available to the algorithm.
The absence of certain kinds of cycles in this graph guar-
antees that all repairs will terminate. When possible, our
algorithm prunes choices to eliminate problematic cycles in
the graph.

5.1 Model Repair Actions
We next discuss the model repair actions that repair vio-

lated basic propositions. The action depends on the form of
the proposition. For size propositions such as size(SE) = c
the repair algorithm simply adds or removes objects (or tu-
ples) from the appropriate set (or relation) to satisfy the
constraint. For inequality propositions such as V E = E the
repair algorithm calculates the value of E, then updates V E
to satisfy the proposition. For inclusion propositions such
as V in SE the repair algorithm simply adds or removes the
specified object (or tuple) to or from the specified set (or
relation).

The actions that add objects to sets must satisfy the par-
tition and subset requirements of the model definition. A
single object addition or removal may therefore trigger a
cascading sequence of object additions or removals as the
algorithm readjusts the model to satisfy these requirements.

5.2 Data Structure Updates
We next discuss how the algorithm translates model re-

pairs into actions that correctly update the concrete data
structures. Given a model repair that adds an object to a
set (or a tuple to a relation), the algorithm finds all model
definition rules with an inclusion constraint that may cause
the object (or tuple) to be added to the set (or relation).
The goal is to synthesize a set of data structure updates
that cause the guard of one of these rules to be satisfied,
which in turn ensures that the object (or tuple) is in the set
(or relation).

We assume the guards are in disjunctive normal form. The
algorithm chooses a rule, chooses one of the guards’ conjunc-
tions, then updates the data structures to ensure that all of
the propositions in the conjunction are true. The specific
data structure update depends on the form of the propo-
sition. For inequality propositions such as FE < E, the



algorithm computes E to generate a value that satisfies the
proposition, then assigns this value to FE. For propositions
of the form E in S or 〈E,E〉 in R, the algorithm calls it-
self (recursively) to generate the appropriate data structure
updates. The termination analysis in Section 9 ensures that
this recursion terminates.

The algorithm uses a similar strategy to implement repairs
that remove an object (or tuple) from a set (or relation). But
instead of choosing one conjunction from one model defi-
nition rule and satisfying all concrete propositions in that
conjunction, it instead chooses a set of concrete propositions
that include at least one concrete proposition from each con-
junction of each model definition rule that could cause the
object or tuple to appear in the set or relation. It then per-
forms actions that falsify (as necessary) the conjunctions in
this set.

5.2.1 Consistent Concrete Propositions
While processing the specification, the repair algorithm

generates a set of concrete propositions that it satisfies to
implement the repair. The repair algorithm must statically
verify that these propositions will not be contradictory. If
the set of concrete propositions associated with a given con-
crete data structure update contains more than one concrete
proposition with the same field or variable on the left hand
side, the static analysis rejects the concrete repair (and does
not include it in the dependence graph) unless one of these
three conditions is true:

• The two concrete propositions are the same.

• One concrete proposition is an equality proposition be-
tween FE and a value known not to be NULL (a quan-
tification variable V) and the second concrete proposi-
tion is of the form !FE = NULL.

• One concrete proposition is of the form FE = NULL
and the second concrete proposition is an inequality
proposition between FE and a value known not to be
NULL (a quantification variable V).

Finally, the algorithm checks that there is no dependence
cycle between propositions that use and define the same
struct field or variable. The repair action will satisfy the
propositions in order of their dependences.

5.2.2 Atomic Modifications
In some cases the algorithm may need to change the value

of a tuple in a relation rather than removing the tuple then
replacing it with a new tuple. Consider, for example, a
model definition rule of the form true => <v, v.f> in R.
There is no action that will remove <v,v.f> from R. In this
case the algorithm changes v.f if the presence of the tuple
with the old value of v.f causes the model to be inconsistent.

5.2.3 New Objects
The repair action may need a source of new objects to

add to sets to bring them up to the specified size or to serve
as wrapper objects. Any supersets of the set (as specified
using the model definition language from Section 3.1) are
one potential source. For primitive types, such as integers,
the action can simply synthesize new values. For structs,
memory allocation primitives are a potential source of new

objects. 6 We allow the developer to specify which source
to use and, in the absence of such guidance, use heuristics
to choose a default source.

5.2.4 Recursive Data Structures
The repair algorithm discovers recursive data structures

by searching for pairs of model definition rules: a base case
model definition rule of the form G ⇒ FE in S and a recur-
sive case model definition rule of the form for V in S,G′ ⇒
FE′ in S. The repair algorithm must consider two cases
for adding an object to a recursive data structure: it can
either add the object to the beginning of the recursive data
structure or it can add the object after another object in
the recursive data structure. If the repair algorithm adds
the object O to the beginning of the data structure, the re-
pair algorithm must satisfy FE = O, G, G′[V/O] 7 , and
FE′[V/O] = O′ where O′ is the initial value of FE. If G
is initially false, the last two propositions are replaced with
¬G′[V/O]. If the repair algorithm adds the object O af-
ter the object O′, then the repair algorithm must satisfy
FE′[V/O′] = O, G′[V/O′], FE′[V/O] = O′′, and G′[V/O]
where O′′ is the initial value of FE′[V/O′]. If G′[V/O′] is
initially false, the last two propositions are replaced with
the proposition ¬G′[V/O].

The repair algorithm must consider two cases for removing
an object O from a recursive data structure. If object O
is added by a rule of the form G ⇒ FE in S, then the
repair algorithm must satisfy FE = FE′[V/O] and G unless
G′[V/O] was initially false, in that case it must satisfy ¬G.
If object O is added by a rule of the form for V in S,G′ ⇒
FE′ in S where V = O′, the repair algorithm must satisfy
FE′[V/O′] = O′′ and G′[V/O′] where O′′ is the initial value
of FE′[V/O] unless G′[V/O] was initially false, in that case
it must satisfy ¬G′[V/O′].

This algorithm easily generalizes to handle specifications
in which G ⇒ FE in S is replaced with V ′ in S′, G ⇒
FE in S. This change does not effect the algorithm for
adding or removing an object from the middle of a recur-
sive data structure. To add an object to beginning of the
recursive data structure, the algorithm finds an object in S′

(or adds one if necessary) and binds V ′ to this object. To
remove an object from the beginning of the recursive data
structure, the algorithm finds the object binding for V that
adds the header of the recursive data structure to S.

5.2.5 Improving Translation Precision
In some cases it is possible to further analyze the model

definition rules to improve the precision of the translation
of model repairs into data structure updates. Consider, for
example, a set of concrete data structure updates whose
intended effect is to add an object to a set in the abstract
model. As described above, these updates satisfy the guard
of the model definition rule that adds the object to the set.
But these updates may also have unintended side effects.
For example, they may affect the guards of other model
definition rules, which may in turn cause other undesirable
changes to the model.

6Note that the use of memory allocation means that the
repair can fail if it runs out of memory. However, the ter-
mination analysis ensures that the repair process is not an
infinite memory consumer.
7We use the notation G′[V/O] to mean G′ evaluated with V
bound to O.



We therefore augment our translation algorithm to ana-
lyze the model definition rules to, when possible, perform
additional compensation updates to eliminate the undesir-
able side effects. Given a model definition rule whose guard
may be affected by the data structure update, our algorithm
examines the rule’s guard to derive additional updates that
restore the original truth value of the guard. If, for exam-
ple, the precondition of the guard is of the form G1 and G2,
and the original update makes G1 true, the compensation
update will make G2 false.

It is, of course, possible for compensation updates to have
additional unintended side effects, which the algorithm elim-
inates with additional compensation updates. The termina-
tion analysis in Section 9 ensures that the algorithm never
attempts to produce an infinite sequence of compensation
updates. The net effect is to improve the precision of the
translation by synthesizing larger, more precise data struc-
ture updates for each model repair.

6. DEVELOPER CONTROL OF REPAIRS
The repair algorithm often has multiple options for how to

satisfy a given constraint; these options may translate into
different repaired data structures. We recognize that some
repair actions may produce more desirable data structures
than other repair actions, and that the developer may wish
to influence the repair process. We have therefore provided
the developer with several mechanisms that he or she can
use to control how the repair algorithm chooses to repair an
inconsistent data structure.

6.1 Repair and Update Analysis
The termination analysis described in Section 9 gener-

ates the set of all possible model repairs and data structure
updates. Our system enables the developer to specify con-
ditions that model repairs and data structure updates must
satisfy. For example, the developer can specify that certain
fields or relations should not be modified, or that objects
should not be removed from certain sets. The termination
analysis would inform the developer whether a repair algo-
rithm can be generated using only model repairs and up-
dates that satisfy the developer imposed conditions. Fur-
thermore, the developer can even review the automatically
generated model repairs and updates to determine whether
they are acceptable. This mechanism allows the repair pro-
cess to be completely predictable and under the developer’s
control, yet retains the repair and termination guarantees
provided by the automatically generated repair algorithms.

6.2 Repair Costs
The first mechanism is based on a repair cost associated

with each basic proposition. At each step, the repair al-
gorithm must choose one of several violated constraints to
repair. Each constraint has a set of conjunctions; repairing
any of these conjunctions will ensure that the constraint is
satisfied. The repair of each conjunction, in turn, requires
the execution of a repair action for each of its violated ba-
sic propositions. The repair algorithm sums the costs for
each of the repair actions, then chooses the constraint and
conjunction with the least repair cost.

The developer may specify the repair cost for each basic
proposition. Developers may use this mechanism to, for
example, bias the repair process toward preserving as much
of the information present in the original inconsistent data

structure as possible. One way to accomplish this goal is
to assign higher costs to actions that remove objects from
sets and pairs from relations and lower costs to actions that
insert objects and pairs. The developer may also choose to
assign lower costs to repair actions that change object fields
or set flags and higher costs to repair actions that change
the referencing relationships.

The choices made by our algorithm are easily isolatable
from the repair code. It is possible for the developer to
provide a procedure which would indicate which repair ac-
tions that the developer found acceptable. This procedure
could select which conjunction to satisfy to repair a model
constraint, which abstract repair to perform to satisfy a ba-
sic proposition, and which data structure update to use to
perform an abstract repair. This mechanism gives the devel-
oper control over the choices made by the repair algorithm
while maintaining the repair guarantees provided by the au-
tomatic repair algorithm.

6.3 Set Membership Changes
Some repair actions involve adding an object to a set. To

execute such an action, the system must obtain a source
for the object. The two standard sources are a memory
allocator and another set of objects. The default choice is
to use a memory allocator for structures and another set of
objects for basic types such as integers and booleans. For
each set in the model, we allow the developer to specify the
source of objects for that set. We also allow the developer
to similarly control the source of pairs added to relations.

6.4 Hand-Coded Repair Routines
In some cases, the developer may wish to provide a hand-

coded repair algorithm. It is straightforward to extend our
algorithm so that, for each constraint, the developer can
specify a hand-coded repair procedure to invoke when the
constraint is violated. When the hand-coded repair termi-
nates, the system would verify that the constraint is satis-
fied, then (once again under developer control) optionally
invoke its own standard repair algorithm if the hand-coded
repair failed to satisfy the constraint.

7. THE REPAIR DEPENDENCE GRAPH
The repair algorithm constructs a repair dependence graph
〈N,E〉 to reason about the termination of the repair algo-
rithm on a system of constraints. The nodes represent model
conjunctions, repair actions, and model definition rules. The
edges capture the dependences between the model constraints,
repair actions, model definition rules, and choices in the re-
pair process.

7.1 Nodes in Graph
The graph contains the following nodes:

• Model conjunction nodes: In disjunctive normal
form, each model constraint Ci is of the form Ci =
Qi1, ..., Qim

∨jmax
j Cij . There is one node Nij for each

conjunction Cij in the model constraint Ci and an ad-
ditional node Nij′ , where j′ = jmax+ l, for each quan-
tifier Qil in the model constraint.

• Model repair nodes: For each basic proposition
Cijk in each conjunction Cij there is a set of nodes⋃
l{Aijkl} corresponding to the model repair actions



that the repair algorithm may use to repair that basic
proposition. There are also two model repair nodes
Ar for each set and relation. One models insertions,
the other removals. Edges from data structure update
nodes and compensation update nodes (see below) to
these nodes capture dependences in which the data
structure update or compensation update action re-
quires the insertion or removal of an object from a set
or a tuple from a relation.

• Data structure update nodes: There is a set of
data structure update nodes

⋃
m{Rijklm} for each model

repair node Aijkl in the graph. These update nodes
represent the concrete data structure updates that im-
plement the repair. There is also a similar set of nodes⋃
s{Rrs} for each model repair node Ar.

• Increase and decrease scope nodes: For each model
definition rule Mw = Qw, (

∨
x

∧
y Gwxy) ⇒ Iw, there

is an increase scope node Sw and a decrease scope node
Fw. These nodes represent the side effects that a data
structure update has on the model definition rules —
in particular, that a data structure update may in-
crease the scope of a model definition rule (i.e., cause
the model definition rule to add a new object to a set
or a new tuple to a relation) or decrease the scope of
a model definition rule (i.e., cause the removal of an
object from a set or a tuple from relation).

• Consequence and compensation nodes: For each
model definition rule Mw, there is a pair of rule con-
sequence nodes CwT and CwF . The consequence nodes
represent the consequences of increasing or decreas-
ing the scope of a given model definition rule. For
each model definition rule there is a set of compensa-
tion update nodes

⋃
z{Rwz}. The compensation up-

date nodes represent data structure repairs that may
be used to prevent the undesired scope increase of a
model definition rule.

7.2 Edges in the Graph
The edges E in the graph represent various repair depen-

dences.

• Edges from model conjunction nodes to model
repair nodes: 〈Nij , Aijkl〉 ∈ E for each model con-
junction node Nij and each of the corresponding model
repair nodes Aijkl. These edges capture the depen-
dences between model conjunctions and model repairs;
there is an edge from a model conjunction node to the
nodes corresponding to any of model repairs that may
be required to satisfy the model conjunction.

• Edges from model repair nodes:
〈Aijkl, Rijklm〉 ∈ E for each model repair node Aijkl
and each of the data structure update nodes Rijklm
that implement the model repair. 〈Ar, Rrs〉 ∈ E for
each model repair node Ar and all data structure up-
date nodes Rrs that implement the model repair.
〈Aijkl, Ni′j′〉 ∈ E (or 〈Ar, Ni′j′〉 ∈ E) if the repair cor-
responding to Aijkl (or Ar) may falsify the conjunction
Ci′j′ . 〈Aijkl, Ni′j′〉 ∈ E (or 〈Ar, Ni′j′〉 ∈ E) if the re-
pair corresponding to Aijkl (or Ar) may expand the
quantifier scope of the constraint containing the con-
junction Ci′j′ . 〈Aijkl, Sw〉 ∈ E (or 〈Ar, Sw〉 ∈ E) if the

repair corresponding to Aijkl (or Ar) may increase the
scope of the model definition rule Mw. 〈Aijkl, Fw〉 ∈ E
(or 〈Ar, Fw〉 ∈ E) if the repair corresponding to Aijkl
(or Ar) may decrease the scope of the model definition
rule Mw.

• Edges from data structure update nodes:
〈Rijklm, Ar〉 ∈ E (or 〈Rrs, Ar〉 ∈ E) if performing the
data structure update represented by the data struc-
ture update node Rijklm (or Rrs) may require that the
repair algorithm also perform the repair represented
by the model repair node Ar. 〈Rijklm, Fw〉 ∈ E (or
〈Rrs, Fw〉 ∈ E) if performing the data structure up-
date represented by the data structure update node
Rijklm (or Rrs) may decrease the scope of the model
definition rule Mw. 〈Rijklm, Sw〉 ∈ E (or 〈Rrs, Sw〉 ∈
E) if performing the data structure update represented
by the data structure update node Rijklm (or Rrs)
may increase the scope of the model definition rule
Mw.

• Edges from scope increase or decrease nodes:
〈Sw, CwT 〉 ∈ E and 〈Fw, CwF 〉 ∈ E for each model
definition rule Mw. 〈Sw,Rwz〉 ∈ E for each model
definition rule Mw and each corresponding compensa-
tion node Rwz. These edges link the scope increase
or decrease node to the consequences of increasing or
decreasing the scope of a model definition rule and the
repairs that may be invoked to avoid inadvertently in-
creasing the scope of a model definition rule.

• Edges from compensation update nodes:
〈Rwz, Ar〉 ∈ E if performing the compensation up-
date represented by the compensation update node
Rwz may require the repair algorithm to also perform
the repair represented by the model repair node Ar.
〈Rwz, Fw′〉 ∈ E if performing the data structure up-
date represented by the data structure update node
Rwz may decrease the scope of the model definition
ruleMw′ . 〈Rwz, Sw′〉 ∈ E if performing the data struc-
ture update represented by the data structure update
node Rwz may increase the scope of the model defini-
tion rule Mw′ .

• Edges from consequence nodes: 〈CwT , Nij〉 ∈ E if
increasing the scope of the model definition rule Mw

may falsify the conjunction Cij or expand the scope of
its quantifier. 〈CwF , Nij〉 ∈ E if decreasing the scope
of the model definition rule Mw may falsify the con-
junction Cij . 〈CwT , Fw′〉 ∈ E (or 〈CwF , Fw′〉 ∈ E) if in-
creasing (or decreasing) the scope of the model defini-
tion rule Mw may decrease the scope of the model defi-
nition rule Mw′ . 〈CwT , Sw′〉 ∈ E (or 〈CwF , Sw′〉 ∈ E) if
increasing (or decreasing) the scope of the model def-
inition rule Mw may increase the scope of the model
definition rule Mw′ . These edges model the effects that
increasing or decreasing the scope of a model defini-
tion rule may have on model constraints and on other
model definition rules.

7.3 Schema of Nodes and Edges
Figure 13 presents a schema of the edges and nodes in

the repair dependence graph. This schema summarizes the
nodes presented in Section 7.1 and the edges presented in
Section 7.2. The schema contains the following nodes:



• Rectangular node labeled Nij: This class of nodes
represents the option of satisfying the model constraint
Ci by satisfying the model conjunction Cij .

• Elliptical node labeled Aijkl/Ar: This class of nodes
represents the model repairs used to satisfy the basic
propositions in the model constraints or to add an ob-
ject (or tuple) to a set (or relation).

• Circular node labeled Rijklm/Rrs: This class of
nodes represents the data structure updates used to
implement the model repairs.

• Bold rectangular node labeled Sw/Fw: This class
of nodes represents the action of increasing (or decreas-
ing) the scope of a model definition rule.

• Bold elliptical node labeled Rwz: This class of
nodes represents the compensation actions taken in re-
sponse to undesired increases in the scope of a model
definition rule.

• Bold elliptical node labeled CwT /CwF : This class
of nodes represents the consequences of an increase (or
decrease) in the scope of a model definition rule.

/

/
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Figure 13: Repair Dependence Graph Schema

The edges in the schema represent the dependences be-
tween the nodes. The schema contains the following classes
of edges:

1. There is an edge from a model conjunction node Nij
to a model repair node Aijkl (or Ar) if the repair al-
gorithm may need to perform the model repair cor-
responding to the model repair node Aijkl (or Ar) to
satisfy the conjunction Cij .

2. There is an edge from a model repair node Aijkl (or
Ar) to a model conjunction node Ni′j′ if performing
the model repair corresponding to the model repair
node Aijkl (or Ar) may falsify the conjunction Ci′j′ .

3. There is an edge from a model repair node Aijkl (or
Ar) to a data structure update node Rijklm (or Rrs)
if the data structure update corresponding to the data
structure update node Rijklm (or Rrs) that may be
performed to implement the model repair on the con-
crete data structures.

4. There is an edge from a data structure update node
Rijklm (or Rrs) to a model repair node Ar if part of
performing the data structure update may require the
repair algorithm to perform an additional model repair
corresponding to the model repair node Ar.

5. There is an edge from a model repair node Aijkl or
Ar to a scope increase (or decrease) node Sw (or Fw)
if performing the model repair corresponding to the
model repair node may result in a scope increase (or
decrease) of the model definition rule Mw. Note that
these edges only capture dependences due to the ab-
stract effects of a model repair.

6. There is an edge from a data structure update node
Rijklm (or Rrs) to a scope increase (or decrease) node
Sw (or Fw) if performing the data structure update
corresponding to the data structure update node may
result in a scope increase (or decrease) of the model
definition rule Mw. Note that these edges only cap-
ture dependences due to the concrete effects of a data
structure update.

7. There is an edge from a scope increase node Sw to a
compensation update nodeRwz if the repair algorithm
may perform the compensation updates corresponding
to the compensation update node Rwz to compensate
for an undesired increase in the scope of a the model
definition rule Mw.

8. There is an edge from a scope increase (or decrease)
Sw (or Fw) node to a consequence node CwT (or CwF )
if the repair algorithm does not perform a compen-
sation update in response to undesired increases (or
decreases) in the scope of Nw.

9. There is an edge from a compensation update node
Rwz to a scope increase (or decrease) node Sw′ (or
Fw′) if performing the compensation update may cause
an increase (or decrease) in the scope of the model
definition rule Mw′ .

10. There is an edge from a consequence node CwT (or
CwF ) to a scope increase node Sw′ if a consequence of
a scope increase (or decrease) of the model definition
rule Mw is a scope increase of the model definition rule
Mw′ . There is an edge from a consequence node CwT
(or CwF ) to a scope decrease node Fw′ if a consequence
of a scope increase (or decrease) of the model definition
rule Mw is a scope decrease of the model definition rule
Mw′ .

11. There is an edge from a compensation update node
Rwz to a model repair node Ar if part of performing



the compensation update corresponding to the com-
pensation update node requires the repair algorithm to
perform the model repair corresponding to the model
repair node.

12. There is an edge from consequence node CwT (or CwF )
to a model conjunction node Nij if a direct conse-
quence of increasing (or decreasing) the scope of the
model definition rule Mw is to falsify the conjunction
Cij .

7.4 Interference
To construct the graph, the algorithm must determine

the dependences between repair actions, model constraints,
and model definition rules. In particular, a model repair
may change the scope of a model definition rule through the
model definition rule’s quantifier or through a guard of the
form E in S or 〈E,E〉 in R in the model definition rule.
A model repair may also falsify model constraints. Data
structure and compensation updates may change the scope
of a model definition rule by changing a data structure that
the guard of the model definition rule accesses. Finally, a
change in the scope of a model definition rule may effect
model constraints or other model definition rules through
their quantifiers or through their guards. We next discuss
how the algorithm performs this dependence analysis.

7.4.1 Abstract Model Repair Actions
The foundation of the construction for determining inter-

ference due to model repairs is a procedure that determines
if the repair of one basic proposition may interfere with a
second basic proposition, i.e., if repairing the first proposi-
tion may falsify the second. Conceptually, the interference
checking algorithm first checks if the two propositions in-
volve disjoint parts of the model; if so, they do not interfere.
If the two propositions may involve the same state, it reasons
about the specific repair action and the second proposition.
If the repair action is guaranteed to leave the model in a
state that satisfies the second proposition, there is no in-
terference. This is true if the first proposition implies the
second. It may also be true even in some cases when the
second proposition implies the first. For example, the two
constraints size(S) >= 1 and size(S) = 1 do not interfere
— the repair action for size(S) >= 1 makes size(S) = 1.
The interference checking algorithm performs these checks
using a table lookup to evaluate whether the repair of one
conjunction may interfere with another. The table lookups
rely on a few helper functions. We define the mapping S
from a variable V to the set S that V quantifies over. We
define the function φ(E, V) to be true iff the only variable
references contained in E are to V. We define the function
NP(S1, S2) to be true iff the partition constraints allow an
element to be a member of both S1 and S2. The figures
in Appendix B give the rules used to determine whether a
model repair performed to satisfy a basic proposition will
interfere with a second basic proposition.

Finally, model repairs can cause the scope of a model def-
inition rule to increase or decrease. Repair actions that add
an object (or tuple) to a set (or relation) may increase the
scope of any model definition rule that quantifies over the
set (or relation) or includes a non-negated guard that tests
membership in the set (or relation). Repair actions that add

an object (or tuple) to a set (or relation) may decrease the
scope of any model definition rule that includes a negated
guard that tests membership in the set (or relation). Repair
actions that remove an object (or tuple) from a set (or re-
lation) may decrease the scope of any model definition rule
that quantifies over the set (or relation) or includes a non-
negated guard that tests membership in the set (or relation).
Repair actions that remove an object (or tuple) from a set
(or relation) may increase the scope of any model definition
rule that includes a negated guard that tests membership in
the set (or relation).

7.4.2 Data Structure and Compensation Updates
Performing a data structure update or compensation up-

date changes the concrete data structure. This change may
cause additional increases or decreases in the scopes of the
model definition rules.

• Initial addition: If an update can be determined to
add the first element to a previously empty set, then
the update does not decrease the scope of the model
definition rule that was used to add objects to that
set.

Consider a model definition rule with an inclusion con-
straint of the form 〈V, V.R〉 with no quantifiers (or a
quantifier and all of the rule’s concrete propositions
are of the form V.field = E, where V is a quanti-
fied variable). If an update can be determined to add
the first object to the image of a given object under
the relation, then the update does not cause any scope
decreases for that model definition rule.

Consider a model definition rule with an inclusion con-
straint of the form 〈V.R, V〉 with no quantifiers (or a
quantifier and all of the rule’s concrete propositions
are of the form V.field = E, where V is a quantified
variable). If an update can be determined to add the
first object to the image of a given object under the
inverse of the relation, then the update does not cause
any scope decreases for that model definition rule.

• Self propagation: Consider an update intended to
add an object to a set or a tuple to a relation. If
the model definition rule used to generate the update
contains a quantifier and the rule contains only con-
crete propositions of the form V.field = E where V
is a quantified variable, then the repair action does
not further increase the scope of that model defini-
tion rule. If the model definition rule used to generate
the update has no quantifiers, then the update does
not further increase the scope of that model definition
rule. A similar rule is true for decreasing the scope.

Consider an update that performs an atomic modify
operation. If the model definition rule used to generate
the update contains a quantifier and it only contains
concrete propositions of the form V.field = E where
V is the quantified variable, then the update does not
further increase or decrease the scope of that model
definition rule. If an update performs an atomic mod-
ify operation and the model definition rule used to gen-
erate the update does not contain a quantifier, then the
update does not further increase or decrease the scope
of that model definition rule.



• Recursive data structures: Consider an addition
or removal update for a recursive data structure. If
the model definition rule for V in S,G′ ⇒ FE′ in S
has a guard G′ which contains only propositions of
the form V.field = E and the base case model def-
inition rule does not quantify over any set, then the
update does not increase or decrease the scope of this
model definition rule or the base case model definition
rule. Consider an addition or removal update for a
recursive data structure. If the model definition rule
for V in S,G′ ⇒ FE′ in S has a guard G′ which con-
tains only propositions of the form V.field = E and
the base case model definition rule for V ′ in S′, G ⇒
FE in S has a guard G which contains only proposi-
tions of the form V ′.field = E then the update does
not increase or decrease the scope of this model defi-
nition rule or the base case model definition rule.

• V.field = V may satisfy !V.field = NULL: If an
update satisfies the proposition V.field = V where V
is a quantification variable, then the update may de-
crease the scope of any model definition rule that con-
tains the proposition V.field = NULL. The update
may also increase the scope of any model definition
rule that contains the proposition !V.field = NULL.

• V.field = NULL may satisfy !V.field = V: If
an update satisfies the proposition V.field = NULL,
then the update may decrease the scope of any model
definition rule that contains the proposition V.field =
V ′ and may increase the scope of any model definition
rule that contains the proposition !V.field = V ′.

• V.field = E may satisfy V.field = E and may
falsify !V.field = E: If an update satisfies the propo-
sition V.field = E where E depends solely on V and
globals, then the update may decrease the scope of
any model definition rule that contains the proposition
!V.field = E and increase the scope of any model defi-
nition rule that contains the proposition V.field = E.

• General case: The general case is that setting
V.field = E may decrease or increase the scope of
any model definition rules which use the field field

(including in the inclusion constraint). This rule is
only used by the repair algorithm if none of the previ-
ous rules apply.

7.4.3 Scope Increases and Decreases
Increases or decreases of a model definition rule’s scope

may change the abstract model. In particular, if the change
in scope of a model definition rule causes an object (or tu-
ple) to be added to or removed from a set (or relation),
the resulting change in the model may falsify model con-
straints that depend on the set (or relation). As a result,
the repair algorithm must perform further repairs to satisfy
the violated constraints. The repair dependence graph must
contain edges that account for this possibility. Appendix B
gives the rules to determine whether an increase or decrease
of the scope of a model definition rule may falsify a model
constraint.

Finally, an increase or decrease in the scope of a rule may
cause further increases or decreases in the scope of model
definition rules. These further scope changes may falsify

model constraints. As a result, the repair algorithm must
perform further repairs to satisfy the violated constraints.
The repair dependence graph must contain edges that ac-
count for these cascading scope changes. The graph must
contain an edge between a scope increase or decrease node
and a second scope increase or decrease node if the change
in scope represented by the first node may cause the change
in scope represented by the second node. The following are
rules to determine whether a change in scope represented
by the one scope increase or decrease node may cause a
change in scope represented by the second scope increase
or decrease node: Increases in the scope of a model defini-
tion rule that constructs a set (or relation) may increase the
scope of any model definition rule that quantifies over the
set (or relation) or includes a non-negated guard which test
membership in the same set (or relation). Increases in the
scope of a model definition rule constructs a set (or relation)
may decrease the scope of any model definition rule that in-
cludes a negated guard which test membership in the same
set (or relation). Decreases in the scope of a model defi-
nition rule that constructs a set (or relation) may decrease
the scope of any model definition rule that quantifies over
the set (or relation) or includes a non-negated guard which
test membership in the same set (or relation). Decreases in
the scope of a model definition rule that constructs a set (or
relation) may increase the scope of any model definition rule
that includes a negated guard which test membership in the
same set (or relation).

7.5 Example Repair Dependence Graph
Figure 14 presents an example of a repair dependence

graph generated by our implementation. This repair de-
pendence graph corresponds to the model constraint for p

in ActiveProcesses, size(Next.p)<=1. The rectangular
nodes at the top of figure correspond to the different ways
to satisfy the model constraint. The ellipses at the top of
the figure correspond to the model repairs that satisfy the
propositions in the rectangles. The circles correspond to
the data structure updates that translate the model repairs
to the concrete data structures. The bold rectangles corre-
spond to scope decrease nodes for eighth and ninth model
definition rules in Figure 4. The bold ellipses correspond
to scope decrease consequence nodes. There are two cy-
cles in the graph. The cycle involving a scope decrease
node and a consequence node does not effect termination.
The cycle involving the node labeled list=null or p in

ActiveProcesses is removed by the node pruning process
described in Section 9. This example shows how the repair
dependence graph captures the dependences in the repair
process.

8. REPAIR ALGORITHM
The repair algorithm consists of the following steps:

1. Initial Model Construction: The repair algorithm
initially constructs an abstract model as previously de-
scribed in Section 4.

2. Inconsistency Detection: The repair algorithm eval-
uates the model constraints using the denotational se-
mantics given in Figure 22 in the Appendix C. If the
repair algorithm finds a violation of a model constraint
it proceeds to the next step, otherwise the data struc-
ture is consistent and the repair process exits.
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Figure 14: Example Repair Dependence Graph

3. Conjunction Selection: The repair algorithms com-
putes the costs of each of the conjunctions that could
be satisfied to repair a violated model constraint. 8

The cost of repairing a conjunction is the sum of the
repair cost of each of the constituent basic propositions
that must be satisfied. The repair algorithm chooses
the least expensive conjunction to repair.

4. Model Repair: For each basic proposition that must
be satisfied, the repair algorithm performs an abstract
repair on the model. If an object (or a tuple) is added
to a set (or a relation) or a tuple in a relation is mod-
ified, the repair algorithm immediately performs the
corresponding data structure update. If an object (or
tuple) is to be removed from a set (or a relation), the
repair algorithm registers the data structure updates
that remove the particular object. Object or tuple re-
moval updates will be performed in Step 6 when the
model is rebuilt. All other updates are performed in
Step 5.

5. Data Structure Updates: Section 5.2 describes how
the repair algorithm generates a set of data structure
updates that implement a model repair. In some cases,
a data structure update may require that an additional
model repair be performed; in these cases, the repair
algorithm performs Step 4 to perform the model repair.

6. Model Update: The repair algorithm performs the
model construction described in Step 1. Whenever an

8Note that the option to repair a given conjunction may be
eliminated statically by the pruning performed by termina-
tion analysis given in Section 9 or by the developer.

object (or tuple) is added to a set (or relation), the re-
pair algorithm checks if the object (or tuple) was in the
set (or relation) in the previous version of the model
from Step 4. If the object (or tuple) wasn’t in the set
(or relation), the repair algorithm first checks if a spe-
cific data structure update has been registered for the
given object (or tuple) and set (or relation). If one has,
the repair algorithm performs the given data structure
update as described in Step 5. Otherwise it checks if
a compensation update exists for the rule responsible
for the addition of the new object (or tuple). If one
exists, the repair algorithm performs the compensa-
tion update in the same manner as Step 5. If any data
structure or compensation updates are performed, the
model update is recomputed. Once the model update
has completed, the repair algorithm deletes the old
model and deletes all of the updates registered to a
objects or tuples. Then the repair algorithm proceeds
to Step 2.

9. TERMINATION
By construction, the edges in the graph capture all of the

repair dependences of the repair algorithm. As a result,
the transitive closure of the edges from a model conjunc-
tion node capture all of the possible effects of repairing that
model conjunction. Any infinite repair therefore shows up
as a cycle.

The repair dependence graph must be acyclic with the
exception of cycles that solely contain scope decrease and
consequence nodes, cycles that solely contain scope increase
and consequence nodes, or cycles that are not reachable
from the model conjunction nodes. 9 The repair algorithm
may remove model conjunction nodes, data structure update
nodes, and consequence/compensation update nodes to sat-
isfy these cyclity constraints. The final graph must satisfy
the following conditions in order to ensure that repairs exist
for violated constraints:

1. There is at least one model conjunction node for each
constraint in the model.

2. Each abstract repair node has at least one edge to a
data structure update.

3. Each scope increase or decrease node has at least one
edge to a consequence or compensation update node.

After modifying the graph, the algorithm never uses deleted
repairs.
Theorem: If the graph for a given specification is acyclic
with the exception of cycles that contain only scope decrease
and consequence nodes, cycles that contain only scope in-
crease and consequence nodes, or cycles that are not reach-
able from the model conjunction nodes and the graph satis-
fies the preceding three conditions, then the repair algorithm
will terminate for the specification.

We provide a proof of this theorem in Appendix A.

9Note that these cycles do not effect termination as no work
is associated with scope decrease cycles, scope increase cy-
cles can only discover as many objects as exist in the heap,
and the actions in unreachable cycles are never used.



10. RELATED WORK
We survey related work in software error detection [6, 7,

14, 4], traditional error recovery, manual data structure re-
pair, and databases.

10.1 Traditional Error Recovery
Reboot potentially augmented with checkpointing is a tra-

ditional approach to error recovery. Database systems use
a combination of logging and replay to avoid the state loss
normally associated with rolling back to a previous check-
point [11]. Transactions support consistent atomic opera-
tions by discarding partial updates if the transaction fails
before committing. There has recently been renewed inter-
est in applying many of these classical techniques in new
computational environments such as Internet services [22]
and in extending these techniques to reboot a minimal set
of components rather than the complete system [1].

10.2 Manual Data Structure Repair
The Lucent 5ESS telephone switch [15, 13, 17, 12] and

IBM MVS operating system [21] use inconsistency detection
and repair to recover from software failures. The software
in both of these systems contains a set of manually coded
procedures that periodically inspect their data structures to
find and repair inconsistencies. The reported results indi-
cate an order of magnitude increase in the reliability of the
system [11].

10.3 Constraint Programming
Researchers have incorporated constraint mechanisms into

programming languages. One such system is Kaleidoscope [19].
Kaleidoscope allows the developer to specify constraints that
the system should maintain. The developer is intended to
write programs using a hybrid of imperative style program-
ming and constraints where appropriate. Kaleidoscope does
not include any analog of our model-based approach, as a
result it can be very difficult if not impossible to express
constraints on recursive data structures or other heap struc-
tures containing multiple elements. Another example of a
constraint maintenance system as a programming abstrac-
tion is Alphonse [16]. Rule based programmer [20, 18] is
a related technique in which the developer defines a test
condition and an action to take in response.

10.4 Integrity Maintenance in Databases
Database researchers have developed integrity manage-

ment systems that enforce database consistency constraints.
These systems typically operate at the level of the tuples and
relations in the database, not the lower-level data structures
that the database uses to implement this abstraction. One
approach is to provide a system that assists the developer
in creating a set of production rules that maintain the in-
tegrity of a database [3]. This approach has been extended
to enable the system to automatically generate both the trig-
gering components and the repair actions [2]. Researchers in
database view maintenance use incremental recomputation
techniques to maintain view invariants [5]. Researchers have
also developed a database repair system that enforces Horn
clause constraints and schema constraints (which can con-
strain a relation to be a function) [23]. Our system supports
a broader class of constraints — logical formulas instead of
Horn clauses. It also supports constraints which relate the
value of a field to an expression involving the size of a set or

the size of an image of an object under a relation. Finally,
it uses partition information to improve the precision of the
termination analysis, enabling the verification of termina-
tion for a wider class of constraint systems.

10.5 Specification-Based Repair
In our previous research, we have developed a specification-

based repair system that uses external constraints to explic-
itly translate the model repairs to the concrete data struc-
tures [9, 10, 8]. The primary disadvantage of this approach
in comparison with the approach presented in this paper is a
potential lack of repair effectiveness — there is no guarantee
that the external constraints correctly implement the model
repairs, and therefore no guarantee that the concrete data
structures will be consistent after repair.

11. CONCLUSION
Data structure repair can be an effective technique for

enabling programs to recover from data structure damage
to continue to execute successfully. A developer using our
model-based approach specifies how to translate the con-
crete data structures into an abstract model, then uses the
sets and relations in the model to state key data structure
consistency constraints. Our automatically generated repair
algorithm finds and repairs any data structures that violate
these properties. The key results in this paper include a
technique for analyzing the model definition rules to trans-
late model repairs into data structure updates and the use of
the repair dependence graph to formulate and solve the re-
pair termination analysis problem. This approach promises
to substantially reduce the development costs and increase
the effectiveness of data structure repair, enabling its appli-
cation to a wider range of software systems.
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APPENDIX

A. TERMINATION PROOF
We separate the proof of termination into two parts: the

first part shows that the concrete implementation of each
abstract repair action terminates, and the second part shows
that the repair of the abstract model using these abstract
repair actions terminates.

A.1 Individual Abstract Repairs Terminate
Since an abstract repair action is completed before start-

ing the next abstract repair action, the repair algorithm can
only perform repair actions which are reachable in the re-
pair graph from the abstract repair node without traversing
a model conjunction node.

This reachable subgraph contains the following classes of
nodes: Abstract repair action nodes, data structure update
nodes, rule side effect nodes, consequence nodes, and com-
pensation update nodes. As a result of the restrictions on
cycles in the complete graph, strongly connected compo-
nents in this subgraph can consist of: a single abstract repair
action node, a single data structure update node, a single
compensation update node, a set of scope increase and con-
sequence nodes, or a set of scope decrease and consequence
nodes. After the initial data structure updates(which triv-
ially terminate), the repair algorithm only performs opera-
tions for the compensation update nodes.

It is clear that individual abstract repair actions termi-
nate. Consider the strongly connected components of the
subgraph in topologically sorted order. Once the first com-
pensation update node is used to prevent all of the initial
undesired increase in the scope of that rule, no further scope
increases due to that rule will occur (otherwise there would
be an incoming edge to this node). Once the first rule node
has been repaired, no further activations of rules correspond-
ing to the next rule node will occur, and so forth.

Notice that the fact that individual abstract repairs ter-
minate implies that any infinite repair chains must involve
infinitely many model conjunction repairs.

A.2 Repair Termination
Now that we’ve shown that individual abstract repairs ter-

minate, we construct a new graph that summarizes only the
dependences between model conjunction nodes. This graph
is the transitive closure of the repair dependence graph re-
stricted to the model conjunction nodes. By construction,
there is an edge between two nodes if and only if repair-
ing the first conjunction may falsify the second conjunction.
The absence of undesirable cycles in the repair dependency
graph ensures that this new graph has no cycles. We now
show by structural induction that the absence of cycles in
this new graph ensures that all repairs terminate.
Proof: (Structural induction).
(Base Case:) The base case, an acyclic graph of size 0, ter-
minates because there are no violated conjunctions.
(Induction Step:) We assume that repairs terminate on all
acyclic graphs of size k or less. We must show that all repairs
terminate for an acyclic graph of size k + 1.

Since the graph is acyclic, it must contain a node n with
no incoming edges. Furthermore, all nodes corresponding to
the same model constraint have no incoming edges arising
from a possible quantifier scope expansion. Otherwise the
node n would have a similar incoming edge as it shares the

same quantifiers with the other nodes from the same con-
straint. Because there are no incoming edges to node n, the
algorithm repairs each quantifier binding for n at most once
— once the node is satisfied for a given quantifier binding, no
other repair will falsify it. Therefore, the conjunction rep-
resented by node n may only be repaired a number of times
equal to the number of quantifier bindings for the constraint
that the conjunction appears in.

By the induction hypothesis, repairs on acyclic graphs of
size k terminate. So after each repair of node n the algo-
rithm either eventually repairs all violations of conjunctions
corresponding to the other k nodes (leaving only violations
of the conjunction corresponding to node n to possibly re-
pair) or it repairs a violation of the node n before finishing
the repairs on the other nodes. Since the conjunction rep-
resented by node n may only be repaired a number of times
equal to the number of quantifier bindings for the constraint
the conjunction appears in, the repair must eventually ter-
minate.

B. ABSTRACT INTERFERENCE
In all of the figures in this section, we omit any cases

in which a repair action never interferes with a given basic
proposition.

Addition to set S1 to satisfy size(S1)=c, size(S1)>=c,
!size(S1)=c− 1, or !size(S1)<=c− 1.
IF(size(S2)=c′) (S1 = S2) ∧ (c′ < c)
IF(size(S2)<=c′) (S1 = S2) ∧ (c′ < c)
IF(!size(S2)=c′) (S1 = S2) ∧ (c′ = c)
IF(!size(S2)>=c′) (S1 = S2) ∧ (c′ ≤ c)
IF(!V in S2) S1 = S2

Addition to set S1 to satisfy V in S1.
IF(size(S2)=c′) (S1 = S2)
IF(size(S2)<=c′) (S1 = S2)
IF(!size(S2)=c′) (S1 = S2)
IF(!size(S2)>=c′) (S1 = S2)
IF(!V in S2) S1 = S2

Removal from set S1 to satisfy size(S1)=c, size(S1)<=c,
!size(S1)=c+ 1, or !size(S1)>=c+ 1.
IF(size(S2)=c′) (S1 = S2) ∧ (c′ > c)
IF(size(S2)>=c′) (S1 = S2) ∧ (c′ > c)
IF(!size(S2)=c′) (S1 = S2) ∧ (c′ = c)
IF(!size(S2)<=c′) (S1 = S2) ∧ (c′ ≥ c)
IF(V in S2) S1 = S2

Removal from set S1 to satisfy !V in S1.

IF(size(S2)=c′) (S1 = S2)
IF(size(S2)>=c′) (S1 = S2)
IF(!size(S2)=c′) (S1 = S2)
IF(!size(S2)<=c′) (S1 = S2)
IF(V in S2) S1 = S2

Figure 15: Rules for computing interference from
set additions and removals



Increase in the scope of a model definition rule that constructs
set S1.
IF(size(S2)=c′) (S1 = S2)
IF(size(S2)<=c′) (S1 = S2)
IF(!size(S2)=c′) (S1 = S2)
IF(!size(S2)>=c′) (S1 = S2)
IF(!V in S2) S1 = S2

Decrease in the scope of a model definition rule that constructs

set S1.

IF(size(S2)=c′) (S1 = S2)
IF(size(S2)>=c′) (S1 = S2)
IF(!size(S2)=c′) (S1 = S2)
IF(!size(S2)<=c′) (S1 = S2)
IF(V in S2) S1 = S2

Figure 16: Rules for computing interference from
model definition rule scope changes

Addition to a relation to satisfy size(V1.R1)=c,
size(V1.R1)>=c, !size(V1.R1)=c− 1, or
!size(V1.R1)<=c− 1
IF(size(V2.R2)=c′) (R1 = R2) ∧ (c′ < c)∧

NP(S(V1),S(V2))
IF(size(V2.R2)<=c′) (R1 = R2) ∧ (c′ < c)∧

NP(S(V1),S(V2))
IF(!size(V2.R2)=c′) (R1 = R2) ∧ (c′ = c)∧

NP(S(V1),S(V2))
IF(!size(V2.R2)>=c′) (R1 = R2) ∧ (c′ ≤ c)∧

NP(S(V1),S(V2))
IF(!V3 in V2.R2) (R1 = R2)∧

NP(S(V1),S(V2)
IF(V2.R2 comp E)) ((R1 = R2) ∧NP(S(V1),S(V2)))∨

(E uses R1)
IF(V2.R′.R2 comp E) ((R1 = R2) ∧ NP(S(V1),R(R′)))∨

(E uses R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧ NP(S(V1),R(R′)))∨

(E uses R1)
IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) R1 = R2

IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)>=c′) R1 = R2

IF(!V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
Addition to relation to satisfy V ′ in V1.R1

IF(size(V2.R2)=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(size(V2.R2)<=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)>=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))∧

NP(S(V ′),S(V3)
IF(V2.R2 comp E)) ((R1 = R2) ∧NP(S(V1),S(V2)))∨

(E uses R1)
IF(V2.R′.R2 comp E) ((R1 = R2) ∧NP(S(V1),R(R′)))∨

(E uses R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V1),R(R′)))∨

(E uses R1)
IF(size(R2.V2)=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(size(R2.V2)<=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(!size(R2.V2)=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(!size(R2.V2)>=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(!V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3)∧

NP(S(V ′),S(V2))

Figure 17: Rules for computing interference from
relation additions

Removal from a relation to satisfy size(V1.R1)=c,
size(V1.R1)<=c, !size(V1.R1)=c+ 1, or
!size(V1.R1)>=c+ 1
IF(size(V2.R2)=c′) (R1 = R2) ∧ (c′ > c)∧

NP(S(V1),S(V2))
IF(size(V2.R2)>=c′) (R1 = R2) ∧ (c′ > c)∧

NP(S(V1),S(V2))
IF(V3 in V2.R2) (R1 = R2) ∧ NP(S(V1),S(V2))
IF(!size(V2.R2)=c′) (R1 = R2) ∧ (c′ = c)∧

NP(S(V1),S(V2))
IF(!size(V2.R2)<=c′) (R1 = R2) ∧ (c′ ≥ c)∧

NP(S(V1),S(V2))
IF(V2.R2 comp E) ((R1 = R2) ∧ NP(S(V1),S(V2)))∨

(E uses R1)
IF(V2.R′.R2 comp E) ((R1 = R2) ∧ NP(S(V1),R(R′)))∨

(E uses R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧ NP(S(V1),R(R′)))∨

(E uses R1)
IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)>=c′) R1 = R2

IF(V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) R1 = R2

Removal from a relation to satisfy !V ′ in V1.R1.

IF(size(V2.R2)=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(size(V2.R2)>=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)<=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(V2.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2)))∨

(E uses R1)
IF(V2.R′.R2 comp E) ((R1 = R2) ∧NP(S(V1),R(R′)))∨

(E uses R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V1),R(R′)))∨

(E uses R1)
IF(size(R2.V2)=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(size(R2.V2)>=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
IF(!size(R2.V2)=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(!size(R2.V2)<=c′) (R1 = R2) ∧NP(S(V ′),S(V2))

Figure 18: Rules for computing interference from
relation removals



Modification to a relation to satisfy V1.R1 comp1 E1

IF(V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))
IF(V2.R2 comp2 E2) (((comp1 6= comp2)∨

(E1 6= E2[V2/V1]) ∨ φ(E1, V1)∨
φ(E2, V2)) ∧ (R1 = R2)∧
NP(S(V1),S(V2))) ∨ (E2 uses R1)

IF(V2.R′.R2 comp2 E2) ((R1 = R2) ∧NP(S(V1),R(R′)))∨
(E2 uses R1)

IF(V E.R′.R2 comp2 E2) ((R1 = R2) ∧NP(S(V1),R(R′)))∨
(E2 uses R1)

IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) R1 = R2

IF(size(R2.V2)>=c′) R1 = R2

IF(V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) R1 = R2

IF(!size(R2.V2)>=c′) R1 = R2

IF(!V3 in R2.V2) (R1 = R2) ∧ NP(S(V1),S(V3))
Modification to a relation to satisfy V1.R′1...R

′
n.R1 comp1 E1

IF(V3 in V2.R2) (R1 = R2) ∧NP(R(R′n),S(V2))
IF(!V3 in V2.R2) (R1 = R2) ∧NP(R(R′n),S(V2))
IF(V2.R2 comp2 E2) ((R1 = R2)∧

NP(R(R′n),S(V2)))∨
(E2 uses R1)

IF(V2.R′′1 ...R
′′
n′ .R2 comp2 E2) (((comp1 6= comp2)∨

(E1 6= E2[V2/V1])∨
φ(E1, V1) ∨ φ(E2, V2)∨
(n′ 6= n) ∨ (R′1 6= R′′1 ) ∨ ...∨
(R′n 6= R′′n)) ∧ (R1 = R2)∧
NP(R(R′n),R(R′′

n′ )))∨
(E2 uses R1)

IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) R1 = R2

IF(size(R2.V2)>=c′) R1 = R2

IF(V3 in R2.V2) (R1 = R2) ∧NP(R(R′n),S(V3))
IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) R1 = R2

IF(!size(R2.V2)>=c′) R1 = R2

IF(!V3 in R2.V2) (R1 = R2) ∧NP(R(R′n),S(V3))

Figure 19: Rules for computing interference from
relation modifications

Increase in the scope of a model definition rule that constructs
the relation R1.
IF(size(V2.R2)=c′) (R1 = R2)
IF(size(V2.R2)<=c′) (R1 = R2)
IF(!size(V2.R2)=c′) (R1 = R2)
IF(!size(V2.R2)>=c′) (R1 = R2)
IF(!V3 in V2.R2) (R1 = R2)
IF(V2.R2 comp E)) (R1 = R2) ∨ (E uses R1)
IF(V2.R′.R2 comp E) (R1 = R2) ∨ (E uses R1)
IF(V E.R′.R2 comp E) (R1 = R2) ∨ (E uses R1)
IF(size(R2.V2)=c′) (R1 = R2)
IF(size(R2.V2)<=c′) (R1 = R2)
IF(!size(R2.V2)=c′) (R1 = R2)
IF(!size(R2.V2)>=c′) (R1 = R2)
IF(!V3 in R2.V2) (R1 = R2)

Decrease in the scope of a model definition rule that constructs

the relation R1.

IF(size(V2.R2)=c′) (R1 = R2)
IF(size(V2.R2)>=c′) (R1 = R2)
IF(V3 in V2.R2) (R1 = R2)
IF(!size(V2.R2)=c′) (R1 = R2)
IF(!size(V2.R2)<=c′) (R1 = R2)
IF(V2.R2 comp E) (R1 = R2) ∨ (E uses R1)
IF(V2.R′.R2 comp E) (R1 = R2) ∨ (E uses R1)
IF(V E.R′.R2 comp E) (R1 = R2) ∨ (E uses R1)
IF(size(R2.V2)=c′) (R1 = R2)
IF(size(R2.V2)>=c′) (R1 = R2)
IF(V3 in R2.V2) (R1 = R2)
IF(!size(R2.V2)=c′) (R1 = R2)
IF(!size(R2.V2)<=c′) (R1 = R2)

Figure 20: Rules for computing interference from
model definition rule scope changes



C. DENOTATIONAL SEMANTICS

hv ∈ HeapV alue = Bit ∪Byte ∪ Short ∪ Integer ∪ Struct
h ∈ Heap = P(Object× Field×HeapV alue ∪

Object× Field× N×HeapV alue)
v ∈ V alue = Z ∪Boolean ∪ string ∪ Struct
l ∈ Local = V ar ⇀ V alue

s ∈ Store = V alue× V alue ∪ V alue
m ∈ Model = P(V ar × Store)
R : M → Heap→ Local→Model→Model

E : E → Heap→ Local→Model→ V alue

G : G → Heap→ Local→Model→ Boolean

I : I → Heap→ Local→Model→Model

SE : FE → Heap→ Local→Model→ V alue

R[V in S,M] h l m =
⋃
v∈m(S)R[M] h l[V 7→ v] m

R[〈V1, V2〉 in R,M] h l m =⋃
〈v1,v2〉∈S[S] l eR[M] h l[V1 7→ v1][V2 7→ v2] m

R[for V = E1..E2,M] h l m =⋃E[E2]lm
v=E[E1]lm

R[M] h l[V 7→ v] m

R[G ⇒ I] h l m = if (G[G] h l m) then (I[I] h l m) else m
G[G1 and G2] h l m = (G[G1] h l m) ∧ (G[G2] h l m)
G[G1 or G2] h l m = (G[G1] h l m) ∨ (G[G2] h l m)
G[!G] h l m = ¬(G[G] h l m)
G[E1=E2] h l m = (E[E1] h l m) == (E[E2] h l m)
G[E1<E2] h l m = (E[E1] h l m) < (E[E2] h l m)
G[E1<=E2] h l m = (E[E1] h l m) ≤ (E[E2] h l m)
G[E1>=E2] h l m = (E[E1] h l m) ≥ (E[E2] h l m)
G[E1>E2] h l m = (E[E1] h l m) > (E[E2] h l m)
G[true] h l m = true
G[E in S] h l m = 〈S, E[E] h l m〉 ∈ m
G[〈E1, E2〉 in R] h l m = 〈R, 〈E[E1] h l m, E[E2] h l m〉〉 ∈ m
I[FE in S] h l m = m ∪ {〈S,SE[FE] h l m〉}
I[〈FE1, FE2〉 in R] h l m =

m ∪ {〈R, 〈SE[FE1] h l m,SE[FE2] h l m〉〉}
E[FE] h l m = SE[FE] h l m
E[string] h l m = string
E[number] h l m = number
E[E1 ⊕ E2] h l m = primop(⊕, (E[E1] h l m), (E[E2] h l m))
SE[V] h l m = l(V)
SE[V.field] h l m = b.〈l(V), field, b〉 ∈ h

Figure 21: Denotational Semantics for the Model
Definition Language

v ∈ V alue = Number ∪Boolean ∪ string ∪Object
l ∈ Local = P(V ar × V alue)
m ∈ Model = P(V ar × Store)
s ∈ Store = V alue× V alue ∪ V alue
EV : C → Local→Model→ Boolean

E : E → Local→Model→ V alue

C : B → Local→Model→ Boolean

V : V E → Local→Model→ V alue

PR : P → Local→Model→ Boolean

SE : SE → Local→Model→ P(V alue)

EV[for V in S,C] l m =∧
v∈m(S) EV[C] l[V 7→ v] m

EV[for 〈V1, V2〉 in R,C] l m =∧
〈v1,v2〉∈m(R) EV[C] l[V1 7→ v1][V2 7→ v2] m

EV[B] l m = C[B] l m
C[B1 and B2] l m = C[B1] l m ∧ C[B2] l m
C[B1 or B2] l m = C[B1] l m ∨ C[B2] l m
C[!B] l m = ¬C[B] l m
C[P] l m = PR[P] l m
PR[V E=E] l m = (V[V E] l m == E[E] l m)
PR[V E<E] l m = (V[V E] l m < E[E] l m)
PR[V E<=E] l m = (V[V E] l m ≤ E[E] l m)
PR[V E>E] l m = (V[V E] l m > E[E] l m)
PR[V E>=E] l m = (V[V E] l m ≥ E[E] l m)
PR[V in SE] l m = l(V) ∈ SE[SE] l m
PR[size(SE)=c] l m = E[size(SE)] l m == c
PR[size(SE)>=c] l m = E[size(SE)] l m ≥ c
PR[size(SE)<=c] l m = E[size(SE)] l m ≤ c
V[V.R] l m = y.〈l(V), y〉 ∈ m(R)
V[V E.R] l m = y.〈V[V E] l m, y〉 ∈ m(R)
E[V] l m = l(V)
E[E1 ⊕ E2] l m = primop(⊕, E[E1] l m, E[E2] l m)
E[E.R] l m = y.∃z, z ∈ E[E] l m ∧ 〈z, y〉 ∈ m(R)
E[size(SE)] l m =| SE[SE] l m |
SE[S] l m = {s | s ∈ m(S)}
SE[V.R] l m = {y | 〈l(V), y〉 ∈ m(R)}
SE[V E.R] l m = {y | ∃x.〈x, y〉 ∈ m(R) ∧ x ∈ SE[V E] l m}
SE[R.V] l m = {y | 〈y, l(V)〉 ∈ m(R)}

Figure 22: Denotational Semantics for Model Con-
straints


