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Abstract
Several studies have shown that wide-area Internet routing is frag-
ile, with failures occurring for a variety of reasons. Routing
fragility is largely due to the flexible and powerful ways in which
BGP can be configured to perform various tasks, which range from
implementing the policies of commercial relationships to config-
uring backup paths. Configuring routers in an AS is like writing
a distributed program, and BGP’s flexible configuration and to-
day’s relatively low-level configuration languages make the process
error-prone. The primary method used by operators to determine
whether their complex configurations are correct is to try them out
in operation.

We believe that there is a need for a systematic approach to ver-
ifying router configurations before they are deployed. This paper
develops a static analysis framework for configuration checking,
and uses it in the design of rcc, a “router configuration checker”.
rcc takes as input a set of router configurations and flags anomalies
and errors, based on a set of well-defined correctness conditions.
We have used rcc to check BGP configurations from 9 operational
networks, testing nearly 700 real-world router configurations in
the process. Every network we analyzed had configuration errors,
some of which were potentially serious and had previously gone
unnoticed. Our analysis framework and results also suggest ways
in which BGP and configuration languages should be improved.
rcc has also been downloaded by 30 network operators to date.

1. Introduction
The Internet’s interdomain routing infrastructure, based on Ver-

sion 4 of the Border Gateway Protocol (BGP), is complex. Network
operators rely on BGP to perform many tasks, including providing
reachability to customers, configuring primary and backup access
links [20], configuring transit and peering relationships [36], ex-
pressing routing policies for inbound and outbound routes [3], and
performing traffic engineering and balancing traffic across multiple
links [18]. It is a tribute to the designers and implementors of BGP
that it can meet these important practical requirements while ensur-
ing that competing Internet Service Providers (ISPs) can cooperate
to achieve global connectivity.

Unfortunately, the complexity of Internet routing in real-world
operation leads to a number of fragilities. Network operators
are continually reporting serious problems that adversely affect
the reachability of large parts of the Internet (see Section 2.3).
The mechanism that gives BGP its much needed flexibility—BGP
configuration—is largely to blame for these problems. BGP mis-
configurations are common [3, 31] and lead to problems such as hi-

jacked, leaked, or otherwise invalid routes; routing instability [30];
routing loops [12, 16]; and persistent oscillation [1, 24, 44].

BGP’s behavior depends almost entirely on its configuration. In
today’s commercial routers, configuration is specified in a low-
level, mechanistic fashion and involves complicated feature inter-
actions both within one router and across multiple routers in the
network. As a result, the process of specifying router configura-
tions is error-prone.

There are at least three ways to improve this state of affairs. The
first is to argue that BGP4 has outlived its purpose and to develop
a new routing protocol. Of course, that protocol would have to be
at least as flexible as BGP4, while being less error-prone. Unfor-
tunately, it is not immediately obvious what we should change in
BGP. A second approach would be to argue that errors arise be-
cause today’s configuration languages are too “low-level” and are
not well-designed, leading to programming errors. Again, it is not
obvious what specific improvements should be made to configura-
tion languages. A third approach, complementary to the previous
two, would be to develop a framework for analyzing router config-
urations prior to deploying them.

This paper takes the third approach and presents several con-
tributions. First, building on previous work [16], we derive a set
of correctness constraints for BGP configuration. Second, we use
these constraints to design and implement rcc (“router configura-
tion checker”), a tool that analyzes router configurations and de-
tects anomalies. rcc can help network operators debug their com-
plex BGP configurations and correct errors before deploying them.
Third, we use rcc to find errors in real-world configurations and
present the findings of our experimental analysis. This analysis
helps us understand why various routing problems occur and deter-
mine whether each problem is due to weaknesses in BGP or due
to problems in specifying configuration. Finally, given an under-
standing of why configuration errors occur, we recommend specific
changes both to BGP and to configuration languages. As the pro-
tocols and configuration languages for wide-area routing evolve,
we believe that the ability to detect and fix errors in configuration
before deployment will be invaluable to network operators.

Despite the need for tools and techniques for verifying BGP’s
correctness, there are significant challenges that have thus far pre-
vented verification techniques from becoming used in practice in
wide-area routing. First, defining what it means for BGP to be
“correct” is not easy, because it is hard to define a “specification”
for an operational BGP—its many modes of operation and many
tunable parameters allow for a great deal of flexibility that is hard
to specify. Additionally, BGP’s configuration is distributed across
many routers, and precisely defining how various aspects of BGP’s
configuration interact is challenging. We tackle these challenges
by applying the correctness properties and rules from the “routing
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logic” [16] to each stage of BGP’s operation and derive conditions
under which BGP will (1) originate incorrect routes, (2) propagate
incorrect routes, (3) fail to propagate routes when it should, (4) vi-
olate intended high-level policy, and (5) exhibit nondeterministic
behavior. Our approach is akin to specifying invariants that should
hold at each stage of the propagation of a BGP route through the
network and deriving conditions under which those invariants will
be violated.

With assistance from many network operators, we ran rcc on
BGP configurations from 9 real-world networks. rcc found errors
in every network. In most cases, the operators were unaware of
these errors, which ranged from simple “single router” errors (e.g.,
undefined variables) to more complex errors that involved interac-
tions between multiple routers. We uncovered many serious er-
rors, including the potential for network partitions caused by route
propagation problems, propagation of invalid routes (usually due
to improper or non-existent route filtering), and routers forwarding
packets in ways that were inconsistent with high-level policy.

Our experimental analysis suggests that there are many reasons
for configuration errors, but three reasons explain most errors.
First, many errors arise from the complex, obscure mechanisms for
propagating routes learned from BGP border routers within a net-
work. The main techniques used to propagate these routes scalably
within a network (“route reflection with clusters”) are easily mis-
configured. Second, even simple policy specifications (e.g., treat-
ing a route as a backup) are specified using multiple levels of indi-
rection in configuration files, making mistakes more likely. Finally,
many errors reflect the fact that operators have no systematic pro-
cess for configuring their networks; many of the errors we discover
could be fixed with better configuration management tools.

The rest of this paper is organized as follows. Section 2 provides
background on BGP and further motivation. Section 3 presents a
framework for verifying BGP’s correctness using static analysis.
Section 4 describes the design and implementation of rcc, and Sec-
tion 5 presents our experience with running rcc on operational net-
works. Section 6 surveys related work on protocol verification, and
Section 7 concludes.

2. Motivation and Background
In this section, we explain why verifying BGP configuration is

difficult and present an overview of BGP, paying particular atten-
tion to aspects of BGP that can cause incorrectness. We then dis-
cuss some empirical observations of routing errors from a previ-
ous study and our study of the North American Network Operators
Group (NANOG) mailing list.

2.1 Challenges for BGP Verification
BGP configuration errors are difficult to diagnose because they

often appear far from the actual source of the error and usually not
immediately after the deployment of an erroneous configuration.
Operators typically search for errors in a trial-and-error fashion be-
cause they have no way to systematically verify that a particular
routing configuration is correct. They deploy a configuration, wait
and see whether the configuration has any undesirable effects, and
revert the configuration to a previous state if problems arise.

There are two further problems with verifying correctness:
1. Defining correctness is difficult. Operators configure BGP

to achieve a variety of tasks. Defining “correctness” for a
protocol that can behave in many ways is difficult. We use
the routing logic [16] to help us define correctness properties
and constraints.

2. BGP configuration is distributed. BGP’s behavior depends
on the interactions between multiple routers, both within a

single network and across multiple networks. Verifying BGP
configuration requires checking many such dependencies in-
volving multiple routers.

We address these challenges by viewing BGP as a distributed
program, rather than a protocol that conforms to a set specifica-
tion.1 We determine a set of invariants that should hold true inde-
pendent of the details of configuration. Many of these invariants
are verifiable using static analysis.

We determine which invariants require checking configurations
at a single router, and which require checks across multiple routers.
Fortunately, we find that most serious problems can be uncovered
with checks that only require configurations from routers within
a single network.2 This finding allows each network to verify its
configurations independently.

2.2 Border Gateway Protocol (BGP)
The Internet comprises over 17,000 independently operated net-

works, or autonomous systems (ASes), that exchange reachability
information using the Border Gateway Protocol (BGP) [39]. BGP
has three distinguishing components: (1) the protocol itself, which
defines how routes are exchanged and the content of those routes;
(2) the decision process, which defines how each router selects a
best route from multiple options; and (3) the protocol configura-
tion, which affects route attributes, as well as how (and whether)
routes are exchanged within the AS and with other ASes.

2.2.1 Overview
BGP distributes routes to destination prefixes via incremental up-

dates. Each router selects one “best” route to a destination, read-
vertises that route to neighboring routers, and sends updates to its
neighbors when the best route changes. BGP is actually two dis-
tinct protocols: external BGP (eBGP), which an AS uses to ex-
change routes with other ASes, and internal BGP (iBGP), which
an AS uses to distribute routes from other ASes to routers within
its own AS.

Each BGP routing message contains a number of attributes.
These include the destination prefix (or prefixes), the destinations
associated with the route; the AS path, the sequence of ASes en
route to the advertised destination; the next-hop, the IP address that
the router should forward packets to in order to use the route; the
multi-exit discriminator (MED), which a neighboring AS can at-
tach to a route to specify that one route should be preferred more
(or less) than routes advertised by that AS at other routers; and the
community value, which carries no explicit semantics, but is a way
of labeling a route (e.g., a router might label an incoming customer
route so that when the route is readvertised internally, other routers
can determine that it was learned from a customer).

2.2.2 BGP Operation and Configuration
BGP’s protocol definition determines how routers select and

propagate routes, but BGP’s configuration affects (1) what (and
whether) routes are originated and propagated, (2) how routes are
modified as they propagate (which, in turn, affects route selection),
and (3) how routes propagate between routers (i.e., the routing
topology).

We break BGP route propagation into a sequence of six steps,
shown below. At each step, we note how BGP’s configuration af-
fects its behavior. We will refer to these steps throughout the paper.

1We explain in Section 6 why the absence of a set specification makes it in-
feasible to verify wide-area routing using approaches like model checking.
2Griffin and Wilfong’s “safety” violation caused by incompatible policies
in different networks is an exception [27]; see Section 3.6.
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Property Step 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 Total
Filtering 2 1 (1) 3 (4) 4 (9) 21 (27) 7 (14) 6 (9) 10 (23) 14 (27) 7 (19) 18 (29) 2 (2) 93 (164)

Leaked Routes 2 0 (0) 0 (0) 3 (3) 10 (11) 6 (7) 4 (4) 9 (9) 13 (13) 8 (9) 8 (8) 1 (1) 62 (65)
Hijacked Routes 2 0 (0) 1 (1) 1 (1) 3 (3) 5 (5) 4 (4) 1 (1) 5 (5) 2 (2) 1 (2) 0 (0) 23 (24)

Global Route Visibility 3 1 (1) 6 (7) 12 (17) 22 (29) 10 (14) 9 (12) 13 (16) 17 (30) 18 (27) 29 (37) 2 (2) 139 (192)
Oscillations 4 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (2) 0 (1) 0 (1) 0 (0) 0 (4)

Routing Instability 4 0 (1) 4 (6) 4 (4) 20 (22) 4 (5) 6 (7) 3 (4) 16 (22) 11 (12) 4 (5) 1 (1) 73 (89)
Attribute manip. 5 0 (0) 0 (0) 2 (2) 6 (7) 6 (9) 5 (5) 1 (1) 4 (11) 2 (6) 4 (8) 0 (0) 30 (49)

iBGP-related 6 0 (0) 2 (3) 4 (4) 9 (9) 4 (6) 2 (5) 3 (4) 5 (9) 6 (9) 1 (3) 0 (0) 36 (52)
Routing Loops 6 0 (0) 2 (2) 1 (1) 4 (4) 1 (1) 3 (3) 1 (1) 7 (8) 4 (4) 0 (2) 0 (0) 23 (26)

Blackholes 6 0 (0) 0 (0) 2 (2) 6 (6) 4 (4) 1 (1) 16 (16) 21 (23) 31 (32) 26 (26) 1 (1) 108 (111)
Total — 2 (3) 18 (23) 33 (43) 101 (118) 47 (65) 40 (50) 57 (75) 102 (150) 89 (121) 91 (121) 7 (7) 587 (776)

Table 2: Number of threads discussing observed BGP-related routing errors over the 10 years of the NANOG mailing list. Numbers in parentheses
denote the total number of threads on the topic, including generic discussion (e.g., questions, anecdotes, documents, etc.).
.

1. Highest local preference
2. Shortest AS path length
3. Lowest MED (compared among routes with same next-hop AS only)
4. eBGP-learned over iBGP-learned
5. Lowest path cost to next hop (based on the interior routing protocol path)
6. Lowest router-id of BGP speaker (or oldest route)

Table 1: The BGP decision process used in step 4 (path selection). Ob-
solete steps (e.g., “lowest origin type”) are omitted.

1. Origination. A BGP-speaking router in some AS originates
a route for a prefix. BGP configuration allows a router to
advertise itself as the source AS for a prefix.3

2. Export. A router exports the route to a neighboring AS on an
eBGP session. Each BGP session has an export policy that
determines which routes are advertised to each BGP neigh-
bor. A network operator uses export policy to control route
propagation. For example, an AS should typically not ad-
vertise routes from one of its providers to another, because
doing so would cause the network to transit packets between
its two providers. Operators use export policy to implement
bilateral agreements with other ASes.

3. Import. An eBGP-speaking router imports the route. At
this stage, the router filters any routes it believes to be in-
valid. The router also discards routes whose next-hop at-
tribute refers to an IP address not present in the router’s for-
warding table. Finally, the import policy may assign a local
preference to the imported route.

4. Selection. The router selects the best route from the set of
routes to the destination. The BGP decision process shown
in Table 1 is a de facto standard that each vendor defines to
behave in roughly the same way [8, 40]. The router applies
the steps shown in the table to determine its best route to each
destination. By altering the attributes of advertised routes in
the router configuration, a network operator can exert great
influence on an importing router’s path choice. For example,
the first step in the decision process is based on local prefer-
ence, which operators can manipulate using configuration.

5. Modification. The router consults its configuration and mod-
ifies one or more of the best route’s attributes (such as the
“next-hop” field) before disseminating the best route to the
other routers in its AS.

6. Intra-AS Propagation. The routers inside the AS use iBGP
to propagate externally-learned routes, with each router se-
lecting the best route among a set of choices. iBGP runs
as an overlay over the interior routing protocol (the interior

3In rare cases, non-BGP speaking routers can also originate routes.

gateway protocol, or “IGP”). The traditional overlay topol-
ogy is a “full-mesh”, but this approach does not scale well. A
common technique that improves the scalability of intra-AS
route propagation is route reflection. The operator specifies
the iBGP topology with route reflection in router configura-
tions. This topology usually requires a smaller number of
per-router BGP sessions than the full-mesh.

At the end of Step 6, all eBGP-speaking routers proceed to Step 2
(export) and check if their best route to the destination should be
exported to any other ASes.

2.3 Empirical Observations
In this section, we first discuss a previous BGP misconfiguration

study that discovered that various types of BGP misconfigurations
occur daily and explain how this work motivates our study. We
then survey the archives of the NANOG mailing list, where oper-
ators have been discussing various network operations issues; our
study, though informal, suggests that configuration has been caus-
ing problems at every step of BGP’s route propagation over the past
decade.

2.3.1 Transient misconfigurations
Mahajan et al. studied short-lived BGP misconfiguration by an-

alyzing transient, globally-visible BGP announcements from an
edge network [31]. They defined a “misconfiguration” as a tran-
sient route event that was followed by a return to normal behavior
within a small amount of time (suggesting that the operator ob-
served and fixed the problem). They found that many misconfigura-
tion events could be traced to faulty route origination and incorrect
filtering.

Mahajan et al.’s results suggest that operators commonly rely on
“stimulus-response” reasoning. We extend their work by studying
a complementary class of errors: those that are difficult to quickly
locate and correct. Our work also helps operators detect the types
of misconfigurations found by Mahajan et al. without stimulus-
response testing.

2.3.2 Operator-observed problems
NANOG operates a mailing list where operators discuss ob-

served problems [35]. The list has thousands of subscribers, and
network operators regularly use the list to report network problems,
ask questions regarding operational issues, etc.

To gain a better understanding for the types of errors that opera-
tors see in practice, we conducted a study of the list archives, which
begin in mid-1994. Because the list has received about 68,000
emails over the course of 10 years, we first clustered the emails
by thread and pruned threads based on a list of about 15 keywords
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(e.g., “BGP”, “issue”, “loop”, “problem”, “outage”, etc.). We then
manually reviewed 1,500 threads, 491 of which were relevant to
BGP configuration issues. We classified each of these 491 threads
into one or more of the categories shown in Table 2. (The ma-
jority of the remaining threads pertaining to outages and problems
were related to power outages and fiber cuts and not to BGP.) The
categories can be classified according to the stages of BGP route
propagation as follows:

• Origination/Export. Prefix filtering describes any problem
related to misconfigured filters (either blocking prefixes that
shouldn’t be blocked or leaking prefixes, such as private ad-
dresses, that should be filtered). Leaked routes describes
any thread relating to routes in the global routing table that
should have been filtered; this includes leaked prefixes, as
more general problems (e.g., an AS leaking its provider’s
routes, etc.). Hijacked routes refers specifically to cases
where an AS announces address space that belongs to an-
other AS.

• Import. Global route visibility refers to cases where some
prefix that should be globally visible is not. From the list,
we observed that problems with global route visibility result
when a routing registry allocates IP addresses that were pre-
viously private or reserved, and various ISPs fail to update
their import filters.

• Selection. Oscillations refers to any thread related to per-
sistent route oscillation. Routing instability describes any
problem that involves routes being advertised and withdrawn
rapidly.

• Modification. Attribute manipulation refers to any problems
related to modification of routing attributes. Typically, these
involve problems where the operator complains a router in
a neighboring AS is not modifying a route attribute, such as
local preference, as advertised.

• Intra-AS Propagation. Routing loops are specific cases
where an operator posts a traceroute that contains a routing
loop. Blackholes are specific cases where an operator either
posts a traceroute that does not loop, but fails in the middle of
the path, or where an operator specifically complains about
such a blackhole. iBGP-related refers to any problems that
seemed as though they were likely related to iBGP configu-
ration (i.e., loops and other types of intra-AS failures).

Although this analysis is informal, our observations suggest
some clear trends. First, many interdomain routing problems are
caused by configuration errors. Second, the state of affairs has not
improved over the last 10 years: the same types of configuration
errors and problems continually appear. Third, BGP configuration
problems exist at every step of BGP’s operation. Guaranteeing cor-
rect operation thus requires more than a few simple tweaks: net-
work operators need a systematic framework for verifying BGP’s
correctness.

3. Verifying BGP Configuration Correctness
In this section, we describe our approach to verifying BGP con-

figuration correctness. Using the routing logic and our model of
BGP route propagation from Section 2.2.2 as a guide, we derive a
set of correctness constraints for BGP configuration. We also deter-
mine which constraints can be analyzed by static analysis—parsing
the set of router configurations from a single AS and applying the
correctness constraints to reveal errors. Our analysis in this section
provides the theoretical groundwork for the design of rcc, but it

Step Valid. Visib. Info Flow. Det. Safety
1. Origination •
2. Export • •
3. Import • • •
4. Selection • •
5. Modification • •
6. Intra-AS Prop. • • •

Table 3: Applying correctness tests at each stage of BGP operation.

also presents several important insights on BGP configuration cor-
rectness. We identify aspects of correctness that cannot be detected
using static analysis alone but require either runtime analysis or
changes to either BGP or the configuration language.

3.1 Framework Overview and Assumptions
Any verification system requires a notion of “correctness.” For

wide-area Internet routing, as for any complex distributed program,
specifying correctness properties is difficult. We build on the rout-
ing logic [16], which specifies five properties that routing protocols
should attempt to satisfy. The routing logic defines five correctness
properties:

1. Validity is the property that the existence of a route to a des-
tination implies that there is a path based on that route in
the network. This property guarantees that data traffic flows
correctly.

2. Visibility is the property that the existence of some path to a
destination implies the existence of a route to it. This prop-
erty guarantees that routes propagate correctly.

3. Information flow control is the property that the flow of
routes into, out of, and across an AS conforms to a spec-
ified policy. Information flow control is a unique property
because it requires a policy model.

4. Determinism is the property that the best route selected by
a router to a destination is (1) independent of the order in
which the routes arrived, and (2) is unchanged if any subop-
timal route is removed from consideration.

5. Safety is the property that the routing protocol arrives at a
unique, stable route assignment. Most issues with safety in-
volve policy interactions between ASes.

We motivate our verification framework by considering the steps
involved in propagating a route from an originating AS through a
sequence of routers and ASes (described in Section 2.2.2). At the
end of each step, we can use the routing logic to determine whether
the each of the above properties holds. In many cases, static anal-
ysis of router configurations can determine whether each of these
properties holds. Table 3 summarizes which properties apply at
each stage of BGP operation. The next five sections discuss each
correctness property in terms of its effects on each stage of route
propagation. Our framework is extensible, allowing users (e.g., net-
work operators) to easily add specific assertions or invariants that
ought to hold in their configurations.

We assume that paths and routing protocols at lower layers are
operating correctly. For example, we assume that if a destination is
contained in the IGP, then routers will correctly forward packets to
that destination. The correctness of protocols at lower layers should
be verified separately.

3.2 Validity
If a routing protocol allows invalid routes to propagate, then

packets may not always reach their intended destinations. BGP can
violate validity in several different ways, most stemming from mis-
configuration. In general, a router should only advertise a route if it
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is believes that there is a correct path from itself to the destination
that can be used by any other router that hears the advertised router.
To help achieve this goal, a BGP router only advertises a route if
there is a corresponding entry in its forwarding table. However, this
check alone is insufficient to ensure validity, because many other
things can go wrong at each step of operation.

3.2.1 Incorrect origin AS (Step 1)
Misconfiguration can cause valid routes to be advertised from the

wrong origin AS, rendering the advertised routes invalid. For ex-
ample, in 1997, a misconfigured router in a small AS (“AS 7007”)
advertised itself as the origin AS for all destinations in the Internet,
causing traffic for all Internet destinations to be routed through that
AS [13].

The reason for the “AS 7007” problem was a router configura-
tion feature used to redistribute IGP-learned routes into BGP and
vice versa. The redistribution feature is used in networks where not
all routers inside an AS support BGP, where the network operator
has to rely on the IGP, rather than iBGP, to propagate eBGP-learned
routes inside the AS (Step 6). The problem is that an erroneous con-
figuration can cause all IGP routes to be redistributed into eBGP,
in which case the externally-learned routes would appear as if they
originated in the AS doing the IGP-to-eBGP redistribution. As the
“AS 7007” problem showed, the result of such a misconfiguration is
catastrophic. Static analysis can prevent this problem by analyzing
the configuration and ensuring that eBGP-learned routes that are
redistributed into the IGP are never redistributed back into eBGP.

3.2.2 Incorrect or missing filters (Steps 2 and 3)
A BGP router may export invalid routes for two reasons. The

first is when the router detects a path failure to some prefix, but
does not withdraw that prefix, preferring to maintain the aggregated
route to which that prefix belongs in each BGP session. The second
reason is due to errors in export filters (Step 2) and import filters
(Step 3), which cause problems even when no failures occur.

The Team Cymru “bogon” project [10] regularly updates a list
of prefixes from private, reserved, or unassigned IP addresses that
should be filtered. Static analysis can determine whether import
and export filters are up-to-date and being applied appropriately.
Although bogon lists defend reasonably well against potentially in-
correct routes, they present several problems. First, since new pre-
fix blocks are continually being allocated, filters must be updated
to ensure that an outdated bogon list does not filter routes for valid
prefixes. Second, while filtering bogon prefixes can be a useful san-
ity check, it is not a panacea; a network can always advertise pre-
fixes that have been legitimately allocated that it does not own, and
filters based on bogon lists will not defend against such mishaps.

In general, checking that route origination is valid requires infor-
mation about what prefixes that AS is authorized to originate. Ide-
ally, checks for the validity of route advertisements should be built
into the routing protocol itself. Although static analysis can pre-
vent a network operator from mistakenly leaking routes and ensure
that import and export filters are kept up-to-date, the inadequacy of
filters, the subtleties of route origination, and the fact that invalid
route origination is sometimes caused by malice all suggest that a
protocol modification [29, 42] is the best way to ensure the validity
of a route at Step 3.

3.2.3 Incorrect ASPATH attribute (Step 2)
BGP configuration allows a router to prepend an arbitrary AS

number to the AS path attribute of a route before readvertising that
route to other routers in Step 2. Network operators typically use

I1 I2 E1

The next-hop on routes readvertised from E1

must be reachable via this AS’s IGP.

Figure 1: Valid iBGP routes require next-hop reachability.

AS path prepending to make one AS path look longer than another
(if a path has more AS hops, other routers are less likely to choose
that route). If a router configuration prepends an AS that is not its
own, however, the AS path technically violates the validity prop-
erty. Static analysis can verify that a router is not prepending arbi-
trary AS numbers to an AS path by analyzing the router configura-
tion file and examining the AS numbers that the router prepends in
its export policies.

3.2.4 Incorrect next-hop attribute (Step 5)
BGP configuration can also violate validity if the router incor-

rectly modifies (or fails to modify) the route’s next-hop attribute
in Step 5. Each BGP route contains a next-hop attribute that tells
a router the IP address to forward packets to in order to use that
route. BGP allows routers to either readvertise routes with the
next-hop attribute unchanged or with the next-hop attribute as its
own address. Most commonly, an eBGP-speaking router will set
the next-hop to its “loopback address”4 to ensure that the next-hop
is reachable via the IGP, but there are good reasons not to do so [5].
If an eBGP-speaking router doesn’t set the next-hop to itself, the
next-hop from the neighboring AS’s end of the eBGP session must
be advertised via the IGP. For example, in Figure 1, when I2 read-
vertises to I1 routes that it learns from E1, it must set the next-
hop attribute for those routes to itself; if not, E1’s address must be
reachable via the IGP.

Static analysis can verify the reachability of iBGP-advertised
routes by determining how each router sets the next-hop attribute.
If the next-hop is not set for an eBGP-speaking router, static anal-
ysis can check the IGP configuration to ensure that the IGP adver-
tises a route for the next-hop associated with the opposite end of
the BGP session.

3.2.5 Intra-AS inconsistencies (Step 6)
Every iBGP-speaking router selects a best route to each global

destination. Each of these routes has a next-hop attribute; to use a
route, a router forwards packets to the next-hop along the shortest
IGP path. If iBGP-speaking routers along that IGP path have not
selected the same best route to the destination (i.e., they forward
packets for that destination to a different next-hop), then packets
will not follow their intended path, and forwarding loops can result.
Previous work has explored these possibilities [12] and derived suf-
ficient conditions for ensuring that these inconsistencies do not oc-
cur [16, 25]. Although we have not yet incorporated shortest IGP
path computations into our implementation of rcc, static analysis
of router configuration can derive the shortest IGP paths to each
IGP destination (i.e., anything that might be a BGP next-hop) and
check these sufficient conditions.

3.3 Visibility
Visibility is an important property because it ensures that the net-

work is not partitioned. Additionally, it ensures that each router can
select its preferred route from all available choices. Visibility can
be violated if routers fail to install valid routes or if an AS’s iBGP

4A router’s loopback address is the IP address for that router that can be
reached via any interface. It is an IP address on the router that is always up.
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topology is misconfigured. In this section, we discuss each of these
problems.

3.3.1 Failure to install valid routes (Step 3)
Visibility can fail if a router hears a valid route to a destination

but fails to install it. This event can occur as a result of a misconfig-
ured filter, but it can also result from other subtleties. If a network
has a router that does not participate in iBGP between two iBGP-
speaking peers, then that router must obtain global routes some
other way, such as from the IGP. To account for this, iBGP has an
option known as “synchronization”, which prevents the router from
installing a route into its BGP table if a route for that prefix does not
appear in the IGP. Some router vendors enable synchronization by
default, which will commonly prevent routes from being installed
into iBGP, since ASes almost never insert the global routing table
into the IGP. Seeing a router with synchronization enabled is cause
for suspicion.

3.3.2 iBGP signaling (Step 6)
At the intra-AS propagation step, routers inside an AS use iBGP

to disseminate externally-learned routes to other routers in the AS.
The traditional approach is to configure iBGP sessions between ev-
ery pair of BGP-speaking routers within the AS, obtaining a “full-
mesh” iBGP overlay topology. In this setup, each router selects
a best route from among its available choices and, if that route
was learned via eBGP, readvertises that route to every other BGP-
speaking router.

Unfortunately, a full-mesh topology does not scale well. A com-
monly used method to improve scalability is route reflection. A
subset of the routers are configured as route reflectors, with the con-
figuration specifying a set of other routers as route reflector clients.
A route reflector client may be served by multiple route reflectors
for redundancy, in which case redundant reflectors must share all
of their clients and belong to a single “cluster”. A route reflector
may itself be a client of another route reflector. Any router may
also have other iBGP sessions with other routers.

With route reflectors, route dissemination is slightly different
than the full-mesh case [2]. Each route reflector readvertises its
best route according to the following guidelines: (1) if the best
route was learned from an iBGP peer, the route is readvertised to
all route reflector clients; (2) if it was learned from a client or via
an eBGP session, the route is readvertised on all iBGP sessions.
Route reflector clients readvertise routes as usual: that is, they will
only readvertise their best route on an iBGP session if the route was
learned via eBGP. For non-client iBGP sessions, a router only read-
vertises eBGP-learned routes. It does not readvertise iBGP-learned
routes to any non-client router, because such routes should have al-
ready been learned from a direct session with the router that first
learned of the external route or from the appropriate route reflec-
tor(s).

Reflector-client relationships among routers in an AS define a di-
rected graph in which each router is a node and each client-reflector
session is represented with a directed edge. Each iBGP session that
is not a reflector-client session is represented with an undirected
edge. For various reasons, including to prevent routing information
loops, the subgraph of this graph induced by the directed edges
should by acyclic.

If misconfigured, even a connected directed acyclic graph of
iBGP sessions can lead to visibility violations. For example, in
Figure 2, routers Y and Z do not learn route r1 to destination d
(learned via eBGP by router W ), because X will not readvertise
routes learned from its iBGP session with W to other iBGP ses-

W

YX

Z

route r1 to d

route r2 to d

Route Reflector (RR)

Client
RR

Client

Figure 2: iBGP can have subtle visibility violations. If the iBGP ses-
sions are configured as above, route r2 will be distributed correctly to
all the routers in the AS, but r1 will not. Y and Z will not learn of r1,
leading to a network partition that won’t be resolved unless another
route to the destination appears from elsewhere in the AS.

sions. This is a visibility violation that we call an iBGP signaling
partition; a path exists, but neither Y nor Z has a route for it.

We aim to check the static iBGP configurations of the routers in
an AS to determine whether visibility violations are possible. More
specifically, we want to determine if there is any combination of
eBGP-learned routes such that at least one router in the AS will
not learn at least one route to the destination. The following result
provides the basis for a simple and efficient check.

THEOREM 3.1. Suppose the iBGP reflector-client relationship
graph contains no cycles. Then, the AS’s configuration satisfies
visibility if, and only if, the set of routers that are not route reflector
clients forms a full mesh.

PROOF. Call the set of routers that are not reflector clients the
“top-layer” of the iBGP graph. If the top-layer is not a full mesh,
then there are two routers X and Y with no iBGP session between
them, such that no route learned using eBGP at X will ever be
disseminated to Y . The reason is that no router re-advertises an
iBGP-learned route.

If the top layer is a full mesh, observe that if a route reflector
has a route to the destination, then all its clients are guaranteed to
have a route as well. This implies that as long as every router in
the top-layer has a route, all routers in the AS will have a route.
If any router in the top-layer learns a route through eBGP, then all
the top-layer routers will hear of the route (because the top-layer
is a full-mesh). Alternatively, if no router at the top-layer hears an
eBGP-learned route, but some other router in the AS does, then that
route propagates up a chain of route reflectors (each client sends it
to its reflector, and the reflector sends it on all its iBGP sessions) to
the top-layer, and from there to all the other top-layer routers and
to the other routers in the AS.

The visibility test is now straightforward and requires only the
router configurations:

1. Parse the router configurations to construct the iBGP graph
of reflector-client and non-client relationships.

2. Check if the directed graph is acyclic. If it is not, then flag a
cycle and report it as an anomaly. If it is acyclic, determine
the “top-layer” of nodes that are not route reflector clients.
There must be at least one such node.

3. Verify that the top-layer is a full-mesh. If not, report the
missing iBGP sessions.

In addition to the above iBGP graph checks, we need to perform
checks to confirm that the individual iBGP sessions are properly
configured so they can correctly exchange routes. Sometimes, one
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192.168.1.0/25
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Figure 3: Conditional BGP advertisements are an example of a positive
information flow control requirement. For example, an operator can
specify that if the iBGP session between X and Y fails, that X should
send announcements for more specific prefixes to its upstream.

router may be configured to have an iBGP session with another,
but the latter’s configuration does not have such a session. Alter-
natively, both routers may have iBGP sessions with each other, but
a mismatch in router options (e.g., if one end has the MD5 pass-
word option enabled, but the other does not) may prevent the ses-
sion from being established. This causes the iBGP session to be
incomplete. If two routers in the same AS have the same loop-
back address, visibility can be violated if one of those routers hears
a route from the other, and discards it, thinking it advertised the
route itself. Although these problems are seemingly “trivial”, we
have found them to be surprisingly common.

An iBGP session can also become incomplete if it is established
to an interface address of the router, rather than the loopback ad-
dress. If a router establishes an iBGP session with a router’s loop-
back address, then the iBGP session will remain active as long as
that router is reachable via any IGP path between the two routers.
If a router establishes an iBGP session with an interface address
of another router, however, the iBGP session will go down if that
interface fails, even if an IGP path exists between those routers. It
is straightforward to check router configurations to verify that all
these properties hold.

Although static analysis can ensure that iBGP configuration sat-
isfies various correctness constraints, we believe that the configu-
ration problems associated with iBGP mainly reflect the need for
a better intra-AS route propagation protocol. The job of iBGP is
fairly simple: consistent propagation of global routing information
within the AS. There is no reason why intra-AS routing must be-
have like eBGP at all, and, in fact, a redesigned protocol that en-
forces consistency and visibility would likely be less prone to mis-
configuration. We are exploring these possibilities as part of our
ongoing work.

Theorem 3.1 suggests that the “cluster” mechanism for route re-
flection adds an additional layer of complexity to iBGP (and, hence,
another potential source of misconfiguration) without necessarily
improving redundancy. Operators should achieve redundancy by
ensuring that the top-level of the route reflector hierarchy always
maintains a full mesh.

3.4 Information-flow Control
Information flow control checks whether a network is propagat-

ing routes as it should. This property is important because route
propagation determines traffic flow. If an AS is not being paid to
transit traffic between two of its peers, it should ensure that its route
advertisements do not cause it to do so. Similarly, if an AS pur-
chases an expensive backup link, its route advertisements should
ensure that this link is only preferred when the inexpensive primary
link has failed. Information flow control concerns three aspects of
route propagation:

1. Negative requirements. No route should be readvertised to
an AS where policy specifies that it should not be advertised. For
example, an operator may wish to implement a policy that prevents
the routes from one of its neighbors from reaching another. Net-
work operators commonly implement such policies to ensure they

A B

X Y

If AS 1 and AS 2 are peers, the AS
path length and MED on both of these
sessions should normally be identical.

AS 1

AS 2

Figure 4: Peering agreements usually require consistent export (same
AS path length and MED) across all peering points.

are not carrying traffic between two ASes with which they have a
peering relationship.

2. Positive requirements. A policy may specify that a route must
be readvertised to a certain AS or router. For example, an operator
might specify that, if one router does not learn a certain route on
one session, then it should advertise a more specific prefix on an-
other. An operator might use such a policy to implement backup,
as shown in Figure 3. Additionally, an AS may want to specify a
policy that all routes to a neighboring AS be exported with identical
route attributes.

3. Attribute manipulation requirements. Networks often allow
neighboring ASes to use community values to specify how certain
route attributes should be manipulated. For example, an AS might
indicate to its neighbor that a certain route is a backup route and
that it should therefore assign that route a lower local preference.

Information flow control requirements should be expressed in
terms of a policy model that can be verified against the configu-
ration. One possibility for expressing negative requirements in a
policy model, as suggested in previous work [16], is Denning’s lat-
tice model [11]. Although this model expresses negative require-
ments quite well, it does not suggest how to specify positive re-
quirements or attribute manipulation requirements. The best way
to express these requirements remains an open question, but it is
important: designing a concise way to express information flow
requirements is a necessary step for designing higher-level config-
uration languages.

Verifying information flow control is difficult because it requires
a policy model to verify against, which we don’t have today. The
best a configuration checking tool can do from the configurations
alone is to infer what the policy model should be or make reason-
able assumptions about standard practices. Ideally, a configuration
checker would check the low-level BGP configuration against some
high-level specification of operator intent, but even without this in-
formation, we can make some reasonable assumptions about infor-
mation flow policies, which we describe in the rest of this section.

3.4.1 Controlled export (Step 2)
An AS’s customers will sometimes advertise smaller prefixes to

its upstream AS to load balance its inbound traffic, but it will tag
those prefixes with an instruction to its upstream to not readvertise
these prefixes [7]. The export policies on an AS’s routers should al-
ways ensure that such a route is not readvertised to any neighbors.
Network operators also control the export of routes between their
peers and providers. Static analysis can check this property by ana-
lyzing the configuration files to verify that every eBGP session has
a filter that matches routes that have this instruction and prevents
them from being readvertised to other ASes.

3.4.2 Consistent export (Steps 2 and 5)
Barring unusual contractual arrangements, an AS should adver-

tise paths with equally good attributes to each peer at every peering
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Figure 5: Nondeterminism causes oscillation. Adapted from [16]. The
small numbers near router X indicate the router ID for each session.

Step Description
1 X learns routes (a, b) to d and prefers b (router ID).
2 X advertises b to Y .
3 Y learns routes (b, c) to d and prefers c (local preference).
4 Y advertises c to X.
5 X learns routes (a, b, c) to d and prefers a (MED, eBGP>iBGP).
6 X advertises a to Y (implicit withdrawal of b from Y ).
7 Y learns routes (a, c) to d and prefers a (local preference).
8 Y withdraws c from X. Return to Step 1.

Figure 6: Steps in the BGP oscillation from Figure 5.

point. That is, an AS should not make one of its peering points look
worse from the perspective of its peer. For example, in Figure 4,
if ASes 1 and 2 are peers, then the export policies of the routers
A and B should export routes to X and Y , respectively, that have
equal AS path length and MED values. If not, router X could be
forced to send traffic to AS 1 via router Y (“cold potato” routing),
which typically violates peering agreements.

Checking for consistent export with static analysis involves com-
paring export policies on every router that has an eBGP session
with a particular peer. In practice, this comparison is not straight-
forward because differences in policy definitions are difficult to de-
tect by visual inspection; we discuss this problem in more detail
in Section 4.2. Static analysis is particularly helpful because it can
perform efficient consistency comparisons of policies on many dif-
ferent routers, which is intractable when done manually.

3.4.3 Consistent import (Steps 3 and 5)
Similarly, an AS may wish to arrange its import policies so that

all routes received from a peer look equally good up to the IGP
tiebreak step, thus allowing it to use nearest exit (“hot potato”) rout-
ing with its peers. Of course, an AS cannot ensure that it receives
AS paths of equal length at all peering points with its peer, but it
can take precautions such as resetting the MED value on import and
ensuring that the local preference value is the same everywhere.
Static analysis can can also detect inconsistent import policies in
the same way that it detects inconsistent export policies.

Although static analysis can help ensure that BGP configuration
does not violate these types information flow control constraints,
static analysis of existing configuration languages is a band-aid
solution. First, information flow control requirements are cur-
rently specified by mechanism—for example, tagging routes with
communities to affect how an import or export policy modifies
route attributes and whether a route is filtered, specifying high-
level policies in terms of low-level regular expressions, etc. This
makes policy configuration unintuitive. Second, because checking
information-flow control requirements require a policy model, it
would make more sense for these types of requirements to be spec-
ified in terms of a high-level language.

3.5 Determinism
Determinism is an important property because a routing protocol

can experience persistent oscillation if it is violated; determinism
also makes BGP easier to model and debug.

3.5.1 Timing dependencies (Step 4)
If BGP-speaking routers select a best route to a destination from

a set of routes independently of the order in which the routes in
that set arrive, then protocol modeling and debugging becomes
easier. For example, network operators can correctly emulate the
BGP route selection process without having to simulate the order
in which messages are passed between routers in an AS [18]; this
makes common network tasks, such as offline optimization for traf-
fic engineering, more tenable.

Previous work has observed that enabling two simple configura-
tion options can achieve timing independence [17]. First, routers
should compare any route that arrives for a destination with all
available routes to a destination, rather than just the best route at
that time [9]. Second, the final tiebreaking step in route selection
should be based on the router ID value associated with each BGP
session, rather than on the route that was learned first. These two
configuration options ensure that the route that a router selects is in-
dependent of the arrival order of the routes in that set and does not
affect the best route selection [17]. Static analysis can easily ver-
ify that the appropriate configuration options are enabled on each
router by analyzing each router’s configuration independently.

3.5.2 No total ordering (Steps 4 and 6)
The MED attribute allows an AS that exports routes to its neigh-

bor to specify hints about the exit points it would prefer that neigh-
boring AS select (at Step 4). MED adds the following two features
to BGP; the first is fundamental, and the second is a positive side
effect:

• Exporting AS can control exit point from importing AS. MED
allows an AS to specify which exit a neighboring AS should
prefer when sending packets to it.

• Importing AS can respect MED hints from a neighboring AS
but still express next-hop preferences and use nearest avail-
able exit. The interaction between MED and the decision
process allows an AS to prefer one AS over another but
choose the nearest available exit if no route to the preferred
AS is available. For example, in Figure 5, AS 1 can prefer
routes via AS 3 unless there is a closer exit point via AS 2.

The interaction of MED with the decision process can cause per-
sistent oscillation, as shown in Figure 5. When routes only routes
a and b are advertised to router X, then X prefers route a (because
the routes are equally good up to the router ID tiebreak, but a has a
lower router ID). However, when X learns routes a, b, and c, then
it prefers route b. This oscillation occurs because BGP violates
set monotonicity: router X’s preference of b over a reverses in the
presence of c.

Static analysis is of no use in this case. Interactions between
steps of the decision process cause set monotonicity to be violated.
We should thus explore protocol and decision process modifica-
tions to BGP that satisfy determinism (i.e., avoid persistent route
oscillation) but still allow an exporting AS to provide hints about
exit points to an importing AS.

By definition, if each router has a ranking over the set of all pos-
sible routes, then set monotonicity is satisfied. Every router in an
AS could achieve a ranking over all received routes either by ignor-
ing MEDs, selecting a best route prior to the step in the decision
process that involves MED or by allowing MED to be compared
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Figure 7: High-level design of rcc.

across all available routes. Unfortunately, these policy restrictions
limit expressiveness: they do not allow a network operator to honor
a neighboring network’s request to perform cold potato routing.

One possibility is to modify the configuration language to re-
quire that each router express a fixed ranking over all eBGP ses-
sions. We conjecture that an intra-AS routing protocol that assigns
paths based on these rankings can prevent MED-induced routing
oscillation without significantly limiting the configuration’s expres-
siveness. We are exploring this possibility as part of our ongoing
work.

3.6 Safety
Safety was originally defined in previous work on the Stable

Paths Problem [24]; it is an important property because it con-
cerns BGP’s convergence to a stable routing. Most of the interest-
ing properties related to safety involve coordination of interdomain
policies: each AS must express preferences for paths such that, for
a given path assignment, no AS wants to change its path assignment
to another path that exists in that path assignment.

Griffin et al. showed that global static analysis of BGP configu-
ration can detect sufficient conditions for safety to be satisfied [27],
but these conditions can’t be verified in practice because an opera-
tor only has access to his own BGP configuration. Previous work
suggests that a suitable way to arrive at a BGP configuration that
satisfies safety is to restrict the policies that network operators can
express [23]. Gao et al. also recognize that as long as the inter-
AS topology satisfies certain global properties (e.g., no cyclic re-
lationships between providers and customers) and each AS assigns
preferences and export policies according to inter-AS relationships
(e.g., always prefer customer routes over peer and provider routes),
then BGP will converge to a globally stable solution [21]. This
analysis shows that BGP works well under certain conditions, but
(1) verifying that preconditions about the inter-AS topology re-
quires global knowledge about bilateral agreements between ASes,
(2) safety is not guaranteed if either these preconditions do not
hold, and (3) safety is not guaranteed if ASes violate recommended
export and preference policies (recent work has shown that ASes do
deviate from these recommended policies [46]).

Rather than restricting the expressiveness of policies, the inter-
domain routing protocol could be designed such that it is guaran-
teed to converge on fast timescales and allow more complicated
policy negotiation on slower timescales. We are currently investi-
gating this possibility.

4. rcc Architecture
In this section, we describe rcc, a tool that verifies BGP configu-

ration correctness using static analysis. We have made rcc available
to about 30 network operators. rcc parses a wide variety of config-
uration files—including Cisco, Juniper, Avici, Procket, Zebra, and
Quarry—and its extensible design makes adding new correctness
tests easy.

rcc comprises three modules: (1) a preprocessor, which converts
router configuration into a more parsable version (e.g., by expand-
ing macros); (2) a parser that generates a vendor-independent repre-
sentation of configuration state; and (3) a constraint checker, which
executes correctness checks against the abstract configuration for-

Table Description Summary and Columns
global router options router, various global options (e.g., router ID,

synchronization, etc.)
eBGP and iBGP sessions router, neighbor IP address, eBGP/iBGP,

pointers to import/export policy, session op-
tions (e.g., next-hop self), RR client?

import/export filters canonical representation of prefix/distribute
lists: IP range, mask range, permit or deny

import/export policies normalized policies: AS/community regexps,
localpref/MED, etc. settings, etc.

loopback address(es) router, loopback IP address(es)
configured interfaces router, interface IP address(es)

prefixes originated router, prefix/mask
static routes static routes for prefixes: router, prefix/mask

Derived or External Information
undefined references summary of route maps, community lists, etc.

that the parser could not resolve: router, name
and type of undefined reference

bogon prefixes bogon prefixes [10]

Table 4: Summary of intermediate configuration format, which we rep-
resent in terms of a set of relational database tables.

mat. We first describe how rcc parses router configuration files into
this intermediate format; then, we briefly explain how rcc verifies
correctness.

4.1 Intermediate Configuration Format
Because of the wide variety of router configuration languages,

rcc analyzes an abstract, vendor-independent representation of
BGP configuration. An intermediate representation separates veri-
fication from parsing; as new configuration languages surface and
syntax in existing configuration languages changes, the parser can
be modified independently of the part of the tool that performs ver-
ification. Additionally, an intermediate format allows for extensi-
bility; as configuration options proliferate, and as more correctness
tests are requested, we can easily adapt the intermediate format.

While all vendor configuration languages have similar charac-
teristics, they have slight differences in how they express certain
behaviors. For example, in Cisco IOS, the next-hop attribute is as-
signed as a session-level option, whereas in JunOS, the next-hop
is assigned in export policy. The intermediate configuration for-
mat must accurately represent configuration semantics in a vendor-
independent fashion, but it must also account for vendor-specific
subtleties.

In addition to facilitating verification, an intermediate format
helps us understand the aspects of configuration that affects BGP’s
behavior. The intermediate format is a concise representation of
configuration semantics that allows an operator to see the entire
configuration in an abstract form at a glance. Table 4 summarizes
this intermediate format.

4.2 Preprocessing and parsing
The first step in generating the intermediate configuration format

from vendor specific configuration files, preprocessing, (1) adds
scoping identifiers to configuration languages that do not have
explicit scoping (e.g., Cisco IOS) and (2) expands macros (e.g.,
Cisco’s “peer group” option) to regularize configuration syntax.

Parsing generates the intermediate configuration format from the
preprocessed configuration files. This process is fairly straightfor-
ward. Because each router has its own configuration, the parser
can process each configuration file independently. The global op-
tions, sessions, and prefixes tables are populated from state-
ments within the BGP configuration section of the configuration
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files. Other tables are generated by parsing the appropriate sections
of the configuration.

The most complicated part of parsing is generating the poli-
cies, filters, and sessions tables. Because we are interested in
comparing policies across routers, we must generate a normalized
policy specification that specifies a step-by-step description of ex-
actly what that policy does. This process generates a normalized
“pseudocode” representation of each policy so that policies can be
compared across routers. This process requires dereferencing ev-
ery variable that is specified in the policy (i.e., community-lists,
AS path lists, etc.). The parser inserts every variable that a policy
references that it cannot resolve into the undefined references
table and joins these normalized policies with the sessions ta-
ble; thus, in rcc’s intermediate configuration format, distinguishing
route maps that are the same or different across multiple routers be-
comes trivial.5 Filters are normalized in the same fashion.

4.3 Verification
Once the parser generates the intermediate configuration format,

rcc checks correctness constraints that test for specific configura-
tion properties. We implemented the checks that we discussed in
Section 3 as SQL queries. Some of the checks, such as those that
check whether the “deterministic MED” or “no synchronization”
options are enabled, are as simple as querying a single column from
the global options table. Others, such as checking properties of
the iBGP signaling graph, require running multiple queries against
the sessions table to determine whether the top level of the route
reflector hierarchy forms a clique. Certain queries involve compar-
ing the entries from two tables. For example, rcc checks whether
every route that is originated by BGP has a corresponding route;
this requires comparing entries in the networks table against those
from the routes table.

We have not yet implemented every correctness check from Sec-
tion 3; in particular, several of the checks for iBGP forwarding
correctness and determinism from previous work [1, 25] require
knowledge about shortest IGP paths through the network, which
rcc does not yet have (since it does not yet parse IGP configu-
ration). However, rcc’s extensible design facilitates adding these
checks in the future.

5. Analyzing BGP Configuration in Practice
We now describe our experience using rcc to test real-world

BGP configurations. After describing our experiences obtain-
ing configurations, we summarize the errors and anomalies that
rcc found in BGP configurations of real-world networks.

5.1 Obtaining Real-world Configuration
We aim to study real-world BGP configuration to better under-

stand (1) how BGP is commonly configured today and (2) what
types of configuration problems commonly occur in practice. Un-
fortunately, most network operators are not eager to share BGP
configuration files. Router configuration files have proprietary in-
formation, such as details about relationships with neighboring
ASes (implicit in how the neighbors’ routes are preferred, filtered,
etc.). Additionally, many ISPs may not like researchers pointing
out that their networks have mistakes. Finally, network operators
are continually busy tackling immediate problems, and crises seem
to be non-stop (at a recent routing workshop, a network operator

5Recognizing policies that are similar or different simply by “eyeballing”
multiple router configurations is not easy. Policies that have the same name
on two different routers may do entirely different things, and vice versa. We
have observed many instances of this type of obfuscation in practice.

Problem Property (Section) Fix Errors Anom.
First-class Errors: Serious

eBGP session w/no filters Validity (3.2.2) P 21 0
session w/undefined filters Validity (3.2.2) P 26 0

missing prefix in filters Validity (3.2.2) P 143 0
non-RR iBGP partition Visibility (3.3.2) P 2 0
route reflector partition Visibility (3.3.2) P 3 0

RR cluster partition Visibility (3.3.2) P 2 0
duplicate loopbacks Visibility (3.3.2) L 3 1
unintentional transit Info. Flow (3.4.1) L,P 3 3

Second-class Errors: Annoyances
inconsistent export to peer Info. Flow (3.4.2) L,P 3 3

router w/o determ. med Deteterm. (3.5.1) D 31 0
nondeterministic tiebreak Deteterm. (3.5.1) D 63 0
router w/synchronization Visibility (3.3.1) P 3 0

Third-class Errors: Cleanup
session w/undefined policy — L 2 0

policy w/undefined AS path — L 6 0
policy w/undef. community — L 12 0

policy w/undefined ACL — L 12 0
incomplete iBGP sessions Visibility (3.3.2) P 76 0

prefix adv. w/o route Visibility (3.3.1) L 324 2
Curiosities
session w/foreign AS prepend Validity (3.2.3) L,P 0 1

session w/o next-hop reach. Validity (3.2.4) P 0 2
cold potato import policy Info. Flow (3.4.3) L,P 0 23

Table 5: Configuration errors and anomalies in practice. (Recom-
mended fixes are P: Protocol; L: Language; D: Decision process)

suddenly left the room mid-session to fix his network configura-
tion). Despite previous efforts [15, 43], the research community
has not been particularly successful at gaining access to real-world
configurations.

Despite these challenges, we were able to run rcc on the con-
figurations of about 700 routers in 9 ASes, including BGP con-
figurations from every router in 5 ASes. The size of these net-
works ranged from 2 routers to several hundred routers. We made
rcc available to operators, hoping that they would run it on their
configurations and report results; in response, some operators ran
rcc on their configurations and reported the results, but most sent
us their router configurations and had us run rcc for them. We
did not have the complete BGP configuration for 4 of the 9 ASes
we tested; for these, we performed single-router correctness checks
(e.g., filter configuration).

Because many operators are adamant that their router configu-
rations be kept private (i.e., both the fact that their router configu-
rations might have mistakes and the proprietary nature of network
operations in general), we cannot report separate statistics for each
network that we tested. Nevertheless, every network we tested had
BGP configuration errors or anomalies. When we discovered con-
figuration errors in a network and subsequently raised them to an
operator’s attention, the operator was usually unaware (though of-
ten not surprised) that the errors existed. This confirms our hypoth-
esis that many BGP configuration errors that occur in practice and
affect correctness may not be apparent at configuration time.

5.2 Real-world BGP Configuration Analysis
Table 5 summarizes the errors and anomalies we discovered us-

ing rcc. We classified any aspect of configuration that turned out to
be a mistake as an error, and anything that rcc incorrectly flagged
as an error as an anomaly (i.e., an operator told us that the “error”
was in fact a special case). Figure 8 shows that most of these errors
appeared in the configurations of more than one AS.

The results have several characteristics worth noting. First, er-
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Figure 8: Number of ASes in which each type of error or anomaly
occurred at least once. Unless noted in parentheses, each test was run
on all 9 ASes.

rors have various dimensions. For example, one iBGP partition
indicates that we found one case where a network was partitioned,
but one instance of unintentional transit means that rcc found two
sessions that appeared to be transiting traffic in violation of high-
level policy. Thus, the absolute number of errors is not as important
as noting that many of the errors, especially the more serious ones,
occurred at least once (and, as shown in Figure 8, in more than one
AS). Second, the errors vary in seriousness; one iBGP signaling
partition is more serious than a handful of incomplete iBGP ses-
sions that don’t create any partitions. In this section, we classify
errors according to three levels of seriousness.

Because we used rcc to test configurations that were already de-
ployed in live networks, we did not expect rcc to find many of the
types of transient misconfigurations that Mahajan et al. found in
their study [31] (i.e., those that quickly become apparent to opera-
tors when the configuration is deployed). We believe that, in reality,
operators could apply rcc to router configurations before deploying
router configurations, and, thus use static analysis to discover these
types of errors as well.

The rest of this section describes these errors in more detail. We
also shed light on why we think these errors are occurring and rec-
ommend possible changes to the protocol and configuration lan-
guages to reduce the likelihood of these errors.

5.2.1 First-class errors: Serious errors
1. Non-existent or inadequate filtering. As we described in

Section 3.2.2, correct filtering practices do not guarantee validity,
but they certainly prevent obviously invalid routes from propagat-
ing. Missing or incorrect import filters can result in invalid routes
being propagated within an AS and advertised to other ASes. Fil-
tering can go wrong in several ways: (1) no filters are used whatso-
ever, (2) a filter is specified in a session, but not defined, or (3) fil-
ters are defined but are out-of-date (i.e., they are not current with
respect to the list of “bogon” prefixes [10]). Table 5 shows that
these types of errors were common. No AS we analyzed had com-
pletely correct filter configuration, and many of the smaller ASes
we analyzed either had minimal filtering or none at all.

It is reasonable to wonder why ASes are so delinquent with re-
spect to filtering. One operator told us that he would certainly ap-
ply more rigorous filters if he knew a good way of doing so. An-
other ISP runs sanity checks on its filters but was surprised to find

that many sessions were referring to undefined filters. The problem
with filtering seems to be associated with the lack of a systematic
process for installing and updating filters. Because there is a set
of prefixes that every AS should always filter, filter configuration
should probably be automated and driven from a common registry.
Another possibility is to build validity checks into BGP itself [29,
42].

2. iBGP signaling partitions. Every network configuration we
checked with rcc that used route reflection had at least one signal-
ing partition. These signaling partitions appeared in one of four
ways: (1) the top-layer of iBGP routers was not a full mesh; (2) if
route-reflectors were used, the top-layer of the route reflector hi-
erarchy was not a full mesh; (3) a route reflector cluster had two
or more route reflectors, but at least one client in the cluster did
not have an iBGP session with every route reflector in the cluster;
(4) two routers were assigned identical loopback addresses. To-
gether, these accounted for 10 iBGP signaling partitions in 4 dis-
tinct ASes. While the most interesting partitions involved route
reflection, we were surprised to find that even small networks had
iBGP signaling partitions. In one network of only three routers,
rcc discovered that the operator had failed to configure a full mesh;
he told us that he had been experimenting and had inadvertently
removed an iBGP session.

iBGP’s goal is simple (i.e., scalable, consistent route propagation
within an AS), but its mechanisms are so complex and obscure that
making mistakes is easy. Additionally, researchers are still discov-
ering subtleties that fundamentally affect correctness (such as those
from Section 3.3.2). A replacement for iBGP would eliminate most
of these problems.

3. Unintentional transit. rcc discovered three instances where
routes learned from one peer or provider could be readvertised to
another; typically, these errors occurred because an export policy
for a session was intended to filter routes that had a certain com-
munity value, but the export policy instead referenced an undefined
community.

These errors seem to occur because today’s BGP configuration
language provides no way to specify simple policies. Operators
make subtle errors because they are forced to specify these policies
in terms of complex mechanisms. Interdomain routing would ben-
efit greatly from a language that allowed operators to easily express
simple policies would reduce the likelihood of these types of errors.

5.2.2 Second-class errors: Annoyances
1. Inconsistent export to peer. We found three cases where

an AS was potentially violating peering agreements by advertising
routes that were not “equally good” at every peering point. When
rcc detected inconsistent export policies to a certain peer, we would
refer back to the configurations to further analyze the inconsisten-
cies. In many cases, the inconsistency appeared to be accidental;
for example, one inconsistency existed because of an undefined AS
path regular expression referenced in the export policy.

Sometimes, the inconsistency between two policies was not im-
mediately apparent to us, even after rcc had pointed out the exis-
tence of an inconsistency: the two sessions used policies with the
same name, and the definition of the policies would also look the
same. The difference resulted from the fact that the difference in
policies was three levels of indirection deep. For example, one in-
consistency occurred because of a difference in the definition for
an AS path regular expression that the export policy referenced
(which, in turn, was referenced by the session parameters). A high-
level policy specification could also help in this respect.

2. Nondeterminism. rcc discovered 34 routers that were con-
figured such that the arrival order of routes affected the outcome
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of the route selection process (i.e.these routers had either one or
both of the two configuration settings that cause nondeterminism).
Although there are occasionally reasonably good reasons for in-
troducing ordering dependencies (e.g., preferring the “most stable”
route; that is, the one that was advertised first), operators did not of-
fer good reasons for why these options were disabled. In response
to our pointing out this error, one operator told us,“That’s a good
point, but my network isn’t big enough that I’ve had to worry about
that yet.” Many operators either are unaware of or indifferent to the
benefits of determinism. Still, as nobody offered good reasons for
having non-deterministic features enabled, they should probably be
disabled by default.

3. Synchronization. Because most ASes only have routers that
participate in iBGP, the configuration option that requires iBGP to
be “synchronized” with the IGP (Section 3.3.1) is usually disabled.
We discovered three routers that enabled synchronization; we were
unable to contact the operator to find out why (a vendor provided us
with anonymized configurations of one if its customers), but they
appeared to be mistakes. The vendor speculated that their auto-
matic configuration tool may at one time have been configured to
enable synchronization by default.

5.2.3 Third-class errors: Cleanup issues
1. Undefined references. Several networks, including some

large networks, had router configurations with basic parse errors,
such as policies that referenced undefined variables and BGP ses-
sions that referenced undefined filters. These types of errors can
sometimes result in unintentional transit or inconsistent export to
peers, as described above, but we also found many undefined ref-
erences that, while not fundamentally affecting correctness, were
likely not achieving the desired effect (e.g., load balance, etc.).
These problems mostly seem to surface in configurations where
operators said they were frequently changing settings. Operators
should take care to fix these parse errors (rcc is helpful for doing
so), but BGP implementations should ideally check for undefined
references at configuration time.

2. Incomplete iBGP sessions. When analyzing BGP configura-
tions for complete ASes, rcc discovered hundreds of “half” iBGP
sessions (i.e., a configuration statement on one router indicated the
presence of an iBGP session to another router, but the other router
did not have an iBGP session in the reverse direction). In some
cases, iBGP sessions (or parts of iBGP sessions) were “shutdown”
but remained in the router configuration files. rcc can help opera-
tors clean configuration files by highlighting these types of incon-
sistencies (which often result from obsolescence).

3. Attempt to advertise prefixes with no route. rcc detected
hundreds of instances where a router would attempt to originate
a prefix via eBGP but would have no route to that prefix. Because
BGP will not advertise any prefix for which it does not have a route,
the configuration lines that advertised these prefixes have no effect
and should be removed.

5.2.4 Anomalies and Curiosities
Because the ways that operators can configure BGP are so di-

verse, rcc sometimes incorrectly flagged errors that were in fact
configuration “tricks”. The fact that rcc discovers configuration as-
pects that violated our correctness rules but were nonetheless “cor-
rect” underscores the difficulty in defining correctness for BGP. We
now survey some of the more interesting anomalies that rcc discov-
ered.

Special AS relationships. When checking whether an AS was
providing unintentional transit, rcc discovered one AS that ap-
peared to readvertise certain prefixes from one peer to another.

Upon further investigation, we learned that the AS that was car-
rying traffic between these peers was a previous owner of one of
the peers. When we notified the operator that his AS was provid-
ing transit between these two peers, he told us, “Historically, we
had a relationship between them. I don’t know the status of that
relationship is these days. Perhaps it is still active—at least in the
configs!”

Creative AS path prepending practices. An AS will often
prepend its own AS number to the AS path on certain outbound
advertisements to affect inbound traffic. However, we found one
AS that prepended a neighbor’s AS on inbound advertisements in
an apparent attempt to influence outbound traffic. One network op-
erator also mentioned that ASes sometimes prepend the AS number
of a network that they want to prevent from seeing a certain route
(i.e., by making that AS discard the route due to loop detection), ef-
fectively “poisoning” the route. We did not witness this poisoning
in any of the configurations we analyzed.

iBGP sessions with next-hop self. We found two types of
iBGP sessions that violate common rules for setting the next-hop
attribute. First, we saw routers with route-reflector sessions that
appeared to be resetting the next-hop attribute. In fact, some ven-
dors disable the ability to reset the next-hop attribute on sessions
to route reflector clients (i.e., configuring the router to reset the
next-hop attribute has no effect). The configuration specified that
the next-hop attribute be reset because it made iBGP configuration
more uniform. We also noticed that routers reset the next-hop at-
tribute on iBGP sessions to route servers, which allows an operator
to determine which router advertised a route to the route server.

Cold-potato routing. Previous work used traceroutes to observe
that ASes often implement policies that cause traffic to exit their
network at a point other than the nearest exit [41]. rcc found more
than 20 instances where an AS’s policies import policies explic-
itly implemented cold potato routing, which supports this previous
observation.

5.2.5 Effects of Network Size
To explore how complexity affects the prevalence of errors in

router configuration, we examined whether the configuration er-
rors in a network are relatively more prevalent in larger networks.
One might expect that ASes with larger configuration files, more
routers, or more sessions might have proportionally more errors.
We did not observe any significant correlation between network
complexity and prevalence of errors, but configurations from more
ASes are needed to draw any strong conclusions.

6. Related Work
We discuss previous work in three related areas: analysis of BGP

behavior, verification of network protocols, and improving router
configuration.

6.1 Analysis of BGP Behavior
Previous work introduced the notion of eBGP convergence and

stated sufficient conditions for convergence [24, 27, 44]. Gao and
Rexford also state sufficient conditions for eBGP convergence that
can be checked locally and observe that typical policy configura-
tions satisfy these conditions [19].

More recent efforts have addressed iBGP correctness. Griffin
et al. examine two aspects of iBGP correctness: non-convergence
(the iBGP analog to the eBGP problem) and “deflections”, whereby
packets do not follow their intended path [25]. This work astutely
observes that the conditions for convergence under iBGP with route
reflection are analogous to those specified by Gao and Rexford for
eBGP.

12



Convergence is an important aspect of correctness, but it is by
no means the only aspect. In this paper, we examine other aspects
of correctness as well, with the goal of verifying real-world BGP
configuration. In the process, we derive several complementary
theoretical results.

Labovitz observed that BGP can take as long as 15 minutes to
converge [30], and Mao discovered that “damping” routes that os-
cillate can delay convergence further [32]. Other work has simu-
lated the effects of BGP’s timer settings on convergence time [26].
This work focuses on whether BGP will operate correctly at all,
regardless of timing and faults.

6.2 Protocol Verification
Model checking has been reasonably successful in verifying the

correctness of programs [22] and other network protocols [4, 28,
34]. Previous work explains the difficulties of applying a model
checking approach to BGP [14]. In short, model checking is
not appropriate for verifying BGP configuration because its effec-
tiveness heavily depends on exhausting the state-space within an
appropriately-defined environment [33]. A fundamental problem
with model checking BGP is that policy hides states: the behavior
of an AS’s BGP configuration depends on routes that arrive from
other ASes, some of which, such as backup paths, cannot be known
in advance.

Recent work proposes the “routing logic” [16], which makes
verifying the correctness of a routing protocol more tractable and
suggests that the logic could be useful for designing correctness
checks, new configuration languages, and protocol modifications.

6.3 Improving Router Configuration
Mahajan et al. suggest that high-level languages and configura-

tion checking could avert many instances of BGP misconfigura-
tion [31]. In this work, we explore the types of BGP configura-
tion errors that can be averted with configuration checking, and we
devise a systematic framework that helps us outline which BGP
configuration problems should be fixed by configuration language
redesign versus protocol redesign.

Several products and research projects focus on configuration
management. Commercial tools, such as IPAT [45] and NetDoc-
tor [37], analyze and summarize network configuration, and high-
light rudimentary configuration errors. AT&T is developing a con-
figuration management tool with similar functionality; their project
focuses on moving towards automating network configuration for
enterprise networks [6]. These projects analyze the configuration
of all network protocols, not just BGP, but typically only search
for syntactic configuration errors (e.g., a reference to an undefined
route map, etc.), without a higher level correctness framework. Our
work is the first to apply a high-level model for routing protocol
correctness to configuration checking.

Many network operators use configuration management tools
such as “rancid” [38], which periodically archive router config-
uration and allow operators to track changes to router configura-
tion. When a network catastrophe coincides with the configuration
change that caused it, these tools can help operators revert to an
older configuration. Unfortunately, a configuration change may in-
duce an error that does not immediately appear, and these tools do
not tell operators whether the network configuration is correct in
the first place.

7. Conclusion
BGP’s correct operation requires that the protocol be correctly

configured; despite the fact that BGP4 is almost 10 years old, our
understanding of what it means for BGP to behave “correctly” has
been minimal, and operators are continually making the same con-
figuration mistakes. To improve the state of the art in router config-
uration, this paper offers several contributions. First, we present a
framework for verifying BGP’s correctness. Second, we apply this
framework to the design and implementation of rcc, a tool that uses
static analysis to verify BGP configuration correctness. Our tool
has helped operators debug real-world BGP configuration. Third,
we present our findings on BGP configuration errors and anomalies
from static analysis of real-world BGP configurations. This paper
is the first to explore BGP configuration errors using analysis of
real-world BGP configuration files. Finally, we suggest concrete
ways to improve BGP’s correctness, distinguishing problems that
should be fixed with protocol modifications from those that should
be fixed with a better configuration language.
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