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ABSTRACT
In order to deliver the promise of Moore’s Law to the end
user, compilers must make decisions that are intimately tied
to a specific target architecture. As engineers add archi-
tectural features to increase performance, systems become
harder to model, and thus, it becomes harder for a compiler
to make effective decisions.

Machine-learning techniques may be able to help compiler
writers model modern architectures. Because learning tech-
niques can effectively make sense of high dimensional spaces,
they can be a valuable tool for clarifying and discerning
complex decision boundaries. In our work we focus on loop
unrolling, a well-known optimization for exposing instruc-
tion level parallelism. Using the Open Research Compiler
as a testbed, we demonstrate how one can use supervised
learning techniques to model the appropriateness of loop
unrolling.

We use more than 1,100 loops — drawn from 46 bench-
marks — to train a simple learning algorithm to recognize
when loop unrolling is advantageous. The resulting clas-
sifier can predict with 88% accuracy whether a novel loop
(i.e., one that was not in the training set) benefits from
loop unrolling. Furthermore, we can predict the optimal or
nearly optimal unroll factor 74% of the time. We evaluate
the ramifications of these prediction accuracies using the
Open Research Compiler (ORC) and the Itanium r© 2 ar-
chitecture. The learned classifier yields a 6% speedup (over
ORC’s unrolling heuristic) for SPEC benchmarks, and a 7%
speedup on the remainder of our benchmarks. Because the
learning techniques we employ run very quickly, we were
able to exhaustively determine the four most salient loop
characteristics for determining when unrolling is beneficial.

1. INTRODUCTION
It is difficult to model modern computer architectures.

Even earnest attempts to create accurate system-level mod-
els can yield poor results. There is a good reason for this:
the components in modern architectures are inextricably
tied together. Modern compilers are also extremely compli-
cated tools. Compiler writers have broken the difficult prob-
lem of compilation into manageable phases that are solved
in isolation. Due to the nature of the problem, it is not
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possible for a compiler writer to account for the interactions
between compiler phases.

In addition, there are intricate interactions between the
compiler and the underlying architecture. For instance, the
configuration of the memory system affects the efficacy of
the instruction scheduler, and vice versa, the instruction
scheduler affects the performance of the memory system.

Compiler writers rely on simple localized models to ab-
stract away system complexities. For example, register al-
locators are often written to ignore important interactions
with the instruction scheduler and instead base decisions
solely on simple models of the memory system. Without a
reliable model upon which to base decisions, compiler writ-
ers necessarily resort to trial-and-error heuristic tweaking to
achieve a suitable performance.

The goal of this research is to show that machine-learning
techniques can be used to improve compiler heuristics. We
train a compiler (with empirical data) to recognize when
it is worthwhile to perform a particular optimization. In
essence, we train the compiler to perform better. Learning
techniques can find sense even in high-dimensional search
spaces, and thus they can be effectively applied to compiler
optimizations where the resulting performance is a function
of several variables.

We apply a simple machine-learning technique to the prob-
lem of loop unrolling. We first try to determine when loop
unrolling is beneficial. We show that nearest neighbor classi-
fication, a simple and widely used learning technique works
remarkably well. A nearest neighbor classifier can predict
with 88% accuracy when a loop should be unrolled.

We then extend this result by showing that we can train
a nearest neighbor classifier to predict not only when a loop
should be unrolled, but the factor by which it should be un-
rolled. When we consider all unroll factors through eight,
we can predict the optimal unroll factor 60% of the time,
and the optimal or nearly optimal factor 74% of the time.
We evaluate the implications of improved unrolling decisions
using the Open Research Compiler and an Itanium r© 2 ar-
chitecture. With this infrastructure, the nearest neighbor
algorithm achieves a 6% speedup (over ORC’s heuristic) for
the SPEC benchmarks and a 7% speedup on an assortment
of synthetic benchmarks and kernels.

While we are pleased with the performance results of our
research, we are more excited about the prospects of using
our work to reduce the complexity of compiler development;
we show that it is possible to offload much compiler design to
machine-learning algorithms. Apart from creating a train-



ing data set by which an offline (i.e., performed at compiler
development time) learning algorithm can be trained, our
technique requires very little tweaking on the part of the
compiler writer. Furthermore, engineers can use learning
techniques, as we do in this paper, to identify the most per-
tinent characteristics of a system. In this capacity machine
learning could prove to be an invaluable tool for systems
engineers who are struggling to keep pace with complexity
increases.

The paper is organized as follows. The next section briefly
states the contributions of this research. Section 3 describes
the advantages and disadvantages of loop unrolling; it lists
some important factors that one should consider when trying
to determine whether unrolling a given loop will be desir-
able. Section 4 discusses our approach and our infrastruc-
ture. Section 5 describes the nearest neighbors technique,
while Section 6 applies nearest neighbors to binary loop clas-
sification. Section 7 describes experiments with multi-class
classification. Section 8 relates our work to previous work,
and we conclude in Section 9.

2. CONTRIBUTIONS
The novel aspects of our research are summarized here

(please see Section 8 for a detailed comparison of our re-
search and related work):

• To the best of our knowledge, we are the first to use
multi-class classification to improve compiler decisions.
Many compiler decisions involve choosing between one
of many options, not just making a binary choice.
While other compiler researchers have employed learn-
ing techniques for binary problems, none have tried to
solve harder multi-class problems.

• We are the first to show that nearest neighbor clas-
sification is a viable method for improving compiler
decisions.

• We show that the nearest neighbor approach can iso-
late the four most important factors for predicting
when unrolling is appropriate, and more generally, for
predicting the best unroll factor.

• We show that learning techniques can improve the per-
formance of a well-respected compiler targeting a mod-
ern architecture.

We have also publicly released the instrumentation library
that we wrote and the raw loop data that we collected so
other researchers can easily apply their own learning tech-
niques

3. LOOP UNROLLING
Loop unrolling is a well known transformation in which

the loop body is replicated a number of times. Since the
backward branch is needed only after executing the entire
unrolled body, loop unrolling reduces overhead by decreas-
ing the number of branch operations. This can be particu-
larly important for architectures that have high branching
overhead. However, loop unrolling is primarily used to en-
able other optimizations, many of which target the memory
system. For example, unrolling creates multiple static mem-
ory instructions corresponding to dynamic executions of a
single operation. After unrolling, these instructions can be

rescheduled to exploit memory locality. If the loop accesses
the same memory locations on consecutive iterations, many
of these references can be eliminated altogether with scalar
replacement. Another method to reduce memory traffic uti-
lizes a wide memory bus to transfer multiple words with a
single load or store operation. Unrolling is key to expos-
ing adjacent memory references [5, 7] so that they can be
merged into a single wide reference.

Arguably, the most important aspect of loop unrolling is
its ability to expose instruction level parallelism (ILP) to the
compiler. After unrolling, the compiler can reschedule the
operations in the unrolled body to achieve overlap among
iterations. Such a scheme was first used in the Bulldog
compiler [6] and is still important in compiling for machines
that support a high degree of ILP. Typically, unrolling is
combined with other transformations that increase the size
of the scheduling window. Examples include trace schedul-
ing [6] and hyperblock formation [8]. These techniques are
particularly useful in scheduling for loops that contain con-
trol flow or function calls because of the difficulty these prob-
lems present to software pipelining.

Superficially, loop unrolling appears to be an optimization
that is always beneficial. However, loop unrolling can impair
performance in many cases. The following non-exhaustive
list considers some possible drawbacks to loop unrolling:

• The most acknowledged detriment of unrolling is that
code expansion can degrade the performance of the
instruction cache.

• Added scheduling freedom can result in an increase
in the live ranges of variables, resulting in additional
register pressure. Since memory spills and reloads are
typically long latency operations, this can negate the
benefits of unrolling.

• Control flow also complicates unrolling decisions. If
the compiler cannot determine that a loop may take
an exit early, it will actually have to add control flow
to the unrolled loop that may negate— or at the very
least neutralize— the benefits of unrolling.

• Some compilers aggressively speculate on memory ac-
cesses. Execution time will increase if the scheduler
chooses to speculatively hoist unrolled memory accesses
that dynamically conflict.

Compilers are complex tools. It is nearly impossible to
know what choices to make based on simple models and as-
sumptions. The scheduler, the register allocator, and the
underlying architecture interact in mysterious ways. The
only way to truly know what will work is to empirically
evaluate decisions. It is the goal of this research to use em-
pirical observations to train to a compiler to make informed
decisions.

4. METHODOLOGY
AND INFRASTRUCTURE

This section briefly introduces supervised classification in
terms of loop unrolling. A discussion of the infrastructure
that we use to perform the experiments in this paper follows.



Feature

The language (C or Fortran).
The tripcount of the loop (-1 if unknown).
The estimated frequency of execution of the loop.
The loop nest level.
The maximum dependence height of the loop.
The average dependence height.
Number of operations.
The maximum height of memory dependencies.
The maximum height of control dependencies.
The number of parallel “computations” in loop.
The number of indirect memory references.
The number of induction variables.
Minimum num. iterations between memory loop-carried deps.
Minimum num. iterations between scalar loop-carried deps.
Number of calls.*
Number of floating point operations.*
Number of branches.*
Number of memory operations.*
Number of floating point memory operations.*
Number of distinct predicates used.
Number of hazards.*
Number of operands.*
Number of control speculation instructions.*
Number of data speculation instructions.*
Estimated cycles of critical path.*
Number of live ranges into the loop.*
Number of live ranges out of the loop.*
Number of uses in the loop.*
Number of defs in the loop.*
Number of definitions that reach the loop entrance.*
Number of definitions that reach the loop exit.*

Table 1: A subset of features used for loop classifica-

tion. These characteristics are used to train the nearest

neighbors classifier. The features that are marked with

an asterisk are normalized by the number of operations

in the loop.

4.1 Our Approach: Supervised Learning
The experiments conducted in this paper use an offline

learning technique known as supervised learning. Though
the learning algorithm is trained offline, the learned classi-
fier can easily be incorporated into a compiler. Supervised
learning is performed on a set of training examples. Each
training example 〈xi, yi〉 is composed of a feature vector xi

and a corresponding label yi.
The feature vector contains measurable characteristics of

the object under consideration. In our experiments, the
feature vector contains loop characteristics such as the trip
count of the loop, the number of operations in the loop body,
the programming language the loop is written in, etc. We
extract a feature vector for every unrollable loop in our suite
of benchmarks. Table 1 shows a subset of the features that
we extracted for the experiments in this paper. In total, we
use 38 features in these experiments, but as we show later,
using many fewer features works nearly as well.

In addition to the feature vector, we also extract a train-
ing label for each unrollable loop in our benchmark suite.
The training label indicates which (mutually exclusive) op-
timization is the best for each training example. For the
experiments presented in this paper, labeling the data is
relatively straightforward; we measure each loop using eight
different unroll factors (1, 2, . . . , 8). The label for the loop
is the unroll factor that yields the best performance.

To reiterate, for each loop — alternatively referred to as
a training example — we have a vector of characteristics
that describes the loop, and a label that indicates what the
empirically found best action for the loop is. The task of

a classifier is to learn how best to map loop characteristics
(xi) to the observed labels (yi) using all the examples in the
training set.

Training a classifier usually involves finding a mapping
from feature vectors to output labels so that the overall
classification error is minimized on the training examples.
The hope is that an adequately trained classifier will also be
able to accurately discriminate novel examples (examples
that were not in the training set).

4.2 Computing the Accuracy
The accuracy numbers presented in this paper are com-

puted using a methodology known as leave-one-out cross-
validation (LOOCV). The approach allows machine learning
researchers to estimate the generalization ability of a learn-
ing algorithm (i.e., how well new examples can be classified).

LOOCV is an iterative process that iterates N times,
where N is the size of the training data set. On each it-
eration i, the algorithm removes the ith example from the
training set, trains the classifier using the remaining N − 1
examples, and then sees how well the resulting classifier cat-
egorizes the left-out example. The generalization accuracy
is then the number of correctly classified left-out examples
divided by the total size of the training set.

There are other methods available for estimating a classi-
fier’s accuracy, but LOOCV is particularly appealing when
the size of the training set is small — which ours is — be-
cause the learning algorithm can be trained using nearly all
the examples in the dataset.

Section 5 describes the learning technique that we use to
perform the experiments in this paper. The remainder of
this section discusses our infrastructure and how we collect
training labels.

4.3 Compiler and Platform
We used the Open Research Compiler (ORC v2.1) [10]—

an open source research compiler that targets Itanium archi-
tectures— to evaluate the benefits of applying learning to
loop unrolling. ORC is a well-engineered compiler whose
performance rivals commercial compilers. The experiments
in this paper target a 1.3 GHz Itanium 2 server running
Red Hat Linux Advanced Server 2.1. We use -O3 optimiza-
tions for all experiments in the paper. We disable software
pipelining to focus on the loop unrolling heuristic, and we
set the maximum unroll factor to eight.

4.4 Loop Instrumentation
Because this paper is concerned with loop optimizations,

we instrumented ORC to measure the runtime of all inner-
most loops. The instrumented code assigns a counter to
every loop in the program. Immediately before execution
reaches an innermost loop, the instrumentation code cap-
tures the processor’s cycle counter and places it in the loop’s
associated counter. When the loop exits, the cycle counter
is again captured and the total running time of the loop is
computed.

We invested a great deal of engineering effort minimizing
the impact that the instrumentation code has on the exe-
cution of the program. We initially inserted procedure calls
to an instrumentation library that started and stopped the
loop timers. This methodology proved to be extremely in-
trusive since the caller-saved register allocator spilled many
variables on each call to the instrumentation library.



Our current loop instrumentor inserts assembly instruc-
tions that start and stop the loop timers. This lightweight
model allows the instruction scheduler to bundle instrumen-
tation code with a loop’s prolog and epilog code. Further-
more, the instrumentor does not significantly impact register
usage.

At all exit points in the program a call is made to our in-
strumentation library’s finalize procedure. This procedure
prints the cumulative running time of each loop in the pro-
gram. This data is used to train the offline learning algo-
rithms we use; the learning algorithm needs to know which
loop optimization strategy was most beneficial for each loop,
and thus these cycle counts form the basis of our labeled
training data set.

We realize that we cannot possibly measure loop runtimes
without affecting the execution in some way. However, we
have made an earnest — and we think successful — attempt
at hiding the overhead of loop instrumentation. Neverthe-
less, to further mitigate the impact of the instrumentation
on the accuracy of the runtime numbers, we only use loops
that are run for at least 50,000 cycles. This helps reduce
the amount of noise in our training data set. For instance,
were we to train with loops that are only run for a few thou-
sand cycles, a loop that sits on the edge of an instruction
cache boundary could introduce huge amounts of noise: a
cache miss would comprise a significant portion of the total
runtime of the loop.

We run each benchmark 30 times for all unroll factors
up to eight; an unroll factor of one corresponds to leaving
the loop intact (rolled). For each loop we take the median
runtime for a given unroll factor.

4.5 Benchmarks Used
We use the benchmarks listed in Table 2 to gauge the effi-

cacy of our approach1. The benchmarks come from a variety
of benchmark suites and span three languages (C, Fortran,
and Fortran90). The Table shows the number of loops that
each benchmark contributes to our training set. In some
cases, only a small fraction of the loops in a benchmark are
included in our training set. There are three main reasons
for this: many of the loops are not unrollable2, we only use
loops that are run for a minimum of 50,000 cycles, and we
only use loops where the best unroll factor is measurably
better (1.1x) than the average over all unroll factors. The
latter two criteria are intended to filter out noisy examples
that might prevent a learning algorithm from generalizing.

There are many different classification techniques that one
could choose to employ. The next section describes a simple
technique that works well for a wide range of problems.

5. NEIGHBOR CLASSIFICATION
Nearest neighbor (NN) classification is an extremely in-

tuitive learning technique. The idea of the algorithm is to
construct a database of all 〈xi, yi〉 pairs in the training set.

1
Please note that we have excluded some SPEC benchmarks. There

are two main reasons for this: some of the benchmarks did not compile
properly with ORC and our loop instrumentor (the loops have to run
correctly for all unroll factors), and we simply ran out of time. We are
still adding benchmarks to our training set, and as with most learning
approaches, our generalization accuracy should improve with the size
of our training set.
2
ORC only unrolls single block inner-loops. In practice, this is not

overly restrictive as a hyperblock formation phase precedes the loop
unrolling phase.

Benchmark Loops Category

008.espresso 50 Logic minimization.
022.li 0 Lisp interpreter.
052.alvinn 0 Neural network training.
099.go 37 Go-playing program.
101.tomcatv 5 Vectorized mesh generation.
124.m88ksim 7 Motorola 88100 simulator.
129.compress 6 Compression.
146.wave5 51 Maxwell’s equations.
164.gzip 10 Compression.
168.wupwise 11 Physics simulations.
171.swim 8 Shallow water modeling.
172.mgrid 4 Multi-grid solver.
173.applu 60 PDE solver.
175.vpr 11 Circuit placement and routing.
176.gcc 83 C compiler.
177.mesa 5 3-D graphics library.
178.galgel 246 Fluid dynamics.
179.art 20 Image recognition.
181.mcf 2 Combinatorial optimization.
183.equake 9 Seismic wave simulation.
187.facerec 21 Face recognition.
188.ammp 5 Computational chemistry.
189.lucas 12 Number theory.
197.parser 26 Word processing.
200.sixtrack 33 Particle accelerator simulation.
255.vortex 5 Object-oriented database.
256.bzip2 17 Compression.
300.twolf 43 Place and route simulator.
301.apsi 47 Meteorology simulator.
QCD 11 Quantum chromodynamics.
TRACK 20 Missile tracking.
BDNA 22 Molecular dynamics simulation.
OCEAN 44 2-D ocean simulation.
MG3D 45 Depth-migration code.
TRFD 13 Two-electron integral transformation.
linpack 7 Linear equation solver.
mmmul 1 Matrix-matrix multiply.
purdue bench 27 Synthetic parallel benchmarks.
vector 112 Test suite for vectorizing compilers.
whetstone 2 Synthetic benchmark.
Total 1138

Table 2: Benchmarks used. This table lists the bench-

marks from which loop runtimes are extracted, as well

as the number of loops contributed by each benchmark.

We only use loops that ORC can unroll and whose opti-

mal unroll factor is measurably better than the average

(1.1x) over all unroll factors up to eight. Note that the

purdue benchmark entry is actually comprised of nine

separate benchmarks.

A label (unroll factor) can be computed for a novel example
simply by finding the nearest example in the database and
using its label. This is a sensible approach for assigning loop
unroll factors: the compiler should treat similar loops simi-
larly. We use Euclidean distance as the similarity metric; the
distance between database entry xi and a novel loop with
feature vector xnovel is ‖(xnovel − xi)‖. The feature vector
is normalized to weigh all features equally; otherwise, fea-
tures with large values such as loop tripcount would grossly
outweigh small-valued features in the distance calculation.

The graph in Figure 1 visually depicts the operation of
a nearest neighbor classifier on real loop data. Each of the
points in the figure represents a loop from our suite of bench-
marks. Because there are too many dimensions in the orig-
inal feature space to graphically depict (equivalent to the
number of features in Table 1), we have reduced the dimen-
sionality by projecting loops from the original feature space
— each of which is represented by a feature vector (xi) —



q

Figure 1: Nearest neighbor classification. This figure

highlights the salient features of the nearest neighbors

algorithm. Each of the points in the figure corresponds

to a 2-D projection of normalized loop features. The

blue crosses correspond to those loops that should be un-

rolled (according to empirical evaluation) and the black

dots correspond to those that should not. By using this

‘database’ of loops, nearest neighbors can quickly predict

an action for a new loop. Here we query the database

with loop q to determine that it should not be unrolled.

To improve the visualization in two dimensions, this fig-

ure only considers loops where unrolling either degrades

or improves performance by over 30%.

onto a plane3.
The nearest neighbors algorithm makes predictions for a

new point based on the value of the point’s nearest neighbor
in the database. In Figure 1, the query point q is nearest
to a point that has been empirically identified as a loop
that should not be unrolled. Therefore, the algorithm would
predict that this loop remain rolled.

Note that NN classification is trivial to train: we sim-
ply have to populate a ‘database’ of examples. Though
the training time of a classifier is not a tantamount con-
cern (since training the classifier is done offline), the time it
takes for the resulting classifier to make predictions is im-
portant (since this task will be performed by the compiler at
compile time). NN classifies a new example by performing
a linear scan of the examples in the training set. For small
training set sizes — which ours is — the lookup is extremely
fast4.

6. BINARY CLASSIFICATION
Before considering the case in which we attempt to deter-

mine the best unroll factor, it is instructive to first try to
determine whether unrolling a given loop is beneficial.

3
Note that the axes of the graph correspond to a linear combination

of the dimensions in the original feature space.
4
With over 1100 examples in our database, the linear-time scan takes

less than 3ms. Lookup time is far outweighed by compiler fixed-point
dataflow analyses.

Figure 2: Nearest neighbor classification into many

classes. Even when projected from a high dimensional

space onto a plane, we see that loops that the compiler

should treat similarly cluster together. The dots, the

crosses, the circles, and the triangles represent loops

with unroll factors of one, two, four, and eight respec-

tively.

Algorithm Accuracy

Nearest Neighbors 0.88
Always predicting unroll 0.77
ORC’s decision 0.72

Table 3: Accuracy of binary predictors for loop un-

rolling. This table compares the accuracy of three dif-

ferent predictors: nearest neighbor classification, always

predicting unroll, and ORC’s prediction.

Table 3 summarizes the results. Nearest neighbors pre-
dicts with 88% accuracy whether all unroll factors are better
than not unrolling. Thus, regardless of what unroll factor
ORC chooses, unrolling will be beneficial for positive ex-
amples. Note that if we were to always predict unroll, we
would only be right 77% of the time for the 1138 loops in
our dataset. ORC predicts correctly 72% of the time.

If instead we try to predict whether unrolling using ORC’s
unroll factor is beneficial, nearest neighbors correctly pre-
dicts 89% of the examples. This marginal increase in accu-
racy is not surprising since the vast majority of the time,
not unrolling is either among the best decisions or the worst
decisions (83% of the time it is either the best decision or the
worst decision). Thus, whatever unroll factor ORC chooses
will probably be better than not unrolling when some unroll
factors are beneficial; the converse is also true.

6.1 The Best Four Features
The NN algorithm can be trained extremely quickly, as it

only involves populating the database of examples. It also
classifies examples quickly for small databases. We therefore
experimented with exhaustively searching for the most infor-
mative four features for NN classification. In this capacity
machine learning techniques can help engineers identify the



most influential aspects of their systems.
With four features, the classifier can predict with 85%

accuracy when to unroll. The four best features are sum-
marized here:

• The number of operations in the loop body: It is not
surprising that this is one of the best features. Large
loop bodies will not likely expose any exploitable intra-
iteration parallelism and will significantly increase reg-
ister pressure when unrolled.

• The maximum critical path height: Unrolling loops
with long critical paths will not significantly expose
ILP because such computations are sequential.

• Minimum memory to memory loop carried dependency:
If a memory access is dependent on a memory access
from the previous iteration, this will hinder code mo-
tion opportunities when the loop is unrolled. Thus, it
may make sense to leave the loop rolled.

• The number of indirect memory references: The fol-
lowing example from bzip2 illustrates why this feature
might be valuable:

rfreq[bt][szptr[i]]++

When the loop is unrolled, the indices into the rfreq

array can be computed in parallel at the top of the
loop. By loading the indices early, the loop’s runtime
can be drastically reduced. On the other hand, ORC
and Itanium support data speculation; memory alias-
ing ambiguities introduced by indirect memory refer-
ences may cause ORC to insert speculative memory
operations that can impair performance in many cases.

7. MULTI-CLASS CLASSIFICATION
While knowing whether a loop should be unrolled is help-

ful, knowing the optimal unroll factor is even better. In this
section we describe the operation of a multi-class classifier
for loop unrolling. Thus, instead of trying to classify a loop
into one of two categories, we will now use eight categories,
corresponding to unroll factors one through eight. Recall
that an unroll factor of one leaves the loop rolled.

As with the two-class case, we first collect the amount of
time it takes for each unroll factor to execute each unrollable
loop in our suite of benchmarks. The unroll factor that
requires the fewest number of cycles to execute a given loop
is the label for that loop.

NN is used for multi-class classification in the same man-
ner as described above for the two-class case. We train the
NN algorithm the same way we did for the two-class case,
except now the predicted unroll factor for a novel loop will
be the unroll factor for the loop to which it is nearest.

Table 4 shows the accuracy of the learning algorithm and
ORC’s heuristic. Using leave-one-out cross validation we
find that 60% of the time the NN algorithm finds the opti-
mal unroll factor. A further 14% of the time it chooses the
nearly-optimal solution. The rightmost column in the table
shows the cost associated with mispredicting. We can infer
from the table that a full 74% of the time, NN classification
is within 6% of the optimal performance.

The histogram in Figure 3 shows the distribution of opti-
mal unroll factors. An interesting observation is that non-
power of two unroll factors are rarely optimal for this data

Prediction Correctness NN’s ORC’s Cost

Optimal unroll factor 0.60 0.16 1x
Second-best unroll factor 0.14 0.21 1.06x
Third-best unroll factor 0.10 0.21 1.16x
Fourth-best unroll factor 0.05 0.13 1.26x
Fifth-best unroll factor 0.03 0.16 1.31x
Sixth-best unroll factor 0.03 0.04 1.31x
Seventh-best unroll factor 0.02 0.05 1.73x
Worst unroll factor 0.03 0.04 1.61x

Table 4: Accuracy of predictions for the nearest neigh-

bors algorithm and ORC’s heuristic. This table shows

the percentage of the predictions that each algorithm

made that were optimal. In addition, the table shows

the percentage of predictions made by each algorithm

that were Nth best. Nearest neighbors predicts the op-

timal or nearly-optimal unroll factor 74% of the time.

The Cost column shows the runtime penalty for mispre-

dicting (as compared to the optimal factor).
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Figure 3: Histogram of optimal unroll factors. This

figure shows the percentage of loops for which the given

unroll factor is optimal. The histogram was constructed

from 1138 loops spanning several benchmarks suites.

set. The figure also indicates that no one loop unrolling
factor is dominantly better than the others.

7.1 Realizing Speedups
In this section we see if improved unrolling classification

accuracy yields program speedups. For these experiments,
we compile each of the benchmarks in Table 2 using the NN
algorithm to compute an unroll factor for each loop. We
do not instrument the compiled code for the experiments
in this section; we simply use the UNIX time command
and the median of three trials to measure whole-program
runtimes. Similar to LOOCV, when compiling a benchmark,
we exclude all examples from that benchmark in the NN
database. In this way we see how well the learned compiler
algorithm performs on loops that it has not seen before.

Figure 4 shows the performance improvement of the NN
algorithm over ORC’s unrolling heuristic. The figure also
shows the speedup that the compiler could obtain if an oracle
were to make its unrolling decisions. NN achieves a speedup
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Figure 4: Realized performance on the SPEC benchmarks. We attain speedups on 20 of the 27 benchmarks in this

graph, and a 6% speedup overall (5% using the geometric mean). The rightmost bar for each benchmark shows the

speedup that a perfect classifier would attain.

for most of the SPECs that we include. We achieve speedups
on 20 of the 27 SPEC benchmarks. Overall our technique
attains a 6% overall speedup on the SPECs (5% using the
geometric mean).

Figure 5 shows the performance of the remaining bench-
marks in our training set. We achieve speedups on nearly
all of these benchmarks. However, our predictor badly mis-
predicted key loops in the nas and mmmul benchmarks. For
mmmul, the key loop should have been unrolled by a fac-
tor three, but instead NNs choose an unroll factor of eight.
Perhaps one reason for the confusion is the fact that un-
roll factors of three are only optimal 3% of the time. Thus
there are relatively few examples with this unroll factor in
the database.

7.2 The Best Four Features
We also exhaustively found the best four features for dis-

criminating between unroll factors. Together, the features
below allow a nearest neighbor classifier to correctly classify
55% of the examples in the training set:

• The number of operations in the loop body is again
one of the most important discriminating factors.

• The number of predicated operations in the loop body:
This feature helps discriminate between loops with
conditional control flow and simple, control-independent
loops. The presence of control flow may restrict the

compiler’s code motion opportunities and render un-
rolling useless.

• The source code language: One possible explanation
that this is a key feature is that Fortran code is easier
to analyze than C code; the fact that C arrays can alias
forces the compiler to make conservative assumptions
about memory accesses, and thus some optimizations
cannot be performed (or alternatively, speculative in-
structions must be used). Another distinct possibil-
ity is that the problems people choose to implement
in Fortran are inherently more amenable to loop un-
rolling. Fortran has long been the language of choice
for scientific computing, applications of which are typ-
ically highly parallel.

• The number of definitions that reach the loop entrance:
That this feature is included is no surprise. One of the
primary drawbacks of loop unrolling is the additional
register pressure that it creates. This characteristic
serves as a gauge for measuring the register pressure
surrounding the loop body.
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Figure 5: Realized performance on miscellaneous benchmarks. We achieve speedups on 16 of the 19 kernels and

synthetic benchmarks in this figure. Overall we attain a 7% speedup on these benchmarks (4% using the geometric

mean). The rightmost bar for each benchmark shows the best speedup that could possibly be attained.

8. RELATED WORK
This section discusses relevant related work. Because our

research focuses on applying learning techniques to compi-
lation, we emphasize related work in this area.

Monsifrot et al. use a classifier based on “Boosted” de-
cision tree learning to determine which loops to unroll [9].
While the methodology we present in this paper is similar to
theirs, our work differs in several important ways. Most im-
portantly, our experiments employ multi-class classification
to determine the optimal unroll factor. They only consider
the two-class classification problem presented in Section 6,
leaving the choice of unroll factor up to a compiler heuris-
tic. Another major difference is that they unroll loops be-
fore compiling, not in the backend as we do. When trying
to decide whether loop unrolling should be performed using
ORC’s unroll factor we arrive at roughly the same classifi-
cation accuracy (our 88% compared to their 85%). These
numbers may not be comparable however, because we use
two completely different compiler infrastructures and learn-
ing algorithms.

Calder et al. used supervised learning techniques to fine-
tune static branch prediction heuristics [1]. They employ
neural networks and decision trees to search for effective
static branch prediction heuristics. While their technique
is effective, branch prediction is a binary problem that is
simpler than the multi-class problem this paper considers.
Finally, their problem has the benefit that instrumentation
code to determine branch direction will not affect the direc-

tion to which branches are resolved. They were therefore
able to work with a noiseless dataset. We must deal with
noisy datasets; we measure execution time, but the instru-
mentation counters we insert have an effect on the measure-
ment.

Stephenson et al. use genetic programming to fine-tune
compiler priority functions [12]. Their unsupervised tech-
niques seem to work well for the problems they studied, but
supervised learning of the form presented in this paper is far
more efficient whenever a training data set can be created.
Their technique requires weeks to train, while most super-
vised learning algorithms require minutes or seconds. In
addition, genetic programming is extremely unstable, with
back-to-back runs yielding completely different results.

Cooper et al. use genetic algorithms to solve compilation
phase ordering problems [4]. Their technique is well suited
to the task, but cannot be extended to handle other compiler
problems.

Several compiler researchers have created model-based sys-
tems to automatically compute unroll factors [11, 3, 2]. In
particular Sarkar used in-depth, hand-made system models
to create a cost function that ranks unroll factors accord-
ing to estimated performance improvement. His technique
improved a highly optimized, industry-strength compiler by
8% on seven of the SPEC95fp benchmarks. While this result
is impressive, the models developed in [11] are much more
complicated than the nearest neighbors approach we employ.
While our test infrastructures are different (and probably
not comparable), it is worth noting that we achieved a 9%



improvement on the SPECfp benchmarks in our training set
(8% using the geometric mean).

9. CONCLUSION
Compiler developers have always had to contend with

complex phenomena that are not easy modeled. For ex-
ample, it has never been possible to create a useful model
for all the input programs the compiler has to optimize.
However until recently, most architectures— the target of
compiler optimizations— were simple and analyzable. This
is no longer the case. A complex compiler with multiple in-
terdependent optimization passes exacerbates the problem.
In many instances, end-to-end performance can only be eval-
uated empirically.

To that end, this paper experiments by using empirical
evidence to teach a simple machine-learning algorithm how
to make informed loop unrolling decisions. By using a large
database of empirical loop observations, our technique clas-
sifies loop unrolling factors with great precision. Using leave-
one-out cross-validation to find the generalization ability of
the classifier (i.e., how well it performs on examples that
are not in the training set), the algorithm is able to deter-
mine with 88% accuracy when loop unrolling should be per-
formed. We show that nearest neighbors can also be used to
predict the optimal unroll factor for a given loop: a full 74%
of the time it predicts the optimal, or the nearly optimal
solution.

We also translate these results into speedups on a real
machine. Using a well-respected compiler and targeting the
Itanium 2 architecture, we find that the nearest neighbors
algorithm improves the performance of 36 of the 46 bench-
marks in our suite. We achieve a 6% improvement on the
SPEC benchmarks, and a 7% improvement on miscellaneous
small benchmarks and kernels.

While we are pleased with the performance improvements,
we are more excited about the complexity ramifications of
our research. Apart from extracting features that we think
might be pertinent, we thought little about designing an
unrolling heuristic. Furthermore, we were able to use the
learning algorithm to exhaustively reduce our large feature
set to the four most important characteristics for loop un-
rolling.

Compiler writers are forced to spend a large portion of
their time designing heuristics. The results presented in this
paper lead us to believe that machine-learning techniques
can create certain heuristics at least as well as human de-
signers. We hope that automatic heuristic tuning based on
empirical evaluation will become prevalent, and that design-
ers will intentionally expose algorithm policies to facilitate
machine-learning optimization.
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