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ABSTRACT
We present a new error localization tool, Archie, that accepts a
specification of key data structure consistency constraints, then gen-
erates an algorithm that checks if the data structures satisfy the
constraints. We also present a set of specification analyses and op-
timizations that (for our benchmark software system) improve the
performance of the generated checking algorithm by over a factor
of 3,900 as compared with the initial interpreted implementation,
enabling Archie to efficiently support interactive debugging.

We evaluate Archie’s effectiveness by observing the actions of
two developer populations (one using Archie, the other using stan-
dard error localization techniques) as they attempted to localize and
correct three errors in a benchmark software system. With Archie,
the developers were able to localize each error in less than 10 min-
utes and correct each error in (usually much) less than 20 minutes.
Without Archie, the developers were, with one exception, unable
to locate each error after more than an hour of effort. These results
illustrate Archie’s potential to substantially improve current error
localization and correction techniques.

1. INTRODUCTION
Error localization is a key prerequisite for eliminating program-

ming errors in software systems and, in many cases, the primary
obstacle to correcting the error — the fix is often obvious once the
developer locates the code responsible for the error.

The primary issue in error localization is minimizing the dis-
tance between the error and its manifestation as observably incor-
rect behavior. The greater this distance, the longer the program
executes in an incorrect state and the harder it can become to trace
the manifestation back to the original error. This issue can become
especially problematic for data structure corruption errors — these
errors often propagate from the original corrupted data structure to
manifest themselves in distant code that manipulates other derived
data structures, obscuring the original source of the error.

This paper presents a new error localization tool, Archie1, de-
scribes the optimizations required to make Archie efficient enough
for practical use, and discusses the results of a case study we per-
formed to evaluate its effectiveness in helping developers to local-
ize and correct errors. Our results indicate that, after optimization,
Archie executes efficiently enough for interactive use on our bench-
mark software system and that it can dramatically improve the abil-

1Archie is named after Archie Goodwin, the assistant to Rex
Stout’s fictional detective Nero Wolfe. The basic idea is that, under
Wolfe’s direction, Archie does all the work required to localize the
crime to a specific suspect, then Wolfe uses his superior intelligence
to solve the crime.

ity of developers to localize and correct errors in this system. These
results illustrate Archie’s potential to substantially improve current
error localization and correction techniques.

1.1 Specification-Based Approach
Archie accepts a specification of key data structure consistency

properties (especially sophisticated properties characteristic of com-
plex linked data structures), then periodically monitors the data
structures to detect and flag violations of these properties. The
developer (potentially assisted by an automated tool) places calls
to the Archie consistency checker into the software system. If the
system contains an error that corrupts the data structures, Archie
localizes the error to the region of the execution between the first
call that detects an inconsistency and the immediately preceding
call (which found the data structures to be consistent).

Each Archie specification contains a set of model definition rules
and a set of consistency properties. Given these rules, Archie (con-
ceptually) interprets the model definition rules to build an abstract
model of the concrete data structures, then examines the model to
find any violations of the consistency properties. The model itself
operates at the level of abstract relations between abstract objects.
The conceptual separation of the specification into the model con-
struction rules and consistency constraints simplifies the expression
of the consistency constraints and provides important expressibil-
ity benefits. Specifically, it enables the specification developer to 1)
classify objects into different sets and apply different consistency
constraints to objects in different sets, 2) express the consistency
constraints at the level of the concepts in the domain rather than
at the level of the (potentially heavily encoded) realization of these
concepts in the concrete data structures in the program, 3) use in-
verse relations to express constraints on the objects that may re-
fer (either directly or conceptually) to a given object, 4) construct
auxiliary relations that allow the developer to express constraints
between objects that are separated by many references in the data
structures, and 5) express constraints involving abstract relation-
ships such as object ownership.

1.2 Optimizations
It is clearly desirable to perform the consistency checks as fre-

quently as possible to minimize the size of the region of the exe-
cution that may contain the error. The primary obstacle to frequent
checking, however, is the overhead of executing the checks. Un-
fortunately, we found that our initial direct implementation of the
consistency checking algorithm as described above was too inef-
ficient for practical use. We therefore implemented the following
optimizations:

• Compilation: The Archie compiler generates a C implemen-



tation of the Archie consistency checking algorithm, elimi-
nating the interpretation overhead in the original Archie im-
plementation.

• Fixed-Point Elimination: The Archie compiler analyzes the
dependences in the specification to, when possible, replace
the default fixed-point computation in the model construction
phase with a more efficient single-pass model construction
algorithm.

• Relation Elimination: The compiler analyzes the specifica-
tion to, when possible, replace the explicit construction of
each relation with a computation that efficiently generates,
on the demand, the required tuples in the relation.

• Set Elimination: The compiler analyzes the specification to,
when possible, integrate the consistency checking computa-
tion for each set of abstract objects into the data structure
traversal that (in the absence of optimization) constructs that
set. The success of this optimization enables Archie to elim-
inate the construction of that set.

Together, these optimizations make Archie run over 3,900 times
faster on our benchmark software system than the original inter-
preted version; the fully optimized instrumented version executes
less than 6.2 times slower than the original uninstrumented ver-
sion. For our benchmark software system, the optimized version of
Archie is efficient enough to be used routinely during development
with more than acceptable performance for interactive debugging.

1.3 Case Study
To evaluate Archie’s effectiveness in supporting error localiza-

tion and correction, we obtained a benchmark software system,
used manual fault injection to create three incorrect versions, then
asked six developers to localize and correct the errors. Three devel-
opers used Archie; the other three used standard error localization
techniques.

With Archie, the developers were able to localize each error
within several minutes and correct the error in (usually much) less
than twenty minutes. Without Archie, the developers were (with
a single exception) unable to localize each error after more than
an hour of debugging. The key problem they encountered was
that continued execution made the errors manifest themselves far
(in both code and data) from the original source of the error. Al-
though the developers eventually came to understand what was go-
ing wrong, they were unable to trace the manifestation back to its
root cause within the alloted time.

To place these results in context, consider that our benchmark
system contains significant numbers of assertions designed to catch
data structure corruption errors, two of the three errors manifest
themselves as assertion violations, but these assertions were still
not enough to enable the developers to locate the errors in a timely
manner. These results indicate that Archie can provide a substantial
improvement over standard error localization techniques.

1.4 Contributions and Organization
This paper makes the following contributions:

• Archie: It presents the design, implementation, and evalua-
tion of Archie, a new specification-based data structure con-
sistency checking tool designed to support error localization
and correction.

• Optimizations: It presents a set of optimizations (compi-
lation, fixed point elimination, relation elimination, and set

structure city {
int population;

}
structure tile {

int terrain;
city *city;

}

tile grid[EDGE * EDGE];

Figure 1: Structure Definitions

elimination) that, together, increase the performance of Archie
on our benchmark software system by over a factor of 3,900,
enabling Archie to be used routinely during interactive de-
velopment with more than acceptable performance.

• Case Study: It presents a case study that evaluates the ef-
fectiveness of Archie as an error localization and correctness
tool. With Archie, developers were able to quickly localize
and correct errors in our benchmark software system; with-
out Archie, developers were unable to localize the errors even
after they spent significant amounts of time attempting to
trace the manifestation of the errors back to their root causes.

The remainder of the paper is structured as follows. Section 2
presents an example that illustrates how Archie works, Section 3
presents the specification language, and Section 4 presents the Archie
compiler and its optimizations. Section 5 discusses how we expect
Archie to be used in practice, Section 6 presents the results of our
case study, and Section 7 presents related work. We conclude in
Section 8.

2. EXAMPLE
We next present an example (inspired by the FreeCiv program

discussed in Section 6) that illustrates how Archie works. The pro-
gram in question maintains a rectangular grid of tiles that imple-
ments the map of a multiple-player game. Each tile has a terrain
value (i.e. ocean, river, mountain, grassland, etc) and an optional
reference to a city that may be built on that tile. Figure 1 presents
the relevant data structure definitions for our example. There are
separate structures for cities and tiles; the grid is an array of tiles.

Even a data structure this simple comes with important consis-
tency constraints; in this section we focus on the following con-
straints:

• The terrain field of each tile contains a legal value.

• Each city is referenced by exactly one tile.

• No city is placed on an ocean tile.

2.1 Expressing Consistency Properties
To express these constraints in our specification language, the de-

veloper first identifies the sets and relations in the conceptual data
model that the concrete data structures implement. In our example
there are two sets,TILE andCITY , and two relations,CITYMAP
andTERRAIN. Figure 2 presents the declarations of these sets and
relations. In general, sets can contain primitive values such as inte-
gers or booleans and structures from the program. In our example,
theTILE set containstile structures, and theCITY set contains
city structures. Each relation consists of a set of tuples chosen
from two specified sets.



set TILE of tile
set CITY of city
relation CITYMAP: TILE -> CITY
relation TERRAIN: TILE -> int

Figure 2: Object and Relation Declarations

for x=0 to EDGE*EDGE, true => grid[x] in TILE
for t in TILE, true => <t,t.terrain> in TERRAIN
for t in TILE, !t.city = NULL =>

<t,t.city> in CITYMAP
for t in TILE, !t.city = NULL =>

t.city in CITY

Figure 3: Model Definition Rules for Example

grid[0]
terrain: 1 2 3 4

grid[3]grid[2]grid[1]

city:

10,000 Cpopulation:

Figure 4: Concrete Data Structure

TILE = {grid[0], grid[1], grid[2], grid[3]}
TERRAIN= {〈grid[0], 1〉, 〈grid[1], 2〉, 〈grid[2], 3〉, 〈grid[3], 2〉}
CITY={C}
CITYMAP={〈grid[2], C〉, 〈grid[3], C〉}

Figure 5: Model Constructed for Example

2.1.1 Model Definition Rules
The developer next provides a set of model definition rules that

define a translation from the concrete data structures in the program
to the sets and relations in the model. Figure 3 presents the model
definition rules in our example. Each rule consists of a quantifier
that identifies the scope of the rule, a guard that must be true for
the rule to apply, and an inclusion constraint that specifies either an
object that must be in a given set or a tuple that must be in a given
relation. Archie processes these rules to construct theTILE and
CITY sets and theTERRAINandCITYMAPrelations. Conceptu-
ally, the algorithm repeatedly finds a rule and a binding of the rule’s
quantified variables that satisfies the rule’s guard. It then adds ei-
ther the specified object into the specified set or the specified tuple
into the specified relation to ensure that the inclusion constraint is
satisfied. This algorithm continues until it reaches a fixed point.
For the data structure instance in Figure 4, Archie constructs the
model in Figure 5.

2.1.2 Consistency Constraints
The developer next uses the sets and relations to state the consis-

tency constraints. Each constraint consists of a sequence of quan-
tifiers that identify the scope of the constraint and a predicate that
must be true for the constraint to be satisfied.

Figure 6 presents the constraints in our example. The first con-
straint ensures that each tile has a valid terrain, the second ensures
that each city has exactly one location (i.e., exactly one tile ref-
erences each city), and the final constraint ensures that no city is
placed on an ocean tile.2 Note that the notationCITYMAP.c de-
notes the inverse image ofc under the relationCITYMAP(the set of
all t such that〈t,c 〉 in CITYMAP). As this example illustrates, the

2We use the C preprocessor to substitute out symbolic constants
such asMIN, MAX, andOCEAN.

for t in TILE, MIN <= t.TERRAIN and t.TERRAIN <= MAX
for c in CITY,sizeof(CITYMAP.c)=1
for c in CITY,!(CITYMAP.c).TERRAIN = OCEAN

Figure 6: Consistency Constraints for Example

ability to freely use inverses substantially increases the expressive
power of the specification language — it enables the expression
of properties that navigate backwards through the referencing re-
lationships in the data structures to capture properties that involve
both an object and the objects that reference it.

2.2 Instrumentation and Use
Finally, the developer (potentially with the aid of an automated

tool) instruments the code to periodically invoke the Archie consis-
tency checker. This checker examines the data structures and re-
ports any inconsistencies to the developer, localizing the error that
caused the inconsistency to the region of the execution between the
failed check and the previous successful check. In our example,
the consistency checker, when invoked on the data structure in Fig-
ure 4, would report that the structure violates the second rule in
the specification. We allow the specification developer to include
an explanatory comment for each rule; in addition to the violated
rule, Archie also prints this explanation. In our example, the expla-
nation might indicate that the second rule requires no city to have
more than one location.

When the instrumented program executes, Archie localizes the
error to the region of the execution between the failed call to the
consistency checker and the last preceding successful call and iden-
tifies the violated constraint (which, in turn, identifies the corrupt
data structure). Our results (as discussed in Section 6) show that
this approach can enable the developer to quickly localize and cor-
rect the error that caused the inconsistency. With standard ap-
proaches, the program typically continues its execution for some
period of time, with the error propagating through the data struc-
tures. This combination of continued execution and error propaga-
tion makes it difficult to understand and localize the error.

2.3 Optimizations
To increase the performance of the consistency checking, we im-

plemented the following optimizations in the Archie compiler.

2.3.1 Fixed Point Elimination
In general, Archie may have to use a work-list-based fixed-point

algorithm to compute the sets and relations in the model. But in
some cases it may be possible to analyze the specification to gen-
erate a more efficient algorithm. The key is to find an efficient
schedule for evaluating the model definition rules.

For the model definition rules in Figure 3, the first rule creates the
TILE set, then the next several rules use theTILE set to create the
CITY set and theTERRAINandCITYMAPrelations. The compiler
can therefore generate efficient code that first traverses thegrid
array to construct theTILE set, then iterates through theTILE set
to create the other sets and relations. The key property is that the
compiler can order the rules so that the construction of the set or
relation in one rule does not depend on any set or relation computed
in any succeeding rule. In our example this order is simply the first
rule followed (in any order) by the next several rules.

2.3.2 Relation Elimination
Archie’s next optimization recognizes situations when it is pos-

sible to compute a relation on demand instead of eagerly construct-



ing the relation, then uses the precomputed relation during con-
straint checking. In our example, the model construction rule that
constructs theTERRAIN relation quantifies over all tilest to in-
sert〈t,t.terrain 〉 into the relation. Moreover, the consistency
checking rules always use theTERRAINrelation in the forward di-
rection — they always start with a tilet and constrain the value
t.TERRAIN to which TERRAIN mapst . It is therefore possi-
ble to replace each use of theTERRAIN relation with code that
computest.TERRAIN instead of retrievingt.TERRAIN from a
precomputed representation of the relation. This optimization elim-
inates both the space overhead of representing the relation and the
time overhead of constructing and using the relation.

2.3.3 Set Elimination
TheTILE set in our example is produced by a single model con-

struction rule, then used (after relation elimination) only in quanti-
fiers that iterate over all of the elements in the set. These quanti-
fiers occur in three places: in the model construction rules in Fig-
ure 3 that create theCITYMAPrelation andCITY set, and in the
first consistency constraint in Figure 6, which checks that each tile
has a legal terrain value. It is possible to replace theTILE set in
the implementation of each of these quantifiers with a computa-
tion that efficiently enumerates all of the elements of theTILE set.
This transformation eliminates the need to construct theTILE set,
which in turn eliminates both the space overhead of representing
the set and the time overhead of constructing the set.

2.3.4 Optimized Execution
After optimization, the consistency checker executes as follows.

It first iterates over the tiles in the grid to check that that every tile
has a legal terrain value and to construct theCITYMAP relation
and theCITY set. It then iterates over theCITY set and uses the
CITYMAPrelation to check the last two consistency constraints in
Figure 6. This optimized implementation replaces the construction
of theTILE set andTERRAINrelation with efficient computations
distributed throughout the generated code. Together, all of these
optimizations reduce the overall execution time of the consistency
checking in our benchmark software system by a over factor of
3,900. Because theTILE set andTERRAIN relation are signifi-
cantly larger than theCITY set andCITYMAPrelation, they also
substantially reduce the memory requirements.

3. SPECIFICATION LANGUAGE
Our specification language consists of several sublanguages: a

structure definition language, a model definition language, and a
model constraint language.

3.1 Structure Definition Language
The structure definition language allows the developer to declare

the layout of the data structures. Figure 7 presents the grammar for
this language. It allows the developer to declare structure fields that
are 8, 16, and 32 bit integers; structures; pointers to structures; ar-
rays of integers, packed booleans, structures, and pointers to struc-
tures. The array bounds can be either constants or expressions over
an application’s variables. The developer can declare that region of
memory in a structure is reserved, indicating that it is unused. Fi-
nally, the structure definition language supports a form of structure
inheritance. A substructure must have the same size and contain all
of the same fields as the superstructure, but it may define new fields
in areas that are unused in the superstructure.

The structure definition language is similar to that of C. How-
ever, it supports wider range of primitive data types, provides a
form of structure inheritance, and allows the developer to define

structdefn := struct structurename

(subtypes structurename) {fielddefn∗}
fielddefn := type field; | reserved type; |

type field[E]; | reserved type[E];

type := boolean | byte | short | int |
structurename | structurename ∗

E := V | number | string | E.field | E.field[E] |
E − E | E + E | E/E | E ∗ E

Figure 7: Structure Definition Language

in-line, variable-length arrays. These extensions enable the devel-
oper to precisely specify the format of the elements in many heavily
encoded data structures.

C := Q∗, G ⇒ I

Q := for V in S | for 〈V, V〉 in R | for V = E .. E

G := G and G | G or G |!G | E = E | E < E | true |
(G) | E in S | 〈E, E〉 in R

I := E in S | 〈E, E〉 in R

E := V | number | string | E.field | E.field[E] |
E − E | E + E | E/E | E ∗ E

Figure 8: Model Definition Language

3.2 Model Definition Language
The model definition language allows the developer to declare

the sets and relations in the model and to specify the rules that
define the model. A set declaration of the formset S of T:
partition S 1, ...,Sn declares a setS that contains objects of
typeT, whereT is either a primitive type (with the range optionally
constrained to be between two given values) or astruct type
declared in the structure definition part of the specification. The set
S hasn subsetsS1, ..., Sn which together partitionS. Changing the
partition keyword tosubsets removes the requirement that
the subsetsS1, ..., Sn partitionS but otherwise leaves the meaning
of the declaration unchanged. A relation declaration of the form
relation R: S 1->S 2 specifies a relation between the objects
in the setsS1 andS2.

The model definition rules define a translation from the concrete
data structures into an abstract model. Each rule has a quantifier
that identifies the scope of the rule, a guard whose predicate must be
true for the rule to apply, and an inclusion constraint that specifies
either an object that must be in a given set or a tuple that must be
in a given relation. Figure 8 presents the grammar for the model
definition language.

In principle, the presence of negation in the model definition
language opens up the possibility of unsatisfiable model definition
rules. We address this complication by requiring the set of model
definition rules to have no cycles that go through rules with negated
inclusion constraints in their guards.

We formalize this constraint using the concept of arule depen-
dence graph. There is one node in this graph for each rule in the
set of model definition rules. There is a directed edge between two
rules if the inclusion constraint from the first rule has a set or re-
lation used in the quantifiers or guard of the second rule. If the



graph contains a cycle involving a rule with a negated inclusion
constraint, the set of model definition rules is not well founded and
we reject it. Given a well-founded set of constraints, our model
construction algorithm performs one fixed point computation for
each strongly connected component in the rule dependence graph,
with the computations executed in an order compatible with the
dependences between the corresponding groups of rules.

3.3 The Constraint Language
Figure 9 presents the grammar for the model constraint language.

Each constraint consists of a sequence of quantifiersQ1, ..., Qn

followed by bodyB. The body uses logical connectives (and, or,
not) to combine basic propositionsP that constrain the sets and
relations in the model. Developers use this language to express the
key consistency constraints.

C := Q, C | B

Q := for V in S | for V = E .. E

B := B and B | B or B |!B | (B) |
V E = E | V E < E | V E <= E | V E > E |
V E >= E | V in SE | size (SE) = C |
size (SE) >= C | size (SE) <= C

V E := V.R | R.V | (V E) | V E.R | R.V E

E := V | number | string | E + E | E − E | E/E |
E ∗ E | E.R | size (SE) | (E)

SE := S | V.R | R.V

Figure 9: Model Constraint Language

4. COMPILATION AND OPTIMIZATION
Our initial implementation of Archie interpreted the specifica-

tion every time it performed a consistency check. We found that
this implementation was too slow to satisfy our needs; in particular,
it increased the running time of our benchmark software system by
almost a factor of 25,000. To eliminate the interpretation overhead,
we developed a compiler that processed the Archie specification
to generate C code that implemented a basic consistency checking
algorithm. This algorithm first constructs each of the sets and re-
lations in the model, then evaluates the consistency constraints to
detect any possible inconsistencies. It uses a work-list-based fixed-
point algorithm to ensure that it correctly constructs the model.
While this baseline compiled version executes almost five times
faster than the interpreted version, it was still too slow for our pur-
poses. We therefore implemented the following optimizations.

4.1 Fixed Point Elimination
This optimization analyzes the model definition rules to replace,

when possible, the fixed point computation with a more efficient
data structure traversal. The compiler first performs a dependence
analysis on the model definition rules to generate a dependence
graph. This graph captures the dependences between rules which
create sets and relations and the rules which use those sets and re-
lations. Formally, the graph consists of a set of nodesN (one for
each rule) and a set of edgesE. There is an edgeE = 〈N1, N2〉
from N1 to N2 if N2 usesa set or relation thatN1 defines. A rule
usesa setS (or a relationR) if the rule has a quantifier of the form
for V in S (or of the formfor 〈V1, V2〉 in R) or if the rule has
a guard of the formE in S (or 〈E1, E2〉 in R). A rule definesa
setS (or relationR) if it has a inclusion constraintI of the form
E in S (or 〈E1, E2〉 in R).

The compiler finds the strongly connected components in the
dependence graph and topologically sorts these components. For
components that consist of a single rule, the compiler generates ef-
ficient code that iterates through all of the rule’s possible quantifier
bindings, evaluates the guard for each binding, and (if the guard
is satisfied) executes the actions that add the appropriate objects to
sets or tuples to relations. For components that consists of multiple
rules, the compiler generates code that uses a work list to imple-
ment a fixed point computation of the sets and relations that the
component produces. The generated code executes the computa-
tions for the components in the topological sort order. This order
ensures that each set and relation is completely constructed before
it is used to construct additional sets and relations in other compo-
nents.

4.2 Relation Elimination
Some of the relations constructed in our model correspond to

partial functions. For example, a fieldf may generate a relation
that relates each objecto to the value of the fieldo.f . Our compiler
discovers relations that implement partial functions and verifies that
these relations are used only in the forward direction (i.e., no ex-
pression uses the inverse of the relation). The compiler recognizes
that a relationR is a partial function if the model definition rules
use a single rule of the following form to defineR:

for V in S, G ⇒ 〈V, E〉 in R.

The compiler rewrites each expression that uses a partial func-
tion by replacing the use with the computation ofG and (if G is
satisfied)E. The compiler then removes the rule responsible for
constructing each such relation.

4.3 Set Elimination
Our final optimization attempts to transform the specification

to eliminate set construction and instead perform the consistency
constraint checks directly on the data structures in memory. We
use two transformations:model definition rule inliningand con-
straint inlining. Model definition rule inlining finds a model def-
inition rule of the formQ∗, G1 ⇒ V1 in S, a second model
definition rule of the formfor V2 in S, G2 ⇒ I, then elimi-
nates the use of the setS in the second rule by transforming it to
Q∗, G1 ∧ G2[V2/V1] ⇒ I[V2/V1]. To apply the transformation,
the first rule must be the only rule that definesS.

The constraint inlining transformation finds a model definition
rule of the formQ∗, G ⇒ V1 in S, a consistency constraint of the
form for V2 in S, C, then eliminates a use of the setS by trans-
forming the consistency constraint toQ∗, G ⇒ C[V2/V1]. To ap-
ply the transformation, the model definition rule must be the only
rule that definesS. Note that the new constraint has a predicate
(G ⇒ C[V2/V1]) that may involve both concrete values from the
data structures in memory and the sets and relations in the model.
We have extended the internal representation of our compiler so
that it can generate code to check these kinds of hybrid constraints.

Each transformation eliminates a use of the setS. If the trans-
formations eliminate all uses, the compiler removes the set and the
rule that produces the set from the specification, eliminating the
time required to compute the set and the space required to store
the set. This optimization can be especially useful when (as is the
case for our benchmark system) the compiler is able to eliminate
the largest sets or relations in the model.

4.4 Impact
Table 1 presents the execution times of our benchmark software

system with the consistency checks at different optimization levels.
As these numbers show, the optimizations produce dramatic per-



formance improvements. The final optimized version is more than
efficient enough for interactive debugging use.

Version Time
No Instrumentation 0.234 sec
Interpreted 95 min
Baseline Compiled 20 min
Fixed point elimination 25.60 sec
Relation Elimination 10.66 sec
Set removal 1.45 sec

Table 1: Performance Results

5. ENVISIONED USAGE STRATEGY
Obtaining developer acceptance of a new tool can be difficult,

especially when the tool requires the developers to use a new lan-
guage such as our specification language. We expect that several
aspects of Archie will facilitate its acceptance within the developer
community:

• Black Box Usage:We expect the Archie specifications to be
developed by a small number of developers who are comfort-
able using the specification language. The remainder of the
developers can simply use Archie as a black box by invoking
the Archie consistency checker. We anticipate no need for
the vast majority of the developers to learn the Archie speci-
fication language or to become comfortable using it. There is
also no need to change the programming language,3 coding
style, or other development tools.

• Incremental Adoption: Archie supports an incremental adop-
tion strategy — the developer can start with a specification
that captures a small subset of the consistency properties,
then incrementally augment the specification to capture more
and more properties. During the entire specification devel-
opment process the consistency checker remains operational
and increasingly useful as more properties are added. Calls
to the Archie consistency checker can also be incrementally
added to the system. The overall result is a smooth integra-
tion into the development process with no major dislocations
or disruptions.

• Utility: Based on the results of our case study in Section 6,
we believe that developers will find Archie to be very use-
ful in helping to localize and correct errors, and will there-
fore be motivated to use it as they develop and maintain their
software.

• Ease of Development:Based on our experience developing
similar specifications in another project [8], we believe that
Archie specifications will prove to be relatively easy to de-
velop once the developer understands the relevant data struc-
tures.4 Because the specifications identify global data struc-

3The current Archie compiler generates C code and is designed to
work with programs written in C and C++. It is straightforward to
retarget Archie to generate code for other programming languages.
4Specifically, we have developed specifications for the FreeCiv in-
teractive game discussed in Section 6, the CTAS air-traffic control
system [1, 20] (this deployed system consists of over 1 million lines
of C and C++ code), a simplified version of the Linux ext2 file sys-
tem [17], and the data structures in Microsoft Word files. With the
exception of CTAS, we were able to develop all of our specifica-

ture invariants rather than specific properties of local com-
putations, our experience indicates that the resulting specifi-
cations are quite small (the largest are several hundred lines
long, with the majority of the lines devoted to structure def-
initions) in comparison with the size of the software system
as a whole.

We do anticipate that the use of Archie may wind up substan-
tially changing the testing, error localization, and error correction
activities, but in a positive way — we anticipate that Archie will
help developers find errors earlier and provide them with substan-
tially improved error localization. The developers in our case study
(see Section 6) had no problem integrating Archie into their de-
bugging strategy and in fact used Archie almost immediately to
eliminate tedious activities such as augmenting the code with print
statements or using a debugger to insert breakpoints and examine
the values of selected variables.

We expect that Archie will effectively support usage strategies
in which the initial specifications are developed as part of the soft-
ware design process before coding begins and usage strategies in
which it is integrated into a large existing software system. We
also anticipate that, once integrated, the developers will be moti-
vated to keep the specification up to date to reflect changes to the
data structures. The division of the specification into model defi-
nition rules and consistency constraints facilitates this specification
maintenance — if only the representation of the data changes, the
developer can simply update the model definition rules to reflect
the new representation, leaving the consistency constraints intact.

During development, we expect the program to be instrumented
with calls to the Archie consistency checker. We anticipate two
kinds of instrumentation: calls placed (potentially with the aid of
an automatic call placement tool) at standard locations such as pro-
cedure entry and exit points as a routine part of the development
process, and calls placed at chosen locations by developers as they
attempt to localize a specific error.

6. CASE STUDY
To evaluate the effectiveness of our tool, we obtained a bench-

mark software system, a population of developers, then performed
a study in which the developers attempted to localize and correct
errors in the system. By comparing the behavior and debugging ef-
fectiveness of the developers that used Archie with the developers
that did not, we are able to obtain an indication of how well Archie
supported the debugging process for this system, and, by extension,
for other systems as well.

6.1 Developer Population
We recruited six developers with relatively homogeneous back-

grounds: all developers were born and educated through high school
in Romania or Moldova and all represented their home country in
international programming competitions while they were in high
school. All of the developers are currently either undergraduate or
graduate students at MIT.

We separated the developers into two populations: the Tool pop-
ulation, which used Archie during the debugging experiments, and
the NoTool population, which did not use Archie. To control for de-
bugging ability, we assigned each developer a pre-study calibration
task of locating and correcting an error in a heapsort implementa-
tion. This error caused theheapify operation [5] to incorrectly
swap the value of the parent node with the value of its largest child

tions in the course of a single week. The CTAS specification took
another week, with much of the effort devoted (with the help of the
CTAS developers) to understanding the CTAS data structures.



even though the value of the parent was larger than the value of
that child. We ordered the developers by the time required to cor-
rect this error; the times varied between 9 and 32 minutes. We then
randomly assigned one of the first two, the next two, and the last
two developers to the Tool population, with the others assigned to
the NoTool population.

6.2 FreeCiv
We chose the FreeCiv interactive game program (available at

http://www.freeciv.org ) as our benchmark software system.
The source code consists of roughly 65,000 lines of C in 74 .h and
68 .c files. It contains four modules: a server module, a client mod-
ule, an AI module, and a common module that contains procedures
called by the other three modules. We have made all of the infor-
mation required to replicate our results available at
http://www.mit.edu/ ∼cristic/Archie .

6.2.1 Consistency Properties
FreeCiv maintains a map of tiles arranged as a rectangular grid.

Each tile contains a terrain value (plains, hills, ocean, desert, etc.)
and a reference to a bitmap which maintains additional informa-
tion (such as irrigation or pollution levels) about the tile. Each tile
may also contain a reference to a city data structure. Our FreeCiv
specification consists of 199 lines (of which 180 contain structure
definitions). This specification identifies the following consistency
properties:

• Each game must have a single map.

• Each game must have a single grid of tiles.

• Each tile must have a valid terrain value.

• Exactly one tile must point to each city.

• No city may be located on an ocean tile.

6.2.2 Incorrect Versions
We used manual fault insertion to create three incorrect versions

of FreeCiv. The first version contains an error in the common mod-
ule. The incorrect procedure is 14 lines long (after error insertion);
the error causes the program to assign an invalid terrain value to a
tile (causing the data structures to violate the third constraint iden-
tified above). The second version contains an error in the server
module. The incorrect procedure is 18 lines long and causes two
tiles to refer to the same city (causing the data structures to violate
the fourth constraint). The third version also contains an error in
the server module. The incorrect procedure is 153 lines long; the
error causes a city to be placed on an ocean tile (violating the last
constraint).

6.2.3 Experimental Setup
We first presented all of the developers with a FreeCiv tutorial,

which gave them an overview of the purpose and structure of the
program, an overview of Archie, and an overview of the FreeCiv
data structures and their consistency properties.

We gave both the Tool and NoTool populations identical instru-
mented copies of the three incorrect versions of FreeCiv. These
copies contain calls to the Archie consistency checker at the begin-
ning and end of each procedure, with the exception of small proce-
dures like structure field getters and setters and I/O procedures that
interface with the user or the network. For the NoTool population,
these calls immediately return without performing any consistency
checking; for the Tool population, each call uses the Archie speci-
fication to perform a complete consistency check. Consistent with

the expected usage strategy in Section 5, the Tool developers used
Archie as a black box — they simply compiled the pre-generated
consistency checker into their executables.

The instrumented versions of FreeCiv contain approximately 750
statements that invoke the Archie consistency checker. For the Tool
population, each call (whether it detects an inconsistency or not)
writes an entry to a log indicating the position in the code from
which it was invoked. For this study, we configured FreeCiv to use
its autogame mode in which it plays against itself. In this mode,
the correct version of the program invokes the checker more than
20,000 times when it executes.

We asked the developers to attempt to locate and eliminate the
errors in the three incorrect versions. We requested that they spend
at least one hour on each version and allowed them to spend more
time if they desired. For the NoTool population, each error mani-
fested itself as either an assertion violation (the first two errors) or
a segmentation fault (the last error). For the Tool population, each
error manifested itself as an error message from the Archie consis-
tency checker — the consistency checker printed out the violated
constraint, the location in the source code of the call to the con-
sistency checker, and an explanation of the error provided by the
developer of the specification.

All of the developers used a Linux workstation (RedHat 8.0 Linux)
with two 2.8 GHz Pentium 4 processors and 2 GBytes of RAM. We
provided all of the developers with scripts to compile and run the
three versions. The developers were able to use any development
or debugging tool available on this platform. The developers were
all familiar with this computational environment and comfortable
using it. We observed the developers during the experiment and
maintained a detailed record of their actions.

6.3 The Tool Population
Table 2 presents the number of minutes required for each mem-

ber of the Tool population to locate each error; Table 3 presents the
total number of minutes required to both locate and correct the er-
ror. As these numbers show, the developers were able to locate and
correct the errors quite rapidly.

Participant Error 1 Error 2 Error 3
T1 1 2 1
T2 2 3 2
T3 5 1 5

Table 2: Localization Times (Tool)

Participant Error 1 Error 2 Error 3
T1 9 7 3
T2 8 6 8
T3 17 7 14

Table 3: Correction Times (Tool)

The developers in this population used Archie extensively in
their debugging activities. They all started by examining the Archie
inconsistency message. If the message came from a call to the
Archie consistency checker at the start of a procedure, they ex-
amined the Archie log to find the caller of this procedure and (cor-
rectly) attributed the error to the caller. If the message came from
a call to the Archie consistency checker at the end of a procedure,
they (once again correctly) attributed the error to this procedure.

They then examined the message to determine which constraint
was violated, then examined the code of the procedure containing
the error to find the code responsible for the inconsistency. For the



third error (recall that the procedure containing this error is 153
lines long) the developers inserted additional calls to the Archie
consistency checker to further narrow down the source of the in-
consistency. Eventually all of the developers found and eliminated
the error.

6.4 The NoTool Population
Table 4 presents the number of minutes required for each mem-

ber of the NoTool population to locate each error; Table 5 presents
the total number of minutes required to both locate and correct the
error. A dash (-) indicates that the developers were unable to locate
or correct the error; a number in parenthesis after the dash indicates
the number of minutes spent on the respective task before giving up.
As these tables indicate, only one of the developers was able to lo-
cate and correct an error. Moreover, this correction was somewhat
fortuitous: the developer spent the last 15 minutes of his attempt
to locate the second error examining the (correct version of) the
procedure that was modified to contain the third error. When he re-
examined this procedure during his attempt to locate the third error,
he noticed that the code was different and replaced the new (incor-
rect) version with the correct version that he had examined while
searching for the second error!

Participant Error 1 Error 2 Error 3
NT 1 - - 10
NT 2 - - -
NT 3 - - -

Table 4: Localization Times (NoTool)

Participant Error 1 Error 2 Error 3
NT 1 - (95) - (65) 11
NT 2 - (90) - (70) - (60)
NT 3 - (70) - (60) - (60)

Table 5: Correction Times (NoTool)

For the first two versions of FreeCiv, the developers in the No-
Tool population started by examining the code that triggered the
assert violation. For the third version, the developers started their
examination with the code that triggered the segmentation fault.
Once it became clear to them that the code surrounding the as-
sertion or segmentation fault was not responsible for the inconsis-
tency, they attempted to trace the execution backwards to locate the
code responsible for the error. During this process, they made ex-
tensive use of gdb to set break points and examine the values of
the program variables. They also inserted print statements to track
the values of different variables and augmented the program with
additional assertions to check various consistency properties. Our
observations indicate that all of the developers in this group made
meaningful progress towards localizing the error. But because of
the complexity of the program and the long distance between the
generation of the inconsistency and its manifestation, they were
unable to successfully localize the error within the amount of time
they were willing to spend.

After several days we asked the developers in the NoTool pop-
ulation to attempt to use Archie to localize and correct the errors.
Tables 6 and 7 present the localization and correction times, re-
spectively.5 As these results show, once the NoTool developers

5There are no results for developer NT 1 on error 3 because this
developer localized and corrected this error in the previous experi-
ment.

were given access to Archie, they were able to quickly localize and
correct the errors.

Participant Error 1 Error 2 Error 3
NT 1 1 2 -
NT 2 3 2 1
NT 3 3 1 8

Table 6: Localization Times (NoTool with Archie)

Participant Error 1 Error 2 Error 3
NT 1 2 3 -
NT 2 4 3 6
NT 3 4 3 19

Table 7: Correction Times (NoTool with Archie)

6.5 Discussion
Our evaluation is that error localization was the crucial step for

debugging the errors in our study and that Archie’s ability to de-
tect and flag each inconsistency immediately after it was generated
was primarily responsible for the divergent experiences of the two
populations. Developers in both populations had a clear manifes-
tation of the error and started the debugging process by examining
the code that produced this manifestation. For the Tool population,
Archie produced a manifestation that quickly directed each devel-
oper to the procedure containing the incorrect code. Once directed
to this procedure, the developers were able to quickly and effec-
tively locate and correct the error.

Significant Procedure Calls Execution Time (%)
Error 1 12689 15%
Error 2 579 1%
Error 3 4142 8.5%

Table 8: Error to Manifestation Distance

Without Archie, the program executed for a substantial period of
time before the data structure inconsistency finally manifested it-
self as an assertion violation or segmentation fault. Table 8 presents
numbers that quantify this distance. The first column presents the
number of significant procedure calls (this number excludes getter,
setter, and I/O procedure calls) between each error and its mani-
festation as an assertion violation or segmentation fault; the second
column presents this distance as a percentage of the running time
of the correct version.

Moreover, the inconsistency did not cause incorrect code to fail
— it instead caused distant correct code to fail, misleadingly di-
recting the developer to fruitlessly examine correct code instead of
incorrect code as the source of the error. Even though the NoTool
population was able to obtain a reasonably accurate understanding
of each error, their inability to localize the error (even given their
understanding) prevented them from correcting it. And once the
NoTool population was given access to Archie, they were able to
use Archie to quickly and effectively locate and correct the error.

6.5.1 Comparison With Assertions
Our results reveal several limitations of assertions as a debug-

ging tool. Like Archie, assertions test basic consistency constraints
and, if a constraint is violated, tell the developer which property
was violated and where in the execution the violation was detected.



It is therefore not clear that Archie should provide any benefit for a
program whose assertions successfully detect inconsistencies. But
in our study, Archie proved to be substantially more useful to the
developers than the assertions,even though two out of the three
data structure inconsistencies manifested themselves as assertion
violations. There are two (related) reasons for this (counterintu-
itive) result: 1) the assertions in FreeCiv detected the inconsisten-
cies only long after their generation, and 2) the assertions did not
direct the developers to inconsistencies in the initially corrupted
data structures — they instead directed them to inconsistencies in
data structures derived from the initially corrupted data structures.

The assertions in FreeCiv, as in many other programs, tend to test
easily available values accessed by the surrounding code. The as-
sertions therefore test only partial, local properties of the accessed
parts of the data structure, typically properties that the code con-
taining the assertion relies on for its correct execution. In particular,
if a computation reads some data structures and produces others,
the assertions tend to test the read data structures, not the produced
data structures.

It is therefore possible (and even likely) for a program to execute
successfully through many assertions after it corrupts its data struc-
tures. And when an assertion finally catches the inconsistency, the
execution may be very far away from the code responsible for the
inconsistency and the inconsistency may have propagated through
additional data structures. In our incorrect versions of FreeCiv, for
example, one phase of the program produces an inconsistent data
structure, but the assertions detect these inconsistencies only after
a distant phase attempts to read a data structure derived from the
original inconsistent data structure — the intervening phases either
do not attempt to access this data structure or fail to check for the
violated consistency property.

Because Archie comprehensively checks all of the consistency
properties, it makes the developer aware of the inconsistency as
soon as it occurs. This immediate notification was crucial to its
success in our study, because (unlike the delayed notification char-
acteristic of the existing FreeCiv assertions) it immediately directed
the developers to the incorrect code and identified the data structure
that it corrupted (and not some other derived data structure).

6.5.2 Efficiency
The basic benefit of Archie is to localize each error to the re-

gion of the execution between the failed consistency check and the
immediately preceding successful consistency check. It is there-
fore desirable to perform the consistency checks as frequently as
possible so as to better localize the error. The primary obstacle
to frequent consistency checking is the overhead of executing the
checks.

The optimizations discussed in Section 4 are therefore crucial
to the successful use of Archie. Without optimization, the consis-
tency checks increase the FreeCiv execution time from less than a
second to over an hour and half. While this kind of time dilation
may be acceptable for errors that would otherwise be very difficult
to localize, we would prefer to enable developers to use Archie rou-
tinely during all of their executions. For this we need a much more
efficient implementation.

Our optimizations enabled us to provide the developers in our
study with a checker that can execute frequently (enabling excel-
lent error localization) while maintaining an interactive debugging
environment. We believe that this level of efficiency was crucial to
the successful use of Archie in our study and that our optimizations
will prove to be at least as important for obtaining an acceptable
combination of check frequency and response time for other appli-
cations.

7. RELATED WORK
Error localization and correction has been an important issue

ever since people began to develop software. Researchers have
developed a host of dynamic and static debugging tools; a small
selection of recent systems includes [9, 4, 22, 11, 2, 6]. We confine
our survey of related work to research in specification languages,
specification-based testing, hand-coded property checkers, and in-
variant inference systems.

7.1 Specification Languages
The basic concepts in our specification language (objects and

relations) are the same as in object modeling languages such as
UML [19] and Alloy [13], and the specification language itself has
many of the same concepts and constructs as the constraint lan-
guages for these object modeling languages, which are designed,
in part, to be easy for developers to use.

Standard object modeling approaches have traditionally been used
to help developers express and explore high-level design properties.
One of the potential benefits of our approach is that it may enable
developers establish a checked connection between the high-level
concepts in the model and their low-level realization in the data
structures in the program.

7.2 Specification-Based Testing
Specification-based testing (of which Archie is an instance) tests

the correctness of an execution by determining if it satisfies a speci-
fication written in some specification language. Specification-based
testing is usually implemented at the granularity of procedure pre-
conditions and postconditions. ADL [21], JML [14], Testera [15],
Korat [3], and several Eiffel [16] implementations, to name a few,
implement various forms of this kind of specification-based testing.

Archie, in contrast, implements a global invariant checker with
no attempt to verify any property of the execution other than the
preservation of the invariant. In particular, it does not attempt to
verify that the procedure satisfies its postcondition. Advantages of
Archie include reduced specification overhead and complete cover-
age of the global invariant (instead of checking more targeted prop-
erties that are intended to characterize procedure executions); the
disadvantage is that it is not intended to find errors that do not vio-
late the invariant. Our evaluation is that the two kinds of checkers
address complementary properties and that both provide valuable
checking functionality.

7.3 Hand-Coded Property Checkers
It is possible to directly implement checking algorithms in the

same programming language as the rest of the software system. In
fact, we have developed such checkers ourselves and believe that
others have as well. One potential advantage of this approach is the
ability to hand-optimize the algorithm to minimize the checking
overhead; disadvantages include the need to develop and order the
data structure traversal algorithms and to implement any auxiliary
data structures required to check the desired property. Developing
this code can be especially difficult because the developer cannot
assume that the input data structures satisfyany property — the
whole point of the checker is to detect data structures that may
(arbitrarily) violate their invariants.

In our experience hand-coded consistency checkers are vulnera-
ble to anomalies such as infinite traversal loops, incomplete prop-
erty coverage, errors caused by unwarranted assumptions about the
input data structures and, in comparison with specification-based
approaches, increased development overhead. Nevertheless, we be-
lieve that the widespread use of such hand-coded checkers would
be an improvement over current practice.



In an attempt to better understand the issues, we developed sev-
eral hand-coded consistency checkers for the FreeCiv software sys-
tem. These checkers were substantially larger and more difficult to
develop than our FreeCiv specifications. They were also compa-
rably as efficient as (but not significantly more efficient than) our
most heavily optimized Archie checkers.

7.4 Invariant Inference and Checking
Several research groups have developed systems that dynami-

cally infer likely invariants or other program properties; the same
technology can be easily used to check the inferred properties (or,
for that matter, any property expressed using the same formalism).
Specific systems include DAIKON [10], Carrot [18], DIDUCE [12],
and automatic role inference [7].

An important difference between Archie and these previously
existing systems is that Archie is designed to check substantially
more sophisticated properties characteristic of complex linked data
structures that must satisfy important structural constraints. The (in
our view minimal) overhead is the need to provide a specification
of these properties instead of automatically inferring the properties.
And in fact, it would be feasible to use automatic property discov-
ery tools to generate Archie consistency constraints or to obtain an
initial set of properties that could be refined to obtain a more pre-
cise specification.

8. CONCLUSION
Error localization is a necessary prerequisite for correcting soft-

ware errors and often the primary obstacle to eliminating the error.
Archie addresses this problem by accepting a specification of key
data structure consistency properties, then automatically checking
that the data structures satisfy these properties. By inserting calls
to the Archie checker into their software system, developers can lo-
calize data structure corruption errors to the region of the execution
between the call that detects the corrupt data structure and the pre-
vious call, which verified that the data structures were consistent.

Our set of optimizations enables the Archie compiler to generate
checking code that executes more than efficiently enough to enable
an effective check frequency and support its routine use in an inter-
active debugging environment. Moreover, the results from our case
study indicate that developers can almost immediately use Archie
to substantially improve their ability to localize and correct errors
in a substantial software system. We believe that Archie therefore
holds out the potential to substantially improve the ability of de-
velopers to first localize, then correct, data structure corruption er-
rors.
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