
On Role Logic

Viktor Kuncak and Martin Rinard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{vkuncak,rinard}@csail.mit.edu

MIT CSAIL Technical Report No 925
Internal Manuscript VK0101, October 2003

Abstract

We present role logic, a notation for describing properties
of relational structures in shape analysis, databases, and
knowledge bases. We construct role logic using the ideas
of de Bruijn’s notation for lambda calculus, an encoding of
first-order logic in lambda calculus, and a simple rule for
implicit arguments of unary and binary predicates.

The unrestricted version of role logic has the expressive
power of first-order logic with transitive closure. Using a
syntactic restriction on role logic formulas, we identify a
natural fragment RL2 of role logic. We show that the RL2

fragment has the same expressive power as two-variable logic
with counting C2, and is therefore decidable.

We present a translation of an imperative language into
the decidable fragment RL2, which allows compositional ver-
ification of programs that manipulate relational structures.
In addition, we show how RL2 encodes boolean shape anal-
ysis constraints and an expressive description logic.

Keywords: Program Verification, Shape Analysis, Static
Analysis, Two-Variable Logic with Counting, Description
Logic, First-Order Logic, Types, Roles, Object-Models

Draft of October 31, 2003, 1:37pm,
see http://www.mit.edu/~vkuncak/papers for later versions.

Contents

1 Introduction 2

2 Example 2

3 A Recipe for Role Logic 4
3.1 Lambda Calculus 4
3.2 De Bruijn Notation 4
3.3 Predicate Logic in Lambda Calculus 4
3.4 Implicit De Bruijn Indices 5
3.5 Shorthands 6
3.6 Role Logic . 6
3.7 Lambda Calculus for Predicate Definitions . . 6

4 Role Logic Subset RL2 and its Decidability 7
4.1 The Role Logic Subset RL2 8
4.2 Two-Variable Logics C2 and D2 8
4.3 From C2 to RL2 via I2 9
4.4 From RL2 to D2: Closing the Loop 12

5 Applications of Role Logic 12
5.1 Static Analysis Based on RL2 12
5.2 Describing Boolean Shape Analysis Constraints 16
5.3 Encoding an Expressive Descriptive Logic . . 17

6 Related Work 17

7 Conclusions 18

1

1 Introduction

Systems as relational structures. Complex systems
arising in many areas of Computer Science can be naturally
represented as relational structures. The state of an im-
perative program can be specified using sets and relations
denoted by unary and binary predicates [24, 32, 66, 8], es-
pecially for object-oriented programs [36, 63]; a relational
database is a finite relational structure [18, 16]; knowledge
bases and deductive databases can also be based on predi-
cate logic [1, 41, 53].

Shape analysis. Shape analysis techniques [65, 29, 33, 26,
27, 25, 17, 40, 39, 43, 37, 55] can verify and derive precise
properties of objects in the heap. Shape analysis is therefore
important for reasoning about programs written in modern
imperative programming languages. Shape analysis is also
promising as a general-purpose verification technique, be-
cause of its ability to reason about graphs as general struc-
tures, and the ability to summarize properties of unbounded
sets of objects.

Many of the shape analysis techniques have a logical
foundation: [65] is based on (two-valued and three-valued)
first-order logic with transitive closure, [39, 40, 37, 55]
is based on monadic second-order logic of trees, [26, 27]
is based on graph grammars which are closely related to
monadic second-order logic of trees [62]. Theorem proving
is used in [33] to derive consequences of axioms about data
structures. Many shape analyses perform abstract interpre-
tation [19] to synthesize loop invariants [65, 29, 43].

Role logic. This paper presents role logic, a notation
for describing properties of relational structures in shape
analysis, databases, and knowledge bases. Role logic is an
attempt to simultaneously achieve the simplicity of the role
declarations of [43] with a transparent connection with the
well-established first-order logic.

On the one hand, the full role logic has the expres-
sive power of first order logic with transitive closure, which
makes it as expressive as the logic of [65, 36] and more ex-
pressive than the original role constraints [43]. For exam-
ple, role logic is closed under all propositional operations
and generalizes boolean shape analysis constraints [48]. Role
logic formulas easily translate into the traditional first-order
logic notation.

On the other hand, like the specialized notation for
declaring roles in [43], role logic allows natural description of
common properties of imperative data structures with mu-
table references. Like dynamic logics [31] and description
logics [1], role logic allows suppressing names of variables,
which often leads to concise specifications. The conciseness
of role logic makes it an appealing choice for lightweight
annotations in a programming language.

Another property that role logic shares with description
logics is that an interesting subset of role logic is decid-
able. We show the decidability of the fragment RL2 of role
logic in Section 4 by establishing a correspondence with the
two-variable logic with counting C2 [30, 57]. While many
description logics are known to be representable in C2 but
are potentially weaker than C2, the fragment RL2 of role
logic matches precisely the expressive power of C2.

Contributions. The following are the main contributions
of this paper:

1. We introduce role logic, which applies the ideas of im-
plicit arguments and deBruijn’s lambda calculus no-
tation to first order logic (Section 3). The result is

a concise way of specifying properties of first-order
structures that arise in shape analysis, databases, and
knowledge bases.

2. We define a variable-free subset RL2 of role logic (Sec-
tion 4). We give a translation of RL2 formulas to for-
mulas of two-variable logic with counting C2. This
translation implies that RL2 is decidable, because C2 is
decidable [30]. We further give a translation of C2 for-
mulas to RL2 formulas. These two translations imply
that RL2 is just as expressive as C2.

3. As the main application of role logic, in Section 5.1
we present a compositional shape analysis technique.
We introduce a unified language for writing implemen-
tations, specifications, and conformance claims. The
constructs of the language denote relations on program
states expressible in the decidable fragment RL2. The
analysis technique is based on generating verification
conditions in RL2 and applying the decision procedure
for RL2. The analysis verifies the correctness of the dy-
namically changing referencing relationships between
objects by showing that procedures conform to their
specifications. By conjoining procedure specifications
with global invariants, the analysis can also show that
the program preserves the key data structure consis-
tency properties necessary for the correct execution of
the program.

4. We present two additional applications of role logic:

(a) we show in Section 5.3 that a subset of role logic
RL2 naturally corresponds to an expressive de-
scription logic [1, Chapter 5];

(b) we note in Section 5.2 that boolean shape analy-
sis constraints [48], which can describe the basic
structure of data-flow facts in [65], are a subset of
constraints expressible in role logic.

2 Example

To give a flavor of role logic, we present an example that
illustrates one aspect of a client-server manager system that
assigns clients to servers. Figure 1 is a standard object
model that graphically displays the system, using boxes to
represent sets, arrows to represent relations, and intervals
N..M to represent constraints on relations. Figure 2 de-
scribes the same system using role logic. Figure 3 presents
a fragment of the code of the system. The code is expressed
in an imperative language extended with specification con-
structs.

Figure 1: An object model for a component of client-server
manager

2

GlobalInvariant =

{Servers} ∧ (disjoint Servers, Clients) ∧
(partition Clients; WaitingClients, AssignedClients) ∧
[[server ⇒ AssignedClients′ ∧ Servers]] ∧
[[clients ⇔ ∼server]] ∧

[AssignedClients ⇒ card=1server] ∧

[Servers ⇒ card≤5clients]

Example consequence:

P ≡ [WaitingClients ⇒
[¬(clients ∨ server ∨ ∼clients ∨ ∼server)]]

Figure 2: Global constraints of the client-server manager,
expressed in role logic

Global constraints. Figure 2 describes the global con-
straints of a client-server manager system using a conjunc-
tion of role logic formulas. There are two basic kinds of
objects in the system: servers and clients. We model these
objects using two disjoint sets Clients and Servers. The
set Clients is further partitioned into the set AssignedClients
of objects that have been assigned to servers, and the set
WaitingClients that have not been assigned yet. The disjoint,
partition, and other constructs of set algebra of sets and re-
lations (∩, ∪, \) are definable in role logic.

We require the set Servers to be non-empty, which
we denote by {Servers}, with the meaning ∃x.Servers(x).
The constraint [[server ⇒ AssignedClients′ ∧ Servers]] trans-
lates to ∀x.∀y. server(x, y) ⇒ AssignedClients(x)∧Servers(y).
Namely, the brackets [] corresponds to a universal quanti-
fier. An occurrence of a binary predicate (such as server)
is implicitly supplied with the previous-innermost bound
variable (here, x) and the innermost bound variable (here,
y). The occurrence of an unary predicate Servers is sup-
plied with the innermost bound variable (y), unless the
unary predicate is primed, in which case the previous-
innermost bound variable (in this case x) is supplied in-
stead. The constraint [[clients ⇔ ∼server]] means that the
relation clients is the inverse of the relation server. The con-
straint [Servers ⇒ card≤5clients] translates into the formula
∀x. Servers(x) ⇒ ∃≤5y. clients(x, y) in first-order logic with
counting quantifiers.

Note that all of our translations of constraints in Figure 2
use only two variables, x and y. In fact, our entire example
is expressed in the RL2 fragment of role logic. In Section 4
we show that RL2 corresponds to the decidable fragment C2

of two-variable first-order logic with counting, and is there-
fore decidable. Figure 2 presents the formula P denoting the
fact that WaitingClients objects have no incoming or outgo-
ing edges. If we apply the decision procedure for RL2, we
can show that GlobalInvariant ⇒ P is a valid formula, which
means that P is a logical consequence of GlobalInvariant. By
querying whether the GlobalInvariant implies properties of
interest such as P , the developers can increase their con-
fidence in the correctness and completeness of the design.
Moreover, our technique can be used to show the confor-
mance of the program with respect to the design.

proc assignClients() =
spec old(GlobalInvariant) => !{WaitingClients} &
[AssignedClients <=>

old(AssignedClients | WaitingClients)] &
GlobalInvariant

proc assignClientsIMPL() = {
if ({WaitingClients}) {
cl := getWaitingClient();
assignOneClientIMPL(cl);
assignClientsIMPL();

}}
claim: assignClientsIMPL => assignClients

proc assignOneClient(cl) =
spec old(GlobalInvariant &

[cl => WaitingClients]) =>
[WaitingClients | cl <=> old(WaitingClients)] &
[AssignedClients <=> old(AssignedClients) | cl] &
GlobalInvariant

proc assignOneClientIMPL(cl) = {
sv := getServer();
if (Card (sv’ & clients) <= 4) {
WaitingClients := WaitingClients \ cl;
AssignedClients := AssignedClients | cl;
cl.server := sv;
sv.clients := sv.clients | cl;

} else {
assignOneClientIMPL(cl);

}}
claim: assignOneClientIMPL => assignOneClient

proc getWaitingClient() : set =
spec {WaitingClients} =>

skip & [returned => WaitingClients]

proc getServer() : set =
spec {Servers} =>

skip & [returned => Servers]

Figure 3: A fragment of a program that assigns
WaitingClients to Servers

3

Program fragment. Figure 3 shows a fragment of the
code of the client-server manager. The top-level procedure
in the code is a tail-recursive procedure assignClientsIMPL
that processes all WaitingClients objects and assigns them
to Servers objects. The assignClientsIMPL procedure ter-
minates if there are no WaitingClients objects. Otherwise, it
uses the getWaitingClient procedure to obtain an element
of WaitingClients and assigns it to some Servers object us-
ing the assignOneClient procedure, and continues with the
next WaitingClients object using a tail-recursive call.

The partial correctness of the procedure
assignClientsIMPL is given using the specification
assignClients. The requirement that the procedure
conforms to its specification is stated using the construct

claim: assignClientsIMPL => assignClients

The verification of each procedure call site uses only pro-
cedure specification (summary) instead of the body of the
procedure, which allows verification of recursive proce-
dures. In this example, the implementations of procedures
getWaitingClient and getServer are not available, which
illustrates the advantage of assume/guarantee reasoning for
partitioning a verification task.

Using the translation in Section 5.1, the claim constructs
are reduced to verification conditions expressed in role logic.
For a large class of constructs presented in Section 5.1, and
our example in particular, the resulting verification condi-
tions belong to the decidable RL2 and can therefore be dis-
charged using a decision procedure for RL2.

Note that we are able to express detailed specifications
of the correctness of procedures while remaining in the de-
cidable logic. For example, the specification assignClients
ensures that the entire global invariant in Figure 2 is pre-
served, and that no client objects are lost in the assignment
process: after assignClients, the set AssignedClients is the
union of the old value of AssignedClients and the old value
of WaitingClients, whereas the new value of WaitingClients is
an empty set.

3 A Recipe for Role Logic

In this section we motivate the role logic by constructing
it in several steps. We start with first-order logic encoded
in the simply typed lambda calculus; we then move to the
notation that refers to each variable by its index. Finally, we
impose a rule for implicitly supplying the indices of variables
to predicate symbols. Later, in Section 3.6, we summarize
the syntax and the semantics of role logic, and in Section 4
we present a decidable sublogic of role logic.

3.1 Lambda Calculus

Figure 4 presents simply typed lambda calculus with explicit
type annotations in lambda abstraction (the Church-style
simply typed lambda calculus [5, Section 3.2]). This calculus
is our starting point.

As primitive types we use bool for boolean values, and
obj for objects. As the only type constructor we use arrow
→. We introduce relk as a shorthand type defined by

rel0 ≡ bool

relk+1 ≡ obj → relk

Simple types enable us to give a simple set-theoretic seman-
tics to formulas by interpreting lambda abstractions as total

Form = Vars variable lookup
Vars = {x, f, . . .}

| Form Form function application

| λVars : Type.Form function abstraction

Syntax

Γ(v) = T

Γ v : T

Γ F1 : T1 → T2, Γ F2 : T1

Γ F1F2 : T2

Γ[v := T1] F : T2

Γ (λv : T1.F) : T1 → T2

Types

[[v]] e = e v

[[F1 F2]] e = ([[F1]]e) ([[F2]]e)

[[λv : T.F]] e = λd.[[F]] (e[v := d])

Semantics

Figure 4: Church-style Simply Typed Lambda Calculus

functions. The resulting semantics is in Figure 4; the seman-
tics is straightforward because we use lambda calculus itself
as our meta-notation.

3.2 De Bruijn Notation

An alternative to referring to each bound variable by its
name is to refer to each variable by its number, with number
1 denoting the most recently bound variable. This is the
idea behind de Bruijn indices for lambda calculus [22, 4].
Figure 5 presents the syntax and the semantics of lambda
calculus notation with de Bruijn indices. The environment
maps the keyword stack to a stack (i.e., a list) of elements
of the domain. If h is an element and l a list, then the
notation h : l denotes the list with the head h and the tail
l. The abstraction pushes a value onto the stack; the index
〈k〉 retrieves the k-th element from the top of the stack.

3.3 Predicate Logic in Lambda Calculus

We next encode first-order logic with equality in lambda
calculus. We use EQ to denote the binary equality relation.
We assume that the interpretation of relation symbols is
specified in the environment e. We introduce conjunction
and negation as logical operations acting on booleans (the
remaining propositional operations are defined in terms of
∧,¬, as usual). We use the abstraction in lambda calculus
to encode bound variables of predicate calculus. This is
the usual higher-order logic encoding of classical first-order
logic, as used, for example, in Isabelle interactive theorem
prover [58]. Figure 6 presents this encoding of quantifiers.

4

Form = 〈Nat〉
variable lookup
Nat = {1, 2, . . .}

| Form Form function application

| λ :Type.Form function abstraction

Syntax

[[〈i〉]] e = get i e

[[F1 F2]] e = ([[F1]]e) ([[F2]]e)

[[λ :T.F]] e = λd. [[F]] (push d e)

Semantics

get i e = nth i (e stack)

push d e = e[stack := d : (e stack)]

nth1 (h : l) = h

nth (i + 1) (h : l) = nth i l

Auxiliary Functions

Figure 5: De Bruijn Form of Simply Typed Lambda Calcu-
lus

EQ :: rel2

[[EQ]] x y = (x = y)

∧ :: bool → bool → bool

[[∧]] p q = p ∧ q

¬ :: bool → bool

[[¬]] p = ¬p

∃ :: rel1 → bool

[[∃]] f = ∃o ∈ [[obj]]. f o

∃v.F ≡ ∃(λv : obj. F)

∀v.F ≡ ¬∃v.¬F

Figure 6: First-Order Logic in Lambda Calculus

{F} ≡ ∀(λ :obj.F)

[F] ≡ ¬{¬F}

Quantifier Brackets

When Γ(r) = relk then write r
instead of r〈k〉〈k−1〉 . . . 〈1〉

Default Argument Rule

∼F ≡ (λλF)〈1〉〈2〉
F ′ ≡ (λλF)〈2〉〈2〉

card≥kF ≡ {k (λF)〈1〉 ∧ . . . ∧ (λF)〈k〉∧V
1≤i<j≤k ¬EQ〈i〉〈j〉 }k

card=kF ≡ card≥kF ∧ ¬card≥k+1F

(
Pn

i=1 Card Fi) ≥ k ≡
W

Pn
i=1 ki=k

Vn
i=1 card≥kiFi

(
Pn

i=1 Card Fi) = k ≡
W

P
n
i=1 ki=k

Vn
i=1 card=kiFi

disjoint F1, . . . , Fn ≡ [
V

1≤i<j≤n

¬(Fi ∧ Fj)]

partition F ; F1, . . . , Fn ≡ disjoint F1, . . . , Fn ∧
[F ⇔

Wn
i=1 Fi]

F1 \ F2 ≡ F1 ∧ ¬F2

Shorthands

Figure 7: de Bruijn form of Predicate Calculus

To remain within first-order logic, we require the quantifier
∃ to have monomorphic type (obj → bool) → bool (see also
Section 3.7).

3.4 Implicit De Bruijn Indices

Figure 7 shows how we combine the encoding of first-order
logic in higher-order logic and de Bruijn’s notation for
lambda calculus.

Example 1 First-order predicate calculus formula

∀x∀y. f(x, y) ⇒ A(x) ∧ B(y)

can be written in this notation as

[[f〈2〉〈1〉 ⇒ A〈2〉 ∧ B〈1〉]]

The outermost [] bracket acts as the quantifier ∀x; the vari-
able x is referred to inside the formula as 〈2〉 because it is the
second innermost bound variable. The innermost [] bracket
acts as ∀y; the variable y is referred to as 〈1〉.

�

The interpretation environment e contains both the stack for
de Bruijn indices and the bindings of relation symbols such

5

as A and f in Example 1. Relation symbols of predicate logic
correspond to variables of type relk. We use the abstraction
over de Bruijn indices λ :T.F only when T ≡ obj, and write
this abstraction simply λF . For every environment e, the
value (e stack) is a list of elements of type obj.

We next introduce the Default Argument Rule: we omit
de Bruijn indices from the expression r〈k〉〈k−1〉 . . . 〈1〉 when

r is a relation symbol, that is, when Γ(r) = relk. We in-
terpret every occurrence of variable r when Γ(r) = relk as
r〈k〉〈k−1〉 . . . 〈1〉.

Example 2 The Default Argument Rule means that in-
stead of

[[f〈2〉〈1〉 ⇒ A〈2〉 ∧ B〈1〉]]
we write

[[f ⇒ (λA)〈2〉 ∧ B]]

when Γ(f) = rel2 and Γ(A) = Γ(B) = rel1.

�

We lose no expressive power by the Default Argument Rule.
For example, if we wish to denote r〈i3〉〈i2〉〈i1〉, we write
(λλλr)〈i3〉〈i2〉〈i1〉. Note that the Default Argument Rule
applies only to the relation symbols, not to all subformulas,
so (λλλr) with Default Argument rule is equivalent to r
without Default Argument Rule. In general, if r is an n-ary
relation, we write ((λ)kr)〈ik〉〈ik−1〉 . . . 〈i1〉 where we would
previously write r〈ik〉〈ik1〉 . . . 〈i1〉.

3.5 Shorthands

Figure 7 introduces some shorthands. Tilde ∼ swaps two
topmost stack elements 〈1〉 and 〈2〉. Prime ′ replaces the
top 〈1〉 with the element 〈2〉. An expression card≥kF , for an
integer k ≥ 0, corresponds to a counting quantifier in first-
order logic [30]. A counting quantifier states that the num-
ber of elements with some property is greater than or equal
to k. Figure 7 also introduces the shorthand for card=kF
and the shorthand Card for specifying a constraint on a sum
of cardinalities. The shorthands containing ≤ are defined
similarly.

These shorthands play two purposes. On the one hand
they allow expressing certain properties in a more concise
way. On the other hand, if we use the shorthands but give up
the ability to refer to indices explicitly, we obtain a fragment
of first-order logic that is equivalent to two-variable first-
order logic with counting (Section 4) and therefore decidable
[30].

Example 3 Using the shorthands, we write the formula

∀x∀y. f(x, y) ⇒ A(x) ∧ B(y)

as
[[f ⇒ A′ ∧ B]]

The convenience of role logic is even more evident in larger
formulas like

∀x. A(x) ⇒ (∀y.f(x, y) ⇒ B(y) ∨ C(y)) ∧
(∀z.g(x, z) ⇒ D(z))

which can be written as

[A ⇒ [f ⇒ B ∨ C] ∧ [g ⇒ D]] (1)

F∗ ≡ rtrancl (λλF) 〈2〉 〈1〉
[[rtrancl]] r x y = ∃n ≥ 0.∃z0, . . . , zn. z0 = x ∧ zn = y ∧Vn−1

i=0 r zi zi+1

F1 ◦ F2 ≡ {(λλF1)〈3〉〈1〉 ∧ (λλF1)〈2〉〈1〉}
F+ ≡ F ◦ F∗

acyclic F ≡ ¬{F+ ∧ EQ}
tree F1, . . . , Fn ≡ acyclic

Wn
i=1 Fi

∧ [(
Wn

i=1 Fi)∗ ⇒Pn
i=1 Card (∼Fi) ≤ 1]

Figure 8: Transitive Closure Construct and Shorthands

Formulas of form (1) are useful for describing properties of
first order structures that arise in shape analysis, see e.g.
[48, 47, 71].

�

For additional expressive power we introduce the
reflexive-transitive closure operator ∗, with the semantics in
Figure 8. We also introduce a shorthand for relation com-
position. The relation composition shorthand works when
F1 and F2 both denote binary relations, when the resulting
expression can be thought of as denoting a binary relation,
as well as when F1 denotes a set and F2 denotes a binary re-
lation, when the resulting expression denotes the set which
is the image of F1 under F2. For the case of relation we also
introduce a simpler definition in Figure 13 whose advantage
is that it uses only two implicit indices.

3.6 Role Logic

Figure 9 summarizes the syntax of role logic. The semantics
of role logic follows from Section 3.

We next explain the purpose of lambda abstraction in
our logic.

3.7 Lambda Calculus for Predicate Definitions

In the resulting role logic of Figure 9 we retain the named
variables in the environment, and we allow abstraction over
those named variables. As a result, there two kinds of
lambda abstraction: abstraction over de Bruijn indices and
abstraction over named variables. Abstraction over a de
Bruijn index is always over 〈1〉 which denotes an object
of type obj, such abstraction is written λF . The abstrac-
tion over a named variable may abstract over variables of
more complex types and is written λx : T.F . There is only
one kind of lambda calculus application; both (λF1)F2 and
(λx : T.F1)F2 are redexes.

The purpose of the named lambda abstraction λx : T.F
is twofold. First, when T ≡ obj, then we can write ∃(λx :
obj.F) as ∃x.F as in the usual first-order predicate calculus.
Second, when T is not obj, we can encode acyclic definitions
of higher-order predicates that can be subsequently substi-
tuted away. Define the expression

let P : T = F1 in F2

6

Form = Vars named object or predicate

| 〈Nat〉 de Bruijn index of an object variable

| EQ equality between 〈1〉 and 〈2〉
| Form ∧ Form conjunction

| ¬Form negation

| ∃Form existential quantification over objects

| λForm de Bruijn abstraction over objects

| λVars : Type . Form abstraction over named variables

| Form Form function application

| Form′ let 〈1〉 be 〈2〉 in F

| ∼Form relation inverse

| card≥kForm at least k objects satisfy F

| Form∗ reflexive transitive closure

Figure 9: The Syntax of Role Logic

to be equivalent to

(λP : T . F2)F1

Such definitions are very useful for describing complex data
structures.

Note that acyclic definitions introduced through typed
lambda calculus via bindings λx : T.F for T �≡ bool do
not make the logic higher-order, because we define the the
quantifier ∃ to always have the monomorphic type (obj →
bool) → bool, and the reflexive-transitive closure operator ∗
to have the type

(obj → obj → bool) → (obj → obj → bool)

Consider a well-typed formula F whose only free variables
are relation symbols, and whose de Bruijn indices only re-
fer to indices bound in the formula. Assume that we have
applied the Default Argument Rule, so that all de Bruijn in-
dices are explicit. Then we may treat de Bruijn abstraction
as the usual abstraction over a disjoint set of variables. By
strong normalization of simply typed lambda calculus [5],
let F 0 be the normal form of F . We claim that in F 0 the
only occurrence of lambda abstraction is within expressions
of the form ∃(λx : obj.F) or rtrancl(λx : obj.λy : obj.F).

To show the claim, consider an occurrence of λx : obj.F0

in F 0. Let F1 be the largest enclosing occurrence λx1 :
T1.λxn : Tn.λx : obj.F0. Then F1 cannot be the entire
F 0, because F 0 has type bool by subject reduction. F1

cannot occur within some application F1F2, because F1F2

would constitute a redex and F 0 is in normal form. Hence,
F1 can only occur in an expression of the form F3F1. Let
us consider the “spine” [38] of F3F1, so F3 ≡ FnFn−1 . . . F4

n ≥ 3 and Fn is not an application. Fn is not an abstraction,
because F 0 is in normal form. Hence, Fn can only be a
variable or a constant.

The only variables or or constants that can, by the typing
rules, be applied to an abstraction F1 are ∃ and rtrancl, so
either Fn ≡ ∃ or Fn ≡ rtrancl.

Consider the case Fn ≡ ∃. By the type of ∃, we conclude
F3 ≡ Fn and F1 ≡ λx : obj.F0, as desired.

Consider the case Fn ≡ rtrancl. Then F3 ≡ Fn, and
F1 ≡ λu : obj.λv : obj.G, so either u ≡ x and F1 ≡ λx.obj.F0

where F0 = λv : obj.G, or v ≡ x and F1 ≡ λu : obj.λx :
obj.F0. This finishes the proof of the claim.

We conclude that typed lambda calculus allows us to use
flexible definitions of higher-order predicates to structure
our specifications while keeping the language first-order, be-
cause we may substitute away all definitions using strong
normalization of the typed lambda calculus.

4 Role Logic Subset RL2 and its Decidability

In this section we introduce a subset RL2 of role logic (Fig-
ure 11) and show its decidability.

To show the decidability of RL2, we give translations of
formulas between the following four logics:

1. D2: the formulas of the first-order logic with count-
ing in which every subformula has at most two free
variables (different subformulas may have different free
variables);

2. C2: the formulas of the two-variable logic with count-
ing, which uses x and y as the only variable names; the
satisfiability and finite satisfiability problem for C2 was
shown to be decidable in [30]; the satisfiability problem
for C2 was shown NEXPTIME-complete in [57];

3. I2: de Bruijn version of the two-variable logic with
counting, which uses only de Bruijn indices 〈1〉 and
〈2〉;

4. RL2: a subset of role logic that contains no explicit de
Bruijn indices.

Figure 10 sketches the idea of the proof of equivalence of
these four logics. We give translations of formulas from D2

to C2 (Section 4.2, Figure 15) from C2 to I2 (Section 4.3,
Figure 18), from I2 to RL2 (Section 4.3, Figure 19) and
from RL2 to D2 (Section 4.4, Figure 20). These translations
imply that the satisfiability problem for these four logics are
equivalent, so by decidability of C2 [30] we conclude that all
these logics are decidable.

7

RL2 I2

D2 C2

�

�

�

�

Fig. 15

Fig. 19

Fig. 20 Fig. 18

Figure 10: Showing Equivalence of Four Logics.

Form = Vars binary or unary relation symbol

| EQ equality between 〈1〉 and 〈2〉
| Form ∧ Form conjunction

| ¬Form negation

| Form′ let 〈1〉 be 〈2〉 in F

| ∼Form relation inverse

| card≥kForm at least k objects satisfy F

Figure 11: The Syntax of RL2 Subset of Role Logic

Nat2 = {1, 2}
e :: Nat2 → obj

[[A]]e = [[A]](e 1)

[[f]]e = [[f]](e 2, e 1)

[[EQ]]e = (e 2) = (e 1)

[[F1 ∧ F2]]e = ([[F1]]e) ∧ ([[F2]]e)

[[¬F]]e = ¬([[F]]e)

[[F ′]]e = [[F]](e[1 �→ (e 2)])

[[∼F]]e = [[F]](e[1 �→ (e 2), 2 �→ (e 1)])

[[card≥kF]]e = |{o | [[F]](e[1 �→ o, 2 �→ (e 1)])}| ≥ k

Figure 12: The Semantics of RL2

quantifiers:

{F} = card≥1F

[F] = ¬{¬F}
relation image:

FA ‘ Fr = {FA ∧ ∼Fr}
weakest precondition:

wp Fr FA = [Fr ⇒ FA]

Figure 13: Some Shorthands for RL2

4.1 The Role Logic Subset RL2

Figure 11 presents the two-variable role logic RL2. Com-
pared to the full role logic in Figure 9, RL2 omits the con-
structs for creating definitions, the constructs for explicitly
referring to object variables, and transitive closure. Fig-
ure 12 summarizes the semantics of RL2; this semantics is in
accordance with the semantics of the full role logic derived
in Section 3. Figure 13 defines shorthands that illustrate
some constructs definable in RL2.

We show that RL2 has precisely the same expressive
power as the set of the formulas of logic C2, which is shown
decidable in [30] over the set of all models, as well as over
the set of finite models.

4.2 Two-Variable Logics C2 and D2

Figure 14 presents the logic C2 [30]. The logic C2 is first-
order logic with equality and counting, restricted to formulas
that contain only two fixed variable names x and y.

In this section we argue that a more flexible restriction
on variable names yields logic with same definable relations.
Let FV(F) denote the free variables of formula F .

Definition 4 A D2 formula is a formula F of first-order
logic with counting such that |FV(G)| ≤ 2 for every subfor-
mula G of F .

Clearly every C2 formula is a D2 formula, but not vice
versa, because the set of possible variables that may occur in
D2 formulas is countably infinite. The syntactic restriction
on variables in Definition 4 is more general than in the def-
inition in C2, which makes D2 more convenient for writing
readable formulas.

We show that every D2 formula is equivalent to a C2

formula (modulo the renaming of free variables). Up to one
technical detail, it suffices to rename bound variables in a
D2 formula to obtain a C2 formula. We therefore derive the
equivalence of D2 and C2 as a consequence of an observation
about lambda calculus terms.

Definition 5 Define the set of lambda calculus terms
2VarTerms as the smallest set that satisfies the following con-
ditions:

1. v ∈ 2VarTerms if v is a variable and c ∈ 2VarTerms if c
is a constant;

2. if T1, T2 ∈ 2VarTerms and |FV(T1) ∪ FV(T2)| ≤ 2, then
(T1T2) ∈ 2VarTerms;

8

Vars2 = {x, y}
Form = A(Vars2) atomic formula with unary relation A

| f(Vars2, Vars2) atomic formula with binary relation f

| Vars2 = Vars2 equality between objects

| Form ∧ Form conjunction

| ¬Form negation

| ∃≥kVars2. Form at least k objects satisfy formula

Figure 14: The Syntax of Two-Variable Logic with Counting C2

3. if T ∈ 2VarTerms, v is a variable, and |FV(T)∪ {v}| ≤
2, then λv.T ∈ 2VarTerms.

From Definition 5 it follows that if T ∈ 2VarTerms, then
|FV(T1)| ≤ 2 for every subterm T1 of T . Moreover, if λv.T ∈
2VarTerms and v /∈ FV(T), then |FV(T)| ≤ 1.

We next define the set capt(v, F) of those bound variables
z in formula F such that v occurs in the scope of a binding
of z.

Definition 6

capt(v, u) = ∅, if u is a variable

capt(v, F1F2) = capt(v, F1) ∪ capt(v, F2)

capt(v, λu.F) =

(
capt(v, F) ∪ {u}, if v ∈ FV(λu.F)

∅, otherwise

As usual, we say that T and T ′ are α-equivalent if T ′ can
be obtained from T by renaming bound variables.

Lemma 7 For every T ∈ 2VarTerms with FV(T) ⊆ {u, v}
there exists a term T ′ = norm(T) such that T ′ is α-equivalent
to T , all bound variables in T ′ are among {x, y}, and either

1. capt(u, T ′) ⊆ {x} and capt(v, T ′) ⊆ {y}, or

2. capt(u, T ′) ⊆ {y} and capt(v, T ′) ⊆ {x}.

Proof. Let FV(T) ⊆ {u, v}. Without loss of generality
we may assume that {u, v} ∩ {x, y} = ∅. The proof is by
induction on the structure of terms.

1. T = u for a variable u. Let T = T ′, clearly
capt(u, T ′) = capt(v, T ′) = ∅.

2. T = T1T2. Let T ′
1 = norm(T1) and T ′

2 = norm(T2) by
induction hypothesis. Assume capt(u, T ′

1) ⊆ {x} and
capt(v, T ′

1) ⊆ {y} (the other case is symmetric). We
consider two cases for T ′

2.

(a) capt(u, T ′
2) ⊆ {x} and capt(v, T ′

2) ⊆ {y}. Then
let norm(T) = T ′

1T
′
2.

(b) capt(u, T ′
2) ⊆ {y} and capt(v, T ′

2) ⊆ {x}. Let T ′′
2

be the result of swapping in T ′
2 all occurrences of

bound variables x and y. Then capt(u, T ′′
2) ⊆ {x}

and capt(v, T ′′
2) ⊆ {y}, so we let norm(T) = T ′

1T
′′
2 .

In both cases, capt(u, norm(T)) ⊆ {x} and
capt(v, norm(T)) ⊆ {y}.

3. T = λw.T1. |{u, v}| = 2 and |FV(T1) ∪ {w}| ≤ 2
by the definition of 2VarTerms, so it cannot be the
case that both u ∈ FV(T1) and v ∈ FV(T1). Since
FV(T1) ⊆ {u, v, w}, we conclude that FV(T1) ⊆ {u, w}
or FV(T1) ⊆ {v, w}.
Suppose therefore that FV(T1) ⊆ {u, w} (the case
FV(T1) ⊆ {v, w} is symmetric). By induction hypoth-
esis, let T ′

1 = norm(T1). Assume capt(u, T1) ⊆ {x}
and capt(w, T1) ⊆ {y} (the case capt(u, T1) ⊆ {y}
and capt(w, T1) ⊆ {x} is symmetric). Let norm(T) =
λx.(F1[w := x]). Then capt(u, norm(T)) ⊆ {x} and
capt(v, norm(T)) = ∅ ⊆ {y}.

To apply Lemma 7 to D2 formulas, we represent all log-
ical operations and quantifiers as constants. Variables in a
lambda term then correspond to first-order variables. To
ensure that the representation of formulas satisfies the con-
dition |FV(T)∪ {v}| ≤ 2 for each term λv.T , we require the
following condition:

For every formula ∃≥kx.F ,
either x ∈ FV(F) or F ≡ true.

(2)

We ensure this condition by applying the rule

∃≥kx.F ∼= F ∧ ∃≥kx. true

for x /∈ FV(F).
After ensuring the condition (2), we apply the transla-

tion in Figure 15. Lemma 7 justifies the correctness of the
translation. The translated formula is of the same size as the
original formula. The translation can clearly be performed
in polynomial time, including the process of ensuring the
condition (2). The translation time can be made close to lin-
ear by delaying the application of the substitution [w := x]
and the swap operation.

4.3 From C2 to RL2 via I2

In this section we introduce logic I2 (Figure 16). We then
give translations from C2 to I2 (Figure 18), and from I2 to
RL2 (Figure 19).

9

TDC [[A(v)]] = A(v)

TDC [[f(u, v)]] = f(u, v)

TDC [[¬F]] = ¬TDC [[F]]

TDC [[F1 ∧ F2]] =

8>>>>>>><
>>>>>>>:

F ′
1 ∧ F ′

2, if capt(u, F ′
1), capt(u, F ′

2) ⊆ {x}
capt(v, F ′

1), capt(v, F ′
2) ⊆ {y}

or
capt(u, F ′

1), capt(u, F ′
2) ⊆ {y}

capt(v, F ′
1), capt(v, F ′

2) ⊆ {x}
F ′

1 ∧ (swap F ′
2), otherwise

FV(F1 ∧ F2) = {u, v}
F ′

1 = TDC [[F1]]

F ′
2 = TDC [[F2]]

swap (A(v)) = A(s u, s v)

swap (f(u, v)) = f(s u, s v)

swap (¬F) = ¬(swap F)

swap (F1 ∧ F2) = swap F1 ∧ swap F2

swap (∃≥kv. F) = ∃≥k(s v). (swap F)

s x = y, s y = x
s u = u, if u /∈ {x, y}

TDC [[∃≥kw. F]] =

(
∃≥kx. (F ′[w := x]), if capt(u, F ′) ⊆ {x}, capt(w, F ′) ⊆ {y}

∃≥ky. (F ′[w := y]), if capt(u, F ′) ⊆ {y}, capt(w, F ′) ⊆ {x}

FV(F) ⊆ {u, w}
F ′ = TDC [[F]]

Figure 15: Translation of D2 formulas to C2 formulas.

Form = A(〈Nat2〉) atomic formula with unary relation A

| f(〈Nat2〉, 〈Nat2〉) atomic formula with binary relation f

| 〈Nat2〉 = 〈Vars2〉 equality between objects

| Form ∧ Form conjunction

| ¬Form negation

| card≥kForm at least k objects satisfy formula

Figure 16: The Syntax of Intermediate Logic I2

10

e :: Nat2 → Vars2

TIC [[A(〈i〉)]]e = A(e i)

TIC [[f(〈i1〉, 〈i2〉)]]e = f(e i1, e i2)

TIC [[〈i1〉=〈i2〉]]e = (e i1) = (e i2)

TIC [[F1 ∧ F2]]e = (TIC [[F1]]e) ∧ (TIC [[F2]]e)

TIC [[¬F]]e = ¬(TIC [[F]]e)

TIC [[card≥kF]]e = ∃≥kv. (TIC [[F]][1 �→ v, 2 �→ (e 1)])
v = s(e 1)

s x = y, s y = x

correctness criterion:

[[TIC [[F]]e]]eC = [[F]](eC ◦ e)

Figure 17: Translating I2 formulas to C2 formulas

Intermediate logic. Figure 16 presents logic I2. I2 is
a version of C2 that uses two de Bruijn indices instead of
variables. We introduce I2 to separate the the translation of
C2 formulas to RL2 in two phases: the first phase introduces
de Bruijn indices, and the second phase introduces Default
Argument Rule.

For the sake of illustration, we first present a converse
translation, from I2 to C2, although we do not need this
translation to show the equivalence of D2, C2, I2, and RL2.

From I2 to C2. Figure 17 presents the translation of I2

into C2. This translation amounts to introducing alterna-
tively variables x and y for each counting quantifier, and
resolving the indices appropriately. Using the criterion in
Figure 17, the correctness of the translation follows by in-
duction on the structure of formulas.

From C2 to I2. We turn to the translation from C2 to
I2. Consider the C2 formula

F ≡ ∃≥1y. (∃≥1x. (∃≥1x.P (x, y)) ∧ Q(x, y))

The subformula P (x, y) of F refers to the variable y, which
is the 3rd bound variable starting from the innermost one.
Therefore, the straightforward replacement of variables by
de Bruijn indices would require the access to 〈3〉. To ad-
dress this problem, the translation from C2 to I2 involves
a preparatory “alternating transformation” on C2 formulas.
For every formula F , let B(F) denote some purely proposi-
tional combination of F and perhaps some other formulas.
The alternating transformation eliminates all subformulas
of the form ∃≥k1v. B(∃≥k2v. G(v)) for v ∈ Vars2. In the re-
sulting formula, the sequence of bound variables along any
path in the formula tree is alternating, that is, satisfies the
regular expression (y|ε)(xy)∗(x|ε).

For the purpose of alternating transformation, we add
the disjunction ∨ to the language. We show how to eliminate
successive quantification over x from ∃≥k1x.B(∃≥k2x. G)

(the case of ∃≥k1y.B(∃≥k2y. G) is analogous). First, trans-
form B into disjunction of canonical conjunctions of for-
mulas H , where each H satisfies one of the following three
conditions:

e :: Vars2 → Nat2

TCI [[A(v)]]e = A(〈e v〉)
TCI [[f(v1, v2)]]e = f(〈e i1〉, 〈e i2〉)

TCI [[v1=v2]]e = 〈e v1〉 = 〈e i2〉
TCI [[F1 ∧ F2]]e = (TCI [[F1]]e) ∧ (TCI [[F2]]e)

TCI [[¬F]]e = ¬(TCI [[F]]e)

TCI [[∃≥kx. F]]e = card≥k(TCI [[F]][x �→ 1, y �→ 2])

invariant: e y = 1

TCI [[∃≥ky. F]]e = card≥k(TCI [[F]][y �→ 1, x �→ 2])

invariant: e x = 1

correctness criterion:

[[TCI [[F]]e]]eI = [[F]](eI ◦ e)

Figure 18: Translating normalized C2 formulas to I2 formu-
las

C1) H is quantifier-free;

C2) H is of the form ∃≥kv. G(v) for v ∈ Vars2;

C2) H is of the form ¬∃≥kv. G(v) for v ∈ Vars2;

Let B ≡
Wn

i=1 Bi where each Bi is a canonical conjunction
(cube) of formulas satisfying conditions C1), C2), C3). Be-
cause Bi ∧Bj is contradictory for distinct cubes Bi and Bj ,
the sets of objects o satisfying different Bi are disjoint, so

|{o | [[B]]e[v → o]}| =
nX

i=1

|{o | [[Bi]]e[v → o]}|

We can therefore replace counting quantifier on B with a
propositional combination of counting quantifiers on Bi for
1 ≤ i ≤ n (as in quantifier elimination for boolean algebras,
[67], [49, Section 3.2]). Specifically,

∃≥k1x.B ∼=
_

Pn
j=1 lj=k1

n̂

i=1

∃≥lix. Bi (3)

It is therefore sufficient to eliminate the successive quantifi-
cation over x in ∃≥k1x.Bi(∃≥k2x. G). Group the conjuncts
in Bi as follows. Let FV(F) denote free variables of formula
F . Let P (x) be the conjunction of conjuncts C of Bi such
that x ∈ FV(C), and let Q be the conjunction of all con-
juncts C of Bi such that x /∈ FV(C). All occurrences of
∃≥k2x. G in Bi are in Q. We have

∃≥k1x. Bi
∼= ∃≥k1x. Q ∧ P (x) ∼= Q ∧ ∃≥k1x. P (x)

where the last equivalence follows easily by definition of
the counting quantifier ∃≥xk1. In the resulting formula
Q ∧ ∃≥xk1. P (x), the subformula ∃≥k2x.G is in Q and is
therefore not in the scope of the original quantifier. By re-
peating this transformation we ensure that all quantifiers
are alternating.

11

TIR[[A(〈1〉)]] = A

TIR[[A(〈2〉)]] = A′

TIR[[f(〈2〉, 〈1〉)]] = f

TIR[[f(〈1〉, 〈2〉)]] = ∼f

TIR[[f(〈2〉, 〈2〉)]] = f ′

TIR[[f(〈1〉, 〈1〉)]] = ∼(f ′)

TIR[[〈2〉 = 〈1〉]] = EQ

TIR[[〈1〉 = 〈2〉]] = EQ

TIR[[〈1〉 = 〈1〉]] = true

TIR[[〈2〉 = 〈2〉]] = true

TIR[[F1 ∧ F2]] = TIR[[F1]] ∧ TIR[[F2]]

TIR[[¬F]] = ¬TIR[[F]]

TIR[[card≥kF]] = card≥kTIR[[F]]

correctness criterion:

[[TIR[[F]]]]eI = [[F]]eI

Figure 19: Translating I2 formulas to RL2 formulas

After the alternating transformation, the translation
from C2 to I2 is straightforward, and is presented in Fig-
ure 18. The correctness of the translation follows by in-
duction of the structure of formulas. The translation in
Figure 18 runs in linear time and produces an I2 formula
whose size is linear in the size of the original C2 formula.

The alternating transformation that precedes the trans-
lation may cause exponential blowup of the formula size due
to translation to disjunctive normal form, but for most for-
mulas the transformation need not be applied. Moreover,
if we allow introducing new predicate names, then we may
replace ∃≥k1x. B(∃≥k2x. G(x, y)) with ∃≥k1x. B(P (y)) and
conjoin the topmost formula with the formula ∀y.P (y) ⇐⇒
∃≥k2x. G(x, y). Such transformation can be performed in
linear time and preserves the satisfiability of formulas (see
[30, Section 2.1, Page 18] and [30, Lemma 2.3]).

From I2 to RL2. Figure 19 presents the translation from
I2 to RL2, which is simple and does not require a translation
environment. The translation algorithm runs in linear time
and produces a RL2 formula whose size is linear in the size
of the original I2 formula.

4.4 From RL2 to D2: Closing the Loop

In the final step, we provide a translation from RL2 formulas
to D2 formulas. The logic D2 is a convenient target of trans-
lation of RL2 formulas. (Namely, a simple attempt at trans-
lation from RL2 to I2 runs into the difficulty of the following
form. Formula (card≥1f)′ is equivalent to card≥1f(〈3〉, 〈1〉)
which uses index 〈3〉 not available in I2. Similarly, an at-
tempt to translate from RL2 to C2 runs into difficulty of
variable capture.)

Figure 20 presents the translation from RL2 to D2. The
correctness of the translation follows by induction on the

e 0 ∈ Nat

e k ∈ {y1, y2, . . .} for k ∈ {1, 2}
TRD[[A]]e = A(e 1)

TRD[[f]]e = f(e 2, e 1)

TRD[[EQ]]e = (e 2) = (e 1)

TRD[[F1 ∧ F2]]e = (TRD[[F1]]e) ∧ (TRD[[F2]]e)

TRD[[¬F]]e = ¬(TRD[[F]]e)

TRD[[card≥kF]]e = ∃≥kv. [[F]]e[0 �→ n, 1 �→ v, 2 �→ (e 1)]
v = yn

n = 1 + e 0

TRD[[∼F]]e = TRD[[F]](e[1 �→ (e 2), 2 �→ (e 1)])

TRD[[F ′]]e = TRD[[F]](e[1 �→ (e 2)])

correctness criterion:

[[TRD[[F]]e]]eC = [[F]](eC ◦ e)

result is in D2:

FV(TRD[[F]]e) ⊆ {e 1, e 2}

Figure 20: Translating RL2 formulas to D2 formulas.

structure of formulas. Furthermore, each subformula G1 of
a formula TRD[[F]]e is of the form G1 ≡ TRD[[G]]e1 for some G
and r1, and by induction it follows that the free variables of
TRD[[G]]e1 are among {e1 1, e1 2}. Therefore, |FV(G1)| ≤ 2
and the result of translation is a D2 formula.

Summary As indicated in Figure 10, we have presented
translations from D2 to C2, from C2 to I2, from I2 to RL2,
and from RL2 to D2. We conclude that D2, C2, I2, and RL2

are all equivalent logics, and, by [30], decidable.
The satisfiability problem for C2 formulas is shown to be

NEXPTIME-complete in [57]. We have observed that there
are efficient polynomial transformations of formulas from D2

to C2, from C2 to I2, from I2 to RL2 and from RL2 to D2

that yield formulas equivalent for satisfiability. (Moreover,
all transformations except from C2 to I2 yield equivalent
formulas in the same vocabulary.) As a result, the satisfia-
bility problem of all these logics is NEXPTIME-complete.

5 Applications of Role Logic

We next present three applications of role logic. In Sec-
tion 5.1 we present a shape analysis technique based on
generating verification conditions in RL2 and applying the
decision procedure for RL2. In Section 5.2 we note that
boolean shape analysis constraints [48] are a subset of con-
straints expressible in role logic. In Section 5.3 we show
that a different subset of RL2 corresponds to an expressive
description logic [1, Chapter 5].

5.1 Static Analysis Based on RL2

This section shows how to use the decidability of RL2 for
static analysis of imperative programs. Figure 21 presents

12

the syntax of a simple imperative language. Figure 22
presents predicates in RL2 that describe the meaning of
statements in this language.

Program state. The state of the program is a first-order
structure interpreting the language L = A∪F where A is a
finite set of unary predicates and F is a finite set of binary
predicates. We fix a countable universe of objects obj, and
assume that each structure has the same universe obj. To
specify the structure, it suffices to give the set eA ⊆ obj for
each unary predicate A ∈ A, and a binary relation ef ⊆
obj × obj for each binary predicate f ∈ F .

Extended language. For each k ∈ {ε, 0, 1, . . .} we define
the language L(k). We identify L(ε) with L, A(ε) with A
and f(ε) with f . For k ∈ {0, 1, . . .}, we let A(k) be a fresh
unary predicate symbol, and f(k) a fresh binary predicate
symbol, and L(k) be the set of all A(k) and f(k). The notation
formRen (i → j) F for i, j ∈ {ε, 0, 1, 2 . . .} denotes a formula
resulting from F by replacing all elements of L(i) with the
corresponding elements of L(j).

Describing relations in the extended language. The
meaning of each statement in our imperative language is a
binary relation on L-structures. We describe a binary re-
lation on structures with an RL2 formula in the language
L(0) ∪ L(ε). The predicates in L(ε) denote the state compo-
nents in the final state; the predicates in L(0) denote the
state components in the initial state. If F is a formula
in language L(ε), then F is a shorthand for the formula

formRen (ε → 0) F in the language L(0); the purpose of F is
to denote the value of the formula F evaluated in the initial
state.

Define the renaming operator strucRen (i → j) such that
if e(i) is an L(i)-structure, then e(j) = strucRen (i → j) e(i)

is an L(j)-structure such that e(j) A(j) = e(i) A(i) and
e(j) f(j) = e(i) f(i) for all A, f ∈ L. Then the relation

on L-structures denoted by an RL2 formula F in language
L(0) ∪ L(ε) is {〈e, e′〉 | [[F]]((strucRen (ε → 0) e) ∪ e′)}.
Assignment statements. The imperative language in
Figure 22 contains three forms of assignment statements.

The statement A := F evaluates to the formula F , which
denotes a unary predicate. The statement makes A true
precisely for those object for which F was true in the ini-
tial state. Unary predicates other than A as well as binary
predicates remain unchanged.

The statement F1.f := F2 generalizes the statement
x.f = y in a language like Java by allowing simultaneous
modification of fields of a set of objects. Formula F1 spec-
ifies the set of objects whose fields are modified. Formula
F2 specifies the new value of the field f for objects in F1.
Unary predicates and binary predicates other than f remain
unchanged. Note that F2 may specify a relation, which is
particularly interesting when F1 denotes a set with more
then one element because it allows the value of the field to
depend on the source object of the field. As a special case,
F1.f := g copies the entire field g into field f for all objects
in the set given by F1, and, in particular, true.f := g copies
the field g into f . The statement F1.∼f := F2 is dual to
F1.f := F2, and updates the inverse of the predicate f .

Statements for specification. The statement assume F
filters out the state transitions for which F does not hold
in the initial state. The statement assert F behaves arbi-
trarily if the condition given by F does not hold in the ini-
tial state. The state contains an additional predicate Error,
which makes it easier to detect that an arbitrary behavior

[[P1 ⇒ P2]] = ([[S1]]∧
¬[[S2]](B1 �→ A1, . . . , Bn �→ An))
is not satisfiable, where:

P1(A1, . . . , An) = S1

P2(B1, . . . , Bn) = S2

[[S2]] has no fresh predicates

[[A :=F]] = [A ⇐⇒ F] ∧ modUnary A

[[F1.f := F2]] = [F1 ⇒ [f ⇐⇒ F2]] ∧
[¬F1 ⇒ [f ⇐⇒ f]] ∧
modBinary f

[[F1.∼f := F2]] = [F1 ⇒ [∼f ⇐⇒ F2]] ∧
[¬F1 ⇒ [∼f ⇐⇒ ∼f]] ∧
modBinary f

[[P (F1, . . . , Fn)]] = [[S]](A1 �→ F1, . . . , An �→ Fn)

where P (A1, . . . , An) = S

[[assume F]] = F ∧ skip

[[assert F]] = F ⇒ skip

[[spec F]] = [[F]]

[[s1 ∧ s2]] = [[s1]] ∧ [[s2]]

[[s1 ∨ s2]] = [[s1]] ∨ [[s2]]

[[s1; s2]] = formRen (ε → k) [[s1]] ∧
([¬Error] ⇒ formRen (0 → k) [[s2]])

k − fresh element of {1, 2, . . .}
[[modify E]] = M[[E]]

modUnary A ≡
V

B �=A[B ⇐⇒ B] ∧V
g[[g ⇐⇒ g]] ∧

[Error ⇐⇒ Error]

modBinaryf ≡
V

B [B ⇐⇒ B] ∧V
g �=f [[g ⇐⇒ g]] ∧

[Error ⇐⇒ Error]

skip ≡
V

B [B ⇐⇒ B] ∧V
g[[g ⇐⇒ g]] ∧

[Error ⇐⇒ Error]

Figure 22: Predicates Describing the Semantics of the Lan-
guage from Figure

13

F − a role logic formula

A − unary predicate

f − binary predicate

procedure ::= procName(unaryList) = stat

refinement ::= procName ⇒ procName

unaryList ::= A | unaryList, A

stat ::= asgnStat assignment statement

| procName(paramList) procedure call

| assume F assume statement

| assert F assert statement

| spec FE specification

| stat ∨ stat non-deterministic choice

| stat ∧ stat conjunction

| stat; stat sequential composition

asgnStat ::= A := F update of unary predicate

| F1.f := F2 update of binary predicate

| F1.∼f := F2 update of inverse of binary predicate

FE ::= A | f | EQ | F1 ∧ F2 | ¬F

| F ′ | ∼F | card≥kF

| asgnStat | modify items | procName(paramList)

paramList ::= F | paramList, F

items ::= modItem | items, modItem

modItem ::= A :<= F modification of unary predicate

| F1.f :<= F2 modification of binary predicate

| F1.∼f :<= F2 modification of inverse of binary predicate

Figure 21: Syntax of a Small Imperative Language

14

proc assignClients() =
spec old(GlobalInvariant) =>
(modify WaitingClients, AssignedClients,

old(WaitingClients).server :<= Servers,
Servers.clients :<= old(WaitingClients)) &

!{WaitingClients} &
[AssignedClients <=>

old(AssignedClients | WaitingClients)] &
GlobalInvariant

proc assignOneClient(cl) =
spec old(GlobalInvariant) &

[cl => old(WaitingClients)] =>
(modify WaitingClients, AssignedClients,

cl.server :<= Servers,
Servers.clients :<= cl) &

[WaitingClients | cl <=> old(WaitingClients)] &
[AssignedClients <=> old(AssignedClients) | cl] &
GlobalInvariant

Figure 24: Specifications for assignClients and
assignOneClient extended with side effect specifica-
tions.

occurred (the sequential composition operator ensures that
the Error value is propagated).

The statement spec FE allows describing relations on
states directly in terms of an extended RL2 formula FE . For-
mula FE allows assignment statements and modifies state-
ments in addition to the constructs of RL2. The relation
symbols of RL2 may refer to relation symbols of the ex-
tended language, which allows stating relations between pre
and postcondition. We also allow non-recursive procedure
calls in the specification when they expand to constructs not
containing sequential composition.

modify specifications. The construct

modify e1, . . . , en

is useful for specifying frame conditions. Each expression ei

specifies a set of possible modifications. Any finite number of
modifications can occur as the result of the action specified
by the modify specification.

Example 8 Figure 24 shows the specifications
assignClients and assignOneClient from Figure 3
extended with frame-condition specifications. The frame
condition for assignOneClient specifies that only the
sets WaitingClients and AssignedClients can change, which
is useful if the system contains some additional set of
objects, such as a set ProcessedClients. Next, the frame-
condition specifies that the only binary relations that were
modified are server and clients. The modifies expression
(Servers.clients :<= cl) indicates that the the only way in
which the clients relation is changed is by introducing an
edge from a Servers object to the cl object, or by removing
an edge from a Servers object. (The removal of the edge does
not, in fact, occur in assignOneClientIMPL in Figure 3,
but the frame condition is a conservative approximation.)
The amount of detail in specifications such as modifies
clauses depends on how strong property we need to prove.
The strength of the property, in turn, depends either on
some high-level program correctness requirement, or on
the amount of information we need about the procedure

to prove the properties of its callers. In Figure 3, we
did not use modify specification for assignOneClient
because we did not need it to prove the conformance
of assignClientsIMPL with respect to assignClients.
However, even in Figure 3 we needed to know that, for
example, getServer preserves the global invariant, which
follows from the fact that it does not modify any sets or
relations (the conjunction with skip implies that getServer
is a pure function).

�

In general, there are three forms of modification expres-
sions. The expression A :<= F specifies modifications that
remove an element from the set A or insert into A an element
that satisfies F . For example, after executing the statement

modify A :<= F

the set A may contain any subset of the set of objects given
by the expression A∨F . The expression F1.f :<= F2 spec-
ifies modifications that 1) remove a tuple 〈o1, o2〉 from the
relation interpreting the predicate f , when o1 satisfies F1,
or 2) insert a tuple 〈o1, o2〉 into the relation interpreting
f , when o1 satisfies F1 and 〈o1, o2〉 satisfies F2. Similarly,
F1.∼f :<= F2 allows removing 〈o1, o2〉 from the interpreta-
tion of f when o1 satisfies F1, or inserting 〈o1, o2〉 when o2

satisfies F1 and 〈o1, o2〉 satisfy ∼F2.
If ri is the relation describing a modification given by the

expression ei, then the meaning of modify e1, . . . , en is given
by the relation

(r1 ∪ . . . ∪ rn)∗ (4)

where r∗ denotes the transitive closure of relation r. The
simple semantics (4) provides good intuition about the
meaning of modify statement and makes it clear that the
modify statement is idempotent [44]. Figure 23 presents an
alternative semantics, which directly encodes a modify state-
ment as an RL2 formula. The advantage of the semantics in
Figure 23 is that it eliminates the need for transitive closure
of the transition relation.

Disjunction and conjunction. The language allows com-
puting disjunction and conjunction on statements. Disjunc-
tion ∨ has a natural interpretation as a non-deterministic
choice of commands. Conjunction ∧ is useful for combining
nondeterministic statements. Logical operations on state-
ments translate directly to the corresponding logical opera-
tions on RL2 formulas.

Computing sequential composition. When encoding
sequential composition of statements in RL2, we introduce
copies L(i) of predicate names in L for i ∈ {1, 2, . . .}. These
copies of predicate names denote the values of predicates
at program points between the initial and the final pro-
gram state. Because the definition of relation composition
r1 ◦ r2 = {〈x, z〉 | ∃y. 〈x, y〉 ∈ r1 ∧ 〈y, z〉 ∈ r2} involves exis-
tential quantification over y, we treat the newly introduced
predicates as being existentially quantified. The technique
of introducing new predicate names allows us to precisely
compute relation composition even for non-deterministic
commands.

Procedure calls. The meaning of a procedure is also a
relation on states, where the initial state is extended with
one unary predicate symbol for each parameter name. In
the simple translation of Figure 22, a procedure call identi-
fies parameters with the sets that describe their values by

15

M[[modify e1, . . . , en]] =

let {e1, . . . , en} =

{A1 :<= F1, . . . , Ak :<= Fk,

Fk+1.fk+1 :<= Gk+1, . . . , Fl.fl :<= Gl,

Fl+1.∼fl+1 :<= Gl+1, . . . , Fm.∼fm :<= Gm}
in V
A/∈{A1,...,Ak}

[A ⇔ A] ∧V
A∈{A1,...,Ak}

[(¬A ∧
V

Ai≡A ¬Fi) ⇒ ¬A] ∧V
f /∈{fk+1,...,fm}

[[f ⇔ f]] ∧V
f∈{fk+1,...,fm}

[[(
V

fi≡f

i≤l

¬F ′
i ∧

V
fi≡f

l<i

¬Fi) ⇒ (f ⇔ f)]]

V
f∈{fk+1,...,fm}

[[(¬f ∧
V

fi≡f

i≤l

¬(F ′
i ∧ Gi) ∧

V
fi≡f

l<i

¬(Fi ∧ ∼Gi)) ⇒ ¬f]]

Figure 23: Semantics of modify statement.

performing the substitution. Substitution suffices to give se-
mantics to procedures because we assume that the recursion
is split using refinement claims. Loops are represented as re-
cursive procedures, so we effectively require loop invariants.

Refinement claims. If P1 and P2 are procedure names,
the refinement claim P1 ⇒ P2 is a proof obligation that
the relation given by the body of procedure P1 is contained
in the relation given by the body of P2. The intended use
of the refinement claim is the specification procedure sum-
maries, which allows breaking the cycles in the call graphs
of mutually recursive procedures. Figure 22 shows how each
refinement claim reduces to a test whether an RL2 formula
is satisfiable. When generating the RL2 formula, we rename
the parameters of P2 replacing them with the corresponding
parameters of P1.

To ensure that the satisfiability test treats newly intro-
duced predicates as existentially quantified, we impose a re-
striction that the translation [[S2]] contains no newly intro-
duced predicates from L(i) for i ∈ {1, 2, . . .}. We impose this
restriction because [[S2]] appears under negation in the sat-
isfiability test, so newly introduced predicates in [[S2]] would
be universally quantified, thus violating the semantics of se-
quential composition for non-deterministic statements. The
restriction on S2 is satisfied when S2 contains no sequential
composition, which is typically the case for a large class of
procedure summaries.

By providing sufficiently many procedure summaries, the
partial correctness of a program is reduced to a finite number
of refinement claims. By discharging these claims using a
decision procedure for RL2, we decide the partial correctness
of the program.

Fixpoint computation. If some procedure summaries
are not supplied by the programmer, they can be inferred
using fixpoint computation. An algorithm for fixpoint com-
putation can be derived from the fixpoint semantics of
mutually recursive procedures using abstract interpretation
[19, 21, 20, 70]. A special case of this approach is to select a

F ::= {C} | {{C′
1 ∧ C2 ∧ R}} | F1 ∧ F2 | ¬F

C ::= A | C1 ∧ C2 | ¬C

R ::= f | ¬f | R1 ∨ R2

A − atomic unary predicate

f − atomic binary predicate

Figure 25: Boolean Shape Analysis Constraints expressed
as a sublogic of RL2

finite subset of all RL2 formulas and define a lattice structure
on the set using the entailment of formulas. A simple way
to define a finite subset of formulas is to consider only RL2

formulas with quantifier depth at most k, for some k ≥ 1.
Boolean shape analysis constraints in Section 5.2 have quan-
tifier depth at most two, so they can be used as a basis of
fixpoint computation.

5.2 Describing Boolean Shape Analysis Con-
straints

Boolean Shape Analysis Constraints [48] are a natural lan-
guage for describing dataflow facts of shape analyses [65].

Figure 25 presents the syntax of Boolean Shape Analy-
sis Constraints as a subset of role logic. This presentation
of Boolean Shape Analysis Constraints shows that they are
a subset of the decidable fragment RL2 of role logic. In
fact, Boolean Shape Analysis Constraints do not use count-
ing quantifiers, so they are already expressible in the two-
variable predicate logic L2 (without counting).

A note on usability of role logic. An anecdotal evi-
dence of the usability of role logic is the fact that all results

16

C ::= A | C � C | ¬C | ≥nR.C

R ::= f | R � R | ¬R | U | R−1 | R|C | id(C)

A − atomic unary predicate

f − atomic binary predicate

Figure 26: An Expressive Description Logic

[[A]] = A

[[C1 � C2]] = [[C1]] ∧ [[C2]]

[[¬C]] = ¬[[C]]

[[≥nR.C]] = card≥n([[R]] ∧ [[C]])

[[f]] = f

[[R1 � R2]] = [[R1]] ∧ [[R2]]

[[¬R]] = ¬[[R]]

[[U]] = true

[[R−1]] = ∼[[R]]

[[R|C]] = [[R]] ∧ [[C]]

[[id(C)]] = EQ ∧ [[C]]

Figure 27: Translation of an Expressive Description Logic
to Role Logic with Two Variables

of [48] were initially shown using role logic notation and then
translated into the standard first-order logic notation. We
have found the variable-free aspect of role logic convenient
when showing the results of [48]. We have subsequently dis-
covered the connection of role logic with C2 [30], presented
in Section 4, and the connection with description logics [1],
presented in Section 5.3.

5.3 Encoding an Expressive Descriptive Logic

Figure 26 presents an Expressive Description Logic fragment
where roles have no transitive operators [1, Chapter 5]. Fig-
ure 27 presents the translation of the Expressive Description
Logic into RL2. The translation maps the concepts C and
roles R of description logic into unary and binary predicates
of role logic. The translation to RL2 in Figure 27 implies that
the description logic in Figure 26 is decidable. The fact that
interesting description logics can be translated to RL2 is not
surprising once we have established that RL2 and C2 have
equal expressive power. Nevertheless, it is interesting to ob-
serve the simplicity of the translation from the description
logic to RL2, which is partly because both description logic
and role logic avoid explicit occurrences of variables.

Using rules

[[R1 ◦ R2]] = [[R1]] ◦ [[R2]]

[[R∗]] = [[R]]∗

we can translate operations on binary relations into the full
role logic, but not into the decidable fragment RL2. Decid-

ability of interesting description logics that contain transi-
tive closure but do not have tree model property is an open
problem [1, Page 214].

A note on terminology. The term “role” has different
meanings in different formalisms for describing structures.
In [43], a role corresponds to a unary predicate (set), in de-
scription logics [1], a role corresponds to a binary predicate
(relation), and in entity-relationship diagrams in databases
[16], a role corresponds to a position i (1 ≤ i ≤ n) in a
n-tuples of an n-ary relation. To avoid the confusion, we
use the well-established terms of n-ary “predicate” (or “re-
lation”), keep the name “role logic” for the logic described
in Figure 9, because the term “role logic” appears appro-
priate regardless of the particular interpretation of the word
“role”.

Description Logics Corresponding to C2. 1 The re-
sult [10, Theorem 4] reports that the description logic with-
out transitive closure and relation composition (denoted
DL−{trans, compose}) corresponds precisely to C2. The
results of Section 4 and [10] imply that our logic RL2 has
the same expressive power as DL−{trans, compose}. One
of the differences between RL2 and DL−{trans, compose}
is that RL2 contains the prime operator F ′ and does not
contain the product operation of DL−{trans, compose}.
Another difference is the foundation of role logic on de
Bruijn lambda calculus notation, as described in Section 3.

6 Related Work

We have initially developed role logic to provide a founda-
tion for role analysis [43, 42]. We have subsequently stud-
ied a simplification of role analysis constraints and showed
a characterization of such constraints using formulas [46].
Parametric analysis based on three-valued logic was intro-
duced in [64, 65] with interprocedural analysis in [61] and
application to abstract data type verification in [52]. A char-
acterization of dataflow facts used for shape analysis was
presented in [71, 48]. A decidable logic for expressing con-
nectivity properties of the heap was presented in [7].

Specifying the semantics of programs using predicates
dates back to axiomatic program semantics [32, 24]. An
approach that uses a first-order logic theorem prover tailed
for program verification is [23].

Like [40, 39, 37, 55], in Section 5.1 we use an expres-
sive yet decidable logic to encode fragments of straight-line
code. Our approach differs primarily in using logic RL2 over
general graphs whose decidability follows from the decid-
ability of C2, where [40, 39, 37, 55] uses graph types whose
decidability follows from the decidability of monadic second-
order logic over trees. We expect that these two logics can
be combined in a fruitful way.

We have extended our language with constructs that
make it possible to directly express higher-level state trans-
formations, which is the idea related to the chemical reac-
tion model of [26, 27], the verification of database transac-
tions [6], the simultaneous assignments of [55], and in wide-
spectrum languages [56, 3]. Verification of a form of mod-
ifies clauses using a theorem prover was presented [50, 44].
Further approaches to pointer and shape analysis include
[17, 68, 15, 29, 25, 28, 69].

1Note added on 31 October 2003, after becoming aware of [10].

17

Description logics [1, 9] share many of the properties of
role logic and have been traditionally applied to knowledge
bases. It is likely that description logics can be used for
shape analysis as well. It would be particularly interesting to
consider description logics with transitive operators, whose
decidability is related to the decidability of dynamic logic
[31]. Reasoning about the satisfiability of expressive de-
scription logics over all structures and over finite structures
is presented in [13, 14]. Reasoning about entity-relationship
diagrams [16] is presented in [51]. Some connections between
object models and heap invariants are presented in [45, 35].

Like the Alloy modelling language [36], role logic com-
bines the notation of predicate calculus with the notation of
relational algebras. It may be possible to combine the nota-
tion of Alloy with the notation of role logic, and to combine
the benefits of bounded model checking used in Alloy Ana-
lyzer with the benefits of a decision procedure for RL2.

A recent approach to reasoning about mutable impera-
tive data structure is separation logic [34, 59, 60, 12, 11]. We
are currently working on integrating some aspects of spatial
logic to support more flexible notation for records in role
logic.

Interactive theorem provers have also been used for rea-
soning about dynamically allocated data structures [54, 2];
it may be interesting to incorporate a decision procedure for
RL2 into these general tools.

7 Conclusions

We believe that role logic notation is a convenient way of
expressing properties of first-order structures. First-order
structures are a natural way to model the state in object-
oriented programs, or a the state of a knowledge base or
a database. Role logic can be combined with traditional
variable-based notation in a natural way. Furthermore, in-
teresting subsets of role logic are decidable. Decision pro-
cedures for role logic can therefore enable shape analysis of
programs and have similar benefits as description logics in
knowledge bases.

Acknowledgements We thank Patrick Lam for useful
discussions, comments on the paper, and an implementa-
tion of an early version of role logic normalization algorithm
in Fall 2001, we thank Andreas Podelski for discussion of
using formulas to perform shape analysis, we thank Thomas
Reps for discussions on summarizing procedures using two-
vacabulary structures, we thank C. Scott Ananian for dis-
cussion of a draft of this paper in Spring 2003, we thank
Derek Rayside, Mooly Sagiv, and Greta Yorsh for useful
discussions, and Darko Marinov for comments on the paper.

References

[1] Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2003.

[2] Ralph-Johan Back, Xiaocong Fan, and Viorel
Preoteasa. Reasoning about pointers in refinement cal-
culus. In 10th Asia-Pacific Software Engineering Con-
ference (APSEC’03), 2003.

[3] Ralph-Johan Back and Joakim von Wright. Refinement
Calculus. Springer-Verlag, 1998.

[4] Henk P. Barendregt. The Lambda-Calculus: Its Syntax
and Semantics. North-Holland, 2nd edition, 1984.

[5] Henk P. Barendregt. Lambda calculi with types. In
Handbook of Logic in Computer Science, Vol. II. Oxford
University Press, 2001.

[6] Michael Benedikt, Timothy Griffin, and Leonid Libkin.
Verifiable properties of database transactions. Infor-
mation and Computation, 147:57–88, 1998.

[7] Michael Benedikt, Thomas Reps, and Mooly Sagiv. A
decidable logic for linked data structures. In Proc. 8th
ESOP, 1999.

[8] Egon Börger and Robert Stärk. Abstract State Ma-
chines. Springer-Verlag, 2003.

[9] Alexander Borgida. Description logics in data manage-
ment. IEEE Trans. on Knowledge and Data Engineer-
ing, 7(5):671–682, 1995.

[10] Alexander Borgida. Description logics in data manage-
ment. Artificial Intelligence, 82(1-2):353–367, 1996.

[11] Cristiano Calcagno, Luca Cardelli, and Andrew D. Gor-
don. Deciding validity in a spatial logic for trees. In
ACM TLDI’02, 2002.

[12] Cristiano Calcagno, Samin Ishtiaq, and Peter W.
O’Hearn. Semantic analysis of pointer aliasing, allo-
cation and disposal in hoare logic. In Proc. 2nd In-
ternational Conference on Principles and Practice of
Declarative Programming, 2000.

[13] Diego Calvanese. Finite model reasoning in description
logics. In Proc. of the 5th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’96),
pages 292–303. Morgan Kaufmann, 1996.

[14] Diego Calvanese. Unrestricted and Finite Model
Reasoning in Class-Based Representation Formalisms.
PhD thesis, Dipartimento di Informatica e Sistemistica,
Universita di Roma ”La Sapienza”, 1996.

[15] David R. Chase, Mark Wegman, and F. Kenneth
Zadeck. Analysis of pointers and structures. In Proc.
ACM PLDI, 1990.

[16] Peter Pin-Shan Chen. The entity-relationship model–
toward a unified view of data. ACM Transactions on
Database Systems (TODS), 1(1):9–36, 1976.

[17] Stephen Chong and Radu Rugina. Static analysis of
accessed regions in recursive data structures. In Proc.
10th SAS, volume 2694 of LNCS. Springer, 2003.

[18] Edgar F. Codd. A relational model of data for large
shared data banks. CACM, 13(6):377–387, 1970.

[19] Patrick Cousot and Radhia Cousot. Abstract interpre-
tation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In
Proc. 4th POPL, 1977.

[20] Patrick Cousot and Radhia Cousot. Static determina-
tion of dynamic properties of recursive procedures. In
E.J. Neuhold, editor, IFIP Conf. on Formal Descrip-
tion of Programming Concepts, St-Andrews, N.B., CA,
pages 237–277. North-Holland, 1977.

18

[21] Patrick Cousot and Radhia Cousot. Systematic design
of program analysis frameworks. In Proc. 6th POPL,
pages 269–282, San Antonio, Texas, 1979. ACM Press,
New York, NY.

[22] N. G. de Bruijn. Lambda calculus notation with name-
less dummies, a tool for automatic formula manipula-
tion, with application to the Church-Rosser theorem.
Indag. Math., 34:381–392, 1972.

[23] Cormac Flanagan, K. Rustan M. Leino, Mark Lilib-
ridge, Greg Nelson, James B. Saxe, and Raymie Stata.
Extended Static Checking for Java. In Proc. ACM
PLDI, 2002.

[24] Robert W. Floyd. Assigning meanings to programs. In
Proc. Amer. Math. Soc. Symposia in Applied Mathe-
matics, volume 19, pages 19–31, 1967.

[25] Pascal Fradet, Ronan Gaugne, and Daniel Le Metayer.
An inference algorithm for the static verification of
pointer manipulation. Technical Report 980, IRISA,
1996.

[26] Pascal Fradet and Daniel Le Métayer. Shape types. In
Proc. 24th ACM POPL, 1997.

[27] Pascal Fradet and Daniel Le Métayer. Structured
gamma. Science of Computer Programming, SCP,
31(2-3), pp. 263-289, 1998.

[28] R. Gaugne, P. Fradet, and D. Le Métayer. Static detec-
tion of pointer errors: an axiomatisation and a checking
algorithm. In Proc. European Symposium on Program-
ming, ESOP’96, LNCS, 1996.

[29] Rakesh Ghiya and Laurie Hendren. Is it a tree, a DAG,
or a cyclic graph? In Proc. 23rd ACM POPL, 1996.

[30] Erich Grädel, Martin Otto, and Eric Rosen. Two-
variable logic with counting is decidable. In Proceed-
ings of 12th IEEE Symposium on Logic in Computer
Science LICS ‘97, Warschau, 1997.

[31] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dy-
namic Logic. The MIT Press, Cambridge, Mass., 2000.

[32] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–
580, 1969.

[33] Joseph Hummel, Laurie J. Hendren, and Alexandru
Nicolau. A general data dependence test for dynamic,
pointer-based data structures. In Proc. ACM PLDI,
1994.

[34] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion
language for mutable data structures. In Proc. 28th
ACM POPL, 2001.

[35] Daniel Jackson. Object models as heap invariants. In
Annabelle McIver and Carroll Morgan, editors, Col-
lected Papers of IFIP Working Group 2.3 on Program-
ming Methodology. Springer-Verlag, 2001.

[36] Daniel Jackson. Alloy: a lightweight object modelling
notation. ACM TOSEM, 11(2):256–290, 2002.

[37] Jacob L. Jensen, Michael E. Jørgensen, Nils Klarlund,
and Michael I. Schwartzbach. Automatic verification of
pointer programs using monadic second order logic. In
Proc. ACM PLDI, Las Vegas, NV, 1997.

[38] Simon L. Peyton Jones. The Implementation of Func-
tional Programming Languages. Prentice-Hall, 1987.

[39] Nils Klarlund and Michael I. Schwartzbach. Graph
types. In Proc. 20th ACM POPL, Charleston, SC, 1993.

[40] Nils Klarlund and Michael I. Schwartzbach. Graphs
and decidable transductions based on edge constraints.
In Proc. 19th Colloquium on Trees and Algebra in Pro-
gramming, number 787 in LNCS, 1994.

[41] Robert Kowalski. Algorithm = logic + control. Com-
munications of the ACM, 1979.

[42] Viktor Kuncak. Designing an algorithm for role anal-
ysis. Master’s thesis, MIT Laboratory for Computer
Science, 2001.

[43] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role
analysis. In Proc. 29th POPL, 2002.

[44] Viktor Kuncak and K. Rustan M. Leino. In-place re-
finement for effect checking. In Second International
Workshop on Automated Verification of Infinite-State
Systems (AVIS’03), Warsaw, Poland, April 2003.

[45] Viktor Kuncak and Martin Rinard. Object models,
heaps, and interpretations. Technical Report 816, MIT
Laboratory for Computer Science, January 2001.

[46] Viktor Kuncak and Martin Rinard. Typestate checking
and regular graph constraints. Technical Report 863,
MIT Laboratory for Computer Science, 2002.

[47] Viktor Kuncak and Martin Rinard. Existential heap
abstraction entailment is undecidable. In 10th Annual
International Static Analysis Symposium (SAS 2003),
San Diego, California, June 11-13 2003.

[48] Viktor Kuncak and Martin Rinard. On the boolean
algebra of shape analysis constraints. Technical report,
MIT CSAIL, August 2003.

[49] Viktor Kuncak and Martin Rinard. On the theory of
structural subtyping. Technical Report 879, Labora-
tory for Computer Science, Massachusetts Institute of
Technology, 2003.

[50] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yun-
hong Zhou. Using data groups to specify and check side
effects. In Proc. ACM PLDI, 2002.

[51] Maurizio Lenzerini and Paolo Nobili. On the satisfia-
bility of dependency constraints in entity-relationship
schemata. In Proc. 13th VLDB, pages 147–154, 1987.

[52] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Rein-
hard Wilhelm. Putting static analysis to work for veri-
fication: A case study. In International Symposium on
Software Testing and Analysis, 2000.

[53] John W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 2nd edition, 1987.

19

[54] Farhad Mehta and Tobias Nipkow. Proving pointer pro-
grams in higher-order logic. In F. Baader, editor, Auto-
mated Deduction — CADE-19, LNCS. Springer-Verlag,
2003.

[55] Anders Møller and Michael I. Schwartzbach. The
Pointer Assertion Logic Engine. In Proc. ACM PLDI,
2001.

[56] Carroll Morgan. Programming from Specifications (2nd
ed.). Prentice-Hall, Inc., 1994.

[57] Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera.
Complexity results for first-order two-variable logic
with counting. SIAM J. on Computing, 29(4):1083–
1117, 2000.

[58] Lawrence C. Paulson. Isabelle: A Generic Theorem
Prover. Number 828 in LNCS. Springer-Verlag, 1994.

[59] John C. Reynolds. Intuitionistic reasoning about
shared mutable data structure. In Proceedings of
the Symposium in Celebration of the Work of C.A.R.
Hoare, 2000.

[60] John C. Reynolds. Separation logic: a logic for shared
mutable data structures. In 17th LICS, pages 55–74,
2002.

[61] Noam Rinetzky and Mooly Sagiv. Interprocedual shape
analysis for recursive programs. In Proc. 10th Interna-
tional Conference on Compiler Construction, 2001.

[62] Grzegorz Rozenberg, editor. Handbook of Graph Gram-
mars and Computing by Graph Transformations Vol.1.
World Scientific, 1997.

[63] James Rumbaugh, Ivar Jacobson, and Grady Booch.
The Unified Modelling Language Reference Manual.
Addison-Wesley, Reading, Mass., 1999.

[64] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Parametric shape analysis via 3-valued logic. In Proc.
26th ACM POPL, 1999.

[65] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Parametric shape analysis via 3-valued logic. ACM
TOPLAS, 24(3):217–298, 2002.

[66] E. Schonberg, J. T. Schwartz, and M. Sharir. An au-
tomatic technique for selection of data representations
in Setl programs. Transactions on Programming Lan-
guages and Systems, 3(2):126–143, 1991.

[67] Thoralf Skolem. Untersuchungen über die Axiome des
Klassenkalküls and über “Produktations- und Summa-
tionsprobleme”, welche gewisse Klassen von Aussagen
betreffen. Skrifter utgit av Vidnskapsselskapet i Kris-
tiania, I. klasse, no. 3, Oslo, 1919.

[68] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proc. 14th An-
nual ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, Denver,
November 1999.

[69] R. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proc. ACM PLDI,
June 1995.

[70] Kwangkeun Yi and Williams Ludwell Harrison III. Au-
tomatic generation and management of interprocedural
program analyses. In 20th ACM POPL, 1993.

[71] Greta Yorsh. Logical characterizations of heap abstrac-
tions. Master’s thesis, Tel-Aviv University, March 2003.

20

