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Abstract. We introduce a new cryptographic tool: multiset hash functions. Unlike standard
hash functions which take strings as input, multiset hash functions operate on multisets (or
sets). They map multisets of arbitrary finite size to strings (hashes) of fixed length. They are
incremental in that, when new members are added to the multiset, the hash can be updated
in time proportional to the change. The functions may be multiset-collision resistant in that
it is difficult to find two multisets which produce the same hash, or just set-collision resistant
in that it is difficult to find a set and a multiset which produce the same hash.

In particular, we introduce four multiset hash functions, each with its own advantages.
MSet-XOR-Hash uses the XOR operation and is very efficient; however, it uses a secret key
and is only set-collision resistant. MSet-Add-Hash uses addition modulo a large integer and,
thus, is slightly less efficient than MSet-XOR-Hash; MSet-Add-Hash also uses a secret key but it
is multiset-collision resistant. MSet-Mu-Hash uses finite field arithmetic and is not as efficient
as the other two hash functions; however, MSet-Mu-Hash is multiset-collision resistant, and
unlike the other two hash functions, does not require a secret key. MSet-VAdd-Hash is more
efficient than MSet-Mu-Hash; it is also multiset-collision resistant, and does not use a secret
key, but the hashes it produces are significantly longer than the hashes of the other functions.

The proven security of MSet-XOR-Hash and MSet-Add-Hash is quantitative. We reduce the
hardness of finding collisions to the hardness of breaking the underlying pseudorandom
functions. The proven security of MSet-Mu-Hash is in the random oracle model and is based
on the hardness of the discrete logarithm problem. The proven security of MSet-VAdd-Hash

is also in the random oracle model and is based on the hardness of the worst-case shortest
vector problem.

We demonstrate how set-collision resistant multiset hash functions make an existing offline
memory integrity checker secure against active adversaries. We improve on this checker such
that it can use smaller time stamps without increasing the frequency of checks. The improved
checker uses multiset-collision resistant hash functions.

Keywords: incremental cryptography, multiset hash functions, set-collision resistance, multiset-
collision resistance, memory integrity checking

1 Introduction

Standard hash functions, such as SHA-1 [NIS95] and MD5 [Riv92], map strings of arbitrary
finite length to strings (hashes) of a fixed length. They are collision-resistant in that it
is difficult to find different input strings which produce the same hash. Incremental hash
functions, described in [BGG94], have the additional property that, given changes to the
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input string, the computation to update the hashes is proportional to the amount of change
in the input string. For a small change, incremental hashes can be quickly updated, and
do not need to be recalculated over the entire new input.

Multiset hash functions are a novel cryptographic tool, for which the ordering of the
inputs is not important. They map multisets of arbitrary finite size to hashes of fixed
length. They are incremental in that, when new members are added to the multiset,
the hash can be quickly updated. Because multiset hash functions work on multisets, we
introduce definitions for multiset-collision resistance and set-collision resistance.

We demonstrate how multiset hash functions enable secure offline integrity checkers
for untrusted memory. Offline memory integrity checking was introduced by Blum et al.
[BEG+91]. However, their implementation of offline checkers uses ε-biased hash functions
[NN90]; these hash functions can be used to detect random errors, but are not crypto-
graphically secure. We prove that multiset hash functions are cryptographically secure, and
show how they can be used in place of ε-biased hash functions to build an offline checker
secure against active adversaries. Furthermore, we introduce an improved checker that can
perform better because it uses smaller time stamps without increasing the frequency of
checks. Checking the integrity of memory is important in building secure processors which
can facilitate software licensing and Digital Rights Management (DRM) [SCG+03].

The paper is organized as follows. Section 2 describes related work and summarizes
our contributions. Multiset hash functions are defined in Section 3. MSet-XOR-Hash and
MSet-Add-Hash are described in Section 4, and MSet-Mu-Hash and MSet-VAdd-Hash are
described in Section 5. Our application of multiset hash functions to checking the integrity
of memory is detailed in Section 6. Section 7 concludes the paper. Appendices A, B, C,
and D prove the security of our multiset hash functions. Appendix E proves the security
of our new memory integrity checker.

2 Related Work and Our Contributions

The main contribution of our work is the introduction of multiset hash functions together
with the definition of multiset and set collision resistance. The second contribution is the
development of a general theory leading to Theorem 1 from which we derive set-collision
resistance for MSet-XOR-Hash, a multiset hash based on the XOR operation (addition
modulo 2), and multiset-collision resistance for MSet-Add-Hash, a multiset hash based on
addition modulo a large integer. The theory generalizes the results in [BGR95], where
an XOR-based scheme is used for message authentication. Our theory holds for addition
modulo any integer.

Both MSet-XOR-Hash and MSet-Add-Hash use a secret key. The third contribution is
Theorem 2 that proves multiset-collision resistance for MSet-Mu-Hash, a multiset hash
function based on multiplication in a finite field; MSet-Mu-Hash does not use a secret key.
The proof’s basic line of thought is from [BM97] which develops message hashing based
on multiplication in a finite field. The fourth contribution, leading to MSet-VAdd-Hash,
is Theorem 3 proving that we may replace multiplication in the finite field by vector
addition modulo a large integer. In [BM97], a similar theorem is used for message hashing.
Our theorem (and their theorem) follows directly from application of Ajtai’s theorem
[GGH96,Ajt96].
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Our final significant contribution is that we introduce an offline checker that is cryp-
tographically secure and which improves on the performance of the offline checker in
[BEG+91].

3 Multiset Hash Functions

This section describes multiset hash functions. We first introduce multisets. We refer to a
multiset as a finite unordered group of elements where an element can occur as a member
more than once. All sets are multisets, but a multiset is not a set if an element appears
more than once. Let M be a multiset of elements of a countable set B. The number of
times b ∈ B is in the multiset M is denoted by Mb and is called the multiplicity of b in
M . The sum of all the multiplicities of M is called the cardinality of M . Multiset union
combines two multisets into a multiset in which elements appear with a multiplicity that
is the sum of their multiplicities in the initial multisets. We denote multiset union by ∪
and assume that the context in which ∪ is used makes clear to the reader whether we
mean set union or multiset union.

Definition 1. Let (H,+H,≡H) be a triple of probabilistic polynomial time (ppt) algo-
rithms. That triple is a multiset hash function if it satisfies:

compression: H maps multisets of B into elements of a set with cardinality ≈ 2m, where
m is some integer. Compression guarantees that we can store hashes in a small bounded
amount of memory.

comparability: Since H can be a probabilistic algorithm, a multiset need not always hash
to the same value. Therefore we need ≡H to compare hashes. The following relation
must hold for comparison to be possible:

H(M) ≡H H(M)

for all multisets M of B.
incrementality: We would like to be able to efficiently compute H(M ∪ M ′) knowing

H(M) and H(M ′). The +H operator makes that possible:

H(M ∪M ′) ≡H H(M) +H H(M ′)

for all multisets M and M ′ of B. In particular, knowing only H(M) and an element
b ∈ B, we can easily compute H(M ∪ {b}) = H(M) +H H({b}).

As it is, this definition is not very useful, because H could be any constant function.
We need to add some kind of collision resistance to have a useful hash function. A collision
for M ′ is a multiset M 6= M ′ such that H(M) ≡H H(M ′).

Definition 2. A multiset hash function is (multi)set-collision resistant if it is compu-
tationally infeasible to find a (multi)set S of B and a multiset M of B such that the
cardinalities of S and M are of polynomial size in m, S 6= M , and H(S) ≡H H(M).
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Remark. (Not needed for understanding the remainder of this paper.) To make this notion
formal, we need to consider a family F of multiset hash functions (HK , +HK

,≡HK
) indexed

by a key (seed) K ∈ K. For HK in F , we denote by mK the logarithm of the cardinality
of the set into which HK maps multisets of B, that is mK is the number of output bits of
HK . We define Km as the set of keys K ∈ K for which mK ≥ m. By A(HK) we denote a
probabilistic polynomial time (in mK) algorithm with oracle access to (HK ,+HK

,≡HK
).

The family F satisfies (multi)set-collision resistance if for all ppt algorithms A(.), any
number c, and m large enough (with respect to c),1

Prob





K ← Km, (S, M) ← A(HK) :
S is a (multi)set and M is a multiset of B
such that S 6= M and HK(S) ≡HK

HK(M)



 < m−c.

Note that becauseA(HK) is polynomial in mK , we will consider that it can only output
polynomial sized S and M . We are disallowing compact representations for multisets that
would allow A(.) to express larger multisets (such compact representations do not lead to
a feasible attack in our offline memory integrity application).

4 Additive Multiset Hash

In this section we give an example of a construction of (multi)set-collision resistant multiset
hash functions. Let B = {0, 1}m represent the set of bit vectors of length m and let M be
a multiset of elements of B. Recall that the number of times b ∈ B is in the multiset M
is denoted by Mb and is called the multiplicity of b in M . Let HK : {0, 1}m+1 → ZZ l

n be
randomly selected from a pseudorandom family of hash functions [GGM86]. Let

L ≈ nl ≈ 2m, L ≤ nl, L ≤ 2m,

and define

HK(M) =

[
HK(0, r) +

∑

b∈B

MbHK(1, b) mod n ;
∑

b∈B

Mb mod L ; r

]∣∣∣∣∣
r←B

,

where r ∈ B is a random nonce2. Notice that the logarithm of the cardinality mK of the
set into which HK maps multisets of B is equal to

mK = log(nl) + log(L) + log(2m) ≈ 3m.

We say two triples [h, c, r] and [h′, c′, r′] are equivalent, [h; c; r] ≡HK
[h′; c′; r′], if and

only if h−HK(0, r) = h′−HK(0, r′) modulo n and c = c′ modulo L. Notice that checking
whether HK(M) ≡HK

HK(M ′) is efficient. We define addition of two triples [h; c; r] +HK

[h′; c′; r′] by the result of the computation

[HK(0, r′′) + h−HK(0, r) + h′ −HK(0, r′) mod n ; c + c′ mod L ; r′′]|r′′←B.

Clearly, HK(M ∪M ′) ≡HK
HK(M) +HK

HK(M ′), hence, (HK ,+HK
,≡HK

) is a multiset
hash. The proof of the next theorem is in Appendix A.
1 The probability is taken over a random selection of K in Km (denoted by K ← Km) and over the

randomness used in the ppt algorithm A(HK) (denoted by (S, M) ← A(HK)).
2 Note, the set from which r is taken could be smaller than B.
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Theorem 1. It is computationally infeasible to find a multiset M with multiplicities < n
and a multiset M ′ such that the cardinalities of M and M ′ are polynomial sized in m,
M 6= M ′, and HK(M) ≡HK

HK(M ′).

As an example we consider n = 2 and l = m. Then the condition that a multiset M
has multiplicities < 2 simply means that M is a set. This leads to set-collision resistance.
Furthermore notice that addition modulo 2 defines xor ⊕.

Corollary 1. (MSet-XOR-Hash) The multiset hash corresponding to

HK(M) =

[
HK(0, r)⊕

⊕

b∈B

MbHK(1, b) ;
∑

b∈B

Mb mod 2m ; r

]∣∣∣∣∣
r←B

,

where HK : {0, 1} × B → ZZm
2 is randomly selected from a pseudorandom family of hash

functions, is set-collision resistant.

Notice that HK(M) keeps track of the cardinality of M . If this were not the case then
HK(S) and HK(M) are equivalent for any S and M with Sb = Mb modulo n = 2 for
b ∈ B. This would contradict set-collision resistance. Also notice that r ← B is randomly
chosen. If r was a fixed known constant, then knowledge of n tuples [M i ; HK(M i)] reveals
n vectors ⊕

b∈B

M i
bHK(1, b) ∈ ZZm

2 .

If n = 2m then with high probability these n vectors span the vector space ZZm
2 . This

means that each vector in ZZm
2 can be constructed as a linear combination of these n

vectors [BM97]:

n⊕

i=1

ai ·
(⊕

b∈B

M i
bHK(1, b)

)
=

⊕

b∈B

(
n⊕

i=1

aiM
i
b

)
HK(1, b).

Hence, a polynomial sized collision can be constructed for any polynomial sized M .
In Appendix B we show that for n exponentially large in m, we may remove the

cardinality
∑

b∈B Mb from the scheme altogether. By taking l = 1 and L = n = 2m we
obtain the next corollary.

Corollary 2. (MSet-Add-Hash) The multiset hash corresponding to

HK(M) =

[
HK(0, r) +

∑

b∈B

MbHK(1, b) mod 2m ; r

]∣∣∣∣∣
r←B

,

where HK : {0, 1} ×B → ZZ2m is randomly selected from a pseudorandom family of hash
functions, is multiset collision resistant.

The main difference between the MSet-XOR-Hash and MSet-Add-Hash is binary addi-
tion without and with carry respectively. This leads to either set collision resistance or
multiset collision resistance.
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In Appendix B we show that it is possible to replace the random nonce r by a counter
that gets incremented on each use of HK . This removes the need for a random number
generator from the scheme. Moreover, shorter values can be used for r as long as the
key is changed when r overflows; this reduces the size of the hash. Also if the weighted
sum of the hashes HK(1, b) in HK(M) is never revealed to the adversary then we can
remove HK(0, r) from the scheme altogether. For example, in the case where the weighted
sums are encrypted by using a pseudorandom family of permutations (see Corollary 4 in
Appendix B).

5 Multiplicative Multiset Hash

A multiset-collision resistant multiplicative multiset hash can be defined as follows. Let q
be a large prime power and consider the computations in the field GF (q). Let H : B →
GF (q) be a poly-random function [GGM86], that is, no polynomial time (in the logarithm
of q) algorithm with oracle access H can distinguish between values of H and true random
strings, even when the algorithm is permitted to select the arguments to H (in practice
one would use MD5 [Riv92] or SHA1 [NIS95]). We define

H(M) =
∏

b∈B

H(b)Mb , (1)

≡H to be equal to =, and +H to be multiplication in GF (q).
Clearly, (H, +H,≡H) is a multiset hash. An advantage of the scheme is that we do

not need a secret key. Unfortunately it relies on finite field arithmetic, which makes it too
costly for some applications.

The proof of the following theorem is given in Appendix C, where we also define
the discrete log (DL) assumption which says that for random y ∈ GF (q) and generator
g ∈ GF (q), it is computationally infeasible to find x such that gx = y (x is called the
discrete log of y).

Theorem 2. (MSet-Mu-Hash) Under the DL assumption, (H, +H,≡H) as defined in (1)
is multiset collision resistant.

Under certain assumptions we may replace multiplication in GF (q) by addition modulo
a large number. Even though the number of output bits of the resulting multiset hash needs
to be much larger (since it is based on ‘weaker’ assumptions), the overall solution becomes
more efficient since no finite field arithmetic is needed. Let H : B → ZZ l

n, n = 2
√

m,
l =

√
m, be a poly-random function. Now, we define

H(M) =
∑

b∈B

MbH(b) mod n, (2)

≡H to be equal to =, and +H to be vector addition modulo n. See Appendix D for the proof
of the next theorem and the definition of the worst-case shortest vector (SV) problem.

Theorem 3. (MSet-VAdd-Hash) By assuming that the SV problem is infeasible to solve
in polynomial time, (H, +H,≡H) as defined in (2) is multiset collision resistant.
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Remark. Because H can be evaluated with oracle access to H, Theorems 2 and 3 still hold
for a stronger form of multiset-collision resistance, in which it is computationally infeasible
for an adversary with oracle access to H (instead of H) to find a collision. This is what
allows to use a publicly available H.

6 Integrity Checking of Random Access Memory

We now show how our multiset hash functions can be used to build secure offline integrity
checkers for memory. Section 6.1 explains the model, and Section 6.2 shows how our offline
checker improves the offline checker in [BEG+91].

6.1 Model

load

FSM checker untrusted RAM

write

read
trusted
state

store

Fig. 1. Model

Figure 1 illustrates the model we use. There is a checker that keeps and maintains
some small, fixed-sized, trusted state. The untrusted RAM (main memory) is arbitrarily
large. The finite state machine (FSM) generates loads and stores and the checker updates
its trusted state on each FSM load or store to the untrusted RAM. The checker uses its
trusted state to verify the integrity of the untrusted RAM. The trusted computing base
(TCB) consists of the FSM, and the checker with its trusted state. For example, the FSM
could be a processor. The checker would be special hardware that is added to the processor
to detect tampering in the external memory.

The checker checks if the untrusted RAM behaves correctly, i.e. like valid RAM. RAM
behaves like valid RAM if the data value that the checker reads from a particular address
is the same data value that the checker most recently wrote to that address. In our model,
the untrusted RAM is assumed to be actively controlled by an adversary. The untrusted
RAM may not behave like valid RAM if the RAM has malfunctioned because of errors,
or if it has been somehow altered by the adversary.

For this problem, a simple solution such as calculating a message authentication code
(MAC) of the data value and address, writing the (data value, MAC) pair to the address,
and using the MAC to check the data value on each read, does not work [LTM+00]. The
approach does not prevent replay attacks: an adversary can replace the (data value, MAC)
pair currently at an address with a different pair which was previously written to the
address. The essence of an offline checker is that a “log” of the sequence of FSM operations
is maintained in fixed-sized trusted state in the checker.
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6.2 Improved Offline Checker

Figure 2 shows the basic put and get operations. The checker maintains two multiset
hashes and a counter. In memory, each data value is accompanied by a time stamp. Each
time the checker performs a put operation, it appends the current value of the counter (a
time stamp) to the data value, and writes the (data value, time stamp) pair to memory.
When the checker performs a get operation, it reads the pair stored at an address, and,
if necessary, updates the counter so that it is strictly greater than the time stamp that
was read. The multiset hashes are updated (+H) with (a, v, t) triples corresponding to the
pairs written or read from memory.

Figure 3 shows how the checker implements the store-load interface. To initialize the
RAM, the checker puts an initial value to each address. When the FSM performs a store
operation, the checker gets the original value at the address, then puts the new value
to the address. When the FSM performs a load operation, the checker gets the original
value at the address and returns this value to the FSM; it then puts the same value back
to the address. To check the integrity of the RAM at the end of the FSM’s operation,
the checker gets the value at each address, then compares WriteHash and ReadHash.
If WriteHash is equal to ReadHash, the checker concludes that the RAM has been
behaving correctly. Intermediate checks can also be performed with a slightly modified
check operation [CGS+02]. First, it creates a new Timer and WriteHash. Then, as
memory is read to perform the check, put operations are performed to update the time
stamps in RAM and the new WriteHash.

The checker’s fixed-sized state is:

– 2 multiset hashes: WriteHash and ReadHash.
Initially both multiset hashes are 0.

– 1 counter: Timer. Initially Timer is 0.

put(a, v) writes a value v to address a in memory:

1. Let t be the current value of Timer. Write (v, t) to a in memory.
2. Update WriteHash: WriteHash +H= hash(a, v, t).

get(a) reads the value at address a in memory:

1. Read (v, t) from a in memory.
2. Update ReadHash: ReadHash +H= hash(a, v, t).
3. Timer = max(Timer, t + 1).

Fig. 2. put and get operations

Because the checker checks that WriteHash is equal to ReadHash, substitution
(the RAM returns a value that is never written to it) and replay (the RAM returns a
stale value instead of the one that is most recently written) attacks on the RAM are
prevented. The purpose of the time stamps is to prevent reordering attacks in which RAM
returns a value that has not been written yet so that it can subsequently return stale
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initialize() initializes RAM.

1. put(a, 0) for each address a.

store(a, v) stores v at address a.

1. get(a).
2. put(a, v).

load(a) loads the data value at address a.

1. v = get(a). Return v to the caller.
2. put(a, v).

check() checks if the RAM has behaved correctly (at the end of operation).

1. get(a) for each address a.
2. If WriteHash is equal to ReadHash, return true.

Fig. 3. Offline integrity checking of random access memory

data. Suppose we consider the put and get operations that occur on a particular address
as occurring on a timeline. Line 3 in the get operation ensures that, for each store and
load operation, each write has a time stamp that is strictly greater than all of the time
stamps previously read from memory. Therefore, the first time an adversary tampers with
a particular (data value, time stamp) pair that is read from memory, there will not be
an entry in the WriteHash matching the adversary’s entry in the ReadHash, and that
entry will not be added to the WriteHash at a later time.

The Timer is not solely under the control of the checker, and is a function of what is
read from memory, which is untrusted. Therefore, the WriteHash cannot be guaranteed
to be over a set. For example, for a sequence of store and load operations occurring on
the same address, an adversary can decrease the time stamp that is stored in memory and
have triples be added to the WriteHash multiple times. The ReadHash can also not
be guaranteed to be over a set because the adversary controls the pairs that are read from
memory. Thus, set-collision resistance is not sufficient, and we require multiset-collision
resistant hash functions.

The proof of the following theorem is in Appendix E.

Theorem 4. Let W be the multiset of triples written to memory and let R be the mul-
tiset of triples read from memory. That is, W hashes to WriteHash and R hashes to
ReadHash. Suppose the accesses to each address are an alternation of puts and gets.
If the RAM does not behave like valid RAM, then W 6= R.

The following corollary shows the hardness of breaking our offline memory integrity
checking scheme.

Corollary 3. Tampering with the RAM without being detected is as hard as finding a
collision W 6= R for the multiset hash function.
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The original offline checker in [BEG+91] differs from our improved checker in two
respects. First, the original checker is implemented with ε-biased hash functions [NN90].
These hash functions are set-collision resistant against random errors but not against a
malicious adversary. Secondly, the Timer is incremented on each put operation and is
not a function of what is read from memory. The Timer is solely under the control of
the checker. This means that the pairs that are used to update WriteHash form a set.
Therefore set-collision resistance is sufficient. The original offline checker can be made
secure by using a set-collision resistant multiset hash function.

It is worth mentioning how the two offline checkers can be optimized when there is a
cache in the processor. Both checkers work similarly. The cache contains only data values,
which are trusted because they are on-chip. In essence, when the cache brings in a data
value, the checker gets the data value from the address and caches it. When the cache
evicts a data value, the checker puts the data value to the appropriate address. The cache
hit rate - the fraction of FSM operations that find their data in the cache - is the same
for both schemes, and it is actually the same as for the base processor which does not
provide memory integrity checking mechanisms. In both schemes, the principal perfor-
mance overhead when sequences of memory operations are checked comes from reading
and writing time stamps [CGS+02]. The improved offline checker improves on the original
checker because Timer is not incremented on every load and store operation. Thus,
time stamps can be smaller without increasing the frequency of checks, which improves
the performance of the checker.

7 Conclusion

We have introduced incremental multiset hash functions which can be efficiently updated,
and for which the ordering of inputs is not important. Table 1 summarizes our comparison
of the multiset hash functions introduced in this paper. In the table, we indicate whether
the security is based on pseudorandom family of hash functions (PRF), the random oracle
model (RO), the discrete log assumption (DL), or/and the hardness of the worst case
shortest vector problem (SV). If hashes are to be visible to the adversary (i.e., the adversary
can see the hashes in the trusted state, but cannot modify them), we indicate whether a
random nonce/counter (r), or encryption is necessary. We have improved the security and
the performance of the offline memory integrity checker in [BEG+91] as one application of
these functions. We are currently investigating how multiset hash functions can be applied
in other areas.

A Proof of Collision Resistance of Additive Multiset Hash

Let Gm be the family of matrices with 2m+1 rows, l columns, and entries in ZZn (recall
L ≈ nl ≈ 2m). Let HK be a random matrix in Gm = {H1,H2,H3, . . .}. Notice that HK is
the K-th matrix in Gm. We assume that this matrix, or equivalently its label K, is secret
and only accessible by the secure processor. The family of matrices Gm from which HK is
selected is publicly known.

The rows of HK are labeled by x ∈ {0, 1}m+1 and denoted by HK(x). This represents
HK as a function from x ∈ {0, 1}m+1 to ZZ l

n, the set of vectors with length l and entries
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collision key security comput. length of offline needed for
resistance based on efficiency output checker visible hash

MSet-XOR-Hash set Y PRF ++ + original r/encryption
MSet-Add-Hash multiset Y PRF ++ + both r/encryption
MSet-Mu-Hash multiset N RO/DL − + both
MSet-VAdd-Hash multiset N RO/SV + − both

Table 1. Comparison of the Multiset Hash Functions

in ZZn. In practice, HK is not a completely random matrix over ZZn, but HK is selected
from a pseudorandom family of functions. We address this issue as soon as we are ready
to formulate a proof of Theorem 1.

The following theorem is about the probability that an adversary finds a collision for
some multiset M ′. The probability is taken over random matrices HK in Gm (HK ← Gm)
and the randomness of the random nonce used in HK .

Theorem 5. Let M and M ′ be multisets of B. Let d be the greatest common divisor3 of n
and each of the differences |Mb−M ′

b|, b ∈ B. Given knowledge of u tuples [M i ; HK(M i)],
the probability that M is a collision for M ′ is at most u2/2m + (d/n)l.

We first introduce some notation. Let v(r,M) be the vector of length 2m+1 defined by

v(r,M)(0,b) = 1 if and only if b = r

and
v(r,M)(1,b) = Mb.

Let v(M) be the vector of length 2m+1 defined by v(M)(0,b) = 0 and v(M)(1,b) = Mb.

Lemma 1. (i) Knowing [M ; HK(M)] is equivalent to knowing

[v(r,M) ; v(r,M)HK mod n].

(ii) HK(M) ≡HK
HK(M ′) if and only if v(M)HK = v(M ′)HK modulo n and

∑
b∈B Mb =∑

b∈B M ′
b modulo L.

Proof. Notice that v(r,M) encodes r, M , and, hence, the cardinality
∑

b∈B Mb of M , and
notice that

HK(M) =

[
v(r,M)HK mod n ;

∑

b∈B

Mb mod L ; r

]
.

The lemma follows immediately from these observations.

3 The greatest common divisor of 0 with a positive integer i is equal to i.
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Suppose that an adversary learns u tuples [M i ; HK(M i)] or, according to Lemma
1.(i), u vectors v(ri,M i) together with the corresponding v(ri,M i)HK modulo n. Let A
be the u × 2m+1 matrix with rows v(ri,M i). Then the matrix with rows v(ri,M i)HK

is equal to AHK . Clearly, A modulo n has full rank over ZZn if all ri are different. The
probability that there are two equal ri’s is at most u2/2m.

Lemma 2. The probability that the ri’s corresponding to matrix A are all different is at
least 1− u2/2m.

By Lemma 1.(ii), in order to find a collision for M ′, the adversary needs to find a
multiset M 6= M ′ such that v(M)HK = v(M ′)HK modulo n and such that the cardinalities
of M and M ′ are equal to one another modulo L. The next three lemmas show how difficult
this is for the adversary if he is in the situation of the previous lemma.

Lemma 3. Let M and M ′ be multisets of B. The probability that v(M)HK = v(M ′)HK

modulo n is statistically independent of the knowledge of a full rank matrix A over ZZn

corresponding to different ri’s and the knowledge of h = AHK modulo n.

Proof. W.l.o.g. (after reordering the columns of A and the corresponding entries of v(M)−
v(M ′) and corresponding rows of HK) matrix A has the form A = (I A1), where I is the
u×u identity matrix, and v(M)− v(M ′) has the form (0 v), where 0 is the all zero vector
of length u. Denote the top u rows of HK by H0

K and let H1
K be such that

HK =
(

H0
K

H1
K

)
.

Clearly, the equation h = AHK modulo n is equivalent to

h = H0
K + A1H1

K mod n. (3)

The equation 0 = (v(M)− v(M ′))HK modulo n is equivalent to

0 = vH1
K mod n. (4)

Straightforward counting tells us that Prob{(4)|(3)} is equal to the # of matrices H1
K

satisfying (4) divided by the total # of matrices H1
K . This is in turn equal to the # of

matrices HK satisfying (4) divided by the total # of matrices HK , which is Prob{(4)}.
Lemma 4. Let M and M ′ be multisets of B. Let d be the greatest common divisor of
n and each of the differences |Mb − M ′

b|, b ∈ B. Then (v(M) − v(M ′))HK modulo n is
uniformly distributed in dZZ l

n.

Proof. To prove this lemma, we show that each entry of (v(M)− v(M ′))HK modulo n is
uniformly distributed in dZZn. Let y represent one of the columns of HK and define for
β ∈ ZZn the set

Cβ = {y : (v(M)− v(M ′))y = β mod n}.
Since d divides each entry of v(M)− v(M ′), it also divides the product (v(M)− v(M ′))y,
hence, Cβ = ∅ if β is not divisible by d. Since d is the greatest common divisor of n and
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each of the entries of v(M)−v(M ′), there exists a vector y such that (v(M)−v(M ′))y = d
modulo n. This proves that Cβ 6= ∅ if and only if d divides β. For a fixed column y′ ∈ Cβ 6= ∅,
the mapping y ∈ Cβ → y− y′ ∈ C0 is a bijection. Hence, the non-empty sets Cβ have equal
cardinality. We conclude that each entry of (v(M) − v(M ′))HK modulo n is uniformly
distributed in dZZn.

Lemma 5. Let M and M ′ be multisets of B. Let d be the greatest common divisor of n
and each of the differences |Mb − M ′

b|, b ∈ B. Given knowledge of a full rank matrix A
over ZZn corresponding to different ri’s and given knowledge of h = AHK modulo n, the
probability that v(M)HK = v(M ′)HK modulo n is equal to (d/n)l.

Proof. By Lemma 3, since matrix A corresponds to different ri’s and (v(M)−v(M ′))(0,ri) =
0, the probability that the randomly chosen matrix HK satisfies 0 = (v(M)− v(M ′))HK

modulo n is independent of the knowledge of h = AHk mod n. By Lemma 4, since HK

is uniformly distributed, (v(M)− v(M ′))HK is uniformly distributed in dZZ l
n. Hence, the

probability that 0 = (v(M)−v(M ′))HK mod n is equal to one divided by the cardinality
of dZZ l

n, which is equal to (d/n)l.

Combining Lemmas 2 and 5 proves Theorem 5. To prove Theorem 1 we need the
following extra lemma.

Lemma 6. Suppose that v(M) = v(M ′) modulo n,
∑

b∈B Mb =
∑

b∈B M ′
b modulo L,

the cardinalities of M and M ′ are < L, and that the multiplicities of M are < n. Then
M = M ′.

Proof. If the cardinalities of M and M ′ are equal modulo L and < L then
∑

b∈B

Mb =
∑

b∈B

M ′
b. (5)

If all entries of v(M) are < n and v(M) = v(M ′) modulo n, then

M ′
b = Mb + βbn, b ∈ B, (6)

for integers βb ≥ 0. Combining (5) and (6) proves
∑

b∈B βb = 0, hence, all βb = 0. We
conclude that M = M ′.

Now we are ready to prove Theorem 1.

Proof. Let A(HK) be a probabilistic polynomial time (in mK ≈ 3m) algorithm with
oracle access to (HK ,+HK

,≡HK
). Then A(HK) can gain knowledge about at most a

polynomial number u(m) tuples [M i ; HK(M i)] (here u(.) denotes a polynomial). Fur-
thermore, A(HK) can search for a collision among at most a polynomial number t(m) of
pairs (M,M ′), where M and M ′ are multisets, M 6= M ′, and M has multiplicities < n.
According to Theorem 5, the probability that A(HK) finds a collision is at most

t(m)(u(m)2/2m + (d/n)l).
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Since A(HK) can only compute polynomial sized multisets, the cardinality of the
multisets M and M ′ are < L ≈ 2m. This allows us to apply Lemma 6 and conclude that
0 6= (v(M)−v(M ′)) modulo n. Hence, the greatest common divisor d of n and each of the
differences |Mb −M ′

b|, b ∈ B, is at most n/2. This leads to

(d/n)l ≤ 2−l.

Let c > 0 be any number and suppose that 2−l ≥ m−c, or equivalently, l ≤ c log m. Notice
that each of the differences |Mb − M ′

b| is polynomial sized in m, hence, d is polynomial
sized in m and there exists a number e > 0 such that d ≤ me for m large enough. This
proves

(d/n)l ≤ mel/nl ≈ mel/2m ≤ mec log m/2m,

which is at most m−c for m large enough. We conclude that the probability that A(HK)
finds a collision is at most m−c for m large enough. This proves Theorem 1 for random
matrices HK .

Remark. The theorem also holds for a pseudorandom family of hash functions represented
as matrices. Suppose that an adversary can compute a collision with a significant proba-
bility of success in the case where a pseudorandom family of hash functions is used. We
have just shown that an adversary has a negligible probability of success in the case where
random hash functions are used. Hence, with a significant probability of success he is able
to distinquish between the use of pseudorandom hash functions and the use of random
hash functions. This contradicts the definition of pseudorandomness, see [BGR95] for a
detailed proof of a similar result.

B Variants of Additive Multiset Hash

A few interesting variants of HK exist. Suppose that v(M) = v(M ′) modulo n and that
the multiplicities of M and M ′ are < n. Then clearly M = M ′. Hence, we do not need
Lemma 6 in the proof of Theorem 5. This means that the proof of Theorem 5 does not
depend on the cardinalities of M and M ′ to be equal modulo L. We can remove the
cardinality

∑
b∈B Mb from the scheme altogether. For example, for n exponentially large,

the cardinalities and in particular the multiplicities of M and M ′ are < n. This proves
Corollary 2. An other example is n = 2 and both M and M ′ are sets, which proves the
the main result of [BGR95].

Secondly, it is possible to replace the random nonce r by a counter that gets incre-
mented on each use of HK , or by any other value that never repeats itself in polynomial
time. This guarantees with probability 1 that the matrix A corresponds to different ri’s
(see Lemma 2). This removes the need for a random number generator from the scheme.
Moreover, shorter values can be used for r as long as the key is changed when r overflows;
this reduces the size of the hash.

If u = 0 then the proof of Theorem 5 does not depend on matrix A and its correspond-
ing ri’s. Similarly, if sums of hashes,

HK(0, r) +
∑

b∈B

MbHK(1, b) mod n,
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are hidden from the adversary (he knows which multiset M is being hashed, but not the
value of the sum of hashes) then we can remove HK(0, r) from the scheme altogether. As
the following corollary shows, complete hiding is not necessary. We can use a pseudorandom
permutation to hide sums of hashes.

Corollary 4. (Permuted-MSet-XOR-Hash) The multiset hash corresponding to

HK,K′(M) =

[
PK′

(⊕

b∈B

MbHK(1, b)

)
;

∑

b∈B

Mb mod 2m

]
,

where HK : {0, 1}×B → ZZm
2 and PK′ are randomly selected from a pseudorandom family

of hash functions and permutations, is set-collision resistant.
(Permuted-MSet-Add-Hash) The multiset hash corresponding to

HK,K′(M) = PK′

(∑

b∈B

MbHK(1, b) mod 2m

)

where HK : {0, 1}×B → ZZ2m and PK′ are randomly selected from a pseudorandom family
of hash functions and permutations, is multiset-collision resistant.

Notice that the multiset hashes are incremental because PK′ is a permutation and,
hence, invertible.

Proof. We first consider a random function PK′ . Suppose that the adversary learns u
tuples [M i ; HK,K′(M i)]. As in Lemma 2, the probability that two permuted sums of
hashes in the u tuples are equal is at most u2/2m. If all of them are unequal to one
another then matrix AHK (defined without the part corresponding to the random nonce)
is uniformly distributed and not known to the adversary (since PK′ is a random function).
Hence, the probability that v(M)HK = v(M ′)HK modulo n is statistically independent of
the knowledge of the adversary. This can be used instead of Lemma 5 to prove Theorems
5 and 1. This result also holds for a pseudorandom family of permutations PK′ , see the
remark at the end of the proof of Theorem 1 in Appendix A.

C Proof of Collision Resistance of Multiplicative Multiset Hash

In the following lemma A(.) is a probabilistic polynomial time (in log q) algorithm which
outputs weights4 w1, . . . , wu ∈ ZZq−1 for a polynomial number of random inputs x1, . . . , xu ∈
GF (q) such that 1 =

∏
i x

wi
i with probability at least ρ. We show that if such an algorithm

exists then we can break the DL problem in GF (q) in polynomial time with probability
at least ρ.

Lemma 7. Let A(.) be a ppt algorithm such that there exists a number c such that for
u ≤ (log q)c,

Prob

{
(xi ← GF (q))u

i=1, (wi ∈ ZZq−1)u
i=1 ← A(x1, . . . , xu) :

1 =
∏

i x
wi
i , ∃iwi 6= 0, ∀i|wi| ≤ (log q)c

}
≥ ρ. (7)

4 Not all equal to zero and each of them bounded by a polynomial number.
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Let g be a generator of GF (q). Then there exists a probabilistic polynomial time (in log q)
algorithm A′(.) such that

Prob{y ← GF (q), x ← A′(y) : y = gx} ≥ ρ/(log q)c.

In words, given a random y ∈ GF (q), we are able to find the discrete log of y in GF (q)
with probability at least ρ/(log q)c.

Proof. Let y ← GF (q). Select a polynomial number u of random elements r1, . . . , ru in
ZZq−1 and j ∈ {1, . . . , u} and compute

xj = ygrj and xi = gri for i 6= j.

Compute (w1, . . . , wu) ← A(x1, . . . , xu). Since by construction the xis have been chosen
uniformly at random, we know that with probability at least ρ the weights w1, . . . , wu ∈
ZZq−1 are computed such that they are not all equal to zero, |wj | ≤ (log q)c, and

1 =
∏

i

xwi
i = ywjg

P
i riwi . (8)

Since the u inputs are in random order, the probability that wj 6= 0 is at least

1/u ≥ (log q)−c.

Suppose that wj 6= 0. Let d be the greatest common divisor between wj and q− 1. Then5

wj/d is invertible in ZZq−1. By using the Chinese remainder theorem (assuming that we
know the factorization of q − 1), we are able to compute the inverse of wj/d in ZZq−1 in
polynomial time. Denote this inverse by w′j . From (8) we infer that

yd = g−w′j
P

i riwi .

Notice that if yd = gs and y = gt, then gdt = gs, that is dt = s modulo q − 1. Recall
that d divides q− 1. For this reason d must also divide s. Let d′ = (q− 1)/d and s′ = s/d.
Both can be computed in polynomial time as we have shown. Now y can be expressed as
one of the roots

y = gs′+jd′ ,

where 0 ≤ j ≤ d − 1. Since d ≤ |wj | ≤ (log q)c, each of the roots can be checked in
polynomial time. This proves the lemma.

The DL assumption states that for all ppt algorithms A(.), any number c, and Q large
enough,

Prob

{
q ≥ Q is a prime power, g generates GF (q),
y ← GF (q), x ← A(q, y)

: y = gx

}
≤ (log q)−c.

We are ready to prove Theorem 2.
5 Division / denotes division over integers, not over ZZq−1 (since d has no inverse in ZZq−1, we can not

divide wj by d in ZZq−1).
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Proof. Suppose that there exists a number c and a probabilistic polynomial time algorithm
B(H), which runs in time u = (log q)c, with access to a random oracle H which outputs
with probability ρ ≥ 1/u a collision M for M ′. That is, M 6= M ′, M and M ′ are polynomial
sized < u, and

H(M) =
∏

b∈B

H(b)Mb =
∏

b∈B

H(b)M ′
b = H(M ′).

This means that
1 =

∏

b∈B

H(b)Mb−M ′
b ,

there is a polynomial number Mb’s and M ′
b’s unequal to zero, for all b ∈ B the absolute

value |Mb−M ′
b| < u is polynomial sized, and there exists a b ∈ B such that Mb−M ′

b 6= 0.
Let C be an algorithm that goes from GF (q)u to B → GF (q), where B → GF (q)

denotes the set of oracles with inputs in B and outputs in GF (q). C is chosen such that
C(x1, . . . , xu) returns x1 when it is called for the first time on some input y1, x2 when it
is called for the first time on some input y2 different from y1, and so on.

When x1, . . . , xu are chosen randomly, C(x1, . . . , xu) cannot be distinguished from a
random oracle by B because B cannot query C more than u times. Therefore, if we let A
be the composition of B and C, A is able to find a collision for H with probability ρ when
its inputs are chosen uniformly at random. Moreover, A is a ppt algorithm satisfying (7),
so by Lemma 7, A can break the discrete log problem in GF (q) in polynomial time with
probability at least ρ/(log q)c ≥ (log q)−2c. This contradicts the DL assumption. So B does
not exist, which proves multiset-collision resistance.

Because oracle access to H is stronger than oracle access to H, this proves Theorem 2
when H is a random oracle. The result carries over to poly-random functions because they
are indistinguishable from random functions by ppt algorithms.

Remark. Supposing that H is a random oracle is a strong assumption. Compared to
the MSet-XOR-Hash and MSet-Add-Hash we do not need a secret key (as the seed of a
pseudorandom family of hash functions) at all. We refer to [BR93] for a discussion into
what extent the random oracle assumption can be met in practice.

D Proof of Collision Resistance of Vector Additive Multiset Hash

If r is a fixed constant in the MSet-Add-Hash, then we are again vulnerable for the attack
described for the MSet-XOR-Hash, where r is a fixed constant. The main difference is
that the attack is not modulo n = 2 but modulo n = 2m. This means that the linear
combination may lead to a collision with large multiplicities. This would give a non-
polynomial sized collision and does not defeat the multiset collision resistance. It turns
out that this problem is related to a weighted knapsack problem (see also [BM97]). In
this sense MSet-Add-Hash remains multiset collision resistant, even if the pseudorandom
family of hash functions HK is replaced by a single random function avoiding the use of
a secret key as in MSet-Mu-Hash.
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The weighted knapsack (WK) assumption is defined as follows. For all ppt algorithms
A(.), any number c, q large enough, and u ≤ (log q)c,

Prob

{
(xi ← ZZq)u

i=1, (wi ∈ ZZq)u
i=1 ← A(x1, . . . , xu) :

0 =
∑

i wixi mod q, ∃iwi 6= 0, ∀i|wi| ≤ (log q)c

}
≤ (log q)−c.

Notice the resemblance with (7), where multiplication in GF (q) is now replaced by addition
modulo q (where q can be any integer and does not need to be a prime power). It remains
unclear to what extent Ajtai’s work [Ajt96] relates this problem to the worst-case shortest
vector problem. It is an open problem whether to believe in the WK assumption.

Let H : B → ZZq be a poly-random function. We define

H(M) =
∑

b∈B

MbH(b) mod q, (9)

≡H to be equal to =, and +H to be addition modulo q (q plays the role of 2m in
MSet-Add-Hash). The proof of the next theorem is similar to the proof of Theorem 2
in Appendix C.

Theorem 6. Under the WK assumption, (H, +H,≡H) as defined in (9) is multiset colli-
sion resistant.

For completeness, we introduce a multiset hash corresponding to parameters n = 2
√

m

and l =
√

m (see Section 4). Let H : B → ZZ l
n be a poly-random function. Now, we define

H(M) =
∑

b∈B

MbH(b) mod n,

≡H to be equal to =, and +H to be vector addition modulo n. Theorem 6 holds again if
we modify the WK assumption by replacing xi ← ZZq by xi ← ZZ l

n, wi ∈ ZZq by wi ∈ ZZn,
and q by n. The main difference is that the xi’s are vectors of length l =

√
m. According to

[GGH96, Sections 2.1 and 2.2]6, if there is a ppt solving the modified WK problem (that
is it contradicts the modified WK assumption) then, by Ajtai’s theorem [Ajt96], there is a
probabilistic polynomial (in l) algorithm which, for any lattice L in IRl, given an arbitrary
basis of L, approximates (up to a polynomial factor in l) the length of the shortest vector
in L. This proves Theorem 3. The worst-case shortest vector problem is believed to be
hard, see [GGH96] for more discussion.

E Proof of Improved Offline Checker

In this appendix, we prove Theorem 4.

Proof. Suppose the RAM does not behave like valid RAM (i.e. the data value that the
checker reads from a particular address is not the same data value that the checker most

6 Notice that the matrix with columns xi is in ZZl×u
n and that the vector with entries wi is unequal to

zero and has Euclidean norm polynomial in l =
√

m.
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recently wrote to that address). Let W be the multiset of triples written to RAM and let
R be the multiset of triples read from RAM. We will prove that W 6= R.

Consider the put and get operations that occur on an address as occurring on a
timeline. To avoid confusion with the values of Timer, we express this timeline in terms
of processor cycles. Let x1 be the cycle of the first incorrect get operation. Suppose the
checker reads the pair (v1, t1) from address a at x1. If there does not exist a cycle at which
writes the pair (v1, t1) to address a, then W 6= R and we are done.

Suppose there is a cycle x2 when (v1, t1) is first written to address a. Because of line 3
in the get operation, the values of time stamps of all of the writes to a after x1 are
strictly greater than t1. Because the time stamps at x1 and x2 are the same, and since
put operations and get operations do not occur on the same cycle, x2 occurs before x1

(x2 < x1). Let x3 be the cycle of the first read from a after x2. Notice that x1 is a read
after x2, so x1 ≥ x3. If x1 were equal to x3, then the data value most recently written to
a, i.e. v1, would be read at x1. This contradicts the assumption that x1 is an incorrect
read. Therefore, x1 > x3.

Because the read at cycle x1 is the first incorrect read, the read at cycle x3 is a correct
read. So the read at x3 reads the same pair that was written at x2. Again, because of
line 3 in the get operation, the values of time stamps of all the writes to a after x3 are
strictly greater than t1. Therefore, (v1, t1) cannot be written after x3. Because x2 is the
first cycle on which (v1, t1) is written to a, (v1, t1) cannot be written before x2. Because
x3 is the first read from a after x2, and two writes to an address always have a read from
that address between them, (v1, t1) cannot be written between x2 and x3. Therefore, the
pair (v1, t1) is written only once, but it is read at x1 and x3. Therefore, W 6= R.
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