
Inference of generic types in Java

Alan Donovan Michael D. Ernst

Technical Report MIT/LCS/TR-889
22 March 2003

MIT Laboratory for Computer Science
200 Technology Square

Cambridge, MA 02139 USA
{adonovan,mernst}@lcs.mit.edu

ABSTRACT
Future versions of Java will include support for parametric poly-
morphism, or generic classes. This will bring many benefits to Java
programmers, not least because current Java practise makes heavy
use of pseudo-generic classes. Such classes (for example, those
in package java.util) have logically generic specifications and
documentation, but the type system cannot prove their patterns of
use to be safe.

This work aims to solve the problem of automatic translation of
Java source code into Generic Java (GJ) source code. We present
two algorithms that together can be used to translate automatically
a Java source program into a semantically-equivalent GJ program
with generic types.

The first algorithm infers a candidate generalisation for any class,
based on the methods of that class in isolation. The second algo-
rithm analyses the whole program; it determines a precise paramet-
ric type for every value in the program. Optionally, it also refines
the generalisations produced by the first analysis as required by the
patterns of use of those classes in client code.

1. INTRODUCTION
The next release of the Java programming language [12] is an-

ticipated to include support for generic types. Generic types (or
parametric polymorphism [6]), which make it possible to write a
class or function abstracted over the types of its arguments, are one
of the most wished-for programming language features in the Java
community — in fact, their inclusion has been the #1 request-for-
enhancement (RFE) for many years [13].

In the absence of generic types, Java programmers have been
writing and using pseudo-generic classes, such as those in package
java.util, which are expressed in terms of Object. Clients of
such classes widen all the actual parameters to methods, and must
down-cast all the return values to the type at which the pseudo-
generic class is ‘instantiated’ in a fragment of client code. This
leads to three problems:

1. The Possibility of Error: Java programmers often think in
terms of generic types when using pseudo-generic classes.
However, the Java type system is unable to prove that such
objects are consistently used. This disparity allows the pro-
grammer to write, inadvertently, type-correct Java source code
that manipulates objects of pseudo-generic classes in a man-
ner inconsistent with the desired truly-parametric type. A
programmer’s first indication of such an error is typically a
run time exception due to a failing cast; compile time check-

ing is preferable.

2. An Incomplete Specification: The types in a Java program
serve as a rather weak specification of the the behaviour of
the program and the intention of the programmer. Generic
types provide better documentation, and the type checker
guarantees their accuracy.

3. Lexical Complexity: The user must explicitly downcast the
objects retrieved from pseudo-generic classes, leading to syn-
tactic clutter. (The non-generic type declarations are short,
however.)

Non-generic solutions to the problems (e.g., defining wrapper classes
such as StringVector) are inconvenient and error prone.

Currently, programmers who wish to take advantage of the ben-
efits of Generic Java must translate their source code by hand; this
process is time-consuming, tedious, and error-prone. We propose
to automate the translation of existing Java source files into GJ, and
of Java class-files to GJ class-files1. There are two parts to this task:
adding type parameters to class definitions, and modifying uses of
the classes to supply the type parameters.

There are multiple solutions to this problem. Two trivial solu-
tions are as follows. (1) Do not use generic types at all. Since GJ
is a superset of Java, a valid Java program is a valid GJ program
in which each type is a GJ “raw” type, which is not parameterised.
(2) Use some set of generic types, but always instantiate them at
their upper bounds, and insert casts exactly where they appear in
the Java program. For example, create one type parameter for each
instance of a type name in the class, and instantiate the class us-
ing those actual types. Each of these two trivial solutions behaves
exactly like the original program, but reaps none of the benefits of
parametric polymorphism.

Our goal is to produce a set of polymorphic class abstractions
that capture exactly those aspects of each class that are actually
used generically, and the set of the most specific valid instantiations
of those types for each use in the given client code. This is the ideal
generalisation that experienced Java programmers would agree is
the preferred GJ type for a particular Java class in the context of an
application.

This paper presents two algorithms that together translate the
source code of a Java program into source code for a semantically
equivalent Generic Java (GJ) [4, 5] program. The first, parameteri-
sation algorithm is an implementation-side analysis that infers both

1GJ class-files are class-files containing Signature attributes for
each generic or parametric type.
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which classes are inherently polymorphic and also a candidate set
of type variables (and their bounds) over which each polymorphic
class should be abstracted. The second, instantiation algorithm is a
whole-program analysis that infers at what type clients instantiate
the polymorphic classes. The instantiation analysis also refines the
candidate type parameters of each class, based on client use of the
code and on constraints inexpressible in GJ. Because Java and GJ
treat primitive types identically and generic classes can only be ab-
stracted over reference types, primitive types are largely irrelevant
to this paper, so the algorithms ignore, or provide obvious default
interpretations for, values of primitive types.

We constrain ourselves to the confines of the GJ language rather
than selecting or inventing a new language that permits easier in-
ference or makes different tradeoffs. (For example, some other de-
signs are arguably more powerful or expressive, but lack GJ’s inte-
gration with existing Java programs and virtual machines.) This de-
cision sheds light on the GJ language design and makes our work of
direct practical interest to Java programmers who wish to upgrade
to the next version of the language. This paper uses the term GJ to
refer to two closely related versions of Java with generic types [4,
14]. The differences between these languages are not significant to
this paper.

We describe our analyses at the representation level of JVM byte-
codes. This simplifies the treatment of a number of source lan-
guage features, such as class-nesting, anonymous classes, gener-
ated methods, special operators (e.g., + for String), re-use of lo-
cal variables, etc. Additionally, it permits the analysis to be run on
classes for which source is not available (GJ allows one to retrofit a
generic type onto a pre-existing class file). Section 4 discusses how
to map the results into the GJ source domain.

Our algorithms are not guaranteed to produce a perfect result
(which may depend on the intended use of the class in any event).
However, the automated translation is guaranteed to be self-consistent
and semantically equivalent and in typical cases (based on our hand
simulation of dozens of potentially problematic classes) matches or
is close to the desired goal. Programmers could interact with a tool
to refine results (see Section 2.6) or make adjustments directly to
the resulting code.

The remainder of this paper is organised as follows. Section 2
presents the analysis for determining how many type parameters a
class definition should have, and section 2.6 explains how these re-
sults can be refined. Sections 3 explains how to instantiate generic
types at uses such as declarations; the approach is to generate (Sec-
tion 3.4) and resolve (Section 3.6) instantiation constraints. Sec-
tion 4 shows how the results enable a translation of the Java pro-
gram into GJ. Section 5 reviews related work, and Section 6 con-
cludes.

2. PARAMETERISATION ANALYSIS
This section describes the algorithm that obtains intrinsically

(via implementation-side analysis of a single class in isolation) a
candidate set of type parameters for each class in the program.

The algorithm generates the most general possible type param-
eter set: it introduces as many distinct type variables as possible
such that the program still type-checks. Section 2.6 discusses ways
to improve the results of this analysis, both by additional analysis
and by programmer intervention.

The algorithm is a dataflow analysis, and its aim is to determine
a set of constraints between the type variables (and types) that will
be used at each declaration (in our terminology, origin) in the trans-
lated GJ program. The algorithm works by computing which ori-
gins flow to each type variable.

As a simple example, consider the class class Box (sometimes

1: class Stack
2: {
3: private Object[] data = new Object[10];
4: private int size = 0;
5: Object top() {
6: return data[size-1];
7: }
8: Object pop() {
9: return data[--size];
10: }
11: void push(Object o) {
12: data[size++] = o;
13: }
14: void exchange() {
15: Object o1 = pop(), o2 = pop();
16: push(o1);
17: push(o2);
18: }
19: }

Figure 1: A simple polymorphic stack implementation in Java.

known as Cell):

class Box {
public void set(Object v) { this.v = v; }
public Object get() { return v; }
private Object v;

}

The analysis identifies three type variables and their bounds:

class Box<A extends B, B extends C, C extends Object> {
public void set(A v);
public C get();
private B v;

}

This result is a valid GJ program, but it fails to capture the sim-
ple generic type (with a single type parameter) intended by the pro-
grammer. Our algorithms obtain the simpler type by examining
uses of the class: either uses within the class itself (discovered by
the parameterisation analysis, see Section 3.6.1) or external uses
(discovered by the instantiation analysis, see Section 3.

We illustrate this process with a running example, a very simple
Stack class shown in Figure 1.

2.1 Origins
The parameterisation algorithm begins by identifying origins.

The set of origins is a superset of the set of type parameters. The
parameterisation algorithm determines subtype and equality con-
straints among origins.

To a first approximation, the set of origins is the set of places in
a class’s signature-body where a type-variable may legally appear
in GJ: an origin is a declarator of a parameter-type or return-type in
the signature of a non-static method, or a declarator of a non-static
field type. For the purposes of this analysis, each class should be
thought of as the result of ‘flattening’ everything inherited from
its superclasses and interfaces into a single record containing all its
fields, non-overridden methods, and methods accessible via super.

There are additional origins for local variable declarations, array
types, and array creation sites. This implies that the set of origins
depends on the implementation as well as the signature of a class;
see Section 2.3.3. For each origin A of array type, there is origin
A′ corresponding to the elements of origin A. (If A′ is itself of
array type, it gives rise to A′′, and so forth.) There is also an ori-
gin for each occurrence of the new[] array-creation operator in the
methods of the class.
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Number Name Declared type

O1 Stack.data Object[]

O2 Stack.data’ Object

O3 Stack.anewarray1 Object[]

O4 Stack.anewarray1’ Object

O5 Stack.top::return Object

O6 Stack.pop::return Object

O7 Stack.push::o Object

O8 Stack.exchange::o1 Object

O9 Stack.exchange::o2 Object

Figure 2: Origins for the Stack example of Figure 1. In origin
names, the :: operator denotes ‘in the scope of’. Origins O1 and
O2 represent the expression new Object[10] that appears in the
body of the (implicit) Stack constructor. Origin number have no
semantic meaning, but are only used for presentation in this paper.

Figure 3: Lattice for the parameterisation analysis. Between NO-
VARIABLE and NULL is P({O1 . . . On}), the power-set of the n
origins, ordered by subset inclusion ⊆. The value UNKNOWN in
the dataflow rules maps to NULL in the lattice.

Figure 2 shows the origins for class Stack.
The following properties are defined for each origin:

• javadecl(O) is the Java type associated with origin O; this is
the Declared type column of Figure 2.

• element(O) is the origin associated with the element type of
O; it is defined iff javadecl(O) is an array type. In the Stack
example, element(O1) = O2.

The analysis makes use of the helper function origin(name),
which returns an origin given its name, which may be specified ei-
ther by identifier (e.g., C.f::o) or by abstract syntax (e.g., C.f::return,
C.f::formal1).

2.2 Abstract values

2.2.1 Abstract value lattice
Each abstract value represents the types of values (more pre-

cisely, sets of origins that declare values) that can flow to a given
Java (stack or local) variable or to an origin. One could call this the
set of reaching origins, by analogy with reaching definitions.

The lattice L = 〈P(
�
) ∪ {NOVARIABLE, NULL},⊆〉 in Fig-

ure 3 is the domain of abstract values in the analysis.
NULL is the bottom (⊥) of the lattice since null values can flow

into variables of any reference type. The UNKNOWN value indicat-
ing no information about a value (e.g., because they are reached via
pointers other than this) is also mapped to the NULL (⊥) lattice
value; thus, values for which we have no information do not affect

the results. We distinguish UNKNOWN from NULL in the dataflow
rules, even though they are the same in this lattice, because this
permits a single set of dataflow rules to be used for both this analy-
sis and an alternative one (not discussed in this paper) that eagerly
fuses type variables.

NOVARIABLE is the top (>) of the lattice since it represents val-
ues that cannot flow into variables whose type is given by a type-
variable. In other words, such values stand for non-parameterised
types.

2.2.2 Abstract state
Section 2.3 presents the transfer functions of the dataflow analy-

sis as an alternative operational semantics for JVM bytecodes [16].
The abstract state of the JVM at each program point is represented
as the triple State, defined as follows:

State = 〈Stack × Locals ×Origins〉

• Stack = V alue? is a stack of abstract values, with the top-
most element to the right; the invariant part is shown as ‘...’,
and the operands pushed and popped by that transfer function
are named.

• Locals = V aluenum locals is a fixed-size array of local ab-
stract variables.

• Origins = Originnum origins is a fixed-size tuple of origins,
one for each origin in the current class. We use the functional
notation O[x := y] to represent the Origins tuple O with the
slot indexed by x updated to contain y. (No join is necessary;
the dataflow join operator takes care of that detail.) Analysis
of each method generates an Origins tuple; the result of
analysing the entire class is the join of all of these tuples.

The State triple induces a cross-product lattice whose partial or-
der relation is the pointwise application of the partial order relation
of its three elements. In turn, the ordering relation for each of these
three elements is the pointwise application of the partial order rela-
tion specified by the value lattice (see Figure 3) to the elements of
each of these sets.

The well-formedness of the JVM program ensures that joins are
well-defined; for example, all pairs of stacks compared are of the
same height.

2.3 Dataflow rules
This section gives the dataflow rules — one per bytecode instruc-

tion — for the parameterisation analysis.
The dataflow analysis is applied to all instance methods of the

class, including methods inherited from super-classes. Static meth-
ods are omitted since they are outside the scope of a class’s type
variables. Native and abstract methods have no bodies, so the anal-
ysis can do nothing with them; however, Section 2.5.1 describes a
technique whereby constraints on the origins of such methods may
be inferred.

In each rule, M refers to the current method, and C to the current
class. this is a synonym for M::formal0.

Figure 4 gives the results of the dataflow analysis for the Stack
example. For brevity, the details of the abstract execution are not
shown, but the annotations on the code show, for each source/sink
origin pair connected by the dataflow solution, which line of source
code generated it.

• ENTRY: pseudo-rule for procedure-entry block
�

=⇒ 〈[], [arg0, . . . , argn], 〈⊥, . . . ,⊥〉〉
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class Stack
{

private Object[] data = new Object[10]; // O3 -> O1
private int size = 0;
Object top() {

return data[size-1]; // O2 -> O5
}
Object pop() {

return data[--size]; // O2 -> O6
}
void push(Object o) {

data[size++] = o; // O7 -> O2
}
void exchange() {

Object o1 = pop(), // O6 -> O9
o2 = pop(); // O6 -> O8

push(o1); // O8 -> O7
push(o2); // O9 -> O7

}
}

Figure 4: Dataflow results for the Stack example of Figure 1.

∀i ∈ [0..n] : argi = {origin(M::formal i)}

Recall that this is M::formal0.

• RETURN: procedure return

〈[. . . retval], locals, O〉
return
=⇒

�

Retain O[origin(M::return) := retval] as the result of analysing
this method; the Origins objects for each method are joined
together to produce the result of the class analysis.

• INVOKE: method/constructor call. Calls to static methods
are not parameterised; calls with a receiver of this have pa-
rameters identical to those of C; and nothing is known about
calls with any other receiver.

〈[. . . receiver? arg1 .. argn], locals, O〉

invoke M′

=⇒ 〈[. . . retval], locals, O′〉

if M’ is static (no receiver), retval = NoVariable and O′ =
O.

if receiver 6= {origin(this)}, retval = Unknown and O′ =
O.

if receiver = {origin(this)}: {

retval = {origin(M′::return)}

O′ = O[∀i ∈ [1..n] : origin(M′::formali) := argi]

}

• NEW: object creation expressions

〈[. . . ], locals, O〉
new C′

=⇒ 〈[. . . NoVariable], locals, O〉

• NEWARRAY: new arrays of primitive type

〈[. . . count], locals, O〉
newarray
=⇒ 〈[. . . NoVariable], locals, O〉

• STRING: string literals

〈[. . . ], locals, O〉
ldc ”foo”
=⇒ 〈[. . . NoVariable], locals, O〉

• CHECKCAST

〈[. . . expr], locals, O〉
checkcast C′

=⇒ 〈[. . . Unknown], locals, O〉

• NULL: the null literal

〈[. . . ], locals, O〉
aconst null

=⇒ 〈[. . . , Null], locals, O〉

• PUTFIELD: writes to instance fields

〈[. . . receiver value], locals, O〉
putfield F
=⇒ 〈[. . . ], locals, O′〉

if receiver = {origin(this)}, O′ = O[{origin((F))} := value]

otherwise, O′ = O.

• GETFIELD: reads from instance fields

〈[. . . receiver], locals, O〉
getfield F
=⇒ 〈[. . . value], locals, O〉

if receiver = {origin(this)}, value = {origin(F)}

if receiver 6= {origin(this)}, value = Unknown

• PUTSTATIC: writes to static fields

〈[. . . value], locals, O〉
putstatic S

=⇒ 〈[. . . ], locals, O〉

• GETSTATIC: reads from static fields

〈[. . . ], locals, O〉
getstatic S

=⇒ 〈[. . . NoVariable], locals, O〉

• ANEWARRAY: new array of references

〈[. . . count], locals, O〉
anewarrayn C

=⇒ 〈[. . . n], locals, O〉

where n is the origin number of the anewarray operator.

• AALOAD: load from array

〈[. . . arrayref index], locals, O〉
aaload
=⇒ 〈[. . . value], locals, O〉

if arrayref /∈ {NoVariable, Unknown},
value = {element(a)| a ∈ arrayref}

otherwise value = Unknown

• AASTORE: store into array

〈[. . . arrayref index value], locals, O〉
aastore
=⇒ 〈[. . . ], locals, O′〉

if arrayref /∈ {NoVariable, Unknown},
O′ = O [∀a ∈ arrayref , element(a) := value]

otherwise, O′ = O

• STACKMANIPULATION: all stack and local-variable manip-
ulation operations (e.g., dup, swap, push, pop, load, store)
are defined as in the standard semantics.

• ARITHMETIC:: all arithmetic operations simply pop and push
the stack as required. All values pushed are primitive values,
which are irrelevant to this analysis, so the ⊥ lattice-value is
used.

• CONTROLFLOW: all control flow operators simply pop the
stack as required. Of course, they also define the control-flow
graph as used by the dataflow infrastructure.

Note the symmetry of the rules for procedure entry/return and
method invocation (ENTRY/RETURN and INVOKE), for reading and
writing to fields (PUTFIELD and GETFIELD), and for indexing and
storing to arrays (AALOAD and AASTORE).

2.3.1 Following pointers
The dataflow rules distinguish between the case where the pointer

is this, and all other cases. Values obtained from non-this point-
ers (even those of the same class as this) are UNKNOWN, because
the intra-class dataflow analysis cannot determine the proper type
parameter instantiations for their type variables.

As an example, consider the following code:
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1: class C {
2: Set s; // O1
3: Set foo1(C c) { // O2, O3
4: return this.s;
5: }
6: Set foo2(C c) { // O4, O5
7: return c.s;
8: }
9: }

We have given the full GJ type, but our analysis is provided with
unparameterised Java code and aims to determine the type param-
eters.

The return this.s statement on line 4 induces a widening
from origin O1 (the declared type of s) to origin O2 (the return type
of foo1): in other words, from Set to Set. Because of the use of
the this pointer, we know that the two Sets have identical type pa-
rameter instantiations (though we do not yet know what that might
be). The return c.s statement on line 7 induces a widening from
origin O1 (the declared type of s) to origin O4 (the return type of
foo2). Since parameter c might be instantiated with different type
parameters than those (to be) declared on line 1, this widening only
makes sense if a substitution is performed. for instance, suppose
that the final GJ code is

1: class C<T> {
2: Set<T> s; // O1
3: Set<T> foo1(C<T> c) { // O2, O3
4: return this.s;
5: }
6: Set<Number> foo2(C<Number> c) { // O4, O5
7: return c.s;
8: }
9: }

The widening O1 ← O4 is sensible only under the substitution
of Number for T in O1 (Set<T>). However, this substitution is
not knowable by the parameterisation dataflow analysis: it knows
neither the set of type-variables over which C and Set are parame-
terisation, nor what type-expressions Pi are used to instantiate any
given pointer. By contrast, the widening O1 ← O2 is sensible un-
der the identity transformation; this transformation is known to be
valid even though the instantiation of origins O1 and O2 are not
yet known.

To simplify the parameterisation dataflow analysis (and to keep
it intraclass), and because the information is easily obtained by the
instantiation analysis, the parameterisation analysis ignores uses of
pointers other than this.

2.3.2 Fixed-class expressions
Expressions that return a fixed class, e.g., new C(), new P[n]

(where P is primitive), and "foo", cannot be assigned to a vari-
able declared with a type-variable. GJ only permits upper-bounds
to be specified for type-variables, yet assignments from these ex-
pressions all induce lower bound constraints.

Therefore the transfer function for the operations NEW and STRING

return the lattice > value, NOVARIABLE. Any origin into which
such expressions flow will not be declared with a type-variable. A
similar GJ restriction applies to values obtained from static fields
or data.

2.3.3 Array creation
The treatment of anewarray differs from that of new C(), which

cannot be assigned to variables declared with a type-variable.
Consider the Stack example (Figure 1). If the types of values

that flow into the elements of array data have an upper-bound

of T (where T is a type-variable), then we would like to declare
the field as T[] data. But then the assignment T[] data = new

Object[10] would not be valid, since it does not represent a widen-
ing.

In GJ, if T is a type-variable, we cannot create a new class in-
stance with new T(). However, we can create a new array in-
stance with new T[10] that allows reading and writing of elements
of class T — even though the created object is in fact of class
Object[]. So, by giving origins to new[] nodes, we allow them
to be used in assignments such as that to data.

2.4 The candidate parameterisation
The solution to the dataflow problem is obtained in the usual

way: forward-flow iteration to least-fixed point, using a single-
entry, single-exit flowgraph. For each method, the dataflow equa-
tions give an Origins component that associates each origin in the
class with a lattice value. The value indicates, for each origin, what
set of source origins may possibly flow into it by a series of assign-
ments. The dataflow solution for the entire class is the elementwise
join of the solutions for each method.

Given this dataflow solution, our aim is to select a set of type
parameters and their (upper) bounds. The set of type parameters is
certainly no more than the number of origins. This section shows
how to select a subset of the origins, how to select bounds, and
which origins to relate to each selected one.

If Origins[O] is NOVARIABLE, then origin O cannot be de-
clared with a type-variable; the origin is unchanged in the GJ trans-
lation.

If Origins[O] is NULL, then no values from origins in the cur-
rent class flow to O, so we have no constraints on O. In the GJ
translation, O is replaced by a new type-variable bounded by Object.

The remainder of this section describes how type variables and
their bounds are selected for origins into which other origins flow.
The analysis consists of four steps. First, a graph of type constraints
is created from the source code plus the dataflow solution. Second,
the graph is augmented so that array types and element types are
treated consistently. Third, the graph is simplified. Fourth, type
variables that would represent array types are removed (GJ forbids
parameterising over them). Finally, the set of candidate type vari-
ables and their bounds can be read directly form the graph: each
node is a type variable (or a Java class) and each edge from a type
variable is an upper bound on that variable.

2.4.1 The graph of type constraints
The analysis operates over a graph G of type constraints. The

nodes of the graph are all the classes in the system, plus the ori-
gins of the current class. The edges represent type constraints: they
are the Java extends and implements relations, plus additional con-
straints due to dataflow (assignments) and bounds.

G = 〈Classes ∪Origins, E〉

E = extends ∪ implements ∪ flows ∪ bounds

flows = {(o, Origins[o]) | o ∈ Origin′}

bounds = {(o, javadecl(o)) | o ∈ Origin′}

Origin′ = {o | Origins[o] 6∈ {NOVARIABLE, NULL}}

Origin′ contains the origins with lattice values that are sets; ori-
gins with lattice values of NOVARIABLE or NULL were dealt with
above.

2.4.2 Consistent treatment of arrays
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Figure 5: Constraint graph generated by analysis of the Stack class
of Figure 1. Circles denote origin nodes; boxes are class nodes rep-
resenting the classes of the program. The edges are a combination
of those arising from the flow analysis and those from the Java in-
heritance graph.

Figure 6: Constraint graph for Stack example after reduction step.
Boxes are class nodes indicating whose SCC contains at least one
Java class; elliptical nodes are type-variable nodes whose SCCs
contain only origins. The grey arrows represent the element rela-
tion.

Java arrays have covariant subtyping. Therefore, for every di-
rected edge between two array origins in the constraint graph, a
corresponding edge must exist between their respective element
origins (and so on, in the case of multidimensional arrays); sim-
ilarly, each edge induces induces an edge between elements repre-
senting arrays of the types connected by the edge. In the Stack

example, this process adds edge O4 → O2 due to existing edge
O3 → O1. Figure 5 shows the constraint graph for the Stack

example.

2.4.3 Graph simplification
The next step is SCC-merging, local variable elimination, and

transitive reduction. This step fuses all the nodes in each strongly
connected component and fuses each node containing only local
variable origins with its least restrictive bound (lub). Finally, it
removes the maximum number of edges possible while maintaining
the partial-order relation. Figure 6 shows the reduced graph for the
Stack example; no local variable elimination was necessary for
this example.

Each SCC contains at most one Java class node. In the GJ trans-
lation of the input program, any origins that share a SCC with a Java
class are cannot be represented by a type-variable, but are translated
to the Java class.

2.4.4 Eliminate variables bounded by a final class
In GJ as in Java, one cannot extend a class declared final, so if

any type-variable has such a class as one of its upper-bounds, then
we eliminate that variable by fusing it with the bound class.

In practise, programmers often forget to annotate classes as final,
so we find the principal benefit of this comes from eliminating vari-
ables V ≤ String〈〉.

2.4.5 Eliminate Object[] bounded variables
GJ does not permit the bound of a type-variable to be a subclass

of Object[] — since there would be no way to refer to the element
type of such a type-variable. Therefore we eliminate each such
variable as follows:

1. Colour grey all nodes labeled with a Java class derived from
Object[]; leave all other nodes white.

2. Select any white node N from which there is an edge to a
grey node. If there are none, stop.

3. Let O be the set of origins in the SCC associated with node
N . Define E to be the node representing the element type of
node N :

E =
�

o∈O

element(o)

4. Rename node N to E[]. Color it grey. Go to step 2.

Figure 7 illustrates this process for the Stack example. First
node A is renamed B[], then C is renamed D[].

2.4.6 Final solution
Now we can read the solution from the graph. The solution con-

sists of seven type-expressions for the origin declarators and three
type-variable bounds:

Number Type expression

O1 B[]

O2 B

O3 D[]

O4 D

O5 E

O6 B

O7 B

O8 B

O9 B

E ≤ Object

B ≤ E

D ≤ B

This is all the information we would need to emit the parameterised
class signature for Stack:

class Stack<E, B extends E, D extends B>
{

private B[] data;
private int size;
E top();
B pop();
void push(B o);
void exchange();

}

However, the output of this step is the set of type expressions,
possibly containing bounded type-variables, for all origins in the
table above, because the instantiation analysis of Section 3 requires
information about local and array origins, not just about the class’s
signature.
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Figure 7: Elimination of array-bounded type variables in the Stack example. GJ does not permit the bounds of a type-variable to be an
array-type. Such variables are replaced by E[], where E is the least-upper-bound of their elements. (a) A is to replaced by B[]. (b) C is to be
replaced by D[]. (c) All array-bounded variables have been eliminated.

2.5 Inheritance
The parameterisation analysis as described so far is applied to

each class in the program in isolation. This section describes two
techniques for combining per-class results to produce more precise
results. The first ensures that inherited and overridden members
have consistent types, and the second determines type instantiations
for extends clauses.

2.5.1 Compatible inherited and overridden types
In Java and in GJ, an overriding method must have identical

formal parameter types as the overridden method. We describe a
post-processing procedure to enforce this property. (An efficient
implementation can combine this procedure, and also the ‘flatten-
ing’ pre-processing step of Section 2.1, with the main analysis, by
analysing classes in depth-first pre-order, caching a stack of results
obtained for superclasses.)

In this description (as in the rest of this paper), we do not distin-
guish between classes, abstract classes, and interfaces.

For each class C in the system (in topological order), we ex-
amine in turn each class D that inherits from it, either directly or
transitively, and we examine the set of all origins in D appearing
in the signatures of methods present in both classes (i.e., inher-
ited/overridden methods), and origins for fields of C (which are
inherited by D).

Let EC,D be the set of unordered pairs of origins of C whose cor-
responding origins in D belong to the same type variable as each
other. (With E we thus revisit the equivalence relation among ori-
gins that gave rise to the type variables.) Let EC = �

D≤C
EC,D,

i.e., EC is the set of origin-pairs of C that always belong to the
same type variable in all subclasses of C.

Then, we ensure that the origins Oa, Ob for each (Oa, Ob) ∈
EC belong to the same variable, fusing variables where necessary.

We will demonstrate this with an example:

class Abstract<A,B,C,D,E>
{

A f(B x);
C g(D x);
E h;

}
class ConcreteOne<F,G> extends Abstract
{

F f(F x) { ... }
G g(G x) { ... }
G h; // (inherited)

}
class ConcreteTwo extends Abstract
{

String f(String b) { ... }

String g(String d) { ... }
String h; // (inherited)

}

Class Abstract has no method bodies, so no constraints are
generated and each of the five origins has a different type variable.
There are two concrete subclasses, each with different generalisa-
tions of the two inherited methods and the inherited field.

Numbering the origins 1–5 in order, and abbreviating the class
names, we get:

EA,C1 = Pairs({1, 2}) ∪ Pairs({3, 4, 5})

EA,C2 = Pairs({1, . . . , 5})

and so :

EA = Pairs({1, 2}) ∪ Pairs({3, 4, 5})

where Pairs(S) = {〈a, b〉|a, b ∈ S, a < b}

We conclude that, in all subclasses of Abstract, the variables
A and B are instantiated at the same type, as are the variables C,
D and E. Therefore, we fuse the variables in each set, giving the
following type for Abstract:

class Abstract<A,C>
{

A f(A x);
C g(C x);
C h;

}

2.5.2 Superclass instantiation
After variable fusion, we can deduce the extends relation for

both subclasses; that is, the type parameters to the superclass. De-
fine Ti as the type expression with which the ith type-variable
of class C is instantiated by subclass D in its extends-clause.
For any origin in C declared with variable V , let Ti be the type-
expression of a corresponding origin in class D.

Continuing our example, we obtain the following extends-clauses
for the concrete classes:

class ConcreteOne<F,G>
extends Abstract<F, G> { .. }

class ConcreteTwo
extends Abstract<String, String> { .. }

This demonstrates how we can exploit patterns of use common
to all subclasses present in the application to (1) infer precise pa-
rameterisations for abstract methods; (2) reduce unnecessary gen-
erality for all classes; and (3) deduce the extends relation which
is required for the next analysis.
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Section 3.7 takes a similar approach to eliminate unnecessary
generality based on patterns of use common to all clients.

2.5.3 Map.Entry example
Here is an example from the java.util package. This tech-

nique generates the ideal result for interface java.util.Map.Entry,
based on two of its subclasses, TreeMap.Entry and HashMap.Entry.
In the absence of the subclasses, four distinct type-variables would
have been produced for Map.Entry. (Results are truncated for
brevity.)

interface java.util.Map.Entry<A, B>
{

A getKey();
B getValue();
B setValue(B);

}
class java.util.TreeMap.Entry<C, D, E, F, G>

implements java.util.Map.Entry<C, D>
{

void Entry(C, D, G);
C getKey();
D getValue();
D setValue(D);

C key; D value; E left; F right; G parent;
}
class java.util.HashMap.Entry<H, I, J>

implements java.util.Map.Entry<H, I>
{

void Entry(.., H, I, J);
H getKey();
I getValue();
I setValue(I);

H key; I value; J next;
}

2.6 Refining the Parameterisation
The parameterisation analysis computes a candidate set of type

variables and bounds for each class, but often the class is over-
generalised. The instantiation analysis of section 3 can eliminate
variables, but the results depend on exactly what constraints are be
generated from the class’s methods and the available client code.

We believe that the quality of the results could be further im-
proved improved with some advice from the user. The advice would
take the form of directions as to which type variables are irrelevant
or unnecessary to the design of the class, and should consequently
be eliminated.

We have begun implementation of a graphical tool that allows
users to browse the class declarations, transformed to reflect the
candidate parameterisations.

The tool displays each class signature, highlighting the uses of
different variables in distinct colours. It allows the user to fuse
a pair of variables together, or to eliminate a variable (replacing
each occurrence of by its upper-bound) by pointing and clicking.
Each edit causes the tool to update the display to reflect the new
parameterisation.

The tool manages the type constraint graph, as described in sec-
tion 2.4, iteratively adding constraints and re-solving in response
to each user action. When the user is satisfied with the results, the
parameterisation analysis is complete.

3. INSTANTIATION ANALYSIS
The parameterisation analysis of Section 2 determines a generic

type for each class in isolation. This section presents the instan-
tiation analysis that uses the results of the parameterisation anal-

ysis to deduce a complete, parametric type for every value in the
program. This information can then be used to direct a source-to-
source translation, as described in Section 4.

3.1 Overview
The instantiation analysis determines a parametric type for every

type expression that makes reference to a parametric class. This in-
cludes those appearing in field and method declarations, bounds on
type variables, extends clauses appearing in type-variable bounds,
declarators of local variables, new expressions, and casts.

The instantiation analysis consists of five steps. First, it adds
unknowns to instantiation sites (Section 3.3). Second, it gener-
ates a type constraint from each generalised assignment in the pro-
gram (Section 3.4) via a one-pass whole-program static analysis.
Third, it transforms some of the constraints to a more tractable
form. Fourth, it solves the constraint resolution problem (Sec-
tion 3.6), possibly performing more transformations as appropri-
ate. Fifth, it optionally simplifies the results of the parameterisation
analysis by eliminating unnecessary type parameters (Section 3.7).

The solution to the set of constraints over the unknowns gives
concrete values (type expressions) to each of the unknowns. As
noted in Section 1, this constraint system is guaranteed to have a
solution. Our goal is to select the most specific possible instantia-
tion type for each unknown parameter.

3.2 Example 1: Stack
Before presenting the five parts of the analysis in turn, we il-

lustrate and motivate it via our running example of a Stack class,
augmented by some client code (Figure 8). The instantiation anal-
ysis applies to the whole program at once; however, the only other
classes in this program are String and Object, which take no pa-
rameters, hence we omit them. We indicate a parameterless class
by String<> to distinguish it from the GJ raw type String.

First, the analysis annotates each class to reflect the result ob-
tained from the parameterisation analysis of that class (see Sec-
tion 2) and annotates all references to any class with a set of fresh
unknowns, one for each variable on that class. Figure 8 shows the
annotated Stack code.

Second, generalised assignments, declarations, and casts of the
program induce type constraints.

Third, the type constraints are transformed and simplified. The
constraints of the Stack program (annotated with their originating
line numbers, and with trivial constraints omitted) are:

[L21] Stack〈#1, #2, #3〉
=
←− Stack〈#4, #5, #6〉

[L21,1] Object〈〉
=
←− [#1, #2, #3/E, B, D]E

[L21,1] [#1, #2, #3/E, B, D]E
=
←− [#1, #2, #3/E, B, D]B

[L21,1] [#1, #2, #3/E, B, D]B
=
←− [#1, #2, #3/E, B, D]D

[L22] [#1, #2, #3/E, B, D]B
=
←− String〈〉

where
=
←− is a widening type constraint. Note that [#1, #2, #3/E, B,D]

represents the substitution caused by following the stk pointer.
Fourth, these constraints simplify to:

#1 ≡ #4
#3 ≡ #6

Object〈〉
=
←− #1

=
←− #2

=
←− #3

=
←− String〈〉

For each unknown with a lower bound and only the trivial Object〈〉
upper bound, we instantiate the unknown to its lower bound, repeat-
ing the process until no further progress is made. This instantiates
#3, #2, and #1 (in that order) to String〈〉, giving us the result:

20: String<> test(String<> str) {
21: Stack<String<>, String<>, String<>> stk =
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1: class Stack<E extends Object<>, B extends E, D extends B>
2: {
3: private B[] data = new D[10];
4: private int size = 0;
5: E top() {
6: return data[size-1];
7: }
8: B pop() {
9: return data[--size];

10: }
11: void push(B o) {
12: data[size++] = o;
13: }
14: void exchange() {
15: B o1 = pop(), o2 = pop();
16: push(o1);
17: push(o2);
18: }
19: }

...
20: String<> test(String<> str) {
21: Stack<#1, #2, #3> stk = new Stack<#4, #5, #6>();
22: stk.push(str);
23: return (String<>)stk.top();
24: }

Figure 8: Stack example, annotated to reflect the parameterisa-
tion analysis of Section 2, plus calling code, annotated with fresh
unknowns for each type instantiation.

new Stack<String<>, String<>, String<>>();
22: stk.push(str);
23: return (String<>)stk.top();
24: }

Fifth, we observe that in this program, for any instantiation of
class Stack in the whole program, the type-expressions for each
parameter position are equal. Therefore, the three variables can be
fused into one. Figure 9 shows the final result.

The following sections explain each of the above steps in more
detail.

3.3 Insertion of type parameters
The first step is to annotate the program using the results of the

parameterisation analysis. For each class, the result includes a set
of upper-bounded type variables 〈V1 ≤ B1, . . . , Vn ≤ Bn〉, and
a mapping from origins to declaration type-expressions, possibly
containing variables.

The annotation first adds type variables to class declarations and
replaces origins by the type variables. Then, it annotates client
code.

Every reference to a class identifier C (whether in a declara-
tion, new-expression, cast, etc.) is augmented by a fresh set of un-
knowns, one per type variable on class C.

Types appearing in extends and implements clauses are treated
in a similar way. The parameterisation analysis is often able to de-
termine some of the type-expressions appearing as parameters (see
Section 2.5), because they are constants (such as String) or are a
function of the variables exported from the extending class.

3.4 Constraint generation
We define generalised assignment as the propagation of (unmod-

ified) reference values from one variable or expression to another
location — anywhere that a reference expression is assignment con-
verted or method-invocation converted according to the rules of the
Java language [12]. Examples include ordinary assignment, param-

1: class Stack<E extends Object<>>
2: {
3: private E[] data = new E[10];
4: private int size = 0;
5: E top() {
6: return data[size-1];
7: }
8: E pop() {
9: return data[--size];
10: }
11: void push(E o) {
12: data[size++] = o;
13: }
14: void exchange() {
15: E o1 = pop(), o2 = pop();
16: push(o1);
17: push(o2);
18: }
19: }

...
20: String<> test(String<> str) {
21: Stack<String> stk = new Stack<String>();
22: stk.push(str);
23: return stk.top();
24: }

Figure 9: Final GJ code for the Stack example and calling code.

eter passing, returning a value from a method, assigning or reading
a field or array element, etc.

At each generalised assignment, there is the potential for a widen-
ing reference conversion. Therefore, in a GJ program, a generalised
assignment indicates a subtype constraint between the types of its
source expression and destination location.

The constraint generation step generates constraints from three
sources. Each instance of a generalised assignment anywhere in
the whole program generates a constraint of the form

typeof(locn)
=
←− typeof(expr)

where typeof(x) is the type of the expression or location x (fig-
ure 10). The constraint is read as “expr can be assigned to locn”.
Each type-variable bound also generates a generalised-assignment
constraint

=
←−, since an expression whose type is given by a type-

variable can be assigned to a variable declared by the bound type-
expression. Finally, each cast operator (T)e generates a cast con-
straint:

T �←− typeof(e)

Both constraint relations,
=
←− and �←−, define partial orders over

parametric types (they are reflexive and transitive). The grammar
of reference types (T ) and of constraints (K) is:

T ::= #n (unknowns)

| C〈T1, . . . , Tn〉 (parametric classes)

| V (type variables)

| T [ ] (arrays)

| P [ ] (primitive arrays)

K ::= T1

=
←− T2 (assignment)

| T1 �←− T2 (cast)

| T1 ≡ T2 (equality)

For example, p.m(p.f, k) creates two constraints, one from
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x typeof(x)
null Null
"string literal" String〈〉
new C<T1..Tn>() C〈T1, . . . , Tn〉
new T[] T[]
new P[] P[]
ArrayElement a[x] element(typeof(a))
Local l decltype(l)
Field p.f [T1, . . . , Tn/V1, . . . , Vn] F
Method p.m(...) [T1, . . . , Tn/V1, . . . , Vn] R

Figure 10: Informal definition of typeof(x). The definitions
for p.f and p.m(...) assume p : C<T1..Tn> and class

C<V1..Vn> { ... F f; R M(...); ... }.

field p.f to m’s first parameter, one from local k to the second pa-
rameter.

Aside from constraints generated by generalised assignments and
casts, we need to include bounds-constraints on unknowns (for ev-
ery reference), and bound- constraints on type variables (for every
class). The structures of these two kinds of constraint are paral-
lel: one represents the bounds-constraints inside the class body,
where type-variables are in scope, and the other represents the same
constraints but externally, and thus we must apply the appropriate
pointer substitution (see section 3.4.1) to the same constraint. Both
kinds are subtype constraints, so we use the

=
←− relation. For class

C, and reference p:

class C<B1 extends B2,
B2 extends Number<>> {..}

...
C<#1,#2> p = somefunc();

we obtain these bounds-constraints on the variables:

Number〈〉
=
←− B2

=
←− B1

and these on the unknowns:

[#1, #2/B1, B2] (Number〈〉
=
←−B2

=
←− B1)

i.e. Number〈〉
=
←−#2

=
←− #1

3.4.1 Substitution
In contrast to the parameterisation analysis, constraint generation

follows pointers p, applying a transformation to the declared type
of the entity referred to via the pointer

The following of a pointer with a parametric type establishes a
different type environment for the body of the class referred to by
that pointer. Just as β-reduction (function application) in the λ-
calculus causes bound variables to be replaced by operand expres-
sions throughout the λ-body, so in GJ do parametric instantiations
cause type-variables to be replaced by type-parameter expressions
throughout the class body.

Figure 10 abbreviates the following field rule and a similar one
for methods:

Γ ` p : C〈T1, . . . , Tn〉
Γ ` C : class C〈V1, . . . , Vn〉{. . . F f ; . . . }

Γ ` p.f : [V1/T1, . . . , Vn/Tn]F

For example, in the following fragment of GJ code, the type of
expression p.v is given by [String〈〉, Integer〈〉/K, V ] Vector〈V 〉.
This type-expression can be simplified to Vector〈Integer〈〉〉, hence
the assignment to x is valid.

class MyMap<K,V> {
Vector<V> v;

}
void f(MyMap<String<>, Integer<>> p) {

Vector<Integer<>> x = p.v;
// p.v : [String<>, Integer<>/K,V]Vector<V>
// : Vector<Integer<>>

}

3.5 Constraint-set augmentation
The set of constraints generated in Section 3.4 is augmented

to ease their solution. Some cast constraints give rise to gener-
alised assignment constraints, and some generalised assignment
constraints give rise to equality constraints.

3.5.1 Casts
Not all casts should influence the final type parameterisation and

instantiation. While some casts are guaranteed to succeed regard-
less of calling context, others depend on application invariants be-
yond the scope of this (or any) analysis.

If we cannot deduce statically that a cast is redundant, then we
cannot assume that the parametric type of the cast is a subclass of
the cast operand type — it could be an unrelated type. For example,
the following Java program:

1: class D extends C { ... }
2:
3: void f(C c1) {
4: Vector v = new Vector();
5: v.set(0, new D());
6: C c2 = (C)v.get(0); // guaranteed to succeed
7: D d = (D)c1; // depends on application
8: }

has this intermediate-GJ representation during the instantiation anal-
ysis:

1: class D<V> extends C<String> { ... }
2:
3: void f(C<#1> c1) {
4: Vector<#2> v = new Vector<#3>();
5: v.set(0, new D<#4>());
6: C<#5> c2 = (C<#6>)v.get(0);
7: D<#7> d = (D<#8>)c1;
8: }

Let’s assume that during constraint resolution, it becomes clear
that the type of what is returned from get is the same as what is
passed to set, i.e., typeof(v.get(0)) = #2 ≡ #3 ≡ D〈#4〉.

Then the cast on line 6 (which generates the cast constraint C〈#6〉 �←−
D〈#4〉) is a widening that need not appear in the translated GJ pro-
gram. Thus, we can convert the cast constraint into the assignment
constraint C〈#6〉

=
←− D〈#4〉, which gives us #6 ≡ String〈〉 (see

Section 3.5.2).
The cast on line 7, however, from C〈#1〉 to D〈#8〉 cannot be

eliminated by GJ, and thus we cannot conclude anything about the
value of #8 from the cast.

Therefore we can only draw the following limited conclusion

from a cast constraint. A constraint C〈T1, . . . , Tn〉 �←− Te may
be converted to the constraint C〈T1, . . . , Tn〉

=
←− Te if and only

if constraint resolution (Section 3.6) has identified (fused) Te with
some parametric type D〈U1, . . . , Um〉 where D ≤ C.

The reasoning behind this is as follows. If the cast operand type
D is a subtype of the cast type C, then the cast is trivial, made
redundant by the type-system of GJ. This happens with casts in-
serted by the programmer using pseudo-generic Java classes. A
trivial cast is, in effect, an assignment conversion — just like any
other assignment.
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3.5.2 Congruence
Some generalised assignment constraints give rise to equality

constraints via a mechanism we call parameter congruence. A con-
straint of the form:

A〈T1, . . . , Tn〉
=
←− B〈U1, . . . , Um〉

implies (i) that B ≤ A in the Java inheritance graph, and (ii) that
B〈U1, . . . , Um〉 ≤ A〈T1, . . . , Tn〉 in GJ parametric type system.

Let us first consider the (common) case in which B = A, in
which case m = n. We generate the equivalence constraints T1 ≡
U1, . . . , Tn ≡ Un, because since GJ does not admit parameter-
variance of parametric types. i.e.:

C〈T1, . . . , Tn〉 ≤ C〈U1, . . . , Un〉 ⇐⇒ ∀i=1..nTi = Ui

Note that since each Ti ≡ Ui is a constraint over type expres-
sions, we unify them, possibly giving rise to additional constraints.
For example, Pair〈#3, F〈#4〉〉

=
←− Pair〈#5, #6〉 gives us #3 ≡

#5 and F〈#4〉 ≡ #6.
In the case where A 6= B, we must consider the effect of a

widening from B to A on the parametric type. In GJ, when a class
extends a generic class, it may generalise or specialise — or both —
the super class. Therefore some of the type-variables of the super
class are also variables of the subclass while others are instantiated
to a type-expression by the subclass.

We define the function widen as follows:

class B〈V1, . . . , Vn〉 extends A〈U1, . . . , Um〉
Si = [T1, . . . , Tn/V1, . . . , Vn]Ui

widen(B〈T1, . . . , Tn〉, A) = 〈S1, . . . , Sm〉

This function returns the parameter tuple 〈S1, . . . , Sm〉with which
B〈T1, . . . , Tn〉 instantiates A, which the algorithm uses for gener-
ating a set of pointwise equivalence constraints.

So, for example, if class K〈P, Q, R〉 extends J〈R, String〈〉〉, then
widen(J〈T1, T2, T3〉, J) = 〈T3, String〈〉〉.

3.6 Constraint resolution
Constraint resolution can be viewed as an iterative graph-reduction

process. Each type expression in each of the constraints represents

a node in the graph. Each
=
←− constraint is a directed edge; �←−

constraints do not appear in the graph.
The goal of constraint resolution is to find a set of assignments to

the unknowns such that all the constraints are satisfied. There is at
least one (trivial) solution, but in practise there are many solutions.

It is convenient to consider the set of equivalence-classes of the
unknowns. Initially, each unknown is in its own equivalence class,
but as resolution proceeds, these classes are fused. After each con-
straint resolution step, the constraint augmentation of Section 3.5
is run; this can be done incrementally.

3.6.1 SCC-merging
The primary form of resolution, as in the parameterisation analy-

sis, is SCC-merging. Wherever a cycle exists in the directed graph,
all nodes lying on that cycle must be equivalent, so their equiva-
lence classes are fused.

3.6.2 Lower bounds
SCC-merging (and constraint augmentation) may not put every

unknown in an equivalence class with a concrete type (i.e. a type-
expression containing no unknowns).

So, when resolution can make no further progress, for each un-
known #U whose equivalence class contains only other unknowns,
and for which there is a defined greatest lower bound B, we push
#U to that bound B. In other words, we use the most specific

consistent set of instantiations. For example, if the only remaining
constraint on #3 was #3

=
←− C〈#2〉, it would be replaced with

#3 ≡ C〈#2〉.

3.6.3 Upper bounds
After pushing to lower bounds, any remaining unknowns that

have no equivalent concrete type expression are pushed to their
least upper bound. All unknowns have the upper bound Object〈〉.

3.7 Instantiation patterns analysis
Section 2.5.2’s technique for determining extends-clauses looked

for simple patterns in the instantiation expressions among all sub-
classes of a class C. Now that we have computed the complete set
of parametric references C〈T1, . . . , Tn〉— within C, all its sub-
classes, and its clients — we can look for more subtle patterns.

Consider a generic class C〈P1, . . . , Pn〉. If there is some pair
〈Pi, Pj〉 of C’s parameters, such that in all subclasses of C, the ith
and jth type expressions with which C is instantiated are related by
some function over types, then one of the variables may be elimi-
nated, and replaced within class C by the appropriate function of
the other type variable.

For example, the following example shows class C and the com-
plete set of (two) parametric references to it. Note that P and R are
always instantiated with identical type expressions:

class C<P, Q, R> { .. }
..
C<String, Vector<String>, String> myref1 = ...;
C<T, Vector<T>, T> myref2 = ...;

Therefore, they can be fused, giving rise to this simplified result:

class C<P, Q> { .. } // [Q/R] in class body
..
C<String, Vector<String>> myref1 = ...;
C<T, Vector<T>> myref2 = ...;

So far, this case is very similar to the method mentioned already
in section 2.5.2; indeed, redundant variables such as R would be
found and eliminated by that analysis. But this technique can be
generalised to handle cases where the pairs of parameter instantia-
tion type-expressions are related by a relation other than equality.
Continuing with our example, note that the instantiation expression
for the second parameter is always a Vector of the first:

class C<P> { .. } // [Vector<P>/Q] in class body
..
C<String> myref1 = ...;
C<T> myref2 = ...;

Such patterns can be found by structural unification of corre-
sponding elements in the parameter-tuples T1, . . . , Tn of all refer-
ences to a given class C.

We have found in working through many examples that a sig-
nificant number of unwanted type variables are always instantiated
predictably, either with a constant expression or with some type-
expression of the other parameters, and so eliminating such cases
would improve accuracy.

Applying such a refinement requires a new instantiation analysis-
run to determine the new parameters for the smaller parameter sets.

3.8 Overconstrained variables
When a set of constraints places a lower bound on a type vari-

able, we say the variable is overconstrained, and it must be elimi-
nated.
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For example, with the constraints Graph〈#1, #2〉
=
←− G

=
←−

Graph〈#6, #7〉, where G is a type variable, G is overconstrained,
because it has a lower bound of Graph.

In this case, it is evident that G = Graph〈#1 ≡ #6, #2 ≡ #7〉.
In other cases, we may not be able to infer a precise type for G, so
we simply use the lower-bound.

Firstly, we remove it from the class’s variable list, replacing oc-
currences of that variable within the class body with the bound on
that variable. Then we remove the unknown in the corresponding
parameter position from every reference to this class.

3.9 Examples
We finish our discussion of the instantiation analysis with addi-

tional examples.

3.9.1 Example 2: Map
Assume the following source program:

1: static Map test() {
2: Map m = new HashMap();
3: m.put("foo", new Integer(3));
4: m.put("bar", new Float(3.0));
5: return m;
6: }

and HashMap<K,V> extends Map<K,V> from the parameterisa-
tion analysis, we annotate the code as follows:

1: static Map<#1,#2> test() {
2: Map<#3,#4> m = new HashMap<#5,#6>();
3: m.put("foo", new Integer<>(3));
4: m.put("bar", new Float<>(3.0));
5: return m;
6: }

from which we generate the following constraints:

Map〈#3, #4〉
=
←−HashMap〈#5, #6〉

Map〈#1, #2〉
=
←−Map〈#3, #4〉

#3
=
←−String〈〉

#4
=
←−Integer〈〉

#4
=
←−Float〈〉

From them, and the fact that method Map.put has type put(K,V),
we can conclude that #1 ≡ #3 ≡ #5 and #2 ≡ #4 ≡ #6, since
the only assignment-compatible Map and HashMap types have the
same parameter-sets (see Section 3.5.2) and that #4

=
←− Number〈〉,

since Number is the join of Integer and Float. By pushing all
remaining unknowns to their lower bounds (if any), and any un-
knowns remaining after that to their upper bounds, we obtain the
ideal type for this client code:

1: static Map<String<>,Number<>> test() {
2: Map<String<>,Number<>> m =

new HashMap<String<>,Number<>>();
3: m.put("foo", new Integer<>(3));
4: m.put("bar", new Float<>(3.0));
5: return m;
6: }

3.9.2 Example 3: Graph
The next example, Graph, is part of a directed graph class in

our prototype Java-to-GJ translator. Its scc() method returns a
Graph whose instantiation type is more complex than that of this.
This example violates an assumption made by related work [9] that,
within the methods of a class C, any reference of type C must be
instantiated with the same type-parameters as this.

(The idea behind scc is that it returns a Graph G′, each node of
which represents an SCC of the original graph G and is labeled with
the Set of G′ nodes in that SCC. Thus if G has type Graph〈T 〉,
G′ has type Graph〈Set〈Node〈T 〉〉〉. For brevity, the scc method
shown here does not actually compute the SCCs, but it merely has
the same type as a method that would. Likewise, Set is simplified
to contain a single object.)

class Node { Object label; }
class Set { Object value; } // Very small set!

class Graph
{

Set nodes = new Set();

void addNode(Object label) {
Node n = new Node();
n.label = label;
nodes.value = n; // Add to ’set’

}

Graph scc() {
Graph g = new Graph(); // new graph has one node
g.addNode(nodes); // labeled by set of old nodes
return g;

}
}

In this simple example, the parameterisation analysis gives each of
the three classes one variable, bounded at Object〈〉.

1 class Node<A extends Object<>> { A label; }
2 class Set<B extends Object<>> { B value; }
3
4 class Graph<C extends Object<>>
5 {
6 Set<#1> nodes = new Set<#2>();
7
8 void addNode(C label) {
9 Node<#3> n = new Node<#4>();
10 n.label = label;
11 nodes.value = n;
12 }
13
14 Graph<#5> scc() {
15 Graph<#6> g = new Graph<#7>();
16 g.addNode(nodes);
17 return g;
18 }
19 }

The non-trivial generated constraints (with line numbers) are:

Set〈#1〉
=
←− Set〈#2〉 [L6]

Node〈#3〉
=
←− Node〈#4〉 [L9]

[#3/A]A = #3
=
←− C [L10]

[#1/B]B = #1
=
←− Node〈#3〉 [L11]

Graph〈#6〉
=
←− Graph〈#7〉 [L15]

[#6/C]C = #6
=
←− Set〈#1〉 [L16]

Graph〈#5〉
=
←− Graph〈#6〉 [L17]

L6, L9, L15, and L17 induce equivalence constraints, and the re-
mainder, after substitution, give a lower bound to each equivalence-
class of unknowns:

#1 ≡ #2
=
←− Node〈#3〉

#3 ≡ #4
=
←− C

#5 ≡ #6 ≡ #7
=
←− Set〈#1〉
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Now we push all unknowns with lower bounds (all of them, in this
case) to those bounds:

#1 ≡ #2 ≡ Node〈C〉

#3 ≡ #4 ≡ C

#5 ≡ #6 ≡ #7 ≡ Set〈#1〉

The code below shows the result. We should point out that these
constraints were generated only by looking at the class Graph itself,
and no external client code. The result is the ideal type. Many
classes’ own methods generate sufficient constraints to obtain an
ideal (or close to ideal) result, even in the absence of client code.

class Node<A extends Object<>> { A label; }
class Set<B extends Object<>> { B value; }

class Graph<C extends Object<>>
{

Set<Node<C>> nodes = new Set<Node<C>>();

void addNode(C label) {
Node<C> n = new Node<C>();
n.label = label;
nodes.value = n;

}

Graph<Set<Node<C>>> scc() {
Graph<Set<Node<C>>> g = new Graph<Set<Node<C>>>();
g.addNode(nodes);
return g;

}
}

3.9.3 Example 4: Violated genericity
This section presents another example in order to indicate how

the algorithm handles faulty user code. In this example, a client of
a potentially-generic class violates the intrinsic generic-type invari-
ants of the class by direct assigning the wrong class of object into
a public field:

class OpenBox {
void set(Object v) { this.v = v; }
Object v; // not private!
Object get() { return v; }

}

The parameterisation analysis produces:

class OpenBox<A extends B, B extends C, C extends Object<>> {
void set(A v) { this.v = v; }
B v;
C get() { return v; }

}

Now let us add the ‘rogue’ client code, which violates the class’s
encapsulation and writes directly to v:

OpenBox b = new OpenBox();
b.set("foo");
String s = (String)b.get();
..
b.v = new Integer(3); // wrong class!

The first three lines appear to be using b in a manner consis-
tent with OpenBox〈String〈〉〉. However, the assignment on line 5
breaks this consistency.

When we run the instantiation analysis and simplify the con-
straints, we obtain:

OpenBox<#1,#2,#3> b = new OpenBox<#4,#5,#6>();
b.set("foo");
String<> s = (String<>)b.get();
..
b.v = new Integer<>(3);

#1 ≡#4

#2 ≡#5

#3 ≡#6

Object〈〉
=
←− #1

=
←−#2

=
←− #3

=
←− String〈〉

#2
=
←− Integer〈〉

#3 �←− String〈〉

The dual lower bounds on #2 cause constraint resolution to yield
the result #3 ≡ String〈〉 ∧ #2 ≡ Object〈〉 ∧ #1 ≡ Object〈〉,
giving the following translation for the line 1 of the client code:

OpenBox<Object,Object,String> b =
new OpenBox<Object,Object,String>();

The result demonstrates that the algorithm does not rely on clients
being well-behaved (with respect to encapsulation, etc) in order to
give correct results. However, the cost of this ‘rogue’ use is that the
class’s inferred generic type is far from ideal.

4. TRANSLATION OF JAVA TO GJ
The instantiation analysis of Section 3 associates a parametric

type with every declaration in the source program. The remaining
step is to translate the program from Java to GJ.

This translation can be effected at source level, at the class-file
level (when source code is not available, e.g., for third-party li-
braries), or at a user-specified combination of the two. We describe
the two approaches below.

4.1 Generating GJ source
We described the analyses at the level of JVM bytecodes (and our

prototype implementation operates at that level), but the analyses
could also be performed on an AST (abstract syntax tree) instead.
No matter how computed, the results can be applied to source-to-
source translation so long as the class-files contain accurate Line
Number and Local Variable tables. (The order of declarations dis-
tinguishes multiple declarations that appear on a single line.)

The source-to-source translating tool maintains whitespace and
comments to the greatest extent possible. It replaces Java casts by
GJ casts and omits redundant casts — those for which the target
type of the cast is equal to, or is a superclass of, the inferred type
of the expression.

This paper does not discuss the additional required for the correct
handling of certain constructs: top-level assignments of static fields
and instance fields (which are implicitly moved into <clinit> and
<init> methods respectively), generated default constructors, hid-
den parameters (between outer and inner classes), the assert and
.class constructs (which desugar to multiple basic blocks), etc.
As one simple example, consider a declarator that introduces mul-
tiple variables, for example Object o1 = f(), o2 = g();. If
the two variables are given different GJ types by the analysis, then
the declarator Object must be replaced by two distinct ones.

4.1.1 Splitting local variables
One possible optimisation is local splitting: static analysis of the

flowgraph will show when a local variable is reused, i.e., it has two

13



or more disjoint live ranges. In such cases, we may want to split
the variable into two, giving each live range a distinct name, and
inferring the most precise type for each one [11]. Doing this before
the flow-insensitive instantiation analysis can indicate when a Java
programmer has reused a variable at a different type.

In this example, the local Object o has two live ranges, the first
as Integer, the second as String:

Vector vi1 = new Vector(); // Vector<Integer>
vi1.add(new Integer(3));
Vector vs1 = new Vector(); // Vector<String>
vs1.add("foo");
...
Object o;
for (int i=0; i<vi1.size(); ++i)
{

o = vi1.get(i);
System.out.println(o);

}
for (int i=0; i<vs1.size(); ++i)
{

o = vs1.get(i);
System.out.println(o);

}

Without local-splitting, the type of o would remain unchanged at
Object, and the two casts would still be required in the translated
GJ code. However, local splitting permits replacing the declaration
of o by two new declarations, one inside the body of each loop,
Integer o1 and String o2.

Local-splitting further complicates the treatment of declarators
in the source-to-source translation, since it requires both the re-
moval and addition of declarations, and potentially the renaming of
references to variables.

4.1.2 Inner classes
In GJ, inner classes (i.e., non-static nested classes), are within

the scope of the type variables of their corresponding outer classes.
Ideally, we do not wish to duplicate the implicit passing of type
parameters, just as in regular Java we do not wish to duplicate the
implicit passing of value parameters from outer instances to inner
instances.

If we can observe that, for every allocation of the form outer.new

C〈T1, . . . , Tn〉 for a given C, there are some parameters in com-
mon between Ti and the type of the expression outer, then those
parameters can be eliminated (by fusion with the outer class pa-
rameter) and removed from the definition of, and every reference
to, the inner class.

4.2 Retrofitting class-files
GJ is based upon type erasure; that is, the GJ compiler, after

typechecking, discards all type variable annotations, inserts casts
where required, and generates identical code to that of the equiv-
alent Java program. Java classfiles have a dual role: they are the
executable, and they provide signatures for separate compilation.
GJ adds generic Signature attributes to the class-file to permit the
GJ compiler to reconstruct the generic type of the class contained
within it.

The GJ retrofitter superimposes a generic type on an existing
Java class-file (containing a pseudo-generic class). Users of third-
party Java libraries who wish to work in GJ need not translate the
library (which they might have no source for) by hand into GJ. They
need only specify the generic type of the library’s interface, a much
smaller problem that requires no information of the library beyond
that provided in the interface documentation. The retrofitter can
then add the generic type to the library.

Our work is complementary. Using our system, generic types
can be inferred automatically for classes for which only class-files
are available, and then retrofitted back into those class-files.

There are some additional subtleties, such as the potential lack
of debugging tables (local variable tables in particular). However
techniques exist for computing a conservative set of declarations
for locals [11].

5. RELATED WORK
This paper presents a constraint-based generic type inference al-

gorithm for the Java language. The most closely related work is
other type inference algorithms that operate in the presence of poly-
morphism.

Milner [17] introduced the notion of polymorphic type inference,
which is fundamental to the ML programming language. The orig-
inal type checking algorithm did not address object-oriented pro-
gramming languages with their type hierarchies and inheritance,
but subsequent work [20, 22] extends Hindley-Milner typechecking
to OO languages and to many other application domains. Polymor-
phic type inference for object-oriented languages can be roughly
categorized according to the task that it supports (reverse engineer-
ing or optimization); the variety of polymorphism (data or para-
metric) supported; the analysis technique (constraints or dataflow);
and the type system (dynamic or static; explicit or inferred). We
discuss each of these dimensions in turn before discussing the most
closely related papers in greater detail.

Analysis. Two basic approaches to type inference are constraint
resolution [2, 9, 15, 26] and abstract interpretation [24]. Constraint
resolution builds a set of constraints (such as equalities or inequal-
ities) from the problem domain (the program text), then hands the
constraints off to a resolution system that returns either a simpli-
fied set of constraints or a specific solution (if only one exists). Our
work uses constraint resolution, but since there are many solutions
to our constraints, we must take care to produce the best solution
among the possible ones.

The alternative to constraint resolution is abstract interpretation [8,
24, 23], typically implemented via dataflow. An abstract value (for
instance, a set of possible run-time types) is flowed around the pro-
gram, and each program operation affects the abstract value in a
well-defined manner.

Task. Polymorphic type inference aimed at reverse engineer-
ing [25, 9] aims to broaden the applicability of a pre-existing com-
ponent in order to permit it to be used in more situations. Code
transformations either enable the broader applicability or provide
compile-time type correctness guarantees. Our work fits in this
category. Type inference for ML-style languages also arguably has
primarily a software engineering goal, since its key purpose is early
detection of errors that would otherwise persist until run time, if
they were ever noticed at all.

A more common type inference application is optimization. Three
specific applications are statically discharging run-time casts [7,
26], eliminating virtual dispatch [3], unboxing, and alias analy-
sis [19, 18]. A high-precision context-sensitive abstract interpreta-
tion [24] serves such an application well. The analysis determines
a set of possible run-time types for each static operation in the pro-
gram. If there is only one run-time type, then objects of only one
class ever reach that program point, and any virtual method dis-
patch can be inlined or converted into a static procedure call of the
appropriate overriding implementation of the method. Likewise,
if all run-time types that reach a check satisfy the check, then the
check can be removed.

Polymorphism variety. Polymorphism occurs in both paramet-
ric (functional) and data varieties. Parametric polymorphism [22,
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7, 21, 1, 2, 15, 26] refers to the ability of procedures to operate on
arguments of arbitrary types, without caring what the specific type
is; for example, length : list α→ int). Data polymorphism [9, 23]
is the ability to store objects of different types in a variable or field.
It is enabled by object-oriented subtypes or by dynamic typing [7].

C++ classes and functions, which range over both primitive and
class types, manifest parametric polymorphism, whereas inheri-
tance enables data polymorphism. In Java, parametric polymor-
phism (e.g., java.util.Vector) is implemented in terms of the
data polymorphism of the Object hierarchy. Even though the un-
derlying JVM remains unchanged, GJ separates these functions
conceptually by eliminating the need for explicit casts. Our work,
which targets GJ, is most concerned with parametric polymorphism.

Constraint-based analyses, like ours, tend to be most appropri-
ate for detecting parametric polymorphism. Abstract interpretation
deals well with data polymorphism, since the goal is to determine
what types may appear in a particular variable.

Type system. The language’s type system affects the analysis
that must be performed on it. In a dynamically or implicitly typed
language [20, 22, 21, 15, 10, 7, 1, 2], data polymorphism is implicit
and elimination of type checks is a major motivation. However,
there is little room for standard type analysis.

Statically typed languages take advantage of compile-time type
checking. Type inference or reconstruction [17, 20, 15, 25] must be
used even for explicitly typed languages, if the source types do not
capture the analysis information; that is the case for our analysis.
The Hindley-Milner algorithm was originally proposed to operate
over equality constraints [17]. More recent work that extends it to
object-oriented languages use subtype constraints instead of equal-
ity constraints [10, 9].

Gagnon et al. [11] present a modular, constraint-based technique
for inference of static types of local variables in Java bytecode; this
analysis is typically unnecessary for bytecode generated from Java
code, but is sometimes useful for bytecode generated from other
sources. No polymorphic types are inferred, however.

5.1 Generalisation for re-use
There are two notable previous papers that use automated infer-

ence of polymorphism where the application is source-code gener-
alisation for re-use.

Since the result is source code for human consumption, rather
than deductions for later analysis or optimisation, one of the pri-
mary goals is restricting the degree of polymorphism so that the
results do not overwhelm the user. Typically, programs contain
much more ‘latent’ polymorphism than that actually exploited by
the program.

Siff and Reps [25] aim to translate C to C++; they detect latent
polymorphism in C functions designed for use with parameters of
primitive type and generalise the functions into template functions
to work over arbitrary types. Recall that in C++ one can define
arithmetic operators for class types. Their algorithm determines —
and documents — the set of constraints imposed by the generalised
function on its argument. (They give as an example the xy func-
tion pow(), which is defined only for numbers but could be applied
to any type for which multiplication is defined, such as Matrix or
Complex.) Their work focuses exclusively on generic functions,
not classes, and tries to detect latent reusability; in contrast, our
work seeks to enforce stronger typing where reusability was in-
tended by the programmer. Furthermore, C++ templates need not
typecheck; they operate by simple textual substitution, and only
the resulting code need typecheck. Therefore, the problem is quite
different.

The most closely related research to ours is Duggan’s constraint-

based type analysis for inferring genericity in a Java-like language [9].
Duggan gives a modular (intra-class) constraint-based parameteri-
sation analysis for a monomorphic OO kernel language called Mini-
Java; the target is a polymorphic variant, PolyJava, that permits ab-
stracting classes over type parameters. The translation makes some
casts provably redundant.

We extend Duggan’s work in a number of ways. He does not ad-
dress abstract classes or interfaces. He does no instantiation anal-
ysis, nor doe he use client information to reduce genericity, so his
discovered generic types are unusably over-generic. He assumes
that within class C, all references to instances of class C have the
same parameters as this. His type hierarchy is a forest of trees,
each of which has exactly the same number of parameters on all
classes within it. (Each tree inherits from Object〈〉 via a special-
case rule.) Subclasses may neither add nor remove type parameters,
and the number of parameters inferred for a tree of classes is based
only on the class at the root of that tree. In Java, the generic type
is rarely manifest in the base: most generic classes have relatively
abstract superclasses.

6. CONCLUSION

6.1 Status and future work
We are in the midst of implementing the algorithms described

in this paper. Parts of the process are now automated, but for our
experiments we performed other steps by hand. We have exper-
imented with the algorithms on a suite of test classes that prove
problematic for other approaches, and also on more realistic code,
such as parts of the implementation itself. When the implementa-
tion is complete, we plan to analyze larger codebases quantitatively
and also to gain experience with use of the tool through case stud-
ies. That will indicate, for example, whether there is need for ad-
ditional techniques (either human-assisted or automatic) to refine
the results of the parameterisation analysis. For example, is full
unification of type parameters advantageous, or is the technique of
Section 3.7 of little practical use?

Finally, we would like to experiment how constraints are added
to the instantiation analysis model. Currently, each new client adds
more constraints, removing (unused) aspects of the generalisation.
Rather than removing spurious aspects from the maximum gener-
alisation, it would be interesting to compute the maximum general-
isation, but to include in the results only as much of it as is actually
used. The distinction is similar to that separating optimistic and
pessimistic analyses.

6.2 Contributions
We have presented a constraint-based whole-program reverse en-

gineering algorithm for inferring generic types from Java programs.
The algorithm operates in two steps: first, it determines a generic
type for each class declaration, and then it determines the actual
types at which each use of the class is instantiated. The two al-
gorithms together enable translating Java programs into semanti-
cally equivalent GJ (Generic Java) programs with generic types.
Preliminary investigation of the algorithms suggests that the result
is usually ideal or close to ideal (that which an experienced Java
programmer would have written). Automatically-inferred generic
types for Java classes will permit programmers to enjoy the benefits
of parametric polymorphism — such as machine-checkable docu-
mentation of programmer intent, compile-time checking for errors,
and reduced code clutter — at much lower cost than converting legacy
code by hand. This is an attractive proposition with the upcoming
release of Java 1.5.

Our research improves previous work in several respects. First,
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our research applies to real languages: it handles all Java language
features, and it accounts for limitations and features of GJ. Ex-
amples include handling of arrays and of relations between sub-
classes and superclasses. A toy source or destination language for
the translation would have simplified the algorithms, but would not
have been as practical.

Second, it uses context information from clients and from sub-
classes to improve its results. For instance, client-side information
can refine the parameterisation of classes by discovering patterns
among all uses of a class in the particular application. Similarly, the
algorithms obtain parameterisations for abstract classes by combin-
ing information the concrete subclasses. And they refine superclass
information based on constraints in subclasses. The use of con-
text information eliminates unwanted generality and, due in part to
self-uses, can produce ideal results even for a small or nonexistent
application.

Third, it handles many realistic special cases. Our algorithms
accommodate the generic specialisation and extension that may ac-
company inheritance. They do not assume that client uses that lie
within the class being analyzed must use the same type parameters.
They have limited handling of complex and recursive bounds. The
algorithms are robust even in face of realistic casting scenarios such
as overwidening, application invariants, and client errors.

Fourth, it determines instantiation types for clients of paramet-
rically polymorphic classes; the algorithms push genericity results
back through the whole program.

Fifth, it enables translation of (client and implementation) source
code to a language with genericity, rather than (for example) pro-
ducing a result only for optimization or for examination by humans.

As a result of these improvements, our research produces cleaner
abstractions than other approaches to the same or similar problems.
We believe it to be a promising approach to migrating programmers
towards parametric polymorphism.
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