
Building Data Structures on Untrusted Peer-to-Peer Storage
with Per-participant Logs

Benjie Chen Thomer M. Gil Athicha Muthitacharoen Robert Morris
MIT Laboratory for Computer Science

200 Technology Square, Cambridge, MA 02139
{benjie,thomer,athicha,rtm}@lcs.mit.edu

Abstract

L∗ is a technique for building multi-user distributed data
structures out of untrusted peer-to-peer distributed hash
tables (DHTs). L∗ uses multiple logs, one log per par-
ticipant, to store changes to the data structure. Each par-
ticipant finds data by consulting all logs, but performs
modifications by appending only to its own log. This
decentralized structure allows L∗ to maintain meta-data
consistency without locking and to isolate users’ changes
from each other, an appropriate arrangement for unreli-
able users.

Applications use L∗ to maintain consistent data struc-
tures. L∗ interleaves multiple logs deterministically
so that decentralized clients can agree on the order of
completed operations, even if those operations were is-
sued concurrently. When the data structure is quies-
cent, L∗ guarantees that clients agree on the state of the
data structure. L∗ optionally provides mutual exclusion
for applications that need to ensure atomicity for multi-
step operations. The Ivy file system, built on top of L∗,
demonstrates that L∗’s consistency guarantees are useful
and can be used and implemented efficiently.

Regular submission. The first three authors are students.
Please consider paper for brief announcement as well.

1 Introduction

Recent peer-to-peer distributed hash tables (DHTs) [1, 9,
11, 4, 16] promise to support a new approach to certain
kinds of network storage applications. These DHTs pro-
vide a simple API allowing read and write of key/value
pairs (often called blocks). The DHT typically takes
care of finding a network host to store each key/value
pair; replicating data for availability; and checking that
retrieved blocks have not been tampered with. The
DHT interface is fairly low level, much like the sector
read/write interface of a disk drive. Thus, applications
often build complex data structures on top of DHTs, with
blocks containing pointers (keys) to other blocks. For

example, CFS [1] builds a file system on top of a DHT,
storing each file and directory in a separate block; a di-
rectory contains a list of DHT keys referring to the files
in the directory.

While DHTs defend the availability and integrity of
individual blocks against unreliable and malicious DHT
nodes and clients, an application that uses a DHT typi-
cally has additional consistency invariants that it would
like to maintain on the data structure it stores in the DHT.
For example, a client crash during a file rename in a
DHT-based file system should not leave the file system
in an incorrect state. Because clients in a DHT-based ap-
plication typically manipulate a shared data structure in-
dependently (i.e. without sending operations to a single
server or server cluster), an application with concurrent
clients also faces the challenge of providing consistency
without direct use of serialization. Additionally, peer-to-
peer systems are often used in situations where clients
do not fully trust each other; thus another problem is
how to defend against clients who maliciously damage
the shared data structure. Finally, DHTs typically repli-
cate data in such a way that multiple partitions may have
a complete copy of the data structure if a network out-
age occurs; thus applications using DHTs may experi-
ence conflicting updates in different partitions.

This paper presents L∗, a set of techniques for main-
taining consistent data structures in DHTs. L∗ represents
the data structure as a log of operations in the DHT, with
a separate log per client. That is, an application using
L∗ does not directly store its data structure in the DHT;
instead, the data structure is implied by the history of op-
erations in the logs, and L∗ stores log records in the DHT.
Clients communicate through L∗ and the DHT; they do
not directly talk to each other or any single server. A
client updates the data structure by appending records to
its log; a client reads the current state of the data structure
by scanning all clients’ logs. Logging allows clients to
perform complex operations atomically with respect to
client failure. Logging operations, use of a log for each
client, and deterministic log ordering mean that concur-

1



rent updates to the same data produce some acceptable
outcome reflecting the operations, rather than a corrupted
data structure.

The heart of L∗ is its algorithm for resolving the or-
der of log records in different clients’ logs. This algo-
rithm deterministically produces a single ordering of log
records. That is, L∗ always chooses the same order for
every two log records for all clients. This property means
clients agree on the order of completed updates, even if
those updates were issued concurrently.

At a higher level, applications use the L∗ API to im-
plement consistent data structures. When the data struc-
ture is quiescent, L∗ guarantees that clients agree on the
state of the data structure. L∗ optionally provides mu-
tual exclusion for applications that need to ensure atom-
icity for multi-step operations. Applications benefit from
being able to choose which consistency model to use;
strong consistency incurs higher cost and is typically not
necessary.

We built a multi-user peer-to-peer read-write file sys-
tem, Ivy [6], that uses L∗ to store all file system data and
meta-data. The use of per-participant logs allows Ivy to
support concurrent updates to the file system without us-
ing locks, and yet still maintain meta-data consistency.
Ivy implements most file system operations without mu-
tual exclusion; the only exceptions are file and directory
creation. File and directory creation require mutual ex-
clusion to avoid duplicate files or directories. Despite its
use of logs, L∗ makes it easy to build applications with
good performance; Ivy caches aggressively, and checks
the validity of the whole cache just by checking whether
any logs have changed recently.

Section 2 describes DHash, the DHT on which L∗ is
layered. Section 3 describes the structure of per-
participant logs and L∗’s API. Section 4 describes how
L∗ maintains consistent data structures. Section 5 de-
scribes how L∗ deals with stale-data attacks from ma-
licious DHash servers and network partition. Section 6
presents an example use of L∗ to construct a serverless,
multi-user, read/write file system. Section 7 discusses
related work and Section 8 concludes.

2 DHash

L∗ stores all its logs in DHash [1]. DHash is a distributed
peer-to-peer hash table mapping keys to arbitrary values.
DHash stores each key/value pair on a set of Internet
hosts determined by hashing the key. This paper refers
to a DHash key/value pair as a DHash block. DHash
replicates blocks to avoid losing them if nodes crash.

DHash ensures the integrity of each block with one of
two methods. A content-hash block requires the block’s
key to be the SHA-1 cryptographic hash of the block’s
value; this allows anyone fetching the block to verify the

value by ensuring that its SHA-1 hash matches the key.
A public-key block requires the block’s key to be a public
key, and the value to be signed using the corresponding
private key. DHash refuses to store a value whose hash or
signature does not match the key. L∗ checks the authen-
ticity of all data it retrieves from DHash. These checks
prevent a malicious or buggy DHash node from forging
data, limiting it to denying the existence of a block or
producing a stale copy of a public-key block.

DHash offers a simple interface: put(key,value) and
get(key). L∗ assumes that, within any given network
partition, DHash provides write-read consistency; that is,
if put(k,v) completes, a subsequent get(k) will yield v.
The current DHash implementation provides write-read
consistency except when partitions are healing; however,
potential solutions to this problem exist [2].

DHash assumes that only one writer of a public-key
block is active at a time. Each public key block includes
a sequence number which DHash uses to prevent over-
writing newer data with stale data. Furthermore, for con-
current put(k,v) and get(k), get(k) returns either the
value before or after put(k,v).

L∗ is designed to also work with other untrusted net-
work storage technologies with similar properties, such
as PAST [11], Tapestry [16], or Kademlia [4].

3 Per-participant Logs

L∗ represents a data structure using a set of logs, one log
per participant. A log describes all of one participant’s
changes to the data structure. Each participant appends
only to its own log, but reads from all logs.

L∗ uses DHash content-hash blocks to store log
records. Each log record contains the DHash key of the
previous log record in the participant’s log. A log record
is immutable; if a log record were changed, its content-
hash, and hence its DHash key, would have to change as
well. L∗ stores the DHash key of a participant’s most
recent log record in a mutable DHash public-key block,
called the log-head. Thus, a participant’s log can always
be obtained from the key used to store the participant’s
log-head. Each user of a data structure may have multiple
key pairs and log-head blocks, one for each host that the
user uses. Formally, we define a participant as follows.

Definition 1. A participant is an entity with a public-
private key pair and a log-head block. At most one in-
stance of a given participant can be active at a time.

Table 1 describes fields that appear in log-heads and
log records. The prev field contains the previous
record’s DHash key. The seq field is an incrementing
per-log sequence number. The version field is a version
vector [8] that L∗ uses to decide how to interleave mul-

2



Field Use
prev DHash key of next oldest log record
seq per-log sequence number
version version vector
head DHash key of the log-head

Table 1: Fields in all L∗ log-head objects and log records.

...

view block

log-head

log-head

log records

Figure 1: Example of a L∗ view and logs. White boxes
are DHash content-hash blocks; gray boxes are public-
key blocks.

tiple logs. The head field contains the DHash key of the
log-head.

Participants that share a data structure agree on a view:
the set of logs that comprise the data structure maintained
by that application. A view is stored in a view block, a
DHash content-hash block containing pointers to all log-
heads in the view. A view block with a given key is im-
mutable; when a data structure’s participants decide to
accept a new participant, they must all make a conscious
decision to trust the new participant and to adopt a new
view block, with a new key, that includes the new partic-
ipant’s log. The lack of support for automatically adding
new participant to a view is intentional.

L∗ uses the view block key to verify the view block’s
contents. The contents are the public keys that name and
verify the participants’ log-heads. A log-head contains
a content-hash key that names and verifies the most re-
cent log record. It is this reasoning that allows L∗ to
verify it has retrieved correct log records from the un-
trusted DHash storage system. Figure 1 summarizes the
structure of per-participant logs and view block.

L∗ provides an API that applications use to access
logs. A participant modifies the data structure by ap-
pending new log records to its log, then changing the log-
head to point to the newest log record. Multiple partici-
pants can modify the data structure concurrently without
acquiring locks; each participant only modifies its own
log-head. A participant constructs a response to a query
on the data structure by reading all the logs. To avoid the
expense of repeatedly reading the whole log, participants
can create snapshots summarizing the data structure.

L∗ needs to impose an order on log records from dif-
ferent logs. The order should obey causality (i.e. if
an update A completes before another update B, A is
ordered earlier than B) and should be the same for all
participants, even for concurrently created log records.
L∗ creates such an order using the version vector in each
log record.

3.1 Combining Logs

Each log record includes two pieces of information that
are later used to order the record. The seq field contains
a numerically increasing sequence number; each log sep-
arately numbers its records from zero. The version

field is a version vector. A log record r’s version vec-
tor records pointers to the most recent record in each log
at the time that r was created.

Each vector contains a tuple (u,v) for each log in the
view (including the participant’s own log). u is the
DHash key of the log-head of the log being described,
and v is the DHash key of that log’s most recent record
at the time the version vector is created. L∗ saves DHash
keys rather than just sequence numbers so it can recover
from corrupted logs and from a malicious participant
retroactively changing its log by pointing its log-head at
a newly-constructed log. For simplicity, the rest of this
paper replaces u with the name of the participant and v
with a numeric value that refers to the sequence number
contained in the record pointed to by a tuple.

Definition 2. For a version vector x and participant i,
x[i] is either the sequence number recorded in x for par-
ticipant i’s log, or 0 if i does not appear in x.

Definition 3. Version vector comparison: If x and y

are two version vectors, then x >v y iff for every partic-
ipant i, x[i] ≥ y[i], and there exists a participant j such
that x[j] > y[j]. x and y are concurrent, or x ≈v y, if
x ≯v y and y ≯v x. x ≥v y iff x >v y, or x is y, or
x ≈v y.

For simplicity, for two log records r and s, this paper
uses r >v s, r ≥v s, and r ≈v s to expression relation-
ship between their version vectors. For example, r >v s

is short for r.version >v s.version.
Because a log record contains only a pointer to the

next oldest log record, L∗ traverses each log in reverse
chronological order, starting from the most recent log
record. An applications uses L∗ to read the logs record
by record until it finds the information it needs.

L∗ orders log records based on causality. If two log
records r and s have version vectors r >v s, then s

must have been in a participant’s log when r was cre-
ated. Thus >v reflects the causality between these two

3



order (list of log-heads H , callback cb)
list of log records R

sort H in decreasing order by DHash key
for (i := 0; i < H.size (); i++)

R[i] := DHash :: get (H[i].prev)
for (;;)

int latest

log record r := nil
8 for (i := 0; i < R.size (); i++)
9 if (R[i] = nil)
10 continue
11 if (r = nil OR R[i] >v r)
12 r := R[i]
13 latest := i

if (r = nil)
break

else
int retv := cb (r)
if (retv 6= 0)

return retv

if (r.prev = nil)
R[i] := nil

else
R[i] := DHash :: get (r.prev)
if (R[i] = nil)

fatal (“cannot load block”)
return 0

Figure 2: order() interleaves multiple logs in re-
verse order, starting with the most recent log record.
order() calls application callbacks for each log record.

log records. When participants update their logs con-
currently, the new log records contain concurrent ver-
sion vectors. An application must tolerate whatever or-
der L∗ chooses to impose on concurrent log records, but
the application may depend on L∗ always ordering any
two records in the same way for all the participants. Fig-
ure 2 describes the order() procedure that, given a list
of log-heads, interleaves multiple logs in reverse order,
starting with the most recent log record. order() takes
in a callback function from the application; order() calls
this function for every log record. order() is similar to
merging sorted lists.
order() works in three phases. In the first phase,

order() sorts the log-heads by the DHash key of each
log-head, highest key first. It then fetches the most re-
cent log record from each log into an array R, in the same
order as the log-heads. In the second phase, order() it-
erates through R, looking for the most recent log record
r. Because R is ordered by the DHash keys of the log-
heads, L∗ essentially orders log records with concur-
rent version vectors based on their log-head keys. In
the third phase, order() passes r to the callback func-

version vector latest // local to each participant
traverse (callback cb)

version vector v

list of log-heads H

for each participant i ∈ the current view
hi := DHash :: get (i.key)
v[i] := hi.seq − 1
H.push back (hi)

if (v >v latest)
latest := v

return order (H, cb)

append (log-head ha, list of log records R)
for each r ∈ R

r.seq := ha.seq

r.version := latest

r.prev := ha.prev

r.head := ha.head

ha.seq := ha.seq + 1
ha.prev := SHA(r)
latest[a] := ha.seq − 1
DHash :: put (ha.prev, r)

DHash :: put (SHA(ha.key), ha)

Figure 3: L∗ API: applications use traverse() and
append() to maintain their data structures.

tion. If the callback function does not stop log traversal,
order() fetches r.prev from DHash. order() repeats
the second phase until all the log records have been pro-
cessed.

3.2 L
∗ API

L∗ offers a simple API with two procedures, traverse()
and append(). An application uses traverse() to per-
form lookup operations on its data structure. It con-
structs a response to each lookup after traversing logs.
Applications use append() to append new log records
and then update the log-head. A call to append(), in
essence, modifies the data structure. Figure 3 describes
the traverse() and append() procedures.

A program typically modifies a data structure after
performing a lookup. For each new log record, append()
uses a version vector, latest, created by the previous
traverse() call. latest, maintained internally by L∗,
captures the most recent state of each participant’s log.

Because log-head fetch requests arrive at different
DHash servers at different times, when several partici-
pants concurrently update their logs, it is possible that a
participant’s call to traverse() initially includes only a
subset of the concurrent updates. A short time later, an-
other call to traverse() includes the remaining updates,
but some of which are ordered before the first subset.

4



Section 4 describes how to cope with this brief period of
inconsistency.

3.3 Network Partition

In the case of a network partition, L∗’s design maximizes
availability at the expense of consistency by allowing up-
dates to proceed in all partitions. This approach is similar
to that of Ficus [7].

L∗ is not directly aware of partitions, nor does it di-
rectly ensure that every partition has a complete copy of
all the logs. Instead, L∗ depends on DHash to replicate
data enough times, and in enough distinct locations, that
each partition is likely to have a complete set of data.
Whether this succeeds in practice depends on the sizes
of the partitions, the degree of DHash replication, and
the total number of DHash blocks involved in an applica-
tion’s data structure. The particular case of a user inten-
tionally disconnecting a laptop from the network could
be handled by instructing the laptop’s DHash server to
keep replicas of all the log-heads and log records; there
is currently no way to ask DHash to do this. When a
partition does not contain all the blocks needed by L∗,
L∗ stops working.

When network partitions, DHash does not provide
write-read consistency. A get() in one partition does not
return the value written by a put() in another partition.

After a partition heals, the fact that each log-head was
updated from just one host prevents conflicts within in-
dividual logs; it is sufficient for the healed system to use
the newest version of each log-head. Section 5 describes
recovery from partition in more detail.

4 Consistency

This section describes how L∗ maintains consistent data
structures. L∗ interleaves multiple logs deterministi-
cally so that decentralized clients can agree on the or-
der of completed updates, even if those updates were is-
sued concurrently. When the data structure is quiescent,
L∗ guarantees that clients agree on the state of the data
structure. L∗ optionally provides mutual exclusion for
applications that need to ensure atomicity for multi-step
operations (e.g. checking if a file exists, then create it
if it does not). Applications benefit from being able to
choose which consistency model to use; strong consis-
tency incurs higher cost and is typically not necessary.

This section assumes cooperating DHash servers and
full network connectivity. Recall that under these as-
sumptions, DHash provides write-read consistency.

4.1 Ordering of Log Records

An application that uses a single server or server clus-
ter to maintain its data structure depends on the server or
server cluster for data structure consistency. Typically,
a single server executes operations serially, thus partici-
pants can always agree on the state of the data structure
after each operation. A server cluster often guarantees
that within a bounded time, distributed participants agree
on the state of the data structure. It would be impossible
to maintain data structure consistency unless L∗ offers
similar guarantees to its applications.

When multiple participants are in the middle of up-
dating their logs, it is possible that some calls to
traverse() see some of the updates, while others see
a different set of updates. Consequently, L∗ does
not guarantee that participants see the same set of log
records at any given time. L∗ ensures, however, that
order() passes log records to the callback function in
the same order for every participant. Therefore, partic-
ipants always agree on the order of completed updates
even if the updates were issued concurrently. We prove
this property below.

For simplicity, we use x >r y when order() passes x

to the callback function before it passes y to the callback
function. We use big X to refer to log record x’s log.
Recall that, in order(), R[X ] contains the most recent
log record in X that order() has not passed to the call-
back. Also recall that R is sorted based on the keys of
the log-heads.

Lemma 1. If x and y are two log records such that x >v

y, then order() always orders x >r y.

Proof. Proof by contradiction. Assume that order() or-
ders y >r x. Thus at some point prior to cb(x), y is in
R. We consider two cases, when x.head > y.head and
vice versa. For each case, we look at how the inner loop
compares each of R[i] against r (lines 8-13).

First, assume that x.head > y.head. When the inner
loop variable i refers to y’s log, the loop has already ex-
amined x’s log, so r ≥v R[X ]. Because cb(x) has not
been called, r ≥v x. Because x >v y, it is also the case
that r ≥v y. Hence r 6= y at the end of the inner loop.
Therefore y >r x is impossible. Contradiction.

Next, assume that y.head > x.head. For y >r x,
it must be that, at some point, r = y when the inner
loop variable i refers to x’s log. Because R[X ] >v y as
long as cb(x) has not been called, R[X ] replaces y as the
value of r, as long as cb(x) has not been called. Hence y

cannot be ordered before x. Contradiction.

Lemma 2. Let x and y be two log records with con-
current version vectors. If order() orders x >r y, and
y.head > x.head, then there exists another log record
z, such that x >v z and z.head > y.head, and z ≥v y.

5



Proof. Because x >r y, at some point prior to cb(y), x

is in R. Because y.head > x.head, when the inner loop
variable i refers to x’s log, r ≥v R[Y ]. We look at three
possible values of r at this point in time.

First, r is from Y . Because cb(y) has not been called,
it must be that r >v y or r is y. In this case, r ≥v x, and
hence r 6= x at the end of the inner loop. Thus, x cannot
be ordered ahead of y. Contradiction.

If r is not from y’s log, either r >v y, or r ≈v y and
r.head > y.head. In the former case, because x ≈v y,
r ≥v x, and hence r 6= x at the end of the inner loop.
Thus x cannot be ordered ahead of y. Contradiction.

Finally, we are left with r.head > y.head and r ≈v y.
For x >r y to happen at some point, x >v r in one of
the instances of the inner loop before we return to the
first case. Thus r fits the criteria for z.

Theorem 1. If order() ever orders two log records x

and y as x >r y, then it cannot order y >r x for any
participant at any time.

Proof. From Lemma 1, if x >v y or y >v x, then the
theorem holds. This proof shows that when x ≈v y, the
theorem also holds. Without loss of generality, assume
y.head > x.head. We will show, using proof by con-
tradiction, that it is impossible to have both x >r y and
y >r x.

From Lemma 2, if x >r y, there exists another log
record z, such that x >v z, z ≥v y, and z.head >

y.head. Because x >v z, if a participant sees x, it must
also see z. Otherwise we have loss of data and the system
halts. 1 We examine what happens when order() orders
y >r x. Because y.head > x.head, at some point in
time, r = y when the inner loop variable i refers to x’s
log. Then, for all w in R such that w.head > y.head,
y >v w. But this contradicts with the existence of z,
since z.head > y.head and z ≥v y.

Theorem 1 implies that participants agree on the order
of completed updates, even if these updates were issued
concurrently. Theorem 1 also implies that after partition
heals, updates issued in separate partitions are ordered
deterministically as well.

4.2 Relaxed Fetch-Modify Consistency

A common consistency model that distributed systems
use is fetch-modify consistency [5], which totally orders
all fetches and modifies on the same object and guaran-
tees that a fetch sees the results of all modify operations
ordered before it. traverse() and append() offer simi-
lar, but slightly weaker, semantics.

1Because log-head writes are not atomic, before the log-head write
that makes z visible completes, it is possible that a participant sees x

but not z. Because x refers to z in z’s log, the participant knows that a
stale version of z’s log has been fetched and re-tries until it sees z.

Definition 4. The issue time of traverse() is when the
participant issues the first log-head fetch request. The
completion time of append() is when the log-head write
completes in append().

Definition 5. A call to append() occurs before a call
to traverse() iff append()’s completion time is earlier
than the traverse()’s issue time.

Lemma 3. If a call to append() occurs before a call
to traverse(), then when traverse() calls order(),
order() sees all the log records written by the append().

Proof. Let x be the participant that issued the append().
Because append() occurs before traverse(), when
traverse() issues a fetch request for x’s log-head, x’s
log-head has already been changed to point to the new
log records. Because DHash offers write-read consis-
tency, order() sees all the log records written by the
append().

Lemma 3 deviates from fetch-modify consistency [5]
because a call to traverse() may also return log records
appended after the issue time of traverse(). Even
worse, because log-head fetch requests arrive at differ-
ent DHash servers at different times, when multiple par-
ticipants are in the middle of updating their logs, calls
to traverse() by different participants may return dif-
ferent log records. Many shared memory models offer
similarly weak concurrency semantics: concurrent pro-
cesses only agree on the order of updates by one process,
but not on the order of updates by concurrent processes.
L∗differs from these models in that while concurrent up-
dates are first seen at different times, participants agree
on the ordering of the updates, and therefore the final
state of the data structure, eventually.

Theorem 2. If an application uses traverse() and
append() to perform operations on a data structure,
then, with full network connectivity, after all updates
have been completed, every participant sees an identi-
cal, up-to-date, state of the data structure.

Proof. From Lemma 3 and Theorem 1.

In practice, different participants typically update dif-
ferent parts of the data structure. If at the application
level these updates do not conflict with a concurrent
lookup (e.g., the update modifies files in a different di-
rectory), then Theorem 2 holds for the lookup.

Theorem 2 is adequate when operations that affect
each other are issued serially. Applications that need
atomicity for multi-step operations must use L∗’s mutual
exclusion algorithm.

6



4.3 Mutual Exclusion

traverse() and append() do not provide strong con-
currency guarantees. For example, a call to traverse()
may not see log records written by a call to append()
if append() does not occur before traverse(). As a
result, concurrent updates to the data structure can take
place without one noticing the effects of the others. This
behavior can result in non-sequential execution traces.

Applications can cope with this weak concurrency se-
mantics with mutual exclusion, also implemented using
traverse() and append(). The mutual exclusion algo-
rithm uses three non-data structure specific log records.
A participant appends a Prepare log record to announce
its intention for mutual exclusion. The Prepare speci-
fies a handle that identifies a part of the data structure.
A participant appends an Exclusive log record if it
achieves mutual exclusion. Finally, a Cancel log record
cancels the previous Prepare or Exclusive log record.

Definition 6. A Prepare or Exclusive log record r in
participant a’s log is invalid iff

1. There is a Cancel log record c also in a’s log, c >v

r, and c and r identify the same handle. Or,

2. N seconds have passed since r was first seen.

Otherwise, r is valid.

The mutual exclusion algorithm works in two phases.
In the first phase, a participant x checks if another partic-
ipant wants to or already has mutual exclusion. If not, x

announces its intention for mutual exclusion by append-
ing a Prepare log record. Otherwise, x backs off for a
random amount of time and re-tries. In the second phase,
x checks other participants’ logs again. If another par-
ticipant wants to or already has mutual exclusion, then
x backs off and re-tries. Otherwise, x achieves mutual
exclusion and appends an Exclusive log record. The
mutual exclusion algorithm assumes synchrony. That is,
it does not work if network delay (i.e. latency to DHash
servers) or processing delay (i.e. latency of code pro-
tected by the mutual exclusion) exceeds N seconds. This
section assumes this is not the case. Figure 4 presents the
pseudocode of the algorithm.

The rest of the section describes properties of
acquire() and release(). For now, we assume partic-
ipants only update one part of the data structure. That is,
Prepare, Exclusive, and Cancel use the same handle.

Lemma 4. If r and r′ are log records of two different
participants such that r >v r′, then prior to append(r′),
no traverse() call by the same participant calls the
callback with r.

acquire (handle h)
log record p := null

check conflict (log record r) {
if (r is a valid Prepare(h) or
Exclusive(h)) and r 6= p

return 1
return 0

}
int r := traverse (check conflict)
if (r = 1)

backoff for r seconds, r := (0, 10]
return acquire (h)

p := Prepare(h)
append (p)
r := traverse (check conflict)
if (r = 1)

append (Cancel(h))
backoff for r seconds, r := (0, 10]
return acquire (h)

append (Exclusive(h))
return OK

release (handle h)
append (Cancel(h))

Figure 4: Participants use acquire() and release() to
implement mutual exclusion. acquire() passes a call-
back to traverse() that checks for contention.

Proof. Let x and y be participants who wrote r and r′.
Assume that prior to append(r′), there is a traverse()
call by y that passed r to the callback. Hence after
traverse(), y.latest[x] ≥ r.seq > r.version[x]. If
this is true, then r′.version[x] > r.version[x], which
contradicts with r >v r′.

Lemma 5. Let x and y be two participants. Let ex and
ey be x and y’s Exclusive records. If cx is a log record
that invalidates ex, and cy is a log record that invalidates
ey, then one and only one of the following is true,

1. cx >v ex ≥v cy >v ey. Or,

2. cy >v ey ≥v cx >v ex.

Proof. It is clear that cx >v ex and cy >v ey. We show,
using proof by contradiction, that cy >v ex ≥v ey is
impossible. Then, by similar argument, cx >v ey ≥v ex

is impossible as well.
Assume cy >v ex ≥v ey is possible. Let px and py

be the Prepare records for ex and ey, respectively. We
look at what happens in x’s call to acquire().

From Lemma 4, we know that, prior to append(ex),
neither traverse() call passed cy to the callback. This
in turn implies that neither traverse() call passed ey or

7



py to the callback, because otherwise append(ex) would
not execute.

If the traverse() call prior to append(ex) did not
pass py to the callback, then the completion time of
append(py) must occur after the issue time of that
traverse(). This also means that the completion time
of append(py) must occur after the completion time
of append(px). If this is the case, however, DHash
write-read consistency guarantees that the traverse()
call after append(py) passes px to the callback. Hence
append(ey) would not execute. Contradiction.

Definition 7. A critical region is a sequence of opera-
tions surrounded by calls to acquire() and release()
that protect these operations. The critical region exe-
cutes after acquire() succeeds. The duration of the
critical region extends from the issue time of the first op-
eration in the sequence to the completion time of the last
operation in the sequence.

The following theorem proves that acquire() and
release() provides mutual exclusion for critical re-
gions.

Theorem 3. Assuming network and processing delays
do not exceed N seconds, if X and Y are two critical
regions protected by the same handle, then durations of
X and Y do not overlap.

Proof. Let the first and last operations in X be x0 and
x1, and the first and last operations in Y be y0 and y1.
Let ex, cx, ey, and cy be Exclusive and Cancel log
records that protect X and Y . Without loss of generality,
assume cx >v ex ≥v cy >v ey (from Lemma 5). This
means x0 is issued after append(ex), and y1 is issued
before append(cy). Therefore, x0 is issued after y1.

5 Forking

So far this paper has focused on the semantics of L∗ as-
suming DHash provides write-read consistency. This as-
sumption breaks under two scenarios. First, while cryp-
tographic techniques are useful for checking integrity of
data returned from untrusted DHash servers, they do not
ensure freshness of the data. An untrusted server can
mount a stale-data attack [5] by serving an old copy of
a log-head block. Second, participants can also receive
stale data if they operate in different network partitions.
We call both scenarios “forking”. This section describes
how to detect stale-data attacks and how to recover from
forking.

5.1 Detection

A DHash server mounts a stale-data attack by serving an
old copy of a log-head block. To observe what happens

during a stale-data attack, suppose there are three partic-
ipants, x, y, and z, and the participant’s log-heads hx,
hy, and hz each has sequence number 3. This means the
most recent log record in each log has sequence number
2. Let sx, sy, and sz be the DHash servers that serve hx,
hy, and hz, respectively. We consider the following two
cases.

First, suppose sz mounts a stale-data attack by giving
h′

z
to x, where h′

z
.seq = 2, and hz to y and z. In ef-

fect, sz tricks x into believing that the most recent log
record written by z has sequence number 1 instead of
2. While x cannot detect this attack immediately, the at-
tack is evident if y appends a log record to y’s log, and
x subsequently fetches a new hy. Because sy is not ma-
licious, hy.prev.version[z] = 2. x then notices that
hy.prev.version[z] 6= h′

z
.prev.seq.

In general, a stale-data attack by some but not all of the
servers can be detected by checking for inconsistencies
between logs. If log records in one log disagree with
another log’s log-head on the most recent log records in
the second log, the log-head of the second log is stale.
Because log-head writes are not atomic, a participant can
also temporarilly fetch stale log-heads in absence of a
stale-data attack.

Next, consider an attack that involves every DHash
server that stores a log-head. For example, suppose sx,
sy, and sz collude so that sx and sy return h′

x
and h′

y
to

z, where h′

x
.seq = 2 and h′

y
.seq = 2, and the latest copy

of hx and hy to x and y, and that sz returns h′

z
to x and

y, where h′

z
.seq = 2, and the latest version of hz to z.

x, y, and z’s logs remain consistent because the attack
partitions all of x and y’s updates from z, and vice-versa.
Fortunately, such an attack can be detected using out-
of-band communication, such as e-mail notification after
updates. This scenario is similar to that described in [5].

5.2 Recovery

After stale-data attacks or network partition merge, par-
ticipants see all the log records written during the fork,
but most have concurrent version vectors. L∗ orders such
version vectors using order(), so participants will agree
on the state of the data structure after the partition heals.

Assuming that a participant writes only in one par-
tition, a data structure’s meta-data, the set of per-
participant logs, remains internally correct after the parti-
tion heals. That is, log records that appear in logs before
the partition or added during the partition remain acces-
sible after the partition.

At the application level, however, some partitioned up-
dates may have affected program correctness. L∗ leaves
conflict detection and resolution to the application; it
only notifies the application when it sees log records with
concurrent version vectors.

8



6 Experience

We built a multi-user peer-to-peer read-write file system,
Ivy [6], using L∗. Each Ivy log record contains informa-
tion about a single file system modification. For exam-
ple, a Link log record contain information such as “link
file foo into directory bar”. To avoid unnecessary con-
flicts from concurrent updates by different participants,
Ivy log records contain the minimum possible informa-
tion. For example, a Write log record describes data
written to a file. Each Write record contains the newly
written data, but not the file’s new length or modification
time. These attributes cannot be computed correctly at
the time the Write record is created, since the true state
of the file will only be known after all concurrent updates
are known. Ivy computes that information incrementally
when traversing the logs.

Ivy uses traverse() and append() to implement
most file system operations. To answer a lookup, Ivy
calls traverse(), stopping scanning the log once it has
gathered enough data to handle the request. For example,
to perform a directory listing, Ivy accumulates all file
names from relevant Link log records, taking more re-
cent log records that remove or rename files into account.
Ivy modifies the file system using append(). Most mod-
ify operations follow lookups. For example, prior to cre-
ating a new file, Ivy checks if the file exists already.

Ivy implements most file system operations without
mutual exclusion. This design choice does not affect
program correctness when users use these operations to
modify different files or directories. Concurrent updates
to the same file or directory, however, may result in non-
sequential execution history. For example, if one pro-
gram issues rename(f1,f2) while another program
concurrently issues unlink(f1), both operations may
succeed. If these two operations execute sequentially,
one fails. In either case, however, the file system remains
consistent; it looks as if the system calls were correctly
executed in one order or the other.

Ivy uses mutual exclusion to implement file and di-
rectory creation (Figure 5). File and directory creation
require strong concurrency semantics so programs can-
not create duplicate files or directories. Also, applica-
tions can create lock files to serialize conflicting updates,
such as the concurrent rename and unlink described
above.

Ivy achieves good performance [6] through aggres-
sive client-side caching. Each participant’s Ivy software
caches the entire state of the file system. Use of logs
allows Ivy to easily validate an entire cache; if the log-
heads have not changed since the cache was updated,
the cache is up-to-date. A typical Ivy operation in-
volves fetching log-heads from DHash, fetching new log
records (if any), and then completing the operation en-

create (string n, handle dir)
check exists (log record r) {

if file or directory named n exists
return 1

return 0
}
acquire (dir)
int r := traverse (check conflict)
if (r = 1)

release (dir)
return EXISTS

R := list of log records to create n in dir

append (R)
release (dir)
return OK

Figure 5: Ivy uses mutual exclusion to implement file
creation. Applications then create lock files to serialize
operations to the same file or directory.

tirely from the local cache.

7 Related Work

Sprite LFS [10] represents a file system as a log of op-
erations, along with a snapshot of i-number to i-node lo-
cation mappings. LFS uses a single log managed by a
single server in order to to speed up small write perfor-
mance. L∗ uses multiple logs to let multiple participants
update a data structure without a central server or server
cluster.

Existing systems, such as Bayou [14] and Conit [15],
have explored the idea of merging operation logs from
multiple clients in order to resolve concurrent updates to
a data structure. The novel contribution of L∗ is to use
this idea to implement real-time access to a shared data
structure.

Bayou [14] represents changes to a database as a log
of updates. Each update includes an application-specific
merge procedure to resolve conflicts. Each node main-
tains a local log of all the updates it knows about, both
its own and those by other nodes. Nodes operate pri-
marily in a disconnected mode, and merge logs pairwise
when they talk to each other. The log and the merge
procedures allow a Bayou node to re-build its database
after adding updates made in the past by other nodes.
As updates reach a special primary node, the primary
node decides the final and permanent order of log en-
tries. L∗ differs from Bayou in a number of ways. L∗’s
per-client logs allow nodes to trust each other less than
they have to in Bayou. L∗ uses a distributed algorithm
to order the logs, which avoids Bayou’s potentially un-
reliable primary node. L∗ ensures that updates leave the

9



data structure consistent, while Bayou shifts much of this
burden to application-supplied merge procedures. Fi-
nally, L∗’s design focuses on providing useful semantics
to connected clients, while Bayou focuses on managing
conflicts caused by updates from disconnected clients.

TDB [3], S4 [13], and PFS [12] use logging and (for
TDB and PFS) collision-resistant hashes to allow modi-
fications by malicious users or corrupted storage devices
to be detected and (with S4) undone; L∗ uses similar
techniques.

8 Conclusion

This paper presents L∗, a set of techniques for main-
taining consistent data structures in DHTs. L∗ repre-
sents the data as a log of operations in the DHT, with
a separate log per participant. Participants communicate
through L∗ and the DHT; they do not directly talk to each
other or any single server. A participant updates the data
structure by appending records to its log; a participant
reads the current state of the data structure by scanning
the other participants’ logs. Log structure, and use of a
log for each participant, means that concurrent updates to
the same data result in new log records in multiple logs,
rather than a corrupted data structure.

L∗ interleaves multiple logs deterministically so that
decentralized clients can agree on the order of completed
updates, even if those updates were issued concurrently.
When the data structure is quiescent, L∗ guarantees that
clients agree on the state of the data structure. Applica-
tions can also implement mutual exclusion using L∗ to
achieve stronger concurrency semantics.

We built a multi-user peer-to-peer read-write file sys-
tem, Ivy, that uses L∗ to store all file system data and
meta-data. With aggressive client-side caching, Ivy
achieves good performance.

References

[1] F. Dabek, M. Frans Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proc. of the ACM Symposium on Operating System Prin-
ciples, October 2001.

[2] N. Lynch, D. Malkhi, and D. Ratajczak. Atomic data ac-
cess in content addressable networks. In Proc. of the First
International Workshop on Peer-to-Peer Systems, March
2002.

[3] U. Maheshwari, R. Vingralek, and W. Shapiro. How
to build a trusted database system on untrusted storage.
In Proc. of the USENIX Symposium on Operating Sys-
tems Design and Implementation, pages 135–150, Octo-
ber 2000.

[4] P. Maymounkov and D. Mazières. Kademlia: A peer-
to-peer information system based on the xor metric. In

Proc. of the First International Workshop on Peer-to-Peer
Systems, March 2002.

[5] D. Mazières and D. Shasha. Building secure file systems
out of Byzantine storage. In Proc. of the Twenty-First
ACM Symposium on Principles of Distributed Computing
(PODC 2002), July 2002.

[6] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen.
Ivy: A read/write peer-to-peer file system. In Proceed-
ings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’02), Boston, Mas-
sachusetts, December 2002.

[7] T. Page, R. Guy, G. Popek, and J. Heidemann. Architec-
ture of the Ficus scalable replicated file system. Technical
Report UCLA-CSD 910005, 1991.

[8] D. Parker, G. Popek, G. Rudisin, A. Stoughton,
B. Walker, E. Walton, J. Chow, D. Edwards, S. Kiser, and
C. Kline. Detection of mutual inconsistency in distributed
systems. In IEEE Transactions on Software Engineering,
volume 9(3), pages 240–247, 1983.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. ACM SIGCOMM, pages 161–172, August 2001.

[10] M. Rosenblum and J. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transac-
tions on Computer Systems, 10(1):26–52, 1992.

[11] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proc. of the ACM Symposium on Op-
erating System Principles, October 2001.

[12] C. Stein, J. Howard, and M. Seltzer. Unifying file system
protection. In Proc. of the USENIX Technical Conference,
pages 79–90, 2001.

[13] J. Strunk, G. Goodson, M. Scheinholtz, and C. Soules.
Self-securing storage: Protecting data in compromised
systems. In Proc. of the USENIX Symposium on Operat-
ing Systems Design and Implementation, pages 165–179,
October 2000.

[14] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spre-
itzer, and C. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In Proc.
of the ACM Symposium on Operating System Principles,
pages 172–183, December 1995.

[15] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for replicated
services. ACM Transactions on Computer Systems,
20(3):239–282, August 2002.

[16] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, Computer
Science Division, U. C. Berkeley, April 2001.

10


