
Caches and Merkle Trees for Efficient Memory Authentication

Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, Srinivas Devadas
MIT Laboratory for Computer Science

July 20, 2002

Abstract

We describe a hardware scheme to authenticate all
or a part of untrusted external memory using trusted
on-chip storage. Our scheme uses Merkle trees and
caches to efficiently authenticate memory. Proper
placement of Merkle tree checking and generation is
critical to ensure good performance. Näıve schemes
where the Merkle tree machinery is placed between
caches can result in a large increase in memory band-
width usage. We integrate the Merkle tree machinery
with one of the cache levels to significantly reduce
memory bandwidth requirements.

We present an evaluation of the area and perfor-
mance costs of various schemes using simulation. For
most benchmarks, the performance overhead of au-
thentication using our integrated Merkle tree/caching
scheme is less than 25%, whereas the overhead of au-
thentication for a näıve scheme can be as large as
10×. We explore tradeoffs between external memory
overhead and processor performance.

Introduction

Secure processors (e.g., [Yee94] [SW99], [LTM+00])
can enable many applications such as copy-proof soft-
ware and certification that a computation was carried
out correctly. Additionally they hold promise in help-
ing to implement secure computing systems that are
resistant to viruses and other forms of attacks [CPL].

Even if secure processors are built, in order to build
secure computing systems, one of the problems that
needs to be solved is the authentication of untrusted
external memory. This memory is typically accessed
via an external memory bus, or may be networked in
some fashion to the secure processor. While the se-
cure processor is running, an adversary may corrupt
the memory values in the external memory. The se-
cure processor should be able to detect any form of
memory corruption. Typically, the secure processor
will cease the execution of the running task(s) when
it detects memory corruption.1 To achieve security

1In this paper, we are not concerned with the correction of

and high performance, it is critical to have an effi-
cient authentication scheme that does not slow down
the processor. In this paper, we describe hardware
schemes to efficiently authenticate all or a part of
untrusted external memory using a limited amount
of trusted on-chip storage.

We propose a on-line scheme for memory authen-
tication. Our scheme uses hash trees (also called
Merkle trees) and caches to efficiently authenticate
memory. Näıve schemes where the Merkle tree ma-
chinery is placed between caches, e.g., between L1
and L2 caches, can result in a factor of log N in-
crease in memory bandwidth usage (where N is the
memory size), thereby degrading performance signif-
icantly. In our proposed scheme, we integrate the
Merkle tree machinery with one of the cache levels
to significantly reduce memory bandwidth require-
ments.

We present an evaluation of the area and perfor-
mance costs of various on-line schemes using simula-
tion. For most benchmarks, on a superscalar proces-
sor, the performance overhead of authentication us-
ing our integrated Merkle tree/caching scheme is less
than 25%, whereas the overhead of authentication
for a näıve scheme can be as large as 10×. We show
tradeoffs between external memory overhead and se-
cure processor performance.

We describe related work in Section 1. The as-
sumed model is presented in Section 2, and moti-
vating applications are the subject of Section 3. An
on-line caching scheme for memory authentication is
described in Section 4. We evaluate the scheme im-
plemented on a superscalar processor in Section 5.

1 Related Work

Merkle trees [Mer80] were proposed as a means to
update and validate data hashes efficiently by main-
taining a tree of hash values over the objects.

corrupted data in memory. An adversary may be able to de-
stroy the entire contents of memory causing an unrecoverable
error. Thus, the secure processors we consider do not protect
against denial-of-service attacks.

1

Blum et al. addressed the problem of securing vari-
ous data structures in untrusted memory using a hash
tree rooted in trusted memory [BEG+91]. They con-
sider both off-line detectors that use a hashed trace
of all accesses (including values read or written, loca-
tions accessed and times of access) and an on-line de-
tector, which uses Merkle trees. The on-line scheme
described by Blum et al. has a O(log(N)) cost for
each memory access. The off-line scheme targets
the detection of memory errors, and does not secure
memory against attacks from an adversary.

Maheshwari, Vingralek and Shapiro use Merkle
trees to build trusted databases on top of trusted
storage [MVS00]. This work is similar to ours in
that trusted memory can be viewed as a cache for
untrusted disk storage – their scheme exploits mem-
ory locality to reduce disk bandwidth. Our work ad-
dresses the issues in implementing Merkle tree ma-
chinery in hardware and integrating this machinery
with an on-chip cache to reduce the log N memory
bandwidth overhead. The caching algorithm of Sec-
tion 4 is more general in that a single hash can be
used for multiple cache blocks. This scheme can po-
tentially reduce untrusted memory size overhead and
cache pollution without increasing cache block size.

Shapiro and Vingralek [SV01] address the prob-
lem of managing persistent state in DRM systems.
They assume that each memory reference results in a
MAC computation and therefore discount the possi-
bility of securing volatile storage because it requires
large overheads. They assume that volatile memory
is inside the security perimeter.

In [DS02] allusions are made to a smartcard system
that would use a Merkle tree with large pages of RAM
at its leaves, combined with caching of pages in in-
ternal memory. Their discussion, however is strongly
directed towards smartcard applications, and they do
not appear to consider caching nodes of the Merkle
tree.

2 Model

In this paper we are considering a computer system
with the following properties:

• There is a high performance processor that con-
tains a secret that allows it to produce keys to
perform cryptographic operations such as sign-
ing or encrypting that no other processor could
do for it. This secret can be a private key from a
public key pair as in XOM [LTM+00], or it can
be a Physical Unknown Function [GCvDD02].
Symmetric key schemes are inapropriate as we
want many mutually mistrusting principals to
be able to use the system.

• Operations that take place inside the processor
are assumed to be private and tamper-evident.

• The processor has sufficient on-chip storage to
perform its cryptographic operations on-chip.

• The processor has a trusted on-chip cache.

• Everything outside the processor is untrusted, in
particular the memory. By untrusted, we mean
that there is an adversary who knows everything
about the system except for the processor’s se-
cret.

The objective of the system is the following:

• A user wants to use the system to perform a com-
putation that produces one or many results, to
which cryptographic primitives are then applied.
The reason for the cryptographic primitives will
be illustrated in section 3.1.

• The computation will involve the processor and
external memory.

• We want the computation to be carried out at
speeds that are as close as possible to the speed
of a conventional insecure processor.

• We want a high probability of detecting results
that contain errors induced by tampering from
the adversary. This probability must be high
even if the adversary chooses the program to run.

The objective of the adversary is the following:

• The adversary wants to tamper with the mem-
ory in such a way that the system produces an
incorrect result that looks correct to the user.

In this paper we will solve this problem by pro-
viding an authentication mechanism for the off-chip
memory. In the next section we show how this in-
tegrity can be used in applications.

3 Applications

3.1 Certifying the Execution of a Pro-
gram

The main focus of this paper is to explore memory
authentication. However, memory authentication is
only useful if it is performed on a processor that con-
tains a secret, and the processor is able to perform
some simple cryptography on it. We will not go into
the details of the cryptography that is necessary, but
for ease of understanding, we provide an example of
use.

Alice has a problem to solve that requires a lot of
computing power. Bob has a computer that is idle,
and that he is willing to rent to Alice. If Alice gives

2

Bob her problem to execute, and Bob gives her a
result, how can she be sure that Bob actually carried
out the computation? How can she tell that Bob
didn’t just invent the result?

One way of solving this is by having a processor
that has been certified by its manufacturer, that con-
tains a secret, and that is equipped to deal with prob-
lems such as the one Alice has.

Alice sends this processor her problem expressed
as a program. The processor uses Alice’s program
combined with its secret key through a collision re-
sistant scheme to produce a key that is unique to
the processor-program pair. The processor then exe-
cutes Alice’s program without allowing any interfer-
ence from external sources. The processor executes
the program in a deterministic way to produce the
result Alice desires. It then uses the key it generated
to sign the result before sending it to Alice.

As long as Alice’s computation can all be done on
the processor, things go well. However, for most algo-
rithms, it is likely that Alice will need to use external
memory. How can she be sure that Bob isn’t tam-
pering with the memory bus to make Alice’s program
terminate early while still producing a valid certificate
for an incorrect result? This is precisely the question
that we try to answer in this paper by providing an
efficient means to authenticate memory operations.

When Alice receives the signed result, she is able to
check it. At that point she knows that her program
was executed on a trusted processor, and that the ex-
ternal memory performed correctly.2 If the program
did not contain a bug then Alice has the correct re-
sult.

Without the ability to perform some kind of cryp-
tography, the memory authentication would be use-
less except to detect faults in the memory (which
could be detected much more cheaply with simple er-
ror detecting codes). Indeed, executions carried out
on the real processor would be identical to results
carried out on a processor simulator, on which any
kind of tampering can be done with the data.

Of course, in real systems Bob will want to con-
tinue using his computer while Alice is calculating.
Systems like Palladium or XOM provide this func-
tionality as we shall see in the following sections. But
in each case, they still need authenticated memory.

3.2 Palladium

Microsoft’s proposed security model, Palladium
[CPL], may be enhanced by authenticated memory.
Indeed, Palladium works by providing a mechanism
whereby the Operating System (OS) can prove to an

2If Alice’s program stored data on disk, we assume that it
took measures to authenticate the data.

application that it is trusted, and that it was loaded
properly (so no mischievous code was able to load be-
fore the OS). The application program, knowing that
it is being protected by a security kernel that was
properly loaded, can be confident that it will receive
whatever protection it requires for proper execution.

But in order to make this model work, it has to be
impossible for a hacker to break the system’s security
by modifying the secure kernel as it goes over the
bus between external memory and processor. This
can be done by always keeping the security kernel on
the processor. But this wastes on-chip storage when
the security kernel is not in use (most of the time).
Another option is to use authenticated memory such
as we describe it in this paper.

3.3 XOM architecture

The eXecute Only Memory (XOM) architecture
[LTM+00] is designed to run security requiring appli-
cations in secure compartments that can only com-
municate with the rest of the world on an explicit
request from the application.

This protection is achieved on-chip by tagging data
with the compartment to which it belongs. In this
way, if a program executing in a different compart-
ment attempts to read the data, the processor detects
it and raises an exception.

For data that goes off-chip, XOM uses encryption
to preserve privacy. Each compartment has a differ-
ent encryption key. Before encryption, the data is
appended with a hash of itself. In this way, when
data is recovered from memory, XOM can verify that
the data was indeed stored by a program in the same
compartment. XOM prevents an adversary from
copying encrypted blocks from one address to another
by combining the address into the hash of the data
that it calculates.

3.3.1 Exploiting Replay Attacks

However, XOM’s integrity mechanism is vulnerable
to replay attacks, which was also pointed out in
[SV01]. Indeed, in XOM there is no way to detect
whether data in external memory is fresh or not.
Freshness appears to be provided for from one exe-
cution of a secure application to another by having a
mutating key (essentially, a different key for each ex-
ecution). Within a single execution of the secure ap-
plication, however, the key cannot be changed with-
out making data that was stored at the beginning of
execution unreadable. Therefore, an adversary can
do replay attacks by having the memory return stale
data that had previously been stored at the same
address during the same execution. In particular,

3

XOM will not notice if writes to memory are never
performed except when memory is first initialized.

This flaw in XOM’s authentication could be ex-
ploited to violate the privacy of some programs. Con-
sider the following example:

for (i = 0; i < size; i++)
{
outputdata(*data++);
/* outputdata copies data
out of the secure
compartment */

}

If outputdata causes i to be swapped to mem-
ory, and if i and data are not in the same cache
line, then an attacker can cause the loop to be exe-
cuted many more times than it should. Assuming the
attacker knows where i is stored, he can record the
value of i during an iteration of the loop, and then re-
place the incremented value by the pre-recorded value
each time through the loop. In this way, outputdata
gets called with each data value up to the end of the
data segment, thus revealing a lot more to the out-
side world than initially intended. If data is stored
on the stack, it might be possible to replace it with an
address in the code segment to reveal a large portion
of the program’s code.

To pull this attack off, the adversary would pre-
sumably single step the program,3 flushing the cache
between steps. In this way, he can obtain a cache-
line level observation of the program’s memory ac-
cess patterns. By observing loop like patterns in the
program counter, the adversary can search for loops.
Loops that cause data to be copied out of the secure
compartment can be identified by the unencrypted
data that they are writing to memory, or, even bet-
ter, by the unprotected system calls that are being
called with the data.4 All the adversary has left to
do is guess the location of i in the stack (the gen-
eral position of the stack will be apparent from the
memory access pattern).

Though this attack may seem involved, and despite
the fact that the code sample is somewhat unlikely, it
is quite plausible that a complex program will contain
similar vulnerabilities, which a motivated adversary
could find and exploit. There is a wealth of examples
from the smartcard world where attacks of similar
type have been carried out to extract secret informa-
tion, as can be seen in [AK97].

3If single stepping is forbidden, a similar effect can probably
be obtained by generating an interrupt after a small number
of memory accesses. With luck, it would even be possible to
turn off the processor’s caches.

4In fact, it might be possible to find a suitable loop simply
by observing patterns of system calls.

3.3.2 Correcting XOM

XOM can be fixed in a simple, though not optimal,
way by combining it with our memory authentica-
tion method. Essentially, XOM was attempting to
provide two forms of protection: protection from an
untrusted OS, and protection from untrusted off-chip
memory. Its method for dealing with the untrusted
OS seems much more open an approach than the one
that is used by Palladium. It would make all the Pal-
ladium applications possible without forcing the use
of a certified (and presumably commercial) OS. As
far as the protection of off-chip memory goes, XOM
fails because memory is not properly authenticated.
Protecting memory integrity with hash trees would
solve XOM’s problem.

4 Authentication Algorithm

4.1 Hash Trees

We verify the integrity of memory with a hash tree,
also called a Merkle tree (see [Mer80]). In a hash
tree, data is located at the leaves of a tree. Each
node contains a collision resistant hash of the data
that is in each one of the nodes or leaves that are
below it. A hash of the root of the tree is stored in
secure memory where it cannot be tampered with.
Figure 1 shows the layout.

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

���
���
���
���

Secure Root
Hash

Hash
TreeA Chunk

Data

Figure 1: A hash tree. Chunks contain hashes that
authenticate data in chunks lower in the tree.

To check that a node or leaf in a hash tree has not
been tampered with, we check that its hash matches
the hash that is stored in its parent node, and that
the parent node has not been tampered with. We
repeat this process on the parent node, and on its
parent node, all the way to the root of the tree that
has its hash stored in secure memory. When writing

4

to the hash tree, it is similarly necessary to update
all the nodes above the modification up to the secure
root hash.

An m-ary hash tree allows integrity verification
with a constant factor overhead in memory consump-
tion of m/(m−1). With a balanced tree, the number
of hash checks to perform is logm(N), where N is
the amount of memory to be protected, expressed in
multiples of the size of a hash. The cost of each hash
computation is proportional to m (i.e., the amount
of data to hash).

These costs of using a hash tree are quite modest
considering that they allow a very small amount of
secure memory (typically 128 to 160 bits) to verify
the integrity of arbitrarily large amounts of memory.
For a 4-ary tree, one quarter of memory ends up be-
ing used by hashes, which is large, but not unaccept-
ably so. However memory bandwidth is a major con-
straint in high performance systems, and the number
of hashes that must be read from memory increases
very quickly with memory size and can easily exceed
10. Unless this access pattern is optimized, system
performance is sure to be dismal.

4.2 Hash Trees in the Memory Hier-
archy

Proper placement of the hash tree checking and gen-
eration machinery is critical in ensuring good per-
formance. On first thought, the machinery could be
placed between two layers of the memory hierarchy.
The higher layers would not know about the hash
tree. On a miss, they would use the hash tree ma-
chinery to read and authenticate data from the lower
part of the hierarchy. There are two logical places for
these operations to be carried out:

1. One possibility is to place the hash tree machin-
ery between L25 and external memory. This
way cached data can be retrieved very fast with-
out having to go through any integrity verifica-
tion. However, this option implies that L2 cache
misses will result in a whole path from leaf to
root of the hash tree being fetched from external
memory on a cache miss, which is unacceptably
slow.

2. Another possibility is to place the hash tree ma-
chinery between L1 and L2. Thus, frequently
used paths in the hash tree will end up being
cached in L2 and will not put such a high load
on memory bandwidth. The drawback is that ac-
cessing L2 becomes much more costly since each
access to L2 involves checking a whole path in
L2.

5We are assuming a processor with on-chip L1 and L2 cache.

Both schemes share a common drawback. Each
access that goes through the hash tree layer requires
logm(N) hash checks, and consequently accessing all
the data that those hashes are to be computed on. In
Section 5 we use scheme 1 as a representative näıve
scheme, and refer to it as naive. The following sec-
tion shows an optimized hash tree implementation
that gets around this problem and which makes hash
trees a reasonable choice in a high performance pro-
cessor.

4.3 Making Hash Trees Fast: chash

To make hash trees fast, we have to merge the hash
tree machinery with one of the cache levels. Values
that are stored in this combined cache are trusted,
which allows accesses to be performed directly on
cached values without any hashing, giving us the ad-
vantage of scheme 1 above. At the same time, data
that is needed for hashing can now be read from the
cache. This reduces the latency to the data as in
scheme 2, and has the additional advantage that if a
hash comes from the cache, it is trusted, and there-
fore it is not necessary to continue checking hashes
up to the root of the tree.

The following algorithms show how the combined
cache that has all these nice properties can be imple-
mented. In these algorithms the word cache refers to
the combined cache (which is assumed to be trusted),
and the word memory refers to the next level in
the memory hierarchy.6 The memory is divided into
chunks that are the basic unit that hashes are com-
puted on. For now we will consider that chunks coni-
cide with cache blocks.

ReadAndCheckChunk: Reads data from exter-
nal memory and checks it.

1. Read the chunk from memory.

2. Return the chunk to the caller so that it can start
speculative execution.

3. Start hashing the chunk that we just read. In
parallel, recursively call ReadAndCheck to fetch
the chunk’s hash from its parent chunk. If the
chunk is in fact the root chunk, its hash is fetched
directly from secure memory instead of calling
ReadAndCheck.

4. Compare the hash we just computed with the
one in the parent chunk. If they do not match,
raise an exception.

ReadAndCheck: Called when the processor ex-
ecutes a read instruction.

6We will work with L2 as the cache, and off-chip RAM as
the memory.

5

1. If the data is cached, return the cached data. We
are done.

2. Call ReadAndCheckChunk on the data’s chunk.
3. Put the read chunk into the cache.
4. Return the requested data.

Write: Called when the processor executes a write
instruction.

1. If the data to be modified is in the cache, modify
it directly. We are done.

2. Otherwise, use ReadAndCheckChunk to get the
chunk data, and put it into the cache (we are
implementing a write-allocate cache here).

3. Modify the data in the cache.

Write-Back: Called when a dirty cache block is
evicted.

1. Compute the hash on the modified chunk.
2. In a way that makes both changes visible si-

multaneously, write the chunk to memory and
change its hash in the parent chunk using the
Write operation described above (unless it is the
root chunk, in which case the hash is stored in
secure memory).

Intuitively, with this algorithm, when a node of
the hash tree is loaded into the cache, it is used as
the root of a new hash tree. This is valid because
the node is now stored in secure on-chip storage, and
thus no longer needs to be protected by its parent
node in the main hash tree. The performance ad-
vantage results because the new tree is smaller than
the original tree, which reduces the path from leaf to
node. As far as correctness goes, the algorithm’s es-
sential invariant is that at any time, a hash contained
in the tree is a hash of the child chunk in memory.7

On writes, the hash only gets recomputed when the
changes are written back.

Note that this algorithm implements a write-
allocate cache. This is sensible since performing a
word write requires the word’s whole chunk to be
read in for hashing anyways. Nevertheless, a useful
optimization can be made, inspired by normal cache
technology: if write allocation simply marks unwrit-
ten words as invalid rather than loading them form
memory, then chunks that get entirely overwritten
don’t have to be read from memory and checked.
This optimization eliminates one chunk read from
memory and one hash computation.

7This invariant is in fact a bit too strong for this algorithm,
but will be necessary for the versions that are described in
the next sections. We could reduce the invariant to: hashes
of uncached chunks must be valid, hashes of cached chunks
can have an arbitrary value. The last step of the write-back
algorithm can then take place in two steps: update the hash,
then write the hash back to memory.

4.4 Multiple Cache Blocks per
Chunk: mhash

In the algorithm described above, we have assumed
that there is exactly one cache block per chunk. Since
the cache block is usually chosen to optimize the per-
formance of the processor when security is turned off,
it turns out that the chunk size is completely con-
strained before the memory integrity option is even
considered. To allow more flexible selection of the
chunk size, let us consider an improved algorithm
that does not require that chunks coincide with cache
blocks.

The modified algorithm is described below. Parts
that are unchanged appear in small type. Note that
ReadAndCheckChunk returns the data that is in
memory. This data will be stale when the cache con-
tains a dirty copy of some cache blocks.

ReadAndCheckChunk

1. Read cache blocks that are clean in the cache
directly from the cache. Read the rest of the
chunk from memory.

2. Return the chunk to the caller so that it can start speculative
execution.

3. Start hashing the chunk that we just read. In parallel, re-
cursively call ReadAndCheck to fetch the chunk’s hash from
its parent chunk. If the chunk is in fact the root chunk,
its hash is fetched directly from secure memory instead of
calling ReadAndCheck.

4. Compare the hash we just computed with the one in the
parent chunk. If they do not match, raise an exception.

ReadAndCheck
1. If the data is cached, return the cached data. We are done.

2. Call ReadAndCheckChunk on the data’s chunk.

3. Put the read chunk into the cache, except for cache
blocks that are already cached in the dirty state.

4. Return the requested data.

Write
1. If the data to be modified is in the cache, modify it directly.

We are done.

2. Otherwise, use ReadAndCheckChunk to get
blocks that are missing from the cache. Write
them to the cache (we are implementing a write-
allocate cache here).

3. Modify the data in the cache.

Write-Back

1. If the chunk is not entirely contained in the
cache, use ReadAndCheckChunk to get the miss-
ing data.

2. Mark all the chunk’s cached blocks as clean.
3. Compute the hash on the modified chunk.

4. In a way that makes both changes visible simultaneously,

write the blocks that were dirty to memory and
change its hash in the parent chunk using the Write operation
described above (unless it is the root chunk, in which case
the hash is stored in secure memory).

6

This algorithm can be further optimized by replac-
ing the hash function by an incremental MAC (Mes-
sage Authentication Code). This MAC has the prop-
erty that single cache block changes can be applied
without knowing the value in the other cache blocks.
An example of such a MAC is presented in [BGR95],
it is based on a conventional MAC function hk and
an encryption function Ek′ :

Mk,k′(m1, · · · ,mn) = Ek′(hk(1,m1)⊕ · · ·⊕hk(n, mn))

Given a value of the MAC, it can be updated
when mi changes by decrypting the value, subtract-
ing the old value of hk(i,mi), adding the new value
of hk(i, mi), and finally encrypting the new result.

With this hash function, the Write-Back operation
can be optimized so that it is not necessary to load
the whole chunk from memory if part of it isn’t in
the cache.

Write-Back

1. Read the parent MAC using the ReadAndCheck
operation.

2. Read the old value of the cache block from mem-
ory directly (without checking it so that we don’t
have to read the whole chunk).

3. Calculate the new value of the MAC by doing an
update.

4. In a way that makes both changes visible simultaneously,
write the chunk to memory and change its hash in the parent
chunk using the Write operation described above (unless it
is the root chunk, in which case the hash is stored in secure
memory).

We will refer to the optimized algorithm as mhash
in Section 5.

4.5 Simplified Memory Organization

We have chosen to adopt a very simple memory or-
ganization in which all of physical memory is authen-
ticated. Physical memory is assumed to be present
as a contiguous segment beginning at address 0 that
we want to authenticate completely. While this as-
sumption is quite restrictive as far as real systems go,
it is quite adequate for our purposes of studying the
performance cost of protecting RAM with hash trees.

The layout of the hash tree in RAM is equally sim-
ple. The memory is stored in equal sized chunks.
Each chunk can store data or can store m hashes.
Chunk are numbered consecutively starting from zero
so that a chunk’s number multiplied by the size of the
chunk produces the chunk’s starting address.

To find the parent of a chunk, we subtract one
from the chunk’s number divided by m and round
down. If the result is negative then the chunk’s hash
is stored in secure memory. Otherwise, the result is

the parent chunk’s address. The remainder of the
division indicates the index of the chunk’s hash in its
parent chunk.

The resulting tree is almost a balanced m-ary tree.
In general, the m balanced subtrees aren’t quite bal-
anced as there aren’t enough elements to fill the last
level completely.

The interesting features of this layout are that it is
very easy to find a chunk’s parent when m is a power
of two, and all the leaves are contiguous.

4.6 Real Life Issues

4.6.1 Direct Memory Access

For now we have considered that all of memory is
authenticated. This assumption breaks down when
data is inserted directly into memory by a device
through Direct Memory Access (DMA).

One way of dealing with this is to set aside an
unprotected area of memory for use in DMA trans-
fers. Once the transfer is done, programs can copy
the data into a secure buffer before using it. This
method has the drawback of requiring an extra copy
of the data. But in many systems this is not a major
penalty as the operating system typically performs a
copy of incoming data from a kernel buffer into user
space anyways.

Data coming from the DMA is untrusted (since it
comes from off chip), so once it has been brought
into authenticated memory, it must be authenticated
by the application program using some scheme of its
choosing.

For safety, the processor should only allow reads
to unprotected memory when a special ReadWith-
outChecking instruction is used. That way a program
cannot be tricked into reading unauthenticated data
when it expects authenticated data.

4.6.2 Initialization

So far we have considered how the processor executes
when memory is authenticated. It is important to
consider how to initialize secure mode since a flaw in
this step would make all our efforts futile. Here is the
proposed procedure:

1. Turn on hashing, but for now do not
bother checking hashes during the ReadAnd-
CheckChunk. In this mode hash trees will be
computed, but no checking is done.

2. Touch (write to) each chunk that is to be covered
by the hash tree. In this way each chunk ends
up in the cache in a dirty state. As chunks are
written back, higher levels of the hash tree will
get updated.

7

3. Flush the cache. This forces all the dirty chunks
to be written back to memory. These write-
backs will cause their parent nodes to appear
in the cache in a dirty state. The parents will
in turn be written back to the cache, and so on
until the whole tree has been computed.8 9

4. Turn on the memory authentication failure ex-
ceptions.

5. Generate the key that will be used by this
program for cryptographic purposes (see Sec-
tion 3.1).

At this point, the program is running in secure
mode, and its key has been generated. It can now run
and eventually sign its results, unless tampering takes
place resulting in the destruction of the program’s
key.

4.7 Precise Exceptions

In the algorithms presented above, it has been stated
that hash checks related with ReadChunk can be
completed in the background while the returned value
is used speculatively. The question is: how far can
execution continue speculatively?

Since there is no general way of recovering from
tampering other than restarting the program execu-
tion from scratch, it appears that there is no need to
make memory authentication failure exceptions pre-
cise. Therefore, execution can proceed without wait-
ing for authentication checks to complete, and spec-
ulative instructions can commit.

There is however an exception to this rule as far
as cryptographic operations go. We saw in section 2
that the program can perform cryptographic opera-
tions using a key that is a function of the running pro-
gram. These operations must not allow their results
to be seen outside the processor before all preced-
ing hash checks have passed. Otherwise an adversary
would be able to make a change to some data just
before a program performs a cryptographic primitive
on it. With luck, the result of the operation could be
sent off-chip before the hash checks completed, and
the adversary would have tricked the system into ap-
plying its cryptography on data to which it shouldn’t

8In fact, with this procedure, each hash might be computed
a number of times that is equal to the arity of the tree. The
procedure that is described here could be optimized to produce
only one computation of each hash, but this would require
added assumptions about the instruction set architecture to
describe precisely, and would not impact the security of the
scheme.

9In the case where incremental MACs are used, all MAC
computations are incremental. So this cache flushing trick
would not work. Therefore, the initialization must be mod-
ified so that it actually computes a MAC from scratch.

have been applied. This attack would allow the ad-
versary to sign, encrypt or decrypt a message of his
choice even though he does not have the key.

Therefore, cryptographic instructions must act as
barriers for speculative execution of instructions that
rely on unauthenticated data. They will stall at the
commit stage until all hash checks have completed.
For debugging purposes, it might be desirable to pro-
vide a mode in which all instructions behave as bar-
riers.

5 Evaluation

This section evaluates our memory authentication
scheme using a processor simulator. First, we de-
scribe the hardware implementation of our algorithm
and the additional logic required by our scheme.
Next, the simulation framework used for the experi-
ments is described. Performance and memory space
overheads of the scheme are then discussed. We also
study the effects of various architectural parameters
on memory authentication performance. Finally, the
incremental MAC based method to reduce the mem-
ory overhead is evaluated.

5.1 Hardware Implementation

We describe the implementation of the chash scheme.
The mhash scheme uses the same datapaths but re-
quires additional control.

A hash checking/generating unit is added next to
the L2 cache. Whenever there is a L2 cache miss, a
new cache block is read from the main memory, and
added to the hash read buffer unit which checks au-
thenticity (Figure 2 (a)). The hashing unit computes
a hash of the new cache block, and compares with
a previously stored hash, which is read from the L2
cache (or a root hash register if the hash happens to
be the root of the tree). If two hashes do not match
each other, a security exception is raised.

Similarly, when a cache block gets evicted from the
L2 cache, it is stored in the hash write buffer unit
while writing back the block to the main memory
(Figure 2 (b)). The hash unit computes a new hash
of the evicted block and stores the hash back into the
L2 cache.

5.2 Logic Overhead

To evaluate the cost of computing hashes, we consid-
ered the MD5 [Riv92] (and SHA-1 [DEJ01]) hashing
algorithms. The core of each algorithm is an opera-
tion that takes a 512-bit block, and produces a 128-

8

=

root
hash

 hash
computation
 logic

L2

MEMORY BUS

Exception

stored hash of D

data block
D is read on
L2 miss

 hash
 read
buffer

(a)

 hash
computation
 logic

L2

MEMORY BUS

new hash

data block
writeback

hash
write
buffer

root
hash

(b)

Figure 2: Hardware implementation of the chash scheme. (a) L2 cache miss: read from the memory. (b) L2
write back: write to the memory.

bit (or 160-bit, respectively) digest.10

In each case, simple 32-bit operations are per-
formed over 80 rounds. In each round there are 2
to 4 logic levels, as well as 2 adders. We noted that
with suitable skewing of the adders, rounds can be
performed in one cycle per round on average.

The total amount of 32-bit logic blocks that is re-
quired for the 80 rounds is 260 adders, 32 multiplex-
ers, 16 inverters, 16 or gates and 48 xor gates (for
SHA-1, 325 adders, 60 and gates, 40 or gates, 20
multiplexers and 272 xor gates). If these were all laid
out, we would therefore need on the order of 50,000
1-bit gates altogether. In fact, the rounds are very
similar to each other so it should be possible to have
a lot of sharing between them. To exploit this we
chose a hash throughput of one per 20 cycles. This
should allow the circuit size to be divided by a factor
of 10 to 20.

5.3 Simulation Framework

Our simulation framework is based on the Sim-
pleScalar tool set [BA97], which models speculative
out-of-order execution. To model the memory band-
width usage more accurately, separate address and
data buses were implemented. All structures that
access the main memory including a L2 cache and
the hash unit share the same bus.

The architectural parameters used in the simula-
tions are shown in Table 1. SimpleScalar is config-
ured to execute Alpha binaries, and all benchmarks

10In fact, for variable length messages, the output from the
previous 512-bit block is used as an input to the function that
digests the next 512-bit block. Since we are dealing with fixed-
length messages of less than 512 bits, we do not need this.

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 caches Unified, 1MB, 4-way, 64B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

Memory bus 200 MHz, 8-B wide (1.6 GB/s)
Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

Hash latency 80 cycles
Hash throughput 3.2 GB/s

Hash read/write buffer 16
Hash length 128 bits

Table 1: Architectural parameters used in simula-
tions.

are compiled on EV6 (21264) for peak performance.
For all the experiments in this section, nine

SPEC2000 CPU benchmarks [Hen00] are used as
representative applications: gcc, gzip, mcf, twolf,
vortex, vpr, applu, art, and swim. These bench-
marks show varied characteristics such as the level
of ILP (instruction level parallelism), cache miss-
rates, etc. By simulating these benchmarks, we can
study the impact of memory authentication on vari-
ous types of applications.

To capture the characteristics of benchmarks in the
middle of computation, each benchmark is simulated
for 100 million instructions after skipping the first 1.5
billion instructions. In the simulations, we ignore the
initialization overhead of the hash tree. Given the
fact that benchmarks run for a long time, the over-
head should be negligible compared to the steady-

9

state performance.

5.4 Performance Impact of Memory
Authentication

On-line memory authentication requires computing
and checking a hash for every read from off-chip mem-
ory. At the same time, a new hash should be com-
puted and stored on a write-back to memory. Mem-
ory authentication implies even more work for mem-
ory operations, which already are rather expensive.
Therefore, the obvious first concern of memory au-
thentication is its impact on application performance.

Fortunately, computing and checking hashes do not
always increase memory latency. We can optimisti-
cally continue computation as soon as data arrives
from the memory while checking their authenticity
in the background. Checking the authenticity of data
hurts memory latency only when read/write buffers
are full.

Authenticating memory traffic, however, can de-
grade the memory performance in two ways: L2 cache
pollution and memory bandwidth pollution. First,
if we cache hashes in the L2 cache, hashes contend
with regular application data and can degrade the
L2 miss-rate for application data. On the other hand,
loading and storing hashes from/to the main mem-
ory increases the memory bandwidth usage, and may
steal bandwidth from applications.

Figure 3 illustrates the impact of memory authenti-
cation on application performance. For six different
L2 cache configurations, the IPCs (instructions per
cycle) of three schemes are shown: a standard proces-
sor (base), memory authentication with caching the
hashes with a single cache block per chunk (chash),
and memory authentication without caching (naive).

The figure first demonstrates that the performance
overhead of memory authentication can be surpris-
ingly low if we cache hashes. Even though the on-line
memory authentication algorithm based on a hash
tree can cause tens of additional memory accesses per
L2 cache miss, the performance degradation of chash
compared to base is less than 50% in the worst case
(mcf in the 64B, 256KB case). Moreover, the perfor-
mance degradation decreases rapidly as either the L2
cache size or the block size increases. For a 4-MB L2
cache, all nine benchmarks run with less than 20%
performance hit.

The importance of caching the hashes is also clearly
shown in the figure. Without caching (naive), some
programs can be slowed down by factor of ten in the
worst case (swim and applu). In the case of the näıve
scheme, even increasing the cache size or the cache
block size does not reduce the overhead. For example,
applu is still ten times slower than the base case with

0

10

20

30

40

50

60

70

gcc gzip mcf twolf vortex vpr applu art swim

L
2

 m
is

s
-r

a
te

 (
%

)

base-256K chash-256K base-4M chash-4M

Figure 4: L2 cache miss-rates of program data for a
standard processor (base) and memory authentica-
tion with caching (chash). The results are shown for
256-KB and 4-MB caches with 64-B cache blocks.

a 64-B, 4-MB L2 cache.
Finally, Figure 3 shows the effect of changing the

L2 cache size and the L2 block size on the perfor-
mance. Having a larger L2 cache reduces authen-
tication performance since it reduces the number of
off-chip accesses. A large L2 cache is likely to result
in better hash hit-rate without hurting application
hit-rate. Having a larger L2 block also reduces the
overhead of memory authentication by having less
levels in the hash tree. However, a non-optimal L2
block size can degrade the baseline performance as
shown in Figure 3.

In the following subsections, we discusses the per-
formance considerations of memory authentication in
more detail.

5.4.1 Cache Contention

Since we cache hashes sharing the same L2 cache with
a program executing on a processor, both hashes and
application data contend for L2 cache space. This can
increase the L2 miss-rate for a program and degrade
the performance.

The effect of cache contention is studied in Fig-
ure 4. The figure depicts the L2 miss-rates of
the baseline case and memory authentication with
caching. As shown, for a small L2 cache, the miss-
rate can be noticeably increased by caching the
hashes. In fact, cache contention is the major source
of performance degradation for twolf, vortex, and
vpr. However, as the L2 cache size increases, cache
contention is alleviated. For example, with a 4-MB
L2 cache, none of the benchmarks show noticeable L2
miss-rate degradation. We note that increasing the
L2 block size (block = chunk) alleviates cache con-
tention by reducing the number of hashes to cover a
given memory space (not shown).

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(a) 256KB, 64B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(b) 256KB, 128B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(c) 1MB, 64B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(d) 1MB, 128B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(e) 4MB, 64B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

base chash naive

(f) 4MB, 128B

Figure 3: IPC comparison of three different schemes for various L2 cache configurations: standard proces-
sors without memory authentication (base), memory authentication with caching the hashes (chash), and
memory authentication without caching hashes (naive). Results are shown for different cache sizes (256KB,
1MB, 4MB) and different cache block sizes (64B, 128B).

11

5.4.2 Bandwidth Pollution

Another major concern of the memory authentication
scheme is the increase in the memory bandwidth us-
age. In the worst case, one L2 cache miss causes the
entire hash hierarchy corresponding to the L2 block
to be loaded from memory.

Fortunately, the simulation results in Figure 5 in-
dicate that caching works very well for the hash
tree. Figure 5 (a) shows the average number of hash
blocks loaded from the main memory on a L2 cache
miss. Without caching the hashes, every L2 miss
causes thirteen additional memory reads for this con-
figuration as shown by the näıve scheme. However,
with caching, the number of additional memory reads
is less than one for all benchmarks. As a result,
the overhead of the memory bandwidth usage with
caching is very small compared to the case without
caching (Figure 5 (a)).

For programs that have low bandwidth usage, the
increase of the bandwidth usage due to memory au-
thentication is not a problem since loading the hashes
just uses extra bandwidth. In our simulations, the
bandwidth pollution is a major problem only for mcf,
applu, art, and swim even though accessing hashes
increases the bandwidth usage for all benchmarks.

5.5 Effects of Hash Parameters

There are two architectural parameters in our mem-
ory authentication scheme: the throughput of hash
computation and the size of hash read/write buffers.
This subsection studies the trade-offs in varying these
parameters.

The throughput of computing hashes varies de-
pending on how the logic is pipelined. Obviously,
higher throughput is better for the performance, but
requires larger space to implement. Figure 6 shows
the IPC of various applications using memory au-
thentication with caching for varying hash through-
put.

As shown in the figure, having higher through-
put than 3.2GB/s does not help at all. When the
throughput lowers to 1.6GB/s, which is the same
as memory bandwidth, we see minor performance
degradation. If the hash throughput is lower than
the memory bandwidth, it directly impacts and de-
grades the performance. In our experiments, the IPC
degraded as much as 50% for mcf, applu, art, and
swim. This is because the effective memory band-
width is limited by the hash computing throughput.
Therefore, the hash throughput should be slightly
higher than the memory bandwidth.

Figure 7 studies the effect of the hash buffer size
on the application performance (IPC). The hash read
buffer holds a new L2 cache block while its hash gets

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

6.4 GB/s 3.2 GB/s 1.6 GB/s 0.8 GB/s

Figure 6: The effect of hash computation throughput
on performance. The results are shown for a 1-MB
cache with 64-B cache blocks. 6.4GB/s = one hash
per 10 cycles.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

8 16 32 64

Figure 7: The effect of hash buffer size on perfor-
mance. The results are shown for a 1-MB cache with
64-B cache blocks.

computed and checked with the previously stored
hash. Similarly, the hash write buffer holds an
evicted L2 cache block until a new hash of the block
is computed and stored back in the L2 cache. A
larger buffer allows more memory transactions to be
outstanding. However, given the fact that the hash
computation throughput is higher than the memory
bandwidth, the hash buffer size does not affect the
performance.

5.6 Reducing Memory Size Overhead

With one hash (128 bits) covering a 64-B cache line,
25% of main memory space is used to store hash val-
ues. This memory overhead also implies that these
hash values will contend for the L2 cache space and
comsume the memory bandwidth, which can result in
performance degradation. Therefore, reducing mem-
ory overhead is essential to reduce the overall memory
authentication overhead.

The most straightforward way to reduce mem-

12

0

2

4

6

8

10

12

14

gcc gzip mcf twolf vortex vpr applu art swim

A
d

d
it
io

n
a
l
a
c
c
e
s
s
e
s
 p

e
r

L
2

 m
is

s

chash naive

(a)

0

2

4

6

8

10

12

14

16

gcc gzip mcf twolf vortex vpr applu art swim

N
o

rm
a
liz

e
d

 b
a

n
d

w
id

th
 u

s
a
g

e

chash naive

(b)

Figure 5: Memory bandwidth usage for a standard processor, memory authentication with caching, without
caching. The L2 cache is 1 MB with 64-B cache blocks. (a) The additional number of hash loads from
memory per L2 cache miss. (b) Normalized memory bandwidth usage (normalized with base).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gcc gzip mcf twolf vortex vpr applu art swim

IP
C

chash-64B chash-128B mhash-64B

Figure 8: The performance of the mhash scheme with
two cache blocks per chunk. The results are shown
for a 1-MB cache.

ory overhead is to increase the L2 cache block size.
As shown in Section 5.4, having 128-B L2 blocks
rather than 64-B significantly reduces the perfor-
mance degradation compared to the base case. On
the other hand, large block sizes often result in poor
baseline performance due to poor cache performance.

Another way to reduce the memory overhead is
to make one hash cover multiple L2 cache blocks.
However, in this case, all cache blocks covered by
the same hash should be fetched to authenticate any
one of them. Also, write back involves more memory
operations. Therefore, the mhash scheme with 2 or
more cache blocks per chunk tends to consume more
bandwidth than the chash scheme.

Figure 8 compares the performance of using one
hash per 64-B L2 block (chash-64B), one hash per
128-B L2 block (chash-128B), and one hash per two
64-B L2 blocks (mhash-64B). In general, mhash-64B

performs comparable to chash-64B. For benchmarks
with high bandwidth usage, mhash-64B performs
worse than chash-64B. For benchmarks sensitive to
L2 cache contention, it performs better. Therefore,
the right algorithm should be chosen based on the
type of main applications.

On the other hand, mhash-64B always outperforms
chash-128B. Moreover, increasing the L2 cache block
size can degrade performance even when the appli-
cation do not use memory authentication scheme.
Therefore, to reduce memory size overhead, it ap-
pears that is it always better to make one hash
cover multiple cache blocks rather than increasing the
cache block size.

Conclusion

We have presented a memory authentication scheme
that can be used to build high performance secure
computing platforms out of slightly modified general-
purpose processors. By integrating the hash tree ma-
chinery with an on-chip (L2) cache, we arrived at a
memory authentication scheme with reasonable over-
heads. The evaluations we have carried out show, for
instance, that for large L2 sizes, performance over-
head is ≈ 20%, area overhead is ≈ 10, 000 gates, and
12.5 to 25% of untrusted external memory is used up
by hashes.

Ongoing work includes the investigation of off-line
memory authentication schemes, and the generaliza-
tion of authentication schemes to SMP systems.

13

Acknowledgments

We thank Chris Peikert and Ron Rivest for point-
ing us toward incremental hashing and cryptography.
Thanks to Toliver Jue for valuable feedback.

References

[AK97] Ross Anderson and Markus Kuhn. Low
Cost Attacks on Tamper Resistant De-
vices. In IWSP: International Workshop
on Security Protocols, LNCS, 1997.

[BA97] Doug Burger and Todd M. Austin.
The SimpleScalar Tool Set, Version
2.0. Technical report, University of
Wisconsin-Madison Computer Science
Department, 1997.

[BEG+91] Manuel Blum, William S. Evans, Peter
Gemmell, Sampath Kannan, and Moni
Naor. Checking the correctness of mem-
ories. In IEEE Symposium on Founda-
tions of Computer Science, pages 90–99,
1991.

[BGR95] M. Bellare, R. Guerin, and P. Rogaway.
XOR MACs: New methods for message
authentication using finite pseudoran-
dom functions. In CRYPTO ’95, volume
963 of LNCS. Springer-Verlag, 1995.

[CPL] Amy Carroll, Julia Polk, and
Tony Leininger. Microsoft Pal-
ladium: A Business Overview.
http://www.neowin.net/staff/users/
Voodoo/Palladium White Paper final.pdf.

[DEJ01] 3rd D. Eastlake and P. Jone. RFC 3174:
US secure hashing algorithm 1 (SHA1),
September 2001. Status: INFORMA-
TIONAL.

[DS02] Premkumar T. Devanbu and Stuart G.
Stubblebine. Stack and queue integrity
on hostile platforms. Software Engineer-
ing, 28(1):100–108, 2002.

[GCvDD02] Blaise Gassend, Dwaine Clarke, Marten
van Dijk, and Srinivas Devadas. Pro-
tocols and applications for controlled
physical unknown functions. In Labo-
ratory for Computer Science Technical
Report 845, June 2002.

[Hen00] John L. Henning. SPEC CPU2000:
Measuring CPU performance in the new
millennium. IEEE Computer, July 2000.

[LTM+00] David Lie, Chandramohan Thekkath,
Mark Mitchell, Patrick Lincoln, Dan
Boneh, John Mitchell, and Mark
Horowitz. Architectural Support for
Copy and Tamper Resistant Software.
In Proceedings of the 9th International
Conference on Architectural Support for
Programming Languages and Operating
Systems (ASPLOS-IX), pages 169–177,
November 2000.

[Mer80] Ralph C. Merkle. Protocols for public
key cryptography. In IEEE Symposium
on Security and Privacy, pages 122–134,
1980.

[MVS00] Umesh Maheshwari, Radek Vingralek,
and William Shapiro. How to Build a
Trusted Database System on Untrusted
Storage. In Proceedings of OSDI 2000,
2000.

[Riv92] R. Rivest. RFC 1321: The MD5
Message-Digest Algorithm, 1992. Sta-
tus: INFORMATIONAL.

[SV01] William Shapiro and Radek Vingralek.
How to Manage Persistent State in
DRM Systems. In Digital Rights
Management Workshop, pages 176–191,
2001.

[SW99] S. W. Smith and S. H. Weingart. Build-
ing a High-Performance, Programmable
Secure Coprocessor. In Computer Net-
works (Special Issue on Computer Net-
work Security), volume 31, pages 831–
860, April 1999.

[Yee94] Bennet S. Yee. Using Secure Coproces-
sors. PhD thesis, Carnegie Mellon Uni-
versity, 1994.

14

