
Automatic Generation and Checking of Program
Specifications

Technical Report #MIT-LCS-TR-852

June 10, 2002

Jeremy W. Nimmer
MIT Lab for Computer Science

200 Technology Square
Cambridge, MA 02139 USA

jwnimmer@lcs.mit.edu

Abstract

This thesis introduces the idea of combining automatic generation and checking of program specifications,
assesses its efficacy, and suggests directions for future research.

Specifications are valuable in many aspects of program development, including design, coding, verifi-
cation, testing, and maintenance. They also enhance programmers’ understanding of code. Unfortunately,
written specifications are usually absent from programs, depriving programmers and automated tools of
their benefits.

This thesis shows how specifications can be accurately recovered using a two-stage system: propose
likely specifications using a dynamic invariant detector, and then confirm the likely specification using
a static checker. Their combination overcomes the weaknesses of each: dynamically detected proper-
ties can provide goals for static verification, and static verification can confirm properties proposed by a
dynamic tool.

Experimental results demonstrate that the dynamic component of specification generation is accurate,
even with limited test suites. Furthermore, a user study indicates that imprecision during generation is
not a hindrance when evaluated with the help of a static checker. We also suggest how to enhance the
sensitivity of our system by generating and checking context-sensitive properties.

This technical report is a reformatted version of the author’s Masters thesis of the same title, published by MIT in May, 2002.
He was advised by Michael Ernst, Assistant Professor of Electrical Engineering and Computer Science.

Contents

1 Introduction 3
1.1 Uses for specifications . 3
1.2 Previous approaches . 4
1.3 Combined approach . 4

1.3.1 Invariants as a specification 5
1.3.2 Applications of generated specifications 5
1.3.3 Weak formalisms and partial solutions are useful . . . 5

1.4 Contributions . 5
1.5 Outline . 6

2 Background 7
2.1 Specifications . 7
2.2 Daikon: Specification generation 7
2.3 ESC: Static checking . 8

3 Extended Example 10
3.1 Verification by hand . 10
3.2 Static verification with ESC/Java 10
3.3 Assistance from Daikon 11
3.4 Discussion . 11

4 Accuracy Evaluation 14
4.1 Introduction . 14
4.2 Methodology . 14

4.2.1 Programs and test suites 14
4.2.2 Measurements . 14

4.3 Experiments . 16
4.3.1 Summary . 16
4.3.2 StackAr: array-based stack 16
4.3.3 RatPoly: polynomial over rational numbers 16
4.3.4 MapQuick: driving directions 17

4.4 Remaining challenges . 18
4.4.1 Target programs 18
4.4.2 Test suites . 18
4.4.3 Inherent limitations of any tool 18
4.4.4 Daikon . 19
4.4.5 ESC/Java . 19

4.5 Discussion . 19

5 User Evaluation 20
5.1 Introduction . 20
5.2 Houdini . 20

5.2.1 Emulation . 20
5.3 Methodology . 21

5.3.1 User Task . 21
5.3.2 Participants . 21
5.3.3 Experimental Design 22
5.3.4 Analysis . 23

5.4 Quantitative Results . 25
5.4.1 Success . 25
5.4.2 Time . 26
5.4.3 Precision . 26

5.4.4 Recall . 26
5.4.5 Density . 26
5.4.6 Redundancy . 26
5.4.7 Bonus . 27

5.5 Qualitative Results . 27
5.5.1 General . 27
5.5.2 Houdini . 27
5.5.3 Daikon . 28
5.5.4 Uses in practice 28

5.6 Discussion . 28
5.7 Conclusion . 29

6 Context sensitivity 30
6.1 Introduction . 30
6.2 Context-sensitive generation 30

6.2.1 Applications . 30
6.2.2 Implementation 31
6.2.3 Evaluation . 31
6.2.4 Summary . 32

6.3 Context-sensitive checking 32
6.3.1 Polymorphic specifications 32
6.3.2 Specialized representation invariants 34
6.3.3 Algorithm . 34

6.4 Discussion . 34

7 Scalability 35
7.1 Staged inference . 35
7.2 Terminology . 35
7.3 Variable ordering . 35
7.4 Consequences of variable ordering 37
7.5 Invariant flow . 37
7.6 Sample flow . 37
7.7 Paths . 37
7.8 Tree structure . 38
7.9 Conclusion . 38

8 Related Work 39
8.1 Individual analyses . 39

8.1.1 Dynamic analyses 39
8.1.2 Static analyses . 39
8.1.3 Verification . 39

8.2 Houdini . 39
8.3 Applications . 40

9 Future Work 41
9.1 Further evaluation . 41
9.2 Specification generation 41
9.3 Context sensitivity . 41
9.4 Implementation . 42

10 Conclusion 43

A User study information packet 45

2

Chapter 1

Introduction

Specifications are valuable in all aspects of program devel-
opment, including design, coding, verification, testing, opti-
mization, and maintenance. They provide valuable documen-
tation of data structures, algorithms, and program operation.
As such, they aid program understanding, some level of which
is a prerequisite to every program manipulation, from initial
development to ongoing maintenance.

Specifications can protect a programmer from making
changes that inadvertently violate assumptions upon which the
program’s correct behavior depends. The near absence of ex-
plicit specifications in existing programs makes it all too easy
for programmers to introduce errors while making changes. A
specification that is established at one point is likely to be de-
pended upon elsewhere, but if the original specification is not
documented, much less the dependence, then it is easy for a
programmer to violate it, introducing a bug in a distant part of
the program.

Furthermore, if a formal specification exists in a machine-
readable form, theorem-proving, dataflow analysis, model-
checking, and other automated or semi-automated mecha-
nisms can verify the correctness of a program with respect
to the specification, confirm safety properties such as lack of
bounds overruns or null dereferences, establish termination or
response properties, and otherwise increase confidence in an
implementation.

Despite the benefits of having a specification, written spec-
ifications are usually absent from programs, depriving pro-
grammers and automated tools of their benefits. Few pro-
grammers write them before implementation, and many use no
written specification at all. Nonetheless, it is useful to produce
such documentation after the fact [PC86]. Obtaining a spec-
ification at any point during development is better than never
having a specification at all.

We propose and evaluate a novel approach to the recovery of
specifications: generate them unsoundly and then check them.
The generation step can take advantage of the efficiency of an
unsound analysis, while the checking step is made tractable
by the postulated specification. We demonstrate that our com-
bined approach is both accurate on its own, and useful to pro-
grammers in reducing the burden of verification.

More generally, our research goal is to suggest, evaluate,
and improve techniques that recover specifications from exist-
ing code in a reliable and useful way. We seek to explore how

programmers apply recovered specifications to various tasks.
In the end, users are what matter, not technology for its own
sake.

The remainder of this chapter surveys uses for specifications
(Section 1.1), summarizes previous solutions (Section 1.2),
presents our approach (Section 1.3), summarizes our contri-
butions (Section 1.4), and outlines the sequel (Section 1.5).

1.1 Uses for specifications

Specifications are useful, to humans and to tools, in all aspects
of programming. This section lists some uses of specifica-
tions, to motivate why programmers care about them and why
extracting them from programs is a worthwhile goal.

Document code.Specifications characterize certain aspects
of program execution and provide valuable documentation of
a program’s operation, algorithms, and data structures. Docu-
mentation that is automatically extracted from the program is
guaranteed to be up-to-date, unlike human-written information
that may not be updated when the code is.

Check assumptions and avoid bugs.Specifications can be
inserted into a program and tested as code evolves to ensure
that detected specifications are not later violated. This check-
ing can be done dynamically (viaassert statements) or stat-
ically (via stylized annotations). Such techniques can protect
a programmer from making changes that inadvertently violate
assumptions upon which the program’s correct behavior de-
pends. Program maintenance introduces errors, and anecdo-
tally, many of these are due to violating specifications.

Validate test suites. Dynamically detected specifications
can reveal as much about a test suite as about the program
itself, because the properties reflect the program’s execution
over the test suite. A specification might reveal that the pro-
gram manipulates a limited range of values, or that some vari-
ables are always in a particular relationship to one another.
These properties may indicate insufficient coverage of pro-
gram values, even if the suite meets structural coverage criteria
such as statement coverage.

Bootstrap proofs. Automated or semi-automated mecha-
nisms can verify the correctness of a program with respect to
a specification, confirm safety properties, and otherwise in-
crease confidence in an implementation. However, it can be
tedious and error-prone for people to specify the properties to

3

be proved, and current systems have trouble postulating them;
some researchers consider that task harder than performing
the proof [Weg74, BLS96]. Generated program specifications
could be fed into an automated system, relieving the human
of the need to fully hand-annotate their programs — a task that
few programmers are either skilled at or enjoy.

1.2 Previous approaches

A full discussion of related work appears in Chapter 8, but we
illustrate its main points here to characterize the deficiencies
of previous approaches.

We consider the retrieval of a specification in two stages: the
first is agenerationstep, where a specification is proposed; the
second is acheckingstep, where the proposal is evaluated. In
cases where the analysis used for generation guarantees that
any result is acceptable (for instance, if the analysis is sound),
checking is unnecessary. Depending on the tools used, a pro-
grammer may elect to iterate the process until an acceptable re-
sult is reached, or may use the specification for different tasks
based and the result of the evaluation.

Past research has typically only addressed one stage, with
one of four general approaches. A tool may generate a spec-
ification statically and soundly, so that checking is unneces-
sary, or may generate it dynamically and unsoundly, leaving
checking to the programmer. A tool may check a model of the
code and correctness properties that are both generated by the
programmer, or may check a programmer-written specification
against code meant to implement it.

Each of these four approaches presents an inadequate solu-
tion to the problem.

Static generation. Static analysis operates by examining
program source code and reasoning about possible executions.
It builds a model of the state of the program, such as possi-
ble values for variables. Static analysis can be conservative
and sound, and it is theoretically complete [CC77]. However,
it can be inefficient, can produce weak results, and is often
stymied by constructs, such as pointers, that are common in
real-world programming languages. Manipulating complete
representations of the heap incurs gross runtime and mem-
ory costs; heap approximations introduced to control costs
weaken results. Many researchers consider it harder to de-
termine what specification to propose than to do the checking
itself [Weg74, WS76, MW77, Els74, BLS96, BBM97].

Dynamic generation. Dynamic (runtime) analysis obtains
information from program executions; examples include pro-
filing and testing. Rather than modeling the state of the pro-
gram, dynamic analysis uses actual values computed during
program executions. Dynamic analysis can be efficient and
precise, but the results may not generalize to future program
executions. This potential unsoundness makes dynamic anal-
ysis inappropriate for certain uses, and it may make program-
mers reluctant to depend on the results even in other contexts
because of uncertainty as to their reliability.

Model checking.Specifications over models of the code are
common for protocol or algorithmic verification. A program-

Specification

Code

Checker

Generator
�

myStack.push(elt);

Q.E.D.
�

myStack.isEmpty() = false

Proof

Figure 1.1: Generation and checking of program specifications
results in a specification together with a proof of its consis-
tency with the code. Our generator is the Daikon invariant
detector, and our checker is the ESC/Java static checker.

mer formally writes both a description of the system and its
desired properties. Automated tools attempt to prove the de-
sired properties, or to find counterexamples that falsify them.
However, the work done by hand to create the model can be
tedious and is error-prone. Furthermore, to guarantee that exe-
cutable code meets the desired properties, the models still have
to be matched to the code, which is a difficult task in itself.

Static checking.In the case of theorem-proving or program
verification, the analysis frequently requires explicit goals or
annotations, and often also summaries of unchecked code.
These annotations usually must be supplied by the program-
mer, a task that programmers find tedious, difficult, and un-
rewarding, and therefore often refuse to perform [FJL01]. In
contrast to model checking, annotations in a real program are
often more numerous, since they are scattered throughout the
codebase, and since real programs are often much larger than
the models used in model checking. Additionally, languages
used to annotate real programs may trade expressiveness for
verifiability, so programmers may have trouble writing the
properties they desire.

1.3 Combined approach

Our combined approach of generation and checking of pro-
gram specifications results in a specification together with a
proof of its consistency with the code (see Figure 1.1). Our
approach addresses both the generation and checking stages of
specification recovery, and utilizes techniques whose strengths
complement each other’s weaknesses.

We have integrated a dynamic invariant detector, Daikon
[Ern00, ECGN01], with a static verifier, ESC/Java [DLNS98,
LNS00], resulting in a system that produces machine-
verifiable specifications. Our system operates in three steps.
First, it runs Daikon, which outputs a list of likely invariants
obtained from running the target program over a test suite.
Second, it inserts the likely invariants into the target program
as annotations. Third, it runs ESC/Java on the annotated target
program to report which of the likely invariants can be stati-
cally verified and which cannot. All three steps are completely
automatic, but users may improve results by editing and re-
running test suites, or by editing specific program annotations
by hand.

The combination of the two tools overcomes the weaknesses

4

of each: dynamically generated properties can provide goals
for static verification (easing tedious annotation), and static
verification can confirm properties proposed by a dynamic tool
(mitigating its unsoundness). Using the combined analysis is
much better than relying on only one component, or perform-
ing an error-prone hand analysis.

The remainder of this section describes our generated speci-
fications, presents both realized and possible applications, and
argues that our solution is useful.

1.3.1 Invariants as a specification

A formal specification is a precise, often mathematical, de-
scription of a program’s behavior. Specifications often state
properties of data structures, such as representation invariants,
or relate variable values in the pre-state (before a procedure
call) to their post-state values (after a procedure call).

A specification for a procedure that records its maximum
argument in variablemaxmight include

if arg > max then max′ = arg else max′ = max

where max represents the value of the variable at the time
the procedure is invoked andmax′ represents the value when
the procedure returns. A typical specification contains many
clauses, some of them simple mathematical statements and
others involving post-state values or implications. The clauses
are conjoined to produce the full specification. These specifi-
cation clauses are often calledinvariants. There is no single
best specification for a program; different specifications in-
clude more or fewer clauses and assist in different tasks. Like-
wise, there is no single correct specification for a program;
correctness must be measured relative to some standard, such
as the designer’s intent, or task, such as program verification.

Our generated specifications consist of program invariants.
These specifications are partial: they describe and constrain
behavior but do not provide a full input–output mapping.
The specifications also describe the program’s actual behav-
ior, which may vary from the programmer’s intended behav-
ior. Finally, the specifications are also unsound: as described
in Section 2.2, the proposed properties are likely, but not guar-
anteed, to hold. Through interaction with a checker that points
out unverifiable properties, a programmer may remove any in-
accuracies.

1.3.2 Applications of generated specifications

These aspects of generated specifications suggest certain uses
while limiting others. Our research shows that the specifica-
tions are useful in verifying the lack of runtime exceptions. In
contrast, using them as a template for automatic test case gen-
eration might add little value, since the specifications already
reflect the programs’ behavior over a test suite. As long as
the programmer is aware of the specifications’ characteristics,
though, many applications are possible.

The fact that the generated specifications reflect actual
rather than intended behavior is also not as detrimental as it

may seem. If the program is correct or nearly so, the gen-
erated specification is near to the intended behavior, and can
be corrected to reflect the programmer’s intent. Likewise, the
generated specification can be corrected to be verifiable with
the help of a static checker, guaranteeing the absence of certain
errors and adding confidence to future maintenance tasks.

In addition to the results contained in this work, generated
specifications have been shown to be useful for program refac-
toring [KEGN01], theorem proving [NWE02], test suite gen-
eration [Har02], and anomaly and bug detection [ECGN01,
Dod02]. In many of these tasks, the accuracy of the generated
specification (the degree to which it matches the code) affects
the effort involved in performing the task. One of the con-
tributions of this work is that our generated specifications are
accurate.

1.3.3 Weak formalisms and partial solutions
are useful

Some may take exception to the titleAutomatic Generation
and Checking of Program Specifications, or our approach to
a solution. The system is “not automatic”: users might have
to repeat steps or edit annotations before a checkable specifi-
cation is available. Also, the specification is incomplete: our
system does not recover the “whole thing”. While both criti-
cisms are true in a sense, we disagree on both points.

Many specifications exist for a piece of code, each provid-
ing a different level of specificity. In theory, some analysis
could be sound, complete, and recover a full formal specifi-
cation. However, such a specification is infeasible to generate
(by hand, or mechanically) or check (in most cases). In prac-
tice, partial specifications (such as types) are easy to write and
understand, and have been widely accepted.

Furthermore, we allow that the system need not be perfect,
nor completely automatic. It is not meant to be used in isola-
tion, but will be used by programmers. Therefore, asking the
programmer to do a small amount of work is acceptable, as
long as there is benefit to doing so. Getting the programmer
half-way there is better than getting them nowhere at all.

1.4 Contributions

The thesis of this research is that program specifications may
be accurately generated from program source code by a com-
bination of dynamic and static analyses, and that the resulting
specifications are useful to programmers.

The first contribution of this research is the idea of produc-
ing specifications from a combination of dynamic and static
analyses. Their combination overcomes the weaknesses of
each: dynamically detected properties can provide goals for
static verification (easing tedious annotation), and static ver-
ification can confirm properties proposed by a dynamic tool
(mitigating its unsoundness). Using the combined analysis is
much better than relying on only one component, or perform-
ing an error-prone hand analysis.

5

The second contribution of this research is the implemen-
tation of a system to dynamically detect then statically verify
program specifications. While each component had previously
existed in isolation, we have improved Daikon to better suit the
needs of ESC/Java, and created tools to assist their combina-
tion.

The third contribution of this research is the experimental
assessment of the accuracy of the dynamic component of spec-
ification generation. We demonstrate that useful aspects of
program semantics are present in test executions, as measured
by verifiability of generated specifications. Even limited test
suites accurately characterize general execution properties.

The fourth contribution of this research is the experimental
assessment of the usefulness of the generated specifications to
users. We show that imprecision from the dynamic analysis is
not a hindrance when its results are evaluated with the help of
a static checker.

The fifth contribution of this research is the proposal and ini-
tial evaluation of techniques to enhance the scope, sensitivity,
and scalability of our system. We suggest how to account for
context-sensitive properties in both the generation and check-
ing steps, and show how such information can assist program
understanding, validate test suites, and form a statically veri-
fiable specification. We also suggest an implementation tech-
nique helps enable Daikon to analyze large and longer-running
programs.

1.5 Outline

The remainder of this work is organized as follows.
Chapter 2 describes our use of terminology. It also provides

background on the dynamic invariant detector (Daikon) and
static verifier (ESC) used by our system.

Chapter 3 provides an extended example of how the tech-
niques suggested in this work are applied to a small program.
The chapter shows how a user might verify a program with our
system, and provides sample output to characterize the speci-
fications generated by our system.

Chapter 4 describes an experiment that studies the accuracy
of generated specifications, since producing specifications by
dynamic analysis is potentially unsound. The generated spec-
ifications scored over 90% on precision, a measure of sound-
ness, and on recall, a measure of completeness, indicating that
Daikon is effective at generating consistent, sufficient specifi-
cations.

Chapter 5 describes an experiment that studies the utility of
generated specifications to users. We quantitatively and quali-
tatively evaluate 41 users in a program verification task, com-
paring the effects of assistance by Daikon, another related tool,
or no tool at all. Statistically significant results show that both
tools improve task completion, but Daikon enables users to
express a fuller specification.

Chapter 6 describes extensions to the system. We introduce
techniques that enable context-sensitivity — the accounting
for control flow information in an analysis — in both the gen-
eration and checking steps. We provide brief experimental evi-

dence of its efficacy for program understanding, validating test
suites, and forming a statically verifiable specification.

Chapter 7 describes an implementation technique for Dai-
kon that utilizes additional information about a program’s
structural semantics. The technique helps Daikon to operate
online and incrementally, thus enabling the examination of
larger or longer-running programs.

Chapter 8 presents related work, outlining similar research
and showing how our research stands in contrast. We describe
previous analyses (static and dynamic generators, and static
checkers) including a similar tool, Houdini, and present related
applications of generated specifications.

Chapter 9 suggests future work to improve our techniques
and their evaluation.

Chapter 10 concludes with a summary of contributions.

6

Chapter 2

Background

This section first explains our use of specifications, in order
to frame our later results in the most understandable context.
We then briefly describe dynamic detection of program invari-
ants, as performed by the Daikon tool, and static checking of
program annotations, as performed by the ESC/Java tool. Full
details about the techniques and tools are published elsewhere,
as cited below.

2.1 Specifications

Specifications are used in many different stages of develop-
ment, from requirements engineering to maintenance. Further-
more, specifications take a variety of forms, from a verbal de-
scription of customer requirements to a set of test cases or an
executable prototype. In fact, there is no consensus regarding
the definition of “specification” [Lam88, GJM91].

Our research usesformal specifications. We define a (for-
mal, behavioral) specification as a precise mathematical ab-
straction of program behavior [LG01, Som96, Pre92]. This
definition is standard, but ouruseof specifications is novel.
Our specifications are generated automatically, after an exe-
cutable implementation exists. Typically, software engineers
are directed to write specifications before implementation,
then to use them as implementation guides — or simply to ob-
tain the benefit of having analyzed requirements at an early
design stage [Som96].

Despite the benefits of having a specification before imple-
mentation, in practice few programmers write (formal or in-
formal) specifications before coding. Nonetheless, it is useful
to produce such documentation after the fact [PC86]. Obtain-
ing a specification at any point during the development cy-
cle is better than never having a specification at all.Post hoc
specifications are also used in other fields of engineering. As
one example, speed binning is a process whereby, after fabri-
cation, microprocessors are tested to determine how fast they
can run [Sem94]. Chips from a single batch may be sold with
a variety of specified clock speeds.

Some authors define a specification as ana priori descrip-
tion of intended or desired behavior that is used in prescribed
ways [Lam88, GJM91]. For our purposes, it is not useful to
categorize whether a particular logical formula is a specifica-
tion based on who wrote it, when, and in what mental state.

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Figure 2.1: An overview of dynamic detection of invariants as
implemented by the Daikon invariant detector.

(The latter is unknowable in any event.) Readers who pre-
fer the alternative definition may replace the term “specifica-
tion” by “description of program behavior” (and “invariant” by
“program property”) in the text of this thesis.

We believe that there is great promise in extending specifi-
cations beyond their traditional genesis as pre-implementation
expressions of requirements. One of the contributions of our
research is the insight that this is both possible and desirable,
along with evidence to back up this claim.

2.2 Daikon: Specification generation

Dynamic invariant detection [Ern00, ECGN01] discovers
likely invariants from program executions by instrumenting
the target program to trace the variables of interest, running the
instrumented program over a test suite, and inferring invariants
over the instrumented values (Figure 2.1). We use the term
“test suite” for any inputs over which executions are analyzed;
those inputs need not satisfy any particular properties regard-
ing code coverage or fault detection. The inference step tests
a set of possible invariants against the values captured from
the instrumented variables; those invariants that are tested to a
sufficient degree without falsification are reported to the pro-
grammer. As with other dynamic approaches such as testing
and profiling, the accuracy of the inferred invariants depends
in part on the quality and completeness of the test cases. The
Daikon invariant detector is language independent, and cur-
rently includes instrumenters for C, Java, and IOA [GLV97].

Daikon detects invariants at specific program points such as
procedure entries and exits; each program point is treated in-
dependently. The invariant detector is provided with a variable
trace that contains, for each execution of a program point, the

7

values of all variables in scope at that point. Each of a set
of possible invariants is tested against various combinations of
one, two, or three traced variables.

For scalar variablesx, y, andz, and computed constants
a, b, andc, some examples of checked invariants are: equal-
ity with a constant (x = a) or a small set of constants (x ∈
{a,b,c}), lying in a range (a ≤ x ≤ b), non-zero, modulus
(x ≡ a (mod b)), linear relationships (z = ax + by + c), or-
dering (x ≤ y), and functions (y = fn(x)). Invariants involv-
ing a sequence variable (such as an array or linked list) in-
clude minimum and maximum sequence values, lexicograph-
ical ordering, element ordering, invariants holding for all el-
ements in the sequence, or membership (x ∈ y). Given two
sequences, some example checked invariants are element-
wise linear relationship, lexicographic comparison, and sub-
sequence relationship. Finally, Daikon can detect implications
such as “if p 6=null then p.value > x” and disjunctions such as
“p.value > limit or p.left ∈ mytree”. Implications result from
splitting data into parts based on some condition and compar-
ing the resulting invariants over each part; if mutually exclu-
sive invariants appear in each part, they may be used as predi-
cates in implications, and unconditional invariants in each part
are composed into implications [EGKN99]. In this research,
we ignore those invariants that are inexpressible in ESC/Java’s
input language; for example, many of the sequence invariants
are ignored.

For each variable or tuple of variables in scope at a given
program point, each potential invariant is tested. Each poten-
tial unary invariant is checked for all variables, each potential
binary invariant is checked over all pairs of variables, and so
forth. A potential invariant is checked by examining each sam-
ple (i.e., tuple of values for the variables being tested) in turn.
As soon as a sample not satisfying the invariant is encoun-
tered, that invariant is known not to hold and is not checked
for any subsequent samples. Because false invariants tend to
be falsified quickly, the cost of detecting invariants tends to be
proportional to the number of invariants discovered. All the in-
variants are inexpensive to test and do not require full-fledged
theorem-proving.

To enable reporting of invariants regarding components,
properties of aggregates, and other values not stored in pro-
gram variables, Daikon represents such entities as additional
derived variables available for inference. For instance, if array
a and integerlasti are both in scope, then properties over
a[lasti] may be of interest, even though it is not a variable
and may not even appear in the program text. Derived vari-
ables are treated just like other variables by the invariant de-
tector, permitting it to infer invariants that are not hardcoded
into its list. For instance, ifsize(A) is derived from se-
quenceA, then the system can report the invarianti < size(A)
without hardcoding a less-than comparison check for the case
of a scalar and the length of a sequence. For performance rea-
sons, derived variables are introduced only when known to be
sensible. For instance, for sequenceA, the derived variable
size(A) is introduced and invariants are computed over it
beforeA[i] is introduced, to ensure thati is in the range

of A.
An invariant is reported only if there is adequate statistical

evidence for it. In particular, if there are an inadequate number
of observations, observed patterns may be mere coincidence.
Consequently, for each detected invariant, Daikon computes
the probability that such a property would appear by chance in
a random set of samples. The property is reported only if its
probability is smaller than a user-defined confidence parame-
ter [ECGN00].

The Daikon invariant detector is available fromhttp://

pag.lcs.mit.edu/daikon/ .

2.3 ESC: Static checking

ESC [Det96, DLNS98, LN98], the Extended Static Checker,
has been implemented for Modula-3 and Java. It statically
detects common errors that are usually not detected until run
time, such as null dereference errors, array bounds errors, and
type cast errors.

ESC is intermediate in both power and ease of use between
type-checkers and theorem-provers, but it aims to be more like
the former and is lightweight by comparison with the latter.
Rather than proving complete program correctness, ESC de-
tects only certain types of errors. Programmers must write pro-
gram annotations, many of which are similar in flavor toas-
sert statements, but they need not interact with the checker
as it processes the annotated program. ESC issues warnings
about annotations that cannot be verified and about potential
run-time errors. Its output also includes suggestions for cor-
recting the problem and stylized counterexamples showing an
execution path that violated the annotation or raised the excep-
tion.

In order to verify a program, ESC/Java translates it into a
logical formula called a verification condition such that the
program is correct if the verification condition is true [FS01].
The verification condition is then checked by the Simplify
theorem-prover [Nel80].

ESC performs modular checking: it checks different parts
of a program independently and can check partial programs
or modules. It assumes that specifications supplied for miss-
ing or unchecked components are correct. We will not discuss
ESC’s checking strategy in more detail because this research
treats ESC as a black box. (Its source code was until recently
unavailable.)

ESC/Java is a successor to ESC/Modula-3. ESC/Java’s an-
notation language is simpler, because it is slightly weaker.
This is in keeping with the philosophy of a tool that is easy
to use and useful to programmers rather than one that is ex-
traordinarily powerful but so difficult to use that programmers
shy away from it.

ESC/Java is not sound; for instance, it does not model arith-
metic overflow or track aliasing, it assumes loops are executed
0 or 1 times, and it permits the user to supply (unverified)
assumptions. However, ESC/Java provides a good approxi-
mation to soundness: it issues false warnings relatively infre-
quently, and successful verification increases confidence in a

8

piece of code. (Essentially every verification process over pro-
grams contains an unsound step, but it is sometimes hidden in
a step performed by a human being, such as model creation.)

This paper uses ESC/Java not only as a lightweight technol-
ogy for detecting a restricted class of runtime errors, but also
as a tool for verifying representation invariants and method
specifications. We chose to use ESC/Java because we are not
aware of other equally capable technology for statically check-
ing properties of runnable code. Whereas many other verifiers
operate over non-executable specifications or models, our re-
search aims to compare and combine dynamic and static tech-
niques over the same code artifact.

ESC is publicly available fromhttp://research.

compaq.com/SRC/esc/ .

9

Chapter 3

Extended Example

To illustrate the tools used in this work, the output they pro-
duce, and typical user interaction, this chapter presents an ex-
ample of how a user might use our system on a small program
to verify the absence of runtime exceptions.

Section 3.1 outlines how a user would verify the program
by hand, while Section 3.2 shows how ESC/Java may be used.
Section 3.3 demonstrates how Daikon complements ESC/Java
for this task, and Section 3.4 discusses how the example relates
to the sequel.

3.1 Verification by hand

Figure 3.1 shows the source code of a hypothetical stack im-
plementation. We consider the case where a programmer
wants to check that no runtime exceptions are generated by the
Stack class, and first consider how a proof may be achieved
by hand.

If each method is examined in isolation, it cannot be shown
that errors are absent. Even the one-lineisFull method may
raise an exception ifelts is null. One way to prove that the
elts field is non-null withinisFull is to prove thatelts
is non-null for any realizable instance of aStack . Such a
statement about all instances of a class is termed arepresenta-
tion invariant [LG01], also known as anobject invariant. To
prove a representation invariant, one must show that (1) each
constructor establishes the invariant, (2) assuming that the in-
variant holds upon entry, each method maintains it, and (3) no
external code may falsify the invariant.

Consider the proof thatelts is always non-null. It is triv-
ial to show (1) for the single constructor. Additionally, (2)
is easily shown for the methods of Figure 3.1, since none of
them sets theelts field. However, (3) is more interesting.
Sinceelts is declaredprotected instead ofprivate ,
subclasses ofStack are able to modify it. To complete the
proof, we must show that all subclasses ofStack maintain
the invariant. This task could certainly be achieved for one
version of a codebase, but would have to be repeated when-
ever any new subclass was added, or any existing subclass was
modified. (A programmer could elect to make the fieldspri-
vate , but this would not solve all problems, as noted in the
next paragraph.)

A proof of legal array dereferencing inpush andpop en-

counters a related problem. Apush on a full stack, orpop on
an empty one, causes an array bounds exception. To show that
pop succeeds, we must only allow calls whensize is strictly
positive. Such a statement about allowed calls to a method
is called aprecondition, and permits proofs over methods to
assume the stated precondition as long as all calling code is
guaranteed to meet it.

In both of these cases, changes not local toStack could in-
validate a proof of its correctness. For this (and other) reasons,
it is advantageous to mechanize the checking of the proof, so
that as the code evolves over time, programmers can automat-
ically check that past correctness guarantees are maintained.
The ESC/Java tool (introduced in Section 2.3) performs this
task.

3.2 Static verification with ESC/Java

By using a tool to verify the absence of runtime exceptions,
programmers may have higher confidence that their code is
free of certain errors. However, ESC/Java is unable to verify
raw source code. Users must write annotations in their code
that state, for instance, representation invariants and precondi-
tions.

Without any annotations, ESC/Java reports warnings as
shown in Figure 3.1. Using ESC/Java’s output to guide rea-
soning similar to that described in the previous section, a user
could add the annotations shown in Figure 3.2. This code con-
tains the minimal number of annotations necessary to enable
ESC/Java to verifyStack .

The minimally-annotated code contains two declarations,
three representation invariants, and three preconditions. The
twospec public declarations are a detail of ESC/Java; they
state that the specification may refer to the fields. The three
representation invariants state thatelts is never null,size
is always in the proper range, andelts can store any type of
object. The first precondition restricts an argument, while the
two others restrict the state of theStack .

Given these annotations, ESC/Java is able to statically ver-
ify that Stack never encounters any runtime exceptions (as
long as all code in the system is checked with ESC/Java as
well). While adding eight annotations may seem like an in-
consequential amount of work, the annotations are about 50%

10

public class Stack {

protected Object[] elts;
protected int size;

public Stack(int capacity) {
elts = new Object[capacity]; // Attempt to allocate array of negative length
size = 0;

}

public boolean isEmpty() {
return size == 0;

}

public boolean isFull() {
return size == elts.length; // Null dereference

}

public void push(Object x) {
elts[size++] = x; // Null dereference

// Negative array index
// Array index too large
// RHS not a subtype of array element type

}

public Object pop() {
Object item = elts[--size]; // Null dereference

// Negative array index
// Array index too large

elts[size] = null;
return item;

}

}

Figure 3.1: Original source ofStack.java . Comments have been added to show the warnings issued when checked by
ESC/Java.

of the original non-blank, non-punctuation lines. Annotating
the whole of a large program may surpass what a programmer
is willing to do. A tool that assisted the user in this task could
overcome such a difficulty.

3.3 Assistance from Daikon

The annotations given in Figure 3.2 form an (incomplete)
specification forStack . The representation invariants spec-
ify properties that the class and its subclasses must maintain,
while the preconditions specify when a method may legally be
called. Since Daikon is able to propose likely specifications
for a class, it may assist the user in the verification task.

Given a certain test suite (not shown), Daikon produces the
output in Figure 3.3. Each program point’s output is separated
by a horizontal line, and the name of each program point fol-
lows the line. TheStack:::OBJECT point states represen-
tation invariants, whileENTERpoints state preconditions and
EXIT points state postconditions.

While we will not explain every line of the output here, we
note that this proposed specification is broader than the mini-
mal one shown in Figure 3.2. In particular, the representation
invariant is stronger (exactly the live elements ofelts are
non-null), as are postconditions on the constructor (elts is
sized tocapacity), push (size is incremented; prefix of

elts is unchanged), andpop (size is decremented).
A tool packaged with Daikon can insert this proposed spec-

ification into the source code as ESC/Java annotations, result-
ing in the annotations shown in Figure 3.4.

When ESC/Java is run on this automatically-annotated ver-
sion of the source code, it warns that the postcondition onpop
involving String may not be met. The test suite pushed ob-
jects of varied types onto the stack, but only popped in the
case whereString s had been pushed, so Daikon postulated
the (incorrect) postcondition onpop . The user, after being
warned about that annotation by ESC/Java, could either re-
move it by hand, or improve the test suite by adding cases
where non-String s were popped. After either change, the
revised version of theStack annotations would enable ESC/
Java to verify the absence of runtime exceptions.

3.4 Discussion

The example in this chapter shows how Daikon and ESC/Java
may be used together to verify the lack of runtime exceptions
in a tiny program through the automatic generation and check-
ing of the program’s specification.

The specification verified in the previous section stated
more than ESC/Java’s minimal specification would require. It
also reported useful properties of the implementation, such as

11

public class Stack {

/*@ invariant elts != null; */
/*@ invariant \typeof(elts) == \type(java.lang.Object[]); */
/*@ invariant size >= 0; */
/*@ invariant size <= elts.length; */
/*@ invariant (\forall int i; (0 <= i && i < size) ==> (elts[i] != null)); */
/*@ invariant (\forall int i; (size <= i && i < elts.length) ==>

(elts[i] == null)); */

/*@ spec_public */ protected Object[] elts;
/*@ invariant elts.owner == this; */
/*@ spec_public */ protected int size;

/*@ requires capacity >= 0; */
/*@ ensures capacity == elts.length; */
/*@ ensures size == 0; */
public Stack(int capacity) {

elts = new Object[capacity];
/*@ set elts.owner = this; */
size = 0;

}

/*@ ensures (\result == true) == (size == 0); */
public boolean isEmpty() { ... }

/*@ ensures (size <= elts.length-1) == (\result == false); */
public boolean isFull() { ... }

/*@ requires x != null; */
/*@ requires size < elts.length; */
/*@ modifies elts[*], size; */
/*@ ensures x == elts[\old(size)]; */
/*@ ensures size == \old(size) + 1; */
/*@ ensures (\forall int i; (0 <= i && i < \old(size)) ==>

(elts[i] == \old(elts[i]))); */
public void push(Object x) { ... }

/*@ requires size >= 1; */
/*@ modifies elts[*], size; */
/*@ ensures \result == \old(elts[size-1]); */
/*@ ensures \result != null; */
/*@ ensures \typeof(\result) == \type(java.lang.String) */
/*@ ensures size == \old(size) - 1; */
public Object pop() { ... }

}

Figure 3.4: Output of Daikon automatically merged intoStack source as ESC/Java annotations. Unchanged method bodies
have been removed to save space.

that precisely the live elements of the stack’s internal array
are non-null, or thatpop returns a non-null result. Finally, it
pointed out a deficiency in the test suite, allowing for its easy
correction.

We also note that the specifications do not have to be used to
verify the absence of runtime exceptions. By generating and
checking specifications automatically, we have conveniently
produced a specification that matches an existing codebase.
Such a specification may be useful for many tasks, as de-
scribed in Section 1.3.2.

12

public class Stack {

/*@ spec_public */ protected Object[] elts;
/*@ spec_public */ protected int size;

//@ invariant elts != null
//@ invariant 0 <= size && size <= elts.length
//@ invariant \typeof(elts) == \type(Object[])

//@ requires capacity >= 0
public Stack(int capacity) {

elts = new Object[capacity];
size = 0;

}

public boolean isEmpty() {
return size == 0;

}

public boolean isFull() {
return size == elts.length;

}

//@ requires size < elts.length
public void push(Object x) {

elts[size++] = x;
}

//@ requires size >= 1
public Object pop() {

Object item = elts[--size];
elts[size] = null;
return item;

}

}

Figure 3.2: Minimal annotations (comments beginning with@)
required by ESC/Java to verify the absence of runtime excep-
tions.

==
Stack:::OBJECT
this.elts != null
this.elts.class == "java.lang.Object[]"
this.size >= 0
this.size <= size(this.elts[])
this.elts[0..this.size-1] elements != null
this.elts[this.size..] elements == null
==
Stack.Stack(int):::ENTER
capacity >= 0
==
Stack.Stack(int):::EXIT
capacity == orig(capacity) == size(this.elts[])
this.size == 0
==
Stack.isEmpty():::EXIT
this.elts == orig(this.elts)
this.elts[] == orig(this.elts[])
this.size == orig(this.size)
(return == true) <==> (this.size == 0)
==
Stack.isFull():::EXIT
this.elts == orig(this.elts)
this.elts[] == orig(this.elts[])
this.size == orig(this.size)
(this.size <= size(this.elts[])-1) <==>

(return == false)
==
Stack.push(java.lang.Object):::ENTER
x != null
this.size < size(this.elts[])
==
Stack.push(java.lang.Object):::EXIT
x == orig(x) == this.elts[orig(this.size)]
this.elts == orig(this.elts)
this.size == orig(this.size) + 1
this.elts[0..orig(this.size)-1] ==

orig(this.elts[0..this.size-1])
==
Stack.pop():::ENTER
this.size >= 1
==
Stack.pop():::EXIT
this.elts == orig(this.elts)
return == orig(this.elts[this.size-1])
return != null
return.class == "java.lang.String"
this.size == orig(this.size) - 1

Figure 3.3: Output of Daikon forStack , given a certain test
suite (not shown). For readability, output has been edited to
rearrange ordering.

13

Chapter 4

Accuracy Evaluation

This chapter presents an experiment that evaluates the accu-
racy of the generation step of our system: dynamic invariant
detection. In contrast, Chapter 5 studies how varying accuracy
can affect users during static checking.

4.1 Introduction

We evaluate the accuracy of specification generation by mea-
suring the static verifiability of its result. Specifically, we mea-
sure how much dynamically generated specifications must be
changed in order to be verified by a static checker. The static
checker both guarantees that the implementation satisfies the
generated specification and ensures the absence of runtime
exceptions. Measured against this verification requirement,
the generated specifications scored nearly 90% on precision,
a measure of soundness, and on recall, a measure of complete-
ness. Precision and recall are standard measures from infor-
mation retrieval [Sal68, vR79]

Our results demonstrate that non-trivial and useful aspects
of program semantics are present in test executions, as mea-
sured by verifiability of generated specifications. Our results
also demonstrate that the technique of dynamic invariant de-
tection is effective in capturing this information, and that the
results are effective for the task of verifying absence of run-
time errors.

4.2 Methodology

This section presents the programs studied and the data ana-
lyzed.

4.2.1 Programs and test suites

We analyzed the programs listed in Figure 4.1.DisjSets ,
StackAr , andQueueAr come from a data structures text-
book [Wei99]; Vector is part of the Java standard library;
and the remaining seven programs are solutions to assignments
in a programming course at MIT [MIT01].

Figure 4.2 shows relative sizes of the test suites and pro-
grams used in this experiment. Test suites for the smaller pro-
grams were larger in comparison to the code size, but no test
suite was unreasonably sized.

All of the programs exceptVector andFixedSizeSet
came with test suites, from the textbook or that were used
for grading. We wrote our own test suites forVector and
FixedSizeSet . The textbook test suites are more properly
characterized as examples of calling code; they contained just
a few calls per method and did not exercise the program’s full
functionality. We extended the deficient test suites, an easy
task (see Section 4.4.2) and one that would be less necessary
for programs with realistic test suites.

We generated all but one test suite or augmentation in less
than 30 minutes. (MapQuick ’s augmentation took 3 hours
due to a 1 hour round-trip time to evaluate changes.) We found
that examining Daikon’s output greatly eased this task. When
methods are insufficiently tested, the reported specification is
stronger than what the programmer has in mind, pointing out
that the (true, unwritten) specification is not fully covered by
the tests.

4.2.2 Measurements

As described in Section 1.3, our system runs Daikon and in-
serts its output into the target program as ESC/Java annota-
tions.

We measured how different the reported invariants are from
a set of annotations that enables ESC/Java to verify that no
run-time errors occur (while ESC/Java also verifies the anno-
tations themselves). There are potentially many sets of ESC/
Java-verifiable annotations for a given program. In order to
perform an evaluation, we must choose one of them as a goal.

There is no one “correct” or “best” specification for a pro-
gram: different specifications support different tasks. For
instance, one set of ESC/Java annotations might ensure that
no run-time errors occur, while another set might ensure that
a representation invariant is maintained, and yet another set
might guarantee correctness with respect to externally im-
posed requirements.

We chose as our goal task verifying the absence of run-time
errors. Among the sets of invariants that enable ESC/Java to
prove that condition, we selected as our goal set the one that
required the smallest number of changes to the Daikon out-
put. The distance to this goal set is a measure of the minimal
(and the expected) effort needed to verify the program with
ESC/Java, starting from a set of invariants detected by Dai-

14

Program LOC NCNB Meth. Description
FixedSizeSet 76 28 6 set represented by a bitvector
DisjSets 75 29 4 disjoint sets supporting union, find
StackAr 114 50 8 stack represented by an array
QueueAr 116 56 7 queue represented by an array
Graph 180 99 17 generic graph data structure
GeoSegment 269 116 16 pair of points on the earth
RatNum 276 139 19 rational number
StreetNumberSet 303 201 13 collection of numeric ranges
Vector 536 202 28 java.util.Vector growable array
RatPoly 853 498 42 polynomial over rational numbers
MapQuick 2088 1031 113 driving directions query processor
Total 4886 2449 273

Figure 4.1: Description of programs studied (Section 4.2.1). “LOC” is the total lines of code. “NCNB” is the non-comment,
non-blank lines of code. “Meth” is the number of methods.

Original Test Suite
Size Size Coverage Time

Program NCNB NCNB Calls Stmt Branch Instr Daikon
FixedSizeSet 28 0 0 0.00 0.00 0 0
DisjSets 29 27 745 0.67 0.70 1 6
StackAr 50 11 72 0.60 0.56 0 3
QueueAr 56 11 52 0.68 0.65 0 12
Graph 99 Sys 3k 0.76 0.54 1 3
GeoSegment 116 Sys 695k 0.89 0.75 138 455
RatNum 139 Sys 58k 0.96 0.94 7 28
StreetNumberSet 201 165 50k 0.95 0.93 7 29
Vector 202 0 0 0.00 0.00 0 0
RatPoly 498 382 88k 0.94 0.89 27 98
MapQuick 1031 445 3.31M 0.66 0.61 660 1759

Augmented Test Suite
Size Size Coverage Time

Program NCNB +NCNB Calls Stmt Branch Instr Daikon
FixedSizeSet 28 39 12k 1.00 1.00 2 10
DisjSets 29 15 12k 1.00 0.90 3 18
StackAr 50 39 1k 0.64 0.63 0 4
QueueAr 56 54 8k 0.71 0.71 1 11
Graph 99 1 3k 0.76 0.54 1 3
GeoSegment 116 0 695k 0.89 0.75 138 455
RatNum 139 39 114k 0.96 0.94 14 56
StreetNumberSet 201 151 197k 0.95 0.95 12 44
Vector 202 190 22k 0.90 0.90 7 37
RatPoly 498 51 102k 0.96 0.92 38 139
MapQuick 1031 49 3.37M 0.67 0.71 673 1704

Figure 4.2: Characterization of original and augmented test suites. “NCNB” is non-comment, non-blank lines of code in the
program or its original, accompanying test suite; in this column “Sys” indicates a system test: one that is not specifically
focused on the specified program, but tests a higher-level system that contains the program (see Section 4.4.2). “+NCNB” is
the number of lines added to yield the results described in Section 4.3. “Calls” is the dynamic number of method calls received
by the program under test (from the test suite or internally). “Stmt” and “Branch” indicate the statement and branch coverage
of the test suite. “Instr” is the runtime of the instrumented program. “Daikon” is the runtime of the Daikon invariant detector.
Times are wall-clock measurements, in seconds.

15

kon. Our choice is a measure of how different the reported in-
variants are from a set that is both consistent and sufficient for
ESC/Java’s checking — an objective measure of the program
semantics captured by Daikon from the executions.

Given the set of invariants reported by Daikon and the
changes necessary for verification, we counted the number of
reported and verified invariants (the “Verif” column of Fig-
ure 4.3), reported but unverifiable invariants (the “Unver” col-
umn), and unreported, but necessary, invariants (the “Miss”
column). We computed precision and recall, standard mea-
sures from information retrieval [Sal68, vR79], based on these
three numbers. Precision, a measure of soundness, is defined
as Verif

Verif+Unver. Recall, a measure of completeness, is defined

as Verif
Verif+Miss. For example, if Daikon reported 6 invariants

(4 verifiable and 2 other unverifiable), while the verified set
contained 5 invariants (the 4 reported by Daikon plus 1 added
by hand), the precision would be 0.67 and the recall would
be 0.80.

We determined by hand how many of Daikon’s invariants
were redundant because they were logically implied by other
invariants. Users would not need to remove the redundant
invariants in order to use the tool, but we removed all of
these invariants from consideration (and they appear in none
of our measurements), for two reasons. First, Daikon attempts
to avoid reporting redundant invariants, but its tests are not
perfect; these results indicate what an improved tool could
achieve. More importantly, almost all redundant invariants
were verifiable, so including redundant invariants would have
inflated our results.

4.3 Experiments

This section gives quantitative and qualitative experimental re-
sults. The results demonstrate that the dynamically inferred
specifications are often precise and complete enough to be ma-
chine verifiable.

Section 4.3.1 summarizes our experiments, while Sec-
tions 4.3.2 through 4.3.4 discuss three example programs in
detail to characterize the generated specifications and provide
an intuition about the output of our system. Section 4.4 sum-
marizes the problems the system may encounter.

4.3.1 Summary

We performed eleven experiments, as shown in Figure 4.3. As
described in Section 4.2, Daikon’s output is automatically in-
serted into the target program as annotations, which are edited
by hand (if necessary) until the result verifies. When the pro-
gram verifies, the implementation meets the generated and
edited specification, and runtime errors are guaranteed to be
absent.

In programs of up to 1031 non-comment non-blank lines of
code, the overall precision (a measure of soundness) and recall
(a measure of completeness) were 0.96 and 0.91, respectively.

Later sections describe specific problems that lead to unveri-
fiable or missing invariants, but we summarize the imperfec-
tions here.

Most unverifiable invariants correctly described the pro-
gram, but could not be proved due to limitations of ESC/Java.
Some limitations were by design, while others appeared to be
bugs in ESC/Java.

Most missing invariants were beyond the scope of Daikon.
Verification required certain complicated predicates or ele-
ment type annotations for non-List collections, which Dai-
kon does not currently provide.

4.3.2 StackAr: array-based stack

StackAr is an array-based stack implementation [Wei99].
The source contains 50 non-comment lines of code in 8 meth-
ods, along with comments that describe the behavior of the
class but do not mention its representation invariant. It is sim-
ilar to the example of Chapter 3, but contains more methods.

The Daikon invariant detector reported 25 invariants, in-
cluding the representation invariant, method preconditions,
modification targets, and postconditions. (In addition, our sys-
tem heuristically added 2 annotations involving aliasing of the
array.)

When run on an unannotated version ofStackAr , ESC/
Java issues warnings about many potential runtime errors, such
as null dereferences and array bounds errors. Our system gen-
erated specifications for all operations of the class, and with
the addition of the detected invariants, ESC/Java issues no
warnings, successfully checks that theStackAr class avoids
runtime errors, and verifies that the implementation meets the
generated specification.

4.3.3 RatPoly: polynomial over rational num-
bers

A second example further illustrates our results, and provides
examples of verification problems.

RatPoly is an implementation of rational-coefficient poly-
nomials that support basic algebraic operations. The source
contains 498 non-comment lines of code, in 3 classes and 42
methods. Informal comments state the representation invariant
and method specifications.

Our system produced a nearly-verifiable annotation set.
Additionally, the annotation set reflected some properties of
the programmer’s specification, which was given by informal
comments. Figure 4.3 shows that Daikon reported 80 invari-
ants over the program; 10 of those did not verify, and 1 more
had to be added.

The 10 unverifiable invariants were all true, but other miss-
ing invariants prevented them from being verified. For in-
stance, theRatPoly implementation maintains an object
invariant that no zero-value coefficients are ever explicitly
stored, so Daikon reported that aget method never returns
zero. However, ESC/Java annotations may not reference el-
ements of Java collection classes; thus, the object invariant is

16

Program size Number of invariants Accuracy
Program LOC NCNB Meth. Verif. Unver. Miss. Prec. Recall
FixedSizeSet 76 28 6 16 0 0 1.00 1.00
DisjSets 75 29 4 32 0 0 1.00 1.00
StackAr 114 50 8 25 0 0 1.00 1.00
QueueAr 116 56 7 42 0 13 1.00 0.76
Graph 180 99 17 15 0 2 1.00 0.88
GeoSegment 269 116 16 38 0 0 1.00 1.00
RatNum 276 139 19 25 2 1 0.93 0.96
StreetNumberSet 303 201 13 22 7 1 0.76 0.96
Vector 536 202 28 100 2 2 0.98 0.98
RatPoly 853 498 42 70 10 1 0.88 0.99
MapQuick 2088 1031 113 145 3 35 0.98 0.81
Total 4886 2449 273 530 24 55 0.96 0.91

Figure 4.3: Summary of specifications recovered, in terms of invariants detected by Daikon and verified by ESC/Java. “LOC”
is the total lines of code. “NCNB” is the non-comment, non-blank lines of code. “Meth” is the number of methods. “Verif”
is the number of reported invariants that ESC/Java verified. “Unver” is the number of reported invariants that ESC/Java failed
to verify. “Miss” is the number of invariants not reported by Daikon but required by ESC/Java for verification. “Prec” is the
precision of the reported invariants, the ratio of verifiable to verifiable plus unverifiable invariants. “Recall” is the recall of the
reported invariants, the ratio of verifiable to verifiable plus missing.

not expressible and theget method failed to verify. Similarly,
the mul operation exits immediately if one of the polynomi-
als is undefined, but the determination of this condition also
required annotations accessing Java collections. Thus, ESC/
Java could not prove that helper methods used bymul never
operated on undefined coefficients, as reported by Daikon.

When using the provided test suite, three invariants were
detected by Daikon, but suppressed for lack of statistical jus-
tification. Small test suite augmentations (Figure 4.2) more
extensively exercised the code and caused those invariants to
be printed. (Alternately, a command-line switch to Daikon sets
its justification threshold.) With the test suite augmentations,
only one invariant had to be edited by hand (thus counting as
both unverified and missing): an integer lower bound had to
be weakened from 1 to 0 because ESC/Java’s incompleteness
prevented proof of the (true, but subtle) stricter bound.

4.3.4 MapQuick: driving directions

A final example further illustrates our results.
The MapQuick application computes driving directions

between two addresses provided by the user, using real-world
geographic data. The source contains 1835 non-comment lines
of code in 25 classes, but we did not compute specifications for
7 of the classes. Of the omitted classes, three classes were used
so frequently (while loading databases) that recording traces
for offline processing was infeasible due to space limitations.
One class (the entry point) was only called a few times, so not
enough data was available for inference. Two classes had too
little variance of data for inference (only a tiny database was
loaded). Finally, one class had a complex inheritance hierar-
chy that prevented local reasoning (and thus hindered modu-
lar static analysis). All problems but the last could have been
overcome by an invariant detector that runs online, allowing

larger data sets to be processed and a more varied database to
be loaded.

We verified the other 18 classes (113 methods, 1031 lines).
The verified classes include data types (such as a priority
queue), algorithms (such as Dijkstra’s shortest path), a user
interface, and various file utilities. Figure 4.3 shows that Dai-
kon reported 148 invariants; 3 of those did not verify, and 35
had to be added.

The 3 unverifiable invariants were beyond the capabilities
of ESC/Java, or exposed bugs in the tools.

The largest cause of missing invariants was ESC/Java’s in-
completeness. Its modular analysis or ignorance of Java se-
mantics forced 9 annotations to be added, while 3 more were
required because other object invariants were inexpressible.

Invariants were also missing because they were outside the
scope of Daikon. Daikon does not currently report invari-
ants of non-List Java collections, but 4 invariants about type
and nullness information of these collections were required for
ESC/Java verification. Daikon also missed 5 invariants be-
cause it does not instrument interfaces, and 3 invariants over
local variables, which are also not instrumented. (We are cur-
rently enhancing Daikon to inspect interfaces and all collection
classes.)

Finally, 5 missing annotations were needed to suppress
ESC/Java warnings about exceptions.MapQuick handles
catastrophic failure (such as filesystem errors) by raising an
unchecked exception. The user must disable ESC’s verifica-
tion of these exceptions, as they can never be proven to be
absent. This step requires user intervention no matter the tool,
since specifying which catastrophic errors to ignore is an en-
gineering decision.

The remaining 6 missing invariants arose from distinct
causes that cannot be generalized, and that do not individually
add insight.

17

4.4 Remaining challenges

Fully automatic generation and checking of program specifica-
tions is not always possible. This section categorizes problems
we encountered in our experimental investigation. These lim-
itations fall into three general categories: problems with the
target programs, problems with the test suites, and problems
with the Daikon and ESC/Java tools.

4.4.1 Target programs

One challenge to verification of invariants is the likelihood that
programs contain errors that falsify the desired invariant. (Al-
though it was never our goal, we have previously identified
such errors in textbooks, in programs used in testing research,
and elsewhere.) In this case, the desired invariant is not a true
invariant of the program.

Program errors may prevent verification even if the error
does not falsify a necessary invariant. The test suite may not
reveal the error, so the correct specification will be generated.
However, it will fail to verify because the static checker will
discover possible executions that violate the invariant.

Our experiments revealed an error in theVector class
from JDK 1.1.8. ThetoString method throws an exception
for vectors with null elements. Our original (code coverage
complete) test suite did not reveal this fault, but Daikon re-
ported that the vector elements were always non-null on entry
to toString , leading to discovery of the error. The error is
corrected in JDK 1.3. (We were not aware of the error at the
time of our experiments.)

As another example of a likely error that we detected, one of
the object invariants forStackAr states that unused elements
of the stack are null. Thepop operations maintain this invari-
ant (which approximately doubles the size of their code), but
themakeEmpty operation does not. We noticed this when the
expected object invariant was not inferred, and we corrected
the error in our version ofStackAr .

4.4.2 Test suites

Another challenge to generation is deficient or missing test
suites. In general, realistic test suites tend to produce verifiable
specifications, while poor verification results indicate specific
failures in testing.

If the executions induced by a test suite are not characteris-
tic of a program’s general behavior, properties observed during
testing may not generalize. However, one of the key results of
this research is that even limited test suites can capture partial
semantics of a program. This is surprising, even on small pro-
grams, because reliably inferring patterns from small datasets
is difficult. Furthermore, larger programs are not necessarily
any better, because some components may be underexercised
in the test suite. (For example, a main routine may only be run
once.)

System tests — tests that check end-to-end behavior of a
system — tended to produce good invariants immediately, con-
firming earlier experiences [ECGN01]. System tests exercise

a system containing the module being examined, rather than
testing just the module itself.

Unit tests — tests that check specific boundary values of
procedures in a single module in isolation — were less suc-
cessful. This may seem counter-intuitive, since unit tests often
achieve code coverage and generally attempt to cover bound-
ary cases of the module. However, in specifically targeting
boundary cases, unit tests utilize the module in ways statis-
tically unlike the application itself, throwing off the statistical
techniques used in Daikon. Equally importantly, unit tests tend
to contain few calls, preventing statistical inference.

When the initial test suites came from textbooks or were
unit tests that were used for grading, they often contained just
three or four calls per method. Some methods onStreet-
NumberSet were not tested at all. We corrected these test
suites, but did not attempt to make them minimal. The cor-
rections were not difficult. When failed ESC/Java verification
attempts indicate a test suite is deficient, the unverifiable in-
variants specify the unintended property, so a programmer has
a suggestion for how to improve the tests. For example, the
original tests for thediv operation onRatPoly exercised a
wide range of positive coefficients, but all tests with negative
coefficients used a numerator of−1. Other examples included
certain stack operations that were never performed on a full (or
empty) stack and a queue implemented via an array that never
wrapped around. These properties were detected and reported
as unverifiable by our system, and extending the tests to cover
additional values was effortless.

Test suites are an important part of any programming effort,
so time invested in their improvement is not wasted. In our ex-
perience, creating a test suite that induces accurate invariants
is little or no more difficult than creating a general test suite.
In short, poor verification results indicate specific failures in
testing, and reasonably-sized and realistic test suites are able
to accurately capture semantics of a program.

4.4.3 Inherent limitations of any tool

Every tool contains abias: the grammar of properties that it
can detect or verify. Properties beyond that grammar are in-
surmountable obstacles to automatic verification, so there are
specifications beyond the capabilities of any particular tool.

For instance, in theRatNum class, Daikon found that the
negate method preserves the denominator and negates the
numerator. However, verifying that property would require
detecting and verifying that thegcd operation called by the
constructor has no effect because the numerator and denomi-
nator of the argument are relatively prime. Daikon does not in-
clude such invariants because they are of insufficiently general
applicability, nor can ESC/Java verify such a property. (Users
can add new invariants for Daikon to detect by writing a Java
class that satisfies an interface with four methods.)

As another example, neither Daikon nor ESC/Java operates
with invariants over strings. As a result, our combined sys-
tem did not detect or verify that object invariants hold at the
exit from a constructor or other method that interprets a string

18

argument, even though the system showed that other methods
maintain the invariant.

As a final example, theQueueAr class guarantees that un-
used storage is set to null. The representation invariants that
maintain this property were missing from Daikon’s output, be-
cause they were conditioned on a predicate more complicated
than Daikon currently attempts. (The invariants are shown in
Figure 5.8 on page 29). This omission prevented verification
of many method postconditions. In a user study (Chapter 5),
no subject was able to write this invariant or an equivalent one.

4.4.4 Daikon

Aside from the problems inherent in any analysis tool, the
tools used in this evaluation exhibited additional problems that
prevented immediate verification. Daikon had three deficien-
cies.

First, Daikon does not examine the contents of non-List
Java collections such as maps or sets. This prevents it from
reporting type or nullness properties of the elements, but those
properties are often needed by ESC/Java for verification.

Second, Daikon operates offline by examining traces writ-
ten to disk by an instrumented version of the program under
test. If many methods are instrumented, or if the program is
long-running, storage and processing requirements can exceed
available capacity.

Finally, Daikon uses Ajax [O’C01] to determine compara-
bility of variables in Java programs. If two variables are in-
comparable, no invariants relating them should be generated
or tested. Ajax fails on some large programs; all variables are
considered comparable, and spurious invariants are generated
and printed constraining unrelated quantities.

4.4.5 ESC/Java

ESC/Java’s input language is a variant of the Java Modeling
Language JML [LBR99, LBR00], an interface specification
language that specifies the behavior of Java modules. We use
“ESCJML” for the JML variant accepted as input by ESC/Java.

ESCJML cannot express certain properties that Daikon re-
ports. ESCJML annotations cannot include method calls, even
ones that are side-effect-free. Daikon uses these for obtaining
Vector elements and as predicates in implications. Unlike
Daikon, ESCJML cannot express closure operations, such as
all the elements in a linked list.

ESCJML requires that object invariants hold at entry to and
exit from all methods, so it warned that the object invariants
Daikon reported were violated by private helper methods. We
worked around this problem by inlining one such method from
theQueueAr program.

The full JML language permits method calls in assertions,
includes\reach() for expressing reachability via transitive
closure, and specifies that object invariants hold only at entry
to and exit from public methods.

Some of this functionality might be missing from ESC/Java
because it is designed not for proving general program proper-
ties but as a lightweight method for verifying absence of run-

time errors. However, our investigations revealed examples
where such verification required each of these missing capa-
bilities. In some cases, ESC/Java users may be able to restruc-
ture their code to work around these problems. In others, users
can insert unchecked pragmas that cause ESC/Java to assume
particular properties without proof, permitting it to complete
verification despite its limitations.

4.5 Discussion

The most surprising result of this experiment is that specifi-
cations generated from program executions are reasonably ac-
curate: they form a set that is nearly self-consistent and self-
sufficient, as measured by verifiability by an automatic spec-
ification checking tool. This result was not at all obviousa
priori . One might expect that dynamically detected invariants
would suffer from serious unsoundness by expressing artifacts
of the test suite and would fail to capture enough of the formal
semantics of the program.

This positive result implies that dynamic invariant detection
is effective, at least in our domain of investigation. A second,
broader conclusion is that executions over relatively small test
suites capture a significant amount of information about pro-
gram semantics. This detected information is verifiable by
a static analysis. Although we do not yet have a theoretical
model to explain this, nor can we predict for a given test suite
how much of a program’s semantic space it will explore, we
have presented a datapoint from a set of experiments to expli-
cate the phenomenon and suggest that it may generalize. One
reason the results should generalize is that both Daikon and
ESC/Java operate modularly, one class at a time. Generating
or verifying specifications for a single class of a large system
is no harder than doing so for a system consisting of a single
class.

We speculate that three factors may contribute to our suc-
cess. First, our specification generation technique does not
attempt to report all properties that happen to be true during
a test run. Rather, it produces partial specifications that inten-
tionally omit properties that are unlikely to be of use or that
are unlikely to be universally true. It uses statistical, algorith-
mic, and heuristic tests to make this judgment. Second, the
information that ESC/Java needs for verification may be par-
ticularly easy to obtain via a dynamic analysis. ESC/Java’s re-
quirements are modest: it does not need full formal specifica-
tions of all aspects of program behavior. However, its verifica-
tion does require some specifications, including representation
invariants and input–output relations. Our system also veri-
fied additional detected properties that were not strictly neces-
sary for ESC’s checking, but provided additional information
about program behavior. Third, our test suites were of accept-
able quality. Unit tests are inappropriate, for they produce very
poor invariants (see Section 4.4.2). However, Daikon’s output
makes it extremely easy to improve the test suites by indicat-
ing their deficiencies. Furthermore, existing system tests were
adequate, and these are more likely to exist and often easier to
produce.

19

Chapter 5

User Evaluation

This chapter describes an evaluation of the effectiveness of
two tools to assist static checking. We quantitatively and qual-
itatively evaluate 41 users in a program verification task over
three small programs, using ESC/Java as the static checker,
and either Houdini (described in Section 5.2) or Daikon for
assistance. Our experimental evaluation reflects the effective-
ness of each tool, validates our approach to generating and
checking specifications, and also indicates important consid-
erations for creating future assistant tools.

5.1 Introduction

Static checking can verify the absence of errors in a program,
but often requires written annotations or specifications. As a
result, static checking can be difficult to use effectively: it can
be difficult to determine a specification and tedious to annotate
programs. Automated tools that aid the annotation process can
decrease the cost of static checking and enable it to be more
widely used.

We evaluate techniques for easing the annotation burden by
applying two annotation assistant tools, one static (Houdini)
and one dynamic (Daikon), to the problem of annotating Java
programs for the ESC/Java static checker.

Statistically significant results show that both tools con-
tribute to success, and neither harms users in a measurable
way. Additionally, Houdini helps users express properties us-
ing fewer annotations. Finally, Daikon helps users express
more true and potentially useful properties than strictly re-
quired for a specific task, with no time penalty.

Interviews indicate that beginning users found Daikon to
be helpful but were concerned with its verbosity on poor test
suites; that Houdini was of uncertain benefit due to concerns
with its speed and opaqueness; that static checking could be of
potential practical use; and that both assistance tools to have
unique benefits.

The remainder of this chapter is organized as follows. Sec-
tion 5.2 briefly describes the Houdini tool. Section 5.3 presents
our methodology. Sections 5.4 and 5.5 report quantitative and
qualitative results. Section 5.6 examines the results and Sec-
tion 5.7 concludes.

5.2 Houdini

Houdini is an annotation assistant for ESC/Java [FL01,
FJL01]. (A similar system was previously proposed by Rinta-
nen [Rin00].) It augments user-written annotations with addi-
tional ones that complement them. This permits users to write
fewer annotations and end up with less cluttered, but still au-
tomatically verifiable, programs.

Houdini postulates a candidate annotation set and computes
the greatest subset of it that is valid for a particular program. It
repeatedly invokes the ESC/Java checker as a subroutine and
discards unprovable postulated annotations, until no more are
refuted. If even one required annotation is missing, then Hou-
dini eliminates all other annotations that depend on it. Cor-
rectness of the loop depends on two properties: the set of true
annotations returned by the checker is a subset of the annota-
tions passed in, and if a particular annotation is not refuted,
then adding additional annotations to the input set does not
cause the annotation to be refuted.

Houdini’s initial candidate invariants are all possible arith-
metic and (in)equality comparisons among fields (and “inter-
esting constants” such as−1, 0, 1, array lengths,null , true ,
andfalse), and also assertions that array elements are non-
null . Many elements of this initial set are mutually contra-
dictory.

According to its creators, over 30% of Houdini’s guessed
annotations are verified, and it tends to reduce the number of
ESC/Java warnings by a factor of 2–5 [FL01]. With the assis-
tance of Houdini, programmers may only need to insert about
one annotation per 100 lines of code.

5.2.1 Emulation

Houdini was not publicly available at the time of this exper-
iment, so we were forced to re-implement it from published
descriptions. For convenience in this section only, we will call
our emulation “Whodini.”

For each program in our study, we constructed the complete
set of true invariants in Houdini’s grammar and used that as
Whodini’s initial candidate invariants. This is a subset of Hou-
dini’s initial candidate set and a superset of verifiable Hou-
dini invariants, so Whodini is guaranteed to behave exactly
like published descriptions of Houdini, except that it will run

20

faster. Fewer iterations of the loop (fewer invocations of ESC/
Java) are required to eliminate unverifiable invariants, because
there are many fewer such invariants in Whodini’s set. Who-
dini typically takes 10–60 seconds to run on the programs used
for this study.

5.3 Methodology

The section presents our experimental methodology and its ra-
tionale. We are interested in studying what factors affect a
user’s performance in a program verification task. We are pri-
marily interested in the effect of the annotation assistant on
performance, or its effect in combination with other factors.
For instance, we study how the level of imprecision of Dai-
kon’s output affects user performance.

Section 5.3.1 presents the participants’ task. Section 5.3.2
describes participant selection and demographics. Sec-
tion 5.3.3 details the experimental design. Section 5.3.4 de-
scribes how the data was collected and analyzed.

5.3.1 User Task

Study participants were posed the goal of writing annotations
to enable ESC/Java to verify the absence of runtime errors.
Each participant performed this task on two different programs
in sequence.

Before beginning, participants received a packet (repro-
duced in Appendix A) containing 6 pages of written instruc-
tions, printouts of the programs they would annotate, and pho-
tocopies of figures and text explaining the programs, from the
book from which we obtained the programs. The written in-
structions explained the task, our motivation, ESC/Java and
its annotation syntax, and (briefly) the assistance tools. The
instructions also led participants through an 11-step exercise
using ESC/Java on a sample program. The sample program,
an implementation of fixed-size sets, contained examples of
all of the annotations participants would have to write to com-
plete the task (@invariant , @requires , @modifies ,
@ensures , @exsures). Participants could spend up to
30 minutes reading the instructions, working through the ex-
ercises, and further familiarizing themselves with ESC/Java.
Participants received hyperlinks to an electronic copy of the
ESC/Java user’s manual [LNS00] and quick reference [Ser00].

The instructions explained the programming task as follows.

Two classes will be presented: an abstract data type
(ADT) and a class that calls it. You will create
and/or edit annotations in the source code of the
ADT. Your goal is to enable ESC/Java to verify
that neither the ADT nor the calling code may ever
terminate with a runtime exception. That is, when
ESC/Java produces no warnings or errors on both
the ADT and the calling code, your task is complete.

The ADT source code was taken from a data structures text-
book [Wei99]. We wrote the client (the calling code). Partic-
ipants were instructed to edit only annotations of the ADT —

NCNB LOC Minimal
Program Methods ADT Client Annot.
DisjSets 4 28 29 17
StackAr 8 49 79 23
QueueAr 7 55 70 32

Figure 5.1: Characteristics of programs used in the study.
“Methods” is the number of methods in the ADT. “NCNB
LOC” is the non-comment, non-blank lines of code in either
the ADT or the client. “Minimal Annot” is the minimal num-
ber of annotations necessary to complete the task.

neither the ADT implementation code nor any part of the client
was to be edited.

We met with each participant to review the packet and en-
sure that expectations were clear. Then, participants worked
at their own desks, unsupervised. (Participants logged into our
Linux machine and ran ESC/Java there.) Some participants
received assistance from Houdini or Daikon, while others did
not. Participants could ask us questions during the study. We
addressed environment problems (e.g., tools crashing) but did
not answer questions regarding the task itself.

After the participant finished the second annotation task, we
conducted a 20-minute exit interview. (Section 5.5 presents
qualitative results from the interviews.)

Programs

The three programs used for this study were taken from a data
structures textbook [Wei99]. Figure 5.1 gives some of their
characteristics.

We selected three programs for variety. TheDisjSets
class is an implementation of disjoint sets supportingunion
and find operations without path compression or weighted
union. The original code provided only an unsafeunion op-
eration, so we added a safeunion operation as well. The
StackAr class is a fixed-capacity stack represented by an ar-
ray, while theQueueAr class is a fixed-capacity wrap-around
queue represented by an array. We fixed a bug in themakeEm-
pty method of both to set all storage tonull . In QueueAr ,
we also inlined a private helper method, since ESC/Java re-
quires that object invariants hold at private method entry and
exit, which was not the case for this helper.

We selected these programs because they are relatively
straightforward ADTs. The programs are not trivial for the
annotation task, but are not so large as to be unmanageable.
We expect results on small programs such as these to scale
to larger programs, since annotations required for verifying
absence of runtime errors overwhelmingly focus on class-
specific properties

5.3.2 Participants

A total of 47 users participated in the study, but six were dis-
qualified, leaving data from 41 participants total. Five partic-
ipants were disqualified because they did not follow the writ-

21

Mean Dev. Min. Max.
Years of college education 7.0 2.6 3 14
Years programming 11.7 5.0 4 23
Years Java programming 3.6 1.5 1 7

Frequencies
Usual environment Unix 59%; Win 13%; both 29%
Writes asserts in code “often” 30%; less frequently 70%

. . . in comments “often” 23%; less frequently 77%
Gender male 89%; female 11%

Figure 5.2: Demographics of study participants. “Dev” is stan-
dard deviation.

ten instructions; the sixth was disqualified because the partic-
ipant declined to finish the experiment. We also ran 6 trial
participants to refine the instructions, task, and tools; we do
not include data from those participants. All participants were
volunteers.

Figure 5.2 provides background information on the 41 par-
ticipants. Participants were experienced programmers and
were familiar with Java programming, but none had ever used
ESC/Java, Houdini, or Daikon before. Participants had at least
3 years of post-high-school education, and most were grad-
uate students in Computer Science at MIT or the University
of Washington. No participants were members of the author’s
research group.

Participants reported their primary development environ-
ment (options: Unix, Windows, or both), whether they write
assert statements in code (options: never, rarely, sometimes,
often, usually, always), and whether they write assertions in
comments (same options). While the distributions are similar,
participants frequently reported opposite answers for asser-
tions in code vs. comments — very few participants frequently
wrote assertions in both code and comments.

5.3.3 Experimental Design

Treatments

The experiment used five experimental treatments: a control
group, Houdini, and three Daikon groups.

No matter the treatment, all users started with a minimal
set of 3 to 6 annotations already inserted in the program. This
minimal set of ESC/Java annotations includedspec public
annotations on all private fields, permitting them to be men-
tioned in specifications, andowner annotations for all private
Object fields, indicating that they are not arbitrarily modi-
fied by external code. We provided these annotations in order
to reduce both the work done and the background knowledge
required of participants; they confuse many users and are not
the interesting part of the task. Our tools add this boilerplate
automatically. These annotations are ignored during data col-
lection, since users never edit them.

Control. This group was given the original program with-
out any help from an annotation assistant. To complete the

NCNB Calls Coverage
Program Suite LOC Stat. Dyn. Stmt. Bran. Prec. Rec.
DisjSets Tiny 23 5 389 0.67 0.70 0.65 0.57

Small 28 5 1219 1.00 0.90 0.71 0.74
Good 43 13 11809 1.00 1.00 0.94 0.97

StackAr Tiny 14 4 32 0.60 0.56 0.54 0.52
Small 24 5 141 0.64 0.63 0.83 0.73
Good 54 14 2783 0.96 0.94 1.00 0.95

QueueAr Tiny 16 4 32 0.68 0.65 0.37 0.44
Small 44 10 490 0.71 0.71 0.47 0.56
Good 66 10 7652 0.94 0.88 0.74 0.75

Figure 5.3: Test suites used for Daikon runs. “NCNB LOC” is
the non-comment, non-blank lines of code. “Stat” and “Dyn”
are the static and dynamic number of calls to the ADT. “Stmt”
and “Bran” indicate the statement and branch coverage of the
test suite. “Prec” is precision, a measure of correctness, and
“Rec” is recall, a measure of completeness; see Section 5.3.4.

task, these participants had to add enough annotations on their
own so that ESC/Java could verify the program. The minimal
number of such invariants is given in Figure 5.1.

Houdini. This group was provided the same source code
as the control group, but used a version of ESC/Java enhanced
with (our re-implementation of) Houdini. Houdini was auto-
matically invoked (and a message printed) when the user ran
escjava . To complete the task, these participants had to add
enough annotations so that Houdini could do the rest of the
work towards verifying the program.

Daikon. The three Daikon groups received a program into
which Daikon output had been automatically inserted as ESC/
Java annotations. To complete the task, these participants had
to both remove unverifiable invariants inferred by Daikon and
also add other uninferred annotations.

These participants ran an unmodified version of ESC/Java.
There was no sense also supplying Houdini to participants who
were given Daikon annotations. Daikon always produces all
the invariants that Houdini might infer, so adding Houdini’s
inference would be of no benefit to users.

Participants were not provided the test suite and did not run
Daikon themselves. (Daikon took only a few seconds to run
on these programs.) While it would be interesting to study
the process where users are able to both edit the test suite and
the annotations, we chose to study only annotation correction.
Looking at the entire task introduces a number of additional
factors that would have been difficult to control experimen-
tally.

To study the effect of test suite size on users’ experience,
we used three Daikon treatments with varying underlying test
suite sizes (See Figure 5.3). In later sections, discussion of the
“Daikon” treatment refers any of the three below treatments;
we use a subscript to refer to a specific treatment.

Daikontiny : This group received Daikon output produced
using example calling code that was supplied along with the
ADT. The example code usually involved just a few calls,
with many methods never called and few corner cases exposed

22

(see Figure 5.3). We call these the “tiny” test suites, but the
term “test suites” is charitable. They are really just examples
of how to call the ADT.

These suites are much less exhaustive than would be used
in practice. Our rationale for using them is that in rare cir-
cumstances users may not already have a good test suite, or
they may be unwilling to collect operational profiles. If Dai-
kon produces relatively few desired invariants and relatively
many test-suite-specific invariants, it might hinder rather than
help the annotation process; we wished to examine that cir-
cumstance.

Daikonsmall: This group received a program into which a
different set of Daikon output had been inserted. The Daikon
output for these participants was produced from an augmented
form of the tiny test suite. The only changes were using the
Stack andQueue containers polymorphically, and varying
the sizes of the structures created (since the tiny test suites
used a constant size).

When constructing these suites, the author limited him-
self to 3 minutes of wall clock time (including executing the
test suites and running Daikon) for each ofDisjSets and
StackAr , and 5 minutes forQueueAr , in order to simulate
low-cost testing methodology. As in the case of Daikontiny,
use of these suites measures performance when invariants are
detected from an inadequate test suite – one worse than pro-
grammers typically use in practice. We call these the “small”
suites.

Daikongood: This group received Daikon output produced
using a test suite constructed from scratch, geared toward test-
ing the code in full, instead of giving sample uses. These ade-
quate test suites took the author about half an hour to produce.

Assignment of treatments

There are a total of 150 possible experimental configurations:
there are six choices of program pairs; there are five possible
treatments for the first program; and there are five possible
treatments for the second program. No participant annotated
the same program twice, but participants could be assigned the
same treatment on both trials.

In order to reduce the number of subjects, we ran only a
subset of the 150 configurations. We assigned the first 32 par-
ticipants to configurations using a randomized partial factorial
design, then filled in the gaps with the remaining participants.
(Participants who were disqualified had their places taken by
subsequent participants, in order to preserve balance.)

5.3.4 Analysis

This section explains what quantities we measured, how we
measured them, and what values we derive from the direct
measurements.

Variable Domain
Independent
Annotation assistant none, Houdini, DaikonT,S,G
Program StackAr, QueueAr, DisjSets
Experience first trial, second trial
Location MIT, Univ. of Wash.
Usual environment Unix, Windows, both
Years of college education
Years programming
Years Java programming
Writes asserts in code never, rarely, sometimes,
Writes asserts in comments often, usually, always

Dependent
Success yes, no
Time spent up to 60 minutes
Final written answer set of annotations (Fig. 5.6)
Nearest verifiable answer set of annotations (Fig. 5.6)

Figure 5.4: Variables measured (Section 5.3.4), and their do-
main (set of possible values). We also analyze computed val-
ues, such as precision and recall (Section 5.3.4).

Quantities Measured

We are interested in studying what factors affect a user’s per-
formance in a program verification task. Figure 5.4 lists the
independent and dependent variables we measured to help an-
swer this question.

We are primarily interested in the effect of the annotation as-
sistant on performance, or its effect in combination with other
factors. We also measure other potentially related independent
variables in order to identify additional factors that have an ef-
fect, and to lend confidence to effects shown by the assistant.

We measure four quantities to evaluate performance. Suc-
cess (whether the user completed the task) and the time spent
are straightforward. We also compare the set of annotations
in a user’s answer to the annotations in the nearest correct an-
swer. When users do not finish the task, this is their degree of
success.

The next section describes how we measure the sets of an-
notations, and the following section describes how we numer-
ically relate the sets.

Measurement Techniques

This section explains how we measured the variables in Fig-
ure 5.4. The annotation assistant, program, and experience
are derived from the experimental configuration. Participants
reported the other independent variables. For dependent vari-
ables, success was measured by running ESC/Java on the so-
lution. Time spent was reported by the user. If the user was
unsuccessful and gave up early, we rounded the time up to 60
minutes.

The most complex measurements were finding the nearest
correct answer and determining the set of invariants the user
had written. To find the nearest correct answer, we repeatedly
ran ESC/Java and made small edits to the user’s answer until

23

One lexical annotation; two semantic annotations:

//@ ensures (x != null) && (i = \old(i) + 1)

Two lexical annotations; one semantic annotation:

//@ requires (arg > 0)
//@ ensures (arg > 0)

Figure 5.5: Distinction between lexical and semantic annota-
tions. The last annotation is implied becausearg is not de-
clared to be modified across the call.

there were no warnings, taking care to make as few changes as
possible. A potential source of error is that we missed a nearer
answer. However, many edits were straightforward, such as
adding an annotation that must be present in all answers. Re-
moving annotations was also straightforward: incorrect anno-
tations cause warnings from ESC/Java, so the statements may
be easily identified and removed. The most significant risk is
declining to add an annotation that would prevent removal of
others that depend on it. We were aware of this risk and were
careful to avoid it.

Determining the set of invariants present in source code re-
quires great care. First, we distinguish annotations based on
whether they are class annotations (@invariant) or method
annotations (@requires , @modifies , @ensures , or
@exsures). Then, we count invariants lexically and seman-
tically (Figure 5.5).

Lexical annotation measurements count the textual lines of
annotations in the source file. Essentially, the lexical count is
the number of stylized comments in the file.

Semantic annotation measurements count how many dis-
tinct properties are expressed. The size of the semantic set
is related to the lexical count. However, an annotation may ex-
press multiple properties, for instance if it contains a conjunc-
tion. Additionally, an annotation may not express any proper-
ties, if a user writes essentially the same annotation twice or
writes an annotation that is implied by another one.

We measure the semantic set of annotations (in addition to
the lexical count) because it is truer to the actual content of
the annotations: it removes ambiguities due to users’ syntactic
choices, and it accounts for unexpressed but logically deriv-
able properties.

To measure the semantic set, we created specially-formed
calling code to grade the ADT. For each semantic property
to be checked, we wrote one method in the calling code. The
method instructs ESC/Java to assume certain conditions and
check others; the specific conditions depend on the property
being checked. For instance, to check a class invariant, the
grading method takes a non-null instance of the type as an ar-
gument and asserts that the invariant holds for the argument.
For preconditions, the grading method attempts one call that
meets the condition, and one call that breaks it. If the first
passes but the second fails, the precondition is present. Simi-
lar techniques exist for modifies clauses and postconditions.

The grading system may fail if users write bizarre or un-

Written

Verifiable

Minimal

Removed

Added

Correct Bonus

Figure 5.6: Visualization of written and verifiable sets of anno-
tations. The left circle represents the set of invariants written
by the user; the right circle represents the nearest verifiable
set. The overlap is correct invariants, while the fringes are ad-
ditions or deletions. In general, the nearest verifiable set (the
right circle) is not necessarily the smallest verifiable set (the
shaded region). See Section 5.3.4 for details.

expected annotations, so we verified all results of the grading
system by hand. We found that mistakes were infrequent, and
where they did occur, we counted the invariants by hand. How-
ever, by and large, this automatic grading system ensures that
our measurements are reliable, unbiased, and reproducible.

Computed Values

From the quantities directly measured (Figure 5.4) we com-
puted additional variables to compare results across differing
programs, and to highlight illuminating quantities.

Figure 5.6 visualizes the measured and derived quanti-
ties. The measured quantities are the user’s final annotations
(“Written”) and the nearest verifiable set (“Verifiable”). Both
are sets of annotations as measured by thesemanticcounting
technique described in the preceding section. If the user was
not successful, then the written and verifiable sets differ. To
create a verifiable set, we removed unverifiable annotations
(“Removed”), and added other annotations (“Added”). Veri-
fiable annotations written by the user fall into the middle sec-
tion (“Correct”). Finally, compared with the minimal possible
verifiable answer (“Minimal”), the user may have expressed
additional annotations (“Bonus”). The minimal set does not
depend on the user’s written annotations.

From these measurements, we compute several values.
Precision, a measure of correctness, is defined as the frac-

tion of the written annotations that are correct (correct
written). Pre-

cision is always between 0 and 1. The fewer “−” symbols in
Figure 5.6, the higher the precision. We measure precision to
determine the correctness of a user’s statements.

Recall, a measure of completeness, is defined as the frac-
tion of the verifiable annotations that are written (correct

verifiable).
Recall is always between 0 and 1. The fewer “+” symbols

24

in Figure 5.6, the higher the recall. We measure recall to de-
termine how many necessary statements a user wrote. In this
study, recall was a good measure of a user’s progress in the
allotted time, since recall varied more than precision.

Densitymeasures the average amount of semantic informa-
tion per lexical statement. We measure density by dividing the
size of the user’s semantic annotation set by the lexical an-
notation count. We measure density to determine the textual
efficiency of a user’s annotations. If a user writes many redun-
dant properties, density is low. Additionally, when Houdini
is present, programs may have higher invariant densities, since
some properties are inferred and need not be present as explicit
annotations.

Redundancy measures unnecessary effort expended by
Houdini users. For the Houdini trials, we computed the seman-
tic set of properties written explicitly by the user and then re-
stricted this set to properties that Houdini could have inferred,
producing a set of redundantly-written properties. We created
a fraction from this set by dividing its size by the number of
properties inferable by Houdini for that program. This frac-
tion lies between 0 and 1 and measures the redundancy level
of users’ annotations in relation to the annotations that Hou-
dini may infer.

Bonus, a measure of additional information, is defined
as the ratio of verifiable annotations to the minimal set
(verifiable

minimal). The larger the top section of the right circle in
Figure 5.6, the larger the bonus. We measured bonus to judge,
in a program-independent way, the amount of properties the
user expressed.

Bonus annotations are true properties that were not needed
for the verification task studied in this experiment, but may
be helpful for other tasks or provide valuable documentation.
They generally specify the behavior of the class in more detail.
In StackAr , for instance, frequently-written bonus annota-
tions specify that unused storage is set to null, and thatpush
andpop operations may modify only the top of the stack (in-
stead of any element of the stack).

Miscellaneous Values

We studied the statistical significance of other computed vari-
ables, such as the effect of the first trial’s treatment on the
second trial, the first trial’s program on the second trial, the
distinction between object or method annotations, whether the
user used Windows, etc. None of these factors was statistically
significant.

5.4 Quantitative Results

This section presents quantitative results of the experiment,
which are summarized in Figure 5.7. Each subsection dis-
cusses one dependent variable and the factors that predict it.

We analyzed all of the sensible combinations of variables
listed in Section 5.3.4. All comparisons discussed below are
statistically significant at thep = .10 level. Comparisons that
are not discussed below are not statistically significant at the

Effects predicted byTreatment
Depend. var. None Houd. DT,S Dgood Confidence
Success (¬Q) 36% 71% p = 0.03
Recall 72% 85% p = 0.02
Density 1.00 1.78 1.00 p < 0.01
Bonus 1.25 1.47 1.75 p < 0.01

Effects predicted byProgram
Depend. var. DisjSets StackAr QueueAr Confidence
Success 72% 52% 0% p < 0.01
Time 44 50 60 p < 0.01
Precision 98% 88% p = 0.01
Recall 95% 85% 64% p < 0.01

Effects predicted byExperience
Depend. var. First trial Second trial Confidence
Redundancy 36% 65% p = 0.02

Figure 5.7: Summary of important numerical results. For
each independent variable, we report the dependent variables
that it predicted and their means. If a mean spans multiple
columns, the effect was statistically indistinguishable among
those columns. Variables are explained in Section 5.3.4, and
effects are detailed in Section 5.4. (¬Q means that the result
holds only ifQueueAr data, for which no users were success-
ful, is omitted.)

p = .10 level. To control experimentwise error rate (EER),
we always used a multiple range test [Rya59] rather than di-
rect pairwise comparisons, and all of our tests took account of
experimental imbalance. As a result of these safeguards, some
large absolute differences in means are not reported here. For
instance, Daikongood users averaged 45 minutes, while users
with no tool averaged 53 minutes, but the result was not sta-
tistically justified. The lack of statistical significance was typ-
ically due to small sample sizes and variations in individual
performance.

5.4.1 Success

We measured user success to determine what factors may gen-
erally help or hurt a user; we were particularly interested in
the effect of the annotation assistant. Perhaps Daikon’s an-
notations are too imprecise or burdensome to be useful, or
perhaps Houdini’s longer runtime prevents users from making
progress.

The only factor that unconditionally predicted success was
the identity of the program under test (p < 0.01). Success
rates were 72% forDisjSets , 52% forStackAr , and 0%
for QueueAr . This variety was expected, since the programs
were selected to be of varying difficulty. However, we did not
expectQueueAr to have no successful users.

If the data fromQueueAr trials are removed, then whether
a tool was used predicted success (p = 0.03). Users with no
tool succeed 36% of the time, while users with either Daikon
or Houdini succeeded 71% of the time (the effects of the as-

25

sistants were statistically indistinguishable).
These results suggest that some programs are difficult to an-

notate, whether or not either Daikon or Houdini is assisting.
QueueAr requires complex invariants due to ESC/Java’s ex-
pression language. (Section 5.6 considers this issue in more
detail.) Furthermore, for more easily-expressible invariants,
tool assistance improves the success rate by a factor of two.

5.4.2 Time

We measured time to determine what factors may speed or
slow a user. Perhaps evaluating Daikon’s suggested annota-
tions takes extra time, or perhaps Houdini’s longer runtime
adds to total time spent.

As with success, a major predictor for time spent was the
program under test (p < 0.01). Mean times (in minutes) were
44 for DisjSets , 50 for StackAr , and 60 forQueueAr .
If the QueueAr trials are again removed, then experience also
predicted time (p = 0.08). First-time users averaged 49 min-
utes, while second-time users averaged 43.

Since no other factors predict time, even within successful
users, these results suggest that the presence of the assistance
tools neither slow down nor speed up the annotation process,
at least for these programs. This is a positive result for both
tools since the time spent was not affected, yet other measures
were improved.

5.4.3 Precision

We measured precision, the fraction of a user’s annotations
that are verifiable, to determine what factors influence the cor-
rectness of a user’s statements. Successful users have a preci-
sion of 100% by definition. Perhaps the annotations supplied
by Daikon cause unsuccessful users to have incorrect annota-
tions remaining when time is up.

As expected, precision was predicted by the program under
test (p = 0.01). Together,StackAr andDisjSets were
indistinguishable, and had a mean precision of 98%, while
QueueAr had a mean of 88%.

These results suggest that high precision is relatively easy
to achieve in the time allotted. Notably, Daikon users did not
have significantly different precision than other users. Since
ESC/Java reports which annotations are unverifiable, perhaps
users find it relatively straightforward to correct them. Sup-
porting qualitative results appear in Section 5.5.3.

5.4.4 Recall

We measured recall, the fraction of the necessary annotations
that the user writes, to determine what factors influence the
progress a user makes. Successful users have a recall of 100%
by definition. Perhaps the assistants enabled the users to make
more progress in the allotted time.

As expected, recall was predicted by the program under test
(p < 0.01). Mean recall was 95% forDisjSets , 85% for
StackAr , and 64% forQueueAr .

Recall was also predicted by treatment (p = 0.02). Mean
recall increased from 72% to 85% when any tool was used,
but the effects among tools were statistically indistinguishable.
If the QueueAr trials are removed, the effect is more pro-
nounced (p < 0.01): mean recall increased from 76% to 95%
when any tool was used.

This suggests that both tools assist users in making progress
toward a specific task, and are equally good at doing so. More
surprisingly, users of Daikon were just as effective starting
from a tiny test suite as from a good one – a comprehensive
test suite was not required to enhance recall.

5.4.5 Density

We measured the semantic information per lexical statement
to determine what factors influence the textual efficiency of a
user’s annotations. Perhaps the annotations provided by Dai-
kon cause users to be inefficiently verbose, or perhaps Houdini
enables users to state properties using fewer written annota-
tions.

The only factor that predicted the density was treatment
(p < 0.01). Houdini users had a mean density of 1.78 seman-
tic properties per written statement, while non-Houdini users
had a mean of 1.00.

Notably, density in Daikon trials was statistically indistin-
guishable from the null treatment, with a mean 2% better than
no tool.

5.4.6 Redundancy

For Houdini trials, we measured the redundancy of users’ an-
notations in relation to the annotations that Houdini may infer
(the computation is explained in Section 5.3.4). Perhaps users
understand Houdini’s abilities and do not repeat its efforts, or
perhaps users repeat annotations that Houdini could have in-
ferred.

The only factor that predicted redundancy was experience
(p = 0.02). Users on the first trial had a mean redundancy of
36%, while users on the second trial had a mean redundancy
of 65%. Surprisingly, second-time users were more likely to
write annotations that would have been inferred by Houdini.

Overall, users redundantly wrote 51% of the available
method annotations. For object invariants, though, users
wrote more redundant annotations as program difficulty in-
creased (14% forDisjSets , 45% forStackAr , and 60%
for QueueAr).

These results suggest that users in our study (who have little
Houdini experience) do not understand what annotations Hou-
dini may infer, and frequently write out inferable invariants.
This effect is more prevalent if users are more familiar with
what invariants are necessary, or if the program under study
is difficult. Related qualitative results are presented in Sec-
tion 5.5.2.

26

5.4.7 Bonus

We measured the relative size of a user’s verifiable set of anno-
tations compared to the minimal verifiable set of annotations
for the same program. The ratio describes the total semantic
amount of information the user expressed in annotations.

The only factor that predicted the bonus information was the
tool used (p < 0.01). Users with the Daikongood treatment had
a mean bonus of 1.75. Users with Daikontiny or Daikonsmall

had a mean bonus of 1.47, while users with Houdini or no tool
had a mean of 1.25.

Examining the same measurements for successful users is
informative, since the verifiable set for unsuccessful users in-
cludes annotations that they did not write (consider the top
three +’s in Figure 5.6). The results held true: for suc-
cessful users, the treatment also predicted bonus information
(p < 0.01). Daikongood users had a mean ratio of 1.71, Dai-
kontiny and Daikonsmall users had a mean ratio of 1.50, while
others had a mean of 1.21.

These results suggest that Daikon users express a broader
range of verifiable properties, with no harm to time or success
at the given task. For instance, inStackAr or QueueAr
Daikon users frequently specified that unused storage is set to
null, and that mutator operations may modify only a single el-
ement. Many Daikon users also wrote full specifications for
the methods, describing exactly the result of each operation.
These bonus properties were not needed for the task studied
in this experiment, but they make the specification more com-
plete. This completeness may be helpful for other tasks, and it
provides valuable documentation.

5.5 Qualitative Results

This section presents qualitative results gathered from exit in-
terviews conducted after each user finished all tasks. Sec-
tion 5.5.1 briefly covers general feedback. Section 5.5.2 de-
scribes experiences with Houdini and Section 5.5.3 describes
experiences with Daikon.

5.5.1 General

While the main goal of this experiment is to study the utility of
invariant inference tools, exploring users’ overall experience
provides background to help evaluate the more specific results
of tool assistance.

Incremental approach

Users reported that annotating the program incrementally was
not efficient. That is, running ESC/Java and using the warn-
ings to figure out what to add was less efficient than spending
a few minutes studying the problem and then writing all seem-
ingly relevant annotations in one go. Four users switched to
the latter approach for the second half of the experiment and
improved their relative time and success (but the data does not
statistically justify a conclusion). Additionally, a few users

who worked incrementally for the whole experiment believed
that an initial attempt at writing relevant annotations at the start
would have helped. All users who were given Daikon annota-
tions decided to work incrementally.

Confusing warnings

Users reported difficulty in figuring out how to eliminate ESC/
Java warnings. Users said that ESC/Java’s suggested fixes
were obvious and unhelpful. Theexsures annotations were
particularly troublesome, since many users did not realize that
the exceptional post-conditions referred to post-state values
of the variables. Instead, users interpreted them like Javadoc
throws clauses, which refer to pre-state conditions that cause
the exception. Additionally, users wanted to call pure methods
in annotations, define helper macros for frequently-used pred-
icates, and form closures, but none of these are possible in
ESC/Java’s annotation language.

Users reported that ESC/Java’s execution trace informa-
tion — the specific execution path leading to a potential er-
ror — was helpful in diagnosing problems. Many users found
the trace to be sufficient, while other users wanted more spe-
cific information, such as concrete variable values that would
have caused the exception.

5.5.2 Houdini

Users’ descriptions of experiences with Houdini indicate its
strengths and weaknesses. A total of 14 participants used Hou-
dini for at least one program. Three users had positive opin-
ions, five were neutral, and six were negative.

Easier with less clutter

The positive opinions were of two types. In the first, users ex-
pressed that Houdini “enabled me to be faster overall.” Hou-
dini appeared to ease the annotation burden, but users could
not identify specific reasons short of “I didn’t have to write
as much down.” In the second, users reported that Houdini
was “easier than Daikon,” often because they “didn’t have to
see everything.” In short, the potential benefits of Houdini —
easing annotation burden and leaving source code cleaner —
were realized for some users.

No noticeable effect

The five users with neutral opinions did not notice any benefit
from Houdini, nor did they feel that Houdini hurt them in any
way. As it operated in the background, no effect was manifest.

Slow and confusing

Users’ main complaint was that Houdini was too slow. Some
users who had previously worked incrementally began making
more edits between ESC/Java runs, potentially making erro-
neous edits harder to track down.

27

Additionally, users reported that it was difficult to figure out
what Houdini was doing (or could be doing); this result is sup-
ported by Section 5.4.6. Some users wished that the annota-
tions inferred by Houdini could have been shown to them upon
request, to aid in understanding what properties were already
present. (The actual Houdini tool contains a front-end that is
capable of showing verified and refuted annotations [FL01],
but it was not available for use in this study.)

5.5.3 Daikon

Benefits

Of the users who received Daikon’s invariants, about half com-
mented that they were certainly helpful. Users frequently sug-
gested that the provided annotations were useful as a way to
become familiar with the annotation syntax. Additionally, the
annotations provided an intuition of what invariants should
be considered, even if what was provided was not accurate.
Finally, provided object invariants were appreciated because
some users found object invariants more difficult to discover
than method annotations.

Overload

About a third of the Daikontiny and Daikonsmall users suggested
that they were frustrated with the textual size of the provided
annotations. Users reported that the annotations had an ob-
scuring effect on the code, or were overwhelming. Some users
said they were able to learn to cope with the size, while oth-
ers said the size was a persistent problem. Daikongood users
reported no problems with the output size.

Incorrect suggestions

A significant question is how incorrect suggestions from an
unsound tool affect users. A majority of users reported that
removing incorrect annotations provided by Daikon was easy.
Others reported that many removals were easy, but some par-
ticularly complex statements took a while to evaluate for cor-
rectness. Users commented that, forensures annotations,
ESC/Java warning messages quickly pointed out conditions
that did not hold, so it was likely that the annotation was in
error.

This suggests that when a user sees a warning about an in-
valid provided annotation and is able to understand the mean-
ing of the annotation, deciding its correctness is relatively easy.
The difficulty only arises when ESC/Java is not able to verify
a correct annotation (or the absence of a runtime error), and
the user has to deduce what else to add.

The one exception to this characterization occurred for users
who were annotating theDisjSets class. In the test suites
used with Daikontiny and Daikonsmall to generate the annota-
tions, the parent of every element happened to have a lower
index than the child. The diagrams provided to users from
the data structures textbook also displayed this property, so
some users initially believed it to be true and spent time trying

to verify annotations derived from this property. Neverthe-
less, the property indicated a major deficiency in the test suite,
which a programmer would wish to correct if his or her task
was broader than the simple one used for this experiment.

5.5.4 Uses in practice

A number of participants believed that using a tool like ESC/
Java in their own programming efforts would be useful and
worthwhile. Specifically, users suggested that it would be es-
pecially beneficial if they were more experienced with the tool,
if it was integrated in a GUI environment, if syntactic hurdles
could be overcome, or if they needed to check a large existing
system.

A small number of participants believed that ESC/Java
would not be useful in practice. Some users cared more about
global correctness properties, while others preferred validating
by building a better test suite rather than annotating programs.
One user suggested that ESC/Java would only be useful if test-
ing was not applicable.

However, the majority of participants were conditionally
positive. Users reported that they might use ESC/Java oc-
casionally, or that the idea was useful but annotating pro-
grams was too cumbersome. Others suggested that writing and
checking only a few properties (not the absence of exceptions)
would be useful. Some users felt that the system was useful,
but annotations as comments were distracting, while others felt
that the annotations improved documentation.

In short, many users saw promise in the technique, but few
were satisfied with the existing application.

5.6 Discussion

We have carefully evaluated how static and dynamic assistance
tools affect users in a verification task. This section considers
potential threats to the experimental design.

Any experimental study approximates what would be ob-
served in real life, and selects some set of relevant factors
to explore. This study attempts to provide an accurate ex-
ploration of program verification, but it is useful to consider
potential threats to the results, and how we addressed them.

Disparity in programmer skill is known to be very large
and might influence our results. However, we have taken pro-
grammers from a group (MIT and UW graduate students in
computer science) in which disparity may be less than in the
general population of all programmers. Furthermore, we per-
form statistical significance tests rather than merely comparing
means. The significance tests account for spread. (In many
cases large disparities in means were not reported as signifi-
cant.) Use ofp = .10 means that if two samples are randomly
selected from the same population, then there is only a 10%
chance that they are (incorrectly) reported as statistically sig-
nificantly different. If the samples are drawn from populations
with different means, the chance of making such an error is
even less.

28

// Only live elements are non-null

(\forall int i; (0 <= i && i < theArray.length) ==>
(theArray[i] == null) <==>

((currentSize == 0) ||
(((front <= back) && (i < front || i > back)) ||

((front > back) && (i > back && i < front)))))

// Array indices are consistent

((currentSize == back - front + 1) ||
(currentSize == back - front + 1 +

((currentSize > 0) ? theArray.length :
-theArray.length)))

Figure 5.8: Object invariants required byQueueAr for ESC/
Java verification. The written form of the invariants is made
more complicated by the limits of ESC/Java’s annotation lan-
guage.

Our re-implementation of Houdini may also affect the re-
sults. As explained in Section 5.2.1, our implementation will
produce the same results and will run faster, since it postulates
only the true subset of the invariants in Houdini’s grammar.

Experienced ESC/Java users may be affected by tool assis-
tance in different ways than users with only an hour of ex-
perience, but it is infeasible to study users with experience.
We know of no significant number of experienced ESC/Java
users, and training a user to become an expert in ESC/Java
takes months, so is too time-consuming for both the researcher
and the user.

We limited users to a few hours of time at most, which
restricted the size of the programs we could study. Our re-
sults may not generalize to larger programs, if larger programs
have more complex invariants. That no users succeeded on
QueueAr may also seem to support this argument. However,
we believe thatQueueAr is not representative because it re-
quires unusually complicated invariants, whereas larger pro-
grams do not generally require complicated invariants.

We choseQueueAr as a particularly difficult example for
the user study; it guarantees that unused storage is set to null
via the invariants shown in Figure 5.8. These invariants were
particularly difficult for users to generate (and Daikon does not
suggest such complicated properties).

However, larger programs do not necessarily require such
complex invariants. In general, even if a program is large and
maintains complex invariants, not all invariants are needed for
ESC/Java’s verification goals, and the necessary invariants are
both relatively simple and sparse. Chapter 4 (Figure 4.3 on
page 17) showed that a 498-line program required one an-
notation per 7.0 non-comment, non-blank lines of code, and
a 1031-line program required one annotation per 7.1 lines,
whereasQueueAr required an annotation every 1.7 lines. Ad-
ditionally, neither of the larger programs required complex in-
variants.

Finally, since both Daikon and ESC/Java are modular (oper-
ate on one class at a time), the invariants detected and required
are local to one class, which both simplifies the scaling of the

tools and limits the difficulty for a user.

5.7 Conclusion

Static checking is a useful software engineering practice. It
can reveal errors that would otherwise be detected only dur-
ing testing or even deployment. However, static checkers re-
quire explicit goals for checking, and often also summaries of
unchecked code. To study the effectiveness of two potential
specification generators, we have evaluated two annotation as-
sistance tools: Houdini and Daikon. A number of important
conclusions can be drawn from this experiment.

Foremost is the importance of sensible and efficient genera-
tion of candidate specifications. In cases likeQueueAr where
no tool postulates the difficult but necessary invariants, users
spend a significant amount of time trying to discover it. Ef-
ficiency is also important: even with a subset of its grammar
in use, Houdini users complained of its speed. While Dai-
kon fared no better than Houdini in terms of success or time,
Daikongood users were given a more complete candidate spec-
ification, leading to a notably higher bonus. A larger bonus
means that a more complete specification was achieved, which
may be useful for other tasks or serve as a form of documen-
tation. In short, efficient generation of candidate invariants is
an important task, and one Daikon performs well.

Users suggested that a permanent (final) set of annotations
should not clutter the code. Therefore Houdini’s method of
inferring unwritten properties should be helpful. However, the
results show that hiding even simple inferred annotations is
confusing (leading to redundancy). Perhaps a user interface
that allows users to toggle annotations could help.

A key result is that assistants need not be perfect, support-
ing our claim (Section 1.3.3) that partial solutions are useful.
Daikon’s output contained numerous incorrect invariants (see
Figure 5.3), but Daikon did not slow down users, nor did it
decrease their precision. In fact, Daikon helped users write
more correct annotations, and this effect was magnified as bet-
ter suites were used. Users effortlessly discard poor sugges-
tions and readily take advantage of correct ones.

Furthermore, Daikon can use even the tiniest “test suites”
(as small as 32 dynamic calls) to produce useful annotations.
Even test suites drawn from example uses of the program no-
ticeably increase user recall. In short, test suites sufficiently
large to enable Daikon to be an effective annotation assistant
should be easy to come by.

In sum, both assistants increased users’ effectiveness in
completing the program verification task, but each had its own
benefits. Houdini was effective at reducing clutter, but was
too slow to use. Daikon was just as effective, increased the
amount of true properties expressed by the user, and was ef-
fective even in the presence of limited test suites. These results
validate our approach to the automatic generation and check-
ing of program specifications. Users are effectively able to
refine inaccurate output of an unsound generation step into a
verifiable specification more effectively than writing a specifi-
cation from scratch.

29

Chapter 6

Context sensitivity

While we have shown our techniques to be useful, enhance-
ments could improve them further. The chapter suggests the
addition of context sensitivity (Section 6.1) during both gener-
ation (Section 6.2) and checking (Section 6.3).

6.1 Introduction

A context-sensitiveanalysis accounts for control flow infor-
mation, as illustrated by the following example. Consider a
method that picks an element from a collection:

public Object pick(Collection c) {
return c.iterator().next();

}

If a certain caller always passes in an ordered collection,
such as aVector , a context-sensitive analysis that inferred
the specification based on each individual caller could re-
port the post-condition\result == c[0] : the first ele-
ment of theVector was always returned to that caller. Sim-
ilarly, if a caller always passed a collection with a homo-
geneous element type, a context-sensitive analysis could re-
port \typeof(\result) == \elementtype(c) : the
return type ofpick matched the element type of its argument.

In contrast,context-insensitivespecification generation may
report that the argument and result are always non-null, but if
pick is called from multiple locations, inference is unlikely
to produce any invariants overpick that relate the argument
to the return value.

6.2 Context-sensitive generation

As shown above, invariant detection that reports properties that
are true for all calls to a procedure may fail to report proper-
ties that hold only in certain contexts. This section proposes
uses for context-sensitive specification generation, describes
a technique to implement it, and provides brief experimental
evidence of its efficacy.

6.2.1 Applications

Context-sensitive invariants can reveal differences in the way
methods are used based upon the nature of the caller. If these

properties can be effectively recovered, they may be applied to
a variety of applications:

Program understanding. In a sense, context-sensitivity
may be seen as an incremental refinement of Daikon, permit-
ting it to be more specific in its output. For example, Dai-
kon’s output concerning elements of a polymorphic container
type might reportelt.class ∈ {String, Integer}: the elements
are limited to two types. With context-sensitivity, Daikon
would be able to report that the container was used with ei-
therString s orInteger s consistently — that all instances
of the container were used homogeneously.

On the other hand, it is possible that context-sensitive in-
variants may reveal completely new information. A context-
insensitive invariant detector may fail to find anything signif-
icant in calls made by aSquare andRectangle class to
a drawRect method. However, a context-sensitive detector
would notice that theSquare always used an equalwidth
andheight . When code must be modified, understanding the
different uses from varied call-sites may be useful, especially
in methods with a complex behavior that is not all exercised
during a single call.

Test suite evaluation. By reporting more properties that
are true over a test suite, a more specific analysis may help
identify unfortunately-true invariants that make the suite less
general than it should be. Depending on the verbosity of the
output, the properties may by processed automatically [Har02]
or may be evaluated by programmers.

Optimization or refactoring identification. The most ob-
vious example is partial specialization. When certain state has
constant or constrained values depending on the origin of the
call, it may be appropriate to split one method into several, one
for each caller, or to move some of the code across the function
boundary into the caller. Static analysis may be able to effect
these optimizations when the parameters are literal constants,
but exploiting dynamic information may give the programmer
a deeper insight than is possible with a static analysis (such as
with [KEGN01]).

Granularity

We can change the character of the analysis by varying the
level of abstraction, orgranularity, with which we distinguish
different callers during inference. At the finest level, every

30

call-site is considered a distinct caller; at an intermediate level,
all calls made from within the same method are considered to-
gether; and at the coarsest level, all calls made from within the
same class are merged — progressively decreasing the “mag-
nification” at which we inspect the caller.

Other methods of grouping are possible, such as by the
thread of the caller, or by a time index as a program moves
through different stages. We chose a lexical approach due to
its ease of implementation and likelihood to both match pro-
grammer intuition and produce useful results.

We note that as granularity becomes coarser, a wider variety
of callers is needed to produce any distinction. Indeed, we
suspect that the benefits of a context-sensitive analysis will be
most evident with larger test suites, or in examples where the
classes under test have a greater number of different clients.

Implicit vs. Explicit

It is worthwhile to consider how invariants produced by a
context-sensitive analysis may contribute to a generated spec-
ification. It may seem that new properties will describe facts
about the users of the class, instead of about its own specifica-
tion.

However, a context-sensitive analysis may be able to relate
behavior that varies with the caller to input parameters or inter-
nal state by partitioning the set of samples in a novel way. The
use of context information for partitioning has the power to
distinguish behavioral aspects where formerly no pattern was
apparent.

We categorize new invariants asexplicitly contextual when
the invariant makes explicit reference to the origin of a method
call, orimplicitly contextual when the invariant was discovered
due to partitioning on a call-site but does not mention a caller
explicitly. Implicitly contextual invariants will certainly con-
tribute to the specification since they are no different than any
other invariant. The effects of explicitly contextual invariants
on a specification are explored in Section 6.3.

6.2.2 Implementation

We have implemented a context-sensitive dynamic invariant
detector by augmenting Daikon’s instrumentation and infer-
ence steps. We briefly describe our implementation techniques
here.

We collect context information using a pre-pass to Daikon’s
normal instrumentation. We transform the program by aug-
menting every in-program procedure call with an additional
argument, a numeric identifier that uniquely identifies the call-
site. The identifier may be added as a formal parameter, or may
be passed via global variable; we chose the former. Daikon’s
normal instrumentation then treats the argument the same as
any other: its runtime value is written to a trace database as
part of the record describing the procedure’s pre-state.

To detect conditional invariants predicated on call-sites, we
must supply Daikon with predicates that identify the call-sites
at the granularity we desire. Since the mapping from a caller
at some granularity to the set of identifiers that represent it is

a function, the predicates necessarily have properties that can
be used to form implications. We augmented Daikon to read
side files produced during context instrumentation and form
the appropriate predicates at inference-time.

Predicate generation can be done at different granularities
while the instrumented source (and resulting trace) stay the
same. This allows varying granularities to be applied to a trace
without having to run the program every time the setting is
changed.

6.2.3 Evaluation

Chapters 4 and 5 propose two ways to evaluate a generated
specification: by studying its static verifiability, and by exam-
ining its utility to users. For the evaluation of our context-
sensitive analysis, we repeat the accuracy experiments, but
substitute a qualitative evaluation by the author for the user
evaluation.

Static Verifiability

Given the additional sensitivity of our analysis, we were cu-
rious how the results of Chapter 4 might change. The output
of our augmented system is a superset of its previous result,
which may either enable additional proofs or add more unver-
ifiable, test-suite dependent properties.

We repeated the experiments described in Chapter 4. In-
variants that explicitly mentioned a call-site were deemed in-
expressible in ESC/Java and thus discarded.

Interestingly, most of the 11 programs had no significant
changes. Since many were a single ADT and its test suite,
there was only one calling context, and no additional informa-
tion could be gained. The only program with any large differ-
ences wasRatPoly , described immediately below.

These results confirm our suspicion that small programs
with one or two classes in isolation will not contain many
context-specific invariants. Furthermore, we see that in some
cases, the addition of sensitivity does not worsen the highly-
accurate results already obtained.

RatPoly: polynomial over rational numbers

The RatPoly program is an implementation of rational-
coefficient polynomials that support basic algebraic opera-
tions [MIT01]. The source contains 498 non-comment lines of
code, in 3 classes and 42 methods. Informal comments state
the representation invariant and method specifications.

We note thatRatPoly ’s implementation was written by a
graduate student in computer science, and its test suite was
written by software engineering instructors for the purpose of
grading student assignments. We believe that the test suite
authors wanted to produce a suite with an exceedingly good
ability to find faults. Even with that motivation, though, the
test suite lacked coverage of certain key values.

This author, who is familiar with theRatPoly code, was
able to pick out the following properties of the program and
its test suite in approximately five minutes, using the output

31

RatNum.approx():::ENTER
(<Called from RatPoly.eval>) ==> (this.denom == 1)

RatNum.div(PolyCalc.RatNum):::ENTER
(<Called from RatPoly.divAndRem>) ==> (arg.denom == 1)

RatNum.mul(PolyCalc.RatNum):::ENTER
(<Called from RatPoly.divAndRem>) ==> (arg.numer >= 0)

Figure 6.1: Indications of test suite deficiencies, as found in partial output of context-sensitive invariant detection onRatPoly ,
using method-level granularity.

of our context-sensitive analysis. Three context-conditional
invariants ofRatNum stood out (Figure 6.1); each indicates
a deficiency in the test suite. The first shows that when
evaluating the polynomial to produce a floating-point value,
RatPoly.eval only calledRatNum.approx with inte-
gers; this indicates that only fraction-less polynomials were
used while testingeval , a clear deficiency in the test suite.
The same situation is evidenced by the second invariant: only
integer-coefficient polynomials are divided. Furthermore, the
third invariant shows that only positive divisors are used.
These invariants point out flaws in the test suite and imme-
diately suggest how to improve it, but do not show up without
a context-sensitive analysis.

Two additional context-conditional invariants ofRatNum
also stood out (Figure 6.2); each indicates a property of
RatPoly ’s representation. The first reflects that zero-valued
coefficients are never stored or manipulated, the second that
NaNvalues are never stored or manipulated.

Finally, four context-conditional invariants ofRatPoly
stood out (Figure 6.3); each indicates an inefficient implemen-
tation choice and candidate for partial specialization. The first
shows thatdiv repeatedly uses theparse route to generate
NaNpolynomials (instead of having a static reference to a sin-
gle instance). The second and third show thatscaleCoeff
is used in a limited way when called fromnegate , while the
fourth shows thatdivAndRem only removes the first element
of a vector. These usage patterns are candidates for partial
specialization, with the potential for speed improvements.

In short, context-sensitive dynamic invariant detection re-
vealed useful properties of both the program and its test suite
that were not known beforehand, and that would have other-
wise gone unnoticed.

6.2.4 Summary

We have presented techniques that augment a dynamic invari-
ant detector to enable context-sensitivity, have described our
implementation, and have provided experimental evidence of
its utility. We introduce the distinction betweenexplicitly and
implicitly contextual invariants, and the idea of agranularity
to context-sensitivity, where data from multiple paths is coa-
lesced based upon the paths’ lexical position in the source.

6.3 Context-sensitive checking

The previous section introduced context-sensitive invariant de-
tection, the distinction between implicitly and explicitly con-
textual invariants, and how explicitly contextual invariants can
assist program understanding and test suite validation. Explic-
itly contextual invariants may also help form a statically veri-
fiable specification.

6.3.1 Polymorphic specifications

Polymorphic code provides generalized behavior that is spe-
cialized for the needs of the caller. The caller may, for in-
stance, define types processed or stored (“a list ofString s”)
or may supply a maximum storage requirement (“support up
to size objects”). In one sense, the polymorphic code has
just one specification, with parameters supplied by the client
at time of use. However, in another sense, we can think of
the code as having multiple specifications, one for each client.
The multiple specifications are similar, but will in at least the
portions that were parameterized — each is an instantiation
of the single, parameterized specification given specific values
for the parameters. If an analysis can recover these instanti-
ations of the generalized specification and apply them at the
proper locations in the code, it is at least as effective as an
analysis that recovers the generalized specification.

We illustrate this concept with a hypothetical example
of a specification generated without context-sensitivity (Fig-
ure 6.4). IntSet uses a containerMyVector to store
its elements. Even thoughIntSet only stores non-null
Integer s, MyVector ’s specification does not reflect this
property because it has multiple callers. Therefore,IntSet
fails to verify becauseMyVector.get is not in general con-
strained to return a non-nullInteger . However, we can
specializeMyVector ’s specification forIntSet by defining
a specification fieldMyVector.user0 that enables a con-
text specific toIntSet (Figure 6.5). With this addition, both
classes would fully verify.

We can generalize this example as follows. If some in-
stances of a classB are used in a limited way from another
classA, and those instances ofB are only used fromA, then
we can specialize a version ofB’s specification toA’s context,
potentially enabling more proofs withinA’s code. The special-
ization would itself be checked, but would only be employed
when checkingA’s code. We term thesepolymorphic specifi-
cations.

32

RatNum.div(PolyCalc.RatNum):::ENTER
(<Called from RatPoly.divAndRem>) ==> (arg.numer != 0)

RatNum.mul(PolyCalc.RatNum):::ENTER
(<Called from RatPoly.divAndRem>) ==> (this.denom >= 1)

Figure 6.2: Indications of representation properties, as found in partial output of context-sensitive invariant detection on
RatPoly , using method-level granularity.

RatPoly.parse(java.lang.String):::ENTER
(<Called from RatPoly.div>) ==> (polyStr.toString == "NaN")

RatPoly.scaleCoeff(PolyCalc.RatTermVec, PolyCalc.RatNum):::ENTER
(<Called from RatPoly.negate>) ==> (scalar.denom == 1)
(<Called from RatPoly.negate>) ==> (scalar.numer == -1)

RatTermVec.remove(int):::ENTER
(<Called from RatPoly.divAndRem>) ==> (index == 0)

Figure 6.3: Indications of implementation inefficiencies, as found in partial output of context-sensitive invariant detection on
RatPoly , using method-level granularity.

class IntSet { class MyVector {
//@ invariant elts != null //@ invariant store != null
private MyVector elts; private Object[] store;

//@ requires elt != null public void add(Object elt);
public void add(Integer elt);

//@ requires index < store.length
//@ requires elts.store.length > 0 public Object get(int index);
//@ ensures \result != null /**/
public Integer min() { ...

return (Integer) elts.get(0); /**/ }
}

...
}
Figure 6.4: Generated specificationswithout explicitly-contextual invariants. Even thoughIntSet only stores non-null
Integer s,MyVector ’s specification does not reflect this property because it has multiple callers. Therefore, the statements
marked with/**/ fail to verify: the first becauseMyVector.get may return null, the second becauseMyVector.get is
not constrained to return anInteger .

class IntSet { class MyVector {
//@ invariant elts.user0 == true //@ ghost public boolean user0;
//@ invariant elts != null
private MyVector elts; //@ invariant store != null

/*@ invariant user0 ==>
//@ requires elt != null (((store elements) != null) &&
public void add(Integer elt); ((store elements).class == Integer))

*/
//@ requires elts.store.length > 0 private Object[] store;
//@ ensures \result != null
public Integer min() { /*@ requires user0 ==>

return (Integer) elts.get(0); ((elt != null) &&
} (elt.class == Integer))

*/
... public void add(Object elt);

}
//@ requires index < store.length
/*@ ensures user0 ==>

((\result != null) &&
(\result.class == Integer))

*/
public Object get(int index);

...
}

Figure 6.5: Generated specificationswith explicitly-contextual invariants. Once explicit context information is added (prop-
erties involvinguser0), verification succeeds. Only one change is made toIntSet ; most additions are toMyVector ’s
specification. (Some\forall and\typeof notation has been abbreviated for clarity and space.)

33

6.3.2 Specialized representation invariants

The specialization of Section 6.3.1 is only necessary if the
Bs used inA maintain an additional representation invariant.
Normally, that invariant would only appear as a property scat-
tered throughoutA (e.g., allBs returned fromA have prop-
erty P). Furthermore, the property would often be impossi-
ble to verify with a modular checker, since the inductive proof
that B’s specialized representation invariant is maintained is
beyond its scope. However, by pushing the invariant intoB,
we can enable its proof via the@invariant annotation, and
allow its consequences to appear as verifiable postconditions
of B’s methods. This is similar (in its effects) to inlining the
code ofB’s methods while checkingA; in essence, it lets us
use a context-insensitive modular checker for context-sensitive
static analysis.

The technique is not limited just to types or nullness, as in
the MyVector example. Any property within the scope of
the tools can be enforced, such as integer ranges, sorted-ness,
etc. Though we use the termpolymorphic specification, the
technique is applicable to more than just standard type infor-
mation.

The only requirement of the context used to specializeB
is consistency: all instances ofB that are used with context-
dependent specification enabled must always be checked with
that specification enabled. Otherwise, soundness is lost.
With this constraint, though, any granularity (defined in Sec-
tion 6.2.1) is acceptable. Our intuition says that a class-level
granularity will be most useful, as was the case withIntSet .
However, an even wider granularity, such as package-level,
may also be useful. We suspect that using a may-alias analysis
would suggest the proper scope. A private representation field
can often be shown to be referenced by only one instance of its
defining class, in which case class-level granularity is appro-
priate. On the other hand, if data is shared within a package,
an instance may be aliased by multiple classes in that pack-
age, which suggests that package-level granularity would be
required.

6.3.3 Algorithm

We propose implementing the checking of explicitly contex-
tual specifications in the following way.

1. Run Daikon with context sensitivity enabled at the class
granularity. The generated specification for a classT may
contain explicitly-contextual implications whose predi-
cate is of the form<Called from Class C> .

2. Construct a setSall of pairs whose elements are every
observed substitution ofT andC as given in the previous
step.

3. Perform an analysis to formSok, a safe subset ofSall.
(The safety requirement is that any time a refined speci-
fication ofT is utilized, those instances ofT are always
checked with the refined specification.) As one choice,

select all pairs whereC has at least one field of typeT
and all fields of typeT are not aliased outside ofC.

4. For each pair inSok

(a) Add a boolean specification-only fielduser C to
T ’s specification.

(b) Replace <Called from Class C> in T ’s
specification withuserC .

(c) For eachT -typed fieldf in C, add an object invari-
ant
@invariant this.f.userC == true .

These steps create context-independent specifications that
may be verified in the same way as any other specification.

6.4 Discussion

We have presented practical techniques to implement both the
generation and checking of automatically-generated specifica-
tions of polymorphic code, a situation that arises in most larger
software projects.

Our generation extension provides a new way to induce Dai-
kon to produce implications. Previous techniques depend on
discovering mutually exclusive properties when inference is
complete. Our technique of splitting based on call-site pro-
vides a necessarily exclusive property that can be used to form
implications.

Our checking extension shows how to use a modu-
lar checker to check context-dependent properties. While
the context-dependent properties were useful in studying
RatPoly even without being checked, providing a way to
validate the specification may enable more users to take ad-
vantage of it.

34

Chapter 7

Scalability

Daikon operates offline and in batch mode, by first read-
ing all data from a trace file into memory, and then process-
ing it. For large or long-running programs, trace files may be
consume too much space or take too long to read from disk,
or Daikon may have insufficient memory to hold all data. To
analyze larger or longer-running programs, Daikon should be
modified to operateincrementally, processing one sample at
a time, without requiring that all data be available in mem-
ory, and operateonline, running concurrently with the program
under test. This chapter proposes a technique to improve the
scalability of Daikon by taking advantage of properties of pro-
gram point structure. By improving Daikon’s use of processor
and memory resources, we enable online and incremental op-
eration, permitting analysis of larger and longer-running pro-
grams.

7.1 Staged inference

As described in Section 2.2 (page 7), the Daikon invariant de-
tector infers invariants over a trace database captured from an
instrumented version of the target program. Daikon operates
in batch mode, by first reading all samples into memory, and
then using multiple passes over the samples to infer invariants.
The multiple passes permit optimizations because certain in-
variants are always true or false, or certain derived variables
are undefined. By testing the strongest invariants in earlier
passes, the weaker invariants or certain derived variables may
not need to be processed at all. For example, ifx = 0 always
holds over an earlier pass, thenx ≥ 0 is necessarily true and
need not be instantiated, tested, or reported on a later pass.
Similarly, unless the invarianti < theArray.length holds, the
derived variabletheArray[i] may be non-sensical.

While operating in passes, Daikon also treats each program
point independently. Therefore, data from one program point
may be discarded before the other points’ data is processed.

However, processing data in passes prevents Daikon from
operating on traces where the amount of the data exceeds avail-
able memory. Currently, programs that run (uninstrumented)
for longer than about two minutes create enough data to reach
this limit. To analyze larger or longer-running programs, Dai-
kon must operate incrementally, so that not all data is required
to be available at once.

The naive solution would be to simply forgo the optimiza-
tions noted in the first paragraph of this section. However, such
an approach is so computationally expensive as to be infeasi-
ble. Some optimization is required so that fewer candidate
invariants are instantiated and tested. Section 7.3 presents a
technique that provides such an optimization, but we first re-
view important terminology.

7.2 Terminology

Section 2.2 described how Daikon operates, but here we more
carefully define its terminology, to give a foundation for the
rest of this chapter.

A program pointis slightly more general than just a specific
location in the program. Instead, it represents a specific scope
(set of variables) and its associated semantics. For example,
consider a program point associated with the pre-state of a
method. Its scope is all fields of the class and any arguments
to the method. Its semantics are that every time the method is
called, a snapshot of all pre-state within scope is taken. For a
program point associated with the object invariants of a class,
its scope is all fields of the class, and its semantics are that
every time the any public method is called, snapshots of all
pre-state and post-state within scope is taken.

A sampleis the snapshot of program state taken for a spe-
cific program point.

A variable is really an expression associated with a given
scope (a program point). It may be a simple field refer-
ence (such asthis.x), may involve array indexing or slic-
ing (such asthis.myArray[x..y]), or may involve other
compound expressions.

A derived variableis a variable whose value is not provided
in a sample, but is instead computed as a function of other
variables after the fact. It is computed by Daikon as opposed
to the front end. For example, array slices are derived from the
full array given in the sample.

7.3 Variable ordering

To improve the performance and usability of Daikon, we pro-
pose that program points should no longer be processed inde-

35

B.m2:::EXITreturnorig(this) orig(this.x) this.xthis

A:::CLASSA.n

A:::OBJECTthis.b this.b.x A.nthis

A.m:::ENTERarg arg.x this.b this.b.x A.nthis

B.m2:::ENTERthis.xthis

A.m:::EXITarg arg.x return this.b this.b.x A.norig(this)orig(arg) orig(arg.x) orig(this.b) orig(this.b.x) orig(A.n) this

B:::OBJECTthis.xthis

Figure 7.2: Flow relationship between variables for the code shown Shaded areas name the program point, while unshaded
boxes represent variables at that program point. Lines show the partial orderingvD described in Section 7.3, with a nub at the
lesser end of the relation. (For instance,arg vD orig(arg) in the lower left corner.) Relations implied by transitivity of
the partial order are not explicitly drawn.

public class A { public class B {
public static int n; private int x;

private B b; public int m2();

public int m(B arg); }
}

Figure 7.1: Example declarations for two simple Java classes.

pendently. Instead, we relate variables from all program points
in a partial order.

The relationship that defines the partial ordervD is “sees as
much data as”. If variablesX andY satisfyX vD Y, then all
data seen atY must also be seen atX — X sees as much data as
Y. As a consequence, the invariants that hold overX are a sub-
set of those that hold overY, since any data that contradicts an
invariant overYmust also contradict the same invariant overX.

Figure 7.2 shows the partial order formed byvD for
the example classes of Figure 7.1. Consider the relation-
ship betweenB:::OBJECT and B.m2:::ENTER . First,
recall that all data from method entries must also apply
to the object invariants. (In other words, object invari-
ants must always hold upon method entry.) Therefore, we
have thisB:::OBJECT vD thisB.m2:::ENTER and this.xB:::OBJECT
vD this.xB.m2:::ENTER. The same holds true for method ex-
its: thisB:::OBJECT vD thisB.m2:::EXIT. Finally, note that
thisB.m2:::ENTER vD orig(this)B:::EXIT, since any pre-state
data associated with a method exit must have been seen on
entry.

For reasons similar to ones that relateB’s variables across
program points, the relationships that contribute to the partial
order are as follows.

Definition of orig() .

Variables onENTERpoints arevD the corresponding
orig() variables at allEXIT and EXCEPTIONpro-
gram points.

Object invariants hold at method boundaries.

Instance variables from theOBJECT program point
are vD the corresponding instance variables on all
ENTER, EXIT , andEXCEPTIONprogram points.

Object invariants hold for all instances of a type.

Instance variables from theT:::OBJECT program point
arevD the corresponding instance variables on instru-
mented arguments and fields of typeT. (For example, see
argA.m:::ENTER andthis.b.A:::OBJECT in Figure 7.2.)

Subclassing preserves object invariants.

Instance variables from theT:::OBJECT program point
arevD the same instance variables on subclasses or non-
static inner classes ofT.

Overriding methods may only weaken the specification.

Argument(s) to a methodmarevD argument(s) of meth-
ods that override or implementm, by the behavioral sub-
typing principle.

36

7.4 Consequences of variable ordering

As shown in the previous section, the partial ordering of vari-
ables implies that when invariants hold true over variables at
certain program points, those invariants also must hold true
at lower (as drawn in Figure 7.2) program points. For in-
stance, if we havethis.xB:::OBJECT ≥ 0, then we also know
thatarg.xA.m:::ENTER ≥ 0.

Daikon’s implementation could take advantage of this fact
by only instantiating, testing, and reporting invariants at the
most general place they could be stated. For instance, if an
invariant always holds over an object’s fields, it would only
exist at theOBJECTprogram point (instead of each method’s
ENTERandEXIT points), and would only need to be tested
once per sample.

The implementation could locate all invariants over a set of
variablesV at a program pointP by forming the closure ofV
atP using the partial ordering, and taking the union (conjunc-
tion) of the invariants present at each point in the closure.

However, for this technique of minimal invariant instanti-
ation to work, both the samples and the invariants must flow
through the partial order in a specific way, as explained in the
next two sections.

7.5 Invariant flow

The observations above lead to the following proposal for in-
variant instantiation.

1. At the start of inference, instantiate invariants only where
one or more of the variables used to fill in the invariant
template has no predecessor in thevD partial order. That
is, a set ofn variablesV should be used to fill ann-ary
template only if∀x∃v ∈ V : x 6@D v.

2. When an invariant is falsified during inference, copy it
“down” to the nearest program point(s) where every vari-
able used by the invariant is less in the partial order-
ing (nearest meaning that there must be no intermediate
choice). That is, a falsified invariant over a set of source
variablesA should be copied to destination setsB when
all variables inB are at the same program point and when
∀a ∈ A : (∃b ∈ B : a vD b)∧ (¬∃x : a @D x @D b).

3. Treat equality specially, using only one of the equal vari-
ables. For example, ifx = y then instantiatex > z, but
not y > z. If x = y is falsified, duplicate all invariants
overx (replacingx with y), and also instantiate invariants
relatingx andy.

One positive consequence of this approach is that methods
defined in interfaces will have invariants reported over their
arguments, even though no samples can ever be taken on in-
terfaces directly. For example, if every implementation of an
interface’s method is called with a non-null argument, Daikon
will report this property as a requirement of the interface, in-
stead of as a requirement of each implementation.

A.m:::ENTERthis.b.x A.n

A:::OBJECTthis.b.x A.n

A.m:::EXITthis.b.x A.norig(this.b.x) orig(A.n)

1 10 0

Figure 7.3: Example indicating the need for path informa-
tion in sample and invariant flow, as described in Section 7.7.
A portion of Figure 7.2 is reproduced, along with a poten-
tial sample (0,0,1,1). Given only that sample, the invariant
this.b.x = A.n at A:::OBJECT should hold. However, if the
sample flows as indicated by the bold links of the partial or-
der, the invariant would be incorrectly falsified. Therefore, the
path taken is important.

7.6 Sample flow

In the invariant flow algorithm, invariants flow down as they
are falsified. This property suggests a corresponding flow al-
gorithm to process samples.

1. Identify the exact program point where the sample was
drawn from.

2. Form the closure of program points that have any variable
filled in by following the relations upward in the partial
order.

3. Feed the sample to each of these program points in a topo-
logical order. A sample is fed to a point after it has been
fed to all points where a variable is greater. Therefore,
any falsified invariants are always coped to lower pro-
gram points before the sample is fed there to falsify them.

7.7 Paths

For both invariant and sample flow, the path taken through the
partial order is important. For example, consider Figure 7.3.
Given only this data, Daikon should report thatthis.b.x = A.n
at A:::OBJECT . However, since we havethis.b.xA:::OBJECT
vD orig(this.b.x)A.m:::EXIT andA.nA:::OBJECT vD A.nA.m:::EXIT,
the values fororig(this.b.x) andA.n would falsify the
invariant. The problem is that the two paths through the partial
order are different — they traverse different program points.

To address this problem, we annotate each edge in the par-
tial order with some nonce. A pair of variables<A1,A2> is
together related to<B1,B2> by the partial order if the path
from A1 to B1 follows the same nonces as the path fromA2
to B2. The nonces must be chosen so that sets of variables
from two program points that are related due to the same item

37

from the list starting on page 36 must share the same nonce. In
terms of Figure 7.2, parallel or nearly-parallel lines from one
program point to another will have the same nonce.

7.8 Tree structure

An important property of the technique presented in this chap-
ter is that an invariant only appears at the one place where it
may be most generally stated. This implies that each variable
has at most one parent, so the partial ordering forms a forest
of variables.

However, at least one situation violates this constraint. With
multiple inheritance (due to interfaces), a method’s specifica-
tion could be governed by multiple interfaces, so its arguments
would have multiple parents in the partial order. Further-
more, depending on the implementation of conditional pro-
gram points, a variable at a conditional program point could
have multiple parents. For instance, a field at a conditioned
method program point might have as parents both the uncondi-
tional version of itself from the unconditional method program
point, and the conditioned version of itself from the object pro-
gram point.

To solve this, we could reword “an invariant only appears
at theone placewhere it may be most generally stated” to
minimal number of places. The implementation would have to
take into account the non-tree nature of the partial order when
flowing samples and variables.

7.9 Conclusion

We have described a technique to improve the scalability
of Daikon by organizing program point structure to embody
knowledge of a program’s structural semantics. This technique
enables Daikon to use processor and memory resources more
efficiently, because invariants that are known to be true need
not be instantiated, tested, or reported. This technique helps
enable online and incremental operation, permitting analysis
of larger and longer-running programs.

38

Chapter 8

Related Work

This is the first research we are aware of that has dynami-
cally generated and statically verified program specifications,
used such information to investigate the amount of information
about program semantics available in test runs, or evaluated
user effectiveness in using dynamically detected specifications
to verify programs.

The component analysis techniques, however, are well-
known: much work has been done with a specific static or
dynamic analysis (Section 8.1). The Houdini tool is notably
similar to our research (Section 8.2). Finally, specifications
generated from Daikon have been used for purposes beyond
the applications explored in this work (Section 8.3).

8.1 Individual analyses

While ours is the first work to evaluate the combination of
static and dynamic analyses, the two component techniques
are well-known.

8.1.1 Dynamic analyses

Dynamic analysis has been used for a variety of programming
tasks; for instance, inductive logic programming (ILP) [Qui90,
Coh94] produces a set of Horn clauses (first-order if-then
rules) and can be run over program traces [BG93], though
with limited success. Programming by example [CHK+93] is
similar but requires close human guidance, and version spaces
can compactly represent sets of hypotheses [LDW00]. Value
profiling [CFE97, SS98] can efficiently detect certain simple
properties at runtime. Event traces can generate finite state
machines that explicate system behavior [BG97, CW98]. Pro-
gram spectra [AFMS96, RBDL97, HRWY98, Bal99] also cap-
ture aspects of system runtime behavior. None of these other
techniques has been as successful as Daikon for generating
specifications for programs, though many have been valuable
in other domains.

8.1.2 Static analyses

Many static inference techniques also exist, including ab-
stract interpretation (often implemented by symbolic execu-
tion or dataflow analysis), model checking, and theorem prov-
ing. (Space limitations prohibit a complete review here.) A

sound, conservative static analysis reports properties that are
true for any program run, and theoretically can detect all sound
invariants if run to convergence [CC77]. Static analyses omit
properties that are true but uncomputable and properties of the
program context. To control time and space complexity (espe-
cially the cost of modeling program states) and ensure termi-
nation, they make approximations that introduce inaccuracies,
weakening their results. For instance, accurate and efficient
alias analysis is still infeasible, though for specific applica-
tions, contexts, or assumptions, efficient pointer analyses can
be sufficiently accurate [Das00].

8.1.3 Verification

Many other tools besides ESC/Java statically check specifica-
tions [Pfe92, EGHT94, Det96, NCOD97]. Examples of static
verifiers that are connected with real programming languages
include LCLint [EGHT94], ACL2 [KM97], LOOP [JvH+98],
Java PathFinder [HP00], and Bandera [CDH+00]. These other
systems have different strengths and weaknesses than ESC/
Java, but few have the polish of its integration with a real pro-
gramming language.

The LOOP project verified an object invariant in Java’s
Vector class [JvH+98, HJv01]. The technique involved au-
tomatic translation of Java to PVS [ORS92, ORSvH95], user-
specified goals, and user interaction with PVS.

8.2 Houdini

The research most closely related to our integrated system is
Houdini [FL01, FJL01], an annotation assistant for ESC/Java.
(A similar system was proposed by Rintanen [Rin00].) Hou-
dini is motivated by the observation that users are reluctant to
annotate their programs with invariants; it attempts to lessen
the burden by providing an initial set. Houdini takes a candi-
date annotation set as input and computes the greatest subset
of it that is valid for a particular program. It repeatedly in-
vokes the checker and removes refuted annotations, until no
more annotations are refuted. The candidate invariants are all
possible arithmetic comparisons among fields (and “interest-
ing constants” such as−1, 0, 1, array lengths, andnull);
many elements of this initial set are mutually contradictory.

39

At present, Houdini may be more scalable than our sys-
tem. Houdini took 62 hours to run on a 36,000-line program.
Daikon has run in under an hour on several 10,000-line pro-
grams. Because it currently operates offline in batch mode, its
memory requirements make Daikon unlikely to scale to sig-
nificantly larger systems without re-engineering. This is a lim-
itation of the Daikon prototype, not of the technique of dy-
namic invariant detection. An appropriate re-engineering ef-
fort is currently underway, with its approach driven in part by
insights gained in through this research.

Houdini has been used to find bugs in several programs.
Over 30% of its guessed annotations are verified, and it tends
to reduce the number of ESC/Java warnings by a factor of 2–5.
With the assistance of Houdini, programmers may only need
to insert about one annotation per 100 lines of code.

Daikon’s candidate invariants are richer than those of Hou-
dini; Daikon outputs implications and disjunctions, and its
base invariants are also richer, including more complicated
arithmetic and sequence operations. If even one required in-
variant is missing, then Houdini eliminates all other invariants
that depend on it. Houdini makes no attempt to eliminate im-
plied (redundant) invariants, as Daikon does (reducing its out-
put size by an order of magnitude [ECGN00]), so it is diffi-
cult to interpret numbers of invariants produced by Houdini.
Houdini’s user interface permits users to ask why a candidate
invariant was refuted; this capability is orthogonal to proposal
of candidates. Finally, Houdini was not publicly available un-
til shortly before publication, so we could not perform a direct
comparison.

Combining the two approaches could be very useful. For
instance, Daikon’s output could form the input to Houdini,
permitting Houdini to spend less time eliminating false invari-
ants. (A prototype “dynamic refuter” — essentially a dynamic
invariant detector — has been built [FL01], but no details or re-
sults about it are provided.) Houdini has a different intent than
Daikon: Houdini does not try to produce a complete specifica-
tion or annotations that are good for people, but only to make
up for missing annotations and permit programs to be less clut-
tered; in that respect, it is similar to type inference. However,
Daikon’s output could perhaps be used explicitly in place of
Houdini’s inferred invariants. Invariants that are true but de-
pend on missing invariants or are not verifiable by ESC/Java
would not be eliminated, so users might be closer to a com-
pletely annotated program, though they might need to elimi-
nate some invariants by hand.

8.3 Applications

In this work, we evaluate the accuracy of Daikon’s specifica-
tion generation, and measure its effectiveness when used to
assist a program verification task. The surprising accuracy of
the results suggest that other uses of the generated specifica-
tions will have utility. Indeed, other researchers have usefully
utilized specifications generated from Daikon.

Generated specifications enable proofs over languages other
than Java. Our colleagues are currently integrating Dai-

kon with IOA [GLV97], a formal language for describ-
ing computational processes that are modeled using I/O au-
tomata [LT89]. The IOA toolset (http://theory.lcs.

mit.edu/tds/ioa.html) permits IOA programs to be run
and also provides an interface to the Larch Prover [GG90], an
interactive theorem-proving system for multisorted first-order
logic. Daikon proposes goals, lemmas, and intermediate as-
sertions for the theorem prover. Representation invariants can
assist in proofs of properties that hold in all reachable states
or representations, but not in all possible states or representa-
tions. In preliminary experiments [NWE02], users found Dai-
kon of substantial help in proving Peterson’s 2-process mutual
exclusion algorithm (leading to a new proof that would not
have otherwise been obtained), a cache coherence protocol,
and Lamport’s Paxos algorithm.

Generated specifications also suggest program refactor-
ings — transformations of a program to improve readability,
structure, performance, abstraction, maintainability, or other
characteristics [KEGN01]. It is advantageous to automatically
identify places in the program that are candidates for specific
refactorings. When particular invariants hold at a program
point, a specific refactoring is applicable. Preliminary results
are compelling: Kataoka’s tool identified a set of refactorings
that the author of the codebase had not previously identified or
considered, and their recommended refactoring are justified in
terms of run-time properties of the code that must hold for the
refactoring to be correct.

Generated specifications are also useful for generating or
improving test suites. Harder [Har02] presents the specifica-
tion difference technique for generating, augmenting, and min-
imizing test suites. The technique selects test cases by compar-
ing Daikon-generated specifications induced by various test
suites. A test case is considered interesting if its addition or
removal causes the specification to change. The technique is
automatic, but assumes the existence of a test case generator
that provides candidate test cases. The technique compares
well with branch coverage: it performs about as well for fault
detection, and slightly better for augmentation and minimiza-
tion. However, the real benefit is in its combination with other
techniques, such as branch coverage. Each technique is better
at detecting certain types of faults.

Generated specifications are also effective for anomaly and
bug detection. In [Dod02], Dodoo reports that techniques to
discover predicates for implications in Daikon discover about
30% of the possible fault-revealing invariants supported by
Daikon’s grammar, and that about 30% of the actual reported
invariants are fault-revealing. This suggests that program-
mers may only have to examine a few invariants before find-
ing one that points to the location of a fault. In [ECGN01],
Ernst et al. demonstrate that programmers performing a main-
tenance task on C code were able to use Daikon’s output
to both reveal a preexisting bug, and avoid introducing new
ones. Other similar dynamic analyses are also effective for
similar tasks: [RKS02] uses Daikon along with other tools,
while [HL02] reimplements a subset of Daikon that operates
online alongside the program under test.

40

Chapter 9

Future Work

Possibilities for future research fall into a few broad cate-
gories: improvements to the evaluation (Section 9.1), improve-
ments to the techniques (Sections 9.2 and 9.3), and improve-
ments to the implementation (Section 9.4).

9.1 Further evaluation

Additional evaluation of the ideas proposed in this work is one
of the most valuable lines of future research.

One worthwhile experiment would be a study of what fac-
tors contributed to the success of the accuracy experiment in
Chapter 4. Multiple factors could be varied to explore their
relevance to the results, including the programs under test, the
test suites used to generate invariants, and Daikon settings,
such as thresholds for its statistical tests.

Similarly, insight could be gained into the accuracy of
context-sensitivity (Section 6.2) by enabling the context-
sensitive analysis and performing accuracy experiments sim-
ilar to Chapter 4, but using programs that have more context-
sensitive properties. Examining measurements of redundancy,
precision, and recall while varying the kind of the context-
sensitivity enabled could lend insight into the effects of sen-
sitivity on machine verification.

A case study similar to the modification toreplace de-
scribed in [ECGN01] would be informative. In contrast to
the controlled experiment of Chapter 5, a case study provides
qualitative results regarding the overall utility of generated
specifications in the software life-cycle, instead of quantitative
measures of a one-time task. Furthermore, a case study could
explore larger programs, which may be different or more in-
teresting than smaller programs, but the results would only be
anecdotal.

Finally, we should address performance of automatic tools
such as Daikon. How do cost metrics (time and space require-
ments) correlate with characteristics of the program under test
(textual size or language), characteristics of the test size (calls
or coverage), or settings of Daikon (grammar of invariants,
granularity of context, or statistical thresholds)? Measuring of
these factors would help predict tool performance in situations
not yet explored.

9.2 Specification generation

Even though Daikon was successfully used as a specification
generator in this work, improvements to its analysis could pro-
duce even better results.

Properties that are difficult to obtain from a dynamic analy-
sis may be apparent from an examination of the source code.
For instance, properties enforced by language semantics are
not well-utilized by Daikon. Properties such as inheritance,
overriding, visibility, and immutable fields could both permit
faster inference (by eliminating testing of necessarily-true in-
variants) and more useful output (by avoiding repeating infor-
mation obvious to programmers).

Alternatively, Daikon could focus on code or properties that
stymie a static analysis. Properties that require detailed knowl-
edge of the heap or inter-procedural reasoning are often be-
yond the capabilities of static tools, but may be within Dai-
kon’s reach. For instance, statically detecting the fact that a
Vector -typed argument method never contains nulls might
require analysis of all source code in the program, but a dy-
namic analysis could simply observe all calls to the method
and report whether any nulls were observed.

9.3 Context sensitivity

The extensions of Chapter 6 provide many opportunities for
further exploration.

One way to improve the system would be to integrate the
invariant information into a profile-viewer that helps the user
to visualize the call graph. The viewer could display invari-
ants from certain control flow edges on the edges themselves,
while context-insensitive properties could be associated with
the nodes of the graph. This may be a convenient way to
browse the output. Furthermore, if standard profiler output
(such as call frequencies or elapsed times) is also shown, pro-
grammers can better relate frequent or expensive operations
with the conditions under which they occur.

An important next step in the checking of context-sensitive
specifications is to automatically generalize across multiple
callers and discover the parameter(s) of the underlying poly-
morphic specification. For instance, in the example of Sec-
tion 6.3, we might want to specifyMyVector in terms of
two parameters: what element type it holds, and whether nulls

41

may be stored. Comparing the structure of multiple context-
dependent specifications may provide a way to achieve this re-
sult. Presenting just the generalized specification to users may
be more understandable, or may ease its checking.

The partitioning of data suggested by context information
could be combined with other partitioning techniques [Dod02]
for use by machine learning (statistical) methods to form more
complicated predicates for implications. Context-sensitivity
provides an important first step towards producing useful and
relevant predicates for implications, but its combination with
machine learning may be even more useful.

Finally, future work could consider different degrees or
kinds of context sensitivity. We have proposed examining
callers at the line, method, class, or package granularity, but
other useful groupings of callers may be useful. Furthermore,
the sensitivity could extend to more than just the immediate
caller. Perhaps interesting distinctions would be created by
using the most recentn methods or classes on the stack, or
using the most recent call not from the callee’s class itself.

9.4 Implementation

Finally, Daikon would benefit from improved scalability. It re-
quires that trace data to be written to disk, which prohibits
analysis of large programs, and that all data is available at
once, prohibiting online operation alongside the program. Fur-
thermore, performance with context-sensitivity also degrades
approximately linearly with the average number of callers per
method.

Work is underway to create an implementation of Daikon
that runs online, and that is more efficient at considering pred-
icates for implications. (Chapter 7 presented a part of this de-
sign.) This would remove the need to write disk-based trace
files, and permit the evaluation of larger programs.

42

Chapter 10

Conclusion

This thesis has demonstrated that program specifications
may be accurately recovered from program source code by a
combination of dynamic and static analyses, and that the re-
sulting specifications are useful to programmers.

We retrieve a specification in two stages: the first is agen-
erationstep, where a specification is unsoundly proposed; the
second is acheckingstep, where the proposal is soundly eval-
uated. Our approach is advantageous because the generation
step can take advantage of the efficiency of an unsound anal-
ysis, while the checking step is made tractable by the postu-
lated specification. We expect our techniques to improve pro-
grammer productivity when applied to verification, testing, op-
timization, and maintenance tasks.

We have performed two major experiments to evaluate our
approach. An assessment of the accuracy of the dynamic com-
ponent of specification generation showed that generated spec-
ifications scored over 90% on precision and recall, indicat-
ing that the Daikon invariant detector is effective at generat-
ing consistent, sufficient specifications. An assessment of the
usefulness of the generated specifications to users showed that
imprecision from the dynamic analysis is not a hindrance when
its results are evaluated with the help of a static checker.

We have also proposed techniques to improve the sensitiv-
ity of our analyses when applied to polymorphic code. We
suggest how to account for context-sensitive properties in both
the generation and checking steps, and show how such infor-
mation can assist program understanding, validate test suites,
and form a verifiable specification.

Given that our techniques have been successful within our
domain of investigation, we reflect on broader lessons that can
be gleaned from our results.

Incomplete answers are better than nothing. Incomplete
answers are usable, as long as their contribution out-
weighs the effort involved in their use. If our system
used a different checker, such as one oriented more
to theorem-proving, reports of errors might be less
localized, thus obscuring their root cause. By using a
modular checker, users may have found it (relatively)
easier to be successful when only part of the answer was
provided.

Imprecise answers are better than nothing. Even inaccu-
rate output can be used effectively in practice, especially

when tools assist in separating the good from bad. Many
researchers have traditionally presupposed that complete
soundness is required when dealing with specifications,
and any unsound technique would be disastrous. In fact,
unsound program analysis techniques are justifiably use-
ful for program development.

Interaction is advantageous. Programmer interaction is ac-
ceptable and useful. We are not writing a compiler, but
tools to be used actively by programmers. Attempting to
create a system that solved every problem noted in the
accuracy experiment (Chapter 4) on its own would be
doomed to failure. Allowing programmer involvement
enables success.

Intent matters. One factor in our success is that both tools
used in our system were designed for use by working pro-
grammers using a practical language. This increases the
likelihood that the tools’ vocabulary and semantics are
well-matched, and that programmers can take advantage
of their capabilities. We suspect that integration of tools
with similar characteristics will also succeed, but static
and dynamic tools not meant for direct use by program-
mers may not.

Integration is key. Users are able to effectively use a com-
bination of sound and unsound tools. Each tool by itself
has serious weaknesses, but the two together address each
other’s weaknesses and enhance each other’s strengths.

43

Acknowledgments

Portions of this thesis were previously published at the
First Workshop on Runtime Verification [NE01], at ISSTA
2002 [NE02a], and at FSE 2002 [NE02b]. The first two works
draw mainly from Chapter 4, while the last draws mainly from
Chapter 5.

I have been extremely lucky to have Michael Ernst as my ad-
visor. Michael is committed to helping his students succeed,
and I have been a happy beneficiary of his invaluable guid-
ance, both technical and otherwise. He is always available and
works to involve his students in all aspects of research, from
brainstorming to writing, and implementation to presentation.
From his example, I have come to appreciate and enjoy re-
search. I truly cannot imagine a better graduate advisor.

I also owe thanks to my colleagues in the Program Analysis
Group — particularly Nii Dodoo, Alan Donovan, Lee Lin, Ben
Morse, Melissa Hao, Mike Harder, and Toh Ne Win — for
their contributions and suggestions. Mike Harder in particular
has provided excellent critical review of my ideas, competent
assistance in the engineering of our tools, and a good dose of
common sense.

Alan Donovan was a collaborator for the work in Sec-
tion 6.2.

I am indebted to Chandra Boyapati, Felix Klock, Stephen
Garland, Tony Hoare, Rachel Pottinger, Gregg Rothermel,
Steven Wolfman, and anonymous referees for their helpful
suggestions on previous papers describing this research. Their
feedback has significantly improved my investigation and pre-
sentation.

As my teachers and colleagues in teaching, Michael Ernst,
Daniel Jackson and John Guttag have provided inspiration and
insight into the joys of both studying and teaching software
engineering. Teaching has enabled me to better understand
the fundamental ideas, and taught me how to present my ideas
clearly.

I thank the 6.170 staff members who designed, wrote, and
documented some of the programs evaluated in Chapter 4, and
the programmers who volunteered for the study in Chapter 5
for their time and comments.

This research was supported in part by NSF grant CCR-
0133580 and CCR-9970985 and by a gift from NTT Corpo-
ration.

My musical activities have provided the perfect counterbal-
ance to my technical life. I thank my directors Fred Harris,
Larry Isaacson, Tom Reynolds, Rob Rucinski, and the late
John Corley for creating a wonderful musical environment for
me to enjoy, and my instructors Edward Cohen, Tele Lesbines,
George Ruckert, and Pamela Wood for opening my eyes and
ears to the world of music.

Finally, I thank my parents and grandparents for their un-
wavering support and encouragement. Even though they joke
about not understanding anything I’ve written, they have al-
ways encouraged me to do what I love, and I’m glad that I
have.

44

Appendix A

User study information packet

This appendix contains the information packet that was given to participants in the user study of Chapter 5 (page 20). The
formatting has been slightly altered, but the content remains the same, except for the author’s contact information on page 49,
which has been removed for publication. Also, contrary to what is stated on page 46, we did not actually provide printouts of
the noted documents to study participants.

Finally, we acknowledge that the source code, diagrams, and explanatory text on pages 51–56 are originally from [Wei99].
In particular: the text on page 52 is reproduced from pages 269–272 of [Wei99]; the figure on page 52 is reproduced from
page 272 of [Wei99]; the text on page 54 is reproduced from page 89 of [Wei99]; the figure on page 54 is reproduced from
pages 89–90 of [Wei99]; and the text on page 56 is reproduced from page 78 of [Wei99].

45

INTRODUCTION

Thank you for assisting us with this experiment. This document contains background information, instructions, and reference information.

MOTIVATION

We are interested in the use of automated tools to check that a program does not crash with unexpected runtime errors. By evaluating your
experience verifying two sample programs, we will be able to quantitatively judge our approach, and your individual comments will help us
better understand its merits and deficiencies. Finally, you will have an opportunity to learn about exciting program analysis tools.

EXPECTATIONS

It is important for you to understand our expectations before you start. First, and most importantly, you are under no pressure to complete
this experiment, even after you have started —you may terminate the experiment at any time. Also, no information about your personal
performance will ever be publicly revealed.

We donot expect that everybody will complete all the tasks within the given time bounds — the tasks are (intentionally) of widely varying
difficulties.

Finally, we have no expectations about your own performance. We are not evaluating your abilities — rather, we are evaluating tools for
programmers. Problems you encounter are likely to indicate shortcomings in the tools, and your experiences will help us to evaluate and
improve them.

LOGISTICS

• First, log in (via ssh) to the machinegeyer.lcs.mit.edu , using the username and password you were given. This (temporary)
account is exclusively your own — you are free to edit or upload files to your liking (use scp to transfer files). You should check that
you are able to run Emacs (or your editor of choice). The files and directories mentioned in this document are located relative to your
home directory.

• Next, spend no more than 20 minutes reading this documentation and studying the example below. You should read until you reach the
horizontal line before the EXPERIMENT section.

• You will then have two programming tasks to complete, each of which will be limited to an hour at most. (Some tasks may take
substantially less time; others may not be complete when the hour runs out.)

• Finally, we will conduct a brief exit interview to review your experiences.

More details are presented the the sections below.
In total, you will spend less than 2.5 hours. Please allow for an uninterrupted block of time to work on this project. Feel free to take short

breaks, but please do not read email, etc. while you are working.

THE EXTENDED STATIC CHECKER FOR JAVA

ESC/Java is a tool that statically checks certain program properties. Users express the properties via source code annotations, similar to
assertions. ESC reads the source code (and annotations) and warns about annotations which might not be universally true. ESC also warns
about potential runtime exceptions such as null dereferences and array bounds errors.

The annotations are called “pragmas” by ESC. In general, ESC supports annotations (pragmas) anywhere in the source code. However,
in this experiment, you will only use pragmas that specify properties of an abstract data type. Specifically, you will write a representation
invariant (object invariant) and method specifications (preconditions, postconditions, and modification targets).

ESC is a modular checker: it reasons about code by examining one method at a time. Therefore, ESC both checks and depends on
annotations. For instance, if an annotation describing the return value of an observer method is missing, ESC may not be able to prove a
result about a method which calls that observer.

The next section gives an example of an annotated program. While reading it, you may wish to refer to the user’s manual and quick
reference for ESC/Java. We have given you a printout of these, but you may also read them online.

User’s Manual:
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/SRC-2000-002.html

Quick Reference:
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/SRC-2000-004.html

46

FIXED-SIZE SET

FixedSizeSet is an boolean-array-based implementation of a set of the integers 0-7. You can find the source code in the˜/example/
directory. TheFixedSizeSet class contains the implementation of the set, while theFixedSizeSetCheck class contains a few
testing routines which perform operations on the set. We have annotatedFixedSizeSet in the same way we will ask you to annotate
two other data structures — this is an example of the “finished product” we will ask you to produce.

1. First, confirm that the program passes through ESC/Java without any errors. Run ESC on the sources:

[study@geyer ˜]% cd example
[study@geyer example]% escjava FixedSizeSet.java FixedSizeSetCheck.java

After a few seconds, ESC finishes with output that includes timing information and the word “passed” for each of the methods in
FixedSizeSet . This indicates a successful verification. You may also run ESC/Java on a single file, if you only want to verify one
class.

(If ESC/Java is crashing with a message like “unexpected exit from Simplify”, it is likely that you have nonsensical or contradictory
invariants. Try removing annotations until the problem disappears.)

2. Now, remove the first annotation and see what happens: change the line

/*@ invariant bits != null */

by removing the@. This changes the line from an annotation pragma to a regular comment, which ESC ignores.

3. Run the checker again:

[study@geyer example]% escjava FixedSizeSet.java
...
FixedSizeSet.java:34: Warning: Possible null dereference (Null)

bits[n] = true;
...

ESC reports five warnings. The first one (reproduced above) states that the expressionbits[n] in the add method may cause
a NullPointerException . ESC needs to know that the array is never null to prove correct operation, and a programmer
examining the source could easily determine this is true. However, since ESC checks each method in isolation, programmers must write
the non-nullness condition into the representation invariant.

4. Put back the first annotation (by adding the@again) to restore the example to its original state.

5. Look at the annotations on the contains method and notice the use of the\result notation. In ESC,\result is a variable which
represents the result of the method. Accordingly,\result may only be used in@ensures pragmas. Additionally, notice the use
of == in-between two boolean values. This is a way of writing an “if and only if” (a bi-implication), where each side implies the other.

6. Look at the annotations on the union method and notice the use of the\old(...) notation.

/*@ ensures bits[0] == (\old(bits[0]) || other.bits[0]) */

The use of\old tells ESC to interpret the expression in the pre-state (i.e. on entry to the method). For instance, the above pragma for
union states that after the call, the0th bit be set if either the0th bit was set in the pre-state, or if other had the0th bit set. Variables
described in\old must also be listed in the@modifies clause, or ESC will issue a caution.

7. To see how an omission inFixedSizeSet can affect calling code, disable this annotation from the add method of
FixedSizeSet :

/*@ ensures bits[n] == true */

Then, run escjava onFixedSizeSetCheck.java , which produces the following warning:

FixedSizeSetCheck: checkAdd() ...
--
FixedSizeSetCheck.java:33: Warning: Possible unexpected exception (Exception)

With the annotation missing, ESC/Java cannot verify that the set contains ‘3’ just after it has been inserted, so theCheck code fails.
Replace the disabled annotation.

8. Now, examine the similar method, whose signature is shown here:

public boolean similar(FixedSizeSet other) throws RuntimeException
/*@ ensures other != null */
/*@ exsures (RuntimeException) (other == null) */

47

Note the new clause:@exsures . Exsures is used to talk about postconditions for exceptional exits. Specifically,if the procedure
exits with an exception,then the expression in the exsures clause must be true. Similarly,@ensures are expressions which must
hold on non-exceptional exits.

The @exsures semantics might seem counterintuitive, since we often would say “if (expression) then Exception”, whereas ESC
uses “if Exception then (expression)”. However, the combination of@exsures and @ensures can have the same effect. If
the expressions in@ensures and@exsures are exhaustive (they cover all possibilities), then a caller can determine what will
happen. For instance, in the example above, other can be either null or non-null, so either the@ensures expression must hold, or the
@exsures expression must hold - they are exhaustive. Therefore, the caller is able to know exactly when an exception will occur.

As always, you may talk about either pre-state or post-state values in both@ensures and@exsures annotations (#6 above). Be
sure to use\old if a variable is modified and you want pre-state; it is an easy point to miss.

9. Consider the second requires clause of the fillDigits method.

/*@ requires \typeof(digits) == \type(Object[]) */

This invariant states that the runtime type of the array isObject[] (instead of some subclass); this allows ESC to prove that an
ArrayStoreException won’t happen during assignment. (Recall that the run-time and compile-time of an array may differ.)
Section 3.2.4 of the ESC manual describes this in more detail.

10. The pragmas involving@spec public and theowner field are baseline annotations needed by ESC. You do not have to understand
their specifics, as they will always be provided for you in this experiment.

11. To ensure you understandFixedSizeSet ’s annotations, spend a few minutes reading over the other annotations and/or experi-
menting with adding or deleting annotations. Consult the ESC/Java quick reference or manual if you have questions about any of the
annotations.

PROGRAMMING TASK
The study consists of two experiments, each one hour long. For each experiment, the programming task is as follows.

Two classes will be presented — an abstract data type (ADT) and a class which calls it. You will create and/or edit annotations in the
source code of the ADT. Your goal is to enable ESC/Java to verify that neither the ADT nor the calling code may ever terminate with a
runtime exception. That is, when ESC/Java produces no warnings or errorson both the ADT and the calling code, your task is complete.

TOOLS
For each of the two experiments, you may encounter one of three scenarios.

In the first scenario, you will receive un-annotated source code for the program (except for baseline annotations mentioned in #8 above),
and will use only ESC/Java.

In the second scenario, you will receive un-annotated source code for the program (except for baseline annotations mentioned in #8 above),
but will use the Houdini tool as part of ESC/Java. Houdini is a behind-the-scenes annotation assistant. When you run ESC/Java, Houdini
steps in and guesses likely annotations, which are fed into ESC/Java along with your source code. If a guessed annotation fails to verify, it
is simply ignored and has no effect on your checking. The guessed invariants are not shown to the user. By guessing likely invariants and
always supplying them for you behind the scenes, Houdini allows you to write fewer annotations in the source code itself. Houdini guesses
annotations of this form:

integers : variable cmp [-1, 0, 1, array .length, variable]
(cmp is = 6= > ≥ < ≤)

references : variable != null

array : first variable elements of array are non-null

In the third scenario, you will receive source code with many annotations already present (in addition to the annotations mentioned in
note #8 above). These annotations were produced by the Daikon tool, which infers program invariants from actual program executions. The
properties were true for a small number of executions of the program, and may be true in general. However, since the executions did not
include all possible inputs,some of the provided annotations may not be universally true. You may use these annotations as a starting
point in your programming task. You are permitted to edit or delete them, and to add new annotations.

The third scenario is easy to distinguish, since you will already see annotations when you begin. For the first and second scenarios, you
can tell if Houdini is enabled by running ESC/Java on the source and watching for “Houdini is generating likely invariants” as the first line of
output.

GUIDELINES
• Ensure that both the ADT and calling code pass escjava.

• Ensure that you don’t spend more than 60 minutes on each half.

48

• Do not modify the calling code or the ADT’s implementation at all — you should only add or editannotations in theADT .

• Do not use any unsound pragmas provided by ESC/Java (such as@nowarn, @assume, or @axiom).

• As you work to complete this task, you may have further questions. If you have practical questions, such as how to invoke ESC/Java, or
how to state a certain property, feel free to ask us. However, in order not to invalidate the results of the experiment, we will not answer
questions about the task itself, such as why a certain annotation fails to verify.

• You may contact me (Jeremy) by visiting NE43-525, calling[snip] (w), [snip] (h), emailing[snip], or zephyring[snip].

EXPERIMENT

When you are ready to begin, please start by answering these questions:

What login name were you given (studyXX)? ___________

How many years of post-high-school education have you had? ___________

How many years have you been programming? ___________

How many years have you been programming in Java? ___________

When you are programming, do you primarily work with tools for:
Circle one: Windows, Unix, or Both?

Do you write assert statements (in code) when you are writing code?
Circle one: Never, Rarely, Sometimes, Often, Usually, Always

Do you write assertions in comments when you are writing code?
Circle one: Never, Rarely, Sometimes, Often, Usually, Always

Have you ever used ESC/Java before? ___________

Now, please start with the program in the directory˜/experiment1/ and perform the task described in the PROGRAMMING TASK
section above. See the README file found alongside the source, and photocopies from a textbook that we provide you, for additional
information about the program’s implementation. Spend at most one hour on this program. As you begin, and when you are done, make sure
you record the amount of time you spent in the space below.

Experiment 1 start time: _________________

Experiment 1 stop time: _________________

Experiment 1 elapsed time: _________________

Do not edit the first program again — leave it unchanged as you continue on to the second.
Next, take the program in the directory˜/experiment2/ and perform the same task. Again, note your start, stop, and elapsed times in

the space below. Spend at most one hour on this program.

Experiment 2 start time: _________________

Experiment 2 stop time: _________________

Experiment 2 elapsed time: _________________

When you are done, please contact us for a brief exit interview. You may contact us via any of the methods listed in the section above. If
you are at LCS, simply stopping by room 525 may be easiest. If you are off-site, send me an email and I will call you.

We prefer an oral interview, and you may also find it more convenient, but if you would rather write out your answers, you may answer
the written interview questions below. In either case, please do one of these immediately after finishing, while the experience is fresh in your
mind.

Also, feel free to make comments below about your experience with ESC, Houdini, or any pre-annotated source code you were given. We
are interested in hearing your experiences, comments, and suggestions. (We will also examine your completed work in the˜/experiment1
and˜/experiment2 directories.)

49

EXIT INTERVIEW

(Again, most participants will do an oral interview instead of answering these questions, but you may write your answers if you prefer. Feel
free to use additional sheets if necessary.)

Did you write all your annotations first, then check them, or incrementally add annotations and check? How much time did you spend after
the first ESC/Java run? (Essentially, describe your mode of operation while performing this task). Was the approach the same for both halves;
how did it differ?

Did you use cut-and-paste or write annotations from scratch? Furthermore, did you refer back to previous work during later work, (e.g.
review the example during experiment 2 to find out about exsures)?

What did you find especially hard (or especially easy)?

How much of your effort was struggle learning ESC idiosyncrasies; how much was thought-provoking exploration of the program? (Stated
another way: describe how much time was relatively spent on figuring out syntax or what could be stated, compared to trying to reason about
the program’s behavior or causes of warnings.)

Do you have any suggestions for improving the way the tool(s) work? (What did you expect or want to see which you didn’t?) Did you use
or appreciate the execution path information (branches taken) reported by ESC/Java?

Did the provided annotations help with the process? (If you were provided any annotations.)

Describe your qualitative experience with provided annotations?

If you were provided annotations for experiment 1, were they helpful to use for experiment 2?

Are there situations in your own work where you would consider using ESC/Java (or a similar tool if you don’t write Java code)? If so, under
what circumstances? If you were provided help from Daikon or Houdini, (how) would that affect your decision?

Before starting the experiment, were you already familiar with the notions of representation invariants, preconditions, and postconditions?

Please use this space for any further comments.

50

/**
* Disjoint set class.
* Does not use union heuristics or path compression.
* Elements in the set are numbered starting at 0.
* @author Mark Allen Weiss
*/

public class DisjSets
{

/*@ spec_public */ private int [] s;
/*@ invariant s.owner == this */

/**
* Construct the disjoint sets object.
* @param numElements the initial number of disjoint sets.
*/

public DisjSets(int numElements)
{

s = new int [numElements];
/*@ set s.owner = this */
for(int i = 0; i < s.length; i++)

s[i] = -1;
}

/**
* Union two disjoint sets. For simplicity, we assume root1 and
* root2 are distinct and represent set names.
*
* @param root1 the root of set 1.
* @param root2 the root of set 2.
**/

public void unionDisjoint(int root1, int root2)
{

s[root2] = root1;
}

/**
* Union any two sets.
* @param set1 element in set 1.
* @param set2 element in set 2.
**/

public void unionCareful(int set1, int set2)
{

int root1 = find(set1);
int root2 = find(set2);
if (root1 != root2)

unionDisjoint(root1, root2);
}

/**
* Perform a find.
* Error checks omitted again for simplicity.
* @param x the element being searched for.
* @return the set containing x.
**/

public int find(int x)
{

if(s[x] < 0)
return x;

else
return find(s[x]);

}

}

51

In this chapter, we describe an efficient data structure to solve the equivalence problem. The data structure is simple to implement. Each
routine requires only a few lines of code, and a simple array is used. The implementation is also extremely fast, requiring constant average
time per operation.

Recall that the problem does not require that a find operation return any specific name; just that finds on two elements return the same
answer if and only if they are in the same set. One idea might be to use a tree to represent each set, since each element in a tree has the same
root. Thus, the root of the tree can be used to name the set. We will represent each set by a tree. (Recall that a collection of trees is known as a
forest.) Initially, each set contains one element. The trees we will use are not necessarily binary trees, but their representation is easy, because
the only information we will need is a parent link. The name of a set is given by the node of the root. Since only the name of the parent is
required, we can assume that this tree is stored implicitly in an array: each entrys[i] in the array represents the parent of elementi. If i is
a root, thens[i] = -1 . In the forest in Figure 8.1,s[i] = -1 for 0 ≤ i < 8. As with binary heaps, we will draw the trees explicitly,
with the understanding that an array is being used. We will draw the root’s parent link vertically for convenience.

To perform a union of two sets, we merge the two trees by making the parent link of on tree’s root link to the root node of the other
tree. It should be clear that this operation takes constant time. Figures 8.2, 8.3, and 8.4 represent the forest after each ofunion(4,5) ,
union(6,7) , union(4,6) , where we have adopted the convention that the new root after theunion(x,y) is x . The implicit represen-
tation of the last forest is shown in figure 8.5.

A find(x) on elementx is performed by returning the root of the tree containingx .

52

/**
* Array-based implementation of the queue.
* @author Mark Allen Weiss
**/

public class QueueAr
{

/*@ spec_public */ private Object [] theArray;
/*@ invariant theArray.owner == this */
/*@ spec_public */ private int currentSize;
/*@ spec_public */ private int front;
/*@ spec_public */ private int back;

/**
* Construct the queue.
**/

public QueueAr(int capacity)
{

theArray = new Object[capacity];
currentSize = 0;
front = 0;
back = theArray.length - 1;
/*@ set theArray.owner = this */

}

/**
* Test if the queue is logically empty.
* @return true if empty, false otherwise.
**/

public boolean isEmpty()
{

return currentSize == 0;
}

/**
* Test if the queue is logically full.
* @return true if full, false otherwise.
**/

public boolean isFull()
{

return currentSize == theArray.length;
}

/**
* Make the queue logically empty.
**/

public void makeEmpty()
{

currentSize = 0;
front = 0;
back = theArray.length - 1;
java.util.Arrays.fill(theArray, 0, theArray.length, null);

}

/**
* Get the least recently inserted item in the queue.
* Does not alter the queue.
* @return the least recently inserted item in the queue, or null, if empty.
**/

public Object getFront()
{

if(isEmpty())
return null;

return theArray[front];
}

/**
* Return and remove the least recently inserted item from the queue.
* @return the least recently inserted item in the queue, or null, if empty.
**/

public Object dequeue()
{

if(isEmpty())
return null;

currentSize--;

Object frontItem = theArray[front];
theArray[front] = null;
if (++front == theArray.length)

front = 0;
return frontItem;

}

/**
* Insert a new item into the queue.
* @param x the item to insert.
* @exception Overflow if queue is full.
**/

public void enqueue(Object x) throws RuntimeException
{

if(isFull())
throw new RuntimeException("Overflow");

if (++back == theArray.length)
back = 0;

theArray[back] = x;
currentSize++;

}

}

53

The operations should be clear. To enqueue an elementx , we incrementcurrentSize andback , then settheArray[back] = x .
To dequeue an element, we set the return value totheArray[front] , decrementcurrentSize , and then incrementfront . Other
strategies are possible (this is discussed later). We will comment on checking for errors presently.

There is one potential problem with this implementation. After 10enqueues , the queue appears to be full, sinceback is now at the last
array index, and the nextenqueue would be in a nonexistent position. However, there might only be a few elements in the queue, because
several elements may have already been dequeued. Queues, like stacks, frequently stay small even in the presence of a lot of operations.

The simple solution is that wheneverfront or back gets to the end of the array, it is wrapped around to the beginning. The following
figures show the queue during some operations. This is known as acircular array implementation.

54

/**
* Array-based implementation of the stack.
* @author Mark Allen Weiss
**/

public class StackAr
{

/*@ spec_public */ private Object [] theArray;
/*@ invariant theArray.owner == this */
/*@ spec_public */ private int topOfStack;

/**
* Construct the stack.
* @param capacity the capacity.
**/

public StackAr(int capacity)
{

theArray = new Object[capacity];
/*@ set theArray.owner = this */
topOfStack = -1;

}

/**
* Test if the stack is logically empty.
* @return true if empty, false otherwise.
**/

public boolean isEmpty()
{

return topOfStack == -1;
}

/**
* Test if the stack is logically full.
* @return true if full, false otherwise.
**/

public boolean isFull()
{

return topOfStack == theArray.length - 1;
}

/**
* Make the stack logically empty.
**/

public void makeEmpty()
{

java.util.Arrays.fill(theArray, 0, topOfStack + 1, null);
topOfStack = -1;

}

/**
* Get the most recently inserted item in the stack.
* Does not alter the stack.
* @return the most recently inserted item in the stack, or null, if empty.
**/

public Object top()
{

if(isEmpty())
return null;

return theArray[topOfStack];
}

/**
* Remove the most recently inserted item from the stack.
* @exception RuntimeException if stack is already empty.
**/

public void pop() throws RuntimeException
{

if(isEmpty())
throw new RuntimeException("Underflow");

theArray[topOfStack--] = null;
}

/**
* Insert a new item into the stack, if not already full.
* @param x the item to insert.
* @exception RuntimeException if stack is already full.
**/

public void push(Object x) throws RuntimeException
{

if(isFull())
throw new RuntimeException("Overflow");

theArray[++topOfStack] = x;
}

/**
* Return and remove most recently inserted item
* from the stack.
* @return most recently inserted item, or null, if
* stack is empty.
**/

public Object topAndPop()
{

if(isEmpty())
return null;

Object topItem = top();
theArray[topOfStack--] = null;
return topItem;

}

}

55

Array Implementation of Stacks

An alternative implementation avoids links and is probably the more popular solution. The only potential hazard with this strategy is that
we need to declare an array size ahead of time. Generally this is not a problem, because in typical applications, even if there are quite a few
stack operations, the actual number of elements in the stack at any time never gets too large. It is usually easy to declare the array to be large
enough without wasting too much space. If this is not possible, we can either use the linked list implementation or use a technique, suggested
in exercise 3.29, that expands the capacity dynamically.

If we use an array implementation, the implementation is trivial. Associated with each stack istheArray andtopOfStack , which is−1
for an empty stack (this is how an empty stack is initialized). To push some elementx onto the stack, we incrementtopOfStack and then
settheArray[topOfStack] = x . To pop, we set the return value totheArray[topOfStack] and then decrementtopOfStack .

Notice that these operations are performed in not only constant time, but very fast constant time. On some machines,push es andpops (of
integers) can be written in one machine instruction, operating on a register with auto-increment and auto-decrement addressing. The fact that
most modern machines have stack operations as part of the instruction set enforces the idea that the stack is probably the most fundamental
data structure in computer science, after the array.

One problem that affects the efficiency of implementing stacks is error testing. Our linked list implementation carefully checked for errors.
As described above, apop on an empty stack or apush on a full stack will overflow the array bounds and cause an abnormal termination.
This is obviously undesirable, but if checks for these conditions were put in the array implementation, they would be likely to take as much
time as the actual stack manipulation. For this reason, it has become a common practice to skimp on error checking in the stack routines,
except where error handling is crucial (as in operating systems). Although you can probably get away with this in most cases by declaring the
stack to be large enough not to overflow and ensuring that routines that usepop never attempt topop an empty stack, this can lead to code
that barely works at best, especially when programs are large and are written by more than one person or at more than one time. Because
stack operations take such fast constant time, it is rare that a significant part of the running time of a program is spent in these routines. This
means that it is generally not justifiable to omit error checks. You should always write the error checks; if they are redundant, you can always
comment them out if they really cost too much time. Having said all this, we can now write routines to implement a general stack using
arrays.

A stack class,StackAr is shown, partially implemented, in Figure 3.42. The remaining stack routines are very simple and follow the
written description exactly (see Figs 3.43 to 3.47). Notice that in bothpop andtopAndPop we dereference(that is, make null) the array
reference to the object being removed. This is not required, since it will

56

Bibliography

[AFMS96] David Abramson, Ian Foster, John Michalakes, and Rok
Socǐc. Relative debugging: A new methodology for de-
bugging scientific applications.Communications of the
ACM, 39(11):69–77, November 1996.

[Bal99] Thomas Ball. The concept of dynamic analysis. In
ESEC/FSE, pages 216–234, September 6–10, 1999.

[BBM97] Nicolaj Bjørner, Anca Browne, and Zohar Manna. Au-
tomatic generation of invariants and intermediate as-
sertions.Theoretical Computer Science, 173(1):49–87,
February 1997.

[BG93] Ivan Bratko and Marko Grobelnik. Inductive learning
applied to program construction and verification. In
Jośe Cuena, editor,AIFIPP ’92, pages 169–182. North-
Holland, 1993.

[BG97] Bernard Boigelot and Patrice Godefroid. Automatic
synthesis of specifications from the dynamic observa-
tion of reactive programs. InTACAS ’97, pages 321–
333, Twente, April 1997.

[BLS96] Saddek Bensalem, Yassine Lakhnech, and Hassen
Saidi. Powerful techniques for the automatic genera-
tion of invariants. InCAV, pages 323–335, July 31–
August 3, 1996.

[CC77] Patrick M. Cousot and Radhia Cousot. Automatic syn-
thesis of optimal invariant assertions: Mathematical
foundations. InProceedings of the ACM Symposium
on Artificial Intelligence and Programming Languages,
pages 1–12, Rochester, NY, August 1977.

[CDH+00] James Corbett, Matthew Dwyer, John Hatcliff, Co-
rina P̆as̆areanu, Robby, Shawn Laubach, and Hongjun
Zheng. Bandera: Extracting finite-state models from
Java source code. InICSE, pages 439–448, June 7–9,
2000.

[CFE97] Brad Calder, Peter Feller, and Alan Eustace. Value pro-
filing. In MICRO-97, pages 259–269, December 1–3,
1997.

[CHK+93] Allen Cypher, Daniel C. Halbert, David Kurlander,
Henry Lieberman, David Maulsby, Brad A. Myers, and
Alan Turransky, editors.Watch What I Do: Program-
ming by Demonstration. MIT Press, Cambridge, MA,
1993.

[Coh94] William W. Cohen. Grammatically biased learning:
Learning logic programs using an explicit antecedent
description language.Artificial Intelligence, 68:303–
366, August 1994.

[CW98] Jonathan E. Cook and Alexander L. Wolf. Event-based
detection of concurrency. InFSE, pages 35–45, Novem-
ber 1998.

[Das00] Manuvir Das. Unification-based pointer analysis with
directional assignments. InPLDI, pages 35–46,
June 18–23, 2000.

[Det96] David L. Detlefs. An overview of the Extended Static
Checking system. InProceedings of the First Work-
shop on Formal Methods in Software Practice, pages
1–9, January 1996.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson,
and James B. Saxe. Extended static checking. SRC Re-
search Report 159, Compaq Systems Research Center,
December 18, 1998.

[Dod02] Nii Dodoo. Selecting predicates for conditional invari-
ant detection using cluster analysis. Master’s thesis,
MIT Dept. of EECS, 2002.

[ECGN00] Michael D. Ernst, Adam Czeisler, William G. Griswold,
and David Notkin. Quickly detecting relevant program
invariants. InICSE, pages 449–458, June 2000.

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution.IEEE
TSE, 27(2):1–25, February 2001. A previous version
appeared inICSE, pages 213–224, Los Angeles, CA,
USA, May 1999.

[EGHT94] David Evans, John Guttag, James Horning, and
Yang Meng Tan. LCLint: A tool for using specifica-
tions to check code. InFSE, pages 87–97, December
1994.

[EGKN99] Michael D. Ernst, William G. Griswold, Yoshio
Kataoka, and David Notkin. Dynamically discover-
ing pointer-based program invariants. Technical Report
UW-CSE-99-11-02, University of Washington, Seattle,
WA, November 16, 1999. Revised March 17, 2000.

[Els74] Bernard Elspas. The semiautomatic generation of in-
ductive assertions for proving program correctness. In-
terim Report Project 2686, Stanford Research Institute,
Menlo Park, CA, July 1974.

[Ern00] Michael D. Ernst.Dynamically Discovering Likely Pro-
gram Invariants. PhD thesis, University of Washing-
ton Department of Computer Science and Engineering,
Seattle, Washington, August 2000.

[FJL01] Cormac Flanagan, Rajeev Joshi, and K. Rustan M.
Leino. Annotation inference for modular checkers.In-
formation Processing Letters, 2(4):97–108, February
2001.

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an
annotation assistant for ESC/Java. InFormal Methods
Europe, volume 2021 ofLNCS, pages 500–517, Berlin,
Germany, March 2001.

57

[FS01] Cormac Flanagan and James B. Saxe. Avoiding expo-
nential explosion: Generating compact verification con-
ditions. InPOPL, pages 193–205, January 17–19, 2001.

[GG90] Stephen Garland and John Guttag. LP, the Larch Prover.
In M. Stickel, editor,Proceedings of the Tenth Inter-
national Conference on Automated Deduction, volume
449 of LNCS, Kaiserslautern, West Germany, 1990.
Springer-Verlag.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering. Prentice Hall,
Englewood Cliffs, NJ, 1 edition, 1991.

[GLV97] Stephen J. Garland, Nancy A. Lynch, and Mandana
Vaziri. IOA: A language for specifying, programming,
and validating distributed systems. Technical report,
MIT Laboratory for Computer Science, 1997.

[Har02] Michael Harder. Improving test suites via generated
specifications. Master’s thesis, MIT Dept. of EECS,
May 2002.

[HJv01] Marieke Huisman, Bart P.F. Jacobs, and
Joachim A.G.M. van den Berg. A case study in
class library verification: Java’s Vector class.Inter-
national Journal on Software Tools for Technlogy
Transfer, 2001.

[HL02] Sudheendra Hangal and Monica S. Lam. Tracking down
software bugs using automatic anomaly detection. In
ICSE, May 2002.

[HP00] Klaus Havelund and Thomas Pressburger. Model
checking Java programs using Java PathFinder.Interna-
tional Journal on Software Tools for Technology Trans-
fer, 2(4):366–381, 2000.

[HRWY98] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu
Yi. An empirical investigation of program spectra. In
PASTE ’98, pages 83–90, June 16, 1998.

[JvH+98] Bart Jacobs, Joachim van den Berg, Marieke Huisman,
Martijn van Berkum, Ulrich Hensel, and Hendrik Tews.
Reasoning about Java classes. InOOPSLA, pages 329–
340, Vancouver, BC, Canada, October 18–22, 1998.

[KEGN01] Yoshio Kataoka, Michael D. Ernst, William G. Gris-
wold, and David Notkin. Automated support for pro-
gram refactoring using invariants. InICSM, pages 736–
743, November 2001.

[KM97] Matt Kaufmann and J Strother Moore. An industrial
strength theorem prover for a logic based on Common
Lisp. IEEE TSE, 23(4):203–213, April 1997.

[Lam88] David Alex Lamb.Software Engineering: Planning for
Change. Prentice Hall, Englewood Cliffs, NJ, 1988.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A notation for detailed design. In Haim Kilov,
Bernhard Rumpe, and Ian Simmonds, editors,Behav-
ioral Specifications of Businesses and Systems, pages
175–188. Kluwer Academic Publishers, Boston, 1999.

[LBR00] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Pre-
liminary design of JML: A behavioral interface speci-
fication language for Java. Technical Report 98-06m,
Iowa State University, Department of Computer Sci-
ence, February 2000. Seewww.cs.iastate.edu/
˜leavens/JML.html .

[LDW00] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Ver-
sion space algebra and its application to programming
by demonstration. InICML, Stanford, CA, June 2000.

[LG01] Barbara Liskov and John Guttag.Program Develop-
ment in Java: Abstraction, Specification, and Object-
Oriented Design. Addison-Wesley, Boston, MA, 2001.

[LN98] K. Rustan M. Leino and Greg Nelson. An extended
static checker for Modula-3. InCompiler Construction
’98, pages 302–305, April 1998.

[LNS00] K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
ESC/Java user’s manual. Technical Report 2000-002,
Compaq Systems Research Center, Palo Alto, Califor-
nia, October 12, 2000.

[LT89] Nancy A. Lynch and Mark R. Tuttle. An introduction to
Input/Output automata.CWI-Quarterly, 2(3):219–246,
September 1989.

[MIT01] MIT Dept. of EECS. 6.170: Laboratory in software
engineering. http://www.mit.edu/˜6.170/ ,
Spring 2001.

[MW77] James H. Morris, Jr. and Ben Wegbreit. Subgoal in-
duction. Communications of the ACM, 20(4):209–222,
April 1977.

[NCOD97] Gleb Naumovich, Lori A. Clarke, Leon J. Osterweil,
and Matthew B. Dwyer. Verification of concurrent soft-
ware with FLAVERS. InICSE, pages 594–595, May
1997.

[NE01] Jeremy W. Nimmer and Michael D. Ernst. Static ver-
ification of dynamically detected program invariants:
Integrating Daikon and ESC/Java. InProceedings of
RV’01, First Workshop on Runtime Verification, Paris,
France, July 23, 2001.

[NE02a] Jeremy W. Nimmer and Michael D. Ernst. Automatic
generation of program specifications. InISSTA, July
2002.

[NE02b] Jeremy W. Nimmer and Michael D. Ernst. Invariant
inference for static checking: An empirical evaluation.
In FSE, November 2002.

[Nel80] Greg Nelson.Techniques for Program Verification. PhD
thesis, Stanford University, Palo Alto, CA, 1980. Also
published as Xerox Palo Alto Research Center Research
Report CSL-81-10.

[NWE02] Toh Ne Win and Michael Ernst. Verifying distributed
algorithms via dynamic analysis and theorem proving.
Technical Report 841, MIT Lab for Computer Science,
May 25, 2002.

[O’C01] Robert O’Callahan.Generalized Aliasing as a Basis for
Program Analysis Tools. PhD thesis, Carnegie-Mellon
University, Pittsburgh, PA, May 2001.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A
prototype verification system. InProceedings of the
11th International Conference on Automated Deduc-
tion (CADE-11), volume 607, pages 748–752, Saratoga
Springs, NY, June 1992.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and
Friedrich von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of

58

PVS. IEEE TSE, 21(2):107–125, February 1995. Spe-
cial Section—Best Papers of FME (Formal Methods
Europe) ’93.

[PC86] David Lorge Parnas and Paul C. Clements. A rational
design process: How and why to fake it.IEEE TSE,
SE-12(2):251–257, February 1986.

[Pfe92] Frank Pfenning. Dependent types in logic program-
ming. In Frank Pfenning, editor,Types in Logic Pro-
gramming, chapter 10, pages 285–311. MIT Press,
Cambridge, MA, 1992.

[Pre92] Roger S. Pressman.Software Engineering: A Practi-
tioner’s Approach. McGraw-Hill, New York, third edi-
tion, 1992.

[Qui90] J. Ross Quinlan. Learning logical definitions from rela-
tions. Machine Learning, 5:239–266, 1990.

[RBDL97] Thomas Reps, Thomas Ball, Manuvir Das, and James
Larus. The use of program profiling for software main-
tenance with applications to the year 2000 problem. In
ESEC/FSE, pages 432–449, September 22–25, 1997.

[Rin00] Jussi Rintanen. An iterative algorithm for synthesizing
invariants. InAAAI/IAAI, pages 806–811, Austin, TX,
July 30–August 3, 2000.

[RKS02] Orna Raz, Philip Koopman, and Mary Shaw. Semantic
anomaly detection in online data sources. InICSE, May
2002.

[Rya59] T. A. Ryan. Multiple comparisons in psychological re-
search.Psychological Bulletin, 56:26–47, 1959.

[Sal68] Gerard Salton. Automatic Information Organization
and Retrieval. McGraw-Hill, 1968.

[Sem94] Semiconductor Industry Association. The national tech-
nology roadmap for semiconductors. San Jose, CA,
1994.

[Ser00] Silvija Seres. ESC/Java quick reference. Technical Re-
port 2000-004, Compaq Systems Research Center, Oc-
tober 12, 2000. Revised by K. Rustan M. Leino and
James B. Saxe, October 2000.

[Som96] Ian Sommerville. Software Engineering. Addison-
Wesley, Wokingham, England, fifth edition, 1996.

[SS98] Avinash Sodani and Gurindar S. Sohi. An empirical
analysis of instruction repetition. InASPLOS, pages 35–
45, October 1998.

[vR79] C. J. van Rijsbergen.Information Retrieval. Butter-
worths, London, second edition, 1979.

[Weg74] Ben Wegbreit. The synthesis of loop predicates.
Communications of the ACM, 17(2):102–112, February
1974.

[Wei99] Mark Allen Weiss. Data Structures and Algorithm
Analysis in Java. Addison Wesley Longman, 1999.

[WS76] Ben Wegbreit and Jay M. Spitzen. Proving proper-
ties of complex data structures.Journal of the ACM,
23(2):389–396, April 1976.

59

