
A Trusted Third-Party Computation Service

Sameer Ajmani Robert Morris Barbara Liskov

MIT Laboratory for Computer Science

200 Technology Square, Cambridge, MA 02139, USA
{ajmani,rtm,liskov}@lcs.mit.edu

Abstract

We present TEP, a system that supports
general-purpose shared computation between
mutually-distrusting parties. TEP is useful for
applications, such as auctions and tax prepara-
tion, that use private information from multi-
ple participants. Such applications cannot be
run on any one participant’s computer without
sacrificing the other participants’ privacy. TEP
acts as a trusted service that hosts the sensitive
parts of such applications.

TEP uses a Java VM to load and run com-
putations on behalf of clients. TEP uses Java
security mechanisms and cryptographic proto-
cols to ensure that (1) a program can commu-
nicate only with the specific participants identi-
fied for a computation and (2) each participant
knows exactly what program is being run and
who the other participants are. This lets partic-
ipants determine whether information they send
to the computation can be exposed to other par-
ticipants; we show how static analysis greatly
simplifies this task. Example programs show
that the TEP model is useful and easy to pro-
gram; benchmarks show that the TEP prototype
implementation is fast enough to be practical.

Keywords: multiparty computation, trusted
third party, information flow, privacy

This research was supported by DARPA under contract

F30602-98-1-0237 monitored by the Air Force Research

Laboratory.

1 Introduction

Sharing private data in a computation presents
a paradox. How can two parties combine their
private data in a computation without revealing
their data to one another? Many systems, such
as online auctions, solve this problem by intro-
ducing a trusted third party to run the compu-
tation. However, such systems are usually spe-
cialized to a single application and provide only
vague guarantees on the system’s ability to con-
trol information leaks. This paper presents the
Trusted Execution Platform (TEP), a new sys-
tem that supports general-purpose multiparty
computation with specific guarantees on infor-
mation leaks.

Consider an online tax-preparation applica-
tion called “WebTax”. WebTax uses a propri-
etary database provided by a tax preparer and
requires private income data from the client. If
WebTax runs on a computer controlled by ei-
ther the client or the preparer, the privacy of
the other party’s data is compromised. Run-
ning WebTax on TEP protects the privacy of
both parties.

There are two general types of difficulties that
might afflict a trusted third-party computation
service. First, the third party might turn out
not to be trustworthy, due to either malice or
incompetence. We have nothing new to offer
here. We assume that TEP is trustworthy and
simply guarantee that users of TEP can authen-
ticate their connections to TEP.

The second type of difficulty arises when the
participants in a shared computation try to
trick each other. A participant might not realize

1



that a shared computation’s algorithms reveal
its data to another participant. A participant
might be misled about what computation it is
participating in; for example, it might submit a
bid to the wrong auction. A participant might
understand the computation involved, but be
mistaken about who else is participating. A
participant might understand the computation
and know the participants, but be misled about
the role of each participant. Any of these er-
rors could result in undesired exposure of pri-
vate data, even if TEP is completely trustwor-
thy.

The key to avoiding these errors is thorough
identification. TEP provides enough informa-
tion to each participant to allow a precise un-
derstanding of whom the participant’s private
data may be exposed to. TEP identifies spe-
cific properties about each computation to every
participant involved in that computation:

TEP authentication of TEP itself

Program the exact bytecodes of the program
used for a computation

Participants the participants in a computa-
tion

Roles the role each participant plays in the
computation

Instance distinguishes between computations
with the same program, participants, and
roles.

To make these properties meaningful, TEP
must guarantee that data used in a computation
cannot escape through unidentified channels:

Isolation Ensure that data given to a program
cannot leak to parties that are not partici-
pants.

Although TEP can prevent data from being ex-
posed to non-participants, it is still up to each
user to determine whether a program leaks his
or her information to legitimate participants.
Doing this requires inspection of the code. This
inspection process is likely to be tedious and er-
ror prone, so we explain how inspection can be

automated using static information-flow analy-
sis.

Section 2 presents a design for TEP that pro-
vides the required identification and isolation.
Section 3 details how the design is implemented.
Section 4 describes how TEP incorporates static
analysis, and Section 5 presents performance re-
sults for a prototype implementation. Finally,
Section 6 discusses related work, and Section 7
concludes.

2 Design

This section describes how TEP satisfies its
identification and isolation requirements. The
design uses a “call back” model, in which a
computation is invoked with a set of parameters
that identify the participants. The computation
initiates connections to the participants speci-
fied in the parameters. Participants run trusted
local agents that accept connections from com-
putations on TEP and handle the necessary au-
thentication and policy decisions on their par-
ticipant’s behalf.

An alternate model is to allow participants to
initiate connections to computations on TEP.
This has the convenience of following the stan-
dard client-server model and allowing partic-
ipants to join long-running computations dy-
namically. However, this adds complexity to
TEP, since TEP must forward incoming con-
nections to the correct computations. We plan
to support this model in future work.

All communication between a computation
running on TEP and the participants in the
computation occurs through channels. A chan-
nel is a bidirectional communication connection
between a program on TEP and a participant.
A program on TEP can only communicate with
participants using channels, which allows TEP
to authenticate each source and sink for the
data used in the computation.

2.1 TEP Identification

Whenever TEP opens a channel to a partici-
pant, it carries out a two-way authentication

2



protocol in which it identifies itself to the par-
ticipant. This allows the participant to be cer-
tain that it is communicating with TEP. We as-
sume that participants can find the public key
for TEP from a key distribution authority.

2.2 Program Identification

To identify a program, TEP creates a finger-
print of the program bytecodes. The fingerprint
is calculated using a cryptographic hash of the
bytecodes in a canonical order. Given this fin-
gerprint, a participant can determine (with high
probability) what program is running on TEP
and so base its decision about whether to par-
ticipate on local knowledge about that program.

2.3 Participant Identification

Each participant is identified by a public key,
which it uses to authenticate itself when TEP
opens a channel to it. TEP checks that this key
matches the one for the expected participant for
that channel.

2.4 Role Identification

In any computation, a participant plays a par-
ticular role. A role is a name for the part
a participant plays in a computation, such as
client or bidder. Each channel specifies a role
for the participant it connects to; a participant
can refuse the connection if the role isn’t what
it expects. Additionally, roles help users under-
stand how their data is used in the computation,
since there will typically be a direct connection
between a role and a program variable.

2.5 Instance Identification

It is possible that multiple computations with
the same program, participants, and roles are
running on TEP simultaneously. To distinguish
these instances, TEP assigns each computation
an instance identifier. This identifier is a nonce:
a new value that, with high probability, is dif-
ferent from the identifier for any other computa-
tion with the same program, participants, and
roles. This identifier can be used to identify the

computation and its results after the fact, e.g.,
in an auditing procedure.

2.6 Isolation

TEP must ensure that data used in a compu-
tation does not leak to any parties outside that
computation. This requires that TEP restrict a
program’s behavior in a few ways. First, TEP
restricts all program input and output to chan-
nels, so that TEP can intervene before any data
enters or leaves the system. Furthermore, all
communication over these channels is encrypted
and authenticated to prevent eavesdropping and
impersonation.

Next, since TEP is a multi-process system,
TEP must isolate the data areas and name
spaces for concurrent programs from one an-
other.

TEP must also ensure that programs cannot
corrupt TEP’s own process or access system
resources directly, since this might allow pro-
grams to circumvent TEP’s protection mecha-
nisms. TEP denies programs direct access to
the network, disk, and runtime system, since
access to any of these could allow programs to
leak data or attack on TEP directly. This means
programs cannot store any persistent state on
TEP between invocations. This is usually ac-
ceptable, since programs can send intermediate
results to participants over channels and read
them back later.

3 Implementation

This section describes how TEP’s design can be
implemented efficiently.

Programs for TEP are written in Java. Java
provides many features that make the imple-
mentation straightforward, such as type safety
(backed up by bytecode verification) and the
ability to load code dynamically [7].

An example of a Java program for TEP is
given in Figure 1. WebTax is a tax prepara-
tion application with two participants: a client
that provides private income data and a tax pre-
parer that provides a proprietary tax database.

3



WebTax reads data from both participants, cal-
culates the client’s tax, and writes the result
back to the client. This section will refer to this
example as each new concept is introduced.

3.1 Code Structure

Any program that can be run by TEP must pro-
vide exactly one run method. The run method
must be public and static, return void, and
throw no exceptions. This ensures that TEP
can invoke the run method and that TEP need
not provide any specific information on to the
participants how the the method terminates.

Additionally, the parameters of the run

method are limited to the type Participant;
we discuss this type further below. For example,
WebTax takes two participants as arguments,
the client and the tax preparer.

3.2 Invocation

Anyone can invoke a computation on TEP by
specifying a URL for the program, a fingerprint
for the bytecodes, and a set of participant bind-
ings. Say a client with key Kc wants to invoke
WebTax for a tax preparer with key Kp. The
client must provide TEP with a URL for Web-
Tax, a fingerprint for the code, and a role, host,
port, and key for itself and the tax preparer
(presented here in an XML format):

<Invocation url="http://tax.com/app.jar"

md5-hash="L1vqv6VrqBk5OVCXTdhOUA==">

<Participant role="client"

host="host-c.domain.com"

port=1234

key=Kc />

<Participant role="preparer"

host="server.tax.com"

port=6060

key=Kp />

</Invocation>

Typically, the user does not need to provide
this information directly. For example, the tax
preparer might have a web site that would al-
low a client to sign up for tax preparation by
filling out a form. Then the form would be pro-
cessed automatically to provide the invocation
description and send it to TEP.

When TEP receives an invocation request, it
fetches the WebTax application from the URL
and checks that it matches its fingerprint. Then
it runs the bytecode verifier on every class in the
entire application. If either of these fails, TEP
refuses the request.

TEP then looks for WebTax’s run method.
The number of participants in run’s signature
must match the number of participants specified
by the invoker. Given the above computation
request, WebTax’s run method must have this
signature:

public static void run(Participant,

Participant);
If

the invocation request is incompatible with the
method signature, TEP refuses the request.

TEP next creates objects that represent the
participants: one for each participant in the re-
quest. TEP then runs the application, passing
it the Participant objects in the order speci-
fied in the invocation request.

The participant objects are of type
Participant, which is a Java class that
is provided by TEP for use in programs that
will run on TEP. Each Participant contains a
role, host, port, and key:

public class Participant {

final public String role;

final public String host;

final public int port;

final public PublicKey key;

Participant(String role,

String host,

int port,

PublicKey key);

}

Participant is an immutable type that has a
package visible constructor. This means that
only TEP’s code can create Participant ob-
jects. Programs on TEP use participants for
channel creation, as explained in the next sec-
tion.

To support variable numbers of participants,
TEP provides the ability to create an array of
participants that share the same role. For exam-
ple, say participants with keys Ka and Kb wish
to bid in an auction. Each participant can fill
out a form to provide an auction site with their
host, port, and key information (this is not a

4



public class WebTax

{

public static void run(Participant clnt, Participant prep)

{

try {

// read client’s income data

Channel clientChan = new Channel(clnt);

Income income = new Income(clientChan.getInputStream());

//get tax preparer’s channel

Channel prepChan = new Channel(prep);

// calculate taxes

Tax tax = calcTax(income, prepChan);

// send tax to the client

tax.writeTo(clientChan.getOutputStream());

} catch (Exception e) {

// ignored

}

}

}

Figure 1: WebTax Java Code

serious privacy risk since the agents running at
the participants can filter out any unsolicited
computations). The auction site then invokes
the auction on TEP with the command:

<Invocation url="http://tbay.com/app.jar"

md5-hash="6Pjqrrxv6yi+wOYDMdpROA=="

app-ident="1997 Ford Explorer">

<Participant role="auctioneer"

host="tbay.com"

port=7070

key=Kt />

<ParticipantArray role="bidder">

<Participant host="host-a.domain.com"

port=1234

key=Ka />

<Participant host="host-b.domain.com"

port=4321

key=Kb />

</ParticipantArray>

</Invocation>

In an auction, many participants fill the same
role (bidder). This is represented in the re-
quest as a list of participants nested under a
ParticipantArray element that specifies the
role. The corresponding run method for this
request is:

public static void run(Participant,

Participant[]);

Another point about this example is that the
invocation description includes an application
identifier. The app-ident field allows the in-
voker to provide an uninterpreted string that
can be used in an application-specific way. In
this case, it is being used to identify the par-
ticular auction being run. While this field isn’t
strictly necessary, it can be useful to allow an
application to easily distinguish different com-
putations that use the same program. The ap-
plication identifier field is separate from the in-
stance identifier assigned by TEP.

3.3 Channels

TEP provides programmers with an API for cre-
ating and using channels. The implementation
of this API is stored on TEP and linked with
a program when it is loaded. The API defines
one class, Channel:

public class Channel {

public Channel(Participant p)

throws AccessControlException,

5



GeneralSecurityException,

IOException;

public Participant getParticipant();

public InputStream getInputStream();

public OutputStream getOutputStream();

}

Channel contains four instance methods: a
constructor and three accessors. A program cre-
ates a channel by calling the constructor with a
Participant as an argument. The constructor
opens a secure connection to the given partici-
pant and throws an exception if an error occurs.
getParticipant provides access to the partic-
ipant used to create the channel. The other
accessors provide access to the channel using
the standard Java input and output stream ab-
stractions [8]. TEP’s underlying implementa-
tion of these streams provides secure informa-
tion transfer.

TEP creates a channel as follows:

1. connects to p.host and p.port, where p

is the Participant passed to the channel
(throws an IOException if this fails)

2. authenticates the channel and checks that
the peer’s public key matches p.key

(throws an AccessControlException if
this fails)

3. uses encryption and message authentica-
tion codes (MACs) to protect the channel’s
privacy and integrity (throws a General-

SecurityException if this fails)

4. sends the computation information (the
program fingerprint, the application iden-
tifier, this channel’s participant, the other
participants, and the instance identifier) to
the peer in a format similar to the one for
invoking a computation

The required authentication and encryption can
be implemented using any secure session proto-
col, such as SSL [21].

The peer checks that it is connected to the
correct program and that its role is what it ex-
pects; it disconnects if not. The peer may also
check the application identifier and the other
participants; for example, the client of WebTax

may check to be sure that the other participant
is the tax preparer it expects. If TEP receives
no response from the participant, it times out
and throws an IOException to the program.

3.4 Example: WebTax

The Java code for WebTax is presented in Fig-
ure 1. WebTax defines a run method, which
is the top-level method invoked by TEP. When
TEP receives a computation request for Web-
Tax, it creates two Participant objects, one
for the client and one for the tax preparer.

WebTax creates a channel to the client using
the first participant. If the channel is created
successfully (i.e., the agent acting as the client
accepts the channel), WebTax reads the client’s
income data by constructing an Income object
from the channel’s input stream. Income is a
class included with WebTax that knows how to
read its value from a Java InputStream.

Next WebTax creates a channel to the tax
preparer and calls the method calcTax to calcu-
late the client’s tax. This method uses the pre-
parer’s channel to read the preparer’s database
and uses that information along with the client’s
income data to compute the taxes. Finally,
WebTax writes the result to the client’s output
stream by calling the result’s writeTo method
on the client’s output stream.

This program leaks data. Since the client’s
tax incorporates information read from the pre-
parer’s database, some amount of the preparer’s
private information is leaked to the client. This
is presumably acceptable for the tax preparer
(or the program would not have been made
available for general use), and without this leak
no useful computation can be shared. Section 4
will show how static analysis can detect such
leaks.

3.5 Example: Auction

The Auction example in Figure 2 implements a
silent auction for a set of bidders. This applica-
tion is invoked with two types of participants:
a single auctioneer and a set of bidders. The
auctioneer invokes the auction and identifies the

6



item up for bid by setting an application identi-
fier. The auctioneer also sets the reserve price.
The bidders each check the application identi-
fier to confirm they are in the correct auction,
send in a bid, then read the winning bid at the
end of the auction.

First, the program connects to the auctioneer.
If this fails, the program exits, since there is no
reason to continue (it could also contact each
bidder to report the error). The program then
uses the channel to read the reserve price.

Next, the program creates a channel for each
bidder. If the bidder discovers that it is in the
wrong auction, it refuses the connection. In this
case, the program will get an IOException and
continue to the next bidder. After all the bids
have been read and the winning bid has been
calculated, the program reports the winning bid
to each bidder.

3.6 Policies

When a computation connects to a participant,
TEP provides the participant with enough in-
formation to determine whether that computa-
tion can leak the participant’s data. Each par-
ticipant decides independently whether to par-
ticipate in a computation according to its own
local security policies.

Since policies are local, participants can au-
tomate policy processing using a policy en-
gine [23]. A policy engine can answer queries
about policy and, given a computation, de-
cide whether the participant should partici-
pate. These decisions might consider whether
the computation can leak the participant’s data
and, if so, whether the participant considers the
leak acceptable.

By automating the approval process, policy
engines enable participants to connect their own
programs to TEP over channels. Typically, a
particular shared computation will require a
specialized client-side agent to interact with the
computation, and that agent acts as the policy
engine for that computation. For example, an
agent for WebTax accepts a connection from a
computation on TEP and checks that the com-
putation has the correct parameters.

A client-side agent might help a participant
“sign up” for a group computation, such as an
auction, and then wait for a connection from
TEP. When TEP connects to the agent, the
agent checks that the computation is using the
correct bytecodes and that it is bound to the
correct channel. The agent might also check
the bindings for the other participants in the
computation.

A participant must trust its agent, since the
agent has access to the participant’s local data.
This is a serious risk, since an agent could reveal
the participant’s data directly to other parties
on the network. To alleviate this risk, TEP pro-
vides the TepAgent class:

public class TepAgent {

public TepAgent(KeyPair localKeys);

public Invocation getInvocation();

public InputStream getInputStream();

public OutputStream getOutputStream();

}

When constructed, TepAgent waits for a con-
nection from a computation on TEP, authen-
ticates TEP, authenticates itself to TEP using
the local participant’s keys, and reads the invo-
cation information from the connection. Tep-

Agent provides accessors for the invocation in-
formation and the connection to the computa-
tion. Invocation is a Java type that provides
the same information used to invoke the com-
putation.

Application-specific agents can be built on
top of TepAgent. Participants can then deny
application agents direct access to the network
(using Java-style security policies [10]), since
those agents should only communicate to TEP
using TepAgent. TepAgent can provide addi-
tional protection mechanisms, such as request-
ing direct participant approval of a computa-
tion. Since there can be more than one TEP
server, each server should provide a signed im-
plementation of TepAgent (or an appropriate
certificate) that will properly authenticate that
server.

3.7 Isolation

TEP must isolate programs from each other
to ensure they cannot share data outside their

7



public class Auction

{

public static void run(Participant a, Participant bs[])

{

try {

// create a channel to the auctioneer and

// read the reserve price

Channel auctionChan = new Channel("auctioneer", a);

Bid reserve = new Bid(auctionChan.getInputStream());

Bid max = reserve; // the current max bid

} catch (Exception e) {

return; // bad auctioneer: unrecoverable

}

// create an array of channels for the bidders

Channel bidChans[] = new Channel[bs.length];

// open a channel to each bidder and read each bid,

// updating max as needed

for (int i = 0; i < bs.length; i++) {

try {

bidChans[i] = new Channel("bidder", bs[i]);

Bid bid = new Bid(bidChans[i].getInputStream());

if (bid.value > max.value) max = bid;

} catch (Exception e) {

continue; // bad bidder: move on to the next one

}

}

// send the winning bid to each bidder

for (int i = 0; i < bs.length; i++) {

try {

max.writeTo(bidChans[i].getOutputStream());

} catch (IOException e) { /* ignored */ }

}

}

}

Figure 2: Auction Java Code

8



channels. TEP must also prevent programs
from accessing system resources directly, since
otherwise programs could use the disk or the
network to leak data. TEP implements these
measures using specific features of Java: type
safety, classloaders, and security managers.

TEP must ensure the memory safety of each
program. A number of techniques have been
developed to isolate dynamically-loaded code
[22, 18, 16]. TEP depends on Java’s type safety
to provide this protection.

TEP runs each program in its own thread
in TEP’s Java virtual machine (JVM). TEP
creates a new instance of a custom Java class-
loader for each program. This classloader pro-
vides each program with its own class names-
pace and static data area [11]. The classloader
only allows a program to load the TEP-provided
classes Channel and Participant and the ap-
plication classes that are included in the pro-
gram’s JAR file [9]. Java classloaders provide a
form of name space management that prevents
programs from accessing each other’s code and
data [23]. This allows multiple copies of the
same program to execute independently in the
same JVM.

TEP uses Java’s security manager to deny
programs direct access to system resources, such
as the Java runtime environment, the disk, and
the network [10]. This prevents programs from
circumventing TEP’s channel API and ensures
that TEP can intervene before any data leaves
the system. This also protects TEP’s own code
from attack by the programs it runs. Although
these mechanisms suffice, other research has ex-
plored providing much stronger process isola-
tion in Java [3].

TEP does not use any resource allocation
scheme to protect programs from CPU or net-
work starvation. Although unnecessary for
privacy, such a scheme is needed to protect
TEP and the programs it runs against denial-
of-service attacks. Adding resource control
would require that programs include informa-
tion about their resource needs and would re-
quire that TEP either monitor programs’ re-
source consumption [18] or check them stati-
cally [16].

Finally, TEP makes no claims on covert chan-
nels, such as timing channels. However, static
information-flow analysis will allow TEP to de-
tect implicit information flows in the control
structure of a program, as discussed in Sec-
tion 4.

3.8 Extensions

3.8.1 Auditing

Even though TEP identifies each computation
to the participants, participants might disagree
about the result of a computation (for exam-
ple, the winner of an auction or the item up for
bid). The solution to this problem is auditing :
keeping logs of computations for use in settling
future disputes.

TEP can act as a trusted auditor by record-
ing all data sent to a program over each chan-
nel. Provided programs are deterministic, TEP
can “replay” a recorded program by simulating
the channels. To ensure deterministic behavior,
TEP must deny program access to all sources
of nondeterminism, such as the system clock.
This is not a serious limitation since such in-
formation can be provided by participants over
channels (and so logged by TEP). To match au-
dit logs with particular computations, partici-
pants need only provide the instance identifier
assigned by TEP for that computation.

Keeping audit logs places a heavy load on
TEP and introduces the risk that TEP might
leak the logs, since they must be stored for an
extended period of time. A solution is for TEP
to encrypt a computation’s logs once the com-
putation is complete and store the encrypted
logs in a reliable offline database. The compu-
tation information must be public for indexing,
but the privacy of the logs themselves is pro-
tected by encryption.

3.8.2 Using a PKI for Role Bindings

In TEP, each computation has its own bindings
from participant’s roles to keys. This relation
maps naturally to name-key bindings in a public
key infrastructure (PKI), such as PKIX (X.509)
[17] or SPKI [19]. Instead of inspecting the role

9



bindings for a computation at runtime, partici-
pants can create role bindings before a compu-
tation by issuing the appropriate certificates.

Using a PKI, an invocation no longer needs
to include keys in the role bindings. Instead,
an invocation needs to identify the root naming
authority. This is the public key of the certifi-
cation authority (CA) that issues the role-key
bindings for the computation.

When a computation opens a channel, TEP
verifies that the peer’s key is bound to the chan-
nel’s role by certificates issued by the root CA.
TEP sends the root CA key to each participant
along with the other computation information,
so each participant can verify that TEP is using
the correct bindings.

This structure has the benefit of simplifying
participants’ computation approval process at
runtime, since each participant need only check
the root CA key [1]. A drawback is that TEP
must now verify role-key bindings when chan-
nels are created. If this involves searching a
PKI, this can be very slow. Another issue is that
a PKI is less flexible than including role bind-
ings with each computation, since certificate
propagation and revocation can take time. This
is a drawback when bindings need to change of-
ten.

A solution to both these problems is to in-
clude the required certificates with the invo-
cation, as in proof-carrying authentication [2].
Role bindings can be represented as chains of
name certificates in SDSI/SPKI-style linked lo-
cal name spaces; these chains must be provided
to TEP when the computation with those bind-
ings is invoked. This alternative still requires
that TEP verify the proofs of each property;
but this may be faster than requiring that each
participant individually approve the bindings.

A client using a PKI can invoke WebTax with
these parameters:

<Invocation url="http://tax.com/app.jar"

md5-hash="L1vqv6VrqBk5OVCXTdhOUA=="

root-key=Kr>

<Participant role="client"

host="host-c.domain.com"

port=1234 />

<Participant role="preparer"

host="server.tax.com"

port=6060 />

<Proof role="client" key=Kc>

<!-- sequence of certificates -->

</Proof>

<Proof role="preparer" key=Kp>

<!-- sequence of certificates -->

</Proof>

</Invocation>

The top-level element specifies the root CA
key with the root-key attribute. The partici-
pant elements no longer specify keys, since the
role-key bindings are specified by certificates
in the PKI. This invocation include proofs for
these bindings, so TEP doesn’t need to search
the PKI for them. TEP sends this information,
except for the proofs, to each participant in the
computation. Given just the root CA key, the
participants can determine whether TEP is us-
ing the correct bindings for the computation.

3.8.3 Anonymous Participants

Not all participants may want to be identified
to every other participant. In an auction, bid-
ders’ identities are irrelevant to the computa-
tion, and a bidder may want hide its identity
for a given auction. TEP can support this with
anonymous participants: the invoker of a pro-
gram can mark certain participants as anony-
mous, which means their public key, host, and
port will not be sent to the other participants.
However, TEP will report to each participant
the number of anonymous participants in each
role. This allows a participant to refuse to par-
ticipate in a computation where roles should not
be anonymous, such as the tax preparer in Web-
Tax.

4 Information Flow Analysis

As described so far, TEP allows computations
to share data with participants without leaking
their data. But there is a major problem: how
does a participant decide whether the program
being run leaks his or her data? The only way
this can be done so far is for the participant
to carefully inspect the code. Unfortunately,

10



inspection is tedious and error-prone, especially
as programs become more complex.

For example, a client of WebTax would need
to examine the code to be sure that his or her
income information is not leaked to the tax pre-
parer. This would require reading the code of
the calcTax method and all the code it calls.
This may very well be a huge program, so read-
ing it and understanding whether it leaks infor-
mation is a formidable undertaking. Further-
more, the code may be proprietary: the tax
preparer may not want to allow the code to be
read.

The solution to this problem is static
information-flow analysis. This analysis checks
a program at compile-time for information
leaks. Any information that a program leaks
must be explicitly declassified ; the participant
whose data is leaked must explicitly authorize
that leak. For example, the tax preparer must
authorize WebTax. The client, however, knows
that it does not authorize WebTax, and so does
not need to inspect the code (which also pro-
tects the tax preparer’s privacy interests for the
code).

Static analysis tracks not only explicit in-
formation flows through direct computation,
but also implicit flows through the control flow
of a program. For example, the statement
if (secret) channel.write(true) leaks the
value of secret. Static analysis catches this
leak and makes it possible to find leaks that
would be extremely difficult to find by inspec-
tion.

TEP supports static information-flow analy-
sis using Myers’ Java information flow language,
Jif [15, 14]. Jif extends Java with decentral-
ized information-flow labels, a type of annota-
tion that converts information flow analysis to
an extended form of type-checking. A Jif com-
piler or bytecode verifier can efficiently analyze
a labelled Jif program to determine whether it
leaks any data without explicitly declassifying
it, and will reject the program if it does [14, 12].

4.1 Labels

Jif labels are annotations on the type of a vari-
able that represent the privacy policies for that
variable. Labels contain policies owned by prin-
cipals, which are named entities that embody
some authority in a program. Jif defines an or-
dering on labels that prevents data with a given
label from being written to a variable with a less
restrictive label, and so prevents data from be-
ing leaked as it moves between variables in a
program.

Jif allows the roles in a computation to be
captured directly in labels. In particular, a par-
ticipant’s role will be captured by the label on
the Participant object created for that user.
For example, the client’s participant in Web-
Tax would have type Participant{client:}.
This label means that the labeled data item is
readable only by the client. Jif labels have a far
richer structure than shown here, but TEP does
not use anything more.

To illustrate the power of Jif, the Jif version
of WebTax is presented in Figure 3. The first
thing to note is the use of labels in the header of
the run method to capture the roles of the two
participants. This header indicates that there
are two principals involved in running the pro-
gram, one representing the client, and the other,
the tax preparer.

The next thing to notice is the use of chan-
nels. In Jif, channels are parameterized by
the principal of the participant that will be
using that channel. Such a channel restricts
the labels of data that can be read and writ-
ten to the channel, namely to have the label
{principal:}. Thus the channel to the client
will produce data labeled {client:} and will
also only accept data labeled {client:}. Sim-
ilarly the channel produced for the tax pre-
parer produces and accepts only data with the
label {preparer:}. Note that this prevents
the client’s data from being written to the pre-
parer’s channel and vice versa.

The tax computation produces a result that
has a compound label {client:, preparer:},
since the result involves data from both par-
ties. This result cannot be written to the client’s

11



public class WebTax authority (preparer)

{

public static void run(Participant{client:} clnt, Participant{preparer:} prep)

where authority (preparer)

{

try {

// read client’s income data

Channel[client] clientChan = new Channel[client](clnt);

Income{client:} income = new Income(clientChan.getInputStream());

//read preparer’s tax database

Channel[preparer] prepChan = new Channel[preparer](prep);

// calculate taxes

Tax{client:, preparer:} tax = calcTax(income, prepChan);

// send tax to the client

declassify(tax,{client:}).writeTo(clientChan.getOutputStream());

} catch (Exception{client:} e) {

// ignored

} catch (Exception{preparer:} e) {

// ignored

}

}

}

Figure 3: WebTax Jif Code

12



channel since its label doesn’t match what the
channel requires.

To handle this case, Jif allows data to be de-
classified. However, a program can declassify
data only if it runs with the authority of the
principal in the label being removed. WebTax
runs with the authority of the tax preparer, as
indicated in the authority clause in its header.
Therefore, it can declassify the result and return
it to the client.

However, WebTax does not run with the au-
thority of the client. This means that it cannot
remove any of the client’s labels from the data,
and therefore it is unable to leak the client’s
information to the tax preparer. Furthermore,
the client can determine this by simple inspec-
tion of the header of WebTax; it is not necessary
to read the code.

For other programs, however, things aren’t so
simple. For example, the bidders in the auction
need to authorize the program to run with their
authority so that it can let all of them know
about the winning bid. Even so, less reading
of code may be required because the code can
be organized so that all declassification happens
in the top level code. For example, even if the
client of WebTax gave the program some au-
thority (e.g., to release the name and address of
the user to the tax preparer), it would be unnec-
essary to examine the code of calcTax provided
it did not run with the client’s authority, which
can be determined by examining its header.

4.2 Runtime Authority

Jif is far more flexible than described in this
paper; discussion of many of Jif’s features has
been omitted for brevity. However, one feature
of Jif that is particularly helpful to TEP is Jif’s
ability to represent and reason about principals
whose authority is unknown at compile-time.
This feature makes it possible to protect dis-
tinct participants in a TEP computation from
accidentally sharing data when they have the
same role, such as the bidders in an auction.
Supporting these features requires some simple
extensions to TEP, which are described here.

Jif represents unknown authorities as runtime

principals, which are first-class values of type
principal. Runtime principals can be used in
labels and so can represent the role of a par-
ticipant in a TEP computation. Participants
whose labels contain runtime principals cannot
be compared directly, and so cannot acciden-
tally share data.

When the authority of the participant needs
to be known (eg. to do a declassification), the
program must check whether the participant’s
authority can be represented with a known
static authority. Jif has two features that make
this check possible: the ability to compare the
authorities of static and runtime principals and
the ability to determine the value of an unknown
label.

Runtime principals can be compared to static
principals using an actsfor test in Jif. actsfor
checks whether one principal is authorized to
act on behalf of another, in which case the au-
thorized principal can use the other’s authority.
In an auction, each bidder is a distinct partic-
ipant, but a static principal (such as bidder)
must be authorized to declassify each bidder’s
bid. An auction can use an actsfor test to
check whether this authorization exists at run-
time: if so, the declassification is allowed; other-
wise, the auction must ignore that bidder’s bid.
Although this may seem similar to the origi-
nal auction model, this model limits the use of
bidder’s authority to only the code where it is
needed. Jif supports a similar runtime test for
labels that provides similar benefits.

To support Jif’s ability to represent and rea-
son about runtime authority, TEP must be ex-
tended in two ways. First, TEP must provide
a way to represent principals at runtime. TEP
does this by providing a class that stores the
information about a runtime principal, such as
the underlying participant’s public key. Second,
TEP must provide a way to compare princi-
pals. TEP does this using a principal hierar-
chy, which is a data structure that represents
the actsfor relation between principals. TEP
can then determine whether one principal can
act for another by searching for a path between
those principals in the principal hierarchy.

13



5 Prototype

5.1 Model

The prototype implementation of TEP is based
on a design that uses a PKI, as described in
Section 3.8.2. All policy decisions are made by
TEP, rather than distributed to the participants
[1]. The prototype both accepts certificate
chains for policies [2] and supports on-demand
policy generation using certificate-chain discov-
ery [4, 1]. The prototype also automatically
includes the invoker of a computation as one of
the computation’s participants.

The prototype is implemented entirely in
Java and is available online [20]. While Java
provides the benefits of type safety and ease
of development, it results in significant perfor-
mance degradation compared to native code.
We believe that our design admits more efficient
implementations and plan to demonstrate this
in future work.

5.2 Performance

This section present performance results for two
applications: empty, an empty application to
test baseline invocation, and tax, a tax prepa-
ration application. The experiments use three
machines: one TEP server and two participants.
Each machine is a 600MHz Intel Pentium III
with 512MB RAM. Each runs RedHat Linux
6.0 and Sun’s Java Runtime Environment 1.2.2
with a just-in-time compiler. The machines
communicate over 100Mb local Ethernet and
use 1024-bit RSA keys for public-key cryptog-
raphy.

5.2.1 Empty

In the empty application, an invoker connects to
TEP, establishes a secure session, and requests
a program by URL. TEP fetches the program,
checks it using the standard Java bytecode ver-
ifier, and executes the requested method (which
is empty).

The total time spent at the invoker is 185ms:
148ms on cryptography for the secure ses-
sion and 37ms communicating with TEP. TEP

spends 148ms on crypto and 35ms handling the
request: 25ms waiting for the invoker to com-
plete the session protocol and send its request;
10ms fetching, loading, and verifying the pro-
gram; and 0ms executing the requested method.

The vast majority of this time is spent on
cryptography. Each secure channel creation re-
quires one RSA decryption, encryption, signa-
ture, and verification. On the test platform,
1028-bit RSA private key operations take 71ms
each and public key operations take 2ms each.
The same operations in C++ on a 450MHz
Celeron take 27ms and 0.7ms each, an improve-
ment of over 60% [5]. Thus, a native code imple-
mentation of cryptography can greatly improve
the performance of the system.

5.2.2 Tax

The tax application involves two parties: the
client (the invoker) and the tax preparer. The
application reads income data from the client,
opens a channel to the tax preparer, reads data
from the preparer, calculates the result, and
writes the result to the client. The preparer
runs its own agent to accept connections from
TEP, create secure sessions, and provide the
data needed by the application.

The total time spent at the client is 665ms:
150ms on crypto, 25ms waiting for TEP to fin-
ish the session protocol, 60ms waiting for TEP
to load and start the application, and 430ms in-
teracting with it. TEP spends 150ms on crypto
and 450ms handling the request: 20ms loading
the application and 430 ms running it.

The tax application spends 180ms establish-
ing a secure session with the tax preparer and
170ms dynamically generating the policy that
binds the preparer’s key to its channel name.
The remaining 80ms are spent reading data
from the participants and writing the result to
the client.

A large part of the application time is spent
generating a policy using certificate-chain dis-
covery. This time can be eliminated by caching
policies ahead of time. Application providers
and invokers can provide TEP with the certifi-
cate chains needed to prove the required bind-

14



ings, and thus improve performance.

6 Related Work

6.1 Secure Program Partitioning

The most closely related work to ours is secure
program partitioning, a technique that protects
the privacy and integrity of data in shared com-
putations by splitting programs among multiple
hosts [26]. Whereas TEP assumes that there
is a single host trusted by all participants, se-
cure program partitioning supports heteroge-
neous trust of the hosts used in the computa-
tion. Both systems take advantage of static in-
formation flow analysis and cryptographic tech-
niques to provide privacy and integrity assur-
ances. Both systems currently require that com-
putations be configured statically at invocation,
although future work promises greater flexibil-
ity.

6.2 Java Applets

Java applets authorize programs by checking
that the program is signed by a trusted provider
[10]. This form of program authorization re-
quires that the user decide what permissions
to grant to code signed by a particular signer
and only applies to code that runs on the lo-
cal machine. In the TEP model, this sort
of authorization is required to restrict par-
ticipants’ application-specific agents to access-
ing the network only through a trusted TEP-
provided agent.

TEP’s main advantage over the Java model
is that a computation does not run locally to
any participant in a computation, so no partici-
pant gets access to the other participants’ data.
It does not suffice to run a Java program on
an arbitrary third-party server, since the server
must provide the appropriate identification and
isolation of the computation to ensure that data
is not leaked.

6.3 Active Networks

Active networks permit applications to inject
programs into networks to deploy new network
services [25, 24]. This system shares certain fea-
tures with TEP: the ability to load new code
dynamically and the need to isolate and control
that code.

When code is executed at an active node, it
must use a restricted API to access the underly-
ing system, much like TEP’s channel API. Ac-
tive nodes use this API to regulate the code’s ac-
cess to shared resources. TEP can be extended
similarly to provide certain types of resource
control.

6.4 Secure Multiparty Computation

Secure multiparty computation uses crypto-
graphic techniques to run shared computations
with minimal or no need for a trusted third
party [6, 13]. Such techniques can reduce the
amount of trust required of TEP, providing
greater assurance for computation participants.
However, these techniques often require a ma-
jority of honest participants, while TEP does
not.

TEP’s main advantage over these techniques
is flexibility. New applications for TEP are easy
to develop, whereas no simple technique exists
for developing new secure multiparty applica-
tions.

7 Conclusion

We have presented TEP, a trusted third-party
computation service. We began by identifying
a set of requirements for such services and pre-
sented a design that satisfies those requirements
while maintaining generality. The design en-
sures that each participant in a computation has
enough information to determine if that compu-
tation can leak its data.

We then described an implementation of the
design and demonstrated its flexibility with ex-
amples. TEP supports programs written in
Java that use channels, a general mechanism for

15



communicating with the participants in a com-
putation. TEP assigns roles to participants to
aid in reasoning about computations and sup-
ports client-side agents that can provide general
interfaces to computations on TEP.

We then improved the safety of the system
by incorporating static information-flow analy-
sis for TEP programs. TEP accepts programs
written in Jif, a Java-based language that can be
checked at compile-time for information leaks.
We showed how the concepts in the Java version
of TEP are represented in Jif and provided a Jif
example to demonstrate the changes. Using Jif,
TEP can guarantee the privacy of participants
in certain computations without requiring that
the participants inspect the code.

Finally, we presented the performance for a
prototype implementation of TEP. We showed
that the prototype can run a simple third-
party tax preparation application with reason-
able performance. We found that the major-
ity of the time for a computation is spent on
the cryptography for creating secure channels.
This suggests that optimizing the cryptography
and channel protocol can greatly improve per-
formance.

Throughout this paper, we have identified
ways in which TEP can be extended. The
most fundamental of these is enabling partici-
pants to initiate connections to computations on
TEP. This allows TEP computations to act as
servers for requests from participants. Another
important extension is resource control: TEP
can protect participants’ privacy but currently
cannot withstand denial-of-service attacks from
the programs it runs. A final extension is sup-
port for Jif’s runtime mechanisms. These en-
able programmers to create more general pro-
grams for TEP that are guaranteed to protect
participants’ privacy.

References

[1] S. Ajmani. A Trusted Execution Platform
for multiparty computation. Master’s the-
sis, Massachusetts Institute of Technology,

July 2000. http://www.pmg.lcs.mit.edu-
/˜ajmani/papers/thesis.ps.

[2] A. W. Appel and E. W. Felten. Proof-
carrying authentication. In Proc. of the 6th
ACM Conf. on Computer and Communica-
tions Security, Nov. 1999.

[3] D. Balfanz and L. Gong. Experience with
secure multi-processing in java. Technical
Report 560-97, Princeton University, Sept.
1997.

[4] D. Clarke, J. Elien, C. Ellison, M. Fredette,
A. Morcos, and R. L. Rivest. Certificate
chain discovery in SPKI/SDSI. Draft, Nov.
1999.

[5] W. Dai. Speed comparison of popu-
lar crypto algorithms. Web Page, Apr.
1999. http://www.eskimo.com/˜weidai-
/benchmarks.html.

[6] O. Goldreich, S. Micali, and A. Wigderson.
How to play ANY mental game, or A com-
pleteness theorem for protocols with hon-
est majority. In Proc. 19th ACM Symp. on
Theory of Computing (STOC), pages 218–
229, 1987.

[7] J. Gosling, B. Joy, and G. Steele. The Java
Language Specification. Addison-Wesley,
Aug. 1996. ISBN 0-201-63451-1.

[8] Java 2 platform, standard edition, v1.2.2
API specification. Web Page, 1999.
http://java.sun.com/products/jdk/1.2-
/docs/api/.

[9] The JAR guide. Web Page, 1997.
http://java.sun.com/products/jdk/1.2-
/docs/guide/jar/jarGuide.html.

[10] JDK 1.2 security documentation. Web
Page, Apr. 1998. http://java.sun.com-
/products/jdk/1.2/docs/guide/security/.

[11] S. Liang and G. Bracha. Dynamic class
loading in the Java Virtual Machine. In
Proc. OOPSLA ’98, volume 33, pages 36–
44, Vancouver BC, Canada, Oct. 1998.

16



ACM Special Interest Group on Program-
ming Languages, ACM Press.

[12] N. Mathewson. Information flow in Java
bytecodes. Master’s thesis, Massachusetts
Institute of Technology, 2000.

[13] S. Micali. Distributed split-key cryptosys-
tem and applications. United States Patent
6,026,163, USPTO, Dec. 1996.

[14] A. C. Myers. Mostly-Static Decentral-
ized Information Flow Control. PhD the-
sis, Massachusetts Institute of Technology,
Cambridge, MA, Jan. 1999.

[15] A. C. Myers and B. Liskov. Protect-
ing privacy using the decentralized la-
bel model. ACM Transactions on Soft-
ware Engineering and Methodology, Apr.
2001. http://www.cs.cornell.edu/andru-
/pubs.html.

[16] G. C. Necula and P. Lee. Safe kernel ex-
tensions without run-time checking. In
Proc. USENIX Symp. on Operating Sys-
tems Design and Implementation (OSDI),
pages 229–243, Seattle, Washington, Oct.
1996.

[17] Public-key infrastructure (X.509) (PKIX).
Web Page, Feb. 2000. http://www.ietf.org-
/html.charters/pkix-charter.html.

[18] M. I. Seltzer et al. Dealing with disaster:
Surviving misbehaved kernel extensions. In
Proc. of the 2nd Symp. on Operating Sys-
tems Design and Implementations (OSDI),
pages 213–227, Seattle, WA, Oct. 1996.

[19] Simple public key infrastructure (SPKI).
Web Page, Feb. 1998. http://www.ietf.org-
/html.charters/spki-charter.html.

[20] http://www.pmg.lcs.mit.edu/˜ajmani-
/tep/.

[21] Transport layer security (TLS). Web
Page, Mar. 2001. http://www.ietf.org-
/html.charters/tls-charter.html.

[22] R. Wahbe, S. Lucco, T. Anderson, and
S. Graham. Efficient software-based fault
isolation. In Proc. 14th ACM Symp. on Op-
erating System Principles, pages 203–216.
ACM Press, Dec. 1993.

[23] D. S. Wallach, D. Balfanz, D. Dean, and
E. W. Felten. Extensible security architec-
tures for Java. In Proc. 16th ACM Symp.
on Operating System Principles (SOSP),
pages 116–128, Saint-Malo, France, Oct.
1997.

[24] D. Wetherall, U. Legedza, and J. Gut-
tag. Introducing new Internet services:
Why and how. IEEE Network Magazine,
July 1998. http://www.sds.lcs.mit.edu-
/activeware/.

[25] D. J. Wetherall, J. V. Guttag, and
D. L. Tennenhouse. ANTS: A toolkit for
building and dynamically deploying net-
work protocols. In Proc. IEEE OPE-
NARCH, San Francisco, CA, Apr. 1998.
http://www.sds.lcs.mit.edu/activeware/.

[26] S. Zdancewic, L. Zheng, N. Nystrom, and
A. C. Myers. Untrusted hosts and confi-
dentiality: Secure program partitioning. In
Proc. 18th ACM Symp. on Operating Sys-
tem Principles (SOSP), volume 35, Banff,
Alberta, Canada, Oct. 2001. ACM Operat-
ing Systems Review, ACM Press.

17


