
Compositional Pointer and Escape Analysis for Multithreaded Java

Programs

Martin Rinard John Whaley

Laboratory for Computer Science IBM Tokyo Research Laboratory

Massachusetts Institute of Technology Network Computing Platform

Cambridge, MA 02139 1623-14 Shimotsuruma

Yamato-shi, Kanagawa-ken 242-8502 Japan

rinard@lcs.mit.edu jwhaley@alum.mit.edu

Abstract

This paper presents a new combined pointer and escape
analysis algorithm for Java programs with unstructured mul-
tithreading. The algorithm is based on the abstraction of
parallel interaction graphs, which characterize the points-to
and escape relationships between objects and the ordering
relationships between actions performed by multiple par-
allel threads. To our knowledge, this algorithm is the �rst
interprocedural, ow-sensitive pointer analysis algorithm ca-
pable of extracting the points-to relationships generated by
the interactions between unstructured parallel threads. It
is also the �rst algorithm capable of analyzing interactions
between threads to extract precise escape information even
for objects accessible to multiple threads.

We have implemented our analysis in the IBM Jalape~no
dynamic compiler for Java and used the analysis results
to eliminate redundant synchronization. For our bench-
mark programs, the thread interaction analysis signi�cantly
improves the e�ectiveness of the synchronization elimina-
tion algorithm as compared with previously published tech-
niques, which do not analyze these interactions.

1 Introduction

This paper presents a new, combined pointer and escape
analysis algorithm for multithreaded programs. To our knowl-
edge, this algorithm is the �rst interprocedural, ow-sensitive
pointer analysis algorithm for programs with the unstruc-
tured form of multithreading present in Java and similar
languages. It is also the �rst algorithm capable of analyz-
ing interactions between threads to extract precise escape
information even for objects accessible to multiple threads.

1.1 Analysis Overview

The analysis is based on an abstraction we call parallel in-
teraction graphs. The nodes in this graph represent objects;
the edges between nodes represent references between ob-
jects. For each node, the analysis also records information
that characterizes how it escapes the current analysis region.

For example, an object escapes if it is reachable from an un-
analyzed thread running in parallel with the current thread
or returned to an unanalyzed region of the program.

Combining points-to and escape information in the same
analysis enables the algorithm to represent all potential in-
teractions between the analyzed and unanalyzed regions of
the program. The algorithm represents these interactions,
in part, by distinguishing between two kinds of edges: in-
side edges, which represent references created within the cur-
rently analyzed region, and outside edges, which represent
references created outside this region. Each outside edge
represents a potential interaction in which the analyzed re-
gion reads a reference created in an unanalyzed region. Each
inside edge from escaped node represents a potential inter-
action in which the analyzed region creates a reference that
an unanalyzed region may read.

Representing potential interactions with inside and out-
side edges leads to an analysis that is compositional in two
senses:

� Method Compositionality: The algorithm analyzes
each method once to derive a single parameterized
analysis result that records all potential interactions of
the method with its callers.1 At each call site, the al-
gorithm matches outside edges from the callee against
inside edges from the caller to compute the e�ect of
the callee on the points-to and escape information of
the caller.

� Thread Compositionality: The algorithm analyzes
each thread once to derive an analysis result that records
all of the potential interactions of the thread with other
parallel threads. The analysis can then combine analy-
sis results from multiple parallel threads by matching
each outside edge from each thread against all cor-
responding inside edges from parallel threads. The
result is a single parallel interaction graph that com-
pletely characterizes the points-to and escape informa-
tion generated by the combined parallel execution of
the threads. Unlike previously published algorithms,
which use an iterative �xed-point algorithm to com-
pute the interactions [37, 16], the algorithm presented
in this paper can compute the interactions between
two parallel threads with a single pass over the paral-
lel interaction graphs from the threads.

Finally, the combination of points-to and escape infor-
mation in the same analysis leads to an algorithm that is

1Recursive methods require an iterative algorithm that may ana-
lyze methods multiple times to reach a �xed point.

designed to analyze arbitrary regions of complete or incom-
plete programs, with the analysis result becoming more pre-
cise as more of the program is analyzed. At every stage in
the analysis, the current parallel interaction graph provides
complete information about the points-to relationships for
objects that do not escape the currently analyzed region
of the program. The algorithm can therefore obtain useful
analysis information without analyzing the entire program.

1.2 Analysis Uses

Parallel interaction graphs also record the actions that each
thread performs and contain ordering information for these
actions relative to the actions performed by other threads.
Optimization and analysis algorithms can use this informa-
tion to determine that actions from di�erent threads can
never execute concurrently and are therefore independent.
Our compiler uses this ordering information to improve the
precision of the thread interaction analysis. It also uses this
information to implement a synchronization elimination op-
timization | if all lock acquire and release actions on a
given object are independent, they have no e�ect on the
computation and can be removed.

The analysis also provides information that is generally
useful to compilers and program analysis tools for multi-
threaded programs. Potential applications of our analysis
include: sophisticated software engineering tools such as
static race detectors and program slicers [28, 36]; memory
system optimizations such as prefetching and moving com-
putation to remote data; automatic batching of long latency
�le system operations; memory bank disambiguation in com-
pilers for distributed memory machines [8]; memory module
splitting in compilers that generate hardware directly from
high-level languages [6]; lock coarsening [33, 22]; synchro-
nization elimination and stack allocation[41, 10, 12, 15]; and
to provide information required to apply traditional com-
piler optimizations such as constant propagation, common
subexpression elimination, register allocation, code motion
and induction variable elimination to multithreaded pro-
grams.

1.3 Contributions

This paper makes the following contributions:

� Analysis Algorithm: It presents a new combined
pointer and escape analysis algorithm for multithreaded
programs. The algorithm is compositional at both the
method and thread levels and is designed to deliver
useful information without analyzing the entire pro-
gram.

� Analysis Uses: It shows how to use the action order-
ing information present in parallel interaction graphs
to perform a synchronization elimination optimization.

� Experimental Results: It presents experimental re-
sults from a prototype implementation of the algo-
rithms. These results show that the algorithm can
eliminate a signi�cant number of synchronization op-
erations.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an example that illustrates how the analy-
sis works. Sections 3 through 11 present the analysis algo-
rithms. Section 14 presents experimental results, Section 15
presents related work, and we conclude in Section 16.

2 Example

In this section we present an example that illustrates how
the analysis works. Figure 1 presents the Java code for the
example. The sum method in the Sum class computes the
sum of the numbers from 0 to n, storing the result into a
destination accumulator a. It computes this sum by creating
a worker thread to compute the sum of the even numbers
while it computes the sum of the odd numbers. When they
�nish, both threads add their contribution into the destina-
tion accumulator. The sum method �rst constructs a work
vector v of Integers for the worker thread to sum up, then
initializes the worker object to point to the work vector and
the destination accumulator. It starts the worker thread
running by invoking its start method, which invokes the
run method in a new thread running in parallel with the
current thread. This mechanism of initializing a thread ob-
ject to point to its conceptual parameters is the standard
way for Java programs to provide threads with the informa-
tion they need to initiate their computation.

class Accumulator {
int value = 0;
synchronized void add(int v) {
value += v;

}
}
class Sum {

public static void sum(int n, Accumulator a) {
1: Vector v = new Vector();

for (int i = 0; i < n; i += 2) {
v.addElement(new Integer(i));

}
2: Worker t = new Worker();

t.init(v,a);
t.start();
int s = 0;
for (int i = 1; i < n; i+= 2) {

s = s + i;
}
a.add(s);

}
}
class Worker extends Thread {

Vector work;
Accumulator dest;
void init(Vector v, Accumulator a) {

work = v;
dest = a;

}
public void run() {

3: Enumeration e = work.elements();
int s = 0;
while (e.hasMoreElements()) {

Integer i = (Integer) e.nextElement();
s = s + i.intValue();

}
4: dest.add(s);

}
}

Figure 1: Sum Example

We contrast the unstructured form of multithreading in
this example with the structured, fork-join form of multi-

Figure 2: Callee-Caller Interaction Between init and sum

Figure 3: Parallel Thread Interaction Between run and sum

Figure 4: Result of Parallel Thread Interaction

threading found in, for example, the Cilk programming lan-
guage [11]. Once the thread is the example is created, it exe-
cutes independently of its parent thread and in parallel with
the rest of its parent thread's computation. Cilk threads, on
the other hand, must join with their parent thread, complet-
ing before their parent thread returns from the procedure in
which they were spawned.

We now illustrate the analysis by discussing its opera-
tion on this example. We start with the init method. This
method is passed the work vector and destination accumula-
tor and initializes the worker to point to them. The analysis
result for this method is a parallel interaction graph. Fig-
ure 2 contains the points-to graph from the parallel interac-
tion graph at the end of the init method. In general, our
points-to graphs contain two kinds of nodes: inside nodes,
which represent objects created during the computation of
the method, and outside nodes, which represent objects cre-
ated outside its computation. All of the nodes in the points-
to graph for the init method represent the receiver or ob-
jects passed into the method as parameters. These nodes are
therefore outside nodes. Our points-to graphs also contain
two kinds of edges: inside edges, which represent references
created during the computation of the method, and out-
side edges, which represent references created outside the
computation. Because the init method reads no references
created by other methods or threads, all of the edges in its
points-to graph are inside edges.

2.1 Interaction Between Caller and Callee

Figure 2 also presents the points-to graph from the sum
method just before the call to init. This graph contains
one outside node (node 0), which represents the destination
accumulator passed as a parameter to sum. It also contains
two inside nodes | node 1, which represents the work vec-
tor, and node 2, which represents the worker thread object.
Each inside node corresponds to an object creation site and
represents all objects created at that site. In the example, we
label inside nodes with the line number of the corresponding
object creation site in Figure 1.

We next discuss how the analysis combines this points-to
graph with the points-to graph from the init method to de-
rive the points-to graph after the call to init. The algorithm
uses the correspondence between the formal and actual pa-
rameters to construct a mapping from the outside nodes of
the init method to the nodes of the sum method. This
mapping is then used to translate the inside edges from the
init method into the points-to graph from the sum method.
Figure 2 presents the result of this mapping, which yields
the points-to graph after the call to init.

2.2 Interaction Between Parallel Threads

We next discuss how the analysis computes the interaction
between the two threads in the example. Figure 3 presents
the parallel interaction graph from the end of the worker
thread's run method. This method loads the work and dest
references from the receiver object. Because these references
were created outside the run method, the analysis uses an
outside edge to represent each reference. Each of these out-
side edges points to speci�c kind of outside node called a load
node. In general, there is one load node for each statement
in the program that loads a reference from an escaped ob-
ject; that load node represents all of the objects to which the
reference may point. In Figure 3, we have labeled the load
nodes with the number of the corresponding load statement
from Figure 1.

In addition to the points-to information, the parallel in-
teraction graph also records the synchronization actions that
the method performs and the objects to which the actions
are applied. In this case, the run method synchronizes on
the work vector and the destination accumulator. The ac-
tions hsync; 3i and hsync; 4i record these synchronizations.
The synchronization on the work vector happens inside the
enumeration's nextElement method | Java library classes
such as Vector often come with the synchronization required
for correct execution in the face of concurrent access by par-
allel threads. In this case, however, the synchronizations
are unnecessary. Even though the work vector is accessed
by multiple threads, the accesses are separated temporally
by thread start events. Among other things, this example
will show how the analysis detects the independence of the
synchronization actions on the work vector.

We next move to the parallel interaction graph at the end
of the sum method. In addition to the points-to and action
information, the graph records the threads that the method
starts and ordering information between the method's ac-
tion and started threads. In this case, sum starts the worker
thread, which is represented in the analysis by node 2. The
ordering relation hsync; 0ijj2 records the fact that a syn-
chronization action on object 0 (the destination accumula-
tor) may execute in parallel with the actions of the worker
thread. Note that there is no parallel ordering relation be-
tween the worker thread and sum's synchronization actions
on the work vector object. This absence indicates that all
of these actions occur before the worker thread starts, and
therefore do not execute in parallel with any of the thread's
actions.

To model the parallel interaction, the analysis constructs
a bidirectional mapping between the nodes of the parallel
interaction graphs. Initially, the receiver object of the run
method is mapped to the worker thread object from the sum
method. The analysis then matches outside edges from one
graph to corresponding inside edges from the other graph,
using the match to extend the mapping from outside nodes
to inside nodes. When the mapping is complete, it is used
to combine the graph from the run method into the graph
from the summethod. Figure 4 presents the combined graph.
In addition to the points-to information, the combination
algorithm also translates the synchronization actions from
the worker thread into the new parallel interaction graph. It
tags each action with the thread that performs the action.
So, for example, the action hsync; 0; 2i indicates that node 2
(the worker thread's node) may perform a synchronization
action on an object represented by node 0.

The runmethod also invokes the work.elements() method,
which creates an enumerator object to enumerate through
elements of the vector. The enumerator object is represented
by an inside node. Note that because the enumeration ob-
ject is captured in the run method, it cannot a�ect the com-
putation outside this method. Therefore, the algorithm does
not transfer its inside node into the combined graph.

2.3 Information in the Combined Graph

The compiler can extract the following information from the
combined graph. First, the work vector node is captured in
this graph. Even though it is accessed by multiple threads,
it is not reachable from outside the total computation of
the sum method. The combined graph therefore completely
characterizes the points-to information and actions involv-
ing the work vector object. Second, both the thread exe-
cuting the sum method and the worker thread synchronize

on the work vector object. But the ordering information
indicates that none of these synchronizations can occur con-
currently. The synchronization actions have no e�ect on the
computation and can therefore be removed.2 Finally, both
thread synchronize on the destination accumulator object.
But in this case, the synchronization actions from the sum
thread may execute in parallel with the synchronization ac-
tions from the worker thread. The compiler will not be able
to remove the synchronization from the destination accumu-
lator object.

3 Analysis Abstractions

In this section we formally present the basic abstractions
that the analysis uses: the program and object represen-
tations, points-to escape graphs, and parallel interaction
graphs.

3.1 Program Representation

The algorithm represents the program using the following
analysis objects. There is a set l 2 L of local variables and
a set p 2 P of formal parameter variables. There is one for-
mal parameter variable for each formal parameter of each
method in the program. There is also a set cl 2 CL of class
names. The analysis models static class variables using a
one-of-a-kind node for each class; the �elds of this node are
the static class variables for the corresponding class. The
analysis therefore treats the class name cl as a read-only
variable that points to the corresponding one-of-a-kind node
that contains the class's static class variables. Together, the
local, formal parameter, and class name variables make up
the set v 2 V = L [P [CL of variables. There is also a set
f 2 F of object �elds and a set op 2 OP of methods. Ob-
ject �elds are accessed using syntax of the form v:f. Static
class variables are accessed using syntax of the form cl:f.
Each method has a receiver class cl and a formal parameter
list p0; : : : ; pk. We adopt the convention that parameter p0
points to the receiver object of the method.

The algorithm represents the computation of each method
using a control ow graph. The nodes of these graphs are
statements st 2 ST. We assume the program has been pre-
processed so that all statements relevant to the analysis are
in one of the following forms:

� A copy statement l = v.

� A load statement l1 = l2:f.

� A store statement l1:f = l2.

� A monitor acquire statement acquire(l).

� A monitor release statement release(l).

� A return statement return l, which identi�es the re-
turn value l of the method.

� An object creation site of the form l = new cl.

� A method invocation site m 2M of the form
l = l0:op(l1; : : : ; lk).

� A thread start site of the form l:start().

2To satisfy the Java memory model, the compiler may have to
leave memory barriers behind at the old synchronization points.

The analysis represents the control ow relationships be-
tween statements as follows: pred(st) is the set of state-
ments that may execute immediately before st, and succ(st)
is the set of statements that may execute immediately after
st. There are two program points for each statement st,
the program point �st immediately before st executes, and
the program point st� immediately after st executes. The
control ow graph for each method op starts with an enter
statement enterop and ends with an exit statement exitop.

The interprocedural analysis uses call graph information
to compute sets of methods that may be invoked at method
invocation sites. For each method invocation site m 2 M ,
callees(m) is the set of methods thatm may invoke. Given a
method op, callers(op) is the set of method invocation sites
that may invoke op. The current implementation obtains
this call graph information using a variant of class hierarchy
analysis [17], but the algorithm can use any conservative
approximation to the actual call graph generated when the
program runs.

3.2 Object Representation

The analysis represents the objects that the program ma-
nipulates using a set n 2 N of nodes. There are several
kinds of nodes:

� There is a set NI of inside nodes. Inside nodes rep-
resent inside objects, which are objects created within
the current analysis scope and accessed via references
created within the current analysis scope. This set
consists of two subsets:

{ Nodes in NI represent objects created by the cur-
rent thread. There is one node in NI for each ob-
ject creation site; that node represents all objects
created at that site by the current thread.

{ Nodes in NI represent objects created by threads
running in parallel with the current thread. There
is one node in NI for each object creation site;
that node represents all objects created at that
site by threads running in parallel with the cur-
rent thread.

Two nodes n1 2 NI and n2 2 NI are corresponding
nodes if they represent objects created at the same
object creation site.

In Java, each thread corresponds to an object that im-
plements the Runnable interface. The set NT � NI

of runnable nodes represents runnable objects. NT �
NI represents runnable objects created by the current

thread, and NT � NI represents runnable objects cre-
ated by threads running in parallel with the current
thread. NT = NT [NT .

� There is a set NO of outside nodes. Outside nodes rep-
resent outside objects, which are objects created out-
side the current analysis scope or accessed via refer-
ences created outside the current analysis scope. This
set consists of several subsets:

{ There is a set NL of load nodes. When a load
statement executes, it loads a value from a �eld
in an object. If the loaded value is a reference, the
analysis must represent the object that the refer-
ence points to. Each load node represents outside
objects whose references are loaded by the corre-
sponding load statement. There are two kinds of
load nodes:

� NL contains one node for each load statement
in the program. That node represents outside
objects whose references are loaded at that
statement by the current thread.

� NL contains one node for each load statement
in the program. That node represents outside
objects whose references are loaded at that
statement by threads running in parallel with
the current thread.

Two nodes n1 2 NL and n2 2 NL are correspond-
ing nodes if they represent outside objects whose
references are loaded at the same load statement.

{ There is a set of return nodes NR. When the al-
gorithm skips the analysis of a method invocation
site, it uses a return node to represent the return
value of the method invoked at that site. There
are two kinds of return nodes:

� NR contains one node for each skipped method
invocation site in the program. That node
represents objects returned by methods in-
voked at that site by the current thread.

� NR contains one node for each skipped method
invocation site in the program. That node
represents objects returned by methods in-
voked at that site by threads running in par-
allel with the current thread.

Two nodes n1 2 NR and n2 2 NR are correspond-
ing nodes if they represent objects returned at the
same skipped method invocation site.

{ NP : There is one parameter node n 2 NP for each
formal parameter in the program. Each param-
eter node represents the object that its parame-
ter points to during the execution of the analyzed
method. The receiver object is treated as the �rst
parameter of each method. Given a parameter p,
the corresponding parameter node is np. There
is always an inside edge from p to np.

{ NC : There is one class node n 2 NC for each class
in the program. The �elds of this node represent
the static class variables of its class. Given a class
cl, the corresponding class node is ncl. There is
always an inside edge from cl to ncl.

The setN = NI[NL[NR, and the setN = NI[NL[NR.
Given a node n 2 N , n represents the corresponding node
in N . Given a node n 2 N , n represents the corresponding
node in N .

The analysis represents each array with a single node.
This node has a �eld elements, which represents all of the
elements of the array. Because the points-to information for
all of the array elements is merged into this �eld, the analysis
does not make a distinction between di�erent elements of the
same array.

3.3 Points-To Escape Graphs

A points-to escape graph is a quadruple of the form hO; I; e; ri,
where

� O � (N � F) � NL is a set of outside edges. Outside
edges represent references created outside the current
analysis scope, either by the caller, by a thread run-
ning in parallel with the current thread, or by an un-
analyzed invoked method.

� I � ((N�F)�N)[(V�N) is a set of inside edges. In-
side edges represent references created inside the cur-
rent analysis scope.

� e : N ! 2NP[NC[NT[M is an escape function that
records the escape information for each node. A node
escapes if it is reachable from a parameter node nP 2
NP , a static class variable represented by a �eld of a
class node nC 2 NC , a thread node nT 2 NT run-
ning in parallel with the current thread, or an object
passed as a parameter to or returned from an unana-
lyzed method invocation site.

� r � N is a return set that represents the set of ob-
jects that may be returned by the currently analyzed
method. All nodes in the return set escape to the caller
of the analyzed method.

Both O and I are graphs with edges labeled with a �eld
from F . We de�ne the following operations on nodes of the
graphs:

edgesTo(I; n) = fhv; ni 2 Ig [fhhn0; fi; ni 2 Ig
edgesFrom(I; v) = fhv; ni 2 Ig
edgesFrom(I; n) = fhhn; fi; n0i 2 Ig

edges(I; v) = edgesFrom(I; v)
edges(I; n) = edgesTo(I; n) [edgesFrom(I; n)

I(v) = fn:hv; ni 2 Ig
I(n; f) = fn0:hhn; fi; n0i 2 Ig

For each node n, the escape function e(n) and the return
set r together record all of the di�erent ways the node (and
the objects that it represents) may escape from the current
analysis scope. Here are the possibilities:

� If a parameter node np 2 e(n), then n represents an
object that may be reachable from p.

� If a class node ncl 2 e(n), then n represents an ob-
ject that may be reachable from one of the static class
variables of the class cl.

� If a thread node nT 2 e(n), then n represents an object
that may be reachable from a runnable object repre-
sented by nT .

� If a method invocation sitem 2 e(n), then n represents
an object that may be reachable from the parameters
or the return value of an unanalyzed method invoked
at m.

� If n 2 r, then n represents an object that may be
returned to the caller of the analyzed method.

The escape information must satisfy the escape informa-
tion propagation invariant that if n1 points to n2, then n2
escapes in at least all of the ways that n1 escapes. We for-
malize this invariant with the following inference rule, which
states that if there is an edge from n1 to n2, e(n1) � e(n2).
When the analysis adds an edge to the points-to escape
graph, it may need to update the escape information.

hhn1; fi; n2i 2 O [I
e(n1) � e(n2)

We say that a node n1 violates the propagation con-
straint if there is an edge from n1 to n2 and e(n1) 6� e(n2).
During the analysis of a method, the algorithm may add
edges to the points-to escape graph. These edges may make
the updated nodes (the nodes that the new edges point from)

temporarily violate the propagation constraint. Whenever it
adds a new edge, the analysis uses the propagate(hO; I; e; ri; S)
algorithm in Figure 5 to propagate escape information from
the nodes in S to restore the invariant and produce a new
escape function e0 that satis�es the propagation constraint.
This algorithm takes a points-to escape graph and a set S
of nodes that may violate the constraint, then uses a work-
list approach to propagate the escape information from the
updated nodes to the other nodes in the graph.

propagate(hO; I; e; ri; S)
Initialize worklist and new escape function
e0 = e
W = S
while (W 6= ;) do

Remove a node from worklist
W =W � fn1g
Propagate escape information to all nodes
that n1 points to

for all hhn1; fi; n2i 2 O [I do
Restore constraint for n2
e0(n2) = e0(n2) [e

0(n1)
if e0(n2) changed then

W =W [fn2g
return(e0)

Figure 5: Escape Information Propagation Algorithm

Given our abstraction of points-to escape graphs, we can
de�ne the concepts of escaped and captured nodes as follows:

� escaped(hO; I; e; ri; n) if e(n) 6= ; or n 2 r, and

� captured(hO; I; e; ri; n) if e(n) = ; and n 62 r.

4 Actions

The algorithm is designed to record various actions that the
program performs on objects. Each action consists of an
action label that identi�es the kind of action performed, a
node that represents the object on which the action was
performed, and an optional thread node that represents the
thread that performed the action. For the purposes of this
paper, the set of action labels is b 2 B = fld; syncg. The
set of actions is a 2 A = (B �N) [(B � N �NT). Here is
the meaning of the actions:

� hsync; ni records a synchronization action (either a
monitor acquire or release) performed by the current
thread on an object represented by n.

� hsync; n; nT i records a synchronization action performed
by a thread represented by nT .

� hld; ni records a load by the current thread on an es-
caped node. The result of the load is a reference to an
object represented by the load node n.

� hld; n; nT i records a load performed by the thread nT .

It is straightforward to augment the set of action labels and
the analysis to record arbitrary actions such as reading and
writing objects or invoking a given method on an object.
It is also straightforward to generalize the set of actions to
include actions performed on multiple objects.

5 Parallel Interaction Graphs

The algorithm uses a dataow analysis to generate, at each
program point in the method, a parallel interaction graph
hG; �; �; �i.

� G is a points-to escape graph that summarizes the
points-to and escape information for the current thread.

� The parallel thread map � : NT ! f0; 1; 2g counts the
number of instances of each thread that may execute
in parallel with the current thread at the current pro-
gram point. If �(n) = 1, then at most one instance of
n may execute in parallel with the current thread at
the current program point; if � (n) = 2, then multiple
instances of n may execute in parallel with the current
thread at the current program point. We de�ne the
following operations:

{ x� y = min(2; x+ y)

{ x	 y =

�
2 if x � 2
max(0; x� y) otherwise

� The action set � � A records the set of actions exe-
cuted by the analyzed computation.

� The parallel action relation � � A � NT records or-
dering information between the actions of the current
thread and threads that execute in parallel with the
current thread. Speci�cally, ha; nT i 2 � if a may have
happened after at least one of the thread objects rep-
resented by nT started executing. In this case, the
actions of a thread object represented by nT may af-
fect a.

remove(hG; �; �; �i; S) denotes the parallel interaction graph
obtained by removing all of the nodes in S from hG; �; �; �i.

The analysis uses parallel interaction graphs to compute
the interactions between parallel threads. During the anal-
ysis, one of the threads is the current thread; conceptually,
nodes from the other threads move into the context of the
current thread. In the analyis context of the current thread,
all of the nodes from the other threads come from outside
the current thread. The analysis models this by replacing
each node from an other thread with its corresponding ver-
sion from outside the current thread. Given a parallel inter-
action graph hhO; I; e; ri; �; �; �i, hhO; I; e; ri; � ; �; �i is the
parallel interaction graph with nodes replaced with the cor-
responding nodes from outside the current thread, de�ned
as follows:

�(n) =

�
n if n 2 N
n otherwise

�(S) = f�(n):n 2 Sg
O = fhh�(n1); fi; �(n2)i:hhn1; fi; n2i 2 Og
I = fhh�(n1); fi; �(n2)i:hhn1; fi; n2i 2 Ig[

fhv; �(n)i:hv; ni 2 Ig

e(n) =

(
�(e(n)) [�(e(n)) if n 2 N
; if n 2 N
�(e(n)) otherwise

r = f�(n):n 2 rg

�(n) =

�
� (n)� �(n) if n 2 N
0 otherwise

�A(a) =

�
hb; �(n)i if a = hb; ni
hb; �(n); �(nT)i if a = hb; n; nT i

� = f�A(a):a 2 �g
� = fh�A(a); �(n)i:ha; ni 2 �g

The following operation removes a set of nodes S from a
parallel interaction graph hhO; I; e; ri; �; �; �i.

hhO0
; I

0
; e
0
; r
0i; � 0; �0; �0i = remove(hhO; I; e; ri; �; �; �i; S)

where

S0 = (N � S)
O0 = O \ ((S0 � F)� S0)
I 0 = I \ ((S0 � F)� S0)

e0(n) = e(n) \ (S0 [M)
r0 = r \ S0

� 0(n) =

�
�(n) if n 2 S0

0 otherwise

�0 = � \ ((B� S0) [(B� S0 � S0))
�0 = � \ (((B� S0) [(B� S0 � S0))� S0)

6 Intraprocedural Analysis

The analysis of each method op starts with the initial par-
allel interaction graph hhO0; I0; e0; r0i; �0; �0; �0i, de�ned as
follows:

� In I0, each formal parameter points to its correspond-
ing parameter node and each class points to its corre-
sponding class node.

I0 = fhp; npi:p 2 Pg [fhcl; ncli:cl 2 CLg

� The initial set of outside edges is empty: O0 = ;

� The initial escape function e0 is set up so that each
parameter or class node is marked as escaping via it-
self.

e0(n) =

�
fng if n 2 NP [NC

; otherwise

� The initial return set and action set are empty: r0 = ;,
and �0 = ;.

� Initially there are no threads running in parallel with
the current thread. 8nT 2 NT :�0(nT) = 0.

� The initial parallel action relation is empty: �0 = ;.

The algorithm analyzes the method under the assump-
tion that the parameters and static class variables all point
to di�erent objects. If the method may be invoked in a call-
ing context in which some of these pointers point to the same
object, this object will be represented by multiple nodes dur-
ing the analysis of the method. In this case, the analysis
described below in Section 9 will merge the corresponding
outside objects when it combines the �nal analysis result for
the method into the calling context at the method invoca-
tion site. Because the combination algorithm retains all of
the edges from the merged objects, it conservatively models
the actual e�ect of the method.

The intraprocedural analysis is a dataow analysis that
propagates parallel interaction graphs through the state-
ments of the method's control ow graph. The transfer func-
tion hhO0; I 0; e0; r0i; � 0; �0; �0i = [[st]] (hhO; I; e; ri; �; �; �i) de-
�nes the e�ect of each statement st on the current parallel
interaction graph. Most of the statements �rst kill a set
of inside edges, then generate additional inside and outside
edges. Figure 6 graphically presents the rules that deter-
mine the sets of generated edges for the di�erent kinds of
statements. Each row in this �gure contains four items: a

statement, a graphical representation of existing edges, a
graphical representation of the existing edges plus the new
edges that the statement generates, and a set of side condi-
tions. The interpretation of each row is that whenever the
points-to escape graph contains the existing edges and the
side conditions are satis�ed, the transfer function for the
statement generates the new edges. We would like to point
out several aspects of the intraprocedural analysis:

� start Statements: At each start statement of the
form l.start(), l may point to several thread nodes.
The analysis adds all of these nodes to the new parallel
thread map.

� Synchronization: The transfer function for synchro-
nization statements adds a synchronization action to
the new parallel interaction graph. This synchroniza-
tion action is recorded as executing in parallel with all
of the thread nodes in the current parallel thread map.
This ordering information is used later in the analysis
to help determine if synchronization actions on a given
node are independent.

� Outside Edges: A load statement may add an out-
side edge to the current parallel interaction graph. In
this case, the transfer function also records the fact
that the outside edge is created in parallel with all
of the thread nodes in the parallel thread map. This
ordering information is used during the thread interac-
tion algorithm to ensure that these outside edges are
not matched with inside edges from threads whose ex-
ecution starts after the execution of the load statement
that generated the outside edge.

We next present the dataow analysis framework from
the intraprocedural analysis. This framework includes the
transfer functions for the basic statements and the de�nition
of the conuence operator at merge points in the control-ow
graph.

6.1 Copy Statements

A copy statement of the form l = v makes l point to the
object that v points to. The transfer function updates I to
reect this change by killing the current set of edges from l,
then generating additional inside edges from l to all of the
nodes that v points to.

KillI = edges(I; l)
GenI = flg � I(v)

I 0 = (I �KillI) [GenI

6.2 Load Statements

A load statement of the form l1 = l2:fmakes l1 point to the
object that l2:f points to. The analysis models this change
by constructing a set S of nodes that represent all of the
objects to which l2:f may point, then generating additional
inside edges from l1 to every node in this set.

All nodes accessible via inside edges from l2:f should
clearly be in S. But if l2 points to an escaped node, other
parts of the program such as the caller or threads executing
in parallel with the current thread can access the referenced
object and store values in its �elds. In particular, the value
in l2:f may have been written by the caller or a thread
running in parallel with the current thread| in other words,
l2:f may contain a reference created outside of the current
analysis scope. The analysis uses an outside edge to model

Figure 6: Generated Edges for Basic Statements

this reference. The outside edge points to the load node for
the load statement, which is the outside node that represents
the objects that the reference may point to.

The analysis must therefore consider two cases: the case
when l2 does not point to an escaped node, and the case
when l2 does point to an escaped node. The algorithm
determines which case applies by computing SE, the set of
escaped nodes to which l2 points. SI is the set of nodes
accessible via inside edges from l2:f.

SE = fn2 2 I(l2):escaped(hO; I; e; ri; n2)g
SI = [fI(n2; f):n2 2 I(l2)g

If SE = ; (i.e., l2 does not point to an escaped node),
S = SI and the transfer function simply kills all edges from
l1, then generates inside edges from l1 to all of the nodes
in S.

KillI = edges(I; l1)
GenI = fl1g � S

I 0 = (I �KillI) [GenI

If SE 6= ; (i.e., l2 points to at least one escaped node),
S = SI [fnLg, where nL is the load node for the load
statement. In addition to killing all edges from l1, then
generating inside edges from l1 to all of the nodes in S, the
transfer function also generates outside edges from the es-
caped nodes to nL and propagates the escape information
from the escaped nodes through nL. It also generates a
load action hld; ni and updates the parallel action relation
to record the fact that the action may execute in parallel
with thread objects represented by the current set of paral-
lel thread nodes. In this case, the new outside edges may
represent references created by these parallel thread objects.

KillI = edges(I; l1)
GenI = fl1g � S

I 0 = (I �KillI) [GenI
GenO = (SE � ffg)� fnLg

O0 = O [GenO
e0 = propagate(hO0; I 0; e; ri; SE)
�0 = � [fhld; nLig
�0 = � [(fhld; nLig � fnT :�(nT) > 0g)

6.3 Store Statements

A store statement of the form l1:f = l2 �nds the object
to which l1 points, then makes the f �eld of this object
point to same object as l2. The analysis models the e�ect
of this assignment by �nding the set of nodes that l1 points
to, then generating inside edges from all of these nodes to
the nodes that l2 points to. It also propagates the escape
information from all of the nodes that l1 points to through
the nodes that l2 points to.

GenI = (I(l1)� ffg)� I(l2)
I 0 = I [GenI
e0 = propagate(hO0; I 0; e; ri; I(l1))

6.4 Acquire and Release Statements

An acquire statement of the form acquire(l) �nds the ob-
ject to which l points, then acquires that object's lock. A
release statement of the form release(l) �nds the object to
which l points, then releases that object's lock. The analy-
sis models the e�ect of these statements by �nding the set
of nodes that l points to, then recording synchronization
actions on all of these nodes.

�0 = � [(fsyncg � I(l))
�0 = � [((fsyncg � I(l))� fnT :�(nT) > 0g)

6.5 Object Creation Sites

An object creation site of the form l = new cl allocates a
new object and makes l point to the object. The analysis
represents all objects allocated at a speci�c creation site
with the creation site's inside node n. The transfer function
models the e�ect of the statement by killing all edges from
l, then generating an inside edge from l to n.

KillI = edges(I; l)
GenI = fhl; nig

I 0 = (I �KillI) [GenI

6.6 Return Statements

A return statement return l speci�es the return value for
the method. The immediate successor of each return state-
ment is the exit statement of the method. The analysis
models the e�ect of the return statement by updating r to
include all of the nodes that l points to.

r0 = I(l)

6.7 Control-Flow Join Points

To analyze a statement, the algorithm �rst computes the
join of the parallel interaction graphs owing into the state-
ment from all of its predecessors. It then applies the transfer
function to obtain a new parallel interaction graph at the
point after the statement. The join operation t is de�ned
as follows.

hhO; I; e; ri; �; �; �i =
hhO1; I1; e1; r1i; �1; �1; �1i t hhO2; I2; e2; r2i; �2; �2; �2i

where O = O1[O2, I = I1[I2, 8n 2 N:e(n) = e1(n)[e2(n),
r = r1 [r2, 8n 2 N:�(n) = max(�1(n); �2(n)), � = �1 [�2,
and � = �1 [�2.

The corresponding partial order v is

hhO1; I1; e1; r1i; �1; �1; �1i v hhO2; I2; e2; r2i; �2; �2; �2i

if O1 � O2, I1 � I2, 8n 2 N:e1(n) � e2(n), r1 � r2,
8n 2 N:�1(n) � �2(n), �1 � �2, and �1 � �2. Bottom is
hh;; ;; e?; ;i; �?; ;; ;i, where 8n 2 N:e?(n) = ; and 8n 2
N:�?(n) = 0.

6.8 Analysis Results

The analysis of each method produces analysis results �(�st)
and �(st�) before and after each statement st in the method's
control ow graph. The analysis result � satis�es the fol-
lowing equations:

�(�enterop) = hhO0; I0; e0; r0i; �0; �0; �0i
�(�st) = tf�(st0�):st0 2 pred(st)g
�(st�) = [[st]] (�(�st))

The �nal analysis result of method op is the analysis result
at the program point after the exit node, i.e., �(exitop�).
As described below in Section 9.4, the analysis solves these
equations using a standard worklist algorithm.

7 Matching Inside and Outside Edges

In the interprocedural analysis, outside edges in the callee's
parallel interaction graph represent inside edges in the caller's
parallel interaction graph. To compute the e�ect of a method

call, the analysis matches the callee's outside edges against
the corresponding inside edges from the caller. In the inter-
thread analysis, outside edges in the parallel interaction
graphs of each thread represent inside edges in the parallel
interaction graph of the other thread. To compute the inter-
actions, the analysis matches outside edges from each thread
against inside edges from the other thread. The matching
process is conceptually similar in both cases. This section
discusses the matching algorithm we use for both the inter-
procedural and the inter-thread analyses.

The matching algorithm takes two points-to escape graphs
hOi; Ii; ei; rii (i 2 f1; 2g) and two initial mappings �i : N !
N . It produces two new mappings �0i : N ! N that extend
the initial mappings to map the outside nodes in each graph
to the corresponding nodes in the other graph.

h�01; �
0
2i = match(hO1; I1; e1; r1i; hO2; I2; e2; r2i; �1; �2)

We formulate the mapping using set inclusion constraints [1].
This formulation enables us to present a compact, simple
speci�cation of the mapping result using a set of constraint
rules. Figure 7 presents the constraints that the matching
algorithm must satisfy. Note that these contraints use the
notation i to represent the complement of i; i.e. 1 = 2,
2 = 1. The constraints basically specify that if an outside
edge from one graph matches an inside edge from the other
graph, then the mappings must map the outside edge's node
to the inside edge's node. This node mapping potentially
enables more edge matchings.

Figure 9 presents the algorithm that solves these con-
straints. It operates by repeatedly �nding a node in one
graph that is already mapped to a node in the other graph.
It then checks if there is an inside edge from one of these
nodes that it can match up with a corresponding outside
edge from the other node. If so, it updates one of the map-
pings to reect the fact that the node that the outside edge
points to is mapped to the node that the inside edge points
to.

match(hO1; I1; e1; r1i; hO2; I2; e2; r2i; �1; �2)
Initialize worklists and results
for i = 1; 2 do

�0i = �i
Wi = fhn1; n3i:n3 2 �i(n1)g
Di = ;

while choose hn1; n3i 2Wi do
Remove a pair from worklist
Wi =Wi � fhn1; n3ig
Di = Di [fhn1; n3ig
Check outside edges for rule 2
for all hhn1; fi; n2i 2 Oi do

for all hhn3; fi; n4i 2 I
i
do

�0i(n2) = �0i(n2) [fn4g
if hn2; n4i 62 Di then

Wi =Wi [fhn2; n4ig
Check inside edges for rule 3
for all hhn1; fi; n2i 2 Ii do

for all hhn3; fi; n4i 2 O
i
do

�0
i
(n4) = �0

i
(n4) [fn2g

if hn4; n2i 62 D
i
then

W
i
=W

i
[hn4; n2i

return h�01; �
0
2i

Figure 9: Algorithm for Matching Inside and Outside Nodes

8 Combining Points-To Escape Graphs

Once the matching algorithm has set up the mapping be-
tween inside and outside nodes in the two graphs, the combi-
nation algorithm uses the mapping to generate a new points-
to escape graph that reects the �nal points-to and escape
relationships generated by the interaction.

The combination algorithm takes two points-to escape
graphs hOi; Ii; ei; rii (i 2 f1; 2g) and two initial mappings
�i : N ! N . It produces the �nal points-to escape graph
hO0; I 0; e0; r0i. The combination algorithm performs two ba-
sic tasks: it traces out reachable edges and nodes from the
two input points-to escape graphs so that they are present
in the �nal graph, and it uses the mappings between out-
side and inside nodes to translate inside edges into the �nal
graph.

hhO0; I 0; e0; r0i; �01; �
0
2i =

combine(hO1; I1; e1; r1i; hO2; I2; e2; r2i; �1; �2)

As for the mapping algorithm, we specify the combina-
tion result using a system of set inclusion constraints. Fig-
ure 8 presents the constraints that specify the result of the
combination algorithm. These constraints extend the initial
mappings to two new mappings �0i : N ! N . These new
mappings have the property that n 2 �0i(n) if n is reachable
in the �nal points-to escape graph and should be present
in that graph. These constraints start with a set of nodes
that will be mapped into the combined graph. They then
trace out the reachable nodes to determine the complete
set of nodes that should be present in the combined graph.
Figures 10 and 11 present an algorithm for solving the con-
straint system in Figure 8. We highlight several properties
of this algorithm:

� Base Nodes: The analysis starts with a set of base
nodes mapped into the combined graph. In the case of
caller/callee interaction, all of the nodes from the caller
are mapped directly into the combined graph. The
class nodes from the callee are also mapped directly,
while the parameter nodes are mapped indirectly to
model the semantics of method invocation.

� Inside Nodes: An inside node from one of the parallel
interaction graphs is present in the combined graph if
it is reachable from the base nodes.

� Inside Edges: If two nodes are mapped into the com-
bined graph, the analysis uses the mapping to translate
insided edges between the two nodes into the graph.

� Load Nodes: A load node is mapped into the com-
bined graph if it is reachable from an escaped base
node.

� Outside Edges: Outside edges are translated into
the combined graph if the node that they come from
is mapped into the graph and at least one of the nodes
that it maps to is escaped in the graph.

8.0.1 Constraint Solution Algorithm

We next discuss the constraint solution algorithm in Fig-
ures 10 and 11 for the constraint system in Figure 8. The al-
gorithm directly reects the structure of the inference rules.
At each step it detects an inference rule antecedent that be-
comes true, then takes action to ensure that the consequent
is also true.

Figure 7: Constraints for Matching Inside and Outside Edges

Figure 8: Constraints for Combining Points-to Escape Graphs

The mapNode(n1; n; i) procedure in Figure 10 is invoked
whenever the algorithm maps a node n1 from points-to es-
cape graph i to a node n in the new graph. It �rst matches
inside edges involving n1 in points-to escape graph i to inside
edges involving n in the new graph. The procedure checks
any edges to n1 that have already been previously translated
into the new graph to see if they should also be translated to
point to n in the new graph. It also checks all of the inside
edges from n1 to see if they should be translated into the
new graph. The procedure then checks outside edges from
n1 to see if they should be translated into the new graph.
Finally, the procedure updates the new escape function e0

to reect the e�ect of the newly mapped nodes and newly
translated edges.

Figure 11 presents the driver for the constraint solution
algorithm. It maintains a worklist W I

i of inside nodes from
graph i that should be mapped into the new graph, and
a worklist WO

i of outside edges that should be translated
into the new graph if the edge's source node is escaped in
the new graph. When the algorithm processes a node from
W I
i , it calls mapNode to map that node into the new graph.

When the algorithm processes an outside edge from WO
i , it

translates the edge into the new graph and maps the edge's
target node into the new graph.

There is a slight complication in the algorithm. As the al-
gorithm executes, it periodically translates inside edges into
the new graph. Whenever a node n1 from graph i is mapped
to n, the algorithm translates each inside edge hhn1; fi; n2i
from graph i into the new graph. This translation process in-
serts a corresponding inside edge from n to each node that
n2 maps to; i.e., to each node in �0i(n2). The algorithm
must ensure that when it completes, there is one such edge
for each node in the �nal set of nodes �0i(n2). But when the
algorithm �rst translates hhn1; fi; n2i into the new graph,
�0i(n2) may not be complete. In this case, the algorithm
will eventually map n2 to more nodes, increasing the set of
nodes in �0i(n2). There should be edges from n to all of the
nodes in the �nal �0i(n2), not just to those node that were
present in �0i(n2) when the algorithm mapped hhn1; fi; n2i
into the new graph.

The algorithm ensures that all of these edges are present
in the �nal graph by building a set �i(n2) of delayed actions.
Each delayed action consists of a node in the new graph and
a �eld in that node. Whenever the node n2 is mapped to a
new node n0 (i.e., the algorithm sets �0i(n2) = �0i(n2)[fn

0g),
the algorithm establishes a new inside edge for each delayed
action. The new edge goes from the node in the action to
the newly mapped node n0. These edges ensure that the
�nal set of inside edges satis�es the constraints.

9 Interprocedural Analysis

The interprocedural analysis algorithm propagates parallel
interaction graphs from callees to callers. At thread start
sites, the analysis adds the nodes that represent the started
thread to the parallel thread map. It also marks the started
thread nodes as escaping via themselves and propagates the
escape information. At each method invocation site, the
analysis has the option of either skipping the site or analyz-
ing the site. If it skips the site, it marks all of the parameters
and the return value as permanently escaping down into the
site.

mapNode(n1; n; i)
if hn1; n; ii 62 D then

D = D [fhn1; n; iig
�0i(n1) = �0i(n1) [fng
Add delayed inside edges for rule 7
I 0 = I 0 [�i(n1)� fng
S = fn0 2 N:hn0; fi 2 �(n1)g
Check inside edges for rules 5 and 7
for all hhn1; fi; n2i 2 Ii

Add inside edges for rule 7
I 0 = I 0 [fhn; fig � �0i(n2)
S = S [fng
�i(n2) = �i(n2) [fhn; fig
Check conditions for rule 5
if n2 2 NI [NR

W I
i =W I

i [fn2g
Check outside edges for rule 6
for all hhn1; fi; n2i 2 Oi

WO
i =WO

i [fhhn; fi; n2ig
Update escape information for rules 8 and 9
e0(n) = e0(n) [ei(n1)
e0 = propagate(hO0; I 0; e0; r0i; S)

Figure 10: Algorithm for Mapping One Node to Another

combine(hO1; I1; e1; r1i; hO2; I2; e2; r2i; �1; �2)
Initialize worklists and results
D = ;
for i = 1; 2 do

hW I
i ;W

O
i i = h;; ;i

for all n 2 N do �i(n) = ;
for all n 2 N do �0i(n) = ;

hO0; I 0; r0i = h;; ;; ;i
for all n 2 N do e0(n) = ;
Call mapNode for existing mappings
for all hn1; n; ii such that n 2 �i(n1) do

mapNode(n1; n; i)
done = false
do

if choose n 2W I
i then

W I
i =W I

i � fng
mapNode(n; n; i)

else if choose hhn; fi; n1i 2 WO
i such that

escaped(hO0; I 0; e0; ;i; n) then
W I
i =W I

i � fhhn; fi; n1ig
Update outside edges for rule 6
O0 = O0 [fhhn; fi; n1ig
mapNode(n1; n1; i)

else done = true
while not done
return hhO0; I 0; e0; r0i; �01; �

0
2i

Figure 11: Algorithm for Combining Points-to Escape
Graphs

9.1 Thread Start Sites

To simplify the presentation of the analysis, we assume that
at each thread start site l:start(), I(l) � NT . This is al-
most invariably the case in practice | most threads are
started in the same method in which they are allocated.
The algorithm adds the thread nodes that l points to into
the set of parallel threads. It also makes the escape function
for each node nT 2 I(l) include nT , and propagates the new
escape information.

� 0(nT) =

�
�(nT)� 1 if nT 2 I(l)
�(nT) otherwise

eT (n) =

�
e(n) [fng if n 2 I(l)
e(n) otherwise

e0 = propagate(hO; I; eT ; ri; I(l))

9.2 Skipped Method Invocation Sites

The transfer function for a skipped method invocation site is
de�ned as follows. Given a skipped method invocation site
m of the form l = l0:op(l1; : : : ; lk) with return node nR
and a current parallel interaction graph hhO; I; e; ri; �; �; �i,
the parallel interaction graph
hhO0; I 0; e0; r0i; � 0; �0; �0i = [[m]] (hhO; I; e; ri; �; �; �i) after the
site is de�ned as follows:

I 0 = (I � edges(I; l)) [fhl; nRig
O0 = O
e0 = propagate(hO0; I 0; em; ri; Sm)
r0 = r

where Sm = [fI(li):0 � i � kg and

em(n) =

�
e(n) [fmg if n 2 Sm or n = nR
e(n) otherwise

Recall that the return node nR is an outside node used to
represent the return value of the invoked method.

9.3 Analyzed Method Invocation Sites

Given an analyzed method invocation site m and a current
parallel interaction graph hhO; I; e; ri; �; �; �i, the new par-
allel interaction graph
hhO0; I 0; e0; r0i; � 0; �0; �0i = [[m]] (hhO; I; e; ri; �; �; �i) after the
site is de�ned as follows:

hhO0; I 0; e0; r0i; � 0; �0; �0i =
t fmapUp(hhO; I; e; ri; �; �; �i;m; op):op 2 callees(m)g

Figure 12 presents the combination algorithm, which per-
forms the following steps:

� It retrieves the analysis result from the exit statement
of the invoked method op.

� It builds an initial mapping. This mapping maps the
parameter nodes from the callee to the corresponding
nodes in the caller that represent the actual parame-
ters, and the class nodes to themselves.

� It uses the initial mapping to match outside edges
in the callee to the corresponding inside edges in the
caller. The result is a mapping from the outside nodes
of the callee to the corresponding nodes in the caller.

� It uses the result mapping to combine the caller and
callee graphs, generating the new parallel interaction
graph. In addition to combining the points-to and es-
cape information, the analysis must also translate the
actions and parallel threads from the callee into the
caller. It must also record the fact that all of the ac-
tions from the callee occur in parallel with all of the
parallel threads from the caller.

The transfer function itself merges the combined results
from all potentially invoked methods to derive the points-to
escape graph at the point after the method invocation site.

mapUp(hhO; I; e; ri; �; �; �i; m; op)
Assume m of the form l = l0:op(l1; : : : ; lk)
Assume op has formal parameters p0; : : : ; pk
Extract the analysis result from the invoked method
hhOR; IR; eR; rRi; �R; �R; �Ri = �(exitop�)
Compute initial mappings

�C(n) =

�
fng if n 2 NC

; otherwise

�mop(n) =

(
fng if n 2 NC

I(li) if n = np
i

; otherwise
Match outside nodes from callee to caller nodes
h�1; �2i = match(h;; I; e; ri; hOR; IR; eR; rRi; �C ; �

m
op)

Compute mappings for combination

�(n) =

(
�1(n) [fng if �R(n) > 0 or n 2 r or

9v 2 V:hv; ni 2 I
�1(n) otherwise

�R(n) =

(
�2(n) [fng if �R(n) > 0 or

n 2 rR � (NP [NL)
�2(n) otherwise

e0R(n) = eR(n)� P
Combine points-to escape graphs
hhO0; IC ; e

0; rCi; �
0
1; �

0
2i =

combine(hO; I; e; ri; hOR; IR; e
0
R; rRi; �; �R)

Generate the �nal set of inside edges and return set
I 0 = IC [(I � edges(l)) [(flg �

S
n2rR

�02(n))

r0 = r
Compute new thread map
� 0(n) = � (n)� �R(n)
Compute action mapping from callee to caller

�A(a) =

�
fbg � �02(n) if a = hb; ni
fbg � �02(n)� fnT g if a = hb; n; nT i

Combine actions from caller and callee
�0 = � [(

S
a2�R

�A(a))

Compute new parallel action relation
�0 = � [(

S
ha;nT i2�R

�A(a)� fnT g)[

(
S

a2�R

�A(a)� fnT :�(nT) > 0g)

Return the new parallel interaction graph
return hhO0; I 0; e0; r0i; � 0; �0; �0i

Figure 12: Callee/Caller Interaction Algorithm

9.4 Fixed-Point Analysis Algorithm

Figure 13 presents the interprocedural �xed-point algorithm
that the compiler uses to generate the interprocedural anal-

ysis results. It uses a worklist of pending statements to solve
the combined intraprocedural and interprocedural dataow
equations. At each step, it removes a statement from the
worklist and updates the analysis results before and after
the statement. If the analysis result after the statement
changed, it inserts all of its successors (or for exit nodes,
all of the callers of its method) into the worklist. As spec-
i�ed, the algorithm is therefore both intraprocedural and
interprocedural.

Initialize analysis results
for all st 2 ST do

�(�st) = �(st�) = hh;; ;; e;; ;i; �0; ;; ;i
where e;(n) = ; for all n 2 N and

�0(nT) = 0 for all nT 2 NT

for all op 2 OP do
�(�enterop) = hhO0; I0; e0; r0i; �0; �0; �0i

Initialize the worklist
W = fenterop:op 2 OPg
while (W 6= ;) do

Remove a statement from worklist
W =W � fstg
Process the statement
�(�st) = tf�(st0�):st0 2 pred(st)g
�(st�) = [[st]] (�(�st))
if �(st�) changed then

Put potentially a�ected statements
onto worklist
W =W [succ(st)
if st � exitop then

W =W [callers(op)

Figure 13: Fixed-Point Analysis Algorithm

The order in which the algorithm analyzes methods can
have a signi�cant impact on the analysis. For non-recursive
methods, a bottom-up analysis of the program yields the full
result with one analysis per method. For recursive methods,
the analysis results must be iteratively recomputed within
each strongly connected component of the call graph us-
ing the current best result until the analysis reaches a �xed
point.

It is possible to extend the algorithm so that it initially
skips the analysis of method invocation sites. If the analysis
result is not precise enough, it can incrementally increase
the precision by analyzing method invocation sites that it
originally skipped. The algorithm will then propagate the
new, more precise result to update the analysis results at
a�ected program points.

10 Inter-thread Analysis

The interprocedural algorithm described above generates a
parallel interaction graph for every point in the program.
This graph records all of the points-to relationships created
by the current thread and all of the potential interactions
of that thread with other threads. The thread interaction
algorithm resolves the potential interactions by computing
which interactions may actually occur between the current
thread and the parallel threads that it (transitively) starts.
The basic idea is to repeatedly match corresponding inside
and outside edges from parallel threads. The result is a sin-
gle parallel interaction graph that summarizes the combined

e�ect of the parallel threads on the points-to and escape in-
formation at that point.

10.1 Thread Interaction

We next discuss the interaction algorithm for parallel threads.
The interaction takes place between a starter thread (a thread
that starts a parallel thread) and a startee thread (the thread
that is started). The interaction algorithm is given the par-
allel interaction graph hhO; I; e; ri; �; �; �i from the starter
thread, a node nT that represents the startee thread, and a
run method op with receiver object p0 that runs when the
thread object represented by nT starts.

hhO0
; I

0
; e
0
; r
0i; � 0; �0; �0i = interact(hhO; I; e; ri; �; �; �i; nT ; op)

Figure 14 presents the interaction algorithm. The algorithm
performs the following steps:

� It extracts the �nal analysis result for the startee thread.
This is the analysis result after the exit node of the
startee thread's run method.

� It matches corresponding inside and outside edges from
the two threads. All of the outside edges from the star-
tee thread participate in the matching. Outside edges
from the starter participate only if they represent loads
that may have occurred after the startee thread began
its execution. The algorithm uses the event ordering
information to determine which of these outside edges
should participate.

� It combines the two parallel interaction graphs to gen-
erate the �nal parallel interaction graph. In addition
to combining the points-to and escape information, the
analysis must also translate the actions and started
threads from the two graphs into the combined graphs.
It must also update the ordering information as fol-
lows:

{ Each thread has ordering information that spec-
i�es which of its actions may execute in parallel
with the threads that it starts. For both threads,
this ordering information is translated into the
new points-to escape graph.

{ All actions from the starter thread that occur in
parallel with the startee thread also occur in par-
allel with all of the startee's threads.

{ All actions from the startee thread occur in par-
allel with all of the starter's threads.

Note that because the parallel interaction graphs rep-
resent all potential interactions between threads, the algo-
rithm can compute the actual interactions with a single pass
over the two graphs.

10.2 Resolution

To generate the �nal parallel interaction graph that summa-
rizes all of the interactions, the algorithm resolves all of the
interactions between the parallel threads. The resolution
algorithm repeatedly takes the current parallel interaction
graph, chooses one of the startee threads, and computes
the interactions between the current graph and the startee
thread to derive a new current graph. It continues this pro-
cess until it reaches a �xed point. In the absence of loop
or recursively generated concurrency, the algorithm reaches
a �xed point after processing each thread once. The result

interact(hhO; I; e; ri; �; �; �i; nT ; op)
Assume p0 represents receiver of op
Extract the analysis result for the parallel thread
hhOR; IR; eR; rRi; �R; �R; �Ri = �(exitop�)
Compute outside edges from starter thread that
participate in mapping
OnT = fhhn1; fi; n2i:hhld; n2i; nT i 2 � or

hhld; n2; ni; nT i 2 �g
Compute initial mappings for the match

�C(n) =

�
fng if n 2 NC

; otherwise

�
nT
op (n) =

(
fng if n 2 NC

fnT g if n = np
0

; otherwise
Match corresponding inside and outside edges

h�1; �2i = match(hOnT ; I; e; ri; hOR; IR; eR; rRi; �C ; �
nT
op)

Compute mappings for the combination

�(n) =

(
�1(n) [fng if � (n) > 0 or n 2 r or

9v 2 V:hv; ni 2 I
�1(n) otherwise

�R(n) =

�
�2(n) [fng if �R(n) > 0
�2(n) otherwise

eR
0(n) = eR(n)� P

Combine the two parallel interaction graphs
hhO0; IC ; e

0; rCi; �
0
1; �

0
2i =

combine(hO; I; e; ri; hOR; IR; eR
0; rRi; �; �R)

I 0 = IC [
S

hv;ni2I
fvg � �01(n)

r0 =
S
n2r

�01(n)

Compute action mappings for combination

�A1 (a) =

�
fbg � �01(n) if a = hb; ni
fbg � �01(n)� fn0T g if a = hb; n; n0T i

�A2 (a) =

�
fbg � �02(n) if a = hb; ni
fbg � �02(n)� fn0T g if a = hb; n; n0T i

Compute new parallel thread map

�nT (n) =

�
�(n)	 1 if n = nT
�(n)� �R(n) otherwise

� 0(n) = �nT (n)� �R(n)
Compute combined action sets

�0 = (
S
a2�

�A1 (a))[

(
S

hb;ni2�R

fbg � �A2 (n)� fnT g)[

(
S

hb;n;n0T i2�R

fbg � �A2 (n)� fn0T g)

Compute new parallel action relation

�0 = (
S

ha;n0

T
i2�

�A1 (a)� fn0T g)[

(
S

ha;nT i2�
�A1 (a)� fn0T :�R(n

0
T) > 0g)[

(
S

ha;n0

T
i2�R

�A2 (a)� fn0T g)[

(
S

a2�R

�A2 (a)� fn0T :�nT (n
0
T) > 0g)

Return the new parallel interaction graph
return hhO0; I 0; e0; r0i; � 0; �0; �0i

Figure 14: Parallel Thread Interaction Algorithm

of the resolution algorithm resolve(hG; �; �; �i) must satisfy
the following equation:

resolve(hG; �; �; �i) =F
hnT ;opi2S

fresolve(interact(hG; �nT ; �; �i; nT ; op))g

where

� S = fhnT ; opi:�(nT) > 0 and op 2 run(nT)g

� �nT (n) =

�
� (n)	 1 if n = nT
�(n) otherwise

To perform the resolution, the analysis requires informa-
tion about the correspondence between thread nodes and
the run method that executes when the start method is in-
voked on an object that the node represents. Given a thread
node n 2 NT (a node that represents runnable objects),
run(n) is the set of run methods that may execute when the
start method is invoked on an object represented by n. In
the current compiler, run(n) is computed using the declared
type of n. Figure 15 presents a �xed-point algorithm that
computes resolve(hG; �; �; �i).

resolve(hG; �; �; �i)
hG0; � 0; �0; �0i = hG; �; �; �i
S = ;
while there exists nT 2 NT such that

� 0(nT) > 0 and hnT ; �
0; �0; �0i 62 S do

S = S [fhnT ; �
0; �0; �0ig

choose nT such that � 0(nT) > 0 and hnT ; �
0; �0; �0i 62 S

hG0; � 0; �0; �0i =
F

op2run(nT)

interact(hG0; � 0nT ; �
0; �0i; nT ; op)

if G0 changed then S = ;
return(hG0; � 0; �0; �0i)

Figure 15: Fixed-Point Resolution Algorithm

Given a statement st, it is possible to compute a sin-
gle parallel interaction graph hhO; I; e; ri; �; �; �i that com-
pletely summarizes the points-to and escape relationships
after st as follows:

hhO; I; e; ri; �; �; �i = trim(resolve(�(st�)))

where

� S = fn 2 NL:e(n)�NT = ;g

� trim(hhO; I; e; ri; �; �; �i) =
remove(hhO; I; e0; ri; �; �; �i; S)

� e0(n) = e(n)�NT .

The algorithm trims o� any outside edges that come
from nodes that escape only because they are reachable from
thread nodes. It also removes all thread nodes from the es-
cape function. The resolved graph already contains all of
the possible interactions that may a�ect nodes that escape
only via other threads.

For the program point at the exit of the main method,
the analysis may also trim o� outside edges that come from
nodes that escape only because they are reachable from
static class variables. The resolved graph at this program
point contains all of the possible interactions that may a�ect

these nodes. In this graph, the only source of uncertaintly
comes from nodes passed into or returned from unanalyzed
method invocation sites.

hhO; I; e; ri; �; �; �i = trimMain(resolve(�(exitmain�)))

where

� S = fn 2 NL:e(n)� (NT [NC) = ;g

� trim(hhO; I; e; ri; �; �; �i) =
remove(hhO; I; e0; ri; �; �; �i; S)

� e0(n) = e(n)� (NT [NC).

11 Independence Testing

The independence testing algorithm �nds objects that are
captured at the end of a method, using either the resolved
graph (as discussed in Section 10.2) or the single thread in-
terprocedural analysis result (as discussed in Section 9). If
an object is captured in either graph, it is unreachable out-
side the method. In this case, the graph completely sum-
marizes all of the actions that threads may perform on the
object. The algorithm uses the parallel action relation to
determine if two conicting actions may occur concurrently.
If not, the actions are independent and the compiler can
eliminate all synchronization on the objects that the node
represents. Given a parallel interaction graph hG; �; �; �i
from the exit node of a method and a captured node n,
the algorithm in Figure 16 tests if all of the synchronization
actions on n are independent.

independent(hG; �; �; �i; n)
Check if the node is escaped in G
if escaped(G; n) then return false
Find all sync actions on n
S = fhsync; ni 2 �g [fhsync; n; nT i 2 �g
Check if one of the actions a in S may execute in
parallel with a thread nT that also synchronizes on n
if 9a 2 S; nT 2 NT :ha; nT i 2 � and hsync; n; nT i 2 S then
return false

else return true

Figure 16: Independence Testing Algorithm

The compiler tests all inside nodes for independence in
the analysis result �(exitop�) for all methods op. It also
tests all inside nodes in the resolved analysis result
trim(resolve(�(exitop�))) for methods op that contain thread
creation sites and in the resolved analysis result
trimMain(resolve(�(exitmain�))) at the end of the main
method.

12 Resolving Outside Nodes

It is possible to augment the algorithm so that it records,
for each outside node, all of nodes that it represents dur-
ing the analysis. This information allows the algorithm to
go back to the analysis results generated at the various pro-
gram points and resolve each outside node to the set of inside
nodes that it represents during the analysis. The basic idea
is to generate a set of inclusion constraint systems. There is
one system
m for each method invocation site m and one
system
op for each method op. These systems specify, for

each node n, a map set !(n) of nodes that n is mapped to
during the analysis of the corresponding method invocation
site or method. These systems are speci�ed using set inclu-
sion constraints of the forms !(n1) � !(n2), which speci�es
that the map set for n2 includes the map set for n1. We use
the notation !m(n) to indicate the solution of the constraint
system
m for n, and similarly !op(n) for the solution of

op for n. The initial map set
0 consists of the set of con-
straints fng � !(n), which speci�es that each node is in its
map set. The constraint systems can be solved by a simple
constraint propagation algorithm [24].

We de�ne the constraint systems using the mappings
generated by the algorithms in Figures 12 and 14. Speci�-
cally, �mop(n) = �02(n), where �

0
2 is the mapping computed

by the algorithm in Figure 12 for the method op invoked
at method invocation site m, and �op(n) = �01(n) [�

0
2(n),

where �01 and �02 are the mappings computed by the algo-
rithm in Fgiure 14 when applied to the parallel interaction
graph at the program point exitop�. The constraint system
at a method invocation site m is de�ned as follows:

m = f!(n1) � !(n2):n1 2 �mop(n2)g [
[

op2callees(m)

op

The constraint system is considered to be �nal for a node
n if it completely summarizes all of the inside nodes that n
can represent during the analysis of the method invocation
site. To determine if the constraint system is �nal for n,
the algorithm checks to see that all of the outside nodes
that n represented during the analysis have been completely
resolved to inside nodes. Formally,

�nal(m;n) = 8n0 2 !m(n); op 2 callees(m):�mop(n
0)\NO = ;

For each method op, the analysis can choose whether
it wishes to compute the interactions between threads to
resolve outside nodes. The advantage of doing so is a poten-
tial increase in the precision; the disadvantage is a potential
increase in the analysis time. If the analysis does not com-
pute the interactions between threads,
op and �nal(op; n)
are de�ned as follows:

op =
0 [
S

m2invocations(op)

m

�nal(op; n) = 8m 2 invocations(op):�nal(m;n)

Here invocations(op) is the set of all method invocation sites
in op. If the analysis does compute the interactions,
op and
�nal(op; n) are de�ned as follows:

op = f!(n1) � !(n2):n1 2 �op(n2)g[

0 [

S
m2invocations(op)

m

�nal(op; n) = 8n0 2 !op(n):�op(n
0) \NO = ;

The analysis can mix and match these two approaches on a
per-method basis; an appropriate policy is to compute the
interactions only for methods that start threads.

If a node is �nal in a given constraint system, the analysis
has determined all of the inside nodes that it represents dur-
ing the analysis of the corresponding method invocation site
or method. More formally, if �nal(m;n), then !m(n)\NI is
the set of inside nodes represented by n during the analysis
of the method invocation site m. Similarly, if �nal(op; n),
then !op(n) \ NI is the set of inside nodes represented by
n during the analysis of the method invocation site op.

13 Abstraction Relation

In this section, we characterize the correspondence between
parallel interaction graphs and the objects and references
created during the execution of the program. A key property
of this correspondence is that a single concrete object in the
execution of the program may be represented by multiple
nodes in the parallel interaction graph. We therefore state
the properties that characterize the correspondence using an
abstraction relation, which relates each object to all of the
nodes that represent it.

As the program executes, it creates a set of concrete
objects o 2 C and a set of references r 2 R � (V�C)[((C�
F)� C) between objects. At each point in the execution of
the program, it is possible to de�ne the following sets of
references and objects:

� RC is the set of references created by the current ex-
ecution of the current method and all of the analyzed
methods that it invokes.

� RR is the set of references read by the current exe-
cution of the current method and all of the analyzed
methods that it invokes.

� CR is the set of objects reachable from the local vari-
ables, static class variables, and parameters by follow-
ing references in RC [RR.

� RI = RC \ ((CR � F � CR) [(V � CR)) is the set of
inside references. These are the references represented
by the set of inside edges in the analysis.

� RO = (RR \ (CR�F �CR))�RI is the set of outside
references. These are the references represented by the
set of outside edges in the analysis.

It is always possible to construct an abstraction relation
� � C�N between the objects and the nodes in the parallel
interaction graph hhO; I; e; ri; �; �; �i at the current program
point. This relation relates each object to all of the nodes in
the points-to escape graph that represent the object during
the analysis of the method. The abstraction relation has all
of the properties described below.

� Reachable objects are represented by their allocation
sites. If o was created at an object creation site within
the current execution of the current method or ana-
lyzed methods that it invokes, and o is reachable (i.e.
o 2 CR), n 2 �(o), where n is the object creation site's
inside node.

� Each object is represented by at most one inside node:

{ n1; n2 2 �(o) and n1; n2 2 NI implies n1 = n2

� All outside references have a corresponding outside
edge in the points-to escape graph:

{ hhcl; fi; oi 2 RO implies O(cl; f) \ �(o) 6= ;

{ hho1; fi; o2i 2 RO implies
(�(o1)� ffg)� �(o2) \ O 6= ;

� All inside references have a corresponding inside edge
in the points-to escape graph:

{ hv; oi 2 RI implies I(v) \ �(o) 6= ;

{ hhcl; fi; oi 2 RI implies I(cl; f) \ �(o) 6= ;

{ hho1; fi; o2i 2 RI implies
(�(o1)� ffg)� �(o2) \ I 6= ;

� If an object is represented by a captured node, it is
represented by only that node:

{ n 2 �(o) and captured(hO; I; e; ri; n) implies
�(o) = fng

Given this property, we de�ne that an object is cap-
tured if it is represented by a captured node. All ref-
erences to captured objects are either from local vari-
ables or from other captured objects:

{ n 2 �(o), captured(hO; I; e; ri; n), and hv; oi 2 R
implies v 2 L

{ n2 2 �(o2), captured(hO; I; e; ri; n2), and
hho1; fi; o2i 2 R implies 9n1 2 N:�(o1) = fn1g
and captured(hO; I; e; ri; n1)

These properties ensure that captured objects are reach-
able only via paths that start with the local variables.
If an object is captured at a method exit point, it will
therefore become inaccessible as soon as the method
returns.

� The points-to information in the points-to escape graph
completely characterizes the references between ob-
jects represented by captured nodes:

{ captured(hO; I; e; ri; n1); captured(hO; I; e; ri; n2);
n1 2 �(o1); n2 2 �(o2) and hhn1; fi; n2i 62 I implies
hho1; fi; o2i 62 R

14 Experimental Results

We have implemented a combined pointer and escape anal-
ysis based on the algorithm described in this paper. We
implemented the analysis in the compiler for the Jalape~no
JVM [3], a Java virtual machine written in Java with a few
unsafe extensions for performing low-level system operations
such as explicit memory management and pointer manipu-
lation.

The analysis is implemented as a separate phase of the
Jalape~no dynamic compiler, which operates on the Jalape~no
intermediate representation. To analyze a class, the algo-
rithm loads the class, converts its methods into the interme-
diate representation, then analyzes the methods. The �nal
analysis results for the methods are written out to a �le.
This approach provides excellent support for dynamically
loaded programs. It allows the compiler to analyze a large,
commonly used package such as the Java Class Libraries
once, then reuse the analyze results every time a program is
loaded that uses the package. It also supports the delivery
of preanalyzed packages. Instead of requiring the analysis
to be performed when the package is �rst loaded into a cus-
tomer's virtual machine, a vendor could perform the analysis
as part of the release process, then ship the analysis results
along with the code.

Our benchmark set includes four programs: javac (Java
compiler), javacup (parser generator), server (a simple mul-
tithreaded web server), and work (a compute benchmark
with multiple worker threads). Figure 17 presents the total
number of synchronizations required to execute each pro-
gram. We report counts for three di�erent optimization lev-
els:

� Original: No analysis is performed.

� Interprocedural: The compiler uses the interpro-
cedural, single-threaded analysis results as de�ned in
Section 9. At the end of each method, it �nds all cap-
tured nodes and removes all synchronization on the
corresponding objects from the counts.

� Interthread: The compiler uses the inter-thread anal-
ysis as de�ned in Section 10. In addition to the In-
terprocedural optimization described above, the com-
piler uses the thread interaction results. At the end of
each method that starts a thread, and at the end of
the main method, it resolves the interactions between
started parallel threads. If all of the synchronization
actions on a captured node in the resulting parallel in-
teraction graph are independent, the analysis removes
all synchronization on the corresponding objects from
the counts.

Application Original Interprocedural Interthread
javac 2,080,116 1,348,814 51,164
javacup 1,704,563 537,040 121,798
server 7,091 6,123 1,842
work 21,877 21,317 2,983

Figure 17: Total Number of Synchronization Operations

For javac and javacup, the inter-thread optimization re-
moves over 92% of the total synchronizations. For server
and work, the inter-thread synchronization removes over
74% of the synchronizations. In all of the cases, the In-
terthread optimization signi�cantly reduces the number of
synchronizations as compared to the Interprocedural opti-
mization. To put these results in perspective, recent research
with escape analysis algorithms less powerful than our Inter-
procedural optimization level reported signi�cant speedups
from synchronization elimination for a range of Java pro-
grams [12, 3].

15 Related Work

In this section, we discuss several areas of related work:
pointer analysis, escape analysis, and synchronization op-
timizations.

15.1 Pointer Analysis for Multithreaded Programs

There have been, to our knowledge, two previously pub-
lished ow-sensitive pointer analysis algorithms for multi-
threaded programs. Rugina and Rinard published an algo-
rithm for programs with structured, fork-join parallelism [37].
The algorithm is interprocedural, context-sensitive, and top-
down, generating calling contexts in a top-down manner
starting with the main method. Each procedure is rean-
alyzed for each new calling context. Corbett published a
algorithm for multithreaded programs that consist of a sin-
gle procedure [16]. Both analyses use an iterative, �xed-
point algorithm to compute the interactions between paral-
lel threads, and must analyze the entire program. Our al-
gorithm, on the other hand, is a bottom-up, compositional,
interprocedural algorithm that analyzes each method once
to derive a parameterized analysis result that can be spe-
cialized for use at all call sites that invoke the method.3

Unlike Corbett's algorithm, it handles multiple procedures

3Recursive methods require an iterative algorithm that may ana-
lyze methods multiple times to reach a �xed point.

and recursively generated concurrency. Unlike Rugina and
Rinard's algorithm, it handles programs with unstructured
multithreading.

Rugina and Rinard's algorithm propagates information
with three sets of edges: the current set of edges C, inter-
ference edges I from other threads, and the set of edges E
created by the current thread. Separating C and E enables
the algorithm to perform strong updates to shared variables.
Strong updates eliminate edges from C, leaving them in E to
be correctly observed by other threads. There are two ways
to extend the algorithm presented in this paper to handle
strong updates to heap allocated objects. The �rst is to
allow the analysis to perform strong updates to captured
objects [41]. The second is to adopt the Rugina and Rinard
solution and split the set of inside edges in the parallel inter-
action graphs into a set of current edges and a set of edges
created by the current thread, with strong updates remov-
ing edges from the set of current edges but leaving them in
place in the set of edges created by the current thread.

The interference edges in Rugina and Rinard's analy-
sis correspond to inside edges from parallel threads in the
analysis presented in this paper. In general, the set of in-
terference edges coming into a current thread depends on
interactions between that current thread and threads that
run in parallel with it. Rugina and Rinard's analysis uses a
�xed-point algorithm to resolve these interactions and com-
pute a complete set of interference edges for the analysis of
each thread. This algorithm repeatedly reanalyzes threads
until the sets of interference edges from parallel threads do
not change. The analysis presented in this paper takes a
di�erent approach. It uses outside edges and nodes to rep-
resent all potential interactions of the current thread with
other parallel threads. These outside edges and nodes en-
able the analysis to conceptually derive a complete set of in-
terference edges from parallel threads without a �xed-point
algorithm. Instead, the analysis matches inside and outside
edges to compute the interactions without reanalyzing each
thread.

In general, the analysis of multithreaded programs is a
relatively unexplored �eld. There is an awareness that mul-
tithreading signi�cantly complicates program analysis [31],
but a full range of standard techniques have yet to emerge.
Grunwald and Srinivasan present a dataow analysis frame-
work for reaching de�nitions for explicitly parallel programs [25],
and Knoop, Ste�en and Vollmer present an e�cient dataow
analysis framework for bit-vector problems such as liveness,
reachability and available expressions, but neither frame-
work applies to pointer analysis [29]. In fact, the application
of these frameworks for programs with pointers would re-
quire pointer analysis information. Zhu and Hendren present
a set of communication optimizations for parallel programs
that use information from their pointer analysis; this analy-
sis uses a ow-insensitive analysis to detect pointer variable
interference between parallel threads [44]. Hicks also has
developed a ow-insensitive analysis speci�cally for a mul-
tithreaded language [27].

15.2 Escape Analysis for Multithreaded Programs

There have been, to our knowledge, four previously pub-
lished escape analysis algorithms for multithreaded programs [41,
10, 12, 15]. All of these algorithms use the escape informa-
tion for stack allocation and synchronization elimination.
They only analyze single threads, and are designed to �nd
objects that are accessible to only the current thread. If an
object escapes the current thread, either to another thread

or by being written into a static class variable, it is marked
as globally escaping, and there is no attempt to recapture
the object by analyzing the interactions between the threads
that access the object. These algorithms are therefore fun-
damentally sequential program analyses that have been ad-
justed to ensure that they operate conservatively in the pres-
ence of parallel threads. The algorithm presented in this
paper, on the other hand, is designed to analyze the inter-
actions between parallel threads. Unlike all other previously
published algorithms, it is capable of extracting precise es-
cape information even for objects that are accessible to mul-
tiple threads.

15.3 Pointer Analysis for Sequential Programs

Pointer analysis for sequential programs is a relatively ma-
ture �eld. Flow-insensitive analyses, as the name suggests,
do not take statement ordering into account, and often use
an analysis based on some form of set inclusion constraints
to produce a single points-to graph that is valid across the
entire program [4, 40, 39]. Many ow-insensitive algorithms
scale well to very large programs, in part because they gen-
erate one analysis result instead of one per program point
and in part because of highly optimized implementations
of the inclusion constraint solution algorithms [24]. Because
ow-insensitive analyses are insensitive to the order in which
statements execute, they model all interleavings and extend
trivially to multithreaded programs. Like many ow insen-
sitive algorithms, we use set inclusion constraints as a fun-
damental tool in our analysis. A di�erence is that our anal-
ysis uses these constraints to formally specify the result of
interactions between parallel interaction graphs during the
interprocedural and inter-thread analyses, with each interac-
tion generating its own constraint solution problem. The in-
traprocedural analysis uses a standard �xed-point dataow
approach. Flow-insensitive analyses typically formulate the
entire analysis problem as a single collection of set inclusion
constraints.

Flow-sensitive analyses take the statement ordering into
account, typically using a dataow analysis to produce a
points-to graph or set of alias pairs for each program point [38,
35, 42, 23, 14, 30]. One approach analyzes the program in a
top-down fashion starting from the main procedure, reana-
lyzing each potentially invoked procedure in each new calling
context [42, 23]. Another approach analyzes the program in
a bottom-up fashion, extracting a single analysis result for
each procedure. The result is reused at each call site that
may invoke the procedure [38, 13]. Our algorithm builds on
these previous approaches. It is extended to include escape
and action ordering information and to explicitly represent
potential interactions using outside edges and nodes. These
extensions enable the algorithm to generalize in a straight-
forward way to model interactions between parallel threads.

Multithreading introduces one particulary subtle point.
Consider a load of a reference from an inside node, which
represents an object created within the computation of the
currently analyzed method. In a sequential program, the
load would always return a reference created within the anal-
ysis of the current method | because the inside node did
not exist before the method was invoked, no unanalyzed
code could have executed to write a reference into the ob-
ject. But in a multithreaded program, an unanalyzed par-
allel thread may write references into an object as soon as
it escapes. The analysis for multithreaded programs must
therefore assume that every load from an escaped object
may access a reference created outside the current analysis

scope. Our analysis deals with this possibility by using out-
side edges and outside nodes to represent the results of loads
from escaped objects.

There is a similarity between the outside nodes in our
analysis and invisible variables in previous analyses [30, 23,
42]. Both outside nodes and invisible variables are used to
represent objects from outside the analysis context during
the analysis of a method or procedure. One di�erence is that
when the analysis generates contexts in a top-down fashion,
it has a complete characterization of the aliasing and points-
to relationships involving all invisible variables. In this con-
text, invisible variables primarily serve to enable the analysis
to reuse analysis results for contexts with the same aliasing
and points-to relationships between procedure parameters.
Because our analysis is bottom-up, it knows nothing about
the relationships involving objects represented by outside
nodes. It therefore analyzes each method under the two as-
sumptions that there are no aliases between outside nodes,
and that every load from an escaped node may access a ref-
erence created outside the method. One implication of this
di�erence is that di�erent invisible variables always repre-
sent disjoint sets of objects, while di�erent outside nodes
may represent overlapping sets of objects.

Invisible variables and outside nodes also support a par-
ticular kind of precision in the analysis. Consider a method
invoked at multiple call sites. It may be the case that an
object is allocated inside the method, escapes the method,
but is recaptured at each call site. In this case, the use
of invisible variables or outside nodes enables the analysis
to recognize that the object was recaptured. It can there-
fore separate the di�erent instantiations of the allocated ob-
ject from each other in the analysis. To our knowledge,
the only published analyses that can separate the di�erent
instantiations of the object are both ow sensitive and use
some variant of the concept of invisible variables [30, 23, 42].
Context-insensitive analyses simply merge the information
from the di�erent call sites. In the absence of recursion,
other context-sensitive analyses are capable of separating
the di�erent instantiations [32], but merge information from
recursive call sites in a way that destroys the distinction be-
tween multiple instantiations of the same variable in a re-
cursive procedure [32]. A ow-insensitive, constraint-based
analysis with polymorphic recursion may be able to sepa-
rate the instantiations and recover this particular kind of
precision.

15.4 Escape Analysis

There has been a fair amount of work on escape analysis
in the context of functional languages [7, 5, 43, 18, 19, 9,
26]. The implementations of functional languages create
many objects (for example, cons cells and closures) implic-
itly. These objects are usually allocated in the heap and
reclaimed later by the garbage collector. It is often possible
to use a lifetime or escape analysis to deduce bounds on the
lifetimes of these dynamically created objects, and to per-
form optimizations to improve their memory management.

Deutsch [18] describes a lifetime and sharing analysis for
higher-order functional languages. His analysis �rst trans-
lates a higher-order functional program into a sequence of
operations in a low-level operational model, then performs
an analysis on the translated program to determine the life-
times of dynamically created objects. The analysis is a
whole-program analysis. Park and Goldberg [5] also describe
an escape analysis for higher-order functional languages.
Their analysis is less precise than Deutsch's. It is, how-

ever, conceptually simpler and more e�cient. Their main
contribution was to extend escape analysis to include lists.
Deutsch [19] later presented an analysis that extracts the
same information but runs in almost linear time. Blanchet [9]
extended this algorithm to work in the presence of impera-
tive features and polymorphism. He also provides a correct-
ness proof and some experimental results.

Baker [7] describes an novel approach to higher-order
escape analysis of functional languages based on the type
inference (uni�cation) technique. The analysis provides es-
cape information for lists only. Hannan also describes a
type-based analysis in [26]. He uses annotated types to de-
scribe the escape information. He only gives inference rules
and no algorithm to compute annotated types.

15.5 Synchronization Optimizations

Diniz and Rinard [20, 21] describe several algorithms for per-
forming synchronization optimizations in parallel programs.
The basic idea is to drive down the locking overhead by coa-
lescing multiple critical sections that acquire and release the
same lock multiple times into a single critical section that
acquires and releases the lock only once. When possible, the
algorithm also coarsens the lock granularity by using locks
in enclosing objects to synchronize operations on nested ob-
jects. Plevyak and Chien describe similar algorithms for
reducing synchronization overhead in sequential executions
of concurrent object-oriented programs [34].

Several research groups have recently developed synchro-
nization optimization techniques for Java programs. Aldrich,
Chambers, Sirer, and Eggers describe several techniques for
reducing synchronization overhead, including synchroniza-
tion elimination for thread-private objects and several opti-
mizations that eliminate synchronization from nested moni-
tor calls [2]. Blanchet describes a pure escape analysis based
on an abstraction of a type-based analysis [10]. The imple-
mentation uses the results to eliminate synchronization for
thread-private objects and to allocate captured objects on
the stack. Bogda and Hoelzle describe a ow-insensitive es-
cape analysis based on global set inclusion constraints [12].
The implementation uses the results to eliminate synchro-
nization for thread-private objects. A limitation is that the
analysis is not designed to �nd captured objects that are
reachable via paths with more than two references.

Choi, Gupta, Serrano, Sreedhar, and Midki� present a
compositional dataow analysis for computing reachability
information [15]. The analysis results are used for synchro-
nization elimination and stack allocation of objects. Like
the analysis presented in this paper, it uses an extension
of points-to graphs with abstract nodes that may represent
multiple objects. It does not distinguish between inside and
outside edges, but does contain an optimization, deferred
edges, that is designed to improve the e�ciency of the anal-
ysis. The approach classi�es objects as globally escaping,
escaping via an argument, and not escaping. Because the
primary goal was to compute escape information, the anal-
ysis collapses globally escaping subgraphs into a single node
instead of maintaining the extracted points-to information.
Our analysis retains this information, which is crucial for de-
veloping a pointer analysis algorithm that takes interactions
between threads into account.

16 Conclusion

This paper presents a new combined pointer and escape
analysis algorithm for unstructured multithreaded programs.

It extends the current state of the art in two ways: it is
the �rst interprocedural, ow-sensitive pointer analysis al-
gorithm for unstructured multithreaded programs, and it is
the �rst algorithm to extract precise escape analysis infor-
mation for objects accessible to multiple threads. We have
implemented the algorithm in the IBM Jalape~no virtual ma-
chine, and used the analysis results to perform a synchro-
nization elimination optimization. Our experimental results
show that, for our set of benchmark applications, the anal-
ysis can successfully remove between 75% and 95% of the
total synchronizations.

In the long run, we believe the most important concept
in this research may turn out to be designing analysis al-
gorithms from the perspective of extracting and represent-
ing interactions between analyzed and unanalyzed regions of
the program. This approach leads to clean, compositional
algorithms that are capable of analyzing arbitrary parts of
complete or incomplete programs.

References

[1] A. Aiken and E. Wimmers. Solving systems of set con-
straints. In Proceedings of the Seventh Annual IEEE
Symposium on Logic in Computer Science, Santa Cruz,
CA, June 1992.

[2] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static
analyses for eliminating unnecessary synchronization
from java programs. In Proceedings of the 6th Inter-
national Static Analysis Symposium, September 1999.

[3] B. Alpern, D. Attanasio, A. Cochi, D. Lieber, S. Smith,
T. Ngo, and J. Barton. Implementing jalape~no in
java. In Proceedings of the 14th Annual Conference on
Object-Oriented Programming Systems, Languages and
Applications, Denver, CO, November 1999.

[4] Lars Ole Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, May 1994.

[5] B. Goldberg and Y. Park. Escape analysis on lists. In
Proceedings of the SIGPLAN '92 Conference on Pro-
gram Language Design and Implementation, pages 116{
127, July 1992.

[6] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank,
R. Barua, and S. Amarasinghe. Parallelizing applica-
tions into silicon. In Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, Napa Val-
ley, CA, April 1999.

[7] H. Baker. Unifying and conquer (garbage, updating,
aliasing ...) in functional languages. In Proceedings of
the ACM Conference on Lisp and Functional Program-
ming, pages 218{226, 1990.

[8] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal.
Maps: A compiler-managed memory system for Raw
machines. In Proceedings of the 26th International Sym-
posium on Computer Architecture, Atlanta, GA, May
1999.

[9] B. Blanchet. Escape analysis: Correctness proof, imple-
mentation and experimental results. In Proceedings of
the 25th Annual ACM Symposium on the Principles of
Programming Languages, Paris, France, January 1998.
ACM, ACM, New York.

[10] B. Blanchet. Escape analysis for object oriented lan-
guages. application to java. In Proceedings of the 14th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Denver, CO,
November 1999.

[11] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An e�cient multi-
threaded runtime system. In Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, Santa Barbara, CA, July
1995. ACM, New York.

[12] J. Bogda and U. Hoelzle. Removing unnecessary syn-
chronization in java. In Proceedings of the 14th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November
1999.

[13] R. Chatterjee, B. Ryder, and W. Landi. Relevant
context inference. In Proceedings of the 26th Annual
ACM Symposium on the Principles of Programming
Languages, San Antonio, TX, January 1999.

[14] J. Choi, M. Burke, and P. Carini. E�cient
ow-sensitive interprocedural computation of pointer-
induced aliases and side e�ects. In Conference Record of
the Twentieth Annual Symposium on Principles of Pro-
gramming Languages, Charleston, SC, January 1993.
ACM.

[15] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midki�. Escape analysis for java. In Proceedings
of the 14th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Den-
ver, CO, November 1999.

[16] J. Corbett. Using shape analysis to reduce �nite-state
models of concurrent java programs. In Proceedings of
the International Symposium on Software Testing and
Analysis, March 1998.

[17] J. Dean, D. Grove, and C. Chambers. Optimization
of object-oriented programs using static class hierarchy
analysis. In Proceedings of the 9th European Confer-
ence on Object-Oriented Programming, Aarhus, Den-
mark, August 1995.

[18] A. Deutsch. On determining lifetime and aliasing of
dynamically allocated data in higher-order functional
speci�cations. In Proceedings of the 17th Annual ACM
Symposium on the Principles of Programming Lan-
guages, pages 157{168, San Francisco, CA, January
1990. ACM, ACM, New York.

[19] A. Deutsch. On the complexity of escape analysis. In
Proceedings of the 24th Annual ACM Symposium on the
Principles of Programming Languages, Paris, France,
January 1997. ACM, ACM, New York.

[20] P. Diniz and M. Rinard. Lock coarsening: Eliminat-
ing lock overhead in automatically parallelized object-
based programs. In Proceedings of the Ninth Workshop
on Languages and Compilers for Parallel Computing,
pages 285{299, San Jose, CA, August 1996. Springer-
Verlag.

[21] P. Diniz and M. Rinard. Synchronization transforma-
tions for parallel computing. In Proceedings of the 24th

Annual ACM Symposium on the Principles of Program-
ming Languages, pages 187{200, Paris, France, January
1997. ACM, New York.

[22] P. Diniz and M. Rinard. Lock coarsening: Eliminat-
ing lock overhead in automatically parallelized object-
based programs. Journal of Parallel and Distributed
Computing, 49(2):2218{244, March 1998.

[23] M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Proceedings of the SIG-
PLAN '94 Conference on Program Language Design
and Implementation, pages 242{256, Orlando, FL, June
1994. ACM, New York.

[24] M. Fahndrich, J. Foster, Z. Su, and A. Aiken. Partial
online cycle elimination in inclusion constraint graphs.
In Proceedings of the SIGPLAN '98 Conference on Pro-
gram Language Design and Implementation, Montreal,
Canada, June 1998.

[25] D. Grunwald and H. Srinivasan. Data ow equations for
explicitly parallel programs. In Proceedings of the 4th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, San Diego, CA, May 1993.

[26] J. Hannan. A type-based analysis for block allocation
in functional languages. In Proceedings of the Second
International Static Analysis Symposium. ACM, ACM,
New York, September 1995.

[27] J. Hicks. Experiences with compiler-directed storage
reclamation. In Proceedings of the 5th ACM Conference
on Functional Programming Languages and Computer
Architecture, pages 95{105, June 1993.

[28] S. Horowitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. In Proceedings of the
SIGPLAN '88 Conference on Program Language De-
sign and Implementation, Atlanta, GA, June 1988.

[29] J. Knoop, B. Ste�en, and J. Vollmer. Parallelism for
free: E�cient and optimal bitvector analyses for paral-
lel programs. ACM Transactions on Programming Lan-
guages and Systems, 18(3):268{299, May 1996.

[30] W. Landi and B. Ryder. A safe approximation algo-
rithm for interprocedural pointer aliasing. In Proceed-
ings of the SIGPLAN '92 Conference on Program Lan-
guage Design and Implementation, San Francisco, CA,
June 1992.

[31] S. Midki� and D. Padua. Issues in the optimization of
parallel programs. In Proceedings of the 1990 Interna-
tional Conference on Parallel Processing, pages II{105{
113, 1990.

[32] R. O'Callahan and D. Jackson. Lackwit: A program un-
derstanding tool based on type inference. In 1997 Inter-
national Conference on Software Engineering, Boston,
MA, May 1997.

[33] J. Plevyak, X. Zhang, and A. Chien. Obtaining sequen-
tial e�ciency for concurrent object-oriented languages.
In Proceedings of the 22nd Annual ACM Symposium on
the Principles of Programming Languages. ACM, Jan-
uary 1995.

[34] J. Plevyak, X. Zhang, and A. Chien. Obtaining sequen-
tial e�ciency for concurrent object-oriented languages.
In Proceedings of the 22nd Annual ACM Symposium on
the Principles of Programming Languages, San Fran-
cisco, CA, January 1995. ACM, New York.

[35] E. Ruf. Context-insensitive alias analysis reconsidered.
In Proceedings of the SIGPLAN '95 Conference on Pro-
gram Language Design and Implementation, La Jolla,
CA, June 1995.

[36] R. Rugina and M. Rinard. Symbolic analysis of divide
and conquer programs. In Submitted to PLDI '00.

[37] R. Rugina and M. Rinard. Pointer analysis for mul-
tithreaded programs. In Proceedings of the SIGPLAN
'99 Conference on Program Language Design and Im-
plementation, Atlanta, GA, May 1999.

[38] P. Sathyanathan and M. Lam. Context-sensitive in-
terprocedural pointer analysis in the presence of dy-
namic aliasing. In Proceedings of the Ninth Workshop
on Languages and Compilers for Parallel Computing,
San Jose, CA, August 1996. Springer-Verlag.

[39] M. Shapiro and S. Horwitz. Fast and accurate ow-
insensitive points-to analysis. In Proceedings of the 24th
Annual ACM Symposium on the Principles of Program-
ming Languages, Paris, France, January 1997.

[40] Bjarne Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the 23rd Annual ACM Sympo-
sium on the Principles of Programming Languages, St.
Petersburg Beach, FL, January 1996.

[41] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for java programs. In Proceedings of
the 14th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Den-
ver, CO, November 1999.

[42] R. Wilson and M. Lam. E�cient context-sensitive
pointer analysis for C programs. In Proceedings of the
SIGPLAN '95 Conference on Program Language De-
sign and Implementation, La Jolla, CA, June 1995.
ACM, New York.

[43] Y. Tang and P. Jouvelot. Control-ow e�ects for escape
analysis. In Workshop on Static Analysis, pages 313{
321, September 1992.

[44] H. Zhu and L. Hendren. Communication optimizations
for parallel C programs. In Proceedings of the SIG-
PLAN '98 Conference on Program Language Design
and Implementation, Montreal, Canada, June 1998.

