
I/O Automaton Models and Proofs for

Shared-Key Communication Systems

Nancy Lynch

MIT Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139, USA

lynch@lcs.mit.edu

August 9, 1999

Abstract

The combination of two security protocols, a simple shared-key communication pro-
tocol and the Di�e-Hellman key distribution protocol, is modeled formally and proved
correct. The modeling is based on the I/O automaton model for distributed algorithms,
and the proofs are based on invariant assertions, simulation relations, and compositional
reasoning. Arguments about the cryptosystems are handled separately from arguments
about the protocols.

0

1 Introduction

Security protocols must satisfy important correctness requirements, which means that it is
important to be able to think about them clearly and precisely. But they can also be large
and complicated, which makes such reasoning di�cult. Ways of decomposing the reasoning
task into clearly separable pieces are needed. This includes separating di�erent types of
concerns, for example, distributed algorithms issues, cryptosystem computability issues,
probabilistic issues, and issues of accurate modeling of reality. It also includes decomposing
the protocols using the normal techniques for decomposing distributed algorithms, based
on levels of abstraction and parallel composition of interacting components.

This paper describes an experiment in modeling and analyzing security protocols, using
I/O automata [26, 23] and the usual techniques that go along with them|a combination
of invariant assertions, simulation relations, and compositional reasoning using traces. The
aim of the experiment is to explore how these methods can help in decomposing the task
of reasoning about security protocols. This model and these methods have been used
successfully for decomposing the reasoning about many standard distributed algorithms
(see, e.g., [23, 32, 25]), and about several distributed system designs (see, e.g., [13, 14, 17,
20]), so it is worth discovering what they can do for security protocols.

The experiment involves combining simple shared-key communication and key distri-
bution protocols to implement private communication. In the case we describe in detail
here, simple Di�e-Hellman key distribution [10] is used, the protocols tolerate only passive
eavesdroppers, and only safety properties are considered. In another case in progress, dis-
cussed briey here, the more complex Di�e-van Oorschot-Weiner key distribution protocol
[11], which tolerates adversaries that can intrude more actively, is studied. Later work will
include liveness guarantees, formulated in terms of timing properties.

Our main guideline in studying these protocols is to try to decompose the reasoning as
much as possible, identifying sub-problems that can be treated separately. (Although the
examples in this paper are simple enough to be understood informally, understanding how to
decompose them is a good �rst step toward understanding how to decompose more complex
examples.) The handling of each piece should be appropriately abstract. For example, in
discussing protocol issues, cryptosystem computability issues should be summarized by
assumptions saying that certain values are not \easily computable" from others; number-
theoretic arguments about why these values are not (likely to be) easily computable should
be treated at a lower level, as mechanisms to achieve the more abstract non-computability
guarantees. Probabilistic issues should be treated separately, as far as possible. After
dividing up the problems in this way, we expect that the main bene�t of the I/O automaton-
based methods will be in clarifying the distributed algorithm issues. Cryptosystem issues,
for example, may be better treated by other means, for example, the inductive techniques
of Paulson [30] or the strand space techniques of Fabrega, et al. []. However, a general
framework should provide a rigorous way of combining the di�erent types of issues.

Similarly, we try to decompose the distributed algorithms themselves as much as possi-
ble, by:

1. Treating sub-protocols separately, then combining them using general theorems about
automaton composition.

1

2. Giving very high level automaton speci�cations for services, giving separate, detailed
descriptions of implementing algorithms, and showing, by means of simulation rela-
tions, that the algorithms implement the services.

3. First studying a protocol using a natural, simple cryptosystem, and later trying to
show that its correctness properties extend to modi�ed versions that use more elabo-
rate cryptosystems.

4. Combining adversaries that interact with separate protocols into a single \colluding"
unit.

Because I/O automata are composed by means of shared actions, and because we are
considering only safety properties in this paper, it is natural to describe external behavior of
automata in terms of sets of traces (i.e., sequences of external actions). The simple trace se-
mantics yields simple and powerful projection and pasting theorems (see, e.g., [23], p. 211),
for the behavior of compositions of automata. However, in order to enable compositional
reasoning about particular kinds of properties, the traces must contain all the information
relevant for those properties. For example, in treating fault-tolerance properties such as
wait-free termination and f -failure termination compositionally, in terms of traces, it is
convenient to include in traces special fail input actions that signal the occurrence of fail-
ure events (see, e.g., [23, 25]). Sometimes it is convenient to consider di�erent strengths of
failure actions (e.g., the good , bad , and ugly failure actions in [14]). Also, in order to treat
timing properties compositionally, it is useful to include timing information into traces.

In the case of security protocols, some important properties involve lack of knowledge.
To treat this compositionally, one should include something about knowledge in the traces.
Our approach here is to give explicit learn input actions and reveal output actions by which
a component can learn new information and reveal its knowledge, and to constrain the
component's behavior in terms of these actions.

Speci�cally, the paper contains the following. Section 2 presents a model for cryptosys-
tems, which describe the data types encountered in the protocols, including messages, keys,
and lower-level data from which keys are constructed. This data model also describes the
functions that manipulate data, and the reachability (computability) relationships that say
which values can be computed easily from which others. The data model is similar to others
in the literature. Section 3 contains a brief review of the I/O automaton model. Section 4
describes some \standard" types of automata that model certain components appearing in
many systems: service environments, insecure channels, and eavesdroppers.

Section 5 gives I/O automaton speci�cations for the two main security services con-
sidered in this paper|private communication and key distribution. The speci�cation for
private communication is abstract: it talks only about communication and revealed informa-
tion, and not, for example, about keys. Section 6 models and analyzes the implementation
of private communication using an abstract key distribution service, and Section 7 treats
the Di�e-Hellman implementation of key distribution. These protocols use particular cryp-
tosystems, and the protocol proofs assume the limitations on easy computability expressed
by those cryptosystems. The proofs are based on invariant assertions, and on simulation
relations relating the protocols to the speci�cations for the services they are intended to
implement.

2

Section 8 shows what is involved in moving from a description of each of the two in-
dividual protocols in terms of its own natural cryptosystem to a description in terms of a
common, richer cryptosystem. For example, the shared-key protocol is initially analyzed
in terms of abstract, unstructured keys taken from a simple \shared-key cryptosystem".
However, when one combines this protocol with Di�e-Hellman, it is necessary to consider
a version that uses structured keys, taken from a richer \structured-key cryptosystem".

Section 9 puts the pieces together, to get an implementation of private communication
that uses shared-key communication together with Di�e-Hellman key distribution. Most
of this is accomplished automatically from the general projection and pasting theorems for
I/O automata. Special arguments must be made for combining the insecure channels used
in the two protocols, and for combining the two adversaries into one. Section 10 gives a
�nal discussion.

Related work:

The I/O automaton model is similar to the labeled transition system models underlying
process algebras. However, notation and proof techniques typically used for I/O automata
di�er greatly from the usual process algebraic notations and methods; notably, work based
on I/O automata uses explicit, structured representations of automaton states.

Many researchers have stated and proved invariant assertions for security protocols (see,
for example, [19, 36, 33, 30]). On the other hand, simulation relations have not been used
much in prior work on reasoning about security protocols. An example of work using
simulation relation ideas is the work on \safe simplifying transformations" by Hui and
Lowe [18]. Also, Abadi and co-workers have used simulation relation notions in proving
equivalences for components of secure systems (see, e.g., [1, 3]).

Our strategy of including in traces explicit information about what can be learned and
what can be revealed is a key to our approach to compositional reasoning about security pro-
tocols. Including this information makes simple traces rich enough to express at least some
interesting security properties. A similar strategy, called \negative constraints", is used by
Cavalca and Segala in analyzing authentication protocols [8, 9]. This strategy di�ers from
the \zero-knowledge" approach to proving secrecy properties (e.g., [16]) by specifying the
particular information that can be learned and revealed, rather than assuming that noth-
ing is learned or revealed. This extra exibility makes it easier to compose speci�cations.
Another di�erence between our work and work on zero-knowledge is that zero-knowledge
proofs include probabilistic considerations, which we have so far avoided.

Bellare and Rogaway have developed a framework for composing security protocols [6, 7].
Their approach is less formal than ours, but it takes probabilities into account. Lincoln,
Mitchell, Mitchell, and Scedrov [21] present a formal approach to studying the interactions
between protocols and cryptographic primitives, again taking probabilities into account.
This work can be regarded as a more formal version of the work of Bellare and Rogaway.
It is based on a form of �-calculus [29] and probabilistic polynomial time process models.

Our work di�ers from work on formal logics for security for example, the BAN logic
of Burrows, Abadi, and Needham [2], in that ours is carried out entirely at the level of
automaton semantics. However, our work is compatible with work on security logics, in
that it should be possible to express our proof methods using formal logics. Also, it should
be possible to interpret some security logics in terms of I/O automata; the e�ort would be

3

similar to Abadi and Tuttle's construction of an automaton semantics for a derivative of
the BAN logic [4].

Our work makes extensive use of inductive proofs, mainly for verifying invariants and
simulation relations. Paulson [30] has developed an extensive collection of methods for rea-
soning inductively about cryptographic protocols, all supported by the Isabelle interactive
theorem prover [31]. His approach includes some methods for proving secrecy properties,
which involve showing that certain values are not reachable from other values within cryp-
tosystems. We think that such methods may be useful for constructing formal proofs of
cryptosystem unreachability results like the ones needed in this paper. Other approaches
that should be useful in proving cryptosystem reachability results include the rank function
approach of Schneider [33] and the strand space techniques of Fabrega et al.

All of the related work mentioned above adopts a model where the adversary may be
active, not just an eavesdropper. We believe that this is not a fundamental di�erence, in
that our general approach can be extended to model more active adversaries.

Sheyner and Wing [34] have formalized much of the approach of this paper using con-
servative extensions to theories supplied with the theorem prover Isabelle. In particular,
they have formalized shared-key cryptosystems, private communication, and essentially all
the automata appearing in Section 6 of this paper. They have carried out interactive proofs
using Isabelle for the fact that S1 simulates PC , for the invariants in Section 6.3, and for
several other invariants useful in the simulation argument. They are continuing to model
other security protocols using the same approach.

An earlier version of the present paper appeared in the 12th IEEE Computer Security
Foundations Workshop [24].1

2 Data Model

This section presents a basic model for the data types used in the protocols.

2.1 Cryptosystems

We use � to denote the empty string.
A cryptosystem signature S consists of:

� TN S , a set of type names.

� FN S , a set of function names.

� domainS , a mapping from FN S to (TN S)
�.

� rangeS , a mapping from FN S to TN S .

� EN S � FN S , a set of easy function names.

A constant name is a function name f such that domainS(f) = �. Let CN S � FN S denote
the set of constant names of C. We omit the subscript S where no confusion seems likely.
A cryptosystem C consists of:

1Unfortunately, subsection numbers are messed up in that version. A corrected copy of that paper appears
at URL http://theory.lcs.mit.edu/tds/papers/Lynch/CSFW.html.

4

� A cryptosystem signature sigC . We write TN C as shorthand for TN sigC
, etc.

� setC , a mapping from TN C to disjoint sets.

� funC , a mapping from FN C to functions; We require that if domainC(f) = (t1; : : : ; tk)
and rangeC(f) = t then funC(f) : setC(t1)� � � � � setC(tk)! setC(t).

We write setC for
S
t2TN C

setC(t). We omit the subscript C where no confusion seems likely.
If X[fyg � setC , we say that y is easily reachable from X in C provided that y is obtainable
starting from elements of X, by applying only functions denoted by function names in EN C .

2.2 Term Cryptosystems

If S is a cryptosystem signature, then the terms of S, and their types, are de�ned recursively,
as follows:

1. If c 2 CN S and rangeS(c) = t, then c is a term and typeS(c) = t.

2. If f 2 FN S , domainS(f) = t1; t2; : : : ; tk, where k � 1, rangeS(f) = t, and e1; : : : ; ek
are terms of types t1; : : : ; tk, respectively, then the expression e = f(e1; : : : ; ek) is a
term, and typeS(e) = t.

Let TermsS(t) denote the set of terms of S of type t. Let TermsS denote the set of all
terms of S.

Some of the cryptosystems we consider are best understood as term algebras derived
from cryptosystem signatures. In these cases, the values of the various types are, formally,
equivalence classes of terms: An equivalence relation R on TermsS is said to be a congruence
provided that the following hold.

1. If eRe0 then typeS(e) = typeS(e
0).

2. Suppose that f 2 FN S , domainS(f) = t1; t2; : : : ; tk, where k � 1, rangeS(f) = t,
e1; : : : ; ek are terms of types t1; : : : ; tk, respectively, e01; : : : ; e

0
k are terms of types

t1; : : : ; tk, respectively, and for all i, 1 � i � k, eiRe
0
i. Then f(e1; : : : ; ek)Rf(e1; : : : ; ek).

Let S be a cryptosystem signature and R a congruence on TermsS . Then the term cryp-
tosystem C for S and R is the unique cryptosystem satisfying:

� sigC = S.

� If t 2 TN C , then setC(t) is the set of all R-equivalence classes of terms of type t in
TermsC .

� If f 2 FN C , domainC(f) = (t1; : : : ; tk) and rangeC(f) = t then funC(f) is the function
from setC(t1)� � � � � setC(tk) to setC(t) de�ned as follows. Suppose that ei 2 setC(ti)
for all i, 1 � i � k. Then funC(f)([e1]R; : : : ; [ek]R) is de�ned to be [f(e1; : : : ; ek)]R.
(Since R is a congruence, this is well-de�ned.)

We use the notation RC for the congruence relation R of C. If e 2 TermsC , then we write
[e]C for the equivalence class of e with respect to RC . Also, if E � TermsC then we write
[E]C for the set of equivalence classes [e]C for e 2 E.

5

2.3 Cryptosystem Examples

In this subsection we give the speci�c kinds of cryptosystems used later in this paper.
These are: shared-key cryptosystems, used in shared-key communication; base-exponent
cryptosystems, used in Di�e-Hellman key distribution; and structured-key cryptosystems,
which are essentially combination of shared-key and base-exponent cryptosystems, and are
used when shared-key communication and Di�e-Hellman key distribution protocols are
combined.

2.3.1 Shared-key cryptosystems

A shared-key cryptosystem C is a term cryptosystem. The signature S = sigC is de�ned
as follows. TN S consists of two type names: \M" for messages and \K" for keys. FN S

consists of:

� enc, with domain(enc) = (\M"; \K") and range(enc) = \M".

� dec, with domain(dec) = (\M"; \K") and range(dec) = \M".

� MConstS , a set of message constant names, with range(m) = \M" for all m 2
MConstS .

� KConstS , a set of key constant names, with range(k) = \K" for all k 2 KConstS .

EN S = fenc; decg. The relation R is de�ned by means of all equations of the form:

� dec(enc(m; k); k) = m, where m; k 2 TermsS , type(m) = \M", type(k) = \K".

Speci�cally, we de�ne R to be the smallest congruence relation on TermsS that groups
together all terms that are related by the given equations.

The following lemma gives some basic properties of a shared-key cryptosystem, used
later in the proof of an invariant for a shared-key communication protocol (Lemma 6.3).
Many properties of this sort are needed in this paper. However, we will not continue to be
as explicit as we are here, but will revert to simply citing \properties of the cryptosystem".
A careful treatment of such properties is a separate e�ort, and would bene�t from the use
of other methods, as discussed in the Introduction.

Lemma 2.1 Let C be a shared-key cryptosystem, S its signature and R its congruence
relation.

1. Suppose that e1 and e2 are terms of type \M" with e1Re2. Let enci and deci denote
the respective number of occurrences of enc and dec in ei, i 2 f1; 2g.
Then enc1 � dec1 = enc2 � dec2.

2. For all m1;m2 2 MConstS , k 2 KConstS :
enc(m1; k) is not R-related to m2.

Proof: Part 1 is proved by induction on the number of substitutions required to relate
one term to the other. Since there is only one kind of substitution, and it preserves this
di�erence, the result holds. Part 2 follows from Part 1.

6

2.3.2 Base-exponent cryptosystems

A base-exponent cryptosystem C is a term cryptosystem in which, letting S = sigC : TN S

consists of two type names, \B" for bases and \X" for exponents, and FN S consists of:

� exp, with domain(exp) = (\B"; \X") and range(exp) = \B".

� BConstS , a set of base constant names, with range(b) = \B" for all b 2 BConstS .

� XConst1 S andXConst2 S , two disjoint sets of exponent constant names, with domain(x) =
� and range(x) = \X" for all x 2 XConst1 S [XConst2 S .

EN S = fexpg [BConstS . The relation R is de�ned by means of all equations of the form:

� exp(exp(b; x); y) = exp(exp(b; y); x), where b; x; y 2 TermsS , type(b) = \B", type(x) =
type(y) = \X".

De�ne B2S to be the set of all terms of the form exp(exp(b; x); y), where b 2 BConstS ,
x 2 XConst1 S and y 2 XConst2S . An augmented base-exponent cryptosystem is a base-
exponent cryptosystem together with a distinguished element b0S of BConstS .

2.3.3 Structured-key cryptosystems

A structured-key cryptosystem is a combination of a shared-key cryptosystem and a base-
exponent cryptosystem, where certain terms of the base-exponent cryptosystem are iden-
ti�ed with the keys. A structured-key cryptosystem C is a term cryptosystem in which,
letting S = sigC : TN S consists of the type names \M", \B", and \X", and FN S consists
of:

� enc, with domain(enc) = (\M"; \B") and range(enc) = \M".

� dec, with domain(dec) = (\M"; \B") and range(dec) = \M".

� exp, with domain(exp) = (\B"; \X") and range(exp) = \B".

� MConstS , a set of message constant names, with range(m) = \M" for all m 2
MConstS .

� BConstS , a set of base constant names, with range(b) = \B" for all b 2 BConst .

� XConst1 S andXConst2 S , two disjoint sets of exponent constant names, with range(x) =
\X" for all x 2 XConst1 S [XConst2 S .

EN S = fenc; dec; expg [BConstS . The relation R is de�ned by means of all equations of
the forms:

� dec(enc(m; b); b) = m, where m; b 2 TermsS , type(m) = \M", type(b) = \B".

� exp(exp(b; x); y) = exp(exp(b; y); x), where b; x; y 2 TermsS , type(b) = \B", type(x) =
type(y) = \X".

Once again, we write B2 C for the set of terms of the form exp(exp(b; x); y), where b 2
BConstC , x 2 XConst1 C , and y 2 XConst2 C . An augmented structured-key cryptosystem
is a structured-key cryptosystem together with a distinguished element b0S of BConstS .

7

3 Input/Output Automata

We use I/O automata as de�ned in [23]. Briey, an I/O automaton A is a state machine
having a signature consisting of a set of actions, classi�ed as input, output , and internal
actions. A also has a set of transitions, which are (state, action, state) triples. It is assumed
that every input action is enabled in every state. Since we do not deal with liveness in this
paper, the tasks de�ned in [23] are irrelevant.

An execution fragment of A is an alternating (state, action, state,...) sequence, where
successive triples correspond to transitions of A. An execution is an execution fragment
that begins with a start state. The external behavior of A is modelled by the set of traces,
which are the sequences of external actions arising from the executions.

If A and B are I/O automata with the same external signature, then we say that A
implements B provided that every trace of A is also a trace of B. Parallel composition
of automata is de�ned by identifying external actions with the same name in di�erent
automata. We use notions of invariants and simulation relations in the usual ways; for
de�nitions, see, for example [23].

In particular, a simulation relation from A to B is a relation F from states(A) to
states(B) satisfying the following two properties:

1. Each start state of A is F -related to some start state of B.

2. For each step (sA; �; s
0
A) of A and each state sB of B with (sA; sB) 2 F , there is a

\corresponding" execution fragment of B: it has the same trace as the given step,
and spans from sB to some state s0B, where (s

0
A; s

0
B) 2 F .

The key fact about a simulation relation is expressed by:

Theorem 3.1 If there is a simulation relation from A to B then A implements B.

4 Some Generally-Useful Automata

In this section, we give automaton models for some system components that will be used
frequently in modeling security protocols, namely, environments for security services, inse-
cure channels, and eavesdroppers. They are presented in a parameterized fashion so that
they can be used in di�erent contexts. We model these components as automata (rather
than, for example, by using trace properties) for uniformity with the way we will model
algorithms and system speci�cations, and because this makes it possible to reason about
them assertionally.

4.1 Environment Automata

In this subsection we assume that U is a universal set of data values, A is a nonempty
�nite set of adversary ports (that is, locations where information can be communicated
to an adversary), and N � U . The environment automaton Env(U;A;N) models any
entities other than the channels from which an eavesdropper may learn information. The
speci�cation says that the environment is theoretically capable of communicating elements
of U at any adversary port a 2 A, but in fact does not communicate any elements of N .

8

Env(U;A;N) :
Signature:

Input:
None

Output:
learn(u)a, u 2 U , a 2 A

States:

No variables

Transitions:

learn(u)a
Precondition:

u =2 N
E�ect:

none

4.2 Insecure Channel Automata

In this subsection we assume that U is a universal set of data values, P is a nonempty
�nite set of client ports, and A is a nonempty �nite set of adversary ports. The insecure
channel admits send and receive actions for all elements of U . It also has eavesdrop output
actions, by which information in transit passes to an outsider. The insecure channel allows
any message in transit to be communicated to an outsider.

IC (U;P;A):
Signature:

Input:
IC-send(u)p;q, u 2 U , p; q 2 P , p 6= q

Output:
IC-receive(u)p;q, u 2 U , p; q 2 P , p 6= q
eavesdrop(u)p;q;a, u 2 U , p; q 2 P , p 6= q, a 2 A

States:

for every p; q 2 P , p 6= q:
bu�er (p; q), a multiset of U , initially empty

Transitions:

IC-send(u)p;q
E�ect:

add u to bu�er(p; q)

IC-receive(u)p;q
Precondition:

u 2 bu�er(p; q)
E�ect:

remove one copy of u from bu�er (p; q)

eavesdrop(u)p;q;a
Precondition:

u 2 bu�er(p; q)
E�ect:

none

9

4.3 Eavesdropper Automata

In this subsection we assume that C is a cryptosystem, P is a nonempty �nite set of client
ports, and A is a nonempty �nite set of adversary ports. We de�ne a model for an eaves-
dropper, as a nondeterministic automaton Eve(C; P;A). Eve simply remembers everything
it learns and hears, and can reveal anything it has, at any time. It does this by maintaining
a variable has , initially ;. The value of has may change only in restricted ways: When
eavesdrop(u)p;q;a or learn(u)a occurs, u gets added to has . Also, when an internal compute
action occurs, the value resulting from applying an easy function (one in EN C) to values
in has may be added to has . We restrict the reveal(u) output so that u 2 has , that is,
Eve can only report a value that it \has". Similar treatments of known information appear
elsewhere in the literature, for example, in [12, 19, 28, 27].

Eve(C; P;A):
Signature:

Input:
eavesdrop(u)p;q;a, u 2 setC, p; q 2 P , p 6= q, a 2 A
learn(u)a, u 2 setC, a 2 A

Output:
reveal (u)a, u 2 setC, a 2 A

Internal:
compute(u; f)a, f 2 EN C, a 2 A

States:

has � setC, initially ;

Transitions:

eavesdrop(u)p;q;a
E�ect:

has := has [fug

learn(u)a
E�ect:

has := has [fug

reveal(u)a
Precondition:

u 2 has

E�ect:
none

compute(u; f)a
Precondition:

fu1; : : : ; ukg � s:has
u = f(u1; : : : ; uk)

E�ect:
has := has [fug

5 The Services

In this section, we describe the two services that are implemented by the protocols in this
paper. They are described as automata, which is convenient for assertional reasoning. The
use of input and output actions provides convenient ways of composing these automata with
others, and of describing what is preserved by implementation relationships. For simplicity,
we write these speci�cations to describe only safety properties, although the same methods
can be used to handle liveness properties, formulated as time bounds (see, e.g., [22, 23]).

10

5.1 Private Communication

This section contains a speci�cation of the problem of achieving private communication
among the members of a �nite collection P of clients. The speci�cation expresses three
properties: (1) only messages that are sent are delivered, (2) messages are delivered at
most once each, and (3) none of the messages is revealed at any \adversary port". We
describe the problem using a high-level I/O automaton speci�cation PC (U;P;M;A), where
U is a universal set of data values, P is a nonempty �nite set of client ports, M � U is
a set of messages, and A is a nonempty �nite set of adversary ports. This speci�cation
makes no mention of distribution or keys; these aspects will appear in implementations
of this speci�cation, but not in the speci�cation itself. The speci�cation simply describes
the desired properties, as an abstract machine. As usual for automaton speci�cations, the
properties, listed separately above, are intermingled in one description.

PC (U;P;M;A):
Signature:

Input:
PC-send(m)p;q, m 2M , p; q 2 P , p 6= q

Output:
PC-receive(u)p;q, u 2 U , p; q 2 P , p 6= q
reveal(u)a, u 2 U , a 2 A

States:

for every pair p; q 2 P , p 6= q:
bu�er (p; q), a multiset of M

Transitions:

PC-send(m)p;q
E�ect:

add m to bu�er (p; q)

PC-receive(u)p;q
Precondition:

u 2 bu�er(p; q)
E�ect:

remove one copy of u from bu�er (p; q)

reveal(u)a
Precondition:

u =2M
E�ect:

none

Properties 1 and 2 above, which express at-most-once delivery of messages that were actually
sent, are expressed by the transition de�nitions for PC-send and PC-receive. Property 3,
secrecy, is expressed by the constraint for reveal .

5.2 Key Distribution

This is a drastically simpli�ed key distribution service, which distributes a single key to
several participants. We do not model requests for the keys, but assume that the service
generates the key spontaneously. The service does not grant any other values, and does
not reveal any key in K at any adversary port. The simpli�ed key distribution service is
speci�ed by the automaton KD(U;P;K;A), where U is a universal set of data values, P is

11

a nonempty �nite set of client ports, K � U is a set of keys, and A is a nonempty �nite set
of adversary ports.

KD(U;P;K;A):
Signature:

Input:
none

Output:
grant(u)p, u 2 U , p 2 P
reveal (u)a, u 2 U , a 2 A

Internal:
choose-key

States:

chosen-key , an element of K [f?g, initially ?
noti�ed � P , initially ;

Transitions:

choose-key

Precondition:
chosen-key = ?

E�ect:
chosen-key := choose k where k 2 K

grant(u)p
Precondition:

chosen-key 6= ?
u = chosen-key

p =2 noti�ed

E�ect:
noti�ed := noti�ed [fpg

reveal(u)a
Precondition:

u =2 K
E�ect:

none

6 Implementing Private Communication using Shared Keys

This section describes a straightforward shared-key communication protocol. The protocol
simply uses a shared key, obtained from a key distribution service, to encode and decode
messages. Throughout the section, we assume that C is a shared-key cryptosystem, P is a
set (of clients) with at least 2 elements, and A is a nonempty �nite set (of adversaries).

6.1 The Encoder and Decoder

We de�ne parameterized encoder and decoder automata, parameterized by the shared-key
cryptosystem C, the set P of clients, and elements p; q 2 P , p 6= q. The encoder encrypts
messages from client p using the granted key, and sends the encrypted messages on the
insecure channel from p to q. Note that, in the code for IC-send(u), we are using the
abbreviation enc for funC(enc) { that is, we are suppressing mention of the particular
cryptosystem C.

Enc(C; P)p;q, where p; q 2 P , p 6= q :
Signature:

12

Input:
PC-send(m)p;q, m 2 [MConstC]
grant(u)p, u 2 setC

Output:
IC-send(u)p;q, u 2 setC

States:

bu�er , a multiset of elements of [MConstC], initially empty
shared-key 2 [KConstC] [f?g, initially ?

Transitions:

PC-send(m)p;q
E�ect:

add m to bu�er

IC-send(u)p;q
Precondition:

m is in bu�er

shared-key 6= ?
u = enc(m; shared-key)

E�ect:
remove one copy of m from bu�er

grant(u)p
E�ect:

if u 2 [KConstC] then
shared-key := u

The decoder receives messages from the insecure channel from p to q, decrypts them, and
delivers the decrypted messages to q.

Dec(C; P)p;q, where p; q 2 P , p 6= q :
Signature:

Input:
IC-receive(u)p;q, u 2 setC
grant(u)q, u 2 setC

Output:
PC-receive(u)p;q, u 2 setC

States:

bu�er , a multiset of elements of setC(\M"), initially empty
shared-key 2 [KConstC] [f?g, initially ?

Transitions:

IC-receive(u)p;q
E�ect:

if u 2 setC(\M") then
add u to bu�er

PC-receive(u)p;q
Precondition:

m is in bu�er

shared-key 6= ?
u = dec(m; shared-key)

E�ect:
remove one copy of m from bu�er

grant(u)q
E�ect:

if u 2 [KConstC] then
shared-key := u

13

IC

Eve

Env

Dec 2,1

reveal 4

eavesdrop

IC-send 1,2

reveal 3

learn 3

IC-send 1,2

IC-receive 2,1

KD

Enc 1,2 Dec 1,2

PC-send 2,1PC-receive 2,1

PC-send 1,2 PC-receive 1,2

Enc 2,1

grant 1 grant 2

Figure 1: S1; P = f1; 2g, A = f3g; A0 = f4g

6.2 The Complete Implementation

In the rest Section 6, we assume that U = setC , M = [MConstC], K = [KConstC], N =
M [K, U 0 is a set with K � U 0, and A0 is a nonempty �nite set, disjoint from A.

The implementation consists of encoder and decoder components, an insecure chan-
nel, eavesdropper, and environment, plus a key distribution service. More precisely, the
implementation, S1(C; P;A; U

0; A0), is constructed by composing the following automata:

� Enc(C; P)p;q, Dec(C; P)p;q, p; q 2 P , p 6= q.

� IC (U;P;A), Eve(C; P;A), Env(U;A;N).

� KD(U 0; P;K;A0), a key distribution service.

and then hiding all the eavesdrop , IC-send , IC-receive, grant , and learn actions, and all the
reveala actions for a 2 A0. That is, we hide all but the external actions of PC (U;P;M;A),
which are the PC-send and PC-receive actions, and the reveala actions for a 2 A. We
sometimes omit explicit mention of parameters of S1 (and of other systems and components),
when we think that confusion is unlikely. Figure 1 contains an interaction diagram for S1.

Note that, in this system, the eavesdropper Eve does not acquire any information directly
from the KD component. Later, in Section 9, we will combine this eavesdropper with
another that arises in the key distribution service implementation.

Our system model says that the eavesdropper learns no elements of N = M [K from
outside sources. This choice of N is �ne for this protocol, but we do not have a general
prescription for how to choose useful sets N for all protocols. \Useful" here means that the

14

set should have a simple de�nition, should be large enough to include all values that the
adversary could use to break the protocol, and should be small enough to exclude values
produced by other protocols with which the given protocol is to be composed. The work of
coming up with a good choice of N seems to be something of an art, similar to coming up
with a useful invariant.

6.3 Invariants

In system S1, we use Encp;q, Decp;q, IC , Eve, and KD as \handles" to help in naming state
variables in the composed state. This handle naming device for state variables is taken
from [35]. The �rst invariant says that the keys granted by the key distribution service are
consistent.

Lemma 6.1 In all reachable states of S1, the following are true:

1. If Encp;q:shared-key 6= ? then Encp;q:shared-key = KD :chosen-key.

2. If Decp;q:shared-key 6= ? then Decp;q:shared-key = KD :chosen-key.

Proof: By a simple induction on the length of an execution leading to a state.

The next invariant says that all elements that appear in the insecure channel are of type
\M".

Lemma 6.2 In all reachable states of S1, the following are true:

1. If u is in IC :bu�erp;q then u 2 setC(\M").

The next invariant says that no element of N (= M [K; recall that M = [MConstC])
appears in the insecure channel.

Lemma 6.3 In all reachable states of S1, the following are true:

1. For all p; q 2 P , p 6= q, and all u 2 N , u =2 IC :bu�er(p; q).

Proof: By induction on the length of an execution.
Base: The claim is true in the initial state, because the channel is initially empty.
Inductive step: Consider a step (s; �; s0) of the implementation, where s satis�es the invari-
ant. The interesting case is:

1. IC-send(u)p;q, where u = enc(m; k)

The precondition and type considerations imply thatm 2 [MConstC] and k 2 [KConstC].
Som\MConstC 6= ;; let m0 be any element inm\MConstC . Similarly, k\KConstC 6=
;; let k0 be any element in k \KConstC . Then enc(m0; k0) 2 u.

We claim that u =2 [MConstC]. Suppose it is and letm
00 be any element in u\MConstC .

Then [enc(m0; k0)] = u = [m00]. But Lemma 2.1 implies that enc(m0; k0) and m00 are
not equivalent terms. It follows that u =2 [MConstC], which implies that this event
does not add an element of M = [MConstC] to the channel IC .

The fact that this event does not add an element of K = [KConstC] to the channel is
easy to see, because the type of any element in any equivalence class in [KConstC] is
\K", the type of any element in enc(m; k) is \M", and elements of one equivalence
class all have the same type.

15

As a corollary to the previous invariant, we can show that no N elements appear in Eve:has .

Lemma 6.4 In all reachable states of S1, the following are true:

1. If u 2 N then u =2 Eve:has.

Proof: By induction.
Base: The claim is true in the initial state, because the Eve:has is initially empty.
Inductive step: Consider a step (s; �; s0) of the implementation, where s satis�es the invari-
ant. The interesting cases are:

1. � = eavesdrop(u)p;q;a

The fact that this preserves the claim follows from Lemma 6.3, applied to state s.

2. � = learn(u)a, a 2 A

The precondition (in Env(U;A;N)) says that u =2 N , so this cannot cause a violation.

3. � = compute(u; f)a, a 2 A

Since the claim is true in s, it must be that no element of N is in s:Eve:has . But this
means that no equivalence class of type \K" is included in s:Eve:has (because the
only such classes are the ones in [KConstC]). But then � cannot be enabled, because
both easy functions, enc and dec, depend on a key class being in has .

6.4 Implementation Proof

We show that S1 implements PC (U;P;M;A) using a simulation relation from S1 to PC (U;P;M;A).
The relation F is de�ned by saying that (s; t) 2 F provided that the following holds:
For each p; q 2 P , p 6= q, t:bu�er(p; q) is the multiset union of three multisets, A1; A2; A3,
of U , where:

1. A1 = s:Encp;q:bu�er .

2. A2 = dec(s:IC :bu�er(p; q); s:KD :chosen-key) if s:KD :chosen-key 6= ? else ;.

3. A3 = dec(s:Decp;q:bu�er ; s:KD :chosen-key) if s:KD :chosen-key 6= ? else ;.

That is, each high-level multiset of messages in transit is obtained from the messages in the
bu�ers at the encoder and decoder, plus those in transit in the low-level insecure channels.
The messages in the insecure channels and in the decoder bu�er must be decoded for the
correspondence.

Theorem 6.5 F is a simulation relation.

Proof: We check the two conditions required in the de�nition of a simulation relation:
Start condition: This is easy, because all the relevant multisets are empty.
Step condition: Consider (s; �; s0) in the implementation, and (s; t) 2 F , where both s and
t are reachable states. The interesting cases are:

16

1. � = IC-send(u)p;q, where u = enc(m; k)

This maps to the trivial one-state execution fragment t of PC (U;P;M;A). We must
argue that (s0; t) 2 F . This follows because this event removes m from Encp;q:bu�er
as it adds the encoded version u to the insecure channel, and because of the equations
relating enc and dec. Lemma 6.1 is also used here, to ensure that the keys used for
encoding and decoding are the same.

2. � = IC-receive(u)p;q

The key point is that u is accepted by Dec, because it is of type \M". This following
from Lemma 6.2.

3. � = PC-receive(u)p;q

This corresponds to the same action in the speci�cation automaton. In this step,
u = dec(m; s:KD :chosen-key) for some m 2 s:Decp;q:bu�er (we use Lemma 6.1 here).
Thus, by de�nition of the correspondence F , u 2 t:bu�er(p; q), which means that �
is enabled in the speci�cation automaton, in state t. Let t0 be the unique resulting
state.

To show that (s0; t0) 2 F , the key facts are that one copy of m is removed from
s:Decp;q:bu�er while a copy of u is removed from the abstract channel t:bu�er(p; q).
Since u = dec(m; s:KD :chosen-key), this preserves the correspondence between the
multisets.

4. � = reveal(u)a

This corresponds to reveal(u)a in the speci�cation. We must show that u =2 M . The
precondition for reveal (u)a (in Eve) implies that u 2 s:Eve:has . Lemma 6.4 implies
that u =2 N , which implies that u =2M .

Theorem 6.6 S1(C; P;A; U
0; A0) implements PC (U;P;M;A).

Proof: By Theorem 6.5 and Theorem 3.1.

(An expanded version of) the results of this section have been checked by Sheyner and Wing
using the Isabelle theorem prover.

7 Di�e-Hellman Key Distribution Protocol

This section describes the Di�e-Hellman key distribution protocol. Throughout the section,
we assume that C is an augmented base-exponent cryptosystem, P = fp1; p2g, and A is a
nonempty set.

17

7.1 The Endpoint Automata

We de�ne two symmetric automata, for the two elements of P . The automaton for p1
chooses an exponent x from the set XConst1 , raises the distinguished base element b0 to
the power x, and sends the result to p2. When it receives a corresponding value from p2, it
raises that value to the power x and grants the result to the client as a key.

DH (C; P)p1:
Signature:

Input:
IC-receive(b)p2;p1, b 2 setC(\B")

Output:
IC-send(b)p1;p2, b 2 setC(\B")
grant(b)p1, b 2 setC(\B")

Internal:
choose-expp1

States:

chosen-exp 2 [XConst1 C] [f?g, initially ?
base-sent , a Boolean, initially false

rcvd-base 2 setC(\B") [f?g, initially ?
granted , a Boolean, initially false

Derived variables:

chosen-base 2 setC(\B") [f?g, given by:
if chosen-exp 6= ? then exp([b0C]; chosen-exp) else ?

Transitions:

choose-expp1

Precondition:
chosen-exp = ?

E�ect:
chosen-exp := choose x
where x 2 [XConst1 C]

IC-send(b)p1;p2
Precondition:

chosen-exp 6= ?
b = chosen-base

base-sent = false

E�ect:
base-sent := true

IC-receive(b)p2;p1
E�ect:

rcvd-base := b

grant(b)p1
Precondition:

chosen-exp 6= ?
rcvd-base 6= ?
b = exp(rcvd-base ; chosen-exp)
granted = false

E�ect:
granted := true

The automaton for p2 is the same, but interchanges uses of p1 and p2, and uses XConst2
instead of XConst1 .

DH (C; P)p2:
Signature:

18

Input:
IC-receive(b)p1;p2, b 2 setC(\B")

Output:
IC-send(b)p2;p1, b 2 setC(\B")
grant(b)p2, b 2 setC(\B")

Internal:
choose-expp2

States:

chosen-exp 2 [XConst2 C] [f?g, initially ?
base-sent , a Boolean, initially false

rcvd-base 2 setC(\B") [f?g, initially ?
granted , a Boolean, initially false

Derived variables:

chosen-base 2 setC(\B") [f?g, given by:
if chosen-exp 6= ? then exp([b0C]; chosen-exp) else ?

Transitions:

choose-expp2

Precondition:
chosen-exp = ?

E�ect:
chosen-exp := choose x
where x 2 [XConst2 C]

IC-send(b)p2;p1
Precondition:

chosen-exp 6= ?
b = chosen-base

base-sent = false

E�ect:
base-sent := true

IC-receive(b)p1;p2
E�ect:

rcvd-base := b

grant(b)p2
Precondition:

chosen-exp 6= ?
rcvd-base 6= ?
b = exp(rcvd-base ; chosen-exp)
granted = false

E�ect:
granted := true

7.2 The Complete Implementation

In the rest of Section 7, we assume that U = setC , K = [B2 C] (the set of doubly-
exponentiated bases), X = [XConst1 C] [[XConst2 C], and N = K [X.

The implementation consists of two endpoint automata, an insecure channel, an eaves-
dropper and an environment. Speci�cally, implementation S2(C; P;A) is constructed by
composing the following automata:

� DH (C; P)p, p 2 P , endpoint automata.

� IC (U;P;A), Eve(C; P;A), Env(U;A;N).

and then hiding all the eavesdrop , IC-send , IC-receive, and learn actions. That is, we
hide all but the external actions of KD(U;P;K;A), which are the grant and reveal actions.
Figure 2 contains an interaction diagram for S2.

19

DH1 IC

Eve

Env

DH 2

IC-receive 2,1

grant 1

IC-send 1,2 IC-receive 1,2

IC-send 2,1

grant 2

eavesdrop 4

reveal 4

learn 4

Figure 2: S2; P =f1,2g; A =f4g

7.3 Invariants

In system S2, we use DH (p) for p 2 P , IC , and Eve as handles to help in naming state
variables in the composed state. The �rst invariant says that messages that have been
received or are in transit are correct.

Lemma 7.1 In all reachable states of S2, the following are true:

1. If DH (p):rcvd-base 6= ? and q 6= p then DH (q):chosen-exp 6= ?, and DH (q):rcvd-base =
DH (p):chosen-base.

2. If u 2 IC :bu�er(p; q), then DH (p):chosen-exp 6= ?, and u = DH (p):chosen-base.

The next invariant says that no N elements ever appear in Eve:has or in the insecure
channel.

Lemma 7.2 In all reachable states of S2, the following are true:

1. For all p; q 2 P , p 6= q, and all u 2 N , u =2 IC :bu�er(p; q).

2. If u 2 N then u =2 Eve:has.

Proof: Analogous to the proof of Lemma 6.4.

20

7.4 Implementation Proof

We show that S2 implements KD(U;P;K;A) using a simulation relation. The relation F is
de�ned by saying that (s; t) 2 F provided that:

1. t:chosen-key = exp(s:DH (p1):chosen-base ; s:DH (p2):chosen-exp) if s:DH (p1):chosen-exp 6=
? and s:DH (p2):chosen-exp 6= ?; t:chosen-key = ? otherwise.

2. t:noti�ed = fp 2 P : s:DH (p):grantedg.

Condition 1 says that the chosen key in KD is obtained by doubly-exponentiating b0 with
both the chosen exponents in the Di�e-Hellman protocol. If it is not the case that both
exponents have been chosen, then the chosen key is unde�ned.

Theorem 7.3 F is a simulation relation.

Proof: Start condition: Easy.
Step condition: Consider (s; �; s0) and t as usual, and consider cases. The most interesting
cases are:

1. � = choose-expp.

If s:DH (q):chosen-exp = ?, where q 6= p then this maps to the trivial one-state
execution fragment t. The correspondence is trivially preserved (Part 1 is vacuous).
Otherwise, this corresponds to choose-key , with a chosen value of
exp(s0:DH (p1):chosen-base ; s0:DH (p2):chosen-exp).
Enabling is straightforward, as is the preservation of the simulation relation.

2. � = grant(b)p

This corresponds to grant(b)p in the speci�cation. The interesting fact to show here
is the enabling condition, in particular, that b = t:chosen-key . The precondition of �
in the implementation implies that b = exp(s:DH (p):rcvd-base ; s:DH (p):chosen-exp).
But Lemma 7.1 implies that b = exp(s:DH (q):chosen-base ; s:DH (p):chosen-exp),
and properties of the cryptosystem imply that this is equal to
exp(exp([b0]; s:DH (p1):chosen-exp); s:DH (p2):chosen-exp). Then the de�nition of F
says that this is equal to t:chosen-key , as needed.

3. � = reveal(u)a

This corresponds to reveal(u)a in the speci�cation. We must show that u =2 K. The
precondition for reveal (u)a (in Eve) implies that u 2 s:Eve:has . Lemma 7.2 implies
that u =2 N , which implies that u =2 K, as needed.

Theorem 7.4 S2(C; P;A) implements KD(U;P;K;A).

Proof: By Theorems 7.3 and 3.1.

21

8 Algorithms Using Structured-Key Cryptosystems

In this section, we modify the implementations of private communication and of key dis-
tribution, S1 and S2, so that they use a common structured-key cryptosystem, rather than
separate shared-key and base-exponent cryptosystems. We show that the resulting systems
are still correct. The proofs use simulation relations to the original systems.

Throughout this section, and for the rest of the paper, we �x C to be any augmented
structured-key cryptosystem.

8.1 Private Communication

We show that moving from a shared-key cryptosystem to a structured-key cryptosystem
does not disturb the correctness of the simple shared-key communication protocol. The
key idea is that the new mechanisms added to the cryptosystem do not contribute any new
ways of computing messages of the original shared-key cryptosystem.

8.1.1 Notation and assumptions

Starting from the �xed augmented structured-key cryptosystem C, we derive a shared-key
cryptosystem C0, by de�ning MConstC0 = MConstC and KConstC0 = B2 C . That is, we use
the B2 terms in C as \names" for keys in C0.

In this subsection we assume that P is a set with at least 2 elements, A is a nonempty
�nite set, U = setC , M = [MConstC], K = [B2 C], and X = [XConst1 C] [[XConst2 C].

We also de�ne W to be the set of all elements w 2 setC(\M") that can be obtained as
follows. In cryptosystem C, w is obtained from an element m 2 setC0(\M") by applying
some number (possibly 0) of enc operations with second arguments in setC(\B") � K.
Informally speaking, w is obtained by \wrapping" some message of the derived shared-key
cryptosystem in a series of encryptions based on keys not in B2 . Finally, we assume that
N =W [K [X, U 0 = U = setC , and A

0 is a nonempty �nite set, disjoint from A.
The set W is used to describe the elements of type \M" that the eavesdropper is not

allowed to learn. We have chosen this particular set W because it has a simple de�nition,
because it includes all elements of type \M" that could help the eavesdropper to compute
elements that are supposed to remain unknown (the MConsts), and because it excludes
values produced by other protocols with which the given protocol is to be composed. Other
choices of W besides ours are possible.

8.1.2 New implementation

The formal de�nitions of Enc3 and Dec3 are nearly identical to those of Enc and Dec. The
di�erence is that the new automata use elements of type \B" in place of KConsts. Also,
the parameters have new meanings, as de�ned just above.

Enc3 (C; P)p;q where p; q 2 P , p 6= q :
Signature:

22

Input:
PC-send(m)p;q, m 2 [MConstC]
grant(u)p, u 2 setC

Output:
IC-send(u)p;q, m 2 setC

States:

bu�er , a multiset of elements of [MConstC], initially empty
shared-key 2 setC(\B") [f?g, initially ?

Transitions:

PC-send(m)p;q
E�ect:

add m to bu�er

IC-send(u)p;q
Precondition:

m is in bu�er

shared-key 6= ?
u = enc(m; shared-key)

E�ect:
remove one copy of m from bu�er

grant(u)p
E�ect:

if u 2 setC(\B") then
shared-key := u

Dec(C; P)p;q, where p; q 2 P , p 6= q :
Signature:

Input:
IC-receive(u)p;q, u 2 setC
grant(u)q, u 2 setC

Output:
PC-receive(u)p;q, u 2 setC

States:

bu�er , a multiset of elements of setC(\M")
shared-key 2 setC(\B") [f?g, initially ?

Transitions:

IC-receive(u)p;q
E�ect:

if u 2 setC(\M") then
add u to bu�er

PC-receive(u)p;q
Precondition:

m is in bu�er

shared-key 6= ?
u = dec(m; shared-key)

E�ect:
remove one copy of m from bu�er

grant(u)q
E�ect:

if u 2 setC(\B") then
shared-key := u

We de�ne S3 to be the system from Section 6, but implemented using the structured-
key cryptosystem C rather than a shared-key cryptosystem. That is, S3(C; P;A; U

0; A0) is
constructed by composing:

23

� Enc3 (C; P)p;q and Dec3 (C; P)p;q, p; q 2 P , p 6= q.

� IC (U;P;A), Eve(C; P;A), Env(U;A;N).

� KD(U 0; P;K;A0).

and then hiding all the eavesdrop , IC-send , IC-receive, grant , and learn actions, and the
reveala actions for a 2 A0. That is, we hide all actions except the external actions of
PC (U;P;M;A), which are the PC-send and PC-receive actions and the reveala actions for
a 2 A. We want to show that S3(C; P;A; U

0; A0) implements PC (U;P;M;A).

8.1.3 Invariants

Lemma 8.1 In all reachable states of S3, the following are true:

1. For all p, Enc3 p;q:shared-key 2 K [f?g.

2. For all p, Dec3 p;q:shared-key 2 K [f?g.

Proof: By induction; the only interesting case is grant , but this is straightforward from the
precondition of grant in KD .

Lemma 8.2 In all reachable states of S3, the following are true:

1. For all p; q, if u 2 IC :bu�er(p; q) then u = enc(m; k), where m 2M and k 2 K.

2. For all p; q, all x 2 X, x =2 IC :bu�er(p; q).

Proof: Part 1 is proved by induction, using Lemma 8.1. The interesting case is IC-sendp;q;
this follows because the precondition (in Enc3) implies that the message sent is of the
indicated form. Part 2 follows from Part 1.

Lemma 8.3 In all reachable states of S3, the following are true:

1. No element of X is in Eve:has.

Proof: By induction. The interesting cases are:

1. eavesdrop(u)p;q;a

Lemma 8.2 implies that u = enc(m; k) for some m 2M and k 2 K. This is not in X,
which shows that the invariant is preserved.

2. learn(u)a

The precondition (in Env) implies that u =2 X, so this cannot cause a violation of the
claim.

3. compute(u; f)a

Since no element of X can be computed in cryptosystem C, the claim is preserved.

24

The following lemma, Lemma 8.4, has a di�erent style from the other invariants we have
stated so far. It does not say that no element of W may appear in has . Rather, it says
that if such an element, w, appears in has , then any element m of setC0(\M") that is easily
reachable from w, for example, the \unwrapped" element of setC0(\M") from which w is
constructed, must also be in has .

Also note that we do not give any invariants here saying that K or M elements do not
appear in Eve:has , as we did in Section 6.3. This is because (in the spirit of modularity)
we prefer to avoid re-proving facts for S3 that have already been proved for S1.

Lemma 8.4 In all reachable states of S3, the following are true:

1. Assume that (M [K) \ Eve:has = ;. If w 2 W \ Eve:has and m 2 setC0(\M") is
easily reachable from fwg [(setC(\B")�K) in C, then m 2 Eve:has.

Proof: By induction. Fix (s; �; s0) as usual. The interesting cases are:

1. eavesdrop(u)p;q;a

Note that the form of u, as described in Lemma 8.2, implies that u 2 W . The
interesting situation is where w, the element in the statement of the invariant, is
equal to u, the element newly inserted into has . So suppose that m 2 setC0 is easily
reachable from fug [(setC0(\B")�K) in C. Then properties of the cryptosystems C
and C0 imply that m = u. But u is explicitly put into Eve:has by this step, as needed.

2. learn(u)a

The precondition (in Env) implies that u =2W , so this cannot cause a violation of the
claim.

3. compute(u; f)a

The interesting case is where the new element u being computed is in W , so assume
that u 2 W . Suppose that (M [K) \ s0:Eve:has = ; and that m 2 setC0 is easily
reachable from fug [(setC(\B")�K) in C. It follows that (M [K)\ s:Eve:has = ;.

If the function f is exp, then some element of X must be in s:Eve:has . But Lemma
8.3 implies that there is no such element. So f must be either enc or dec. Since no
element of K is in s:Eve:has , the second argument in the application of f must be in
setC(\B")�K. The �rst argument is some u0 2 s:Eve:has . It follows that m is easily
reachable from fu0g [(setC(\B") � K) in C. Also, since u 2 W , properties of the
cryptosystem C imply that also u0 2 W . But then the inductive hypothesis implies
that m 2 s:Eve:has . Therefore, m 2 s0:Eve:has , as needed.

8.1.4 Implementation proof

We prove the correctness of S3 as a consequence of that of S1(C
0; P;A; U 0; A0). By our

previous result about S1, Theorem 6.6:

Lemma 8.5 S1(C
0; P;A; U 0; A0) implements PC (setC0 ; P;M;A).

25

In order to prove correctness of S3(C; P;A; U
0; A0), we would like to demonstrate a

simulation relationship from S3(C; P;A; U
0; A0) to S1(C

0; P;A; U 0; A0). To do this, we �rst
make the interfaces consistent, by de�ning S0

3
(C; P;A; U 0; A0) from S3 by hiding the actions

reveal (u)a, u 2 U � setC0 , a 2 A.

Lemma 8.6 If � is a trace of S3(C; P;A; U
0; A0) then � with all reveal(u) actions removed,

u 2 U � setC0, is a trace of S0
3
(C0; P;A; U 0; A0).

Now we de�ne the relation F from S0
3
(C; P;A; U 0; A0) to S1(C

0; P;A; U 0; A0): (s; t) 2 F
provided:

1. For all components except Eve, the states are identical in s and t.

2. s:Eve:has \ setC0 � t:Eve:has .

Theorem 8.7 F is a simulation relation.

Proof: Start condition: Easy.
Step condition: Consider (s; �; s0) and t as usual.

We claim �rst that no element u 2M [K appears in s:Eve:has . For, if such an element
did appear in s:Eve:has , the fact that (s; t) 2 F would imply that u 2 t:Eve:has . But this
would contradict Lemma 6.4, an invariant for S1.

The most interesting cases are:

1. � = reveal(u)a, a 2 A

We consider two subcases:

(a) u 2 setC0

Then the corresponding fragment consists of a single step, with the same action.
The precondition of � in S0

3 implies that u 2 s:Eve:has . Since (s; t) 2 F , we have
also that u 2 t:Eve:has . Therefore, � is enabled in t. Since reveal actions have
no e�ect on the state, the relation F is preserved.

(b) u 2 U � setC0

Then the corresponding fragment consists of the single state t. Since � is an
internal action of S0

3, the external behavior corresponds as needed.

2. � = compute(u; f)

(a) u 2 setC0

Then since f 2 EN C , f must be exp, enc, dec, or an element of BConst . We
consider cases:

i. f = enc or f = dec, with the second argument in K.
Then the precondition implies that this K element, say k, must be in
s:Eve:has . But this contradicts a claim at the beginning of the proof, which
means that this case cannot occur.

26

ii. f = enc, with the second argument in setC(\B")�K
Then properties of the cryptosystem C imply that f yields a result u 2
(U � setC0), contradicting the requirements of this case.

iii. f = dec, with the second argument in setC(\B")�K
Then the corresponding fragment consists of the single state t. We must show
that the correspondence is preserved. By properties of the cryptosystem C,
the �rst argument of f must be some element w 2 W . By the precondition
of �, w 2 s:Eve:has . Then Lemma 8.4, together with the fact that (M [
K) \ s:Eve:has = ;, implies that u 2 s:Eve:has , that is, u is already in the
has set, before the current step. Therefore, since (s; t) 2 F , we have also
u 2 t:Eve:has . It follows that (s0; t) 2 F , that is, the correspondence is
preserved.

iv. f = exp
Then f must be applied with a second argument x 2 X, and x 2 s:Eve:has .
But this violates an invariant for S0

3, Lemma 8.3, which means that this case
cannot occur.

v. f 2 BConstC0

This yields a result u 2 (U � setC0), contradicting the requirements of this
case.

(b) u 2 U � setC0

Then the corresponding fragment consists of the single state t. Since u =2 setC0 ,
the correspondence is preserved.

3. � = learn(u)a

(a) u 2 setC0

Then the corresponding fragment consists of a single step, with the same action.
To see that this is enabled, note that u =2 N , by the precondition in S0

3. In
particular, u =2 M [K. This implies that learn(u) is enabled in S1. Since the
same element is added to both has sets, the correspondence is preserved.

(b) u 2 U � setC0

Then the corresponding fragment consists of the single state t. Since u =2 setC0 ,
it is easy to see that the correspondence is preserved.

4. � = eavesdrop(u)p;q;a

The precondition of � in S0
3 implies that u 2 s:IC :bu�erp;q. Since (s; t) 2 F , we have

that also u 2 t:IC :bu�erp;q. Therefore, � is enabled in t. Since the same element is
added to both has sets, the correspondence is preserved.

Theorem 8.8 S0
3(C; P;A; U

0; A0) implements S1(C
0; P;A; U 0; A0).

Proof: By Theorems 8.7 and 3.1.

27

Lemma 8.9 If � is a trace of S3(C; P;A; U
0; A0) then � with all reveal(u) actions removed,

for u 2 U � setC0 , is a trace of S1(C
0; P;A; U 0; A0).

Proof: By Theorem 8.8 and Lemma 8.6.

Theorem 8.10 S3(C; P;A; U
0; A0) implements PC (U;P;M;A).

Proof: Let � be a trace of S3(C; P;A; U
0; A0). Then Lemma 8.9 implies that �1 is a trace

of S1(C
0; P;A; U 0; A0), where �1 is equal to � with all reveal(u) actions removed, for u 2

U � setC0 . Then Lemma 8.5 implies that �1 is a trace of PC (setC0 ; P;M;A). It follows that
�1 is a trace of PC (setC ; P;M;A). Now, since � di�ers from �1 only by including some
reveal actions for elements in U � setC0 , it follows that � is a trace of PC (setC ; P;M;A).

The proofs of the results in this and the next subsection deal with speci�c cryptosystems.
It would be interesting to extract general theorems that could be applied to get such results.
Such theorems would involve some kind of notion of \embedding" of one cryptosystem in
another, and statements articulating when a protocol that works with a cryptosystem also
works with any cryptosystem in which that cryptosystem is embedded.

8.2 Key Distribution

It is not hard to see that moving from a base-exponent cryptosystem to a structured-key
cryptosystem does not disturb the correctness of the Di�e-Hellman protocol. The key idea
is that the new mechanisms added to the cryptosystem involve the new message type \M",
and do not contribute any new ways of computing bases or exponents.

We proceed formally as in the previous subsection. Starting from the �xed augmented
structured-key cryptosystem C, we derive an augmented base-exponent cryptosystem C0

by de�ning BConstC0 = BConstC , XConst1 C0 = XConst1 C , XConst2 C0 = XConst2 C , and
b0C0 = b0C . In this subsection we assume that P = fp1; p2g, A is a nonempty �nite set,
U = setC , K = [B2 C], X = [XConst1 C] [[XConst2 C], and N = K [X.

The new endpoint automata are syntactically the same as the old endpoint automata.
The only di�erence is that the subscript C now refers to a structured-key cryptosystem.
We de�ne S4 to be the system from Section 7, but implemented using the structured-
key cryptosystem C rather than a base-exponent cryptosystem. That is, S4(C; P;A) is
constructed by composing:

� DH (C; P)p, p 2 P .

� IC (U;P;A), Eve(C; P;A), Env(U;A;N).

and then hiding the eavesdrop , IC-send , IC-receive, and learn actions. That is, we hide
all actions except the external actions of KD(U;P;K;A), which are the grant and reveal
actions. We want to show that S4(C; P;A) implements KD(U;P;K;A). We show this as a
consequence of the correctness of S2(C

0; P;A). By our previous result about S2, Theorem
7.4:

Lemma 8.11 S2(C
0; P;A) implements KD(setC0 ; P;K;A).

28

In order to prove correctness of S4(C; P;A), we would like to demonstrate a simulation
relationship from S4(C; P;A) to S2(C

0; P;A). We de�ne S0
4
(C; P;A) from S4 by hiding the

actions reveal(u)a, u 2 U � setC0 , a 2 A.

Lemma 8.12 If � is a trace of S4(C; P;A) then � with all reveal(u) actions removed, for
u 2 U � setC0, is a trace of S0

4
(C0; P;A).

Now we de�ne the relation F from S0
4
(C; P;A) to S2(C

0; P;A): (s; t) 2 F provided:

1. For all components except Eve, the states are identical in s and t.

2. s:Eve:has \ setC0 � t:Eve:has .

Theorem 8.13 F is a simulation relation.

Proof: Analogous to that of Theorem 8.7.
Start condition: Easy.
Step condition: Consider (s; �; s0) and t as usual. The most interesting cases are:

1. � = reveal(u)a

Analogous to the reveal case in the proof of Theorem 8.7.

2. � = compute(u; f)

(a) u 2 setC0

Then properties of the structured-key cryptosystem imply that f must be either
exp or an element of BConst . Moreover, any arguments required by f are also in
setC0 . Since such arguments must be in s:Eve:has (by the enabling condition),
the de�nition of F implies that they are also in t:Eve:has . It follows that � is
enabled in t.

Thus, we may allow the corresponding fragment to consist of a single step, with
the same action. Since the same element is added to both has sets, the corre-
spondence is preserved.

(b) u 2 U � setC0

Analogous to the corresponding case for the compute action in the proof of
Theorem 8.7.

3. � = learn(u)a

(a) u 2 setC0

Then the corresponding fragment consists of a single step, with the same action.
To see that this is enabled, note that u =2 N = K [X, by the precondition in S0

4.
This implies that learn(u) is enabled in S2. Since the same element is added to
both has sets, the correspondence is preserved.

(b) u 2 U � setC0

Then the corresponding fragment consists of the single state t. Since u =2 setC0 ,
it is easy to see that the correspondence is preserved.

29

4. � = eavesdrop(u)p;q;a

Analogous to the eavesdrop case in the proof of Theorem 8.7.

Theorem 8.14 S0
4
(C; P;A) implements S2(C

0; P;A).

Proof: By Theorems 8.13 and 3.1.

Lemma 8.15 If � is a trace of S4(C; P;A) then � with all reveal(u) actions removed, for
u 2 U � setC0, is a trace of S2(C

0; P;A).

Proof: By Theorem 8.14 and Lemma 8.12.

Theorem 8.16 S4(C; P;A) implements KD(U;P;K;A).

Proof: Let � be a trace of S4(C; P;A). Then Lemma 8.15 implies that �1 is a trace of
S2(C

0; P;A), where �1 is equal to � with all reveal(u) actions removed, for u 2 U � setC0 .
Then Lemma 8.11 implies that �1 is a trace of KD(setC0 ; P;K;A). It follows that �1 is
a trace of KD(setC ; P;K;A). Now, since � di�ers from �1 only by including some reveal
actions for elements in U � setC0 , it follows that � is a trace of KD(setC ; P;K;A).

9 Putting the Pieces Together

Now we describe how to put the previous results together, to get an implementation of
private communication that uses the shared-key communication protocol in combination
with the Di�e-Hellman key distribution service. The �rst step combines the two protocols
using ordinary composition, but still keeps the insecure channels, eavesdroppers, and envi-
ronments for the two algorithms separate. The second step combine the two channels into
one and likewise for the eavesdroppers and the environments.

9.1 Composing Di�e-Hellman and Shared-Key Communication to get

Private Communication

Recall that we have already �xed C to be an augmented structured-key cryptosystem. We
now assume, for the rest of the paper, that U = setC , P = fp1; p2g, P 0 = fp10; p20g, A
is a nonempty �nite set, M = [MConstC], K = [B2 C], X = [XConst1 C] [[XConst2 C], W
is the set of elements of setC(\M") that can be obtained from elements of setC0(\M") [
(setC(\B")�K) in C using enc, N =W [K [X, and A0 is a nonempty �nite set, disjoint
from A.

The combined system S5 is constructed by composing:

� Enc3 (C; P)p;q, Dec3 (C; P)p;q, p; q 2 P , p 6= q.

� DH5 p, p 2 P ; each of these is a renamed version of DH (C; P)p, with the subscripts in
IC-sendp;q and IC-receiveq;p actions renamed to their primed versions.

30

ICDH1 DH 2

Eve

Env

Eve

Env

IC

Dec 1,2

Enc 2,1

eavesdrop 4

reveal 4learn 4

grant 2

eavesdrop 3

reveal 3

learn 3

Enc 1,2

Dec 2,1

grant 1

Figure 3: S5

� IC (U;P;A), Eve(C; P;A), Env(U;A;N).

� IC (U;P 0; A0), Eve(C; P 0; A0), Env(U;A0; N 0).

and hiding all actions except for the external actions of PC (U;P;M;A), which are the
PC-send , PC-receive, and reveala actions for a 2 A. Figure 3 contains an interaction
diagram for S5.

Theorem 9.1 S5 implements PC (U;P;M;A).

Proof: This follows from Theorems 8.16 and 8.10, using general projection and pasting
lemmas for I/O automata. Let � be an execution of S5. We produce an execution �0 of
PC (U;P;M;A) such that trace(�0) = trace(�).

De�ne T1 = Enc3 p1;p2�Dec3 p1;p2�Enc3 p2;p1�Dec3 p2;p1�IC (U;P;A)�Eve(C; P;A)�
Env(U;A;N) and T2 = DH5 p1 �DH5 p2 � IC (U;P 0; A0)� Eve(C; P 0; A0)� Env(U;A0; N 0).
De�ne �1 = �jT1 and �2 = �jT2. By I/O automaton projection lemmas, �1 and �2 are
executions of T1 and T2, respectively. (See [23], Chapter 8.)

Let T3 be the same as T2 but with all actions except for the grant actions and reveal
actions hidden; �2 is also an execution of T3. Then T3 is exactly the same as S4(C; P;A

0)
except for renaming of elements of P , everywhere except in grant actions, to corresponding
elements of P 0. By Theorem 8.16, S4(C; P;A

0) implements KD(U;P;K;A0). Since all the
renaming happens internally, this implies that T3 implements KD(U;P;K;A0).

It follows that there exists an execution �3 of KD(U;P;K;A0) that agrees with �2, and
so also with �, on the external actions of KD(U;P;K;A0), that is, on the grant(u)p actions,
u 2 U , p 2 P and reveal(u)a actions, u 2 U , a 2 A0.

31

Now I/O automaton pasting lemmas (see [23]) yield an execution �4 of T1�KD(U;P;K;A0)
such that �4jT1 = �1 and �4jKD(U;P;K;A0) = �3. Thus, �4 agrees with � on T1 and on
the external actions of KD(U;P;K;A0).

Now de�ne T4 = T1 � KD(U;P;K;A0), with all except the PC-send , PC-receive and
reveal (a), a 2 A actions hidden. Note that T4 = S3(C; P;A; U;A

0). Now Theorem 8.10
implies that S3(C; P;A; U;A

0) implements PC (U;P;M;A); therefore, there is an execution
�0 of PC (U;P;M;A) that agrees with �4 on all external actions of PC (U;P;M;A). Hence,
�0 agrees with � on all external actions of PC (U;P;M;A). This is as needed.

9.2 Merging Channels, Adversaries, and Environments

The �nal implementation, S6, is obtained from S5 by merging the two separate insecure
channels into one, and likewise for the two adversaries and the two environments. To do
this, and yet keep the same interfaces, we extend the de�nitions of IC and Eve to allow
two types of ports, primed and unprimed. S6 consists of:

� Enc3 (C; P)p;q, Dec3 (C; P)p;q, p; q 2 P , p 6= q.

� DH5 p, p 2 P .

� IC (U;P;A; P 0; A0), Eve(C; P;A; P 0; A0).

� Env(U;A [A0; N [N 0).

Here, the extended IC is the same as IC (U;P [P 0; A [A0) but only has actions with
subscripts p; q; a where either p; q 2 P , a 2 A or p; q 2 P 0, a 2 A0. Similarly for the
extended Eve. Also, S6 hides all actions except for the PC-send , PC-receive, and reveala
actions for a 2 A, that is, the external actions of PC (U;P;M;A).

The combined eavesdropper eavesdrops and learns on all adversary ports in A[A0, and
can use all this information in calculating its has information, which resides in a single state
component. The combined environment avoids communicating any information in N [N 0.
We claim that S6 implements S5, which implies that S6 implements PC (U;P;M;A). To
prove this result, we de�ne S7, which is just like S5 except that it combines the eavesdroppers
(but not the channels or environments). We de�ne a simulation relation F from S7 to S5,
where (s; t) 2 F exactly if:

1. For all except the Eve components, the states are identical in s and t.

2. s:has � t:Eve(C; P;A):has .

3. s:has � t:Eve(C; P 0; A0):has .

This relation says, essentially, that any information that the combined eavesdropper can
acquire, in the context of the given protocols, is something that each of the individual
eavesdroppers could acquire anyway.

Theorem 9.2 F is a simulation relation.

32

Proof: The initial condition is immediate, because s:has is empty. For the step condi-
tion, the interesting cases are as follows. Let b and b0 be arbitrary elements of A and A0,
respectively.

1. reveal (u)a, a 2 A

We know that u 2 s:has . So by de�nition of F , we have that u 2 t:Eve(C; P;A):has .
Let this step correspond to a single step, with the same reveal (u)a action. Since
u 2 t:Eve(C; P;A):has , this action is enabled in S5.

2. reveal (u)a, a 2 A0

Analogous to the previous case.

3. learn(u)a, a 2 A [A0

The execution fragment corresponding to this step consists of two steps, with actions
learn(u)b; learn(u)b0 . By the precondition, u 2 U � (N [N 0). So u 2 (U � N) and
u 2 (U �N 0). It follows that the two learn actions are enabled in S5. Since the same
element u is added to all three has sets, the correspondence is preserved.

4. compute(u; f)a, a 2 A [A0

The execution fragment corresponding to this step consists of two steps, with ac-
tions compute(u; f)b; compute(u; f)b0 . The precondition implies that all the arguments
needed for this computation of f are in s:has . Since (s; t) 2 F , these areguments are
also in t:Eve(C; P;A):has and in t:Eve(C; P 0; A0):has . It follows that the two compute
actions are enabled in S5. Since the same element u is added to all three has sets, the
correspondence is preserved.

5. eavesdrop(u)a, a 2 A

Then Lemma 8.2 implies that u is of the form enc(m; k), m 2 M , k 2 K. There-
fore, u 2 U � N 0. The corresponding fragment consists of two steps, with actions
eavesdrop(u)a; learn(u)b0 . The eavesdrop action is enabled in S5 because the chan-
nel states are identical in states s and t. The learn action is enabled in S7 because
u 2 U � N 0. Again, since the same element u is added to all three has sets, the
correspondence is preserved.

6. eavesdrop(u)a, a 2 A0

Then u is of the form exp(b0; x) 2 U�N . The corresponding fragment consists of two
steps, with actions eavesdrop(u)0a; learn(u)b. The eavesdrop action is enabled in S5
because the channel states are identical in states s and t. The learn action is enabled
in S7 because u 2 U �N . Since the same element u is added to all three has sets, the
correspondence is preserved.

Theorem 9.3 S7 implements S5.

Proof: By Theorems 9.2 and 3.1.

33

The essence of Theorems 9.2 and 9.3 is a relationship between Eve(C; P;A; P 0; A0) and
the composition Eve(C; P;A)�Eve(C; P 0; A0). The reason that this relationship is described
in terms of the complete systems S7 and S5 (rather than just the eavesdroppers) is that the
relationship depends on assumptions about the contexts in which the eavesdroppers run.
The key facts used about the contexts appear in the arguments for the eavesdrop cases in
the proof of Theorem 9.2. Basically, these facts say that any message that can appear in
the insecure channel of either protocol could also be generated by the environment in the
other protocol. It is possible to extract a general combining theorem for eavesdroppers,
using abstract models of the environments and protocols that express just this type of
noninterference. Since this involves some notational complexities, we leave this for future
work.

Lemma 9.4 S6 implements S7.

The fact that S6 implements S7 is easy, based on the following two lemmas:

Lemma 9.5 Env(U;A [A0; N [N 0) implements Env(U;A;N) � Env(U;A0; N 0).

Lemma 9.6 IC (U;P;A; P 0; A0) implements IC (U;P;A)� IC (U;P 0; A0).

This all yields:

Lemma 9.7 S6 implements S5.

Proof: By Lemma 9.4 and Theorem 9.3.

Theorem 9.8 S6 implements PC (U;P;M;A).

Proof: By Lemmas 9.7 and Theorem 9.1.

10 Discussion

In this paper, we have modeled and analyzed the combination of simple shared-key commu-
nication with Di�e-Hellman key distribution, in the presence of an eavesdropper adversary.
Even though this example is very simple, we have studied it using many kinds of decompo-
sition, including:

1. Separating distributed algorithms issues from other issues, like cryptosystem reacha-
bility issues.

2. Treating the two sub-protocols separately, then combining them using general theo-
rems about automaton composition.

3. Giving high level service speci�cations, giving detailed descriptions of implementing
algorithms, and using simulation relations to show that the algorithms implement the
services.

34

4. First studying the protocols using simple cryptosystems and later extending them to
use more elaborate cryptosystems.

5. Combining separate adversaries into one.

We believe that understanding these decomposition methods in a simple context is an
important �rst step toward extending them to more complicated protocols.

It appears possible to decompose the presentation in this paper even more. For example,
one might de�ne a notion of embeddings of cryptosystems and obtain the results of Section
8 as consequences of general theorems about such embeddings. Or, one might formulate
and prove a general combining theorem for eavesdroppers and use it in the proof of Lemma
9.4.

In work in progress, we are extending these ideas to more complex protocols like that
of Di�e, van Oorschot, and Weiner [11], which tolerate more active adversaries. So far, it
appears that the modeling/analysis ideas of this paper scale well to the more complicated
examples. Some issues that arise in modeling the protocol of [11] are: The cryptosystems
are more complicated, so more complicated arguments must be made about reachability;
for example, the analogues of the set W de�ned in Section 8.1.1 become more complicated.
Also, because the adversary has more active control of the communication system, it is
appropriate to combine the adversary and communication system into a single automaton
model. (The has component of that automaton is now used to decide what may be delivered
to the client, as well as what may be revealed.) Also, the correctness guarantees are weaker|
for instance, repeated deliveries of the same message, and deliveries to the wrong recipient,
are allowed. A more complicated key distribution service speci�cation will also be needed,
including key requests and granting of multiple keys.

The work of this paper has not addressed liveness properties. For the simple case of
this paper, with a passive eavesdropper, liveness claims are certainly possible. They can be
incorporated easily into the model in the form of time bounds, and proved using the usual
assertional methods for timing analysis, such as those appearing in [5, 22]. For more active
adversaries, more sophisticated algorithms can guarantee liveness properties, which could
also be formulated as time bounds and proved similarly.

Another interesting research direction is the modular introduction of probabilistic con-
siderations. A great deal of reasoning about security protocols can be carried out in a
framework in which it is assumed that certain low probability \bad" events simply do not
occur. Such events might then be introduced separately, and general theorems used to limit
their impact on system behavior. Such general theorems remain to be developed.

Acknowledgments: I thank Ron Rivest for getting me started on this project and for
some very helpful discussions. Martin Abadi, Oleg Sheyner, Alessandro Gencarelli, But-
ler Lampson, Victor Luchangco, Anna Lysyanskaya, Dahlia Malkhi, Mike Reiter, Roberto
Segala, and Jeannette Wing provided useful comments and encouragement.

35

References

[1] Mart�in Abadi. Protection in programming-language translations. In Automata, Lan-
guages and Programming: 25th International Colloquium (ICALP'98), pages 868{883,
July 1998. Also, Digital SRC Research Report 154 (April 1998), Palo Alto, CA.

[2] Mart�in Abadi, Michael Burrows, and Roger Needham. A logic of authenti�cation. In
Proceedings of the Royal Society, A,426,1871, pages 233{271, December 1989. Also
appeared as SRC Research Report 39 and, in shortened form, in ACM Transactions
on Computer Systems, 8, 1 (February 1990), 18-36.

[3] Mart�in Abadi, C�edric Fournet, and Georges Gonthier. Secure implementation of chan-
nel abstractions. In Proceedings of the Thirteenth Annual IEEE Symposium on Logic
in Computer Science, pages 105{116, June 1998.

[4] Mart�in Abadi and Mark R. Tuttle. A semantics for a logic of authenti�cation. In Pro-
ceedings of the Tenth Annual ACM Symposium on Principles of Distributed Computing,
pages 201{216, Montreal, Quebec, Canada, August 19-21 1991.

[5] Hagit Attiya and Nancy A. Lynch. Time bounds for real-time process control in the
presence of timing uncertainty. Information and Computation, 110(1):183{232, April
1994.

[6] M. Bellare and P. Rogaway. Entity authenti�cation and key distribution. Advances in
Cryptology - CRYPTO'93, 773, 1994.

[7] M. Bellare and P. Rogaway. Provably secure session key distribution - the three party
case. In Proceedings of the 27th ACM Symmposium on the Theory of Computing, 1995.

[8] A. Cavalca. Tecnica dei vincoli negativi: un nuovo metodo per l'analisi di protocolli di
autenticazione. Master's thesis, University of Bologna, October 1997.

[9] A. Cavalca and R. Segala. Negative constraints for the analysis of authentication
protocols. Technical report, University of Bologna. To appear.

[10] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644{656, November 1976.

[11] Whit�eld Di�e, Paul C. van Oorschot, and Michael J. Wiener. Authenti�cation and
authenticated key exchanges. Designs, Codes and Cryptography, 2:107{125, 1992.

[12] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(12):198{208, March 1993.

[13] Alan Fekete, M. Frans Kaashoek, and Nancy Lynch. Implementing sequentially con-
sistent shared objects using broadcast and point-to-point communication. Journal of
the ACM, 45(1):35{69, January 1998.

36

[14] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a partitionable
group communication service. In Proceedings of the Sixteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 53{62, Santa Barbara, CA, August 1997.
Expanded version in [15].

[15] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a partitionable
group communication service. Technical Memo MIT-LCS-TM-570, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139,
1997. Also, submitted for journal publication.

[16] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity of
interactive proof systems. SIAM Journal of Computing, 18(1):186{208, February 1989.

[17] Jason Hickey, Nancy Lynch, and Robbert van Renesse. Speci�cations and proofs for
Ensemble layers. In Rance Cleaveland, editor, Tools and Algorithms for the Construc-
tion and Analysis of Systems (Fifth International Conference, TACAS'99, Amsterdam,
the Netherlands, March 1999, volume 1579 of Lecture Notes in Computer Science, pages
119{133. Springer-Verlag, 1999.

[18] Mei Lin Hui and Gavin Lowe. Safe simplifying transformations for security protocols or
not just the Needham Schroeder public key protocol. In 12th IEEE Computer Security
Foundations Workshop (CSFW12), pages 32{43, Mordano, Italy, June 28-30 1999.

[19] Richard A. Kemmerer. Analyzing encryption protocols using formal veri�cation tech-
niques. IEEE Journal on Selected Areas in Communications, 7(4):448{457, May 1989.

[20] Butler Lampson and Alex Shvartsman. POCS Course Notes (Principles of Computer
Systems). Available online at ftp://theory.lcs.mit.edu/pub/classes/6.826/www/6.826-
top.html, 1997.

[21] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time frame-
work for protocol analysis. In 5th ACM Conference on Computer and Communications
Security, pages 112{121, San Francisco, CA, USA, November 1998.

[22] Victor Luchangco. Using simulation techniques to prove timing properties. Master's
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, June 1995.

[23] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo,
CA, March 1996.

[24] Nancy Lynch. I/O automaton models and proofs for shared-key communication sys-
tems. In 12th IEEE Computer Security Foundations Workshop (CSFW12), pages 14{
29, Mordano, Italy, June 28-30 1999.

[25] Nancy Lynch and Sergio Rajsbaum. On the Borowsky-Gafni simulation algorithm.
In Proceedings of the Fourth ISTCS: Israel Symposium on Theory of Computing and
Systems, pages 4{15, Jerusalem, Israel, June 1996. IEEE Computer Society. Also, short
version appears in Proceedings of the Fifteenth Annual ACM Symposium on Principles
of Distributed Computing, Philadelphia, PA, page 57, May 1996.

37

[26] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI-Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informat-
ica, Amsterdam, The Netherlands. Technical Memo MIT/LCS/TM-373, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139,
November 1988.

[27] Catherine Meadows. A system for the speci�cation and analysis of key management
protocols. In Proceedings of the 1991 IEEE Symposium on Research in Security and
Privacy, pages 182{195, 1991.

[28] Jonathan K. Millen, Sidney C. Clark, and Sheryl B. Freedman. The Interrogator:
Protocol security analysis. IEEE Transactions on Software Engineering, SE-13(2):274{
288, February 1987.

[29] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I. Informa-
tion and Computation, 100(1):1{40, 1992.

[30] L. C. Paulson. The inductive approach to verifying cryptographic protocols. J. Com-
puter Security, 6:85{128, 1998.

[31] Lawrence C. Paulson. The Isabelle reference manual. Technical Report 283, University
of Cambridge, Computer Laboratory, 1993.

[32] Tsvetomir P. Petrov, Anna Pogosyants, Stephen J. Garland, Victor Luchangco, and
Nancy A. Lynch. Computer-assisted veri�cation of an algorithm for concurrent times-
tamps. In Reinhard Gotzhein and Jan Bredereke, editors, Formal Description Tech-
niques IX: Theory, Applications, and Tools (FORTE/PSTV'96: Joint International
Conference on Formal Description Techniques for Distributed Systems and Communi-
cation Protocols, and Protocol Speci�cation, Testing, and Veri�cation, Kaiserslautern,
Germany, October 1996), pages 29{44. Chapman & Hall, 1996.

[33] Steve Schneider. Verifying authentication protocols with CSP. In 10th Computer
Security Foundations Workshop, pages 3{17. IEEE Computer Society Press, 1997.

[34] Oleg Sheyner and Jeannette Wing, 1999. Personal communication.

[35] Mandana Vaziri. Naming state variables of composite automata in IOA. Manuscript,
Nov. 9, 1998.

[36] Thomas Y. C. Woo and Simon S. Lam. A semantic model for authentication protocols.
pages 178{194, 1993.

38

