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Abstract

Today’s Internet naming scheme, the Domain Name System [28], im-
plicitly assumes that applications want to reach an address, where the
address signifies location in the network topology. Typically, appli-
cations desire either information or functionality, and do not often
know the best network location that satisfies their needs. We argue
that current efforts to efficiently enable new services such as mobility,
group communication, resource discovery, service location, caching,
etc. have been greatly hampered by the lack of a flexible naming
system and the inability of the name resolution process to affect data
routing decisions. Significant effort is spent in creating independent,
but similar infrastructure for each situation.

This paper presents the design and implementation of an inten-
tional network naming architecture, where applications describe what
they are looking for (i.e., their intent), not where to find it. In this
architecture, name resolvers can also route messages to the eventual
destinations, leading to an integrated approach to resolution and rout-
ing. We present efficient data structures for maintaining intentional
names based on attribute-value tuples, efficient algorithms for name
lookups, and discovery protocols for disseminating name information
among resolvers and end-hosts. We analyze the performance of the
algorithms and present measurements of the system implementation,
which show that our architecture is practical and feasible. We also de-
scribe a sample application—a mobile, wireless camera application
for remote surveillance—demonstrating the utility of the architecture
in supporting mobility, group communication, service location and
data caching.

1 Introduction

In the last several years, we have seen the Internet grow phe-
nomenally in terms of number of users, size, traffic, and ap-
plications. Thus, it now faces a different set of demands and
challenges than it did originally—in particular, a demand for
better support for the efficient deployment and performance
of new services. People and the applications they use are de-
manding features such as mobility, caching, load balancing,

replication, service location, resource discovery, and group
communication. While many of these problems are receiv-
ing attention in the networking community, we believe that
existing proposals to solve these problems tend to be overly
specific or unnecessarily complex.

We argue that current efforts to efficiently enable new ser-
vices have been greatly hampered by the inflexibility of the
naming system and the inability of the name resolution pro-
cess to affect data routing decisions. Significant effort is spent
in creating independent, but similar infrastructure for each sit-
uation. We observe that for a number of these services and
applications, a more flexible and integrated naming and rout-
ing architecture will greatly simplify and often solve the hard
problems that arise, because at a fundamental level, all these
problems are made easier with a “level of indirection” in the
way messages are routed in the network. Motivated by these
observations, we strive to provide the right, general level of
indirection via the name resolution system.

Today, most network naming schemes such as the Domain
Name System (DNS) [28] implicitly assume that applications
want to reach an address, where the address signifies location
in the network topology. Typically, applications desire either
information or functionality, and do not often know the best
network location that satisfies their needs. We therefore argue
that what is needed is anintentionalnaming scheme and res-
olution architecture in which applications describewhat they
are looking for, notwhereto find it. Furthermore, we advo-
cate that the name resolvers also participate in message rout-
ing based on intentional names, thereby integrating name res-
olution and routing, which until now have been kept separate
in the Internet. This integration, implemented by including
application payload with the name resolution request1, allows
the “late binding” (i.e., binding at packet delivery time) be-
tween the network routes to the end nodes and the name that
maps on to those nodes. This enables users and applications
to track changes easily, including host mobility, dynamic re-

1Name resolvers treat the application payload as opaque data.
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sources, and changing data at network nodes.
The main contribution of our work is the design and imple-

mentation of anIntentional Name System, calledINS. In this
paper, we describe three aspects of INS in detail:

� Intentional naming scheme. We present a naming
scheme where applications express the characteristics of
the information or nodes they want to reach as query ex-
pressions in a restricted query language. In particular,
we show that significant benefits can be obtained using
an exact matchoperator in the language, which enables
resolution based on matching variables in an incoming
name (i.e., attributes) to one among a set of values by the
resolvers. These variables are under application control
and not pre-defined. The resolvers can perform resolu-
tion without understanding the semantics of specific ap-
plications.

� Intentional Name Resolvers (INRs).We present a res-
olution architecture composed of a self-organizing net-
work of INRs to resolve intentional names and route mes-
sages. Our architecture incorporates efficient algorithms
for name lookups based on exact matches and a low-
latency discovery protocol for disseminating name infor-
mation among end nodes and resolvers. We analyze these
algorithms and discuss experimental performance results
from our implementation to justify the feasibility of our
ideas.

� Application architecture. We demonstrate the INS ap-
plication architecture by describing the design and imple-
mentation of a mobile, wireless camera application for
remote surveillance over INS. We discuss how this appli-
cation easily leverages INS’s API and automatic support
for mobility, group communication, service location and
data caching, gaining these advantages from INS with-
out any other pre-installed support for these different ser-
vices.

A key feature of our architecture is its potential for incre-
mental and easy deployment in the Internet, without changing
or supplanting the existing Internet service model. We achieve
this by designing the resolvers to communicate with each
other tunneled over an IP network, using well-understood In-
ternet routing protocols to route messages between resolvers.
Our experience with this demonstrates that a variety of new
services can be deployed effectively by our extensions to Inter-
net naming and resolution, without requiring active, general-
purpose computation in either the routing [38] or naming [40]
subsystems of the Internet architecture.

We hasten to note that the INS architecture presented in this
paper isnot intended for a network as large as the global In-
ternet. Rather, it is intended for networks on the order of few
hundred or few thousand nodes (e.g., inside an administrative
domain), much like schemes for intra-domain unicast (e.g.,

OSPF [29]) or multicast routing (e.g., DVMRP [11]). We are
actively developing a wide-area architecture to complement
our intra-domain INS architecture, which will integrate INS
with extensions to DNS.

The rest of this paper describes our design rationale
and presents the details of INS. Section 2 discusses the
INS architecture, describing the intentional naming scheme,
name lookup algorithm, entity discovery protocol and self-
organization protocol. It also describes various optimizations
and benefits of INS. Section 3 discusses the INS API and our
mobile camera application. Section 4 discusses implementa-
tion details and Section 5 presents the analysis of the algorithm
and the results of performance experiments based on our im-
plementation. We survey related work in Section 6 and then
conclude.

2 System Architecture

The design of the INS architecture is motivated by our desire
to enable applications to express the destination (and source)
of their messages using an intentional name that describes the
intent of the application, rather than a specific end-point. To-
wards this goal, we introduce thename-specifier, which is
used in the message header instead of the traditional source
and destination addresses, to describe the intent of the appli-
cation. Section 2.1 describes the components of the name-
specifier, how they are assembled into an intentional name,
and the wire representation of the name-specifier.

The name-specifiers are resolved into their corresponding
network locations by Intentional Name Resolvers or INRs.
INRs communicate with each other and applications in an ar-
bitrary topology of tunnels overlaid on the IP network. Rather
than having statically configured relationships, as is common
in other overlay networks [13, 17], a self-organization proto-
col is used to spawn and terminate INRs, and maintain neigh-
bor relationships; this protocol is described in Section 2.4.

To learn and share information about names, the INRs com-
municate via a name discovery protocol. The protocol uses
periodic updates to convey name information, and uses trig-
gered updates for fast changes. In addition, we discuss a novel
optimization to implicitly learn about names by inferring in-
formation from message headers. These issues are detailed in
Section 2.3.

The central activity of INRs, of course, is to resolve name-
specifiers into their corresponding network locations. INRs
support two methods of name resolution:early binding, in
which the INR returns a handle to the end-hosts (typically a set
of IP addresses), andlate binding, in which the INRs forward
data on behalf of the application, deferring the binding of the
name-specifier to the end-host until just before the data is de-
livered to its final destination. Late binding enables highly dy-
namic name bindings, since the application is never left with a
stale binding even if bindings change while the message is in
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transit. We focus our attention on the late binding case in this
paper. Section 2.2 describes the INR namespace, thename-
tree—a data structure used to store name information, and the
algorithm used to look up intentional names in the name-tree.

2.1 Name-Specifiers

There are many ways to implement intentional names; in INS
we use query expressions called name-specifiers that replace
traditional addresses in packet headers. Our design decisions
are based on the idea that the name-specifier should provide a
flexible and powerful, yet efficient method of selecting names;
we were also motivated by the desire to keep name-specifiers
simple and easy to understand.

The two main concepts of the name-specifier are theat-
tribute and thevalue. An attribute is a category in which an
object can be classified, for example its ‘color.’ A value is the
object’s classification within that category, for example, ‘red.’
Attributes and values are free-form strings that are defined by
applications; name-specifiers do not restrict applications to us-
ing a fixed or predefined set of attributes and values. Together,
an attribute and its associated value form anattribute-value
pair.

Name-specifiers are a hierarchical arrangement of attribute-
value pairs. The pairs are arranged in a tree such that a pair
that is dependenton another is a descendant of it. For in-
stance, in the example name-specifier shown in Figure 1, it
only makes sense to talk about a building called the White-
house if you are referring to the city of Washington, so the
attribute-value pairbuilding=whitehouse is dependent on
the paircity=washington. Pairs that areorthogonalto each
other, but dependent on the same pair, are siblings in the
tree. For example, a digital camera’s data-type and resolu-
tion can be selected independently of each other, are mean-
ingful only in the context of the camera service. Therefore,
the pairsdata-type=picture and resolution=640x480

are orthogonal. This hierarchical arrangement narrows down
the search space during name resolution, and makes name-
specifiers easier to understand.

A simpler alternative would have been to construct a hier-
archy of attributes, rather than one of pairs. This would result
in building being directly dependent oncity, rather than
city=washington. However, it is also less flexible; our cur-
rent hierarchy allows child attributes to vary according to their
parent value. For example,country=us has a child that is
state=virginia, whilecountry=canadahas a child that is
province=ontario.

To include it in the header to describe the source and desti-
nation of a message, the name-specifier has a wire representa-
tion as shown in Figure 2. This string-based representation
was chosen to be readable to assist with debugging, in the
spirit of SMTP [35], HTTP [16], NNTP [23], etc. Levels of
nesting are indicated by the use of brackets ([ and]), and at-

washington

root

city service

whitehouse

building

wing

room

west

oval-office

camera

picture

data-type

640x480

resolution

accessibility

public

Figure 1: A graphical view of an example name-specifier. The
hollow circles are used to identify attributes; the filled cir-
cles identify values. The tree is arranged such that dependent
attributes are descendants, and orthogonal attributes are sib-
lings. This name-specifier describes a public-access camera
in the Oval office.

[city = washington [building = whitehouse

[wing = west

[room = oval-office]]]]

[service = camera [data-type = picture

[format = jpg]]

[resolution = 640x480]]

[accessibility = public]

Figure 2: The wire representation of the example name-
specifier shown in Figure 1, with line-breaks and extra spacing
added to improve readability.

tributes and values are seperated by an equals sign (=). The
arbitrary use of whitespace is permitted anywhere within the
name specifier, except in the middle of attribute and value to-
kens.

In addition to exact value matches, name-specifiers also
permit wildcard matching of values. To do this, the value
is simply replaced by the wildcard token, a star (*). Thus
to construct a name-specifier that refers toall public cam-
eras providing 640x480 pictures in the Whitehouse, not just
the one in the Oval Office, an application replaces the value
oval-office with ‘*’ in the name-specifier shown in Fig-
ures 1 and 2. The application also sets theanycast/multicast
flag to choose whether the packet should be sent toall cam-
eras or justanyone camera. We are currently investigating the
use of inequality operators (<, >,�, and�) to provide range
selection operations in name-specifiers.

2.2 Name Resolution and Message Routing

The central activity of an INR is to resolve name-specifiers to
their corresponding network locations. When a message ar-
rives at an INR, the INR performs a lookup on the destination
name-specifier in its name-tree. The lookup returns informa-
tion that includes a set of “routes” to next-hop INRs, as well
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as the IP addresses of final destinations. If the application has
chosen to use early binding by setting theearly-binding flag,
the INR simply returns the IP addresses to the application. If
the application desires late binding, the INR forwards the mes-
sage to the next-hop INRs without making any changes to the
name-specifiers or data. This forwarding continues until the
message reaches its final destinations, providing a late bind-
ing between the destination name-specifiers and their respec-
tive IP addresses.

Name-trees. Name-trees are a data structure used to store
the correspondence between name-specifiers andname-info
records. The principal information that the name-info records
contain are the routes to the next-hop INRs and the IP ad-
dresses of potential final destinations. The records also store
additional information such as the metric for the routes and
the expiration time of the record.

Not surprisingly, the structure of a name-tree bears a close
resemblance to a name-specifier. Like a name-specifier, it con-
sists of alternating levels of attributes and values; but unlike a
name-specifer there can be multiple values per attribute, since
the name-tree is a superposition of all the name-specifiers the
INR knows about. Each of these name-specifiers has a pointer
from each of its leaf-values to a name-info record. Figure 3 de-
picts an example name-tree, with the example name-specifier
from Figure 1 in bold.

Name lookups. The LOOKUPalgorithm, shown in Figure 4,
is used to retrieve the name-info records for a particular name-
specifiern from the name-treeT . The main idea behind the
algorithm is that a series of recursive calls reduce the candi-
date name-info setS by intersecting it with the name-info set
consisting of the records pointed to by each leaf-value. When
the algorithm terminates,S contains only the relevant name-
info records.

The algorithm starts by initializingS to the set of all possi-
ble name-info records. Then, for each attribute-value pair of
the name-specifier, it finds the corresponding attribute in the
name-tree. If the value in the attribute-value pair is a wild-
card, then it computesS0 as the union of all name-info records
in the subtree rooted at the corresponding attribute, and inter-
sectsS with S0. If not, it finds the corresponding value in the
name-tree. If it reaches the leaf of either the name-specifier or
the name-tree, the algorithm intersectsS with the name-info
records pointed to by the corresponding value. If not, it makes
a recursive call to compute the relevant set from the subtree
rooted at the corresponding value, and intersects that withS.

Section 5.1 analyses this algorithm and discusses the exper-
imental results of our implementation.
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Figure 3: A partial graphical view of an example INR name-
tree. The name-tree consists of alternating layers of orthog-
onal attributes and their possible values. Leaf-values con-
tain pointers to all the routes they correspond to. The part
of the name-tree corresponding to the example name-specifier
shown in Figure 1 is in bold.

2.3 Name Discovery

INRs learn about names by participating in a name discovery
protocol with their neighbor INRs and end-nodes. Through
this peer-to-peer protocol, the associations between name-
specifiers and name-info records propagate throughout the
INR network and to end-nodes and applications. These asso-
ciations are obtained from the name-tree using an extraction
algorithm, and are then disseminated either during periodic or
triggered updates. The INRs also employ a novel optimization
to learn new names, which we callinference. The following
paragraphs detail these topics.

Name extractions. Since the INR name-tree is a superposi-
tion of all the name-specifiers the INR knows about, extracting
a single name-specifier to advertise is non-trivial. The EX-
TRACT algorithm, shown in Figure 5, is used to retrieve the
name-specifiers for a particular name-info recordr from the
name-treeT . The main idea behind the algorithm is that a
name-specifier can be reconstructed while tracing upwards to
the root of the name-tree from each pointer to a name-info
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LOOKUP(n,T )
S := the set of all possible name-info records
for each attribute-value pairp := (na; nv) in n
Ta := the child ofT such that

name(Ta) = name(na)
if nv = * . wildcard matching

S0 := ;
for eachTv which is a child ofTa
S0 := S0 [ all of the name-info records in the

subtree rooted atTv
S := S \ S0

else . normal matching

Tv := the child ofTa such that
name(Tv) = name(nv)

if Tv is a leaf node orp is a leaf node then
S := S \ the name-info records ofTv

else
S := S \ LOOKUP(p, Tv)

return(S)

Figure 4: The LOOKUP algorithm. This algorithm looks up
the name-specifiern in the name-treeT and returns all appro-
priate name-info records.

record, and grafting on to parts of the name-specifier that have
already been reconstructed.

All the values in the name-tree,T , are augmented with
a “PTR” variable, which is a pointer to the corresponding
attribute-value pair in the name-specifier being extracted. Ini-
tially, all the PTRs are set to null, since they have no cor-
responding attribute-value pairs; the root pointer (T .PTR) is
set to point to a new, empty name-specifier. Then, for each
parent value ofr, the algorithm traces upwards through the
name-tree. If it gets to part of the name-tree where there is a
corresponding attribute-value pair (v.PTR != null), and it has
a name-specifier subtree to graft on to (s != null), it does so.
If not, it creates the corresponding part of the name-specifier,
setsv.PTR to it, grafts ons if applicable, and continues the
trace with the parent value ofv and the new subtree. Figure 6
illustrates the progress of the algorithm.

Updates. INRs use updates to keep each other informed of
the name-specifiers they know about. Triggered updates occur
when an INR receives an update from one of its neighbors
(either an INR or an application) that causes a change in its
name-tree; this allows new advertisments to propagate through
the network rapidly. Periodic updates are used to prevent the
aging out of data that has not changed and to refresh entries in
neighboring INRs. This combination of periodic and triggered
updates enables us to treat the disseminated name state assoft
[9], and therefore does not require a fully reliable transport
protocol such as TCP.

EXTRACT(r,T )
set all PTRs in the tree rooted atT to null
T .PTR := a new, empty name-specifier
for eachv which is a parent value element ofr

EXTRACT-TRACE(v, null)
return(T .PTR)

EXTRACT-TRACE(v,s)
if v.PTR != null . something to graft onto

if s != null . something to graft

graft(s, v.PTR)
else . nothing to graft onto; make it

v.PTR := a new attr.-value pair consisting of
this value and its parent attribute

if s != null . something to graft

graft(s, v.PTR)
EXTRACT-TRACE(parent value ofv, v.PTR)

Figure 5: The EXTRACT algorithm. This algorithm extracts
and returns the name-specifier for the name-info recordr in
the name-treeT . EXTRACT-TRACE implements most of the
functionality, tracing up from a leaf-value until it can graft
onto the existing name-speficier.

INRs use the Bellman-Ford algorithm [4] to calculate the
shortest distance to the end-nodes. Unlike traditional routing
protocols that use the algorithm [20, 27], the INS architecture
does not require unique end-nodes—if a name is advertised
from more than one location, the algorithm computes the best
overall metric based on INR hop count.

Inference. Here, INRs learn about new names by passively
observing the headers of messages they receive. When an INR
receives a message that is travelling froma to b, in addition to
forwarding it towardsb, it also adds a name-info record to the
name-tree fora, noting that its next-hop INR is the INR the
message arrived from. The metric for the name-info record is
found by looking at theup-counterfield in the header, which is
incremented as the message travels from source to destination.
Learning about routes via inference is especially important for
learning about clients who have just made a request in large
networks. Using inference, only the INRs on the path from
the source to the client need to learn about this client.

2.4 INR Self-Organization

INR machines are not static, pre-configured servers, but are
dynamic, in order to reflect load, node locality and the need for
efficient routing in the face of mobility. We achieve this with a
self-organization protocol that spawns INRs as needed, forms
neighborhoods of active nodes, and kills existing INRs when
they are no longer useful. Being highly distributed with no
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Figure 6: An illustration an in-progress execution of the EX-
TRACT algorithm. The subtrees is being grafted ontov.PTR.
The traced paths and PTRs are shown with dotted lines; the
PTR being used and graft are shown in bold.

centralized control, it has the potential to scale with increasing
load and perform well even when failures or partitions occur.

INRs run on machines in the general computing infrastruc-
ture of an organization; typically there is a pool of machines
that are candidate INRs, of which a subset are active at any
time. The administrators of these machines can limit the
amount of processing and communication expended by INR
on a node. This means that nodes can join and leave the active
INR set at any stage based on external conditions

Bootstrapping is based on a list of candidate INRs that is
available to applications (e.g., from the DNS). If an applica-
tion detects that none of these candidate nodes are active, it
can spawn an INR on any of these nodes. This is especially
useful for efficientad hocmobile networking in remote loca-
tions, such as a meeting room or network isolated from the
rest of the Internet.

Neighbors are dynamically maintained by a SO-
LICIT/ACCEPT protocol. The neighbor relationship in
our design is explicitly designed to be symmetric. This
simplifies routing by eliminating the need to deal with
uni-directional paths and allowing the use of inferred routes.

As the load increases on a resolver, additional INRs are
spawned on other candidate nodes, and INR functionality can
be terminated at any time (e.g., if the load is too light or
heavy). Our design uses a probabilistic birth/death algorithm
with local load monitoring for this; this algorithm is similar
to the one described by Amiret al. in the context of an Ac-
tive Service framework [1]. It has the desirable property that
all nodes make autonomous decisions to achieve good global
behavior.

We have currently not implemented the self-organization
protocol, but expect to do so shotly.

2.5 Benefits and Optimizations

In this section we discuss some of the benefits that our archi-
tecture offers and the optimizations one can make because of

root

side seat

right front backleft

$route

Figure 7: A name-tree with a cached copy of packet data. The
cached data is indicated by a ‘$’.

them. These include caching, group communications, mobil-
ity, and resource discovery.

Caching. The main difficulty with implementing middle-of-
the-network caching in today’s Internet is that packets aren’t
named in a way that is both application-independent and
reusable. For example, an IP address / TCP port number / TCP
sequence number can be used to identify a packet in the mid-
dle of an HTTP transfer, but it isn’t reusable since there is no
permanent mapping from sequence number to the source data.
To make this reusable, one has to sacrifice the application-
independence of the name by interpreting the HTTP transfer.

Intentional names give each packet a reusable, application-
independent name—the source name-specifier. Thus, adding
caching requires only two modifications to the INR behavior:

1. When transmitting a packet, make a copy of its data and
store a pointer to it under the route entry for thesource
name-specifierin its name-tree.

2. When looking up thedestination name-specifierof a
packet, check to see if there is a cached copy of the data
which could be sent instead.

An illustration of a name-tree from such an INR is shown in
Figure 7; in addition to the regular route, it also has a cached
copy of the data. Thecache-TTLfield of the packet indicates
how long the data is valid and is also stored in the name-tree.
INRs may also inform their neighbors that they have a cached
copy by using regular name advertisements.

Group communication. Despite the development of multi-
cast routing (detailed in [10, 11, 3, 12, 24]) and a proposal
for anycast routing ([32]), unicast transmission remains the
predominant communication paradigm of the Internet. In con-
trast, INS makes no assumption that any service resides on any
particular host, or even on only a single host. In particular, our
name lookup algorithm uses set operations to determine the
correct routes, rather than just looking for a single route. This
allows INS to easily support features akin to multicast and
anycast, with unicast merely being a special, single-host case
of either of those.

Since intentional names represent a service rather than an
end-point, multiple hosts can announce that they are provid-
ing the service. Rather than just choosing the best route to-
wards a name-specifier, the INRs maintain a list of all of the
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routes towards that service. When the INR forwards a packet,
it checks theanycast/multicast flagof the packet header to de-
cide how to handle it. If the flag is set toanycast, it forwards
it to the neighbor with thebestmetric; if it is set tomulti-
cast, it forwards it toall neighbors for whom it has a route.
This anycast/multicast feature is useful for implementing mir-
rored or redundant services and load balancing. It is further
enhanced by the ability to use wildcards in intentional names,
as described in Section 2.1.

Mobility. Mobility in the Internet relies upon a complex
Mobile IP scheme that involves the deployment of Home
and Foreign Agents [33]. This compexity arises because of
the overloading of the IP address as both a permanent end-
point identifier, and a topologically sensitive address that must
change as a host moves through the network. Another possi-
ble solution is to use a naming system to provide a perma-
nent identifier, and then update the naming system as the host
moves. DNS cannot easily accomplish this since it is statically
configured, though dynamic updates in the DNS improve the
situation [42].

INS, on the other hand, is explicitly designed for rapid
updates. Periodic updates ensure that the name-tree main-
tains long-term consistency, while triggered updates allow an-
nounced changes to occur almost immediately. Thus when a
host moves, all it has to do is announce the intentional names
for the services it provides to its new neighbors, and these are
quickly propagated through the INR network. This feature
can also be used to implementservice mobility, which can be
used to move services from one machine to another (perhaps
to allow upgrades), or even among many machines (perhaps to
have a service follow a particular person). To accomplish this,
the hosts just coordinate the passing of the intentional name
announcement among each other.

Resource discovery. Intentional names are inherently a
method of resource discovery: rather than specifying the host
it wants to access, users and applications convey their intent by
supplying an intentional name that describes the service they
desire. INRs learn about the services that exist in the network
via the name discovery protocol, and either pass this informa-
tion on to applications in the form of a handle, or simply pass
the application data on to the service provider on its behalf.
The passing of a handle is similar to the operation of the Ser-
vice Location Protocol (SLP) [41, 34]. INS is designed for a
similar scale network, but operates without the use of a cen-
tralized Directory Agent or any other single point of failure.

3 Using the System

3.1 Application Programming Interface

The INS API provides a flexible framework for developing
applications that take advantage of its application-controlled
name resolution. It provides functions for creating and manip-
ulating intentional names (name-specifiers), advertising and
discovering new services, and leveraging INS support for
caching, anycast, group communication and late binding.

In the application, a name-specifier is represented as pairs
of attribute and value objects with an implicit assumption that
the resolution operator is an exact match or wildcard opera-
tor2. The API provides functions to link these objects and con-
nect them to other similar objects to form a complete name-
specifier.

INS provides name-specifier functions to:
� add a query clause,
� retrieve a component,
� search for a query clause,
� generate a readable text representation, and
� compare another name-specifier to it.

After creating a name-specifier describing a service, the ap-
plication can advertise the new service to the network using
an INS function. Similarly, to discover new services, the ap-
plication can use an INS function to find out whether services
matching a given name-specifier have been discovered; if they
have, it may communicate with them by using INS functions
to construct the appropriate name-specifiers.

The INS API also allows applications to enable caching,
simply by setting the length of time the message should be
cached by intermediate nodes. Applications choose whether
anycast or multicast is used by setting a flag in the message
header.

3.2 A Mobile Camera Application

In order to evaluate the utility of our system for enabling appli-
cations that are difficult to create in today’s Internet, we have
implemented a mobile camera application for remote surveil-
lance using INS. We present an example scenario from it here
to reinforce system concepts and demonstrate how an appli-
cation uses the API. The camera service consists of a num-
ber of physically mobile nodes equipped with cameras, each
running atransmitterapplication, and a number of nodes run-
ning receiverapplications displaying images from the remote
cameras. Figure 8 shows the network topology used in this
example.

The application uses name-specifiers with four orthogonal
attributes: service (svc) identifies that it is a camera appli-
cation, location (loc) describes its physical location, entity

2As we incorporate other operators such as range checks, this assumption
will change.
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(A camera located at home)
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Transmitter

Figure 8: Network topology for the camera application exam-
ple. INRsa andb run a receiver,c runs a transmitter, andr is
an intermediate INR without an application.

camera home

root

svc loc ent node

cxmt

c

Figure 9: Name-tree at INRr after Step 2.

(ent) indicates whether it is a transmitter (xmt) or a receiver
(rcv), andnode is a unique identifier for each node.

The application operates as follows: First, receivers learn
about available camera locations via discovery protocol up-
dates sent by transmitters. Then users of the receiver appli-
cation may request an image from a particular location. The
request message will be routed to the transmitter(s) that can
service a request for that location, independent of their net-
work location and the transmitter that announced the service.
Inference is used by intermediate nodes to create a path back
to the receiver. Finally, the transmitter sends back a response
containing the image requested.

The sequence of INS events in an example operation is:

1. The transmitter onc is started, and informsc’s INR
that it wants to receive all messages destined to it.
The transmitter registers a route to it for name-specifier
[svc=camera][loc=home][ent=xmt][node=c] and
also tells the INR to announce this to its neighbors.

2. INR c sends a triggered-update to INRr with
[svc=camera][loc=home][ent=xmt][node=c] in it.
INR r updates its name-tree to include the new name, as
shown in Figure 9. It then sends the update to INRsa and
b, which update their name-trees.

3. When the receiver ona is started, it asks INR
a to let it know about any name-specifiers match
[svc=camera][ent=xmt].

4. INR a, which has received an update from INR
r for [svc=camera][loc=home][ent=xmt][node=c]
passes this name-specifier to the receiver, which informs
the user that a new camera has been discovered athome.

5. The user requests an image fromhome. The receiver
sends a message with destination name-specifier:
[svc=camera][loc=home][ent=xmt]

and source name-specifier:

camera home

root

svc loc ent node

rcv a cxmt

a

c

Figure 10: Name-tree at INRr after Step 7.

[svc=camera][loc=home][ent=rcv][node=a].
Note that thenode attribute is omitted from the desti-
nation name-specifier, since the receiver only wants an
image from camera at home, and doesn’t care which
particular node supplies the image.

6. While handling the message, INRa infers that
[svc=camera][loc=home][ent=rcv][node=a] (the
sourcename-specifier of the message) is coming from
the application receiver. INRa then forwards it to INRr.

7. INR r knows to forward this message to INRc since
its name-tree (Figure 9) contains this route information.
Using inference as before, INRr knows that the source
name-specifier of the message must be in the direction of
INR a, and adds this information to its name-tree. This
is shown in Figure 10.

8. Upon receiving the message from INRr, INR c passes
it to the transmitter. INRc also adds an inferred
route for the source name-specifier. The transmit-
ter notices this request and sends back a message
with the requested image, destination name-specifier
[svc=camera][loc=home][ent=rcv] and source
name-specifier:
[svc=camera][loc=home][ent=xmt][node=c].
Note that thenode attribute is omitted from the desti-
nation name-specifier. This can be used to send it toall
receivers who request the image, not just nodea. INS
uses this to perform group communication.

9. Nodec receives the message from the transmitter appli-
cation and forwards it to INRr. Similarly,r forwards the
message toa, which then passes it on to the receiver ap-
plication. All these nodes know the route to the receiver
because of the inferred routes acquired during the flow of
the request message from the receiver to the transmitter.

4 Implementation

The INS architecture has been fully implemented and tested
using the mobile network of cameras as the test application.
Our implementation of INR is in Java, to take advantage of

8



Message: Header Data

Header: v p1 p2 p3 IP id TTL ct af cTTL eb s-ns d-ns

where:
v = version ct = up-counter
p1 = pointer to s-ns af = anycast flag
p2 = pointer to d-ns cTTL = cache-TTL
p3 = pointer to data eb = early-binding flag
IP = IP address s-ns = source name-specifier
id = packet ID d-ns = source name-specifier
TTL = time to live (TTL)

Figure 11: The INS message format.

its easy cross-platform portability. User applications are not
constrained to be written in Java.

In this section, we present the implementation details of two
key aspects of INS: the architecture of an INR node, and the
packet formats for intentional names.

INR node architecture. INRs use UDP to communicate
with each other. At an INR, theNode is the manager of all net-
work resources and running applications at a resolver. It main-
tains theNameTree that is used to resolve an intentional name
to its corresponding route information, aForwardAgent to
forward messages, and aNodeListener that receives all in-
coming packets. In addition, there are two useful applica-
tions that run at each INR: anEntityDiscovery applica-
tion, which implements the name dissemination protocol, and
a NetworkManagement application that provides a graphical
interface to monitor and debug the system and view the name-
tree.

The INR implementation consists of approximately 5000
lines of Java code. Using the INS API, applications are rel-
atively easy to develop. For example, the camera application
was implemented in less than 1000 lines of Java, of which over
60% was for the user-interface and image display.

Packet format of intentional names. Figure 11 shows the
INS packet format for intentional names. Because name-
specifiers are of variable length, three pointers (p1, p2, p3)
point to the start of the source name-specifier, destination-
name-specifier and data fields of the message. INR nodes do
not process application data.

The IP field contains the IP address of the source node,
and is used by applications to perform “early binding” of in-
tentional name to address.id is a monotonically increasing
32-bit unique ID for the message, used in conjunction withIP

to detect routing loops. In addition to the standardTTL field,
messages contain act field that counts up from zero at each
INR. When an INR performs route inference, it usesct as a
hint to initialize the metric for the route.

Theaf field indicates whether the destination specified by
thed-ns field is meant to be an individual (“any”) entity or
a group (“all”) of entities.cTTL field stores the TTL of (op-
tional) cached data.

ra

rv

Name-tree Name-specifier

2d na

Figure 12: A uniformly grown name-tree. Note thatd =
(tree depth)=2 = 1 for this tree.

5 Performance Analysis and Evalua-
tion

In this section, we analyze performance of the INS name
lookup algorithm and present the results of our experiments
with the lookup algorithm and name discovery protocol. Our
results are encouraging and demonstrate the practical feasibil-
ity and deployability of INS.

5.1 Name Lookup Performance

Analysis. Since INS scalability with load is a major con-
cern, it is important to analyze the performance of the lookup
algorithm as the demands on it increase. While many of the
tasks involved in resolving a name take the same amount of
time (e.g., copying the data, transmitting it over the network),
the time to perform a name lookup depends on a number of
factors. It is therefore important to determine the worst-case
run-time of the algorithm.

To simplify the analysis of our lookup algorithm, we
assume that name-specifiers grow uniformly in the following
dimensions (illustrated in Figure 12):

d One-half the depth of name-specifiers
ra Range of possible attributes in name-specifiers
rv Range of possible values in name-specifiers
na Actual number of attributes in name-specifiers

In each invocation, the algorithm iterates through the at-
tributes in the name-specifier, finding the corresponding at-
tribute and value in the name-tree and making a recursive call.
Thus, the run-time is given by the recurrence,

T (d) = na � (ta + tv + T (d� 1));

whereta and tv represent the time to find the attribute and
value respectively. For now, assume that it takes timeb for the
base case such that:

T (0) = b

Settingt = ta + tv and performing the algebra yields:

T (d) = na � (t+ T (d� 1))

=
nda � 1

na � 1
� t+ nd�1

a � b

9



= �(nda � (t+ b))

If linear search is used to find attributes and values, the run-
ning time would be:

T (d) = �(nda � (ra + rv + b));

becauseta / ra andtv / rv in this case.
However, using a straightforward hash table to find these

reduces the running time to:

T (d) = �(nda � (1 + b))

Implications. From the above analysis, it seems that the
nda factor may suffer from scaling problems ifd grows large.
However, bothna andd, will scale up withthe complexity of
a single applicationassociated with the name-specifier. There
are only as many attributes or levels to a name-specifier as
the application designer needs to describe the objects that are
used by their application. Consequently, we expect that that
na andd will be near constant and relatively small; indeed,
our mobile camera application has this property.

The cost of the base case,b, is the cost of an intersection
operation between the set of route entries at the leaf of the
name-tree and the current target route set. Taking the intersec-
tion of the two sets of sizes1 ands2 takes�(max(s1; s2))
time, assuming the two sets are sorted (as in our implementa-
tion). In theworstcase the value ofb is on the order of the size
of the universal set of route entries (�(jU j)), but is usually sig-
nificantly smaller. Unfortunately, an average case analysis of
b is difficult to calculate analytically since it depends on the
number and distribution of names.

Experiment. To experimentally determine the name lookup
performance of our (untuned) Java implementation of an INR,
we created a number of randomly constructed name-trees, and
timed how long it took to perform 1000 random lookup op-
erations on the tree. The name-tree and name-specifiers were
chosen to be uniform with same parameters as the analysis in
Section 5.1. We variedn, the number of distinct names in the
tree, and measured lookup times. We performed our experi-
ment on an off-the-shelf PC with an Intel Pentium II processor
running at 450 MHz with 512 KB cache and 128 MB RAM.
The machine was running Red Hat Linux 5.2, and the code
was compiled and run under Sun’s Java version 1.1.7.

We fixed the parameters atra = 3, rv = 3, na = 2,
andd = 3, and variedn from 1 to 2500. Our results are
shown in Figure 13. For this name-tree and name-specifier
structure, our performance went from a maximum of about
1060 lookups per second to a minimum of 220 lookups per
second. We did see occasional large variations in similar tri-
als, and conjecture that it is a consequence of quirks in Java’s
memory allocation. We also found that lookup performance
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Figure 13: Performance of name-tree lookups. This graph
shows how the name-tree lookup performance of an INR goes
down as the number of names in its name-tree increases.

improved significantly for narrower name-specifiers, reaching
several thousand lookups per second.

These experiments give us a practical idea of how the
base caseb affects performance. We believe that this order-
of-magnitude of lookup performance is adequate for intra-
domain deployments, because of the load balancing provided
by the INS self-organization protocol and the parallelism in-
herent in independent name lookups.

5.2 Name Discovery Performance

One of the claims we made about INS was that it was capable
of tracking rapid change and dynamism in services and hosts.
This section substantiates this claim by discussing the perfor-
mance of the name discovery protocol.

We measured the performance of INS in discoveringnew
network entities, which advertise their existence via name-
specifiers. Figure 14 shows the average discovery time of a
new name-specifier as a function ofn, the number of hops in
the INR network from the new name. The machines used in
the experiments off-the-shelf Intel Pentium II 450 MHz PCs
running Red Hat Linux 5.2 and Windows NT Server 4.0. The
network nodes were connected over 100 Mbps Ethernet and
10 Mbps wireless RF links.

When an INR observed a new name-specifier from a pe-
riodic node announcement, it processes the update message
and performs a lookup operation on the name-tree to see if
a route already exists. When it does not find the route, it
grafts the name-specifier on to its name-tree and propagates
a triggered-update to its neighbors. Thus, it is easy to see
that the name discovery time in a network of identical INRs
and links,Td(n) = n(Tl + Tg + Tup + d), whereTl is the
lookup time,Tg is the graft time,Tup is the update processing
time, andd is the one-way network delay between any two
nodes. That is, name discovery time is to first-order linear in
the number of hops. The key experimental question is what
the slope of the line is, because that determines how agile INS
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Figure 14: Discovery time of a new network name. This graph
shows that the time to discover a new network name is linear
in the number of INR hops.

is in tracking changes.
In our experiments the structure of the name-tree on each

INR was relatively constant (except for the new grafts), since
we were not running any other applications in the system dur-
ing the measurements. Thus, the lookup and graft times at one
INR and the others were roughly the same. As shown in Fig-
ure 14,Td(n) is indeed linear inn, with a slope of less than
10 ms/hop. This implies that typical discovery times are only
a few tens of milliseconds, and dominated by network trans-
mission delays.

6 Related Work

We are unaware of an application-controlled network archi-
tecture that integrates naming and routing the way the INS
architecture does. We believe that the flexible naming and res-
olution provided by INS is well-suited to the future Internet
infrastructure because it enables a variety of network services
and applications in an easily deployable manner.

There has been significant research in wide-area naming
and resolution, including some recent proposals. Vahdatet
al. [40] present scheme foractive names.Similar in spirit
to active networks that incorporate general purpose compu-
tation into the routing infrastructure [38, 44], active names
allow applications to define arbitrary computation that exe-
cutes on names at resolvers. We believe that active names are
overly general and therefore complex; for many applications,
the benefits they obtain can be accomplished using a flexible
but non-Turing-complete naming system with a carefully cho-
sen set of operators such as the one we have proposed. Fur-
thermore, the active names scheme does not specify a resolu-
tion protocol that incorporates message routing or name dis-
semination for resource discovery.

To our knowledge, the first proposal to decouple names
from object locations was described in a paper by O’Toole and
Gifford [30], where they describe a content naming scheme

and its application to Semantic File Systems [18]. The de-
sign of content names is very different from ours and so is its
application, but the underlying philosophy is similar.

Another suggestion similar to our intentional naming
scheme was made by Jacobson [21]. Presented in the con-
text of multicast-based self-configuring Web caching, the pro-
posal was to use the URL namespace and “instead of ask-
ing X to send youY , simply ask forY .” More recently, as
part of the Simple Systems DARPA ISAT group, Estrinet al.
[14] suggested a naming scheme based on attributes to enable
diffusion-based sensor tracking and control applications. Our
intentional naming scheme has some features in common with
that proposal, but differs in the details of the resolution and
message routing processes and in the self-organization mech-
anisms.

Cisco’s DistributedDirector [7] intelligently resolves ser-
vice names (in the URL namespace) to the IP address of the
closest server, based on client proximity and client-to-server
link latency. Unlike our system, DistributedDirector is not a
general framework for naming and resolution and it does not
integrate resolution and routing the way INS does using inten-
tional names.

IBM’s “T Spaces” [26] enable communication between ap-
plications in a network by providing a lightweight distributed
database model. Network entities can perform queries on
pieces of data that are described by tuples (similar to attribute-
value pairs in name-specifier expressions) and have been set
by other entities. However, this system has been optimized
for client-server applications rather than for (ad hoc) peer-to-
peer communication, and uses a central database to maintain
tuple mappings. Sun Microsystems’ Jini project [22] aims to
provide a framework for users to discover and access local
services, by forming a “federation of networked devices” over
Java’s Remote Message Invocation (RMI). Jini does not ad-
dress either how naming should be done or the name resolu-
tion process.

In the past few years, several schemes for distributed Web
caching have been proposed including Harvest [6], Squid
and the Internet Cache Protocol (ICP) [43], Adaptive Web
Caching [2], diffusion-based caching [19], Summary Cache
[15], Cisco’s Cache Engine [8], Web caching using active
networks [25], multicast-based caches [39], hierarchical Web
caching [36], meta-data caching, etc. We believe that by be-
ing able to incorporate data caching into the name resolution
framework as an important optimization, INS has the poten-
tial to simplify the complex problem of Web caching. Using
INS would lead to an infrastructure similar to that described
by Jacobson [21].

The Service Location Protocol (SLP) [41, 34] is a protocol
designed to facilitate the discovery and use of heterogeneous
network resources using centralized Directory Agents. In con-
trast, INS enables highly robust, dynamic, and flexible entity
(service) discovery.
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Retaining network connectivity while mobile requires a
level of indirection so that all traffic to the mobile host can
be redirected to its current location. Mobile IP [33] achieves
this using a Home Agent in the mobile host’s home domain.
With INS, the required level of indirection is obtained using
the intentional naming system, since all traffic to the mobile
host would go through a name resolution process. The tight
integration of naming and routing enables continued network
connectivity in the face of mobility. Furthermore, INS system
is a highly distributed and fault tolerant architecture avoiding
central points of failure that Mobile IP suffers from. A num-
ber of protocols for ad hoc or infastructureless routing have
recently been proposed [5, 31, 37]. These protocols, while
very useful to enable IP connectivity, do not support routing
of queries via name-specifiers like INS does.

7 Concluding Remarks

In this paper, we established the need for an intentional nam-
ing scheme, where applications describewhat they are look-
ing for, notwhereto find data. We presented the design, im-
plementation and evaluation of an Intentional Name System,
called INS, to realize this vision. The components of INS in-
clude the an intentional naming scheme using name-specifiers,
which are query expressions in a restricted query language, an
intentional name resolver architecture that resolve names and
integrates naming and message routing, and the INS API and
application architecture.

We presented the design and analysis of an efficient algo-
rithm for name lookups and measurements of our implemen-
tation, which show that an (untuned) Java implementation can
perform several hundred to a few thousand lookups per sec-
ond. We also presented the design and evaluation of an en-
tity discovery protocol, demonstrating INS’ agility in tracking
highly dynamic changes in network topology or application
data. We discussed the details of an INR self-organization
protocol that we use to bootstrap the system, form dynamic
neighborhoods, and perform load management.

Finally, we presented the design of the INS application ar-
chitecture and detailed a sample mobile camera application
for remote surveillance, which we have had experience with
over the past many weeks. We detailed how this application
used intentional names and leveraged INS’ automatic support
for mobility, group communication, service location and data
caching.

Our experience with INS has convinced us that using inten-
tional names in the naming system provides the right level of
indirection over which to implement a variety of services. Fur-
thermore, although we have not explicitly detailed it, INS al-
lows applications to efficiently trackdynamic data attributes,
because the choice of attributes to use in name-specifiers are
completely under application-control. For example, a sensor
application can use INS to send a message to all the temper-

ature sensors in a building that have recently observed a tem-
perature greater than some threshold, to actuate an action such
as turning on air vents. We believe that INS has the potential to
become an integral part of future device and sensor networks.

Although our current experiences with INS are very encour-
aging, there remain some important areas of fruitful research
before the full benefits of this intentional naming architec-
ture can be realized in the Internet. First, we need to care-
fully expand the set of supported operators in the resolution
process, such as incorporating range matches. Second, the
current INS architecture is intended for intra-domain deploy-
ment. We are actively developing a wide-area architecture to
complement INS, which will integrate INS with extensions
to DNS for ease of deployment. Ultimately, the benefits of
such a system are in enabling or facilitating the development
of new applications and services; to this end, we are design-
ing new services (e.g., transparent performance-based server
selection, location-dependent services, etc.) using INS. This
will demonstrate the benefits of INS and help us characterize
the class of applications that INS facilitates.
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